Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.10.11.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 *
   5 * AMD SVM-SEV support
   6 *
   7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   8 */
   9
  10#include <linux/kvm_types.h>
  11#include <linux/kvm_host.h>
  12#include <linux/kernel.h>
  13#include <linux/highmem.h>
  14#include <linux/psp-sev.h>
  15#include <linux/pagemap.h>
  16#include <linux/swap.h>
  17#include <linux/misc_cgroup.h>
  18#include <linux/processor.h>
  19#include <linux/trace_events.h>
  20
  21#include <asm/pkru.h>
  22#include <asm/trapnr.h>
  23#include <asm/fpu/xcr.h>
  24
  25#include "mmu.h"
  26#include "x86.h"
  27#include "svm.h"
  28#include "svm_ops.h"
  29#include "cpuid.h"
  30#include "trace.h"
  31
  32#ifndef CONFIG_KVM_AMD_SEV
  33/*
  34 * When this config is not defined, SEV feature is not supported and APIs in
  35 * this file are not used but this file still gets compiled into the KVM AMD
  36 * module.
  37 *
  38 * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
  39 * misc_res_type {} defined in linux/misc_cgroup.h.
  40 *
  41 * Below macros allow compilation to succeed.
  42 */
  43#define MISC_CG_RES_SEV MISC_CG_RES_TYPES
  44#define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
  45#endif
  46
  47#ifdef CONFIG_KVM_AMD_SEV
  48/* enable/disable SEV support */
  49static bool sev_enabled = true;
  50module_param_named(sev, sev_enabled, bool, 0444);
  51
  52/* enable/disable SEV-ES support */
  53static bool sev_es_enabled = true;
  54module_param_named(sev_es, sev_es_enabled, bool, 0444);
  55#else
  56#define sev_enabled false
  57#define sev_es_enabled false
  58#endif /* CONFIG_KVM_AMD_SEV */
  59
  60static u8 sev_enc_bit;
  61static DECLARE_RWSEM(sev_deactivate_lock);
  62static DEFINE_MUTEX(sev_bitmap_lock);
  63unsigned int max_sev_asid;
  64static unsigned int min_sev_asid;
  65static unsigned long sev_me_mask;
  66static unsigned int nr_asids;
  67static unsigned long *sev_asid_bitmap;
  68static unsigned long *sev_reclaim_asid_bitmap;
  69
  70struct enc_region {
  71	struct list_head list;
  72	unsigned long npages;
  73	struct page **pages;
  74	unsigned long uaddr;
  75	unsigned long size;
  76};
  77
  78/* Called with the sev_bitmap_lock held, or on shutdown  */
  79static int sev_flush_asids(int min_asid, int max_asid)
  80{
  81	int ret, asid, error = 0;
  82
  83	/* Check if there are any ASIDs to reclaim before performing a flush */
  84	asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
  85	if (asid > max_asid)
  86		return -EBUSY;
  87
  88	/*
  89	 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
  90	 * so it must be guarded.
  91	 */
  92	down_write(&sev_deactivate_lock);
  93
  94	wbinvd_on_all_cpus();
  95	ret = sev_guest_df_flush(&error);
  96
  97	up_write(&sev_deactivate_lock);
  98
  99	if (ret)
 100		pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
 101
 102	return ret;
 103}
 104
 105static inline bool is_mirroring_enc_context(struct kvm *kvm)
 106{
 107	return !!to_kvm_svm(kvm)->sev_info.enc_context_owner;
 108}
 109
 110/* Must be called with the sev_bitmap_lock held */
 111static bool __sev_recycle_asids(int min_asid, int max_asid)
 112{
 113	if (sev_flush_asids(min_asid, max_asid))
 114		return false;
 115
 116	/* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
 117	bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
 118		   nr_asids);
 119	bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
 120
 121	return true;
 122}
 123
 124static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
 125{
 126	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
 127	return misc_cg_try_charge(type, sev->misc_cg, 1);
 128}
 129
 130static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
 131{
 132	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
 133	misc_cg_uncharge(type, sev->misc_cg, 1);
 134}
 135
 136static int sev_asid_new(struct kvm_sev_info *sev)
 137{
 138	int asid, min_asid, max_asid, ret;
 139	bool retry = true;
 140
 141	WARN_ON(sev->misc_cg);
 142	sev->misc_cg = get_current_misc_cg();
 143	ret = sev_misc_cg_try_charge(sev);
 144	if (ret) {
 145		put_misc_cg(sev->misc_cg);
 146		sev->misc_cg = NULL;
 147		return ret;
 148	}
 149
 150	mutex_lock(&sev_bitmap_lock);
 151
 152	/*
 153	 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
 154	 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
 155	 */
 156	min_asid = sev->es_active ? 1 : min_sev_asid;
 157	max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
 158again:
 159	asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
 160	if (asid > max_asid) {
 161		if (retry && __sev_recycle_asids(min_asid, max_asid)) {
 162			retry = false;
 163			goto again;
 164		}
 165		mutex_unlock(&sev_bitmap_lock);
 166		ret = -EBUSY;
 167		goto e_uncharge;
 168	}
 169
 170	__set_bit(asid, sev_asid_bitmap);
 171
 172	mutex_unlock(&sev_bitmap_lock);
 173
 174	return asid;
 175e_uncharge:
 176	sev_misc_cg_uncharge(sev);
 177	put_misc_cg(sev->misc_cg);
 178	sev->misc_cg = NULL;
 179	return ret;
 180}
 181
 182static int sev_get_asid(struct kvm *kvm)
 183{
 184	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 185
 186	return sev->asid;
 187}
 188
 189static void sev_asid_free(struct kvm_sev_info *sev)
 190{
 191	struct svm_cpu_data *sd;
 192	int cpu;
 193
 194	mutex_lock(&sev_bitmap_lock);
 195
 196	__set_bit(sev->asid, sev_reclaim_asid_bitmap);
 197
 198	for_each_possible_cpu(cpu) {
 199		sd = per_cpu_ptr(&svm_data, cpu);
 200		sd->sev_vmcbs[sev->asid] = NULL;
 201	}
 202
 203	mutex_unlock(&sev_bitmap_lock);
 204
 205	sev_misc_cg_uncharge(sev);
 206	put_misc_cg(sev->misc_cg);
 207	sev->misc_cg = NULL;
 208}
 209
 210static void sev_decommission(unsigned int handle)
 211{
 212	struct sev_data_decommission decommission;
 213
 214	if (!handle)
 215		return;
 216
 217	decommission.handle = handle;
 218	sev_guest_decommission(&decommission, NULL);
 219}
 220
 221static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
 222{
 223	struct sev_data_deactivate deactivate;
 224
 225	if (!handle)
 226		return;
 227
 228	deactivate.handle = handle;
 229
 230	/* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
 231	down_read(&sev_deactivate_lock);
 232	sev_guest_deactivate(&deactivate, NULL);
 233	up_read(&sev_deactivate_lock);
 234
 235	sev_decommission(handle);
 236}
 237
 238static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
 239{
 240	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 241	int asid, ret;
 242
 243	if (kvm->created_vcpus)
 244		return -EINVAL;
 245
 246	ret = -EBUSY;
 247	if (unlikely(sev->active))
 248		return ret;
 249
 250	sev->active = true;
 251	sev->es_active = argp->id == KVM_SEV_ES_INIT;
 252	asid = sev_asid_new(sev);
 253	if (asid < 0)
 254		goto e_no_asid;
 255	sev->asid = asid;
 256
 257	ret = sev_platform_init(&argp->error);
 258	if (ret)
 259		goto e_free;
 260
 261	INIT_LIST_HEAD(&sev->regions_list);
 262	INIT_LIST_HEAD(&sev->mirror_vms);
 263
 264	kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV);
 265
 266	return 0;
 267
 268e_free:
 269	sev_asid_free(sev);
 270	sev->asid = 0;
 271e_no_asid:
 272	sev->es_active = false;
 273	sev->active = false;
 274	return ret;
 275}
 276
 277static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
 278{
 279	struct sev_data_activate activate;
 280	int asid = sev_get_asid(kvm);
 281	int ret;
 282
 283	/* activate ASID on the given handle */
 284	activate.handle = handle;
 285	activate.asid   = asid;
 286	ret = sev_guest_activate(&activate, error);
 287
 288	return ret;
 289}
 290
 291static int __sev_issue_cmd(int fd, int id, void *data, int *error)
 292{
 293	struct fd f;
 294	int ret;
 295
 296	f = fdget(fd);
 297	if (!f.file)
 298		return -EBADF;
 299
 300	ret = sev_issue_cmd_external_user(f.file, id, data, error);
 301
 302	fdput(f);
 303	return ret;
 304}
 305
 306static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
 307{
 308	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 309
 310	return __sev_issue_cmd(sev->fd, id, data, error);
 311}
 312
 313static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
 314{
 315	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 316	struct sev_data_launch_start start;
 317	struct kvm_sev_launch_start params;
 318	void *dh_blob, *session_blob;
 319	int *error = &argp->error;
 320	int ret;
 321
 322	if (!sev_guest(kvm))
 323		return -ENOTTY;
 324
 325	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
 326		return -EFAULT;
 327
 328	memset(&start, 0, sizeof(start));
 329
 330	dh_blob = NULL;
 331	if (params.dh_uaddr) {
 332		dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
 333		if (IS_ERR(dh_blob))
 334			return PTR_ERR(dh_blob);
 335
 336		start.dh_cert_address = __sme_set(__pa(dh_blob));
 337		start.dh_cert_len = params.dh_len;
 338	}
 339
 340	session_blob = NULL;
 341	if (params.session_uaddr) {
 342		session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
 343		if (IS_ERR(session_blob)) {
 344			ret = PTR_ERR(session_blob);
 345			goto e_free_dh;
 346		}
 347
 348		start.session_address = __sme_set(__pa(session_blob));
 349		start.session_len = params.session_len;
 350	}
 351
 352	start.handle = params.handle;
 353	start.policy = params.policy;
 354
 355	/* create memory encryption context */
 356	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
 357	if (ret)
 358		goto e_free_session;
 359
 360	/* Bind ASID to this guest */
 361	ret = sev_bind_asid(kvm, start.handle, error);
 362	if (ret) {
 363		sev_decommission(start.handle);
 364		goto e_free_session;
 365	}
 366
 367	/* return handle to userspace */
 368	params.handle = start.handle;
 369	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
 370		sev_unbind_asid(kvm, start.handle);
 371		ret = -EFAULT;
 372		goto e_free_session;
 373	}
 374
 375	sev->handle = start.handle;
 376	sev->fd = argp->sev_fd;
 377
 378e_free_session:
 379	kfree(session_blob);
 380e_free_dh:
 381	kfree(dh_blob);
 382	return ret;
 383}
 384
 385static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
 386				    unsigned long ulen, unsigned long *n,
 387				    int write)
 388{
 389	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 390	unsigned long npages, size;
 391	int npinned;
 392	unsigned long locked, lock_limit;
 393	struct page **pages;
 394	unsigned long first, last;
 395	int ret;
 396
 397	lockdep_assert_held(&kvm->lock);
 398
 399	if (ulen == 0 || uaddr + ulen < uaddr)
 400		return ERR_PTR(-EINVAL);
 401
 402	/* Calculate number of pages. */
 403	first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
 404	last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
 405	npages = (last - first + 1);
 406
 407	locked = sev->pages_locked + npages;
 408	lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
 409	if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
 410		pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
 411		return ERR_PTR(-ENOMEM);
 412	}
 413
 414	if (WARN_ON_ONCE(npages > INT_MAX))
 415		return ERR_PTR(-EINVAL);
 416
 417	/* Avoid using vmalloc for smaller buffers. */
 418	size = npages * sizeof(struct page *);
 419	if (size > PAGE_SIZE)
 420		pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
 421	else
 422		pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
 423
 424	if (!pages)
 425		return ERR_PTR(-ENOMEM);
 426
 427	/* Pin the user virtual address. */
 428	npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
 429	if (npinned != npages) {
 430		pr_err("SEV: Failure locking %lu pages.\n", npages);
 431		ret = -ENOMEM;
 432		goto err;
 433	}
 434
 435	*n = npages;
 436	sev->pages_locked = locked;
 437
 438	return pages;
 439
 440err:
 441	if (npinned > 0)
 442		unpin_user_pages(pages, npinned);
 443
 444	kvfree(pages);
 445	return ERR_PTR(ret);
 446}
 447
 448static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
 449			     unsigned long npages)
 450{
 451	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 452
 453	unpin_user_pages(pages, npages);
 454	kvfree(pages);
 455	sev->pages_locked -= npages;
 456}
 457
 458static void sev_clflush_pages(struct page *pages[], unsigned long npages)
 459{
 460	uint8_t *page_virtual;
 461	unsigned long i;
 462
 463	if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
 464	    pages == NULL)
 465		return;
 466
 467	for (i = 0; i < npages; i++) {
 468		page_virtual = kmap_local_page(pages[i]);
 469		clflush_cache_range(page_virtual, PAGE_SIZE);
 470		kunmap_local(page_virtual);
 471		cond_resched();
 472	}
 473}
 474
 475static unsigned long get_num_contig_pages(unsigned long idx,
 476				struct page **inpages, unsigned long npages)
 477{
 478	unsigned long paddr, next_paddr;
 479	unsigned long i = idx + 1, pages = 1;
 480
 481	/* find the number of contiguous pages starting from idx */
 482	paddr = __sme_page_pa(inpages[idx]);
 483	while (i < npages) {
 484		next_paddr = __sme_page_pa(inpages[i++]);
 485		if ((paddr + PAGE_SIZE) == next_paddr) {
 486			pages++;
 487			paddr = next_paddr;
 488			continue;
 489		}
 490		break;
 491	}
 492
 493	return pages;
 494}
 495
 496static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
 497{
 498	unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
 499	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 500	struct kvm_sev_launch_update_data params;
 501	struct sev_data_launch_update_data data;
 502	struct page **inpages;
 503	int ret;
 504
 505	if (!sev_guest(kvm))
 506		return -ENOTTY;
 507
 508	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
 509		return -EFAULT;
 510
 511	vaddr = params.uaddr;
 512	size = params.len;
 513	vaddr_end = vaddr + size;
 514
 515	/* Lock the user memory. */
 516	inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
 517	if (IS_ERR(inpages))
 518		return PTR_ERR(inpages);
 519
 520	/*
 521	 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
 522	 * place; the cache may contain the data that was written unencrypted.
 523	 */
 524	sev_clflush_pages(inpages, npages);
 525
 526	data.reserved = 0;
 527	data.handle = sev->handle;
 528
 529	for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
 530		int offset, len;
 531
 532		/*
 533		 * If the user buffer is not page-aligned, calculate the offset
 534		 * within the page.
 535		 */
 536		offset = vaddr & (PAGE_SIZE - 1);
 537
 538		/* Calculate the number of pages that can be encrypted in one go. */
 539		pages = get_num_contig_pages(i, inpages, npages);
 540
 541		len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
 542
 543		data.len = len;
 544		data.address = __sme_page_pa(inpages[i]) + offset;
 545		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
 546		if (ret)
 547			goto e_unpin;
 548
 549		size -= len;
 550		next_vaddr = vaddr + len;
 551	}
 552
 553e_unpin:
 554	/* content of memory is updated, mark pages dirty */
 555	for (i = 0; i < npages; i++) {
 556		set_page_dirty_lock(inpages[i]);
 557		mark_page_accessed(inpages[i]);
 558	}
 559	/* unlock the user pages */
 560	sev_unpin_memory(kvm, inpages, npages);
 561	return ret;
 562}
 563
 564static int sev_es_sync_vmsa(struct vcpu_svm *svm)
 565{
 566	struct sev_es_save_area *save = svm->sev_es.vmsa;
 567
 568	/* Check some debug related fields before encrypting the VMSA */
 569	if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
 570		return -EINVAL;
 571
 572	/*
 573	 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
 574	 * the traditional VMSA that is part of the VMCB. Copy the
 575	 * traditional VMSA as it has been built so far (in prep
 576	 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
 577	 */
 578	memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));
 579
 580	/* Sync registgers */
 581	save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
 582	save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
 583	save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
 584	save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
 585	save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
 586	save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
 587	save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
 588	save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
 589#ifdef CONFIG_X86_64
 590	save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
 591	save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
 592	save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
 593	save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
 594	save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
 595	save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
 596	save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
 597	save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
 598#endif
 599	save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
 600
 601	/* Sync some non-GPR registers before encrypting */
 602	save->xcr0 = svm->vcpu.arch.xcr0;
 603	save->pkru = svm->vcpu.arch.pkru;
 604	save->xss  = svm->vcpu.arch.ia32_xss;
 605	save->dr6  = svm->vcpu.arch.dr6;
 606
 607	pr_debug("Virtual Machine Save Area (VMSA):\n");
 608	print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false);
 609
 610	return 0;
 611}
 612
 613static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
 614				    int *error)
 615{
 616	struct sev_data_launch_update_vmsa vmsa;
 617	struct vcpu_svm *svm = to_svm(vcpu);
 618	int ret;
 619
 620	/* Perform some pre-encryption checks against the VMSA */
 621	ret = sev_es_sync_vmsa(svm);
 622	if (ret)
 623		return ret;
 624
 625	/*
 626	 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
 627	 * the VMSA memory content (i.e it will write the same memory region
 628	 * with the guest's key), so invalidate it first.
 629	 */
 630	clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
 631
 632	vmsa.reserved = 0;
 633	vmsa.handle = to_kvm_svm(kvm)->sev_info.handle;
 634	vmsa.address = __sme_pa(svm->sev_es.vmsa);
 635	vmsa.len = PAGE_SIZE;
 636	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
 637	if (ret)
 638	  return ret;
 639
 640	vcpu->arch.guest_state_protected = true;
 641	return 0;
 642}
 643
 644static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
 645{
 646	struct kvm_vcpu *vcpu;
 647	unsigned long i;
 648	int ret;
 649
 650	if (!sev_es_guest(kvm))
 651		return -ENOTTY;
 652
 653	kvm_for_each_vcpu(i, vcpu, kvm) {
 654		ret = mutex_lock_killable(&vcpu->mutex);
 655		if (ret)
 656			return ret;
 657
 658		ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
 659
 660		mutex_unlock(&vcpu->mutex);
 661		if (ret)
 662			return ret;
 663	}
 664
 665	return 0;
 666}
 667
 668static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
 669{
 670	void __user *measure = (void __user *)(uintptr_t)argp->data;
 671	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 672	struct sev_data_launch_measure data;
 673	struct kvm_sev_launch_measure params;
 674	void __user *p = NULL;
 675	void *blob = NULL;
 676	int ret;
 677
 678	if (!sev_guest(kvm))
 679		return -ENOTTY;
 680
 681	if (copy_from_user(&params, measure, sizeof(params)))
 682		return -EFAULT;
 683
 684	memset(&data, 0, sizeof(data));
 685
 686	/* User wants to query the blob length */
 687	if (!params.len)
 688		goto cmd;
 689
 690	p = (void __user *)(uintptr_t)params.uaddr;
 691	if (p) {
 692		if (params.len > SEV_FW_BLOB_MAX_SIZE)
 693			return -EINVAL;
 694
 695		blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
 696		if (!blob)
 697			return -ENOMEM;
 698
 699		data.address = __psp_pa(blob);
 700		data.len = params.len;
 701	}
 702
 703cmd:
 704	data.handle = sev->handle;
 705	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
 706
 707	/*
 708	 * If we query the session length, FW responded with expected data.
 709	 */
 710	if (!params.len)
 711		goto done;
 712
 713	if (ret)
 714		goto e_free_blob;
 715
 716	if (blob) {
 717		if (copy_to_user(p, blob, params.len))
 718			ret = -EFAULT;
 719	}
 720
 721done:
 722	params.len = data.len;
 723	if (copy_to_user(measure, &params, sizeof(params)))
 724		ret = -EFAULT;
 725e_free_blob:
 726	kfree(blob);
 727	return ret;
 728}
 729
 730static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
 731{
 732	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 733	struct sev_data_launch_finish data;
 734
 735	if (!sev_guest(kvm))
 736		return -ENOTTY;
 737
 738	data.handle = sev->handle;
 739	return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
 740}
 741
 742static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
 743{
 744	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 745	struct kvm_sev_guest_status params;
 746	struct sev_data_guest_status data;
 747	int ret;
 748
 749	if (!sev_guest(kvm))
 750		return -ENOTTY;
 751
 752	memset(&data, 0, sizeof(data));
 753
 754	data.handle = sev->handle;
 755	ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
 756	if (ret)
 757		return ret;
 758
 759	params.policy = data.policy;
 760	params.state = data.state;
 761	params.handle = data.handle;
 762
 763	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
 764		ret = -EFAULT;
 765
 766	return ret;
 767}
 768
 769static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
 770			       unsigned long dst, int size,
 771			       int *error, bool enc)
 772{
 773	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 774	struct sev_data_dbg data;
 775
 776	data.reserved = 0;
 777	data.handle = sev->handle;
 778	data.dst_addr = dst;
 779	data.src_addr = src;
 780	data.len = size;
 781
 782	return sev_issue_cmd(kvm,
 783			     enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
 784			     &data, error);
 785}
 786
 787static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
 788			     unsigned long dst_paddr, int sz, int *err)
 789{
 790	int offset;
 791
 792	/*
 793	 * Its safe to read more than we are asked, caller should ensure that
 794	 * destination has enough space.
 795	 */
 796	offset = src_paddr & 15;
 797	src_paddr = round_down(src_paddr, 16);
 798	sz = round_up(sz + offset, 16);
 799
 800	return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
 801}
 802
 803static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
 804				  void __user *dst_uaddr,
 805				  unsigned long dst_paddr,
 806				  int size, int *err)
 807{
 808	struct page *tpage = NULL;
 809	int ret, offset;
 810
 811	/* if inputs are not 16-byte then use intermediate buffer */
 812	if (!IS_ALIGNED(dst_paddr, 16) ||
 813	    !IS_ALIGNED(paddr,     16) ||
 814	    !IS_ALIGNED(size,      16)) {
 815		tpage = (void *)alloc_page(GFP_KERNEL | __GFP_ZERO);
 816		if (!tpage)
 817			return -ENOMEM;
 818
 819		dst_paddr = __sme_page_pa(tpage);
 820	}
 821
 822	ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
 823	if (ret)
 824		goto e_free;
 825
 826	if (tpage) {
 827		offset = paddr & 15;
 828		if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
 829			ret = -EFAULT;
 830	}
 831
 832e_free:
 833	if (tpage)
 834		__free_page(tpage);
 835
 836	return ret;
 837}
 838
 839static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
 840				  void __user *vaddr,
 841				  unsigned long dst_paddr,
 842				  void __user *dst_vaddr,
 843				  int size, int *error)
 844{
 845	struct page *src_tpage = NULL;
 846	struct page *dst_tpage = NULL;
 847	int ret, len = size;
 848
 849	/* If source buffer is not aligned then use an intermediate buffer */
 850	if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
 851		src_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
 852		if (!src_tpage)
 853			return -ENOMEM;
 854
 855		if (copy_from_user(page_address(src_tpage), vaddr, size)) {
 856			__free_page(src_tpage);
 857			return -EFAULT;
 858		}
 859
 860		paddr = __sme_page_pa(src_tpage);
 861	}
 862
 863	/*
 864	 *  If destination buffer or length is not aligned then do read-modify-write:
 865	 *   - decrypt destination in an intermediate buffer
 866	 *   - copy the source buffer in an intermediate buffer
 867	 *   - use the intermediate buffer as source buffer
 868	 */
 869	if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
 870		int dst_offset;
 871
 872		dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
 873		if (!dst_tpage) {
 874			ret = -ENOMEM;
 875			goto e_free;
 876		}
 877
 878		ret = __sev_dbg_decrypt(kvm, dst_paddr,
 879					__sme_page_pa(dst_tpage), size, error);
 880		if (ret)
 881			goto e_free;
 882
 883		/*
 884		 *  If source is kernel buffer then use memcpy() otherwise
 885		 *  copy_from_user().
 886		 */
 887		dst_offset = dst_paddr & 15;
 888
 889		if (src_tpage)
 890			memcpy(page_address(dst_tpage) + dst_offset,
 891			       page_address(src_tpage), size);
 892		else {
 893			if (copy_from_user(page_address(dst_tpage) + dst_offset,
 894					   vaddr, size)) {
 895				ret = -EFAULT;
 896				goto e_free;
 897			}
 898		}
 899
 900		paddr = __sme_page_pa(dst_tpage);
 901		dst_paddr = round_down(dst_paddr, 16);
 902		len = round_up(size, 16);
 903	}
 904
 905	ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
 906
 907e_free:
 908	if (src_tpage)
 909		__free_page(src_tpage);
 910	if (dst_tpage)
 911		__free_page(dst_tpage);
 912	return ret;
 913}
 914
 915static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
 916{
 917	unsigned long vaddr, vaddr_end, next_vaddr;
 918	unsigned long dst_vaddr;
 919	struct page **src_p, **dst_p;
 920	struct kvm_sev_dbg debug;
 921	unsigned long n;
 922	unsigned int size;
 923	int ret;
 924
 925	if (!sev_guest(kvm))
 926		return -ENOTTY;
 927
 928	if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
 929		return -EFAULT;
 930
 931	if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
 932		return -EINVAL;
 933	if (!debug.dst_uaddr)
 934		return -EINVAL;
 935
 936	vaddr = debug.src_uaddr;
 937	size = debug.len;
 938	vaddr_end = vaddr + size;
 939	dst_vaddr = debug.dst_uaddr;
 940
 941	for (; vaddr < vaddr_end; vaddr = next_vaddr) {
 942		int len, s_off, d_off;
 943
 944		/* lock userspace source and destination page */
 945		src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
 946		if (IS_ERR(src_p))
 947			return PTR_ERR(src_p);
 948
 949		dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
 950		if (IS_ERR(dst_p)) {
 951			sev_unpin_memory(kvm, src_p, n);
 952			return PTR_ERR(dst_p);
 953		}
 954
 955		/*
 956		 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
 957		 * the pages; flush the destination too so that future accesses do not
 958		 * see stale data.
 959		 */
 960		sev_clflush_pages(src_p, 1);
 961		sev_clflush_pages(dst_p, 1);
 962
 963		/*
 964		 * Since user buffer may not be page aligned, calculate the
 965		 * offset within the page.
 966		 */
 967		s_off = vaddr & ~PAGE_MASK;
 968		d_off = dst_vaddr & ~PAGE_MASK;
 969		len = min_t(size_t, (PAGE_SIZE - s_off), size);
 970
 971		if (dec)
 972			ret = __sev_dbg_decrypt_user(kvm,
 973						     __sme_page_pa(src_p[0]) + s_off,
 974						     (void __user *)dst_vaddr,
 975						     __sme_page_pa(dst_p[0]) + d_off,
 976						     len, &argp->error);
 977		else
 978			ret = __sev_dbg_encrypt_user(kvm,
 979						     __sme_page_pa(src_p[0]) + s_off,
 980						     (void __user *)vaddr,
 981						     __sme_page_pa(dst_p[0]) + d_off,
 982						     (void __user *)dst_vaddr,
 983						     len, &argp->error);
 984
 985		sev_unpin_memory(kvm, src_p, n);
 986		sev_unpin_memory(kvm, dst_p, n);
 987
 988		if (ret)
 989			goto err;
 990
 991		next_vaddr = vaddr + len;
 992		dst_vaddr = dst_vaddr + len;
 993		size -= len;
 994	}
 995err:
 996	return ret;
 997}
 998
 999static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
1000{
1001	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1002	struct sev_data_launch_secret data;
1003	struct kvm_sev_launch_secret params;
1004	struct page **pages;
1005	void *blob, *hdr;
1006	unsigned long n, i;
1007	int ret, offset;
1008
1009	if (!sev_guest(kvm))
1010		return -ENOTTY;
1011
1012	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1013		return -EFAULT;
1014
1015	pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
1016	if (IS_ERR(pages))
1017		return PTR_ERR(pages);
1018
1019	/*
1020	 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1021	 * place; the cache may contain the data that was written unencrypted.
1022	 */
1023	sev_clflush_pages(pages, n);
1024
1025	/*
1026	 * The secret must be copied into contiguous memory region, lets verify
1027	 * that userspace memory pages are contiguous before we issue command.
1028	 */
1029	if (get_num_contig_pages(0, pages, n) != n) {
1030		ret = -EINVAL;
1031		goto e_unpin_memory;
1032	}
1033
1034	memset(&data, 0, sizeof(data));
1035
1036	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1037	data.guest_address = __sme_page_pa(pages[0]) + offset;
1038	data.guest_len = params.guest_len;
1039
1040	blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1041	if (IS_ERR(blob)) {
1042		ret = PTR_ERR(blob);
1043		goto e_unpin_memory;
1044	}
1045
1046	data.trans_address = __psp_pa(blob);
1047	data.trans_len = params.trans_len;
1048
1049	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1050	if (IS_ERR(hdr)) {
1051		ret = PTR_ERR(hdr);
1052		goto e_free_blob;
1053	}
1054	data.hdr_address = __psp_pa(hdr);
1055	data.hdr_len = params.hdr_len;
1056
1057	data.handle = sev->handle;
1058	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1059
1060	kfree(hdr);
1061
1062e_free_blob:
1063	kfree(blob);
1064e_unpin_memory:
1065	/* content of memory is updated, mark pages dirty */
1066	for (i = 0; i < n; i++) {
1067		set_page_dirty_lock(pages[i]);
1068		mark_page_accessed(pages[i]);
1069	}
1070	sev_unpin_memory(kvm, pages, n);
1071	return ret;
1072}
1073
1074static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1075{
1076	void __user *report = (void __user *)(uintptr_t)argp->data;
1077	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1078	struct sev_data_attestation_report data;
1079	struct kvm_sev_attestation_report params;
1080	void __user *p;
1081	void *blob = NULL;
1082	int ret;
1083
1084	if (!sev_guest(kvm))
1085		return -ENOTTY;
1086
1087	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1088		return -EFAULT;
1089
1090	memset(&data, 0, sizeof(data));
1091
1092	/* User wants to query the blob length */
1093	if (!params.len)
1094		goto cmd;
1095
1096	p = (void __user *)(uintptr_t)params.uaddr;
1097	if (p) {
1098		if (params.len > SEV_FW_BLOB_MAX_SIZE)
1099			return -EINVAL;
1100
1101		blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1102		if (!blob)
1103			return -ENOMEM;
1104
1105		data.address = __psp_pa(blob);
1106		data.len = params.len;
1107		memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1108	}
1109cmd:
1110	data.handle = sev->handle;
1111	ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1112	/*
1113	 * If we query the session length, FW responded with expected data.
1114	 */
1115	if (!params.len)
1116		goto done;
1117
1118	if (ret)
1119		goto e_free_blob;
1120
1121	if (blob) {
1122		if (copy_to_user(p, blob, params.len))
1123			ret = -EFAULT;
1124	}
1125
1126done:
1127	params.len = data.len;
1128	if (copy_to_user(report, &params, sizeof(params)))
1129		ret = -EFAULT;
1130e_free_blob:
1131	kfree(blob);
1132	return ret;
1133}
1134
1135/* Userspace wants to query session length. */
1136static int
1137__sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1138				      struct kvm_sev_send_start *params)
1139{
1140	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1141	struct sev_data_send_start data;
1142	int ret;
1143
1144	memset(&data, 0, sizeof(data));
1145	data.handle = sev->handle;
1146	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1147
1148	params->session_len = data.session_len;
1149	if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1150				sizeof(struct kvm_sev_send_start)))
1151		ret = -EFAULT;
1152
1153	return ret;
1154}
1155
1156static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1157{
1158	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1159	struct sev_data_send_start data;
1160	struct kvm_sev_send_start params;
1161	void *amd_certs, *session_data;
1162	void *pdh_cert, *plat_certs;
1163	int ret;
1164
1165	if (!sev_guest(kvm))
1166		return -ENOTTY;
1167
1168	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1169				sizeof(struct kvm_sev_send_start)))
1170		return -EFAULT;
1171
1172	/* if session_len is zero, userspace wants to query the session length */
1173	if (!params.session_len)
1174		return __sev_send_start_query_session_length(kvm, argp,
1175				&params);
1176
1177	/* some sanity checks */
1178	if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1179	    !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1180		return -EINVAL;
1181
1182	/* allocate the memory to hold the session data blob */
1183	session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1184	if (!session_data)
1185		return -ENOMEM;
1186
1187	/* copy the certificate blobs from userspace */
1188	pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1189				params.pdh_cert_len);
1190	if (IS_ERR(pdh_cert)) {
1191		ret = PTR_ERR(pdh_cert);
1192		goto e_free_session;
1193	}
1194
1195	plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1196				params.plat_certs_len);
1197	if (IS_ERR(plat_certs)) {
1198		ret = PTR_ERR(plat_certs);
1199		goto e_free_pdh;
1200	}
1201
1202	amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1203				params.amd_certs_len);
1204	if (IS_ERR(amd_certs)) {
1205		ret = PTR_ERR(amd_certs);
1206		goto e_free_plat_cert;
1207	}
1208
1209	/* populate the FW SEND_START field with system physical address */
1210	memset(&data, 0, sizeof(data));
1211	data.pdh_cert_address = __psp_pa(pdh_cert);
1212	data.pdh_cert_len = params.pdh_cert_len;
1213	data.plat_certs_address = __psp_pa(plat_certs);
1214	data.plat_certs_len = params.plat_certs_len;
1215	data.amd_certs_address = __psp_pa(amd_certs);
1216	data.amd_certs_len = params.amd_certs_len;
1217	data.session_address = __psp_pa(session_data);
1218	data.session_len = params.session_len;
1219	data.handle = sev->handle;
1220
1221	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1222
1223	if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr,
1224			session_data, params.session_len)) {
1225		ret = -EFAULT;
1226		goto e_free_amd_cert;
1227	}
1228
1229	params.policy = data.policy;
1230	params.session_len = data.session_len;
1231	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params,
1232				sizeof(struct kvm_sev_send_start)))
1233		ret = -EFAULT;
1234
1235e_free_amd_cert:
1236	kfree(amd_certs);
1237e_free_plat_cert:
1238	kfree(plat_certs);
1239e_free_pdh:
1240	kfree(pdh_cert);
1241e_free_session:
1242	kfree(session_data);
1243	return ret;
1244}
1245
1246/* Userspace wants to query either header or trans length. */
1247static int
1248__sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1249				     struct kvm_sev_send_update_data *params)
1250{
1251	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1252	struct sev_data_send_update_data data;
1253	int ret;
1254
1255	memset(&data, 0, sizeof(data));
1256	data.handle = sev->handle;
1257	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1258
1259	params->hdr_len = data.hdr_len;
1260	params->trans_len = data.trans_len;
1261
1262	if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1263			 sizeof(struct kvm_sev_send_update_data)))
1264		ret = -EFAULT;
1265
1266	return ret;
1267}
1268
1269static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1270{
1271	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1272	struct sev_data_send_update_data data;
1273	struct kvm_sev_send_update_data params;
1274	void *hdr, *trans_data;
1275	struct page **guest_page;
1276	unsigned long n;
1277	int ret, offset;
1278
1279	if (!sev_guest(kvm))
1280		return -ENOTTY;
1281
1282	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1283			sizeof(struct kvm_sev_send_update_data)))
1284		return -EFAULT;
1285
1286	/* userspace wants to query either header or trans length */
1287	if (!params.trans_len || !params.hdr_len)
1288		return __sev_send_update_data_query_lengths(kvm, argp, &params);
1289
1290	if (!params.trans_uaddr || !params.guest_uaddr ||
1291	    !params.guest_len || !params.hdr_uaddr)
1292		return -EINVAL;
1293
1294	/* Check if we are crossing the page boundary */
1295	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1296	if ((params.guest_len + offset > PAGE_SIZE))
1297		return -EINVAL;
1298
1299	/* Pin guest memory */
1300	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1301				    PAGE_SIZE, &n, 0);
1302	if (IS_ERR(guest_page))
1303		return PTR_ERR(guest_page);
1304
1305	/* allocate memory for header and transport buffer */
1306	ret = -ENOMEM;
1307	hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1308	if (!hdr)
1309		goto e_unpin;
1310
1311	trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1312	if (!trans_data)
1313		goto e_free_hdr;
1314
1315	memset(&data, 0, sizeof(data));
1316	data.hdr_address = __psp_pa(hdr);
1317	data.hdr_len = params.hdr_len;
1318	data.trans_address = __psp_pa(trans_data);
1319	data.trans_len = params.trans_len;
1320
1321	/* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1322	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1323	data.guest_address |= sev_me_mask;
1324	data.guest_len = params.guest_len;
1325	data.handle = sev->handle;
1326
1327	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1328
1329	if (ret)
1330		goto e_free_trans_data;
1331
1332	/* copy transport buffer to user space */
1333	if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr,
1334			 trans_data, params.trans_len)) {
1335		ret = -EFAULT;
1336		goto e_free_trans_data;
1337	}
1338
1339	/* Copy packet header to userspace. */
1340	if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr,
1341			 params.hdr_len))
1342		ret = -EFAULT;
1343
1344e_free_trans_data:
1345	kfree(trans_data);
1346e_free_hdr:
1347	kfree(hdr);
1348e_unpin:
1349	sev_unpin_memory(kvm, guest_page, n);
1350
1351	return ret;
1352}
1353
1354static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1355{
1356	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1357	struct sev_data_send_finish data;
1358
1359	if (!sev_guest(kvm))
1360		return -ENOTTY;
1361
1362	data.handle = sev->handle;
1363	return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1364}
1365
1366static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1367{
1368	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1369	struct sev_data_send_cancel data;
1370
1371	if (!sev_guest(kvm))
1372		return -ENOTTY;
1373
1374	data.handle = sev->handle;
1375	return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1376}
1377
1378static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1379{
1380	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1381	struct sev_data_receive_start start;
1382	struct kvm_sev_receive_start params;
1383	int *error = &argp->error;
1384	void *session_data;
1385	void *pdh_data;
1386	int ret;
1387
1388	if (!sev_guest(kvm))
1389		return -ENOTTY;
1390
1391	/* Get parameter from the userspace */
1392	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1393			sizeof(struct kvm_sev_receive_start)))
1394		return -EFAULT;
1395
1396	/* some sanity checks */
1397	if (!params.pdh_uaddr || !params.pdh_len ||
1398	    !params.session_uaddr || !params.session_len)
1399		return -EINVAL;
1400
1401	pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1402	if (IS_ERR(pdh_data))
1403		return PTR_ERR(pdh_data);
1404
1405	session_data = psp_copy_user_blob(params.session_uaddr,
1406			params.session_len);
1407	if (IS_ERR(session_data)) {
1408		ret = PTR_ERR(session_data);
1409		goto e_free_pdh;
1410	}
1411
1412	memset(&start, 0, sizeof(start));
1413	start.handle = params.handle;
1414	start.policy = params.policy;
1415	start.pdh_cert_address = __psp_pa(pdh_data);
1416	start.pdh_cert_len = params.pdh_len;
1417	start.session_address = __psp_pa(session_data);
1418	start.session_len = params.session_len;
1419
1420	/* create memory encryption context */
1421	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1422				error);
1423	if (ret)
1424		goto e_free_session;
1425
1426	/* Bind ASID to this guest */
1427	ret = sev_bind_asid(kvm, start.handle, error);
1428	if (ret) {
1429		sev_decommission(start.handle);
1430		goto e_free_session;
1431	}
1432
1433	params.handle = start.handle;
1434	if (copy_to_user((void __user *)(uintptr_t)argp->data,
1435			 &params, sizeof(struct kvm_sev_receive_start))) {
1436		ret = -EFAULT;
1437		sev_unbind_asid(kvm, start.handle);
1438		goto e_free_session;
1439	}
1440
1441    	sev->handle = start.handle;
1442	sev->fd = argp->sev_fd;
1443
1444e_free_session:
1445	kfree(session_data);
1446e_free_pdh:
1447	kfree(pdh_data);
1448
1449	return ret;
1450}
1451
1452static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1453{
1454	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1455	struct kvm_sev_receive_update_data params;
1456	struct sev_data_receive_update_data data;
1457	void *hdr = NULL, *trans = NULL;
1458	struct page **guest_page;
1459	unsigned long n;
1460	int ret, offset;
1461
1462	if (!sev_guest(kvm))
1463		return -EINVAL;
1464
1465	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1466			sizeof(struct kvm_sev_receive_update_data)))
1467		return -EFAULT;
1468
1469	if (!params.hdr_uaddr || !params.hdr_len ||
1470	    !params.guest_uaddr || !params.guest_len ||
1471	    !params.trans_uaddr || !params.trans_len)
1472		return -EINVAL;
1473
1474	/* Check if we are crossing the page boundary */
1475	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1476	if ((params.guest_len + offset > PAGE_SIZE))
1477		return -EINVAL;
1478
1479	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1480	if (IS_ERR(hdr))
1481		return PTR_ERR(hdr);
1482
1483	trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1484	if (IS_ERR(trans)) {
1485		ret = PTR_ERR(trans);
1486		goto e_free_hdr;
1487	}
1488
1489	memset(&data, 0, sizeof(data));
1490	data.hdr_address = __psp_pa(hdr);
1491	data.hdr_len = params.hdr_len;
1492	data.trans_address = __psp_pa(trans);
1493	data.trans_len = params.trans_len;
1494
1495	/* Pin guest memory */
1496	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1497				    PAGE_SIZE, &n, 1);
1498	if (IS_ERR(guest_page)) {
1499		ret = PTR_ERR(guest_page);
1500		goto e_free_trans;
1501	}
1502
1503	/*
1504	 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1505	 * encrypts the written data with the guest's key, and the cache may
1506	 * contain dirty, unencrypted data.
1507	 */
1508	sev_clflush_pages(guest_page, n);
1509
1510	/* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1511	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1512	data.guest_address |= sev_me_mask;
1513	data.guest_len = params.guest_len;
1514	data.handle = sev->handle;
1515
1516	ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1517				&argp->error);
1518
1519	sev_unpin_memory(kvm, guest_page, n);
1520
1521e_free_trans:
1522	kfree(trans);
1523e_free_hdr:
1524	kfree(hdr);
1525
1526	return ret;
1527}
1528
1529static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1530{
1531	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1532	struct sev_data_receive_finish data;
1533
1534	if (!sev_guest(kvm))
1535		return -ENOTTY;
1536
1537	data.handle = sev->handle;
1538	return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1539}
1540
1541static bool is_cmd_allowed_from_mirror(u32 cmd_id)
1542{
1543	/*
1544	 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1545	 * active mirror VMs. Also allow the debugging and status commands.
1546	 */
1547	if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1548	    cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1549	    cmd_id == KVM_SEV_DBG_ENCRYPT)
1550		return true;
1551
1552	return false;
1553}
1554
1555static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1556{
1557	struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1558	struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1559	int r = -EBUSY;
1560
1561	if (dst_kvm == src_kvm)
1562		return -EINVAL;
1563
1564	/*
1565	 * Bail if these VMs are already involved in a migration to avoid
1566	 * deadlock between two VMs trying to migrate to/from each other.
1567	 */
1568	if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
1569		return -EBUSY;
1570
1571	if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
1572		goto release_dst;
1573
1574	r = -EINTR;
1575	if (mutex_lock_killable(&dst_kvm->lock))
1576		goto release_src;
1577	if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
1578		goto unlock_dst;
1579	return 0;
1580
1581unlock_dst:
1582	mutex_unlock(&dst_kvm->lock);
1583release_src:
1584	atomic_set_release(&src_sev->migration_in_progress, 0);
1585release_dst:
1586	atomic_set_release(&dst_sev->migration_in_progress, 0);
1587	return r;
1588}
1589
1590static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1591{
1592	struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1593	struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1594
1595	mutex_unlock(&dst_kvm->lock);
1596	mutex_unlock(&src_kvm->lock);
1597	atomic_set_release(&dst_sev->migration_in_progress, 0);
1598	atomic_set_release(&src_sev->migration_in_progress, 0);
1599}
1600
1601/* vCPU mutex subclasses.  */
1602enum sev_migration_role {
1603	SEV_MIGRATION_SOURCE = 0,
1604	SEV_MIGRATION_TARGET,
1605	SEV_NR_MIGRATION_ROLES,
1606};
1607
1608static int sev_lock_vcpus_for_migration(struct kvm *kvm,
1609					enum sev_migration_role role)
1610{
1611	struct kvm_vcpu *vcpu;
1612	unsigned long i, j;
1613
1614	kvm_for_each_vcpu(i, vcpu, kvm) {
1615		if (mutex_lock_killable_nested(&vcpu->mutex, role))
1616			goto out_unlock;
1617
1618#ifdef CONFIG_PROVE_LOCKING
1619		if (!i)
1620			/*
1621			 * Reset the role to one that avoids colliding with
1622			 * the role used for the first vcpu mutex.
1623			 */
1624			role = SEV_NR_MIGRATION_ROLES;
1625		else
1626			mutex_release(&vcpu->mutex.dep_map, _THIS_IP_);
1627#endif
1628	}
1629
1630	return 0;
1631
1632out_unlock:
1633
1634	kvm_for_each_vcpu(j, vcpu, kvm) {
1635		if (i == j)
1636			break;
1637
1638#ifdef CONFIG_PROVE_LOCKING
1639		if (j)
1640			mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_);
1641#endif
1642
1643		mutex_unlock(&vcpu->mutex);
1644	}
1645	return -EINTR;
1646}
1647
1648static void sev_unlock_vcpus_for_migration(struct kvm *kvm)
1649{
1650	struct kvm_vcpu *vcpu;
1651	unsigned long i;
1652	bool first = true;
1653
1654	kvm_for_each_vcpu(i, vcpu, kvm) {
1655		if (first)
1656			first = false;
1657		else
1658			mutex_acquire(&vcpu->mutex.dep_map,
1659				      SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_);
1660
1661		mutex_unlock(&vcpu->mutex);
1662	}
1663}
1664
1665static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
1666{
1667	struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info;
1668	struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info;
1669	struct kvm_vcpu *dst_vcpu, *src_vcpu;
1670	struct vcpu_svm *dst_svm, *src_svm;
1671	struct kvm_sev_info *mirror;
1672	unsigned long i;
1673
1674	dst->active = true;
1675	dst->asid = src->asid;
1676	dst->handle = src->handle;
1677	dst->pages_locked = src->pages_locked;
1678	dst->enc_context_owner = src->enc_context_owner;
1679	dst->es_active = src->es_active;
1680
1681	src->asid = 0;
1682	src->active = false;
1683	src->handle = 0;
1684	src->pages_locked = 0;
1685	src->enc_context_owner = NULL;
1686	src->es_active = false;
1687
1688	list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
1689
1690	/*
1691	 * If this VM has mirrors, "transfer" each mirror's refcount of the
1692	 * source to the destination (this KVM).  The caller holds a reference
1693	 * to the source, so there's no danger of use-after-free.
1694	 */
1695	list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms);
1696	list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
1697		kvm_get_kvm(dst_kvm);
1698		kvm_put_kvm(src_kvm);
1699		mirror->enc_context_owner = dst_kvm;
1700	}
1701
1702	/*
1703	 * If this VM is a mirror, remove the old mirror from the owners list
1704	 * and add the new mirror to the list.
1705	 */
1706	if (is_mirroring_enc_context(dst_kvm)) {
1707		struct kvm_sev_info *owner_sev_info =
1708			&to_kvm_svm(dst->enc_context_owner)->sev_info;
1709
1710		list_del(&src->mirror_entry);
1711		list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
1712	}
1713
1714	kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
1715		dst_svm = to_svm(dst_vcpu);
1716
1717		sev_init_vmcb(dst_svm);
1718
1719		if (!dst->es_active)
1720			continue;
1721
1722		/*
1723		 * Note, the source is not required to have the same number of
1724		 * vCPUs as the destination when migrating a vanilla SEV VM.
1725		 */
1726		src_vcpu = kvm_get_vcpu(dst_kvm, i);
1727		src_svm = to_svm(src_vcpu);
1728
1729		/*
1730		 * Transfer VMSA and GHCB state to the destination.  Nullify and
1731		 * clear source fields as appropriate, the state now belongs to
1732		 * the destination.
1733		 */
1734		memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
1735		dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
1736		dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
1737		dst_vcpu->arch.guest_state_protected = true;
1738
1739		memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
1740		src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
1741		src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
1742		src_vcpu->arch.guest_state_protected = false;
1743	}
1744}
1745
1746static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
1747{
1748	struct kvm_vcpu *src_vcpu;
1749	unsigned long i;
1750
1751	if (!sev_es_guest(src))
1752		return 0;
1753
1754	if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
1755		return -EINVAL;
1756
1757	kvm_for_each_vcpu(i, src_vcpu, src) {
1758		if (!src_vcpu->arch.guest_state_protected)
1759			return -EINVAL;
1760	}
1761
1762	return 0;
1763}
1764
1765int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
1766{
1767	struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info;
1768	struct kvm_sev_info *src_sev, *cg_cleanup_sev;
1769	struct file *source_kvm_file;
1770	struct kvm *source_kvm;
1771	bool charged = false;
1772	int ret;
1773
1774	source_kvm_file = fget(source_fd);
1775	if (!file_is_kvm(source_kvm_file)) {
1776		ret = -EBADF;
1777		goto out_fput;
1778	}
1779
1780	source_kvm = source_kvm_file->private_data;
1781	ret = sev_lock_two_vms(kvm, source_kvm);
1782	if (ret)
1783		goto out_fput;
1784
1785	if (sev_guest(kvm) || !sev_guest(source_kvm)) {
1786		ret = -EINVAL;
1787		goto out_unlock;
1788	}
1789
1790	src_sev = &to_kvm_svm(source_kvm)->sev_info;
1791
1792	dst_sev->misc_cg = get_current_misc_cg();
1793	cg_cleanup_sev = dst_sev;
1794	if (dst_sev->misc_cg != src_sev->misc_cg) {
1795		ret = sev_misc_cg_try_charge(dst_sev);
1796		if (ret)
1797			goto out_dst_cgroup;
1798		charged = true;
1799	}
1800
1801	ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE);
1802	if (ret)
1803		goto out_dst_cgroup;
1804	ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET);
1805	if (ret)
1806		goto out_dst_vcpu;
1807
1808	ret = sev_check_source_vcpus(kvm, source_kvm);
1809	if (ret)
1810		goto out_source_vcpu;
1811
1812	sev_migrate_from(kvm, source_kvm);
1813	kvm_vm_dead(source_kvm);
1814	cg_cleanup_sev = src_sev;
1815	ret = 0;
1816
1817out_source_vcpu:
1818	sev_unlock_vcpus_for_migration(source_kvm);
1819out_dst_vcpu:
1820	sev_unlock_vcpus_for_migration(kvm);
1821out_dst_cgroup:
1822	/* Operates on the source on success, on the destination on failure.  */
1823	if (charged)
1824		sev_misc_cg_uncharge(cg_cleanup_sev);
1825	put_misc_cg(cg_cleanup_sev->misc_cg);
1826	cg_cleanup_sev->misc_cg = NULL;
1827out_unlock:
1828	sev_unlock_two_vms(kvm, source_kvm);
1829out_fput:
1830	if (source_kvm_file)
1831		fput(source_kvm_file);
1832	return ret;
1833}
1834
1835int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
1836{
1837	struct kvm_sev_cmd sev_cmd;
1838	int r;
1839
1840	if (!sev_enabled)
1841		return -ENOTTY;
1842
1843	if (!argp)
1844		return 0;
1845
1846	if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
1847		return -EFAULT;
1848
1849	mutex_lock(&kvm->lock);
1850
1851	/* Only the enc_context_owner handles some memory enc operations. */
1852	if (is_mirroring_enc_context(kvm) &&
1853	    !is_cmd_allowed_from_mirror(sev_cmd.id)) {
1854		r = -EINVAL;
1855		goto out;
1856	}
1857
1858	switch (sev_cmd.id) {
1859	case KVM_SEV_ES_INIT:
1860		if (!sev_es_enabled) {
1861			r = -ENOTTY;
1862			goto out;
1863		}
1864		fallthrough;
1865	case KVM_SEV_INIT:
1866		r = sev_guest_init(kvm, &sev_cmd);
1867		break;
1868	case KVM_SEV_LAUNCH_START:
1869		r = sev_launch_start(kvm, &sev_cmd);
1870		break;
1871	case KVM_SEV_LAUNCH_UPDATE_DATA:
1872		r = sev_launch_update_data(kvm, &sev_cmd);
1873		break;
1874	case KVM_SEV_LAUNCH_UPDATE_VMSA:
1875		r = sev_launch_update_vmsa(kvm, &sev_cmd);
1876		break;
1877	case KVM_SEV_LAUNCH_MEASURE:
1878		r = sev_launch_measure(kvm, &sev_cmd);
1879		break;
1880	case KVM_SEV_LAUNCH_FINISH:
1881		r = sev_launch_finish(kvm, &sev_cmd);
1882		break;
1883	case KVM_SEV_GUEST_STATUS:
1884		r = sev_guest_status(kvm, &sev_cmd);
1885		break;
1886	case KVM_SEV_DBG_DECRYPT:
1887		r = sev_dbg_crypt(kvm, &sev_cmd, true);
1888		break;
1889	case KVM_SEV_DBG_ENCRYPT:
1890		r = sev_dbg_crypt(kvm, &sev_cmd, false);
1891		break;
1892	case KVM_SEV_LAUNCH_SECRET:
1893		r = sev_launch_secret(kvm, &sev_cmd);
1894		break;
1895	case KVM_SEV_GET_ATTESTATION_REPORT:
1896		r = sev_get_attestation_report(kvm, &sev_cmd);
1897		break;
1898	case KVM_SEV_SEND_START:
1899		r = sev_send_start(kvm, &sev_cmd);
1900		break;
1901	case KVM_SEV_SEND_UPDATE_DATA:
1902		r = sev_send_update_data(kvm, &sev_cmd);
1903		break;
1904	case KVM_SEV_SEND_FINISH:
1905		r = sev_send_finish(kvm, &sev_cmd);
1906		break;
1907	case KVM_SEV_SEND_CANCEL:
1908		r = sev_send_cancel(kvm, &sev_cmd);
1909		break;
1910	case KVM_SEV_RECEIVE_START:
1911		r = sev_receive_start(kvm, &sev_cmd);
1912		break;
1913	case KVM_SEV_RECEIVE_UPDATE_DATA:
1914		r = sev_receive_update_data(kvm, &sev_cmd);
1915		break;
1916	case KVM_SEV_RECEIVE_FINISH:
1917		r = sev_receive_finish(kvm, &sev_cmd);
1918		break;
1919	default:
1920		r = -EINVAL;
1921		goto out;
1922	}
1923
1924	if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
1925		r = -EFAULT;
1926
1927out:
1928	mutex_unlock(&kvm->lock);
1929	return r;
1930}
1931
1932int sev_mem_enc_register_region(struct kvm *kvm,
1933				struct kvm_enc_region *range)
1934{
1935	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1936	struct enc_region *region;
1937	int ret = 0;
1938
1939	if (!sev_guest(kvm))
1940		return -ENOTTY;
1941
1942	/* If kvm is mirroring encryption context it isn't responsible for it */
1943	if (is_mirroring_enc_context(kvm))
1944		return -EINVAL;
1945
1946	if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
1947		return -EINVAL;
1948
1949	region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
1950	if (!region)
1951		return -ENOMEM;
1952
1953	mutex_lock(&kvm->lock);
1954	region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
1955	if (IS_ERR(region->pages)) {
1956		ret = PTR_ERR(region->pages);
1957		mutex_unlock(&kvm->lock);
1958		goto e_free;
1959	}
1960
1961	region->uaddr = range->addr;
1962	region->size = range->size;
1963
1964	list_add_tail(&region->list, &sev->regions_list);
1965	mutex_unlock(&kvm->lock);
1966
1967	/*
1968	 * The guest may change the memory encryption attribute from C=0 -> C=1
1969	 * or vice versa for this memory range. Lets make sure caches are
1970	 * flushed to ensure that guest data gets written into memory with
1971	 * correct C-bit.
1972	 */
1973	sev_clflush_pages(region->pages, region->npages);
1974
1975	return ret;
1976
1977e_free:
1978	kfree(region);
1979	return ret;
1980}
1981
1982static struct enc_region *
1983find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
1984{
1985	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1986	struct list_head *head = &sev->regions_list;
1987	struct enc_region *i;
1988
1989	list_for_each_entry(i, head, list) {
1990		if (i->uaddr == range->addr &&
1991		    i->size == range->size)
1992			return i;
1993	}
1994
1995	return NULL;
1996}
1997
1998static void __unregister_enc_region_locked(struct kvm *kvm,
1999					   struct enc_region *region)
2000{
2001	sev_unpin_memory(kvm, region->pages, region->npages);
2002	list_del(&region->list);
2003	kfree(region);
2004}
2005
2006int sev_mem_enc_unregister_region(struct kvm *kvm,
2007				  struct kvm_enc_region *range)
2008{
2009	struct enc_region *region;
2010	int ret;
2011
2012	/* If kvm is mirroring encryption context it isn't responsible for it */
2013	if (is_mirroring_enc_context(kvm))
2014		return -EINVAL;
2015
2016	mutex_lock(&kvm->lock);
2017
2018	if (!sev_guest(kvm)) {
2019		ret = -ENOTTY;
2020		goto failed;
2021	}
2022
2023	region = find_enc_region(kvm, range);
2024	if (!region) {
2025		ret = -EINVAL;
2026		goto failed;
2027	}
2028
2029	/*
2030	 * Ensure that all guest tagged cache entries are flushed before
2031	 * releasing the pages back to the system for use. CLFLUSH will
2032	 * not do this, so issue a WBINVD.
2033	 */
2034	wbinvd_on_all_cpus();
2035
2036	__unregister_enc_region_locked(kvm, region);
2037
2038	mutex_unlock(&kvm->lock);
2039	return 0;
2040
2041failed:
2042	mutex_unlock(&kvm->lock);
2043	return ret;
2044}
2045
2046int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2047{
2048	struct file *source_kvm_file;
2049	struct kvm *source_kvm;
2050	struct kvm_sev_info *source_sev, *mirror_sev;
2051	int ret;
2052
2053	source_kvm_file = fget(source_fd);
2054	if (!file_is_kvm(source_kvm_file)) {
2055		ret = -EBADF;
2056		goto e_source_fput;
2057	}
2058
2059	source_kvm = source_kvm_file->private_data;
2060	ret = sev_lock_two_vms(kvm, source_kvm);
2061	if (ret)
2062		goto e_source_fput;
2063
2064	/*
2065	 * Mirrors of mirrors should work, but let's not get silly.  Also
2066	 * disallow out-of-band SEV/SEV-ES init if the target is already an
2067	 * SEV guest, or if vCPUs have been created.  KVM relies on vCPUs being
2068	 * created after SEV/SEV-ES initialization, e.g. to init intercepts.
2069	 */
2070	if (sev_guest(kvm) || !sev_guest(source_kvm) ||
2071	    is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
2072		ret = -EINVAL;
2073		goto e_unlock;
2074	}
2075
2076	/*
2077	 * The mirror kvm holds an enc_context_owner ref so its asid can't
2078	 * disappear until we're done with it
2079	 */
2080	source_sev = &to_kvm_svm(source_kvm)->sev_info;
2081	kvm_get_kvm(source_kvm);
2082	mirror_sev = &to_kvm_svm(kvm)->sev_info;
2083	list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);
2084
2085	/* Set enc_context_owner and copy its encryption context over */
2086	mirror_sev->enc_context_owner = source_kvm;
2087	mirror_sev->active = true;
2088	mirror_sev->asid = source_sev->asid;
2089	mirror_sev->fd = source_sev->fd;
2090	mirror_sev->es_active = source_sev->es_active;
2091	mirror_sev->handle = source_sev->handle;
2092	INIT_LIST_HEAD(&mirror_sev->regions_list);
2093	INIT_LIST_HEAD(&mirror_sev->mirror_vms);
2094	ret = 0;
2095
2096	/*
2097	 * Do not copy ap_jump_table. Since the mirror does not share the same
2098	 * KVM contexts as the original, and they may have different
2099	 * memory-views.
2100	 */
2101
2102e_unlock:
2103	sev_unlock_two_vms(kvm, source_kvm);
2104e_source_fput:
2105	if (source_kvm_file)
2106		fput(source_kvm_file);
2107	return ret;
2108}
2109
2110void sev_vm_destroy(struct kvm *kvm)
2111{
2112	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2113	struct list_head *head = &sev->regions_list;
2114	struct list_head *pos, *q;
2115
2116	if (!sev_guest(kvm))
2117		return;
2118
2119	WARN_ON(!list_empty(&sev->mirror_vms));
2120
2121	/* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
2122	if (is_mirroring_enc_context(kvm)) {
2123		struct kvm *owner_kvm = sev->enc_context_owner;
2124
2125		mutex_lock(&owner_kvm->lock);
2126		list_del(&sev->mirror_entry);
2127		mutex_unlock(&owner_kvm->lock);
2128		kvm_put_kvm(owner_kvm);
2129		return;
2130	}
2131
2132	/*
2133	 * Ensure that all guest tagged cache entries are flushed before
2134	 * releasing the pages back to the system for use. CLFLUSH will
2135	 * not do this, so issue a WBINVD.
2136	 */
2137	wbinvd_on_all_cpus();
2138
2139	/*
2140	 * if userspace was terminated before unregistering the memory regions
2141	 * then lets unpin all the registered memory.
2142	 */
2143	if (!list_empty(head)) {
2144		list_for_each_safe(pos, q, head) {
2145			__unregister_enc_region_locked(kvm,
2146				list_entry(pos, struct enc_region, list));
2147			cond_resched();
2148		}
2149	}
2150
2151	sev_unbind_asid(kvm, sev->handle);
2152	sev_asid_free(sev);
2153}
2154
2155void __init sev_set_cpu_caps(void)
2156{
2157	if (!sev_enabled)
2158		kvm_cpu_cap_clear(X86_FEATURE_SEV);
2159	if (!sev_es_enabled)
2160		kvm_cpu_cap_clear(X86_FEATURE_SEV_ES);
2161}
2162
2163void __init sev_hardware_setup(void)
2164{
2165#ifdef CONFIG_KVM_AMD_SEV
2166	unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
2167	bool sev_es_supported = false;
2168	bool sev_supported = false;
2169
2170	if (!sev_enabled || !npt_enabled)
2171		goto out;
2172
2173	/*
2174	 * SEV must obviously be supported in hardware.  Sanity check that the
2175	 * CPU supports decode assists, which is mandatory for SEV guests to
2176	 * support instruction emulation.
2177	 */
2178	if (!boot_cpu_has(X86_FEATURE_SEV) ||
2179	    WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)))
2180		goto out;
2181
2182	/* Retrieve SEV CPUID information */
2183	cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
2184
2185	/* Set encryption bit location for SEV-ES guests */
2186	sev_enc_bit = ebx & 0x3f;
2187
2188	/* Maximum number of encrypted guests supported simultaneously */
2189	max_sev_asid = ecx;
2190	if (!max_sev_asid)
2191		goto out;
2192
2193	/* Minimum ASID value that should be used for SEV guest */
2194	min_sev_asid = edx;
2195	sev_me_mask = 1UL << (ebx & 0x3f);
2196
2197	/*
2198	 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
2199	 * even though it's never used, so that the bitmap is indexed by the
2200	 * actual ASID.
2201	 */
2202	nr_asids = max_sev_asid + 1;
2203	sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2204	if (!sev_asid_bitmap)
2205		goto out;
2206
2207	sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2208	if (!sev_reclaim_asid_bitmap) {
2209		bitmap_free(sev_asid_bitmap);
2210		sev_asid_bitmap = NULL;
2211		goto out;
2212	}
2213
2214	sev_asid_count = max_sev_asid - min_sev_asid + 1;
2215	if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count))
2216		goto out;
2217
2218	pr_info("SEV supported: %u ASIDs\n", sev_asid_count);
2219	sev_supported = true;
2220
2221	/* SEV-ES support requested? */
2222	if (!sev_es_enabled)
2223		goto out;
2224
2225	/*
2226	 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest
2227	 * instruction stream, i.e. can't emulate in response to a #NPF and
2228	 * instead relies on #NPF(RSVD) being reflected into the guest as #VC
2229	 * (the guest can then do a #VMGEXIT to request MMIO emulation).
2230	 */
2231	if (!enable_mmio_caching)
2232		goto out;
2233
2234	/* Does the CPU support SEV-ES? */
2235	if (!boot_cpu_has(X86_FEATURE_SEV_ES))
2236		goto out;
2237
2238	/* Has the system been allocated ASIDs for SEV-ES? */
2239	if (min_sev_asid == 1)
2240		goto out;
2241
2242	sev_es_asid_count = min_sev_asid - 1;
2243	if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count))
2244		goto out;
2245
2246	pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count);
2247	sev_es_supported = true;
2248
2249out:
2250	sev_enabled = sev_supported;
2251	sev_es_enabled = sev_es_supported;
2252#endif
2253}
2254
2255void sev_hardware_unsetup(void)
2256{
2257	if (!sev_enabled)
2258		return;
2259
2260	/* No need to take sev_bitmap_lock, all VMs have been destroyed. */
2261	sev_flush_asids(1, max_sev_asid);
2262
2263	bitmap_free(sev_asid_bitmap);
2264	bitmap_free(sev_reclaim_asid_bitmap);
2265
2266	misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
2267	misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
2268}
2269
2270int sev_cpu_init(struct svm_cpu_data *sd)
2271{
2272	if (!sev_enabled)
2273		return 0;
2274
2275	sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
2276	if (!sd->sev_vmcbs)
2277		return -ENOMEM;
2278
2279	return 0;
2280}
2281
2282/*
2283 * Pages used by hardware to hold guest encrypted state must be flushed before
2284 * returning them to the system.
2285 */
2286static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
2287{
2288	int asid = to_kvm_svm(vcpu->kvm)->sev_info.asid;
2289
2290	/*
2291	 * Note!  The address must be a kernel address, as regular page walk
2292	 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
2293	 * address is non-deterministic and unsafe.  This function deliberately
2294	 * takes a pointer to deter passing in a user address.
2295	 */
2296	unsigned long addr = (unsigned long)va;
2297
2298	/*
2299	 * If CPU enforced cache coherency for encrypted mappings of the
2300	 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
2301	 * flush is still needed in order to work properly with DMA devices.
2302	 */
2303	if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
2304		clflush_cache_range(va, PAGE_SIZE);
2305		return;
2306	}
2307
2308	/*
2309	 * VM Page Flush takes a host virtual address and a guest ASID.  Fall
2310	 * back to WBINVD if this faults so as not to make any problems worse
2311	 * by leaving stale encrypted data in the cache.
2312	 */
2313	if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
2314		goto do_wbinvd;
2315
2316	return;
2317
2318do_wbinvd:
2319	wbinvd_on_all_cpus();
2320}
2321
2322void sev_guest_memory_reclaimed(struct kvm *kvm)
2323{
2324	if (!sev_guest(kvm))
2325		return;
2326
2327	wbinvd_on_all_cpus();
2328}
2329
2330void sev_free_vcpu(struct kvm_vcpu *vcpu)
2331{
2332	struct vcpu_svm *svm;
2333
2334	if (!sev_es_guest(vcpu->kvm))
2335		return;
2336
2337	svm = to_svm(vcpu);
2338
2339	if (vcpu->arch.guest_state_protected)
2340		sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa);
2341
2342	__free_page(virt_to_page(svm->sev_es.vmsa));
2343
2344	if (svm->sev_es.ghcb_sa_free)
2345		kvfree(svm->sev_es.ghcb_sa);
2346}
2347
2348static void dump_ghcb(struct vcpu_svm *svm)
2349{
2350	struct ghcb *ghcb = svm->sev_es.ghcb;
2351	unsigned int nbits;
2352
2353	/* Re-use the dump_invalid_vmcb module parameter */
2354	if (!dump_invalid_vmcb) {
2355		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2356		return;
2357	}
2358
2359	nbits = sizeof(ghcb->save.valid_bitmap) * 8;
2360
2361	pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
2362	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
2363	       ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
2364	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
2365	       ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
2366	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
2367	       ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
2368	pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
2369	       ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
2370	pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
2371}
2372
2373static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
2374{
2375	struct kvm_vcpu *vcpu = &svm->vcpu;
2376	struct ghcb *ghcb = svm->sev_es.ghcb;
2377
2378	/*
2379	 * The GHCB protocol so far allows for the following data
2380	 * to be returned:
2381	 *   GPRs RAX, RBX, RCX, RDX
2382	 *
2383	 * Copy their values, even if they may not have been written during the
2384	 * VM-Exit.  It's the guest's responsibility to not consume random data.
2385	 */
2386	ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
2387	ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
2388	ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
2389	ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
2390}
2391
2392static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
2393{
2394	struct vmcb_control_area *control = &svm->vmcb->control;
2395	struct kvm_vcpu *vcpu = &svm->vcpu;
2396	struct ghcb *ghcb = svm->sev_es.ghcb;
2397	u64 exit_code;
2398
2399	/*
2400	 * The GHCB protocol so far allows for the following data
2401	 * to be supplied:
2402	 *   GPRs RAX, RBX, RCX, RDX
2403	 *   XCR0
2404	 *   CPL
2405	 *
2406	 * VMMCALL allows the guest to provide extra registers. KVM also
2407	 * expects RSI for hypercalls, so include that, too.
2408	 *
2409	 * Copy their values to the appropriate location if supplied.
2410	 */
2411	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
2412
2413	vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb);
2414	vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb);
2415	vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb);
2416	vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb);
2417	vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb);
2418
2419	svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb);
2420
2421	if (ghcb_xcr0_is_valid(ghcb)) {
2422		vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
2423		kvm_update_cpuid_runtime(vcpu);
2424	}
2425
2426	/* Copy the GHCB exit information into the VMCB fields */
2427	exit_code = ghcb_get_sw_exit_code(ghcb);
2428	control->exit_code = lower_32_bits(exit_code);
2429	control->exit_code_hi = upper_32_bits(exit_code);
2430	control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
2431	control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
2432
2433	/* Clear the valid entries fields */
2434	memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2435}
2436
2437static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
2438{
2439	struct kvm_vcpu *vcpu;
2440	struct ghcb *ghcb;
2441	u64 exit_code;
2442	u64 reason;
2443
2444	ghcb = svm->sev_es.ghcb;
2445
2446	/*
2447	 * Retrieve the exit code now even though it may not be marked valid
2448	 * as it could help with debugging.
2449	 */
2450	exit_code = ghcb_get_sw_exit_code(ghcb);
2451
2452	/* Only GHCB Usage code 0 is supported */
2453	if (ghcb->ghcb_usage) {
2454		reason = GHCB_ERR_INVALID_USAGE;
2455		goto vmgexit_err;
2456	}
2457
2458	reason = GHCB_ERR_MISSING_INPUT;
2459
2460	if (!ghcb_sw_exit_code_is_valid(ghcb) ||
2461	    !ghcb_sw_exit_info_1_is_valid(ghcb) ||
2462	    !ghcb_sw_exit_info_2_is_valid(ghcb))
2463		goto vmgexit_err;
2464
2465	switch (ghcb_get_sw_exit_code(ghcb)) {
2466	case SVM_EXIT_READ_DR7:
2467		break;
2468	case SVM_EXIT_WRITE_DR7:
2469		if (!ghcb_rax_is_valid(ghcb))
2470			goto vmgexit_err;
2471		break;
2472	case SVM_EXIT_RDTSC:
2473		break;
2474	case SVM_EXIT_RDPMC:
2475		if (!ghcb_rcx_is_valid(ghcb))
2476			goto vmgexit_err;
2477		break;
2478	case SVM_EXIT_CPUID:
2479		if (!ghcb_rax_is_valid(ghcb) ||
2480		    !ghcb_rcx_is_valid(ghcb))
2481			goto vmgexit_err;
2482		if (ghcb_get_rax(ghcb) == 0xd)
2483			if (!ghcb_xcr0_is_valid(ghcb))
2484				goto vmgexit_err;
2485		break;
2486	case SVM_EXIT_INVD:
2487		break;
2488	case SVM_EXIT_IOIO:
2489		if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) {
2490			if (!ghcb_sw_scratch_is_valid(ghcb))
2491				goto vmgexit_err;
2492		} else {
2493			if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK))
2494				if (!ghcb_rax_is_valid(ghcb))
2495					goto vmgexit_err;
2496		}
2497		break;
2498	case SVM_EXIT_MSR:
2499		if (!ghcb_rcx_is_valid(ghcb))
2500			goto vmgexit_err;
2501		if (ghcb_get_sw_exit_info_1(ghcb)) {
2502			if (!ghcb_rax_is_valid(ghcb) ||
2503			    !ghcb_rdx_is_valid(ghcb))
2504				goto vmgexit_err;
2505		}
2506		break;
2507	case SVM_EXIT_VMMCALL:
2508		if (!ghcb_rax_is_valid(ghcb) ||
2509		    !ghcb_cpl_is_valid(ghcb))
2510			goto vmgexit_err;
2511		break;
2512	case SVM_EXIT_RDTSCP:
2513		break;
2514	case SVM_EXIT_WBINVD:
2515		break;
2516	case SVM_EXIT_MONITOR:
2517		if (!ghcb_rax_is_valid(ghcb) ||
2518		    !ghcb_rcx_is_valid(ghcb) ||
2519		    !ghcb_rdx_is_valid(ghcb))
2520			goto vmgexit_err;
2521		break;
2522	case SVM_EXIT_MWAIT:
2523		if (!ghcb_rax_is_valid(ghcb) ||
2524		    !ghcb_rcx_is_valid(ghcb))
2525			goto vmgexit_err;
2526		break;
2527	case SVM_VMGEXIT_MMIO_READ:
2528	case SVM_VMGEXIT_MMIO_WRITE:
2529		if (!ghcb_sw_scratch_is_valid(ghcb))
2530			goto vmgexit_err;
2531		break;
2532	case SVM_VMGEXIT_NMI_COMPLETE:
2533	case SVM_VMGEXIT_AP_HLT_LOOP:
2534	case SVM_VMGEXIT_AP_JUMP_TABLE:
2535	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2536		break;
2537	default:
2538		reason = GHCB_ERR_INVALID_EVENT;
2539		goto vmgexit_err;
2540	}
2541
2542	return 0;
2543
2544vmgexit_err:
2545	vcpu = &svm->vcpu;
2546
2547	if (reason == GHCB_ERR_INVALID_USAGE) {
2548		vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
2549			    ghcb->ghcb_usage);
2550	} else if (reason == GHCB_ERR_INVALID_EVENT) {
2551		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
2552			    exit_code);
2553	} else {
2554		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
2555			    exit_code);
2556		dump_ghcb(svm);
2557	}
2558
2559	/* Clear the valid entries fields */
2560	memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2561
2562	ghcb_set_sw_exit_info_1(ghcb, 2);
2563	ghcb_set_sw_exit_info_2(ghcb, reason);
2564
2565	/* Resume the guest to "return" the error code. */
2566	return 1;
2567}
2568
2569void sev_es_unmap_ghcb(struct vcpu_svm *svm)
2570{
2571	if (!svm->sev_es.ghcb)
2572		return;
2573
2574	if (svm->sev_es.ghcb_sa_free) {
2575		/*
2576		 * The scratch area lives outside the GHCB, so there is a
2577		 * buffer that, depending on the operation performed, may
2578		 * need to be synced, then freed.
2579		 */
2580		if (svm->sev_es.ghcb_sa_sync) {
2581			kvm_write_guest(svm->vcpu.kvm,
2582					ghcb_get_sw_scratch(svm->sev_es.ghcb),
2583					svm->sev_es.ghcb_sa,
2584					svm->sev_es.ghcb_sa_len);
2585			svm->sev_es.ghcb_sa_sync = false;
2586		}
2587
2588		kvfree(svm->sev_es.ghcb_sa);
2589		svm->sev_es.ghcb_sa = NULL;
2590		svm->sev_es.ghcb_sa_free = false;
2591	}
2592
2593	trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
2594
2595	sev_es_sync_to_ghcb(svm);
2596
2597	kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true);
2598	svm->sev_es.ghcb = NULL;
2599}
2600
2601void pre_sev_run(struct vcpu_svm *svm, int cpu)
2602{
2603	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
2604	int asid = sev_get_asid(svm->vcpu.kvm);
2605
2606	/* Assign the asid allocated with this SEV guest */
2607	svm->asid = asid;
2608
2609	/*
2610	 * Flush guest TLB:
2611	 *
2612	 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
2613	 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
2614	 */
2615	if (sd->sev_vmcbs[asid] == svm->vmcb &&
2616	    svm->vcpu.arch.last_vmentry_cpu == cpu)
2617		return;
2618
2619	sd->sev_vmcbs[asid] = svm->vmcb;
2620	svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
2621	vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2622}
2623
2624#define GHCB_SCRATCH_AREA_LIMIT		(16ULL * PAGE_SIZE)
2625static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
2626{
2627	struct vmcb_control_area *control = &svm->vmcb->control;
2628	struct ghcb *ghcb = svm->sev_es.ghcb;
2629	u64 ghcb_scratch_beg, ghcb_scratch_end;
2630	u64 scratch_gpa_beg, scratch_gpa_end;
2631	void *scratch_va;
2632
2633	scratch_gpa_beg = ghcb_get_sw_scratch(ghcb);
2634	if (!scratch_gpa_beg) {
2635		pr_err("vmgexit: scratch gpa not provided\n");
2636		goto e_scratch;
2637	}
2638
2639	scratch_gpa_end = scratch_gpa_beg + len;
2640	if (scratch_gpa_end < scratch_gpa_beg) {
2641		pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
2642		       len, scratch_gpa_beg);
2643		goto e_scratch;
2644	}
2645
2646	if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
2647		/* Scratch area begins within GHCB */
2648		ghcb_scratch_beg = control->ghcb_gpa +
2649				   offsetof(struct ghcb, shared_buffer);
2650		ghcb_scratch_end = control->ghcb_gpa +
2651				   offsetof(struct ghcb, reserved_0xff0);
2652
2653		/*
2654		 * If the scratch area begins within the GHCB, it must be
2655		 * completely contained in the GHCB shared buffer area.
2656		 */
2657		if (scratch_gpa_beg < ghcb_scratch_beg ||
2658		    scratch_gpa_end > ghcb_scratch_end) {
2659			pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
2660			       scratch_gpa_beg, scratch_gpa_end);
2661			goto e_scratch;
2662		}
2663
2664		scratch_va = (void *)svm->sev_es.ghcb;
2665		scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
2666	} else {
2667		/*
2668		 * The guest memory must be read into a kernel buffer, so
2669		 * limit the size
2670		 */
2671		if (len > GHCB_SCRATCH_AREA_LIMIT) {
2672			pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
2673			       len, GHCB_SCRATCH_AREA_LIMIT);
2674			goto e_scratch;
2675		}
2676		scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
2677		if (!scratch_va)
2678			return -ENOMEM;
2679
2680		if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
2681			/* Unable to copy scratch area from guest */
2682			pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
2683
2684			kvfree(scratch_va);
2685			return -EFAULT;
2686		}
2687
2688		/*
2689		 * The scratch area is outside the GHCB. The operation will
2690		 * dictate whether the buffer needs to be synced before running
2691		 * the vCPU next time (i.e. a read was requested so the data
2692		 * must be written back to the guest memory).
2693		 */
2694		svm->sev_es.ghcb_sa_sync = sync;
2695		svm->sev_es.ghcb_sa_free = true;
2696	}
2697
2698	svm->sev_es.ghcb_sa = scratch_va;
2699	svm->sev_es.ghcb_sa_len = len;
2700
2701	return 0;
2702
2703e_scratch:
2704	ghcb_set_sw_exit_info_1(ghcb, 2);
2705	ghcb_set_sw_exit_info_2(ghcb, GHCB_ERR_INVALID_SCRATCH_AREA);
2706
2707	return 1;
2708}
2709
2710static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
2711			      unsigned int pos)
2712{
2713	svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
2714	svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
2715}
2716
2717static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
2718{
2719	return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
2720}
2721
2722static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
2723{
2724	svm->vmcb->control.ghcb_gpa = value;
2725}
2726
2727static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
2728{
2729	struct vmcb_control_area *control = &svm->vmcb->control;
2730	struct kvm_vcpu *vcpu = &svm->vcpu;
2731	u64 ghcb_info;
2732	int ret = 1;
2733
2734	ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
2735
2736	trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
2737					     control->ghcb_gpa);
2738
2739	switch (ghcb_info) {
2740	case GHCB_MSR_SEV_INFO_REQ:
2741		set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2742						    GHCB_VERSION_MIN,
2743						    sev_enc_bit));
2744		break;
2745	case GHCB_MSR_CPUID_REQ: {
2746		u64 cpuid_fn, cpuid_reg, cpuid_value;
2747
2748		cpuid_fn = get_ghcb_msr_bits(svm,
2749					     GHCB_MSR_CPUID_FUNC_MASK,
2750					     GHCB_MSR_CPUID_FUNC_POS);
2751
2752		/* Initialize the registers needed by the CPUID intercept */
2753		vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
2754		vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2755
2756		ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
2757		if (!ret) {
2758			/* Error, keep GHCB MSR value as-is */
2759			break;
2760		}
2761
2762		cpuid_reg = get_ghcb_msr_bits(svm,
2763					      GHCB_MSR_CPUID_REG_MASK,
2764					      GHCB_MSR_CPUID_REG_POS);
2765		if (cpuid_reg == 0)
2766			cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
2767		else if (cpuid_reg == 1)
2768			cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
2769		else if (cpuid_reg == 2)
2770			cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
2771		else
2772			cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
2773
2774		set_ghcb_msr_bits(svm, cpuid_value,
2775				  GHCB_MSR_CPUID_VALUE_MASK,
2776				  GHCB_MSR_CPUID_VALUE_POS);
2777
2778		set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
2779				  GHCB_MSR_INFO_MASK,
2780				  GHCB_MSR_INFO_POS);
2781		break;
2782	}
2783	case GHCB_MSR_TERM_REQ: {
2784		u64 reason_set, reason_code;
2785
2786		reason_set = get_ghcb_msr_bits(svm,
2787					       GHCB_MSR_TERM_REASON_SET_MASK,
2788					       GHCB_MSR_TERM_REASON_SET_POS);
2789		reason_code = get_ghcb_msr_bits(svm,
2790						GHCB_MSR_TERM_REASON_MASK,
2791						GHCB_MSR_TERM_REASON_POS);
2792		pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
2793			reason_set, reason_code);
2794
2795		vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
2796		vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
2797		vcpu->run->system_event.ndata = 1;
2798		vcpu->run->system_event.data[0] = control->ghcb_gpa;
2799
2800		return 0;
2801	}
2802	default:
2803		/* Error, keep GHCB MSR value as-is */
2804		break;
2805	}
2806
2807	trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
2808					    control->ghcb_gpa, ret);
2809
2810	return ret;
2811}
2812
2813int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
2814{
2815	struct vcpu_svm *svm = to_svm(vcpu);
2816	struct vmcb_control_area *control = &svm->vmcb->control;
2817	u64 ghcb_gpa, exit_code;
2818	struct ghcb *ghcb;
2819	int ret;
2820
2821	/* Validate the GHCB */
2822	ghcb_gpa = control->ghcb_gpa;
2823	if (ghcb_gpa & GHCB_MSR_INFO_MASK)
2824		return sev_handle_vmgexit_msr_protocol(svm);
2825
2826	if (!ghcb_gpa) {
2827		vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
2828
2829		/* Without a GHCB, just return right back to the guest */
2830		return 1;
2831	}
2832
2833	if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
2834		/* Unable to map GHCB from guest */
2835		vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
2836			    ghcb_gpa);
2837
2838		/* Without a GHCB, just return right back to the guest */
2839		return 1;
2840	}
2841
2842	svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
2843	ghcb = svm->sev_es.ghcb_map.hva;
2844
2845	trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb);
2846
2847	exit_code = ghcb_get_sw_exit_code(ghcb);
2848
2849	ret = sev_es_validate_vmgexit(svm);
2850	if (ret)
2851		return ret;
2852
2853	sev_es_sync_from_ghcb(svm);
2854	ghcb_set_sw_exit_info_1(ghcb, 0);
2855	ghcb_set_sw_exit_info_2(ghcb, 0);
2856
2857	switch (exit_code) {
2858	case SVM_VMGEXIT_MMIO_READ:
2859		ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
2860		if (ret)
2861			break;
2862
2863		ret = kvm_sev_es_mmio_read(vcpu,
2864					   control->exit_info_1,
2865					   control->exit_info_2,
2866					   svm->sev_es.ghcb_sa);
2867		break;
2868	case SVM_VMGEXIT_MMIO_WRITE:
2869		ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
2870		if (ret)
2871			break;
2872
2873		ret = kvm_sev_es_mmio_write(vcpu,
2874					    control->exit_info_1,
2875					    control->exit_info_2,
2876					    svm->sev_es.ghcb_sa);
2877		break;
2878	case SVM_VMGEXIT_NMI_COMPLETE:
2879		ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET);
2880		break;
2881	case SVM_VMGEXIT_AP_HLT_LOOP:
2882		ret = kvm_emulate_ap_reset_hold(vcpu);
2883		break;
2884	case SVM_VMGEXIT_AP_JUMP_TABLE: {
2885		struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
2886
2887		switch (control->exit_info_1) {
2888		case 0:
2889			/* Set AP jump table address */
2890			sev->ap_jump_table = control->exit_info_2;
2891			break;
2892		case 1:
2893			/* Get AP jump table address */
2894			ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table);
2895			break;
2896		default:
2897			pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
2898			       control->exit_info_1);
2899			ghcb_set_sw_exit_info_1(ghcb, 2);
2900			ghcb_set_sw_exit_info_2(ghcb, GHCB_ERR_INVALID_INPUT);
2901		}
2902
2903		ret = 1;
2904		break;
2905	}
2906	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2907		vcpu_unimpl(vcpu,
2908			    "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
2909			    control->exit_info_1, control->exit_info_2);
2910		ret = -EINVAL;
2911		break;
2912	default:
2913		ret = svm_invoke_exit_handler(vcpu, exit_code);
2914	}
2915
2916	return ret;
2917}
2918
2919int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
2920{
2921	int count;
2922	int bytes;
2923	int r;
2924
2925	if (svm->vmcb->control.exit_info_2 > INT_MAX)
2926		return -EINVAL;
2927
2928	count = svm->vmcb->control.exit_info_2;
2929	if (unlikely(check_mul_overflow(count, size, &bytes)))
2930		return -EINVAL;
2931
2932	r = setup_vmgexit_scratch(svm, in, bytes);
2933	if (r)
2934		return r;
2935
2936	return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
2937				    count, in);
2938}
2939
2940static void sev_es_init_vmcb(struct vcpu_svm *svm)
2941{
2942	struct kvm_vcpu *vcpu = &svm->vcpu;
2943
2944	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
2945	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
2946
2947	/*
2948	 * An SEV-ES guest requires a VMSA area that is a separate from the
2949	 * VMCB page. Do not include the encryption mask on the VMSA physical
2950	 * address since hardware will access it using the guest key.
2951	 */
2952	svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
2953
2954	/* Can't intercept CR register access, HV can't modify CR registers */
2955	svm_clr_intercept(svm, INTERCEPT_CR0_READ);
2956	svm_clr_intercept(svm, INTERCEPT_CR4_READ);
2957	svm_clr_intercept(svm, INTERCEPT_CR8_READ);
2958	svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
2959	svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
2960	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
2961
2962	svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
2963
2964	/* Track EFER/CR register changes */
2965	svm_set_intercept(svm, TRAP_EFER_WRITE);
2966	svm_set_intercept(svm, TRAP_CR0_WRITE);
2967	svm_set_intercept(svm, TRAP_CR4_WRITE);
2968	svm_set_intercept(svm, TRAP_CR8_WRITE);
2969
2970	/* No support for enable_vmware_backdoor */
2971	clr_exception_intercept(svm, GP_VECTOR);
2972
2973	/* Can't intercept XSETBV, HV can't modify XCR0 directly */
2974	svm_clr_intercept(svm, INTERCEPT_XSETBV);
2975
2976	/* Clear intercepts on selected MSRs */
2977	set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
2978	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
2979	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
2980	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
2981	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
2982	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
2983
2984	if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) &&
2985	    (guest_cpuid_has(&svm->vcpu, X86_FEATURE_RDTSCP) ||
2986	     guest_cpuid_has(&svm->vcpu, X86_FEATURE_RDPID))) {
2987		set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, 1, 1);
2988		if (guest_cpuid_has(&svm->vcpu, X86_FEATURE_RDTSCP))
2989			svm_clr_intercept(svm, INTERCEPT_RDTSCP);
2990	}
2991}
2992
2993void sev_init_vmcb(struct vcpu_svm *svm)
2994{
2995	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
2996	clr_exception_intercept(svm, UD_VECTOR);
2997
2998	if (sev_es_guest(svm->vcpu.kvm))
2999		sev_es_init_vmcb(svm);
3000}
3001
3002void sev_es_vcpu_reset(struct vcpu_svm *svm)
3003{
3004	/*
3005	 * Set the GHCB MSR value as per the GHCB specification when emulating
3006	 * vCPU RESET for an SEV-ES guest.
3007	 */
3008	set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
3009					    GHCB_VERSION_MIN,
3010					    sev_enc_bit));
3011}
3012
3013void sev_es_prepare_switch_to_guest(struct sev_es_save_area *hostsa)
3014{
3015	/*
3016	 * As an SEV-ES guest, hardware will restore the host state on VMEXIT,
3017	 * of which one step is to perform a VMLOAD.  KVM performs the
3018	 * corresponding VMSAVE in svm_prepare_guest_switch for both
3019	 * traditional and SEV-ES guests.
3020	 */
3021
3022	/* XCR0 is restored on VMEXIT, save the current host value */
3023	hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
3024
3025	/* PKRU is restored on VMEXIT, save the current host value */
3026	hostsa->pkru = read_pkru();
3027
3028	/* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */
3029	hostsa->xss = host_xss;
3030}
3031
3032void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
3033{
3034	struct vcpu_svm *svm = to_svm(vcpu);
3035
3036	/* First SIPI: Use the values as initially set by the VMM */
3037	if (!svm->sev_es.received_first_sipi) {
3038		svm->sev_es.received_first_sipi = true;
3039		return;
3040	}
3041
3042	/*
3043	 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
3044	 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
3045	 * non-zero value.
3046	 */
3047	if (!svm->sev_es.ghcb)
3048		return;
3049
3050	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1);
3051}