Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *
   4 *  Bluetooth HCI UART driver for Intel devices
   5 *
   6 *  Copyright (C) 2015  Intel Corporation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/errno.h>
  11#include <linux/skbuff.h>
  12#include <linux/firmware.h>
  13#include <linux/module.h>
  14#include <linux/wait.h>
  15#include <linux/tty.h>
  16#include <linux/platform_device.h>
  17#include <linux/gpio/consumer.h>
  18#include <linux/acpi.h>
  19#include <linux/interrupt.h>
  20#include <linux/pm_runtime.h>
  21
  22#include <net/bluetooth/bluetooth.h>
  23#include <net/bluetooth/hci_core.h>
  24
  25#include "hci_uart.h"
  26#include "btintel.h"
  27
  28#define STATE_BOOTLOADER	0
  29#define STATE_DOWNLOADING	1
  30#define STATE_FIRMWARE_LOADED	2
  31#define STATE_FIRMWARE_FAILED	3
  32#define STATE_BOOTING		4
  33#define STATE_LPM_ENABLED	5
  34#define STATE_TX_ACTIVE		6
  35#define STATE_SUSPENDED		7
  36#define STATE_LPM_TRANSACTION	8
  37
  38#define HCI_LPM_WAKE_PKT 0xf0
  39#define HCI_LPM_PKT 0xf1
  40#define HCI_LPM_MAX_SIZE 10
  41#define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
  42
  43#define LPM_OP_TX_NOTIFY 0x00
  44#define LPM_OP_SUSPEND_ACK 0x02
  45#define LPM_OP_RESUME_ACK 0x03
  46
  47#define LPM_SUSPEND_DELAY_MS 1000
  48
  49struct hci_lpm_pkt {
  50	__u8 opcode;
  51	__u8 dlen;
  52	__u8 data[];
  53} __packed;
  54
  55struct intel_device {
  56	struct list_head list;
  57	struct platform_device *pdev;
  58	struct gpio_desc *reset;
  59	struct hci_uart *hu;
  60	struct mutex hu_lock;
  61	int irq;
  62};
  63
  64static LIST_HEAD(intel_device_list);
  65static DEFINE_MUTEX(intel_device_list_lock);
  66
  67struct intel_data {
  68	struct sk_buff *rx_skb;
  69	struct sk_buff_head txq;
  70	struct work_struct busy_work;
  71	struct hci_uart *hu;
  72	unsigned long flags;
  73};
  74
  75static u8 intel_convert_speed(unsigned int speed)
  76{
  77	switch (speed) {
  78	case 9600:
  79		return 0x00;
  80	case 19200:
  81		return 0x01;
  82	case 38400:
  83		return 0x02;
  84	case 57600:
  85		return 0x03;
  86	case 115200:
  87		return 0x04;
  88	case 230400:
  89		return 0x05;
  90	case 460800:
  91		return 0x06;
  92	case 921600:
  93		return 0x07;
  94	case 1843200:
  95		return 0x08;
  96	case 3250000:
  97		return 0x09;
  98	case 2000000:
  99		return 0x0a;
 100	case 3000000:
 101		return 0x0b;
 102	default:
 103		return 0xff;
 104	}
 105}
 106
 107static int intel_wait_booting(struct hci_uart *hu)
 108{
 109	struct intel_data *intel = hu->priv;
 110	int err;
 111
 112	err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
 113				  TASK_INTERRUPTIBLE,
 114				  msecs_to_jiffies(1000));
 115
 116	if (err == -EINTR) {
 117		bt_dev_err(hu->hdev, "Device boot interrupted");
 118		return -EINTR;
 119	}
 120
 121	if (err) {
 122		bt_dev_err(hu->hdev, "Device boot timeout");
 123		return -ETIMEDOUT;
 124	}
 125
 126	return err;
 127}
 128
 129#ifdef CONFIG_PM
 130static int intel_wait_lpm_transaction(struct hci_uart *hu)
 131{
 132	struct intel_data *intel = hu->priv;
 133	int err;
 134
 135	err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
 136				  TASK_INTERRUPTIBLE,
 137				  msecs_to_jiffies(1000));
 138
 139	if (err == -EINTR) {
 140		bt_dev_err(hu->hdev, "LPM transaction interrupted");
 141		return -EINTR;
 142	}
 143
 144	if (err) {
 145		bt_dev_err(hu->hdev, "LPM transaction timeout");
 146		return -ETIMEDOUT;
 147	}
 148
 149	return err;
 150}
 151
 152static int intel_lpm_suspend(struct hci_uart *hu)
 153{
 154	static const u8 suspend[] = { 0x01, 0x01, 0x01 };
 155	struct intel_data *intel = hu->priv;
 156	struct sk_buff *skb;
 157
 158	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
 159	    test_bit(STATE_SUSPENDED, &intel->flags))
 160		return 0;
 161
 162	if (test_bit(STATE_TX_ACTIVE, &intel->flags))
 163		return -EAGAIN;
 164
 165	bt_dev_dbg(hu->hdev, "Suspending");
 166
 167	skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
 168	if (!skb) {
 169		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
 170		return -ENOMEM;
 171	}
 172
 173	skb_put_data(skb, suspend, sizeof(suspend));
 174	hci_skb_pkt_type(skb) = HCI_LPM_PKT;
 175
 176	set_bit(STATE_LPM_TRANSACTION, &intel->flags);
 177
 178	/* LPM flow is a priority, enqueue packet at list head */
 179	skb_queue_head(&intel->txq, skb);
 180	hci_uart_tx_wakeup(hu);
 181
 182	intel_wait_lpm_transaction(hu);
 183	/* Even in case of failure, continue and test the suspended flag */
 184
 185	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
 186
 187	if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
 188		bt_dev_err(hu->hdev, "Device suspend error");
 189		return -EINVAL;
 190	}
 191
 192	bt_dev_dbg(hu->hdev, "Suspended");
 193
 194	hci_uart_set_flow_control(hu, true);
 195
 196	return 0;
 197}
 198
 199static int intel_lpm_resume(struct hci_uart *hu)
 200{
 201	struct intel_data *intel = hu->priv;
 202	struct sk_buff *skb;
 203
 204	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
 205	    !test_bit(STATE_SUSPENDED, &intel->flags))
 206		return 0;
 207
 208	bt_dev_dbg(hu->hdev, "Resuming");
 209
 210	hci_uart_set_flow_control(hu, false);
 211
 212	skb = bt_skb_alloc(0, GFP_KERNEL);
 213	if (!skb) {
 214		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
 215		return -ENOMEM;
 216	}
 217
 218	hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
 219
 220	set_bit(STATE_LPM_TRANSACTION, &intel->flags);
 221
 222	/* LPM flow is a priority, enqueue packet at list head */
 223	skb_queue_head(&intel->txq, skb);
 224	hci_uart_tx_wakeup(hu);
 225
 226	intel_wait_lpm_transaction(hu);
 227	/* Even in case of failure, continue and test the suspended flag */
 228
 229	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
 230
 231	if (test_bit(STATE_SUSPENDED, &intel->flags)) {
 232		bt_dev_err(hu->hdev, "Device resume error");
 233		return -EINVAL;
 234	}
 235
 236	bt_dev_dbg(hu->hdev, "Resumed");
 237
 238	return 0;
 239}
 240#endif /* CONFIG_PM */
 241
 242static int intel_lpm_host_wake(struct hci_uart *hu)
 243{
 244	static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
 245	struct intel_data *intel = hu->priv;
 246	struct sk_buff *skb;
 247
 248	hci_uart_set_flow_control(hu, false);
 249
 250	clear_bit(STATE_SUSPENDED, &intel->flags);
 251
 252	skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
 253	if (!skb) {
 254		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
 255		return -ENOMEM;
 256	}
 257
 258	skb_put_data(skb, lpm_resume_ack, sizeof(lpm_resume_ack));
 259	hci_skb_pkt_type(skb) = HCI_LPM_PKT;
 260
 261	/* LPM flow is a priority, enqueue packet at list head */
 262	skb_queue_head(&intel->txq, skb);
 263	hci_uart_tx_wakeup(hu);
 264
 265	bt_dev_dbg(hu->hdev, "Resumed by controller");
 266
 267	return 0;
 268}
 269
 270static irqreturn_t intel_irq(int irq, void *dev_id)
 271{
 272	struct intel_device *idev = dev_id;
 273
 274	dev_info(&idev->pdev->dev, "hci_intel irq\n");
 275
 276	mutex_lock(&idev->hu_lock);
 277	if (idev->hu)
 278		intel_lpm_host_wake(idev->hu);
 279	mutex_unlock(&idev->hu_lock);
 280
 281	/* Host/Controller are now LPM resumed, trigger a new delayed suspend */
 282	pm_runtime_get(&idev->pdev->dev);
 283	pm_runtime_mark_last_busy(&idev->pdev->dev);
 284	pm_runtime_put_autosuspend(&idev->pdev->dev);
 285
 286	return IRQ_HANDLED;
 287}
 288
 289static int intel_set_power(struct hci_uart *hu, bool powered)
 290{
 291	struct intel_device *idev;
 292	int err = -ENODEV;
 293
 294	if (!hu->tty->dev)
 295		return err;
 296
 297	mutex_lock(&intel_device_list_lock);
 298
 299	list_for_each_entry(idev, &intel_device_list, list) {
 
 
 
 300		/* tty device and pdev device should share the same parent
 301		 * which is the UART port.
 302		 */
 303		if (hu->tty->dev->parent != idev->pdev->dev.parent)
 304			continue;
 305
 306		if (!idev->reset) {
 307			err = -ENOTSUPP;
 308			break;
 309		}
 310
 311		BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
 312			hu, dev_name(&idev->pdev->dev), powered);
 313
 314		gpiod_set_value(idev->reset, powered);
 315
 316		/* Provide to idev a hu reference which is used to run LPM
 317		 * transactions (lpm suspend/resume) from PM callbacks.
 318		 * hu needs to be protected against concurrent removing during
 319		 * these PM ops.
 320		 */
 321		mutex_lock(&idev->hu_lock);
 322		idev->hu = powered ? hu : NULL;
 323		mutex_unlock(&idev->hu_lock);
 324
 325		if (idev->irq < 0)
 326			break;
 327
 328		if (powered && device_can_wakeup(&idev->pdev->dev)) {
 329			err = devm_request_threaded_irq(&idev->pdev->dev,
 330							idev->irq, NULL,
 331							intel_irq,
 332							IRQF_ONESHOT,
 333							"bt-host-wake", idev);
 334			if (err) {
 335				BT_ERR("hu %p, unable to allocate irq-%d",
 336				       hu, idev->irq);
 337				break;
 338			}
 339
 340			device_wakeup_enable(&idev->pdev->dev);
 341
 342			pm_runtime_set_active(&idev->pdev->dev);
 343			pm_runtime_use_autosuspend(&idev->pdev->dev);
 344			pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
 345							 LPM_SUSPEND_DELAY_MS);
 346			pm_runtime_enable(&idev->pdev->dev);
 347		} else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
 348			devm_free_irq(&idev->pdev->dev, idev->irq, idev);
 349			device_wakeup_disable(&idev->pdev->dev);
 350
 351			pm_runtime_disable(&idev->pdev->dev);
 352		}
 353	}
 354
 355	mutex_unlock(&intel_device_list_lock);
 356
 357	return err;
 358}
 359
 360static void intel_busy_work(struct work_struct *work)
 361{
 
 362	struct intel_data *intel = container_of(work, struct intel_data,
 363						busy_work);
 364	struct intel_device *idev;
 365
 366	if (!intel->hu->tty->dev)
 367		return;
 368
 369	/* Link is busy, delay the suspend */
 370	mutex_lock(&intel_device_list_lock);
 371	list_for_each_entry(idev, &intel_device_list, list) {
 
 
 
 372		if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
 373			pm_runtime_get(&idev->pdev->dev);
 374			pm_runtime_mark_last_busy(&idev->pdev->dev);
 375			pm_runtime_put_autosuspend(&idev->pdev->dev);
 376			break;
 377		}
 378	}
 379	mutex_unlock(&intel_device_list_lock);
 380}
 381
 382static int intel_open(struct hci_uart *hu)
 383{
 384	struct intel_data *intel;
 385
 386	BT_DBG("hu %p", hu);
 387
 388	if (!hci_uart_has_flow_control(hu))
 389		return -EOPNOTSUPP;
 390
 391	intel = kzalloc(sizeof(*intel), GFP_KERNEL);
 392	if (!intel)
 393		return -ENOMEM;
 394
 395	skb_queue_head_init(&intel->txq);
 396	INIT_WORK(&intel->busy_work, intel_busy_work);
 397
 398	intel->hu = hu;
 399
 400	hu->priv = intel;
 401
 402	if (!intel_set_power(hu, true))
 403		set_bit(STATE_BOOTING, &intel->flags);
 404
 405	return 0;
 406}
 407
 408static int intel_close(struct hci_uart *hu)
 409{
 410	struct intel_data *intel = hu->priv;
 411
 412	BT_DBG("hu %p", hu);
 413
 414	cancel_work_sync(&intel->busy_work);
 415
 416	intel_set_power(hu, false);
 417
 418	skb_queue_purge(&intel->txq);
 419	kfree_skb(intel->rx_skb);
 420	kfree(intel);
 421
 422	hu->priv = NULL;
 423	return 0;
 424}
 425
 426static int intel_flush(struct hci_uart *hu)
 427{
 428	struct intel_data *intel = hu->priv;
 429
 430	BT_DBG("hu %p", hu);
 431
 432	skb_queue_purge(&intel->txq);
 433
 434	return 0;
 435}
 436
 437static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
 438{
 439	struct sk_buff *skb;
 440	struct hci_event_hdr *hdr;
 441	struct hci_ev_cmd_complete *evt;
 442
 443	skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_KERNEL);
 444	if (!skb)
 445		return -ENOMEM;
 446
 447	hdr = skb_put(skb, sizeof(*hdr));
 448	hdr->evt = HCI_EV_CMD_COMPLETE;
 449	hdr->plen = sizeof(*evt) + 1;
 450
 451	evt = skb_put(skb, sizeof(*evt));
 452	evt->ncmd = 0x01;
 453	evt->opcode = cpu_to_le16(opcode);
 454
 455	skb_put_u8(skb, 0x00);
 456
 457	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
 458
 459	return hci_recv_frame(hdev, skb);
 460}
 461
 462static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
 463{
 464	struct intel_data *intel = hu->priv;
 465	struct hci_dev *hdev = hu->hdev;
 466	u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
 467	struct sk_buff *skb;
 468	int err;
 469
 470	/* This can be the first command sent to the chip, check
 471	 * that the controller is ready.
 472	 */
 473	err = intel_wait_booting(hu);
 474
 475	clear_bit(STATE_BOOTING, &intel->flags);
 476
 477	/* In case of timeout, try to continue anyway */
 478	if (err && err != -ETIMEDOUT)
 479		return err;
 480
 481	bt_dev_info(hdev, "Change controller speed to %d", speed);
 482
 483	speed_cmd[3] = intel_convert_speed(speed);
 484	if (speed_cmd[3] == 0xff) {
 485		bt_dev_err(hdev, "Unsupported speed");
 486		return -EINVAL;
 487	}
 488
 489	/* Device will not accept speed change if Intel version has not been
 490	 * previously requested.
 491	 */
 492	skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
 493	if (IS_ERR(skb)) {
 494		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
 495			   PTR_ERR(skb));
 496		return PTR_ERR(skb);
 497	}
 498	kfree_skb(skb);
 499
 500	skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
 501	if (!skb) {
 502		bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
 503		return -ENOMEM;
 504	}
 505
 506	skb_put_data(skb, speed_cmd, sizeof(speed_cmd));
 507	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
 508
 509	hci_uart_set_flow_control(hu, true);
 510
 511	skb_queue_tail(&intel->txq, skb);
 512	hci_uart_tx_wakeup(hu);
 513
 514	/* wait 100ms to change baudrate on controller side */
 515	msleep(100);
 516
 517	hci_uart_set_baudrate(hu, speed);
 518	hci_uart_set_flow_control(hu, false);
 519
 520	return 0;
 521}
 522
 523static int intel_setup(struct hci_uart *hu)
 524{
 525	struct intel_data *intel = hu->priv;
 526	struct hci_dev *hdev = hu->hdev;
 527	struct sk_buff *skb;
 528	struct intel_version ver;
 529	struct intel_boot_params params;
 530	struct intel_device *idev;
 531	const struct firmware *fw;
 532	char fwname[64];
 533	u32 boot_param;
 534	ktime_t calltime, delta, rettime;
 535	unsigned long long duration;
 536	unsigned int init_speed, oper_speed;
 537	int speed_change = 0;
 538	int err;
 539
 540	bt_dev_dbg(hdev, "start intel_setup");
 541
 542	hu->hdev->set_diag = btintel_set_diag;
 543	hu->hdev->set_bdaddr = btintel_set_bdaddr;
 544
 545	/* Set the default boot parameter to 0x0 and it is updated to
 546	 * SKU specific boot parameter after reading Intel_Write_Boot_Params
 547	 * command while downloading the firmware.
 548	 */
 549	boot_param = 0x00000000;
 550
 551	calltime = ktime_get();
 552
 553	if (hu->init_speed)
 554		init_speed = hu->init_speed;
 555	else
 556		init_speed = hu->proto->init_speed;
 557
 558	if (hu->oper_speed)
 559		oper_speed = hu->oper_speed;
 560	else
 561		oper_speed = hu->proto->oper_speed;
 562
 563	if (oper_speed && init_speed && oper_speed != init_speed)
 564		speed_change = 1;
 565
 566	/* Check that the controller is ready */
 567	err = intel_wait_booting(hu);
 568
 569	clear_bit(STATE_BOOTING, &intel->flags);
 570
 571	/* In case of timeout, try to continue anyway */
 572	if (err && err != -ETIMEDOUT)
 573		return err;
 574
 575	set_bit(STATE_BOOTLOADER, &intel->flags);
 576
 577	/* Read the Intel version information to determine if the device
 578	 * is in bootloader mode or if it already has operational firmware
 579	 * loaded.
 580	 */
 581	err = btintel_read_version(hdev, &ver);
 582	if (err)
 583		return err;
 584
 585	/* The hardware platform number has a fixed value of 0x37 and
 586	 * for now only accept this single value.
 587	 */
 588	if (ver.hw_platform != 0x37) {
 589		bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
 590			   ver.hw_platform);
 591		return -EINVAL;
 592	}
 593
 594        /* Check for supported iBT hardware variants of this firmware
 595         * loading method.
 596         *
 597         * This check has been put in place to ensure correct forward
 598         * compatibility options when newer hardware variants come along.
 599         */
 600	switch (ver.hw_variant) {
 601	case 0x0b:	/* LnP */
 602	case 0x0c:	/* WsP */
 603	case 0x12:	/* ThP */
 604		break;
 605	default:
 606		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
 607			   ver.hw_variant);
 608		return -EINVAL;
 609	}
 610
 611	btintel_version_info(hdev, &ver);
 612
 613	/* The firmware variant determines if the device is in bootloader
 614	 * mode or is running operational firmware. The value 0x06 identifies
 615	 * the bootloader and the value 0x23 identifies the operational
 616	 * firmware.
 617	 *
 618	 * When the operational firmware is already present, then only
 619	 * the check for valid Bluetooth device address is needed. This
 620	 * determines if the device will be added as configured or
 621	 * unconfigured controller.
 622	 *
 623	 * It is not possible to use the Secure Boot Parameters in this
 624	 * case since that command is only available in bootloader mode.
 625	 */
 626	if (ver.fw_variant == 0x23) {
 627		clear_bit(STATE_BOOTLOADER, &intel->flags);
 628		btintel_check_bdaddr(hdev);
 629		return 0;
 630	}
 631
 632	/* If the device is not in bootloader mode, then the only possible
 633	 * choice is to return an error and abort the device initialization.
 634	 */
 635	if (ver.fw_variant != 0x06) {
 636		bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
 637			   ver.fw_variant);
 638		return -ENODEV;
 639	}
 640
 641	/* Read the secure boot parameters to identify the operating
 642	 * details of the bootloader.
 643	 */
 644	err = btintel_read_boot_params(hdev, &params);
 645	if (err)
 646		return err;
 647
 648	/* It is required that every single firmware fragment is acknowledged
 649	 * with a command complete event. If the boot parameters indicate
 650	 * that this bootloader does not send them, then abort the setup.
 651	 */
 652	if (params.limited_cce != 0x00) {
 653		bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
 654			   params.limited_cce);
 655		return -EINVAL;
 656	}
 657
 658	/* If the OTP has no valid Bluetooth device address, then there will
 659	 * also be no valid address for the operational firmware.
 660	 */
 661	if (!bacmp(&params.otp_bdaddr, BDADDR_ANY)) {
 662		bt_dev_info(hdev, "No device address configured");
 663		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
 664	}
 665
 666	/* With this Intel bootloader only the hardware variant and device
 667	 * revision information are used to select the right firmware for SfP
 668	 * and WsP.
 669	 *
 670	 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
 671	 *
 672	 * Currently the supported hardware variants are:
 673	 *   11 (0x0b) for iBT 3.0 (LnP/SfP)
 674	 *   12 (0x0c) for iBT 3.5 (WsP)
 675	 *
 676	 * For ThP/JfP and for future SKU's, the FW name varies based on HW
 677	 * variant, HW revision and FW revision, as these are dependent on CNVi
 678	 * and RF Combination.
 679	 *
 680	 *   18 (0x12) for iBT3.5 (ThP/JfP)
 681	 *
 682	 * The firmware file name for these will be
 683	 * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi.
 684	 *
 685	 */
 686	switch (ver.hw_variant) {
 687	case 0x0b:      /* SfP */
 688	case 0x0c:      /* WsP */
 689		snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.sfi",
 690			 ver.hw_variant, le16_to_cpu(params.dev_revid));
 
 691		break;
 692	case 0x12:      /* ThP */
 693		snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.sfi",
 694			 ver.hw_variant, ver.hw_revision, ver.fw_revision);
 
 
 695		break;
 696	default:
 697		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
 698			   ver.hw_variant);
 699		return -EINVAL;
 700	}
 701
 702	err = request_firmware(&fw, fwname, &hdev->dev);
 703	if (err < 0) {
 704		bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
 705			   err);
 706		return err;
 707	}
 708
 709	bt_dev_info(hdev, "Found device firmware: %s", fwname);
 710
 711	/* Save the DDC file name for later */
 712	switch (ver.hw_variant) {
 713	case 0x0b:      /* SfP */
 714	case 0x0c:      /* WsP */
 715		snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.ddc",
 716			 ver.hw_variant, le16_to_cpu(params.dev_revid));
 
 717		break;
 718	case 0x12:      /* ThP */
 719		snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.ddc",
 720			 ver.hw_variant, ver.hw_revision, ver.fw_revision);
 
 
 721		break;
 722	default:
 723		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
 724			   ver.hw_variant);
 725		return -EINVAL;
 726	}
 727
 728	if (fw->size < 644) {
 729		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
 730			   fw->size);
 731		err = -EBADF;
 732		goto done;
 733	}
 734
 735	set_bit(STATE_DOWNLOADING, &intel->flags);
 736
 737	/* Start firmware downloading and get boot parameter */
 738	err = btintel_download_firmware(hdev, &ver, fw, &boot_param);
 739	if (err < 0)
 740		goto done;
 741
 742	set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
 743
 744	bt_dev_info(hdev, "Waiting for firmware download to complete");
 745
 746	/* Before switching the device into operational mode and with that
 747	 * booting the loaded firmware, wait for the bootloader notification
 748	 * that all fragments have been successfully received.
 749	 *
 750	 * When the event processing receives the notification, then the
 751	 * STATE_DOWNLOADING flag will be cleared.
 752	 *
 753	 * The firmware loading should not take longer than 5 seconds
 754	 * and thus just timeout if that happens and fail the setup
 755	 * of this device.
 756	 */
 757	err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
 758				  TASK_INTERRUPTIBLE,
 759				  msecs_to_jiffies(5000));
 760	if (err == -EINTR) {
 761		bt_dev_err(hdev, "Firmware loading interrupted");
 762		err = -EINTR;
 763		goto done;
 764	}
 765
 766	if (err) {
 767		bt_dev_err(hdev, "Firmware loading timeout");
 768		err = -ETIMEDOUT;
 769		goto done;
 770	}
 771
 772	if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
 773		bt_dev_err(hdev, "Firmware loading failed");
 774		err = -ENOEXEC;
 775		goto done;
 776	}
 777
 778	rettime = ktime_get();
 779	delta = ktime_sub(rettime, calltime);
 780	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
 781
 782	bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
 783
 784done:
 785	release_firmware(fw);
 786
 787	/* Check if there was an error and if is not -EALREADY which means the
 788	 * firmware has already been loaded.
 789	 */
 790	if (err < 0 && err != -EALREADY)
 791		return err;
 792
 793	/* We need to restore the default speed before Intel reset */
 794	if (speed_change) {
 795		err = intel_set_baudrate(hu, init_speed);
 796		if (err)
 797			return err;
 798	}
 799
 800	calltime = ktime_get();
 801
 802	set_bit(STATE_BOOTING, &intel->flags);
 803
 804	err = btintel_send_intel_reset(hdev, boot_param);
 805	if (err)
 806		return err;
 807
 808	/* The bootloader will not indicate when the device is ready. This
 809	 * is done by the operational firmware sending bootup notification.
 810	 *
 811	 * Booting into operational firmware should not take longer than
 812	 * 1 second. However if that happens, then just fail the setup
 813	 * since something went wrong.
 814	 */
 815	bt_dev_info(hdev, "Waiting for device to boot");
 816
 817	err = intel_wait_booting(hu);
 818	if (err)
 819		return err;
 820
 821	clear_bit(STATE_BOOTING, &intel->flags);
 822
 823	rettime = ktime_get();
 824	delta = ktime_sub(rettime, calltime);
 825	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
 826
 827	bt_dev_info(hdev, "Device booted in %llu usecs", duration);
 828
 829	/* Enable LPM if matching pdev with wakeup enabled, set TX active
 830	 * until further LPM TX notification.
 831	 */
 832	mutex_lock(&intel_device_list_lock);
 833	list_for_each_entry(idev, &intel_device_list, list) {
 
 
 834		if (!hu->tty->dev)
 835			break;
 836		if (hu->tty->dev->parent == idev->pdev->dev.parent) {
 837			if (device_may_wakeup(&idev->pdev->dev)) {
 838				set_bit(STATE_LPM_ENABLED, &intel->flags);
 839				set_bit(STATE_TX_ACTIVE, &intel->flags);
 840			}
 841			break;
 842		}
 843	}
 844	mutex_unlock(&intel_device_list_lock);
 845
 846	/* Ignore errors, device can work without DDC parameters */
 847	btintel_load_ddc_config(hdev, fwname);
 848
 849	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
 850	if (IS_ERR(skb))
 851		return PTR_ERR(skb);
 852	kfree_skb(skb);
 853
 854	if (speed_change) {
 855		err = intel_set_baudrate(hu, oper_speed);
 856		if (err)
 857			return err;
 858	}
 859
 860	bt_dev_info(hdev, "Setup complete");
 861
 862	clear_bit(STATE_BOOTLOADER, &intel->flags);
 863
 864	return 0;
 865}
 866
 867static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
 868{
 869	struct hci_uart *hu = hci_get_drvdata(hdev);
 870	struct intel_data *intel = hu->priv;
 871	struct hci_event_hdr *hdr;
 872
 873	if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
 874	    !test_bit(STATE_BOOTING, &intel->flags))
 875		goto recv;
 876
 877	hdr = (void *)skb->data;
 878
 879	/* When the firmware loading completes the device sends
 880	 * out a vendor specific event indicating the result of
 881	 * the firmware loading.
 882	 */
 883	if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
 884	    skb->data[2] == 0x06) {
 885		if (skb->data[3] != 0x00)
 886			set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
 887
 888		if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
 889		    test_bit(STATE_FIRMWARE_LOADED, &intel->flags))
 
 890			wake_up_bit(&intel->flags, STATE_DOWNLOADING);
 
 891
 892	/* When switching to the operational firmware the device
 893	 * sends a vendor specific event indicating that the bootup
 894	 * completed.
 895	 */
 896	} else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
 897		   skb->data[2] == 0x02) {
 898		if (test_and_clear_bit(STATE_BOOTING, &intel->flags))
 
 899			wake_up_bit(&intel->flags, STATE_BOOTING);
 
 900	}
 901recv:
 902	return hci_recv_frame(hdev, skb);
 903}
 904
 905static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
 906{
 907	struct hci_uart *hu = hci_get_drvdata(hdev);
 908	struct intel_data *intel = hu->priv;
 909
 910	bt_dev_dbg(hdev, "TX idle notification (%d)", value);
 911
 912	if (value) {
 913		set_bit(STATE_TX_ACTIVE, &intel->flags);
 914		schedule_work(&intel->busy_work);
 915	} else {
 916		clear_bit(STATE_TX_ACTIVE, &intel->flags);
 917	}
 918}
 919
 920static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
 921{
 922	struct hci_lpm_pkt *lpm = (void *)skb->data;
 923	struct hci_uart *hu = hci_get_drvdata(hdev);
 924	struct intel_data *intel = hu->priv;
 925
 926	switch (lpm->opcode) {
 927	case LPM_OP_TX_NOTIFY:
 928		if (lpm->dlen < 1) {
 929			bt_dev_err(hu->hdev, "Invalid LPM notification packet");
 930			break;
 931		}
 932		intel_recv_lpm_notify(hdev, lpm->data[0]);
 933		break;
 934	case LPM_OP_SUSPEND_ACK:
 935		set_bit(STATE_SUSPENDED, &intel->flags);
 936		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags))
 
 937			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
 
 938		break;
 939	case LPM_OP_RESUME_ACK:
 940		clear_bit(STATE_SUSPENDED, &intel->flags);
 941		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags))
 
 942			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
 
 943		break;
 944	default:
 945		bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
 946		break;
 947	}
 948
 949	kfree_skb(skb);
 950
 951	return 0;
 952}
 953
 954#define INTEL_RECV_LPM \
 955	.type = HCI_LPM_PKT, \
 956	.hlen = HCI_LPM_HDR_SIZE, \
 957	.loff = 1, \
 958	.lsize = 1, \
 959	.maxlen = HCI_LPM_MAX_SIZE
 960
 961static const struct h4_recv_pkt intel_recv_pkts[] = {
 962	{ H4_RECV_ACL,    .recv = hci_recv_frame   },
 963	{ H4_RECV_SCO,    .recv = hci_recv_frame   },
 964	{ H4_RECV_EVENT,  .recv = intel_recv_event },
 965	{ INTEL_RECV_LPM, .recv = intel_recv_lpm   },
 966};
 967
 968static int intel_recv(struct hci_uart *hu, const void *data, int count)
 969{
 970	struct intel_data *intel = hu->priv;
 971
 972	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
 973		return -EUNATCH;
 974
 975	intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
 976				    intel_recv_pkts,
 977				    ARRAY_SIZE(intel_recv_pkts));
 978	if (IS_ERR(intel->rx_skb)) {
 979		int err = PTR_ERR(intel->rx_skb);
 980		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
 981		intel->rx_skb = NULL;
 982		return err;
 983	}
 984
 985	return count;
 986}
 987
 988static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
 989{
 990	struct intel_data *intel = hu->priv;
 991	struct intel_device *idev;
 992
 993	BT_DBG("hu %p skb %p", hu, skb);
 994
 995	if (!hu->tty->dev)
 996		goto out_enqueue;
 997
 998	/* Be sure our controller is resumed and potential LPM transaction
 999	 * completed before enqueuing any packet.
1000	 */
1001	mutex_lock(&intel_device_list_lock);
1002	list_for_each_entry(idev, &intel_device_list, list) {
 
 
 
1003		if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1004			pm_runtime_get_sync(&idev->pdev->dev);
1005			pm_runtime_mark_last_busy(&idev->pdev->dev);
1006			pm_runtime_put_autosuspend(&idev->pdev->dev);
1007			break;
1008		}
1009	}
1010	mutex_unlock(&intel_device_list_lock);
1011out_enqueue:
1012	skb_queue_tail(&intel->txq, skb);
1013
1014	return 0;
1015}
1016
1017static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1018{
1019	struct intel_data *intel = hu->priv;
1020	struct sk_buff *skb;
1021
1022	skb = skb_dequeue(&intel->txq);
1023	if (!skb)
1024		return skb;
1025
1026	if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1027	    (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1028		struct hci_command_hdr *cmd = (void *)skb->data;
1029		__u16 opcode = le16_to_cpu(cmd->opcode);
1030
1031		/* When the 0xfc01 command is issued to boot into
1032		 * the operational firmware, it will actually not
1033		 * send a command complete event. To keep the flow
1034		 * control working inject that event here.
1035		 */
1036		if (opcode == 0xfc01)
1037			inject_cmd_complete(hu->hdev, opcode);
1038	}
1039
1040	/* Prepend skb with frame type */
1041	memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1042
1043	return skb;
1044}
1045
1046static const struct hci_uart_proto intel_proto = {
1047	.id		= HCI_UART_INTEL,
1048	.name		= "Intel",
1049	.manufacturer	= 2,
1050	.init_speed	= 115200,
1051	.oper_speed	= 3000000,
1052	.open		= intel_open,
1053	.close		= intel_close,
1054	.flush		= intel_flush,
1055	.setup		= intel_setup,
1056	.set_baudrate	= intel_set_baudrate,
1057	.recv		= intel_recv,
1058	.enqueue	= intel_enqueue,
1059	.dequeue	= intel_dequeue,
1060};
1061
1062#ifdef CONFIG_ACPI
1063static const struct acpi_device_id intel_acpi_match[] = {
1064	{ "INT33E1", 0 },
1065	{ "INT33E3", 0 },
1066	{ }
1067};
1068MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1069#endif
1070
1071#ifdef CONFIG_PM
1072static int intel_suspend_device(struct device *dev)
1073{
1074	struct intel_device *idev = dev_get_drvdata(dev);
1075
1076	mutex_lock(&idev->hu_lock);
1077	if (idev->hu)
1078		intel_lpm_suspend(idev->hu);
1079	mutex_unlock(&idev->hu_lock);
1080
1081	return 0;
1082}
1083
1084static int intel_resume_device(struct device *dev)
1085{
1086	struct intel_device *idev = dev_get_drvdata(dev);
1087
1088	mutex_lock(&idev->hu_lock);
1089	if (idev->hu)
1090		intel_lpm_resume(idev->hu);
1091	mutex_unlock(&idev->hu_lock);
1092
1093	return 0;
1094}
1095#endif
1096
1097#ifdef CONFIG_PM_SLEEP
1098static int intel_suspend(struct device *dev)
1099{
1100	struct intel_device *idev = dev_get_drvdata(dev);
1101
1102	if (device_may_wakeup(dev))
1103		enable_irq_wake(idev->irq);
1104
1105	return intel_suspend_device(dev);
1106}
1107
1108static int intel_resume(struct device *dev)
1109{
1110	struct intel_device *idev = dev_get_drvdata(dev);
1111
1112	if (device_may_wakeup(dev))
1113		disable_irq_wake(idev->irq);
1114
1115	return intel_resume_device(dev);
1116}
1117#endif
1118
1119static const struct dev_pm_ops intel_pm_ops = {
1120	SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1121	SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1122};
1123
1124static const struct acpi_gpio_params reset_gpios = { 0, 0, false };
1125static const struct acpi_gpio_params host_wake_gpios = { 1, 0, false };
1126
1127static const struct acpi_gpio_mapping acpi_hci_intel_gpios[] = {
1128	{ "reset-gpios", &reset_gpios, 1, ACPI_GPIO_QUIRK_ONLY_GPIOIO },
1129	{ "host-wake-gpios", &host_wake_gpios, 1, ACPI_GPIO_QUIRK_ONLY_GPIOIO },
1130	{ }
1131};
1132
1133static int intel_probe(struct platform_device *pdev)
1134{
1135	struct intel_device *idev;
1136	int ret;
1137
1138	idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1139	if (!idev)
1140		return -ENOMEM;
1141
1142	mutex_init(&idev->hu_lock);
1143
1144	idev->pdev = pdev;
1145
1146	ret = devm_acpi_dev_add_driver_gpios(&pdev->dev, acpi_hci_intel_gpios);
1147	if (ret)
1148		dev_dbg(&pdev->dev, "Unable to add GPIO mapping table\n");
1149
1150	idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
1151	if (IS_ERR(idev->reset)) {
1152		dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1153		return PTR_ERR(idev->reset);
1154	}
1155
1156	idev->irq = platform_get_irq(pdev, 0);
1157	if (idev->irq < 0) {
1158		struct gpio_desc *host_wake;
1159
1160		dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1161
1162		host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
1163		if (IS_ERR(host_wake)) {
1164			dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1165			goto no_irq;
1166		}
1167
1168		idev->irq = gpiod_to_irq(host_wake);
1169		if (idev->irq < 0) {
1170			dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1171			goto no_irq;
1172		}
1173	}
1174
1175	/* Only enable wake-up/irq when controller is powered */
1176	device_set_wakeup_capable(&pdev->dev, true);
1177	device_wakeup_disable(&pdev->dev);
1178
1179no_irq:
1180	platform_set_drvdata(pdev, idev);
1181
1182	/* Place this instance on the device list */
1183	mutex_lock(&intel_device_list_lock);
1184	list_add_tail(&idev->list, &intel_device_list);
1185	mutex_unlock(&intel_device_list_lock);
1186
1187	dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1188		 desc_to_gpio(idev->reset), idev->irq);
1189
1190	return 0;
1191}
1192
1193static int intel_remove(struct platform_device *pdev)
1194{
1195	struct intel_device *idev = platform_get_drvdata(pdev);
1196
1197	device_wakeup_disable(&pdev->dev);
1198
1199	mutex_lock(&intel_device_list_lock);
1200	list_del(&idev->list);
1201	mutex_unlock(&intel_device_list_lock);
1202
1203	dev_info(&pdev->dev, "unregistered.\n");
1204
1205	return 0;
1206}
1207
1208static struct platform_driver intel_driver = {
1209	.probe = intel_probe,
1210	.remove = intel_remove,
1211	.driver = {
1212		.name = "hci_intel",
1213		.acpi_match_table = ACPI_PTR(intel_acpi_match),
1214		.pm = &intel_pm_ops,
1215	},
1216};
1217
1218int __init intel_init(void)
1219{
1220	int err;
1221
1222	err = platform_driver_register(&intel_driver);
1223	if (err)
1224		return err;
1225
1226	return hci_uart_register_proto(&intel_proto);
1227}
1228
1229int __exit intel_deinit(void)
1230{
1231	platform_driver_unregister(&intel_driver);
1232
1233	return hci_uart_unregister_proto(&intel_proto);
1234}
v4.17
 
   1/*
   2 *
   3 *  Bluetooth HCI UART driver for Intel devices
   4 *
   5 *  Copyright (C) 2015  Intel Corporation
   6 *
   7 *
   8 *  This program is free software; you can redistribute it and/or modify
   9 *  it under the terms of the GNU General Public License as published by
  10 *  the Free Software Foundation; either version 2 of the License, or
  11 *  (at your option) any later version.
  12 *
  13 *  This program is distributed in the hope that it will be useful,
  14 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 *  GNU General Public License for more details.
  17 *
  18 *  You should have received a copy of the GNU General Public License
  19 *  along with this program; if not, write to the Free Software
  20 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  21 *
  22 */
  23
  24#include <linux/kernel.h>
  25#include <linux/errno.h>
  26#include <linux/skbuff.h>
  27#include <linux/firmware.h>
  28#include <linux/module.h>
  29#include <linux/wait.h>
  30#include <linux/tty.h>
  31#include <linux/platform_device.h>
  32#include <linux/gpio/consumer.h>
  33#include <linux/acpi.h>
  34#include <linux/interrupt.h>
  35#include <linux/pm_runtime.h>
  36
  37#include <net/bluetooth/bluetooth.h>
  38#include <net/bluetooth/hci_core.h>
  39
  40#include "hci_uart.h"
  41#include "btintel.h"
  42
  43#define STATE_BOOTLOADER	0
  44#define STATE_DOWNLOADING	1
  45#define STATE_FIRMWARE_LOADED	2
  46#define STATE_FIRMWARE_FAILED	3
  47#define STATE_BOOTING		4
  48#define STATE_LPM_ENABLED	5
  49#define STATE_TX_ACTIVE		6
  50#define STATE_SUSPENDED		7
  51#define STATE_LPM_TRANSACTION	8
  52
  53#define HCI_LPM_WAKE_PKT 0xf0
  54#define HCI_LPM_PKT 0xf1
  55#define HCI_LPM_MAX_SIZE 10
  56#define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
  57
  58#define LPM_OP_TX_NOTIFY 0x00
  59#define LPM_OP_SUSPEND_ACK 0x02
  60#define LPM_OP_RESUME_ACK 0x03
  61
  62#define LPM_SUSPEND_DELAY_MS 1000
  63
  64struct hci_lpm_pkt {
  65	__u8 opcode;
  66	__u8 dlen;
  67	__u8 data[0];
  68} __packed;
  69
  70struct intel_device {
  71	struct list_head list;
  72	struct platform_device *pdev;
  73	struct gpio_desc *reset;
  74	struct hci_uart *hu;
  75	struct mutex hu_lock;
  76	int irq;
  77};
  78
  79static LIST_HEAD(intel_device_list);
  80static DEFINE_MUTEX(intel_device_list_lock);
  81
  82struct intel_data {
  83	struct sk_buff *rx_skb;
  84	struct sk_buff_head txq;
  85	struct work_struct busy_work;
  86	struct hci_uart *hu;
  87	unsigned long flags;
  88};
  89
  90static u8 intel_convert_speed(unsigned int speed)
  91{
  92	switch (speed) {
  93	case 9600:
  94		return 0x00;
  95	case 19200:
  96		return 0x01;
  97	case 38400:
  98		return 0x02;
  99	case 57600:
 100		return 0x03;
 101	case 115200:
 102		return 0x04;
 103	case 230400:
 104		return 0x05;
 105	case 460800:
 106		return 0x06;
 107	case 921600:
 108		return 0x07;
 109	case 1843200:
 110		return 0x08;
 111	case 3250000:
 112		return 0x09;
 113	case 2000000:
 114		return 0x0a;
 115	case 3000000:
 116		return 0x0b;
 117	default:
 118		return 0xff;
 119	}
 120}
 121
 122static int intel_wait_booting(struct hci_uart *hu)
 123{
 124	struct intel_data *intel = hu->priv;
 125	int err;
 126
 127	err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
 128				  TASK_INTERRUPTIBLE,
 129				  msecs_to_jiffies(1000));
 130
 131	if (err == -EINTR) {
 132		bt_dev_err(hu->hdev, "Device boot interrupted");
 133		return -EINTR;
 134	}
 135
 136	if (err) {
 137		bt_dev_err(hu->hdev, "Device boot timeout");
 138		return -ETIMEDOUT;
 139	}
 140
 141	return err;
 142}
 143
 144#ifdef CONFIG_PM
 145static int intel_wait_lpm_transaction(struct hci_uart *hu)
 146{
 147	struct intel_data *intel = hu->priv;
 148	int err;
 149
 150	err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
 151				  TASK_INTERRUPTIBLE,
 152				  msecs_to_jiffies(1000));
 153
 154	if (err == -EINTR) {
 155		bt_dev_err(hu->hdev, "LPM transaction interrupted");
 156		return -EINTR;
 157	}
 158
 159	if (err) {
 160		bt_dev_err(hu->hdev, "LPM transaction timeout");
 161		return -ETIMEDOUT;
 162	}
 163
 164	return err;
 165}
 166
 167static int intel_lpm_suspend(struct hci_uart *hu)
 168{
 169	static const u8 suspend[] = { 0x01, 0x01, 0x01 };
 170	struct intel_data *intel = hu->priv;
 171	struct sk_buff *skb;
 172
 173	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
 174	    test_bit(STATE_SUSPENDED, &intel->flags))
 175		return 0;
 176
 177	if (test_bit(STATE_TX_ACTIVE, &intel->flags))
 178		return -EAGAIN;
 179
 180	bt_dev_dbg(hu->hdev, "Suspending");
 181
 182	skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
 183	if (!skb) {
 184		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
 185		return -ENOMEM;
 186	}
 187
 188	skb_put_data(skb, suspend, sizeof(suspend));
 189	hci_skb_pkt_type(skb) = HCI_LPM_PKT;
 190
 191	set_bit(STATE_LPM_TRANSACTION, &intel->flags);
 192
 193	/* LPM flow is a priority, enqueue packet at list head */
 194	skb_queue_head(&intel->txq, skb);
 195	hci_uart_tx_wakeup(hu);
 196
 197	intel_wait_lpm_transaction(hu);
 198	/* Even in case of failure, continue and test the suspended flag */
 199
 200	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
 201
 202	if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
 203		bt_dev_err(hu->hdev, "Device suspend error");
 204		return -EINVAL;
 205	}
 206
 207	bt_dev_dbg(hu->hdev, "Suspended");
 208
 209	hci_uart_set_flow_control(hu, true);
 210
 211	return 0;
 212}
 213
 214static int intel_lpm_resume(struct hci_uart *hu)
 215{
 216	struct intel_data *intel = hu->priv;
 217	struct sk_buff *skb;
 218
 219	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
 220	    !test_bit(STATE_SUSPENDED, &intel->flags))
 221		return 0;
 222
 223	bt_dev_dbg(hu->hdev, "Resuming");
 224
 225	hci_uart_set_flow_control(hu, false);
 226
 227	skb = bt_skb_alloc(0, GFP_KERNEL);
 228	if (!skb) {
 229		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
 230		return -ENOMEM;
 231	}
 232
 233	hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
 234
 235	set_bit(STATE_LPM_TRANSACTION, &intel->flags);
 236
 237	/* LPM flow is a priority, enqueue packet at list head */
 238	skb_queue_head(&intel->txq, skb);
 239	hci_uart_tx_wakeup(hu);
 240
 241	intel_wait_lpm_transaction(hu);
 242	/* Even in case of failure, continue and test the suspended flag */
 243
 244	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
 245
 246	if (test_bit(STATE_SUSPENDED, &intel->flags)) {
 247		bt_dev_err(hu->hdev, "Device resume error");
 248		return -EINVAL;
 249	}
 250
 251	bt_dev_dbg(hu->hdev, "Resumed");
 252
 253	return 0;
 254}
 255#endif /* CONFIG_PM */
 256
 257static int intel_lpm_host_wake(struct hci_uart *hu)
 258{
 259	static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
 260	struct intel_data *intel = hu->priv;
 261	struct sk_buff *skb;
 262
 263	hci_uart_set_flow_control(hu, false);
 264
 265	clear_bit(STATE_SUSPENDED, &intel->flags);
 266
 267	skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
 268	if (!skb) {
 269		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
 270		return -ENOMEM;
 271	}
 272
 273	skb_put_data(skb, lpm_resume_ack, sizeof(lpm_resume_ack));
 274	hci_skb_pkt_type(skb) = HCI_LPM_PKT;
 275
 276	/* LPM flow is a priority, enqueue packet at list head */
 277	skb_queue_head(&intel->txq, skb);
 278	hci_uart_tx_wakeup(hu);
 279
 280	bt_dev_dbg(hu->hdev, "Resumed by controller");
 281
 282	return 0;
 283}
 284
 285static irqreturn_t intel_irq(int irq, void *dev_id)
 286{
 287	struct intel_device *idev = dev_id;
 288
 289	dev_info(&idev->pdev->dev, "hci_intel irq\n");
 290
 291	mutex_lock(&idev->hu_lock);
 292	if (idev->hu)
 293		intel_lpm_host_wake(idev->hu);
 294	mutex_unlock(&idev->hu_lock);
 295
 296	/* Host/Controller are now LPM resumed, trigger a new delayed suspend */
 297	pm_runtime_get(&idev->pdev->dev);
 298	pm_runtime_mark_last_busy(&idev->pdev->dev);
 299	pm_runtime_put_autosuspend(&idev->pdev->dev);
 300
 301	return IRQ_HANDLED;
 302}
 303
 304static int intel_set_power(struct hci_uart *hu, bool powered)
 305{
 306	struct list_head *p;
 307	int err = -ENODEV;
 308
 309	if (!hu->tty->dev)
 310		return err;
 311
 312	mutex_lock(&intel_device_list_lock);
 313
 314	list_for_each(p, &intel_device_list) {
 315		struct intel_device *idev = list_entry(p, struct intel_device,
 316						       list);
 317
 318		/* tty device and pdev device should share the same parent
 319		 * which is the UART port.
 320		 */
 321		if (hu->tty->dev->parent != idev->pdev->dev.parent)
 322			continue;
 323
 324		if (!idev->reset) {
 325			err = -ENOTSUPP;
 326			break;
 327		}
 328
 329		BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
 330			hu, dev_name(&idev->pdev->dev), powered);
 331
 332		gpiod_set_value(idev->reset, powered);
 333
 334		/* Provide to idev a hu reference which is used to run LPM
 335		 * transactions (lpm suspend/resume) from PM callbacks.
 336		 * hu needs to be protected against concurrent removing during
 337		 * these PM ops.
 338		 */
 339		mutex_lock(&idev->hu_lock);
 340		idev->hu = powered ? hu : NULL;
 341		mutex_unlock(&idev->hu_lock);
 342
 343		if (idev->irq < 0)
 344			break;
 345
 346		if (powered && device_can_wakeup(&idev->pdev->dev)) {
 347			err = devm_request_threaded_irq(&idev->pdev->dev,
 348							idev->irq, NULL,
 349							intel_irq,
 350							IRQF_ONESHOT,
 351							"bt-host-wake", idev);
 352			if (err) {
 353				BT_ERR("hu %p, unable to allocate irq-%d",
 354				       hu, idev->irq);
 355				break;
 356			}
 357
 358			device_wakeup_enable(&idev->pdev->dev);
 359
 360			pm_runtime_set_active(&idev->pdev->dev);
 361			pm_runtime_use_autosuspend(&idev->pdev->dev);
 362			pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
 363							 LPM_SUSPEND_DELAY_MS);
 364			pm_runtime_enable(&idev->pdev->dev);
 365		} else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
 366			devm_free_irq(&idev->pdev->dev, idev->irq, idev);
 367			device_wakeup_disable(&idev->pdev->dev);
 368
 369			pm_runtime_disable(&idev->pdev->dev);
 370		}
 371	}
 372
 373	mutex_unlock(&intel_device_list_lock);
 374
 375	return err;
 376}
 377
 378static void intel_busy_work(struct work_struct *work)
 379{
 380	struct list_head *p;
 381	struct intel_data *intel = container_of(work, struct intel_data,
 382						busy_work);
 
 383
 384	if (!intel->hu->tty->dev)
 385		return;
 386
 387	/* Link is busy, delay the suspend */
 388	mutex_lock(&intel_device_list_lock);
 389	list_for_each(p, &intel_device_list) {
 390		struct intel_device *idev = list_entry(p, struct intel_device,
 391						       list);
 392
 393		if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
 394			pm_runtime_get(&idev->pdev->dev);
 395			pm_runtime_mark_last_busy(&idev->pdev->dev);
 396			pm_runtime_put_autosuspend(&idev->pdev->dev);
 397			break;
 398		}
 399	}
 400	mutex_unlock(&intel_device_list_lock);
 401}
 402
 403static int intel_open(struct hci_uart *hu)
 404{
 405	struct intel_data *intel;
 406
 407	BT_DBG("hu %p", hu);
 408
 
 
 
 409	intel = kzalloc(sizeof(*intel), GFP_KERNEL);
 410	if (!intel)
 411		return -ENOMEM;
 412
 413	skb_queue_head_init(&intel->txq);
 414	INIT_WORK(&intel->busy_work, intel_busy_work);
 415
 416	intel->hu = hu;
 417
 418	hu->priv = intel;
 419
 420	if (!intel_set_power(hu, true))
 421		set_bit(STATE_BOOTING, &intel->flags);
 422
 423	return 0;
 424}
 425
 426static int intel_close(struct hci_uart *hu)
 427{
 428	struct intel_data *intel = hu->priv;
 429
 430	BT_DBG("hu %p", hu);
 431
 432	cancel_work_sync(&intel->busy_work);
 433
 434	intel_set_power(hu, false);
 435
 436	skb_queue_purge(&intel->txq);
 437	kfree_skb(intel->rx_skb);
 438	kfree(intel);
 439
 440	hu->priv = NULL;
 441	return 0;
 442}
 443
 444static int intel_flush(struct hci_uart *hu)
 445{
 446	struct intel_data *intel = hu->priv;
 447
 448	BT_DBG("hu %p", hu);
 449
 450	skb_queue_purge(&intel->txq);
 451
 452	return 0;
 453}
 454
 455static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
 456{
 457	struct sk_buff *skb;
 458	struct hci_event_hdr *hdr;
 459	struct hci_ev_cmd_complete *evt;
 460
 461	skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC);
 462	if (!skb)
 463		return -ENOMEM;
 464
 465	hdr = skb_put(skb, sizeof(*hdr));
 466	hdr->evt = HCI_EV_CMD_COMPLETE;
 467	hdr->plen = sizeof(*evt) + 1;
 468
 469	evt = skb_put(skb, sizeof(*evt));
 470	evt->ncmd = 0x01;
 471	evt->opcode = cpu_to_le16(opcode);
 472
 473	skb_put_u8(skb, 0x00);
 474
 475	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
 476
 477	return hci_recv_frame(hdev, skb);
 478}
 479
 480static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
 481{
 482	struct intel_data *intel = hu->priv;
 483	struct hci_dev *hdev = hu->hdev;
 484	u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
 485	struct sk_buff *skb;
 486	int err;
 487
 488	/* This can be the first command sent to the chip, check
 489	 * that the controller is ready.
 490	 */
 491	err = intel_wait_booting(hu);
 492
 493	clear_bit(STATE_BOOTING, &intel->flags);
 494
 495	/* In case of timeout, try to continue anyway */
 496	if (err && err != -ETIMEDOUT)
 497		return err;
 498
 499	bt_dev_info(hdev, "Change controller speed to %d", speed);
 500
 501	speed_cmd[3] = intel_convert_speed(speed);
 502	if (speed_cmd[3] == 0xff) {
 503		bt_dev_err(hdev, "Unsupported speed");
 504		return -EINVAL;
 505	}
 506
 507	/* Device will not accept speed change if Intel version has not been
 508	 * previously requested.
 509	 */
 510	skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
 511	if (IS_ERR(skb)) {
 512		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
 513			   PTR_ERR(skb));
 514		return PTR_ERR(skb);
 515	}
 516	kfree_skb(skb);
 517
 518	skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
 519	if (!skb) {
 520		bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
 521		return -ENOMEM;
 522	}
 523
 524	skb_put_data(skb, speed_cmd, sizeof(speed_cmd));
 525	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
 526
 527	hci_uart_set_flow_control(hu, true);
 528
 529	skb_queue_tail(&intel->txq, skb);
 530	hci_uart_tx_wakeup(hu);
 531
 532	/* wait 100ms to change baudrate on controller side */
 533	msleep(100);
 534
 535	hci_uart_set_baudrate(hu, speed);
 536	hci_uart_set_flow_control(hu, false);
 537
 538	return 0;
 539}
 540
 541static int intel_setup(struct hci_uart *hu)
 542{
 543	struct intel_data *intel = hu->priv;
 544	struct hci_dev *hdev = hu->hdev;
 545	struct sk_buff *skb;
 546	struct intel_version ver;
 547	struct intel_boot_params params;
 548	struct list_head *p;
 549	const struct firmware *fw;
 550	char fwname[64];
 551	u32 boot_param;
 552	ktime_t calltime, delta, rettime;
 553	unsigned long long duration;
 554	unsigned int init_speed, oper_speed;
 555	int speed_change = 0;
 556	int err;
 557
 558	bt_dev_dbg(hdev, "start intel_setup");
 559
 560	hu->hdev->set_diag = btintel_set_diag;
 561	hu->hdev->set_bdaddr = btintel_set_bdaddr;
 562
 563	/* Set the default boot parameter to 0x0 and it is updated to
 564	 * SKU specific boot parameter after reading Intel_Write_Boot_Params
 565	 * command while downloading the firmware.
 566	 */
 567	boot_param = 0x00000000;
 568
 569	calltime = ktime_get();
 570
 571	if (hu->init_speed)
 572		init_speed = hu->init_speed;
 573	else
 574		init_speed = hu->proto->init_speed;
 575
 576	if (hu->oper_speed)
 577		oper_speed = hu->oper_speed;
 578	else
 579		oper_speed = hu->proto->oper_speed;
 580
 581	if (oper_speed && init_speed && oper_speed != init_speed)
 582		speed_change = 1;
 583
 584	/* Check that the controller is ready */
 585	err = intel_wait_booting(hu);
 586
 587	clear_bit(STATE_BOOTING, &intel->flags);
 588
 589	/* In case of timeout, try to continue anyway */
 590	if (err && err != -ETIMEDOUT)
 591		return err;
 592
 593	set_bit(STATE_BOOTLOADER, &intel->flags);
 594
 595	/* Read the Intel version information to determine if the device
 596	 * is in bootloader mode or if it already has operational firmware
 597	 * loaded.
 598	 */
 599	 err = btintel_read_version(hdev, &ver);
 600	 if (err)
 601		return err;
 602
 603	/* The hardware platform number has a fixed value of 0x37 and
 604	 * for now only accept this single value.
 605	 */
 606	if (ver.hw_platform != 0x37) {
 607		bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
 608			   ver.hw_platform);
 609		return -EINVAL;
 610	}
 611
 612        /* Check for supported iBT hardware variants of this firmware
 613         * loading method.
 614         *
 615         * This check has been put in place to ensure correct forward
 616         * compatibility options when newer hardware variants come along.
 617         */
 618	switch (ver.hw_variant) {
 619	case 0x0b:	/* LnP */
 620	case 0x0c:	/* WsP */
 621	case 0x12:	/* ThP */
 622		break;
 623	default:
 624		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
 625			   ver.hw_variant);
 626		return -EINVAL;
 627	}
 628
 629	btintel_version_info(hdev, &ver);
 630
 631	/* The firmware variant determines if the device is in bootloader
 632	 * mode or is running operational firmware. The value 0x06 identifies
 633	 * the bootloader and the value 0x23 identifies the operational
 634	 * firmware.
 635	 *
 636	 * When the operational firmware is already present, then only
 637	 * the check for valid Bluetooth device address is needed. This
 638	 * determines if the device will be added as configured or
 639	 * unconfigured controller.
 640	 *
 641	 * It is not possible to use the Secure Boot Parameters in this
 642	 * case since that command is only available in bootloader mode.
 643	 */
 644	if (ver.fw_variant == 0x23) {
 645		clear_bit(STATE_BOOTLOADER, &intel->flags);
 646		btintel_check_bdaddr(hdev);
 647		return 0;
 648	}
 649
 650	/* If the device is not in bootloader mode, then the only possible
 651	 * choice is to return an error and abort the device initialization.
 652	 */
 653	if (ver.fw_variant != 0x06) {
 654		bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
 655			   ver.fw_variant);
 656		return -ENODEV;
 657	}
 658
 659	/* Read the secure boot parameters to identify the operating
 660	 * details of the bootloader.
 661	 */
 662	err = btintel_read_boot_params(hdev, &params);
 663	if (err)
 664		return err;
 665
 666	/* It is required that every single firmware fragment is acknowledged
 667	 * with a command complete event. If the boot parameters indicate
 668	 * that this bootloader does not send them, then abort the setup.
 669	 */
 670	if (params.limited_cce != 0x00) {
 671		bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
 672			   params.limited_cce);
 673		return -EINVAL;
 674	}
 675
 676	/* If the OTP has no valid Bluetooth device address, then there will
 677	 * also be no valid address for the operational firmware.
 678	 */
 679	if (!bacmp(&params.otp_bdaddr, BDADDR_ANY)) {
 680		bt_dev_info(hdev, "No device address configured");
 681		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
 682	}
 683
 684	/* With this Intel bootloader only the hardware variant and device
 685	 * revision information are used to select the right firmware for SfP
 686	 * and WsP.
 687	 *
 688	 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
 689	 *
 690	 * Currently the supported hardware variants are:
 691	 *   11 (0x0b) for iBT 3.0 (LnP/SfP)
 692	 *   12 (0x0c) for iBT 3.5 (WsP)
 693	 *
 694	 * For ThP/JfP and for future SKU's, the FW name varies based on HW
 695	 * variant, HW revision and FW revision, as these are dependent on CNVi
 696	 * and RF Combination.
 697	 *
 698	 *   18 (0x12) for iBT3.5 (ThP/JfP)
 699	 *
 700	 * The firmware file name for these will be
 701	 * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi.
 702	 *
 703	 */
 704	switch (ver.hw_variant) {
 705	case 0x0b:      /* SfP */
 706	case 0x0c:      /* WsP */
 707		snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.sfi",
 708			 le16_to_cpu(ver.hw_variant),
 709			 le16_to_cpu(params.dev_revid));
 710		break;
 711	case 0x12:      /* ThP */
 712		snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.sfi",
 713			 le16_to_cpu(ver.hw_variant),
 714			 le16_to_cpu(ver.hw_revision),
 715			 le16_to_cpu(ver.fw_revision));
 716		break;
 717	default:
 718		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
 719			   ver.hw_variant);
 720		return -EINVAL;
 721	}
 722
 723	err = request_firmware(&fw, fwname, &hdev->dev);
 724	if (err < 0) {
 725		bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
 726			   err);
 727		return err;
 728	}
 729
 730	bt_dev_info(hdev, "Found device firmware: %s", fwname);
 731
 732	/* Save the DDC file name for later */
 733	switch (ver.hw_variant) {
 734	case 0x0b:      /* SfP */
 735	case 0x0c:      /* WsP */
 736		snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.ddc",
 737			 le16_to_cpu(ver.hw_variant),
 738			 le16_to_cpu(params.dev_revid));
 739		break;
 740	case 0x12:      /* ThP */
 741		snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.ddc",
 742			 le16_to_cpu(ver.hw_variant),
 743			 le16_to_cpu(ver.hw_revision),
 744			 le16_to_cpu(ver.fw_revision));
 745		break;
 746	default:
 747		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
 748			   ver.hw_variant);
 749		return -EINVAL;
 750	}
 751
 752	if (fw->size < 644) {
 753		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
 754			   fw->size);
 755		err = -EBADF;
 756		goto done;
 757	}
 758
 759	set_bit(STATE_DOWNLOADING, &intel->flags);
 760
 761	/* Start firmware downloading and get boot parameter */
 762	err = btintel_download_firmware(hdev, fw, &boot_param);
 763	if (err < 0)
 764		goto done;
 765
 766	set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
 767
 768	bt_dev_info(hdev, "Waiting for firmware download to complete");
 769
 770	/* Before switching the device into operational mode and with that
 771	 * booting the loaded firmware, wait for the bootloader notification
 772	 * that all fragments have been successfully received.
 773	 *
 774	 * When the event processing receives the notification, then the
 775	 * STATE_DOWNLOADING flag will be cleared.
 776	 *
 777	 * The firmware loading should not take longer than 5 seconds
 778	 * and thus just timeout if that happens and fail the setup
 779	 * of this device.
 780	 */
 781	err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
 782				  TASK_INTERRUPTIBLE,
 783				  msecs_to_jiffies(5000));
 784	if (err == -EINTR) {
 785		bt_dev_err(hdev, "Firmware loading interrupted");
 786		err = -EINTR;
 787		goto done;
 788	}
 789
 790	if (err) {
 791		bt_dev_err(hdev, "Firmware loading timeout");
 792		err = -ETIMEDOUT;
 793		goto done;
 794	}
 795
 796	if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
 797		bt_dev_err(hdev, "Firmware loading failed");
 798		err = -ENOEXEC;
 799		goto done;
 800	}
 801
 802	rettime = ktime_get();
 803	delta = ktime_sub(rettime, calltime);
 804	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
 805
 806	bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
 807
 808done:
 809	release_firmware(fw);
 810
 811	if (err < 0)
 
 
 
 812		return err;
 813
 814	/* We need to restore the default speed before Intel reset */
 815	if (speed_change) {
 816		err = intel_set_baudrate(hu, init_speed);
 817		if (err)
 818			return err;
 819	}
 820
 821	calltime = ktime_get();
 822
 823	set_bit(STATE_BOOTING, &intel->flags);
 824
 825	err = btintel_send_intel_reset(hdev, boot_param);
 826	if (err)
 827		return err;
 828
 829	/* The bootloader will not indicate when the device is ready. This
 830	 * is done by the operational firmware sending bootup notification.
 831	 *
 832	 * Booting into operational firmware should not take longer than
 833	 * 1 second. However if that happens, then just fail the setup
 834	 * since something went wrong.
 835	 */
 836	bt_dev_info(hdev, "Waiting for device to boot");
 837
 838	err = intel_wait_booting(hu);
 839	if (err)
 840		return err;
 841
 842	clear_bit(STATE_BOOTING, &intel->flags);
 843
 844	rettime = ktime_get();
 845	delta = ktime_sub(rettime, calltime);
 846	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
 847
 848	bt_dev_info(hdev, "Device booted in %llu usecs", duration);
 849
 850	/* Enable LPM if matching pdev with wakeup enabled, set TX active
 851	 * until further LPM TX notification.
 852	 */
 853	mutex_lock(&intel_device_list_lock);
 854	list_for_each(p, &intel_device_list) {
 855		struct intel_device *dev = list_entry(p, struct intel_device,
 856						      list);
 857		if (!hu->tty->dev)
 858			break;
 859		if (hu->tty->dev->parent == dev->pdev->dev.parent) {
 860			if (device_may_wakeup(&dev->pdev->dev)) {
 861				set_bit(STATE_LPM_ENABLED, &intel->flags);
 862				set_bit(STATE_TX_ACTIVE, &intel->flags);
 863			}
 864			break;
 865		}
 866	}
 867	mutex_unlock(&intel_device_list_lock);
 868
 869	/* Ignore errors, device can work without DDC parameters */
 870	btintel_load_ddc_config(hdev, fwname);
 871
 872	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
 873	if (IS_ERR(skb))
 874		return PTR_ERR(skb);
 875	kfree_skb(skb);
 876
 877	if (speed_change) {
 878		err = intel_set_baudrate(hu, oper_speed);
 879		if (err)
 880			return err;
 881	}
 882
 883	bt_dev_info(hdev, "Setup complete");
 884
 885	clear_bit(STATE_BOOTLOADER, &intel->flags);
 886
 887	return 0;
 888}
 889
 890static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
 891{
 892	struct hci_uart *hu = hci_get_drvdata(hdev);
 893	struct intel_data *intel = hu->priv;
 894	struct hci_event_hdr *hdr;
 895
 896	if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
 897	    !test_bit(STATE_BOOTING, &intel->flags))
 898		goto recv;
 899
 900	hdr = (void *)skb->data;
 901
 902	/* When the firmware loading completes the device sends
 903	 * out a vendor specific event indicating the result of
 904	 * the firmware loading.
 905	 */
 906	if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
 907	    skb->data[2] == 0x06) {
 908		if (skb->data[3] != 0x00)
 909			set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
 910
 911		if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
 912		    test_bit(STATE_FIRMWARE_LOADED, &intel->flags)) {
 913			smp_mb__after_atomic();
 914			wake_up_bit(&intel->flags, STATE_DOWNLOADING);
 915		}
 916
 917	/* When switching to the operational firmware the device
 918	 * sends a vendor specific event indicating that the bootup
 919	 * completed.
 920	 */
 921	} else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
 922		   skb->data[2] == 0x02) {
 923		if (test_and_clear_bit(STATE_BOOTING, &intel->flags)) {
 924			smp_mb__after_atomic();
 925			wake_up_bit(&intel->flags, STATE_BOOTING);
 926		}
 927	}
 928recv:
 929	return hci_recv_frame(hdev, skb);
 930}
 931
 932static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
 933{
 934	struct hci_uart *hu = hci_get_drvdata(hdev);
 935	struct intel_data *intel = hu->priv;
 936
 937	bt_dev_dbg(hdev, "TX idle notification (%d)", value);
 938
 939	if (value) {
 940		set_bit(STATE_TX_ACTIVE, &intel->flags);
 941		schedule_work(&intel->busy_work);
 942	} else {
 943		clear_bit(STATE_TX_ACTIVE, &intel->flags);
 944	}
 945}
 946
 947static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
 948{
 949	struct hci_lpm_pkt *lpm = (void *)skb->data;
 950	struct hci_uart *hu = hci_get_drvdata(hdev);
 951	struct intel_data *intel = hu->priv;
 952
 953	switch (lpm->opcode) {
 954	case LPM_OP_TX_NOTIFY:
 955		if (lpm->dlen < 1) {
 956			bt_dev_err(hu->hdev, "Invalid LPM notification packet");
 957			break;
 958		}
 959		intel_recv_lpm_notify(hdev, lpm->data[0]);
 960		break;
 961	case LPM_OP_SUSPEND_ACK:
 962		set_bit(STATE_SUSPENDED, &intel->flags);
 963		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
 964			smp_mb__after_atomic();
 965			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
 966		}
 967		break;
 968	case LPM_OP_RESUME_ACK:
 969		clear_bit(STATE_SUSPENDED, &intel->flags);
 970		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
 971			smp_mb__after_atomic();
 972			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
 973		}
 974		break;
 975	default:
 976		bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
 977		break;
 978	}
 979
 980	kfree_skb(skb);
 981
 982	return 0;
 983}
 984
 985#define INTEL_RECV_LPM \
 986	.type = HCI_LPM_PKT, \
 987	.hlen = HCI_LPM_HDR_SIZE, \
 988	.loff = 1, \
 989	.lsize = 1, \
 990	.maxlen = HCI_LPM_MAX_SIZE
 991
 992static const struct h4_recv_pkt intel_recv_pkts[] = {
 993	{ H4_RECV_ACL,    .recv = hci_recv_frame   },
 994	{ H4_RECV_SCO,    .recv = hci_recv_frame   },
 995	{ H4_RECV_EVENT,  .recv = intel_recv_event },
 996	{ INTEL_RECV_LPM, .recv = intel_recv_lpm   },
 997};
 998
 999static int intel_recv(struct hci_uart *hu, const void *data, int count)
1000{
1001	struct intel_data *intel = hu->priv;
1002
1003	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1004		return -EUNATCH;
1005
1006	intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
1007				    intel_recv_pkts,
1008				    ARRAY_SIZE(intel_recv_pkts));
1009	if (IS_ERR(intel->rx_skb)) {
1010		int err = PTR_ERR(intel->rx_skb);
1011		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1012		intel->rx_skb = NULL;
1013		return err;
1014	}
1015
1016	return count;
1017}
1018
1019static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
1020{
1021	struct intel_data *intel = hu->priv;
1022	struct list_head *p;
1023
1024	BT_DBG("hu %p skb %p", hu, skb);
1025
1026	if (!hu->tty->dev)
1027		goto out_enqueue;
1028
1029	/* Be sure our controller is resumed and potential LPM transaction
1030	 * completed before enqueuing any packet.
1031	 */
1032	mutex_lock(&intel_device_list_lock);
1033	list_for_each(p, &intel_device_list) {
1034		struct intel_device *idev = list_entry(p, struct intel_device,
1035						       list);
1036
1037		if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1038			pm_runtime_get_sync(&idev->pdev->dev);
1039			pm_runtime_mark_last_busy(&idev->pdev->dev);
1040			pm_runtime_put_autosuspend(&idev->pdev->dev);
1041			break;
1042		}
1043	}
1044	mutex_unlock(&intel_device_list_lock);
1045out_enqueue:
1046	skb_queue_tail(&intel->txq, skb);
1047
1048	return 0;
1049}
1050
1051static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1052{
1053	struct intel_data *intel = hu->priv;
1054	struct sk_buff *skb;
1055
1056	skb = skb_dequeue(&intel->txq);
1057	if (!skb)
1058		return skb;
1059
1060	if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1061	    (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1062		struct hci_command_hdr *cmd = (void *)skb->data;
1063		__u16 opcode = le16_to_cpu(cmd->opcode);
1064
1065		/* When the 0xfc01 command is issued to boot into
1066		 * the operational firmware, it will actually not
1067		 * send a command complete event. To keep the flow
1068		 * control working inject that event here.
1069		 */
1070		if (opcode == 0xfc01)
1071			inject_cmd_complete(hu->hdev, opcode);
1072	}
1073
1074	/* Prepend skb with frame type */
1075	memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1076
1077	return skb;
1078}
1079
1080static const struct hci_uart_proto intel_proto = {
1081	.id		= HCI_UART_INTEL,
1082	.name		= "Intel",
1083	.manufacturer	= 2,
1084	.init_speed	= 115200,
1085	.oper_speed	= 3000000,
1086	.open		= intel_open,
1087	.close		= intel_close,
1088	.flush		= intel_flush,
1089	.setup		= intel_setup,
1090	.set_baudrate	= intel_set_baudrate,
1091	.recv		= intel_recv,
1092	.enqueue	= intel_enqueue,
1093	.dequeue	= intel_dequeue,
1094};
1095
1096#ifdef CONFIG_ACPI
1097static const struct acpi_device_id intel_acpi_match[] = {
1098	{ "INT33E1", 0 },
1099	{ },
 
1100};
1101MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1102#endif
1103
1104#ifdef CONFIG_PM
1105static int intel_suspend_device(struct device *dev)
1106{
1107	struct intel_device *idev = dev_get_drvdata(dev);
1108
1109	mutex_lock(&idev->hu_lock);
1110	if (idev->hu)
1111		intel_lpm_suspend(idev->hu);
1112	mutex_unlock(&idev->hu_lock);
1113
1114	return 0;
1115}
1116
1117static int intel_resume_device(struct device *dev)
1118{
1119	struct intel_device *idev = dev_get_drvdata(dev);
1120
1121	mutex_lock(&idev->hu_lock);
1122	if (idev->hu)
1123		intel_lpm_resume(idev->hu);
1124	mutex_unlock(&idev->hu_lock);
1125
1126	return 0;
1127}
1128#endif
1129
1130#ifdef CONFIG_PM_SLEEP
1131static int intel_suspend(struct device *dev)
1132{
1133	struct intel_device *idev = dev_get_drvdata(dev);
1134
1135	if (device_may_wakeup(dev))
1136		enable_irq_wake(idev->irq);
1137
1138	return intel_suspend_device(dev);
1139}
1140
1141static int intel_resume(struct device *dev)
1142{
1143	struct intel_device *idev = dev_get_drvdata(dev);
1144
1145	if (device_may_wakeup(dev))
1146		disable_irq_wake(idev->irq);
1147
1148	return intel_resume_device(dev);
1149}
1150#endif
1151
1152static const struct dev_pm_ops intel_pm_ops = {
1153	SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1154	SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1155};
1156
1157static const struct acpi_gpio_params reset_gpios = { 0, 0, false };
1158static const struct acpi_gpio_params host_wake_gpios = { 1, 0, false };
1159
1160static const struct acpi_gpio_mapping acpi_hci_intel_gpios[] = {
1161	{ "reset-gpios", &reset_gpios, 1 },
1162	{ "host-wake-gpios", &host_wake_gpios, 1 },
1163	{ },
1164};
1165
1166static int intel_probe(struct platform_device *pdev)
1167{
1168	struct intel_device *idev;
1169	int ret;
1170
1171	idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1172	if (!idev)
1173		return -ENOMEM;
1174
1175	mutex_init(&idev->hu_lock);
1176
1177	idev->pdev = pdev;
1178
1179	ret = devm_acpi_dev_add_driver_gpios(&pdev->dev, acpi_hci_intel_gpios);
1180	if (ret)
1181		dev_dbg(&pdev->dev, "Unable to add GPIO mapping table\n");
1182
1183	idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
1184	if (IS_ERR(idev->reset)) {
1185		dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1186		return PTR_ERR(idev->reset);
1187	}
1188
1189	idev->irq = platform_get_irq(pdev, 0);
1190	if (idev->irq < 0) {
1191		struct gpio_desc *host_wake;
1192
1193		dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1194
1195		host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
1196		if (IS_ERR(host_wake)) {
1197			dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1198			goto no_irq;
1199		}
1200
1201		idev->irq = gpiod_to_irq(host_wake);
1202		if (idev->irq < 0) {
1203			dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1204			goto no_irq;
1205		}
1206	}
1207
1208	/* Only enable wake-up/irq when controller is powered */
1209	device_set_wakeup_capable(&pdev->dev, true);
1210	device_wakeup_disable(&pdev->dev);
1211
1212no_irq:
1213	platform_set_drvdata(pdev, idev);
1214
1215	/* Place this instance on the device list */
1216	mutex_lock(&intel_device_list_lock);
1217	list_add_tail(&idev->list, &intel_device_list);
1218	mutex_unlock(&intel_device_list_lock);
1219
1220	dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1221		 desc_to_gpio(idev->reset), idev->irq);
1222
1223	return 0;
1224}
1225
1226static int intel_remove(struct platform_device *pdev)
1227{
1228	struct intel_device *idev = platform_get_drvdata(pdev);
1229
1230	device_wakeup_disable(&pdev->dev);
1231
1232	mutex_lock(&intel_device_list_lock);
1233	list_del(&idev->list);
1234	mutex_unlock(&intel_device_list_lock);
1235
1236	dev_info(&pdev->dev, "unregistered.\n");
1237
1238	return 0;
1239}
1240
1241static struct platform_driver intel_driver = {
1242	.probe = intel_probe,
1243	.remove = intel_remove,
1244	.driver = {
1245		.name = "hci_intel",
1246		.acpi_match_table = ACPI_PTR(intel_acpi_match),
1247		.pm = &intel_pm_ops,
1248	},
1249};
1250
1251int __init intel_init(void)
1252{
1253	platform_driver_register(&intel_driver);
 
 
 
 
1254
1255	return hci_uart_register_proto(&intel_proto);
1256}
1257
1258int __exit intel_deinit(void)
1259{
1260	platform_driver_unregister(&intel_driver);
1261
1262	return hci_uart_unregister_proto(&intel_proto);
1263}