Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *
4 * Bluetooth HCI UART driver for Intel devices
5 *
6 * Copyright (C) 2015 Intel Corporation
7 */
8
9#include <linux/kernel.h>
10#include <linux/errno.h>
11#include <linux/skbuff.h>
12#include <linux/firmware.h>
13#include <linux/module.h>
14#include <linux/wait.h>
15#include <linux/tty.h>
16#include <linux/platform_device.h>
17#include <linux/gpio/consumer.h>
18#include <linux/acpi.h>
19#include <linux/interrupt.h>
20#include <linux/pm_runtime.h>
21
22#include <net/bluetooth/bluetooth.h>
23#include <net/bluetooth/hci_core.h>
24
25#include "hci_uart.h"
26#include "btintel.h"
27
28#define STATE_BOOTLOADER 0
29#define STATE_DOWNLOADING 1
30#define STATE_FIRMWARE_LOADED 2
31#define STATE_FIRMWARE_FAILED 3
32#define STATE_BOOTING 4
33#define STATE_LPM_ENABLED 5
34#define STATE_TX_ACTIVE 6
35#define STATE_SUSPENDED 7
36#define STATE_LPM_TRANSACTION 8
37
38#define HCI_LPM_WAKE_PKT 0xf0
39#define HCI_LPM_PKT 0xf1
40#define HCI_LPM_MAX_SIZE 10
41#define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
42
43#define LPM_OP_TX_NOTIFY 0x00
44#define LPM_OP_SUSPEND_ACK 0x02
45#define LPM_OP_RESUME_ACK 0x03
46
47#define LPM_SUSPEND_DELAY_MS 1000
48
49struct hci_lpm_pkt {
50 __u8 opcode;
51 __u8 dlen;
52 __u8 data[];
53} __packed;
54
55struct intel_device {
56 struct list_head list;
57 struct platform_device *pdev;
58 struct gpio_desc *reset;
59 struct hci_uart *hu;
60 struct mutex hu_lock;
61 int irq;
62};
63
64static LIST_HEAD(intel_device_list);
65static DEFINE_MUTEX(intel_device_list_lock);
66
67struct intel_data {
68 struct sk_buff *rx_skb;
69 struct sk_buff_head txq;
70 struct work_struct busy_work;
71 struct hci_uart *hu;
72 unsigned long flags;
73};
74
75static u8 intel_convert_speed(unsigned int speed)
76{
77 switch (speed) {
78 case 9600:
79 return 0x00;
80 case 19200:
81 return 0x01;
82 case 38400:
83 return 0x02;
84 case 57600:
85 return 0x03;
86 case 115200:
87 return 0x04;
88 case 230400:
89 return 0x05;
90 case 460800:
91 return 0x06;
92 case 921600:
93 return 0x07;
94 case 1843200:
95 return 0x08;
96 case 3250000:
97 return 0x09;
98 case 2000000:
99 return 0x0a;
100 case 3000000:
101 return 0x0b;
102 default:
103 return 0xff;
104 }
105}
106
107static int intel_wait_booting(struct hci_uart *hu)
108{
109 struct intel_data *intel = hu->priv;
110 int err;
111
112 err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
113 TASK_INTERRUPTIBLE,
114 msecs_to_jiffies(1000));
115
116 if (err == -EINTR) {
117 bt_dev_err(hu->hdev, "Device boot interrupted");
118 return -EINTR;
119 }
120
121 if (err) {
122 bt_dev_err(hu->hdev, "Device boot timeout");
123 return -ETIMEDOUT;
124 }
125
126 return err;
127}
128
129#ifdef CONFIG_PM
130static int intel_wait_lpm_transaction(struct hci_uart *hu)
131{
132 struct intel_data *intel = hu->priv;
133 int err;
134
135 err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
136 TASK_INTERRUPTIBLE,
137 msecs_to_jiffies(1000));
138
139 if (err == -EINTR) {
140 bt_dev_err(hu->hdev, "LPM transaction interrupted");
141 return -EINTR;
142 }
143
144 if (err) {
145 bt_dev_err(hu->hdev, "LPM transaction timeout");
146 return -ETIMEDOUT;
147 }
148
149 return err;
150}
151
152static int intel_lpm_suspend(struct hci_uart *hu)
153{
154 static const u8 suspend[] = { 0x01, 0x01, 0x01 };
155 struct intel_data *intel = hu->priv;
156 struct sk_buff *skb;
157
158 if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
159 test_bit(STATE_SUSPENDED, &intel->flags))
160 return 0;
161
162 if (test_bit(STATE_TX_ACTIVE, &intel->flags))
163 return -EAGAIN;
164
165 bt_dev_dbg(hu->hdev, "Suspending");
166
167 skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
168 if (!skb) {
169 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
170 return -ENOMEM;
171 }
172
173 skb_put_data(skb, suspend, sizeof(suspend));
174 hci_skb_pkt_type(skb) = HCI_LPM_PKT;
175
176 set_bit(STATE_LPM_TRANSACTION, &intel->flags);
177
178 /* LPM flow is a priority, enqueue packet at list head */
179 skb_queue_head(&intel->txq, skb);
180 hci_uart_tx_wakeup(hu);
181
182 intel_wait_lpm_transaction(hu);
183 /* Even in case of failure, continue and test the suspended flag */
184
185 clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
186
187 if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
188 bt_dev_err(hu->hdev, "Device suspend error");
189 return -EINVAL;
190 }
191
192 bt_dev_dbg(hu->hdev, "Suspended");
193
194 hci_uart_set_flow_control(hu, true);
195
196 return 0;
197}
198
199static int intel_lpm_resume(struct hci_uart *hu)
200{
201 struct intel_data *intel = hu->priv;
202 struct sk_buff *skb;
203
204 if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
205 !test_bit(STATE_SUSPENDED, &intel->flags))
206 return 0;
207
208 bt_dev_dbg(hu->hdev, "Resuming");
209
210 hci_uart_set_flow_control(hu, false);
211
212 skb = bt_skb_alloc(0, GFP_KERNEL);
213 if (!skb) {
214 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
215 return -ENOMEM;
216 }
217
218 hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
219
220 set_bit(STATE_LPM_TRANSACTION, &intel->flags);
221
222 /* LPM flow is a priority, enqueue packet at list head */
223 skb_queue_head(&intel->txq, skb);
224 hci_uart_tx_wakeup(hu);
225
226 intel_wait_lpm_transaction(hu);
227 /* Even in case of failure, continue and test the suspended flag */
228
229 clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
230
231 if (test_bit(STATE_SUSPENDED, &intel->flags)) {
232 bt_dev_err(hu->hdev, "Device resume error");
233 return -EINVAL;
234 }
235
236 bt_dev_dbg(hu->hdev, "Resumed");
237
238 return 0;
239}
240#endif /* CONFIG_PM */
241
242static int intel_lpm_host_wake(struct hci_uart *hu)
243{
244 static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
245 struct intel_data *intel = hu->priv;
246 struct sk_buff *skb;
247
248 hci_uart_set_flow_control(hu, false);
249
250 clear_bit(STATE_SUSPENDED, &intel->flags);
251
252 skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
253 if (!skb) {
254 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
255 return -ENOMEM;
256 }
257
258 skb_put_data(skb, lpm_resume_ack, sizeof(lpm_resume_ack));
259 hci_skb_pkt_type(skb) = HCI_LPM_PKT;
260
261 /* LPM flow is a priority, enqueue packet at list head */
262 skb_queue_head(&intel->txq, skb);
263 hci_uart_tx_wakeup(hu);
264
265 bt_dev_dbg(hu->hdev, "Resumed by controller");
266
267 return 0;
268}
269
270static irqreturn_t intel_irq(int irq, void *dev_id)
271{
272 struct intel_device *idev = dev_id;
273
274 dev_info(&idev->pdev->dev, "hci_intel irq\n");
275
276 mutex_lock(&idev->hu_lock);
277 if (idev->hu)
278 intel_lpm_host_wake(idev->hu);
279 mutex_unlock(&idev->hu_lock);
280
281 /* Host/Controller are now LPM resumed, trigger a new delayed suspend */
282 pm_runtime_get(&idev->pdev->dev);
283 pm_runtime_mark_last_busy(&idev->pdev->dev);
284 pm_runtime_put_autosuspend(&idev->pdev->dev);
285
286 return IRQ_HANDLED;
287}
288
289static int intel_set_power(struct hci_uart *hu, bool powered)
290{
291 struct intel_device *idev;
292 int err = -ENODEV;
293
294 if (!hu->tty->dev)
295 return err;
296
297 mutex_lock(&intel_device_list_lock);
298
299 list_for_each_entry(idev, &intel_device_list, list) {
300 /* tty device and pdev device should share the same parent
301 * which is the UART port.
302 */
303 if (hu->tty->dev->parent != idev->pdev->dev.parent)
304 continue;
305
306 if (!idev->reset) {
307 err = -ENOTSUPP;
308 break;
309 }
310
311 BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
312 hu, dev_name(&idev->pdev->dev), powered);
313
314 gpiod_set_value(idev->reset, powered);
315
316 /* Provide to idev a hu reference which is used to run LPM
317 * transactions (lpm suspend/resume) from PM callbacks.
318 * hu needs to be protected against concurrent removing during
319 * these PM ops.
320 */
321 mutex_lock(&idev->hu_lock);
322 idev->hu = powered ? hu : NULL;
323 mutex_unlock(&idev->hu_lock);
324
325 if (idev->irq < 0)
326 break;
327
328 if (powered && device_can_wakeup(&idev->pdev->dev)) {
329 err = devm_request_threaded_irq(&idev->pdev->dev,
330 idev->irq, NULL,
331 intel_irq,
332 IRQF_ONESHOT,
333 "bt-host-wake", idev);
334 if (err) {
335 BT_ERR("hu %p, unable to allocate irq-%d",
336 hu, idev->irq);
337 break;
338 }
339
340 device_wakeup_enable(&idev->pdev->dev);
341
342 pm_runtime_set_active(&idev->pdev->dev);
343 pm_runtime_use_autosuspend(&idev->pdev->dev);
344 pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
345 LPM_SUSPEND_DELAY_MS);
346 pm_runtime_enable(&idev->pdev->dev);
347 } else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
348 devm_free_irq(&idev->pdev->dev, idev->irq, idev);
349 device_wakeup_disable(&idev->pdev->dev);
350
351 pm_runtime_disable(&idev->pdev->dev);
352 }
353 }
354
355 mutex_unlock(&intel_device_list_lock);
356
357 return err;
358}
359
360static void intel_busy_work(struct work_struct *work)
361{
362 struct intel_data *intel = container_of(work, struct intel_data,
363 busy_work);
364 struct intel_device *idev;
365
366 if (!intel->hu->tty->dev)
367 return;
368
369 /* Link is busy, delay the suspend */
370 mutex_lock(&intel_device_list_lock);
371 list_for_each_entry(idev, &intel_device_list, list) {
372 if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
373 pm_runtime_get(&idev->pdev->dev);
374 pm_runtime_mark_last_busy(&idev->pdev->dev);
375 pm_runtime_put_autosuspend(&idev->pdev->dev);
376 break;
377 }
378 }
379 mutex_unlock(&intel_device_list_lock);
380}
381
382static int intel_open(struct hci_uart *hu)
383{
384 struct intel_data *intel;
385
386 BT_DBG("hu %p", hu);
387
388 if (!hci_uart_has_flow_control(hu))
389 return -EOPNOTSUPP;
390
391 intel = kzalloc(sizeof(*intel), GFP_KERNEL);
392 if (!intel)
393 return -ENOMEM;
394
395 skb_queue_head_init(&intel->txq);
396 INIT_WORK(&intel->busy_work, intel_busy_work);
397
398 intel->hu = hu;
399
400 hu->priv = intel;
401
402 if (!intel_set_power(hu, true))
403 set_bit(STATE_BOOTING, &intel->flags);
404
405 return 0;
406}
407
408static int intel_close(struct hci_uart *hu)
409{
410 struct intel_data *intel = hu->priv;
411
412 BT_DBG("hu %p", hu);
413
414 cancel_work_sync(&intel->busy_work);
415
416 intel_set_power(hu, false);
417
418 skb_queue_purge(&intel->txq);
419 kfree_skb(intel->rx_skb);
420 kfree(intel);
421
422 hu->priv = NULL;
423 return 0;
424}
425
426static int intel_flush(struct hci_uart *hu)
427{
428 struct intel_data *intel = hu->priv;
429
430 BT_DBG("hu %p", hu);
431
432 skb_queue_purge(&intel->txq);
433
434 return 0;
435}
436
437static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
438{
439 struct sk_buff *skb;
440 struct hci_event_hdr *hdr;
441 struct hci_ev_cmd_complete *evt;
442
443 skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_KERNEL);
444 if (!skb)
445 return -ENOMEM;
446
447 hdr = skb_put(skb, sizeof(*hdr));
448 hdr->evt = HCI_EV_CMD_COMPLETE;
449 hdr->plen = sizeof(*evt) + 1;
450
451 evt = skb_put(skb, sizeof(*evt));
452 evt->ncmd = 0x01;
453 evt->opcode = cpu_to_le16(opcode);
454
455 skb_put_u8(skb, 0x00);
456
457 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
458
459 return hci_recv_frame(hdev, skb);
460}
461
462static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
463{
464 struct intel_data *intel = hu->priv;
465 struct hci_dev *hdev = hu->hdev;
466 u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
467 struct sk_buff *skb;
468 int err;
469
470 /* This can be the first command sent to the chip, check
471 * that the controller is ready.
472 */
473 err = intel_wait_booting(hu);
474
475 clear_bit(STATE_BOOTING, &intel->flags);
476
477 /* In case of timeout, try to continue anyway */
478 if (err && err != -ETIMEDOUT)
479 return err;
480
481 bt_dev_info(hdev, "Change controller speed to %d", speed);
482
483 speed_cmd[3] = intel_convert_speed(speed);
484 if (speed_cmd[3] == 0xff) {
485 bt_dev_err(hdev, "Unsupported speed");
486 return -EINVAL;
487 }
488
489 /* Device will not accept speed change if Intel version has not been
490 * previously requested.
491 */
492 skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
493 if (IS_ERR(skb)) {
494 bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
495 PTR_ERR(skb));
496 return PTR_ERR(skb);
497 }
498 kfree_skb(skb);
499
500 skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
501 if (!skb) {
502 bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
503 return -ENOMEM;
504 }
505
506 skb_put_data(skb, speed_cmd, sizeof(speed_cmd));
507 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
508
509 hci_uart_set_flow_control(hu, true);
510
511 skb_queue_tail(&intel->txq, skb);
512 hci_uart_tx_wakeup(hu);
513
514 /* wait 100ms to change baudrate on controller side */
515 msleep(100);
516
517 hci_uart_set_baudrate(hu, speed);
518 hci_uart_set_flow_control(hu, false);
519
520 return 0;
521}
522
523static int intel_setup(struct hci_uart *hu)
524{
525 struct intel_data *intel = hu->priv;
526 struct hci_dev *hdev = hu->hdev;
527 struct sk_buff *skb;
528 struct intel_version ver;
529 struct intel_boot_params params;
530 struct intel_device *idev;
531 const struct firmware *fw;
532 char fwname[64];
533 u32 boot_param;
534 ktime_t calltime, delta, rettime;
535 unsigned long long duration;
536 unsigned int init_speed, oper_speed;
537 int speed_change = 0;
538 int err;
539
540 bt_dev_dbg(hdev, "start intel_setup");
541
542 hu->hdev->set_diag = btintel_set_diag;
543 hu->hdev->set_bdaddr = btintel_set_bdaddr;
544
545 /* Set the default boot parameter to 0x0 and it is updated to
546 * SKU specific boot parameter after reading Intel_Write_Boot_Params
547 * command while downloading the firmware.
548 */
549 boot_param = 0x00000000;
550
551 calltime = ktime_get();
552
553 if (hu->init_speed)
554 init_speed = hu->init_speed;
555 else
556 init_speed = hu->proto->init_speed;
557
558 if (hu->oper_speed)
559 oper_speed = hu->oper_speed;
560 else
561 oper_speed = hu->proto->oper_speed;
562
563 if (oper_speed && init_speed && oper_speed != init_speed)
564 speed_change = 1;
565
566 /* Check that the controller is ready */
567 err = intel_wait_booting(hu);
568
569 clear_bit(STATE_BOOTING, &intel->flags);
570
571 /* In case of timeout, try to continue anyway */
572 if (err && err != -ETIMEDOUT)
573 return err;
574
575 set_bit(STATE_BOOTLOADER, &intel->flags);
576
577 /* Read the Intel version information to determine if the device
578 * is in bootloader mode or if it already has operational firmware
579 * loaded.
580 */
581 err = btintel_read_version(hdev, &ver);
582 if (err)
583 return err;
584
585 /* The hardware platform number has a fixed value of 0x37 and
586 * for now only accept this single value.
587 */
588 if (ver.hw_platform != 0x37) {
589 bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
590 ver.hw_platform);
591 return -EINVAL;
592 }
593
594 /* Check for supported iBT hardware variants of this firmware
595 * loading method.
596 *
597 * This check has been put in place to ensure correct forward
598 * compatibility options when newer hardware variants come along.
599 */
600 switch (ver.hw_variant) {
601 case 0x0b: /* LnP */
602 case 0x0c: /* WsP */
603 case 0x12: /* ThP */
604 break;
605 default:
606 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
607 ver.hw_variant);
608 return -EINVAL;
609 }
610
611 btintel_version_info(hdev, &ver);
612
613 /* The firmware variant determines if the device is in bootloader
614 * mode or is running operational firmware. The value 0x06 identifies
615 * the bootloader and the value 0x23 identifies the operational
616 * firmware.
617 *
618 * When the operational firmware is already present, then only
619 * the check for valid Bluetooth device address is needed. This
620 * determines if the device will be added as configured or
621 * unconfigured controller.
622 *
623 * It is not possible to use the Secure Boot Parameters in this
624 * case since that command is only available in bootloader mode.
625 */
626 if (ver.fw_variant == 0x23) {
627 clear_bit(STATE_BOOTLOADER, &intel->flags);
628 btintel_check_bdaddr(hdev);
629 return 0;
630 }
631
632 /* If the device is not in bootloader mode, then the only possible
633 * choice is to return an error and abort the device initialization.
634 */
635 if (ver.fw_variant != 0x06) {
636 bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
637 ver.fw_variant);
638 return -ENODEV;
639 }
640
641 /* Read the secure boot parameters to identify the operating
642 * details of the bootloader.
643 */
644 err = btintel_read_boot_params(hdev, ¶ms);
645 if (err)
646 return err;
647
648 /* It is required that every single firmware fragment is acknowledged
649 * with a command complete event. If the boot parameters indicate
650 * that this bootloader does not send them, then abort the setup.
651 */
652 if (params.limited_cce != 0x00) {
653 bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
654 params.limited_cce);
655 return -EINVAL;
656 }
657
658 /* If the OTP has no valid Bluetooth device address, then there will
659 * also be no valid address for the operational firmware.
660 */
661 if (!bacmp(¶ms.otp_bdaddr, BDADDR_ANY)) {
662 bt_dev_info(hdev, "No device address configured");
663 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
664 }
665
666 /* With this Intel bootloader only the hardware variant and device
667 * revision information are used to select the right firmware for SfP
668 * and WsP.
669 *
670 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
671 *
672 * Currently the supported hardware variants are:
673 * 11 (0x0b) for iBT 3.0 (LnP/SfP)
674 * 12 (0x0c) for iBT 3.5 (WsP)
675 *
676 * For ThP/JfP and for future SKU's, the FW name varies based on HW
677 * variant, HW revision and FW revision, as these are dependent on CNVi
678 * and RF Combination.
679 *
680 * 18 (0x12) for iBT3.5 (ThP/JfP)
681 *
682 * The firmware file name for these will be
683 * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi.
684 *
685 */
686 switch (ver.hw_variant) {
687 case 0x0b: /* SfP */
688 case 0x0c: /* WsP */
689 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.sfi",
690 ver.hw_variant, le16_to_cpu(params.dev_revid));
691 break;
692 case 0x12: /* ThP */
693 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.sfi",
694 ver.hw_variant, ver.hw_revision, ver.fw_revision);
695 break;
696 default:
697 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
698 ver.hw_variant);
699 return -EINVAL;
700 }
701
702 err = request_firmware(&fw, fwname, &hdev->dev);
703 if (err < 0) {
704 bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
705 err);
706 return err;
707 }
708
709 bt_dev_info(hdev, "Found device firmware: %s", fwname);
710
711 /* Save the DDC file name for later */
712 switch (ver.hw_variant) {
713 case 0x0b: /* SfP */
714 case 0x0c: /* WsP */
715 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.ddc",
716 ver.hw_variant, le16_to_cpu(params.dev_revid));
717 break;
718 case 0x12: /* ThP */
719 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.ddc",
720 ver.hw_variant, ver.hw_revision, ver.fw_revision);
721 break;
722 default:
723 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
724 ver.hw_variant);
725 return -EINVAL;
726 }
727
728 if (fw->size < 644) {
729 bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
730 fw->size);
731 err = -EBADF;
732 goto done;
733 }
734
735 set_bit(STATE_DOWNLOADING, &intel->flags);
736
737 /* Start firmware downloading and get boot parameter */
738 err = btintel_download_firmware(hdev, &ver, fw, &boot_param);
739 if (err < 0)
740 goto done;
741
742 set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
743
744 bt_dev_info(hdev, "Waiting for firmware download to complete");
745
746 /* Before switching the device into operational mode and with that
747 * booting the loaded firmware, wait for the bootloader notification
748 * that all fragments have been successfully received.
749 *
750 * When the event processing receives the notification, then the
751 * STATE_DOWNLOADING flag will be cleared.
752 *
753 * The firmware loading should not take longer than 5 seconds
754 * and thus just timeout if that happens and fail the setup
755 * of this device.
756 */
757 err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
758 TASK_INTERRUPTIBLE,
759 msecs_to_jiffies(5000));
760 if (err == -EINTR) {
761 bt_dev_err(hdev, "Firmware loading interrupted");
762 err = -EINTR;
763 goto done;
764 }
765
766 if (err) {
767 bt_dev_err(hdev, "Firmware loading timeout");
768 err = -ETIMEDOUT;
769 goto done;
770 }
771
772 if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
773 bt_dev_err(hdev, "Firmware loading failed");
774 err = -ENOEXEC;
775 goto done;
776 }
777
778 rettime = ktime_get();
779 delta = ktime_sub(rettime, calltime);
780 duration = (unsigned long long) ktime_to_ns(delta) >> 10;
781
782 bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
783
784done:
785 release_firmware(fw);
786
787 /* Check if there was an error and if is not -EALREADY which means the
788 * firmware has already been loaded.
789 */
790 if (err < 0 && err != -EALREADY)
791 return err;
792
793 /* We need to restore the default speed before Intel reset */
794 if (speed_change) {
795 err = intel_set_baudrate(hu, init_speed);
796 if (err)
797 return err;
798 }
799
800 calltime = ktime_get();
801
802 set_bit(STATE_BOOTING, &intel->flags);
803
804 err = btintel_send_intel_reset(hdev, boot_param);
805 if (err)
806 return err;
807
808 /* The bootloader will not indicate when the device is ready. This
809 * is done by the operational firmware sending bootup notification.
810 *
811 * Booting into operational firmware should not take longer than
812 * 1 second. However if that happens, then just fail the setup
813 * since something went wrong.
814 */
815 bt_dev_info(hdev, "Waiting for device to boot");
816
817 err = intel_wait_booting(hu);
818 if (err)
819 return err;
820
821 clear_bit(STATE_BOOTING, &intel->flags);
822
823 rettime = ktime_get();
824 delta = ktime_sub(rettime, calltime);
825 duration = (unsigned long long) ktime_to_ns(delta) >> 10;
826
827 bt_dev_info(hdev, "Device booted in %llu usecs", duration);
828
829 /* Enable LPM if matching pdev with wakeup enabled, set TX active
830 * until further LPM TX notification.
831 */
832 mutex_lock(&intel_device_list_lock);
833 list_for_each_entry(idev, &intel_device_list, list) {
834 if (!hu->tty->dev)
835 break;
836 if (hu->tty->dev->parent == idev->pdev->dev.parent) {
837 if (device_may_wakeup(&idev->pdev->dev)) {
838 set_bit(STATE_LPM_ENABLED, &intel->flags);
839 set_bit(STATE_TX_ACTIVE, &intel->flags);
840 }
841 break;
842 }
843 }
844 mutex_unlock(&intel_device_list_lock);
845
846 /* Ignore errors, device can work without DDC parameters */
847 btintel_load_ddc_config(hdev, fwname);
848
849 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
850 if (IS_ERR(skb))
851 return PTR_ERR(skb);
852 kfree_skb(skb);
853
854 if (speed_change) {
855 err = intel_set_baudrate(hu, oper_speed);
856 if (err)
857 return err;
858 }
859
860 bt_dev_info(hdev, "Setup complete");
861
862 clear_bit(STATE_BOOTLOADER, &intel->flags);
863
864 return 0;
865}
866
867static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
868{
869 struct hci_uart *hu = hci_get_drvdata(hdev);
870 struct intel_data *intel = hu->priv;
871 struct hci_event_hdr *hdr;
872
873 if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
874 !test_bit(STATE_BOOTING, &intel->flags))
875 goto recv;
876
877 hdr = (void *)skb->data;
878
879 /* When the firmware loading completes the device sends
880 * out a vendor specific event indicating the result of
881 * the firmware loading.
882 */
883 if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
884 skb->data[2] == 0x06) {
885 if (skb->data[3] != 0x00)
886 set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
887
888 if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
889 test_bit(STATE_FIRMWARE_LOADED, &intel->flags))
890 wake_up_bit(&intel->flags, STATE_DOWNLOADING);
891
892 /* When switching to the operational firmware the device
893 * sends a vendor specific event indicating that the bootup
894 * completed.
895 */
896 } else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
897 skb->data[2] == 0x02) {
898 if (test_and_clear_bit(STATE_BOOTING, &intel->flags))
899 wake_up_bit(&intel->flags, STATE_BOOTING);
900 }
901recv:
902 return hci_recv_frame(hdev, skb);
903}
904
905static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
906{
907 struct hci_uart *hu = hci_get_drvdata(hdev);
908 struct intel_data *intel = hu->priv;
909
910 bt_dev_dbg(hdev, "TX idle notification (%d)", value);
911
912 if (value) {
913 set_bit(STATE_TX_ACTIVE, &intel->flags);
914 schedule_work(&intel->busy_work);
915 } else {
916 clear_bit(STATE_TX_ACTIVE, &intel->flags);
917 }
918}
919
920static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
921{
922 struct hci_lpm_pkt *lpm = (void *)skb->data;
923 struct hci_uart *hu = hci_get_drvdata(hdev);
924 struct intel_data *intel = hu->priv;
925
926 switch (lpm->opcode) {
927 case LPM_OP_TX_NOTIFY:
928 if (lpm->dlen < 1) {
929 bt_dev_err(hu->hdev, "Invalid LPM notification packet");
930 break;
931 }
932 intel_recv_lpm_notify(hdev, lpm->data[0]);
933 break;
934 case LPM_OP_SUSPEND_ACK:
935 set_bit(STATE_SUSPENDED, &intel->flags);
936 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags))
937 wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
938 break;
939 case LPM_OP_RESUME_ACK:
940 clear_bit(STATE_SUSPENDED, &intel->flags);
941 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags))
942 wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
943 break;
944 default:
945 bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
946 break;
947 }
948
949 kfree_skb(skb);
950
951 return 0;
952}
953
954#define INTEL_RECV_LPM \
955 .type = HCI_LPM_PKT, \
956 .hlen = HCI_LPM_HDR_SIZE, \
957 .loff = 1, \
958 .lsize = 1, \
959 .maxlen = HCI_LPM_MAX_SIZE
960
961static const struct h4_recv_pkt intel_recv_pkts[] = {
962 { H4_RECV_ACL, .recv = hci_recv_frame },
963 { H4_RECV_SCO, .recv = hci_recv_frame },
964 { H4_RECV_EVENT, .recv = intel_recv_event },
965 { INTEL_RECV_LPM, .recv = intel_recv_lpm },
966};
967
968static int intel_recv(struct hci_uart *hu, const void *data, int count)
969{
970 struct intel_data *intel = hu->priv;
971
972 if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
973 return -EUNATCH;
974
975 intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
976 intel_recv_pkts,
977 ARRAY_SIZE(intel_recv_pkts));
978 if (IS_ERR(intel->rx_skb)) {
979 int err = PTR_ERR(intel->rx_skb);
980 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
981 intel->rx_skb = NULL;
982 return err;
983 }
984
985 return count;
986}
987
988static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
989{
990 struct intel_data *intel = hu->priv;
991 struct intel_device *idev;
992
993 BT_DBG("hu %p skb %p", hu, skb);
994
995 if (!hu->tty->dev)
996 goto out_enqueue;
997
998 /* Be sure our controller is resumed and potential LPM transaction
999 * completed before enqueuing any packet.
1000 */
1001 mutex_lock(&intel_device_list_lock);
1002 list_for_each_entry(idev, &intel_device_list, list) {
1003 if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1004 pm_runtime_get_sync(&idev->pdev->dev);
1005 pm_runtime_mark_last_busy(&idev->pdev->dev);
1006 pm_runtime_put_autosuspend(&idev->pdev->dev);
1007 break;
1008 }
1009 }
1010 mutex_unlock(&intel_device_list_lock);
1011out_enqueue:
1012 skb_queue_tail(&intel->txq, skb);
1013
1014 return 0;
1015}
1016
1017static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1018{
1019 struct intel_data *intel = hu->priv;
1020 struct sk_buff *skb;
1021
1022 skb = skb_dequeue(&intel->txq);
1023 if (!skb)
1024 return skb;
1025
1026 if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1027 (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1028 struct hci_command_hdr *cmd = (void *)skb->data;
1029 __u16 opcode = le16_to_cpu(cmd->opcode);
1030
1031 /* When the 0xfc01 command is issued to boot into
1032 * the operational firmware, it will actually not
1033 * send a command complete event. To keep the flow
1034 * control working inject that event here.
1035 */
1036 if (opcode == 0xfc01)
1037 inject_cmd_complete(hu->hdev, opcode);
1038 }
1039
1040 /* Prepend skb with frame type */
1041 memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1042
1043 return skb;
1044}
1045
1046static const struct hci_uart_proto intel_proto = {
1047 .id = HCI_UART_INTEL,
1048 .name = "Intel",
1049 .manufacturer = 2,
1050 .init_speed = 115200,
1051 .oper_speed = 3000000,
1052 .open = intel_open,
1053 .close = intel_close,
1054 .flush = intel_flush,
1055 .setup = intel_setup,
1056 .set_baudrate = intel_set_baudrate,
1057 .recv = intel_recv,
1058 .enqueue = intel_enqueue,
1059 .dequeue = intel_dequeue,
1060};
1061
1062#ifdef CONFIG_ACPI
1063static const struct acpi_device_id intel_acpi_match[] = {
1064 { "INT33E1", 0 },
1065 { "INT33E3", 0 },
1066 { }
1067};
1068MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1069#endif
1070
1071#ifdef CONFIG_PM
1072static int intel_suspend_device(struct device *dev)
1073{
1074 struct intel_device *idev = dev_get_drvdata(dev);
1075
1076 mutex_lock(&idev->hu_lock);
1077 if (idev->hu)
1078 intel_lpm_suspend(idev->hu);
1079 mutex_unlock(&idev->hu_lock);
1080
1081 return 0;
1082}
1083
1084static int intel_resume_device(struct device *dev)
1085{
1086 struct intel_device *idev = dev_get_drvdata(dev);
1087
1088 mutex_lock(&idev->hu_lock);
1089 if (idev->hu)
1090 intel_lpm_resume(idev->hu);
1091 mutex_unlock(&idev->hu_lock);
1092
1093 return 0;
1094}
1095#endif
1096
1097#ifdef CONFIG_PM_SLEEP
1098static int intel_suspend(struct device *dev)
1099{
1100 struct intel_device *idev = dev_get_drvdata(dev);
1101
1102 if (device_may_wakeup(dev))
1103 enable_irq_wake(idev->irq);
1104
1105 return intel_suspend_device(dev);
1106}
1107
1108static int intel_resume(struct device *dev)
1109{
1110 struct intel_device *idev = dev_get_drvdata(dev);
1111
1112 if (device_may_wakeup(dev))
1113 disable_irq_wake(idev->irq);
1114
1115 return intel_resume_device(dev);
1116}
1117#endif
1118
1119static const struct dev_pm_ops intel_pm_ops = {
1120 SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1121 SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1122};
1123
1124static const struct acpi_gpio_params reset_gpios = { 0, 0, false };
1125static const struct acpi_gpio_params host_wake_gpios = { 1, 0, false };
1126
1127static const struct acpi_gpio_mapping acpi_hci_intel_gpios[] = {
1128 { "reset-gpios", &reset_gpios, 1, ACPI_GPIO_QUIRK_ONLY_GPIOIO },
1129 { "host-wake-gpios", &host_wake_gpios, 1, ACPI_GPIO_QUIRK_ONLY_GPIOIO },
1130 { }
1131};
1132
1133static int intel_probe(struct platform_device *pdev)
1134{
1135 struct intel_device *idev;
1136 int ret;
1137
1138 idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1139 if (!idev)
1140 return -ENOMEM;
1141
1142 mutex_init(&idev->hu_lock);
1143
1144 idev->pdev = pdev;
1145
1146 ret = devm_acpi_dev_add_driver_gpios(&pdev->dev, acpi_hci_intel_gpios);
1147 if (ret)
1148 dev_dbg(&pdev->dev, "Unable to add GPIO mapping table\n");
1149
1150 idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
1151 if (IS_ERR(idev->reset)) {
1152 dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1153 return PTR_ERR(idev->reset);
1154 }
1155
1156 idev->irq = platform_get_irq(pdev, 0);
1157 if (idev->irq < 0) {
1158 struct gpio_desc *host_wake;
1159
1160 dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1161
1162 host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
1163 if (IS_ERR(host_wake)) {
1164 dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1165 goto no_irq;
1166 }
1167
1168 idev->irq = gpiod_to_irq(host_wake);
1169 if (idev->irq < 0) {
1170 dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1171 goto no_irq;
1172 }
1173 }
1174
1175 /* Only enable wake-up/irq when controller is powered */
1176 device_set_wakeup_capable(&pdev->dev, true);
1177 device_wakeup_disable(&pdev->dev);
1178
1179no_irq:
1180 platform_set_drvdata(pdev, idev);
1181
1182 /* Place this instance on the device list */
1183 mutex_lock(&intel_device_list_lock);
1184 list_add_tail(&idev->list, &intel_device_list);
1185 mutex_unlock(&intel_device_list_lock);
1186
1187 dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1188 desc_to_gpio(idev->reset), idev->irq);
1189
1190 return 0;
1191}
1192
1193static int intel_remove(struct platform_device *pdev)
1194{
1195 struct intel_device *idev = platform_get_drvdata(pdev);
1196
1197 device_wakeup_disable(&pdev->dev);
1198
1199 mutex_lock(&intel_device_list_lock);
1200 list_del(&idev->list);
1201 mutex_unlock(&intel_device_list_lock);
1202
1203 dev_info(&pdev->dev, "unregistered.\n");
1204
1205 return 0;
1206}
1207
1208static struct platform_driver intel_driver = {
1209 .probe = intel_probe,
1210 .remove = intel_remove,
1211 .driver = {
1212 .name = "hci_intel",
1213 .acpi_match_table = ACPI_PTR(intel_acpi_match),
1214 .pm = &intel_pm_ops,
1215 },
1216};
1217
1218int __init intel_init(void)
1219{
1220 int err;
1221
1222 err = platform_driver_register(&intel_driver);
1223 if (err)
1224 return err;
1225
1226 return hci_uart_register_proto(&intel_proto);
1227}
1228
1229int __exit intel_deinit(void)
1230{
1231 platform_driver_unregister(&intel_driver);
1232
1233 return hci_uart_unregister_proto(&intel_proto);
1234}
1/*
2 *
3 * Bluetooth HCI UART driver for Intel devices
4 *
5 * Copyright (C) 2015 Intel Corporation
6 *
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 */
23
24#include <linux/kernel.h>
25#include <linux/errno.h>
26#include <linux/skbuff.h>
27#include <linux/firmware.h>
28#include <linux/module.h>
29#include <linux/wait.h>
30#include <linux/tty.h>
31#include <linux/platform_device.h>
32#include <linux/gpio/consumer.h>
33#include <linux/acpi.h>
34#include <linux/interrupt.h>
35#include <linux/pm_runtime.h>
36
37#include <net/bluetooth/bluetooth.h>
38#include <net/bluetooth/hci_core.h>
39
40#include "hci_uart.h"
41#include "btintel.h"
42
43#define STATE_BOOTLOADER 0
44#define STATE_DOWNLOADING 1
45#define STATE_FIRMWARE_LOADED 2
46#define STATE_FIRMWARE_FAILED 3
47#define STATE_BOOTING 4
48#define STATE_LPM_ENABLED 5
49#define STATE_TX_ACTIVE 6
50#define STATE_SUSPENDED 7
51#define STATE_LPM_TRANSACTION 8
52
53#define HCI_LPM_WAKE_PKT 0xf0
54#define HCI_LPM_PKT 0xf1
55#define HCI_LPM_MAX_SIZE 10
56#define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
57
58#define LPM_OP_TX_NOTIFY 0x00
59#define LPM_OP_SUSPEND_ACK 0x02
60#define LPM_OP_RESUME_ACK 0x03
61
62#define LPM_SUSPEND_DELAY_MS 1000
63
64struct hci_lpm_pkt {
65 __u8 opcode;
66 __u8 dlen;
67 __u8 data[0];
68} __packed;
69
70struct intel_device {
71 struct list_head list;
72 struct platform_device *pdev;
73 struct gpio_desc *reset;
74 struct hci_uart *hu;
75 struct mutex hu_lock;
76 int irq;
77};
78
79static LIST_HEAD(intel_device_list);
80static DEFINE_MUTEX(intel_device_list_lock);
81
82struct intel_data {
83 struct sk_buff *rx_skb;
84 struct sk_buff_head txq;
85 struct work_struct busy_work;
86 struct hci_uart *hu;
87 unsigned long flags;
88};
89
90static u8 intel_convert_speed(unsigned int speed)
91{
92 switch (speed) {
93 case 9600:
94 return 0x00;
95 case 19200:
96 return 0x01;
97 case 38400:
98 return 0x02;
99 case 57600:
100 return 0x03;
101 case 115200:
102 return 0x04;
103 case 230400:
104 return 0x05;
105 case 460800:
106 return 0x06;
107 case 921600:
108 return 0x07;
109 case 1843200:
110 return 0x08;
111 case 3250000:
112 return 0x09;
113 case 2000000:
114 return 0x0a;
115 case 3000000:
116 return 0x0b;
117 default:
118 return 0xff;
119 }
120}
121
122static int intel_wait_booting(struct hci_uart *hu)
123{
124 struct intel_data *intel = hu->priv;
125 int err;
126
127 err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
128 TASK_INTERRUPTIBLE,
129 msecs_to_jiffies(1000));
130
131 if (err == -EINTR) {
132 bt_dev_err(hu->hdev, "Device boot interrupted");
133 return -EINTR;
134 }
135
136 if (err) {
137 bt_dev_err(hu->hdev, "Device boot timeout");
138 return -ETIMEDOUT;
139 }
140
141 return err;
142}
143
144#ifdef CONFIG_PM
145static int intel_wait_lpm_transaction(struct hci_uart *hu)
146{
147 struct intel_data *intel = hu->priv;
148 int err;
149
150 err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
151 TASK_INTERRUPTIBLE,
152 msecs_to_jiffies(1000));
153
154 if (err == -EINTR) {
155 bt_dev_err(hu->hdev, "LPM transaction interrupted");
156 return -EINTR;
157 }
158
159 if (err) {
160 bt_dev_err(hu->hdev, "LPM transaction timeout");
161 return -ETIMEDOUT;
162 }
163
164 return err;
165}
166
167static int intel_lpm_suspend(struct hci_uart *hu)
168{
169 static const u8 suspend[] = { 0x01, 0x01, 0x01 };
170 struct intel_data *intel = hu->priv;
171 struct sk_buff *skb;
172
173 if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
174 test_bit(STATE_SUSPENDED, &intel->flags))
175 return 0;
176
177 if (test_bit(STATE_TX_ACTIVE, &intel->flags))
178 return -EAGAIN;
179
180 bt_dev_dbg(hu->hdev, "Suspending");
181
182 skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
183 if (!skb) {
184 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
185 return -ENOMEM;
186 }
187
188 memcpy(skb_put(skb, sizeof(suspend)), suspend, sizeof(suspend));
189 hci_skb_pkt_type(skb) = HCI_LPM_PKT;
190
191 set_bit(STATE_LPM_TRANSACTION, &intel->flags);
192
193 /* LPM flow is a priority, enqueue packet at list head */
194 skb_queue_head(&intel->txq, skb);
195 hci_uart_tx_wakeup(hu);
196
197 intel_wait_lpm_transaction(hu);
198 /* Even in case of failure, continue and test the suspended flag */
199
200 clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
201
202 if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
203 bt_dev_err(hu->hdev, "Device suspend error");
204 return -EINVAL;
205 }
206
207 bt_dev_dbg(hu->hdev, "Suspended");
208
209 hci_uart_set_flow_control(hu, true);
210
211 return 0;
212}
213
214static int intel_lpm_resume(struct hci_uart *hu)
215{
216 struct intel_data *intel = hu->priv;
217 struct sk_buff *skb;
218
219 if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
220 !test_bit(STATE_SUSPENDED, &intel->flags))
221 return 0;
222
223 bt_dev_dbg(hu->hdev, "Resuming");
224
225 hci_uart_set_flow_control(hu, false);
226
227 skb = bt_skb_alloc(0, GFP_KERNEL);
228 if (!skb) {
229 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
230 return -ENOMEM;
231 }
232
233 hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
234
235 set_bit(STATE_LPM_TRANSACTION, &intel->flags);
236
237 /* LPM flow is a priority, enqueue packet at list head */
238 skb_queue_head(&intel->txq, skb);
239 hci_uart_tx_wakeup(hu);
240
241 intel_wait_lpm_transaction(hu);
242 /* Even in case of failure, continue and test the suspended flag */
243
244 clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
245
246 if (test_bit(STATE_SUSPENDED, &intel->flags)) {
247 bt_dev_err(hu->hdev, "Device resume error");
248 return -EINVAL;
249 }
250
251 bt_dev_dbg(hu->hdev, "Resumed");
252
253 return 0;
254}
255#endif /* CONFIG_PM */
256
257static int intel_lpm_host_wake(struct hci_uart *hu)
258{
259 static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
260 struct intel_data *intel = hu->priv;
261 struct sk_buff *skb;
262
263 hci_uart_set_flow_control(hu, false);
264
265 clear_bit(STATE_SUSPENDED, &intel->flags);
266
267 skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
268 if (!skb) {
269 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
270 return -ENOMEM;
271 }
272
273 memcpy(skb_put(skb, sizeof(lpm_resume_ack)), lpm_resume_ack,
274 sizeof(lpm_resume_ack));
275 hci_skb_pkt_type(skb) = HCI_LPM_PKT;
276
277 /* LPM flow is a priority, enqueue packet at list head */
278 skb_queue_head(&intel->txq, skb);
279 hci_uart_tx_wakeup(hu);
280
281 bt_dev_dbg(hu->hdev, "Resumed by controller");
282
283 return 0;
284}
285
286static irqreturn_t intel_irq(int irq, void *dev_id)
287{
288 struct intel_device *idev = dev_id;
289
290 dev_info(&idev->pdev->dev, "hci_intel irq\n");
291
292 mutex_lock(&idev->hu_lock);
293 if (idev->hu)
294 intel_lpm_host_wake(idev->hu);
295 mutex_unlock(&idev->hu_lock);
296
297 /* Host/Controller are now LPM resumed, trigger a new delayed suspend */
298 pm_runtime_get(&idev->pdev->dev);
299 pm_runtime_mark_last_busy(&idev->pdev->dev);
300 pm_runtime_put_autosuspend(&idev->pdev->dev);
301
302 return IRQ_HANDLED;
303}
304
305static int intel_set_power(struct hci_uart *hu, bool powered)
306{
307 struct list_head *p;
308 int err = -ENODEV;
309
310 mutex_lock(&intel_device_list_lock);
311
312 list_for_each(p, &intel_device_list) {
313 struct intel_device *idev = list_entry(p, struct intel_device,
314 list);
315
316 /* tty device and pdev device should share the same parent
317 * which is the UART port.
318 */
319 if (hu->tty->dev->parent != idev->pdev->dev.parent)
320 continue;
321
322 if (!idev->reset) {
323 err = -ENOTSUPP;
324 break;
325 }
326
327 BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
328 hu, dev_name(&idev->pdev->dev), powered);
329
330 gpiod_set_value(idev->reset, powered);
331
332 /* Provide to idev a hu reference which is used to run LPM
333 * transactions (lpm suspend/resume) from PM callbacks.
334 * hu needs to be protected against concurrent removing during
335 * these PM ops.
336 */
337 mutex_lock(&idev->hu_lock);
338 idev->hu = powered ? hu : NULL;
339 mutex_unlock(&idev->hu_lock);
340
341 if (idev->irq < 0)
342 break;
343
344 if (powered && device_can_wakeup(&idev->pdev->dev)) {
345 err = devm_request_threaded_irq(&idev->pdev->dev,
346 idev->irq, NULL,
347 intel_irq,
348 IRQF_ONESHOT,
349 "bt-host-wake", idev);
350 if (err) {
351 BT_ERR("hu %p, unable to allocate irq-%d",
352 hu, idev->irq);
353 break;
354 }
355
356 device_wakeup_enable(&idev->pdev->dev);
357
358 pm_runtime_set_active(&idev->pdev->dev);
359 pm_runtime_use_autosuspend(&idev->pdev->dev);
360 pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
361 LPM_SUSPEND_DELAY_MS);
362 pm_runtime_enable(&idev->pdev->dev);
363 } else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
364 devm_free_irq(&idev->pdev->dev, idev->irq, idev);
365 device_wakeup_disable(&idev->pdev->dev);
366
367 pm_runtime_disable(&idev->pdev->dev);
368 }
369 }
370
371 mutex_unlock(&intel_device_list_lock);
372
373 return err;
374}
375
376static void intel_busy_work(struct work_struct *work)
377{
378 struct list_head *p;
379 struct intel_data *intel = container_of(work, struct intel_data,
380 busy_work);
381
382 /* Link is busy, delay the suspend */
383 mutex_lock(&intel_device_list_lock);
384 list_for_each(p, &intel_device_list) {
385 struct intel_device *idev = list_entry(p, struct intel_device,
386 list);
387
388 if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
389 pm_runtime_get(&idev->pdev->dev);
390 pm_runtime_mark_last_busy(&idev->pdev->dev);
391 pm_runtime_put_autosuspend(&idev->pdev->dev);
392 break;
393 }
394 }
395 mutex_unlock(&intel_device_list_lock);
396}
397
398static int intel_open(struct hci_uart *hu)
399{
400 struct intel_data *intel;
401
402 BT_DBG("hu %p", hu);
403
404 intel = kzalloc(sizeof(*intel), GFP_KERNEL);
405 if (!intel)
406 return -ENOMEM;
407
408 skb_queue_head_init(&intel->txq);
409 INIT_WORK(&intel->busy_work, intel_busy_work);
410
411 intel->hu = hu;
412
413 hu->priv = intel;
414
415 if (!intel_set_power(hu, true))
416 set_bit(STATE_BOOTING, &intel->flags);
417
418 return 0;
419}
420
421static int intel_close(struct hci_uart *hu)
422{
423 struct intel_data *intel = hu->priv;
424
425 BT_DBG("hu %p", hu);
426
427 cancel_work_sync(&intel->busy_work);
428
429 intel_set_power(hu, false);
430
431 skb_queue_purge(&intel->txq);
432 kfree_skb(intel->rx_skb);
433 kfree(intel);
434
435 hu->priv = NULL;
436 return 0;
437}
438
439static int intel_flush(struct hci_uart *hu)
440{
441 struct intel_data *intel = hu->priv;
442
443 BT_DBG("hu %p", hu);
444
445 skb_queue_purge(&intel->txq);
446
447 return 0;
448}
449
450static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
451{
452 struct sk_buff *skb;
453 struct hci_event_hdr *hdr;
454 struct hci_ev_cmd_complete *evt;
455
456 skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC);
457 if (!skb)
458 return -ENOMEM;
459
460 hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr));
461 hdr->evt = HCI_EV_CMD_COMPLETE;
462 hdr->plen = sizeof(*evt) + 1;
463
464 evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt));
465 evt->ncmd = 0x01;
466 evt->opcode = cpu_to_le16(opcode);
467
468 *skb_put(skb, 1) = 0x00;
469
470 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
471
472 return hci_recv_frame(hdev, skb);
473}
474
475static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
476{
477 struct intel_data *intel = hu->priv;
478 struct hci_dev *hdev = hu->hdev;
479 u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
480 struct sk_buff *skb;
481 int err;
482
483 /* This can be the first command sent to the chip, check
484 * that the controller is ready.
485 */
486 err = intel_wait_booting(hu);
487
488 clear_bit(STATE_BOOTING, &intel->flags);
489
490 /* In case of timeout, try to continue anyway */
491 if (err && err != -ETIMEDOUT)
492 return err;
493
494 bt_dev_info(hdev, "Change controller speed to %d", speed);
495
496 speed_cmd[3] = intel_convert_speed(speed);
497 if (speed_cmd[3] == 0xff) {
498 bt_dev_err(hdev, "Unsupported speed");
499 return -EINVAL;
500 }
501
502 /* Device will not accept speed change if Intel version has not been
503 * previously requested.
504 */
505 skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
506 if (IS_ERR(skb)) {
507 bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
508 PTR_ERR(skb));
509 return PTR_ERR(skb);
510 }
511 kfree_skb(skb);
512
513 skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
514 if (!skb) {
515 bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
516 return -ENOMEM;
517 }
518
519 memcpy(skb_put(skb, sizeof(speed_cmd)), speed_cmd, sizeof(speed_cmd));
520 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
521
522 hci_uart_set_flow_control(hu, true);
523
524 skb_queue_tail(&intel->txq, skb);
525 hci_uart_tx_wakeup(hu);
526
527 /* wait 100ms to change baudrate on controller side */
528 msleep(100);
529
530 hci_uart_set_baudrate(hu, speed);
531 hci_uart_set_flow_control(hu, false);
532
533 return 0;
534}
535
536static int intel_setup(struct hci_uart *hu)
537{
538 static const u8 reset_param[] = { 0x00, 0x01, 0x00, 0x01,
539 0x00, 0x08, 0x04, 0x00 };
540 struct intel_data *intel = hu->priv;
541 struct hci_dev *hdev = hu->hdev;
542 struct sk_buff *skb;
543 struct intel_version ver;
544 struct intel_boot_params *params;
545 struct list_head *p;
546 const struct firmware *fw;
547 const u8 *fw_ptr;
548 char fwname[64];
549 u32 frag_len;
550 ktime_t calltime, delta, rettime;
551 unsigned long long duration;
552 unsigned int init_speed, oper_speed;
553 int speed_change = 0;
554 int err;
555
556 bt_dev_dbg(hdev, "start intel_setup");
557
558 hu->hdev->set_diag = btintel_set_diag;
559 hu->hdev->set_bdaddr = btintel_set_bdaddr;
560
561 calltime = ktime_get();
562
563 if (hu->init_speed)
564 init_speed = hu->init_speed;
565 else
566 init_speed = hu->proto->init_speed;
567
568 if (hu->oper_speed)
569 oper_speed = hu->oper_speed;
570 else
571 oper_speed = hu->proto->oper_speed;
572
573 if (oper_speed && init_speed && oper_speed != init_speed)
574 speed_change = 1;
575
576 /* Check that the controller is ready */
577 err = intel_wait_booting(hu);
578
579 clear_bit(STATE_BOOTING, &intel->flags);
580
581 /* In case of timeout, try to continue anyway */
582 if (err && err != -ETIMEDOUT)
583 return err;
584
585 set_bit(STATE_BOOTLOADER, &intel->flags);
586
587 /* Read the Intel version information to determine if the device
588 * is in bootloader mode or if it already has operational firmware
589 * loaded.
590 */
591 err = btintel_read_version(hdev, &ver);
592 if (err)
593 return err;
594
595 /* The hardware platform number has a fixed value of 0x37 and
596 * for now only accept this single value.
597 */
598 if (ver.hw_platform != 0x37) {
599 bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
600 ver.hw_platform);
601 return -EINVAL;
602 }
603
604 /* At the moment only the hardware variant iBT 3.0 (LnP/SfP) is
605 * supported by this firmware loading method. This check has been
606 * put in place to ensure correct forward compatibility options
607 * when newer hardware variants come along.
608 */
609 if (ver.hw_variant != 0x0b) {
610 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
611 ver.hw_variant);
612 return -EINVAL;
613 }
614
615 btintel_version_info(hdev, &ver);
616
617 /* The firmware variant determines if the device is in bootloader
618 * mode or is running operational firmware. The value 0x06 identifies
619 * the bootloader and the value 0x23 identifies the operational
620 * firmware.
621 *
622 * When the operational firmware is already present, then only
623 * the check for valid Bluetooth device address is needed. This
624 * determines if the device will be added as configured or
625 * unconfigured controller.
626 *
627 * It is not possible to use the Secure Boot Parameters in this
628 * case since that command is only available in bootloader mode.
629 */
630 if (ver.fw_variant == 0x23) {
631 clear_bit(STATE_BOOTLOADER, &intel->flags);
632 btintel_check_bdaddr(hdev);
633 return 0;
634 }
635
636 /* If the device is not in bootloader mode, then the only possible
637 * choice is to return an error and abort the device initialization.
638 */
639 if (ver.fw_variant != 0x06) {
640 bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
641 ver.fw_variant);
642 return -ENODEV;
643 }
644
645 /* Read the secure boot parameters to identify the operating
646 * details of the bootloader.
647 */
648 skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_CMD_TIMEOUT);
649 if (IS_ERR(skb)) {
650 bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
651 PTR_ERR(skb));
652 return PTR_ERR(skb);
653 }
654
655 if (skb->len != sizeof(*params)) {
656 bt_dev_err(hdev, "Intel boot parameters size mismatch");
657 kfree_skb(skb);
658 return -EILSEQ;
659 }
660
661 params = (struct intel_boot_params *)skb->data;
662 if (params->status) {
663 bt_dev_err(hdev, "Intel boot parameters command failure (%02x)",
664 params->status);
665 err = -bt_to_errno(params->status);
666 kfree_skb(skb);
667 return err;
668 }
669
670 bt_dev_info(hdev, "Device revision is %u",
671 le16_to_cpu(params->dev_revid));
672
673 bt_dev_info(hdev, "Secure boot is %s",
674 params->secure_boot ? "enabled" : "disabled");
675
676 bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
677 params->min_fw_build_nn, params->min_fw_build_cw,
678 2000 + params->min_fw_build_yy);
679
680 /* It is required that every single firmware fragment is acknowledged
681 * with a command complete event. If the boot parameters indicate
682 * that this bootloader does not send them, then abort the setup.
683 */
684 if (params->limited_cce != 0x00) {
685 bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
686 params->limited_cce);
687 kfree_skb(skb);
688 return -EINVAL;
689 }
690
691 /* If the OTP has no valid Bluetooth device address, then there will
692 * also be no valid address for the operational firmware.
693 */
694 if (!bacmp(¶ms->otp_bdaddr, BDADDR_ANY)) {
695 bt_dev_info(hdev, "No device address configured");
696 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
697 }
698
699 /* With this Intel bootloader only the hardware variant and device
700 * revision information are used to select the right firmware.
701 *
702 * Currently this bootloader support is limited to hardware variant
703 * iBT 3.0 (LnP/SfP) which is identified by the value 11 (0x0b).
704 */
705 snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.sfi",
706 le16_to_cpu(params->dev_revid));
707
708 err = request_firmware(&fw, fwname, &hdev->dev);
709 if (err < 0) {
710 bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
711 err);
712 kfree_skb(skb);
713 return err;
714 }
715
716 bt_dev_info(hdev, "Found device firmware: %s", fwname);
717
718 /* Save the DDC file name for later */
719 snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.ddc",
720 le16_to_cpu(params->dev_revid));
721
722 kfree_skb(skb);
723
724 if (fw->size < 644) {
725 bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
726 fw->size);
727 err = -EBADF;
728 goto done;
729 }
730
731 set_bit(STATE_DOWNLOADING, &intel->flags);
732
733 /* Start the firmware download transaction with the Init fragment
734 * represented by the 128 bytes of CSS header.
735 */
736 err = btintel_secure_send(hdev, 0x00, 128, fw->data);
737 if (err < 0) {
738 bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
739 goto done;
740 }
741
742 /* Send the 256 bytes of public key information from the firmware
743 * as the PKey fragment.
744 */
745 err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
746 if (err < 0) {
747 bt_dev_err(hdev, "Failed to send firmware public key (%d)",
748 err);
749 goto done;
750 }
751
752 /* Send the 256 bytes of signature information from the firmware
753 * as the Sign fragment.
754 */
755 err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
756 if (err < 0) {
757 bt_dev_err(hdev, "Failed to send firmware signature (%d)",
758 err);
759 goto done;
760 }
761
762 fw_ptr = fw->data + 644;
763 frag_len = 0;
764
765 while (fw_ptr - fw->data < fw->size) {
766 struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
767
768 frag_len += sizeof(*cmd) + cmd->plen;
769
770 bt_dev_dbg(hdev, "Patching %td/%zu", (fw_ptr - fw->data),
771 fw->size);
772
773 /* The parameter length of the secure send command requires
774 * a 4 byte alignment. It happens so that the firmware file
775 * contains proper Intel_NOP commands to align the fragments
776 * as needed.
777 *
778 * Send set of commands with 4 byte alignment from the
779 * firmware data buffer as a single Data fragement.
780 */
781 if (frag_len % 4)
782 continue;
783
784 /* Send each command from the firmware data buffer as
785 * a single Data fragment.
786 */
787 err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
788 if (err < 0) {
789 bt_dev_err(hdev, "Failed to send firmware data (%d)",
790 err);
791 goto done;
792 }
793
794 fw_ptr += frag_len;
795 frag_len = 0;
796 }
797
798 set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
799
800 bt_dev_info(hdev, "Waiting for firmware download to complete");
801
802 /* Before switching the device into operational mode and with that
803 * booting the loaded firmware, wait for the bootloader notification
804 * that all fragments have been successfully received.
805 *
806 * When the event processing receives the notification, then the
807 * STATE_DOWNLOADING flag will be cleared.
808 *
809 * The firmware loading should not take longer than 5 seconds
810 * and thus just timeout if that happens and fail the setup
811 * of this device.
812 */
813 err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
814 TASK_INTERRUPTIBLE,
815 msecs_to_jiffies(5000));
816 if (err == -EINTR) {
817 bt_dev_err(hdev, "Firmware loading interrupted");
818 err = -EINTR;
819 goto done;
820 }
821
822 if (err) {
823 bt_dev_err(hdev, "Firmware loading timeout");
824 err = -ETIMEDOUT;
825 goto done;
826 }
827
828 if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
829 bt_dev_err(hdev, "Firmware loading failed");
830 err = -ENOEXEC;
831 goto done;
832 }
833
834 rettime = ktime_get();
835 delta = ktime_sub(rettime, calltime);
836 duration = (unsigned long long) ktime_to_ns(delta) >> 10;
837
838 bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
839
840done:
841 release_firmware(fw);
842
843 if (err < 0)
844 return err;
845
846 /* We need to restore the default speed before Intel reset */
847 if (speed_change) {
848 err = intel_set_baudrate(hu, init_speed);
849 if (err)
850 return err;
851 }
852
853 calltime = ktime_get();
854
855 set_bit(STATE_BOOTING, &intel->flags);
856
857 skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(reset_param), reset_param,
858 HCI_CMD_TIMEOUT);
859 if (IS_ERR(skb))
860 return PTR_ERR(skb);
861
862 kfree_skb(skb);
863
864 /* The bootloader will not indicate when the device is ready. This
865 * is done by the operational firmware sending bootup notification.
866 *
867 * Booting into operational firmware should not take longer than
868 * 1 second. However if that happens, then just fail the setup
869 * since something went wrong.
870 */
871 bt_dev_info(hdev, "Waiting for device to boot");
872
873 err = intel_wait_booting(hu);
874 if (err)
875 return err;
876
877 clear_bit(STATE_BOOTING, &intel->flags);
878
879 rettime = ktime_get();
880 delta = ktime_sub(rettime, calltime);
881 duration = (unsigned long long) ktime_to_ns(delta) >> 10;
882
883 bt_dev_info(hdev, "Device booted in %llu usecs", duration);
884
885 /* Enable LPM if matching pdev with wakeup enabled, set TX active
886 * until further LPM TX notification.
887 */
888 mutex_lock(&intel_device_list_lock);
889 list_for_each(p, &intel_device_list) {
890 struct intel_device *dev = list_entry(p, struct intel_device,
891 list);
892 if (hu->tty->dev->parent == dev->pdev->dev.parent) {
893 if (device_may_wakeup(&dev->pdev->dev)) {
894 set_bit(STATE_LPM_ENABLED, &intel->flags);
895 set_bit(STATE_TX_ACTIVE, &intel->flags);
896 }
897 break;
898 }
899 }
900 mutex_unlock(&intel_device_list_lock);
901
902 /* Ignore errors, device can work without DDC parameters */
903 btintel_load_ddc_config(hdev, fwname);
904
905 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
906 if (IS_ERR(skb))
907 return PTR_ERR(skb);
908 kfree_skb(skb);
909
910 if (speed_change) {
911 err = intel_set_baudrate(hu, oper_speed);
912 if (err)
913 return err;
914 }
915
916 bt_dev_info(hdev, "Setup complete");
917
918 clear_bit(STATE_BOOTLOADER, &intel->flags);
919
920 return 0;
921}
922
923static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
924{
925 struct hci_uart *hu = hci_get_drvdata(hdev);
926 struct intel_data *intel = hu->priv;
927 struct hci_event_hdr *hdr;
928
929 if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
930 !test_bit(STATE_BOOTING, &intel->flags))
931 goto recv;
932
933 hdr = (void *)skb->data;
934
935 /* When the firmware loading completes the device sends
936 * out a vendor specific event indicating the result of
937 * the firmware loading.
938 */
939 if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
940 skb->data[2] == 0x06) {
941 if (skb->data[3] != 0x00)
942 set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
943
944 if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
945 test_bit(STATE_FIRMWARE_LOADED, &intel->flags)) {
946 smp_mb__after_atomic();
947 wake_up_bit(&intel->flags, STATE_DOWNLOADING);
948 }
949
950 /* When switching to the operational firmware the device
951 * sends a vendor specific event indicating that the bootup
952 * completed.
953 */
954 } else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
955 skb->data[2] == 0x02) {
956 if (test_and_clear_bit(STATE_BOOTING, &intel->flags)) {
957 smp_mb__after_atomic();
958 wake_up_bit(&intel->flags, STATE_BOOTING);
959 }
960 }
961recv:
962 return hci_recv_frame(hdev, skb);
963}
964
965static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
966{
967 struct hci_uart *hu = hci_get_drvdata(hdev);
968 struct intel_data *intel = hu->priv;
969
970 bt_dev_dbg(hdev, "TX idle notification (%d)", value);
971
972 if (value) {
973 set_bit(STATE_TX_ACTIVE, &intel->flags);
974 schedule_work(&intel->busy_work);
975 } else {
976 clear_bit(STATE_TX_ACTIVE, &intel->flags);
977 }
978}
979
980static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
981{
982 struct hci_lpm_pkt *lpm = (void *)skb->data;
983 struct hci_uart *hu = hci_get_drvdata(hdev);
984 struct intel_data *intel = hu->priv;
985
986 switch (lpm->opcode) {
987 case LPM_OP_TX_NOTIFY:
988 if (lpm->dlen < 1) {
989 bt_dev_err(hu->hdev, "Invalid LPM notification packet");
990 break;
991 }
992 intel_recv_lpm_notify(hdev, lpm->data[0]);
993 break;
994 case LPM_OP_SUSPEND_ACK:
995 set_bit(STATE_SUSPENDED, &intel->flags);
996 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
997 smp_mb__after_atomic();
998 wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
999 }
1000 break;
1001 case LPM_OP_RESUME_ACK:
1002 clear_bit(STATE_SUSPENDED, &intel->flags);
1003 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
1004 smp_mb__after_atomic();
1005 wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
1006 }
1007 break;
1008 default:
1009 bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
1010 break;
1011 }
1012
1013 kfree_skb(skb);
1014
1015 return 0;
1016}
1017
1018#define INTEL_RECV_LPM \
1019 .type = HCI_LPM_PKT, \
1020 .hlen = HCI_LPM_HDR_SIZE, \
1021 .loff = 1, \
1022 .lsize = 1, \
1023 .maxlen = HCI_LPM_MAX_SIZE
1024
1025static const struct h4_recv_pkt intel_recv_pkts[] = {
1026 { H4_RECV_ACL, .recv = hci_recv_frame },
1027 { H4_RECV_SCO, .recv = hci_recv_frame },
1028 { H4_RECV_EVENT, .recv = intel_recv_event },
1029 { INTEL_RECV_LPM, .recv = intel_recv_lpm },
1030};
1031
1032static int intel_recv(struct hci_uart *hu, const void *data, int count)
1033{
1034 struct intel_data *intel = hu->priv;
1035
1036 if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1037 return -EUNATCH;
1038
1039 intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
1040 intel_recv_pkts,
1041 ARRAY_SIZE(intel_recv_pkts));
1042 if (IS_ERR(intel->rx_skb)) {
1043 int err = PTR_ERR(intel->rx_skb);
1044 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1045 intel->rx_skb = NULL;
1046 return err;
1047 }
1048
1049 return count;
1050}
1051
1052static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
1053{
1054 struct intel_data *intel = hu->priv;
1055 struct list_head *p;
1056
1057 BT_DBG("hu %p skb %p", hu, skb);
1058
1059 /* Be sure our controller is resumed and potential LPM transaction
1060 * completed before enqueuing any packet.
1061 */
1062 mutex_lock(&intel_device_list_lock);
1063 list_for_each(p, &intel_device_list) {
1064 struct intel_device *idev = list_entry(p, struct intel_device,
1065 list);
1066
1067 if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1068 pm_runtime_get_sync(&idev->pdev->dev);
1069 pm_runtime_mark_last_busy(&idev->pdev->dev);
1070 pm_runtime_put_autosuspend(&idev->pdev->dev);
1071 break;
1072 }
1073 }
1074 mutex_unlock(&intel_device_list_lock);
1075
1076 skb_queue_tail(&intel->txq, skb);
1077
1078 return 0;
1079}
1080
1081static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1082{
1083 struct intel_data *intel = hu->priv;
1084 struct sk_buff *skb;
1085
1086 skb = skb_dequeue(&intel->txq);
1087 if (!skb)
1088 return skb;
1089
1090 if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1091 (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1092 struct hci_command_hdr *cmd = (void *)skb->data;
1093 __u16 opcode = le16_to_cpu(cmd->opcode);
1094
1095 /* When the 0xfc01 command is issued to boot into
1096 * the operational firmware, it will actually not
1097 * send a command complete event. To keep the flow
1098 * control working inject that event here.
1099 */
1100 if (opcode == 0xfc01)
1101 inject_cmd_complete(hu->hdev, opcode);
1102 }
1103
1104 /* Prepend skb with frame type */
1105 memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1106
1107 return skb;
1108}
1109
1110static const struct hci_uart_proto intel_proto = {
1111 .id = HCI_UART_INTEL,
1112 .name = "Intel",
1113 .manufacturer = 2,
1114 .init_speed = 115200,
1115 .oper_speed = 3000000,
1116 .open = intel_open,
1117 .close = intel_close,
1118 .flush = intel_flush,
1119 .setup = intel_setup,
1120 .set_baudrate = intel_set_baudrate,
1121 .recv = intel_recv,
1122 .enqueue = intel_enqueue,
1123 .dequeue = intel_dequeue,
1124};
1125
1126#ifdef CONFIG_ACPI
1127static const struct acpi_device_id intel_acpi_match[] = {
1128 { "INT33E1", 0 },
1129 { },
1130};
1131MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1132#endif
1133
1134#ifdef CONFIG_PM
1135static int intel_suspend_device(struct device *dev)
1136{
1137 struct intel_device *idev = dev_get_drvdata(dev);
1138
1139 mutex_lock(&idev->hu_lock);
1140 if (idev->hu)
1141 intel_lpm_suspend(idev->hu);
1142 mutex_unlock(&idev->hu_lock);
1143
1144 return 0;
1145}
1146
1147static int intel_resume_device(struct device *dev)
1148{
1149 struct intel_device *idev = dev_get_drvdata(dev);
1150
1151 mutex_lock(&idev->hu_lock);
1152 if (idev->hu)
1153 intel_lpm_resume(idev->hu);
1154 mutex_unlock(&idev->hu_lock);
1155
1156 return 0;
1157}
1158#endif
1159
1160#ifdef CONFIG_PM_SLEEP
1161static int intel_suspend(struct device *dev)
1162{
1163 struct intel_device *idev = dev_get_drvdata(dev);
1164
1165 if (device_may_wakeup(dev))
1166 enable_irq_wake(idev->irq);
1167
1168 return intel_suspend_device(dev);
1169}
1170
1171static int intel_resume(struct device *dev)
1172{
1173 struct intel_device *idev = dev_get_drvdata(dev);
1174
1175 if (device_may_wakeup(dev))
1176 disable_irq_wake(idev->irq);
1177
1178 return intel_resume_device(dev);
1179}
1180#endif
1181
1182static const struct dev_pm_ops intel_pm_ops = {
1183 SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1184 SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1185};
1186
1187static int intel_probe(struct platform_device *pdev)
1188{
1189 struct intel_device *idev;
1190
1191 idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1192 if (!idev)
1193 return -ENOMEM;
1194
1195 mutex_init(&idev->hu_lock);
1196
1197 idev->pdev = pdev;
1198
1199 idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
1200 if (IS_ERR(idev->reset)) {
1201 dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1202 return PTR_ERR(idev->reset);
1203 }
1204
1205 idev->irq = platform_get_irq(pdev, 0);
1206 if (idev->irq < 0) {
1207 struct gpio_desc *host_wake;
1208
1209 dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1210
1211 host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
1212 if (IS_ERR(host_wake)) {
1213 dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1214 goto no_irq;
1215 }
1216
1217 idev->irq = gpiod_to_irq(host_wake);
1218 if (idev->irq < 0) {
1219 dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1220 goto no_irq;
1221 }
1222 }
1223
1224 /* Only enable wake-up/irq when controller is powered */
1225 device_set_wakeup_capable(&pdev->dev, true);
1226 device_wakeup_disable(&pdev->dev);
1227
1228no_irq:
1229 platform_set_drvdata(pdev, idev);
1230
1231 /* Place this instance on the device list */
1232 mutex_lock(&intel_device_list_lock);
1233 list_add_tail(&idev->list, &intel_device_list);
1234 mutex_unlock(&intel_device_list_lock);
1235
1236 dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1237 desc_to_gpio(idev->reset), idev->irq);
1238
1239 return 0;
1240}
1241
1242static int intel_remove(struct platform_device *pdev)
1243{
1244 struct intel_device *idev = platform_get_drvdata(pdev);
1245
1246 device_wakeup_disable(&pdev->dev);
1247
1248 mutex_lock(&intel_device_list_lock);
1249 list_del(&idev->list);
1250 mutex_unlock(&intel_device_list_lock);
1251
1252 dev_info(&pdev->dev, "unregistered.\n");
1253
1254 return 0;
1255}
1256
1257static struct platform_driver intel_driver = {
1258 .probe = intel_probe,
1259 .remove = intel_remove,
1260 .driver = {
1261 .name = "hci_intel",
1262 .acpi_match_table = ACPI_PTR(intel_acpi_match),
1263 .pm = &intel_pm_ops,
1264 },
1265};
1266
1267int __init intel_init(void)
1268{
1269 platform_driver_register(&intel_driver);
1270
1271 return hci_uart_register_proto(&intel_proto);
1272}
1273
1274int __exit intel_deinit(void)
1275{
1276 platform_driver_unregister(&intel_driver);
1277
1278 return hci_uart_unregister_proto(&intel_proto);
1279}