Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * AMD SVM-SEV support
6 *
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 */
9
10#include <linux/kvm_types.h>
11#include <linux/kvm_host.h>
12#include <linux/kernel.h>
13#include <linux/highmem.h>
14#include <linux/psp-sev.h>
15#include <linux/pagemap.h>
16#include <linux/swap.h>
17#include <linux/misc_cgroup.h>
18#include <linux/processor.h>
19#include <linux/trace_events.h>
20
21#include <asm/pkru.h>
22#include <asm/trapnr.h>
23#include <asm/fpu/xcr.h>
24
25#include "mmu.h"
26#include "x86.h"
27#include "svm.h"
28#include "svm_ops.h"
29#include "cpuid.h"
30#include "trace.h"
31
32#ifndef CONFIG_KVM_AMD_SEV
33/*
34 * When this config is not defined, SEV feature is not supported and APIs in
35 * this file are not used but this file still gets compiled into the KVM AMD
36 * module.
37 *
38 * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
39 * misc_res_type {} defined in linux/misc_cgroup.h.
40 *
41 * Below macros allow compilation to succeed.
42 */
43#define MISC_CG_RES_SEV MISC_CG_RES_TYPES
44#define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
45#endif
46
47#ifdef CONFIG_KVM_AMD_SEV
48/* enable/disable SEV support */
49static bool sev_enabled = true;
50module_param_named(sev, sev_enabled, bool, 0444);
51
52/* enable/disable SEV-ES support */
53static bool sev_es_enabled = true;
54module_param_named(sev_es, sev_es_enabled, bool, 0444);
55#else
56#define sev_enabled false
57#define sev_es_enabled false
58#endif /* CONFIG_KVM_AMD_SEV */
59
60static u8 sev_enc_bit;
61static DECLARE_RWSEM(sev_deactivate_lock);
62static DEFINE_MUTEX(sev_bitmap_lock);
63unsigned int max_sev_asid;
64static unsigned int min_sev_asid;
65static unsigned long sev_me_mask;
66static unsigned int nr_asids;
67static unsigned long *sev_asid_bitmap;
68static unsigned long *sev_reclaim_asid_bitmap;
69
70struct enc_region {
71 struct list_head list;
72 unsigned long npages;
73 struct page **pages;
74 unsigned long uaddr;
75 unsigned long size;
76};
77
78/* Called with the sev_bitmap_lock held, or on shutdown */
79static int sev_flush_asids(int min_asid, int max_asid)
80{
81 int ret, asid, error = 0;
82
83 /* Check if there are any ASIDs to reclaim before performing a flush */
84 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
85 if (asid > max_asid)
86 return -EBUSY;
87
88 /*
89 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
90 * so it must be guarded.
91 */
92 down_write(&sev_deactivate_lock);
93
94 wbinvd_on_all_cpus();
95 ret = sev_guest_df_flush(&error);
96
97 up_write(&sev_deactivate_lock);
98
99 if (ret)
100 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
101
102 return ret;
103}
104
105static inline bool is_mirroring_enc_context(struct kvm *kvm)
106{
107 return !!to_kvm_svm(kvm)->sev_info.enc_context_owner;
108}
109
110/* Must be called with the sev_bitmap_lock held */
111static bool __sev_recycle_asids(int min_asid, int max_asid)
112{
113 if (sev_flush_asids(min_asid, max_asid))
114 return false;
115
116 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
117 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
118 nr_asids);
119 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
120
121 return true;
122}
123
124static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
125{
126 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
127 return misc_cg_try_charge(type, sev->misc_cg, 1);
128}
129
130static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
131{
132 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
133 misc_cg_uncharge(type, sev->misc_cg, 1);
134}
135
136static int sev_asid_new(struct kvm_sev_info *sev)
137{
138 int asid, min_asid, max_asid, ret;
139 bool retry = true;
140
141 WARN_ON(sev->misc_cg);
142 sev->misc_cg = get_current_misc_cg();
143 ret = sev_misc_cg_try_charge(sev);
144 if (ret) {
145 put_misc_cg(sev->misc_cg);
146 sev->misc_cg = NULL;
147 return ret;
148 }
149
150 mutex_lock(&sev_bitmap_lock);
151
152 /*
153 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
154 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
155 */
156 min_asid = sev->es_active ? 1 : min_sev_asid;
157 max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
158again:
159 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
160 if (asid > max_asid) {
161 if (retry && __sev_recycle_asids(min_asid, max_asid)) {
162 retry = false;
163 goto again;
164 }
165 mutex_unlock(&sev_bitmap_lock);
166 ret = -EBUSY;
167 goto e_uncharge;
168 }
169
170 __set_bit(asid, sev_asid_bitmap);
171
172 mutex_unlock(&sev_bitmap_lock);
173
174 return asid;
175e_uncharge:
176 sev_misc_cg_uncharge(sev);
177 put_misc_cg(sev->misc_cg);
178 sev->misc_cg = NULL;
179 return ret;
180}
181
182static int sev_get_asid(struct kvm *kvm)
183{
184 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
185
186 return sev->asid;
187}
188
189static void sev_asid_free(struct kvm_sev_info *sev)
190{
191 struct svm_cpu_data *sd;
192 int cpu;
193
194 mutex_lock(&sev_bitmap_lock);
195
196 __set_bit(sev->asid, sev_reclaim_asid_bitmap);
197
198 for_each_possible_cpu(cpu) {
199 sd = per_cpu_ptr(&svm_data, cpu);
200 sd->sev_vmcbs[sev->asid] = NULL;
201 }
202
203 mutex_unlock(&sev_bitmap_lock);
204
205 sev_misc_cg_uncharge(sev);
206 put_misc_cg(sev->misc_cg);
207 sev->misc_cg = NULL;
208}
209
210static void sev_decommission(unsigned int handle)
211{
212 struct sev_data_decommission decommission;
213
214 if (!handle)
215 return;
216
217 decommission.handle = handle;
218 sev_guest_decommission(&decommission, NULL);
219}
220
221static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
222{
223 struct sev_data_deactivate deactivate;
224
225 if (!handle)
226 return;
227
228 deactivate.handle = handle;
229
230 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
231 down_read(&sev_deactivate_lock);
232 sev_guest_deactivate(&deactivate, NULL);
233 up_read(&sev_deactivate_lock);
234
235 sev_decommission(handle);
236}
237
238static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
239{
240 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
241 int asid, ret;
242
243 if (kvm->created_vcpus)
244 return -EINVAL;
245
246 ret = -EBUSY;
247 if (unlikely(sev->active))
248 return ret;
249
250 sev->active = true;
251 sev->es_active = argp->id == KVM_SEV_ES_INIT;
252 asid = sev_asid_new(sev);
253 if (asid < 0)
254 goto e_no_asid;
255 sev->asid = asid;
256
257 ret = sev_platform_init(&argp->error);
258 if (ret)
259 goto e_free;
260
261 INIT_LIST_HEAD(&sev->regions_list);
262 INIT_LIST_HEAD(&sev->mirror_vms);
263
264 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV);
265
266 return 0;
267
268e_free:
269 sev_asid_free(sev);
270 sev->asid = 0;
271e_no_asid:
272 sev->es_active = false;
273 sev->active = false;
274 return ret;
275}
276
277static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
278{
279 struct sev_data_activate activate;
280 int asid = sev_get_asid(kvm);
281 int ret;
282
283 /* activate ASID on the given handle */
284 activate.handle = handle;
285 activate.asid = asid;
286 ret = sev_guest_activate(&activate, error);
287
288 return ret;
289}
290
291static int __sev_issue_cmd(int fd, int id, void *data, int *error)
292{
293 struct fd f;
294 int ret;
295
296 f = fdget(fd);
297 if (!f.file)
298 return -EBADF;
299
300 ret = sev_issue_cmd_external_user(f.file, id, data, error);
301
302 fdput(f);
303 return ret;
304}
305
306static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
307{
308 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
309
310 return __sev_issue_cmd(sev->fd, id, data, error);
311}
312
313static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
314{
315 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
316 struct sev_data_launch_start start;
317 struct kvm_sev_launch_start params;
318 void *dh_blob, *session_blob;
319 int *error = &argp->error;
320 int ret;
321
322 if (!sev_guest(kvm))
323 return -ENOTTY;
324
325 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
326 return -EFAULT;
327
328 memset(&start, 0, sizeof(start));
329
330 dh_blob = NULL;
331 if (params.dh_uaddr) {
332 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
333 if (IS_ERR(dh_blob))
334 return PTR_ERR(dh_blob);
335
336 start.dh_cert_address = __sme_set(__pa(dh_blob));
337 start.dh_cert_len = params.dh_len;
338 }
339
340 session_blob = NULL;
341 if (params.session_uaddr) {
342 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
343 if (IS_ERR(session_blob)) {
344 ret = PTR_ERR(session_blob);
345 goto e_free_dh;
346 }
347
348 start.session_address = __sme_set(__pa(session_blob));
349 start.session_len = params.session_len;
350 }
351
352 start.handle = params.handle;
353 start.policy = params.policy;
354
355 /* create memory encryption context */
356 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
357 if (ret)
358 goto e_free_session;
359
360 /* Bind ASID to this guest */
361 ret = sev_bind_asid(kvm, start.handle, error);
362 if (ret) {
363 sev_decommission(start.handle);
364 goto e_free_session;
365 }
366
367 /* return handle to userspace */
368 params.handle = start.handle;
369 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) {
370 sev_unbind_asid(kvm, start.handle);
371 ret = -EFAULT;
372 goto e_free_session;
373 }
374
375 sev->handle = start.handle;
376 sev->fd = argp->sev_fd;
377
378e_free_session:
379 kfree(session_blob);
380e_free_dh:
381 kfree(dh_blob);
382 return ret;
383}
384
385static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
386 unsigned long ulen, unsigned long *n,
387 int write)
388{
389 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
390 unsigned long npages, size;
391 int npinned;
392 unsigned long locked, lock_limit;
393 struct page **pages;
394 unsigned long first, last;
395 int ret;
396
397 lockdep_assert_held(&kvm->lock);
398
399 if (ulen == 0 || uaddr + ulen < uaddr)
400 return ERR_PTR(-EINVAL);
401
402 /* Calculate number of pages. */
403 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
404 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
405 npages = (last - first + 1);
406
407 locked = sev->pages_locked + npages;
408 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
409 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
410 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
411 return ERR_PTR(-ENOMEM);
412 }
413
414 if (WARN_ON_ONCE(npages > INT_MAX))
415 return ERR_PTR(-EINVAL);
416
417 /* Avoid using vmalloc for smaller buffers. */
418 size = npages * sizeof(struct page *);
419 if (size > PAGE_SIZE)
420 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
421 else
422 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
423
424 if (!pages)
425 return ERR_PTR(-ENOMEM);
426
427 /* Pin the user virtual address. */
428 npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
429 if (npinned != npages) {
430 pr_err("SEV: Failure locking %lu pages.\n", npages);
431 ret = -ENOMEM;
432 goto err;
433 }
434
435 *n = npages;
436 sev->pages_locked = locked;
437
438 return pages;
439
440err:
441 if (npinned > 0)
442 unpin_user_pages(pages, npinned);
443
444 kvfree(pages);
445 return ERR_PTR(ret);
446}
447
448static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
449 unsigned long npages)
450{
451 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
452
453 unpin_user_pages(pages, npages);
454 kvfree(pages);
455 sev->pages_locked -= npages;
456}
457
458static void sev_clflush_pages(struct page *pages[], unsigned long npages)
459{
460 uint8_t *page_virtual;
461 unsigned long i;
462
463 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
464 pages == NULL)
465 return;
466
467 for (i = 0; i < npages; i++) {
468 page_virtual = kmap_local_page(pages[i]);
469 clflush_cache_range(page_virtual, PAGE_SIZE);
470 kunmap_local(page_virtual);
471 cond_resched();
472 }
473}
474
475static unsigned long get_num_contig_pages(unsigned long idx,
476 struct page **inpages, unsigned long npages)
477{
478 unsigned long paddr, next_paddr;
479 unsigned long i = idx + 1, pages = 1;
480
481 /* find the number of contiguous pages starting from idx */
482 paddr = __sme_page_pa(inpages[idx]);
483 while (i < npages) {
484 next_paddr = __sme_page_pa(inpages[i++]);
485 if ((paddr + PAGE_SIZE) == next_paddr) {
486 pages++;
487 paddr = next_paddr;
488 continue;
489 }
490 break;
491 }
492
493 return pages;
494}
495
496static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
497{
498 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
499 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
500 struct kvm_sev_launch_update_data params;
501 struct sev_data_launch_update_data data;
502 struct page **inpages;
503 int ret;
504
505 if (!sev_guest(kvm))
506 return -ENOTTY;
507
508 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
509 return -EFAULT;
510
511 vaddr = params.uaddr;
512 size = params.len;
513 vaddr_end = vaddr + size;
514
515 /* Lock the user memory. */
516 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
517 if (IS_ERR(inpages))
518 return PTR_ERR(inpages);
519
520 /*
521 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
522 * place; the cache may contain the data that was written unencrypted.
523 */
524 sev_clflush_pages(inpages, npages);
525
526 data.reserved = 0;
527 data.handle = sev->handle;
528
529 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
530 int offset, len;
531
532 /*
533 * If the user buffer is not page-aligned, calculate the offset
534 * within the page.
535 */
536 offset = vaddr & (PAGE_SIZE - 1);
537
538 /* Calculate the number of pages that can be encrypted in one go. */
539 pages = get_num_contig_pages(i, inpages, npages);
540
541 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
542
543 data.len = len;
544 data.address = __sme_page_pa(inpages[i]) + offset;
545 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
546 if (ret)
547 goto e_unpin;
548
549 size -= len;
550 next_vaddr = vaddr + len;
551 }
552
553e_unpin:
554 /* content of memory is updated, mark pages dirty */
555 for (i = 0; i < npages; i++) {
556 set_page_dirty_lock(inpages[i]);
557 mark_page_accessed(inpages[i]);
558 }
559 /* unlock the user pages */
560 sev_unpin_memory(kvm, inpages, npages);
561 return ret;
562}
563
564static int sev_es_sync_vmsa(struct vcpu_svm *svm)
565{
566 struct sev_es_save_area *save = svm->sev_es.vmsa;
567
568 /* Check some debug related fields before encrypting the VMSA */
569 if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
570 return -EINVAL;
571
572 /*
573 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
574 * the traditional VMSA that is part of the VMCB. Copy the
575 * traditional VMSA as it has been built so far (in prep
576 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
577 */
578 memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));
579
580 /* Sync registgers */
581 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
582 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
583 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
584 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
585 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
586 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
587 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
588 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
589#ifdef CONFIG_X86_64
590 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8];
591 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9];
592 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
593 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
594 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
595 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
596 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
597 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
598#endif
599 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
600
601 /* Sync some non-GPR registers before encrypting */
602 save->xcr0 = svm->vcpu.arch.xcr0;
603 save->pkru = svm->vcpu.arch.pkru;
604 save->xss = svm->vcpu.arch.ia32_xss;
605 save->dr6 = svm->vcpu.arch.dr6;
606
607 pr_debug("Virtual Machine Save Area (VMSA):\n");
608 print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false);
609
610 return 0;
611}
612
613static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
614 int *error)
615{
616 struct sev_data_launch_update_vmsa vmsa;
617 struct vcpu_svm *svm = to_svm(vcpu);
618 int ret;
619
620 /* Perform some pre-encryption checks against the VMSA */
621 ret = sev_es_sync_vmsa(svm);
622 if (ret)
623 return ret;
624
625 /*
626 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
627 * the VMSA memory content (i.e it will write the same memory region
628 * with the guest's key), so invalidate it first.
629 */
630 clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
631
632 vmsa.reserved = 0;
633 vmsa.handle = to_kvm_svm(kvm)->sev_info.handle;
634 vmsa.address = __sme_pa(svm->sev_es.vmsa);
635 vmsa.len = PAGE_SIZE;
636 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
637 if (ret)
638 return ret;
639
640 vcpu->arch.guest_state_protected = true;
641 return 0;
642}
643
644static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
645{
646 struct kvm_vcpu *vcpu;
647 unsigned long i;
648 int ret;
649
650 if (!sev_es_guest(kvm))
651 return -ENOTTY;
652
653 kvm_for_each_vcpu(i, vcpu, kvm) {
654 ret = mutex_lock_killable(&vcpu->mutex);
655 if (ret)
656 return ret;
657
658 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
659
660 mutex_unlock(&vcpu->mutex);
661 if (ret)
662 return ret;
663 }
664
665 return 0;
666}
667
668static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
669{
670 void __user *measure = (void __user *)(uintptr_t)argp->data;
671 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
672 struct sev_data_launch_measure data;
673 struct kvm_sev_launch_measure params;
674 void __user *p = NULL;
675 void *blob = NULL;
676 int ret;
677
678 if (!sev_guest(kvm))
679 return -ENOTTY;
680
681 if (copy_from_user(¶ms, measure, sizeof(params)))
682 return -EFAULT;
683
684 memset(&data, 0, sizeof(data));
685
686 /* User wants to query the blob length */
687 if (!params.len)
688 goto cmd;
689
690 p = (void __user *)(uintptr_t)params.uaddr;
691 if (p) {
692 if (params.len > SEV_FW_BLOB_MAX_SIZE)
693 return -EINVAL;
694
695 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
696 if (!blob)
697 return -ENOMEM;
698
699 data.address = __psp_pa(blob);
700 data.len = params.len;
701 }
702
703cmd:
704 data.handle = sev->handle;
705 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
706
707 /*
708 * If we query the session length, FW responded with expected data.
709 */
710 if (!params.len)
711 goto done;
712
713 if (ret)
714 goto e_free_blob;
715
716 if (blob) {
717 if (copy_to_user(p, blob, params.len))
718 ret = -EFAULT;
719 }
720
721done:
722 params.len = data.len;
723 if (copy_to_user(measure, ¶ms, sizeof(params)))
724 ret = -EFAULT;
725e_free_blob:
726 kfree(blob);
727 return ret;
728}
729
730static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
731{
732 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
733 struct sev_data_launch_finish data;
734
735 if (!sev_guest(kvm))
736 return -ENOTTY;
737
738 data.handle = sev->handle;
739 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
740}
741
742static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
743{
744 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
745 struct kvm_sev_guest_status params;
746 struct sev_data_guest_status data;
747 int ret;
748
749 if (!sev_guest(kvm))
750 return -ENOTTY;
751
752 memset(&data, 0, sizeof(data));
753
754 data.handle = sev->handle;
755 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
756 if (ret)
757 return ret;
758
759 params.policy = data.policy;
760 params.state = data.state;
761 params.handle = data.handle;
762
763 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params)))
764 ret = -EFAULT;
765
766 return ret;
767}
768
769static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
770 unsigned long dst, int size,
771 int *error, bool enc)
772{
773 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
774 struct sev_data_dbg data;
775
776 data.reserved = 0;
777 data.handle = sev->handle;
778 data.dst_addr = dst;
779 data.src_addr = src;
780 data.len = size;
781
782 return sev_issue_cmd(kvm,
783 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
784 &data, error);
785}
786
787static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
788 unsigned long dst_paddr, int sz, int *err)
789{
790 int offset;
791
792 /*
793 * Its safe to read more than we are asked, caller should ensure that
794 * destination has enough space.
795 */
796 offset = src_paddr & 15;
797 src_paddr = round_down(src_paddr, 16);
798 sz = round_up(sz + offset, 16);
799
800 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
801}
802
803static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
804 void __user *dst_uaddr,
805 unsigned long dst_paddr,
806 int size, int *err)
807{
808 struct page *tpage = NULL;
809 int ret, offset;
810
811 /* if inputs are not 16-byte then use intermediate buffer */
812 if (!IS_ALIGNED(dst_paddr, 16) ||
813 !IS_ALIGNED(paddr, 16) ||
814 !IS_ALIGNED(size, 16)) {
815 tpage = (void *)alloc_page(GFP_KERNEL | __GFP_ZERO);
816 if (!tpage)
817 return -ENOMEM;
818
819 dst_paddr = __sme_page_pa(tpage);
820 }
821
822 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
823 if (ret)
824 goto e_free;
825
826 if (tpage) {
827 offset = paddr & 15;
828 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
829 ret = -EFAULT;
830 }
831
832e_free:
833 if (tpage)
834 __free_page(tpage);
835
836 return ret;
837}
838
839static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
840 void __user *vaddr,
841 unsigned long dst_paddr,
842 void __user *dst_vaddr,
843 int size, int *error)
844{
845 struct page *src_tpage = NULL;
846 struct page *dst_tpage = NULL;
847 int ret, len = size;
848
849 /* If source buffer is not aligned then use an intermediate buffer */
850 if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
851 src_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
852 if (!src_tpage)
853 return -ENOMEM;
854
855 if (copy_from_user(page_address(src_tpage), vaddr, size)) {
856 __free_page(src_tpage);
857 return -EFAULT;
858 }
859
860 paddr = __sme_page_pa(src_tpage);
861 }
862
863 /*
864 * If destination buffer or length is not aligned then do read-modify-write:
865 * - decrypt destination in an intermediate buffer
866 * - copy the source buffer in an intermediate buffer
867 * - use the intermediate buffer as source buffer
868 */
869 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
870 int dst_offset;
871
872 dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
873 if (!dst_tpage) {
874 ret = -ENOMEM;
875 goto e_free;
876 }
877
878 ret = __sev_dbg_decrypt(kvm, dst_paddr,
879 __sme_page_pa(dst_tpage), size, error);
880 if (ret)
881 goto e_free;
882
883 /*
884 * If source is kernel buffer then use memcpy() otherwise
885 * copy_from_user().
886 */
887 dst_offset = dst_paddr & 15;
888
889 if (src_tpage)
890 memcpy(page_address(dst_tpage) + dst_offset,
891 page_address(src_tpage), size);
892 else {
893 if (copy_from_user(page_address(dst_tpage) + dst_offset,
894 vaddr, size)) {
895 ret = -EFAULT;
896 goto e_free;
897 }
898 }
899
900 paddr = __sme_page_pa(dst_tpage);
901 dst_paddr = round_down(dst_paddr, 16);
902 len = round_up(size, 16);
903 }
904
905 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
906
907e_free:
908 if (src_tpage)
909 __free_page(src_tpage);
910 if (dst_tpage)
911 __free_page(dst_tpage);
912 return ret;
913}
914
915static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
916{
917 unsigned long vaddr, vaddr_end, next_vaddr;
918 unsigned long dst_vaddr;
919 struct page **src_p, **dst_p;
920 struct kvm_sev_dbg debug;
921 unsigned long n;
922 unsigned int size;
923 int ret;
924
925 if (!sev_guest(kvm))
926 return -ENOTTY;
927
928 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
929 return -EFAULT;
930
931 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
932 return -EINVAL;
933 if (!debug.dst_uaddr)
934 return -EINVAL;
935
936 vaddr = debug.src_uaddr;
937 size = debug.len;
938 vaddr_end = vaddr + size;
939 dst_vaddr = debug.dst_uaddr;
940
941 for (; vaddr < vaddr_end; vaddr = next_vaddr) {
942 int len, s_off, d_off;
943
944 /* lock userspace source and destination page */
945 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
946 if (IS_ERR(src_p))
947 return PTR_ERR(src_p);
948
949 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
950 if (IS_ERR(dst_p)) {
951 sev_unpin_memory(kvm, src_p, n);
952 return PTR_ERR(dst_p);
953 }
954
955 /*
956 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
957 * the pages; flush the destination too so that future accesses do not
958 * see stale data.
959 */
960 sev_clflush_pages(src_p, 1);
961 sev_clflush_pages(dst_p, 1);
962
963 /*
964 * Since user buffer may not be page aligned, calculate the
965 * offset within the page.
966 */
967 s_off = vaddr & ~PAGE_MASK;
968 d_off = dst_vaddr & ~PAGE_MASK;
969 len = min_t(size_t, (PAGE_SIZE - s_off), size);
970
971 if (dec)
972 ret = __sev_dbg_decrypt_user(kvm,
973 __sme_page_pa(src_p[0]) + s_off,
974 (void __user *)dst_vaddr,
975 __sme_page_pa(dst_p[0]) + d_off,
976 len, &argp->error);
977 else
978 ret = __sev_dbg_encrypt_user(kvm,
979 __sme_page_pa(src_p[0]) + s_off,
980 (void __user *)vaddr,
981 __sme_page_pa(dst_p[0]) + d_off,
982 (void __user *)dst_vaddr,
983 len, &argp->error);
984
985 sev_unpin_memory(kvm, src_p, n);
986 sev_unpin_memory(kvm, dst_p, n);
987
988 if (ret)
989 goto err;
990
991 next_vaddr = vaddr + len;
992 dst_vaddr = dst_vaddr + len;
993 size -= len;
994 }
995err:
996 return ret;
997}
998
999static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
1000{
1001 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1002 struct sev_data_launch_secret data;
1003 struct kvm_sev_launch_secret params;
1004 struct page **pages;
1005 void *blob, *hdr;
1006 unsigned long n, i;
1007 int ret, offset;
1008
1009 if (!sev_guest(kvm))
1010 return -ENOTTY;
1011
1012 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1013 return -EFAULT;
1014
1015 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
1016 if (IS_ERR(pages))
1017 return PTR_ERR(pages);
1018
1019 /*
1020 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1021 * place; the cache may contain the data that was written unencrypted.
1022 */
1023 sev_clflush_pages(pages, n);
1024
1025 /*
1026 * The secret must be copied into contiguous memory region, lets verify
1027 * that userspace memory pages are contiguous before we issue command.
1028 */
1029 if (get_num_contig_pages(0, pages, n) != n) {
1030 ret = -EINVAL;
1031 goto e_unpin_memory;
1032 }
1033
1034 memset(&data, 0, sizeof(data));
1035
1036 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1037 data.guest_address = __sme_page_pa(pages[0]) + offset;
1038 data.guest_len = params.guest_len;
1039
1040 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1041 if (IS_ERR(blob)) {
1042 ret = PTR_ERR(blob);
1043 goto e_unpin_memory;
1044 }
1045
1046 data.trans_address = __psp_pa(blob);
1047 data.trans_len = params.trans_len;
1048
1049 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1050 if (IS_ERR(hdr)) {
1051 ret = PTR_ERR(hdr);
1052 goto e_free_blob;
1053 }
1054 data.hdr_address = __psp_pa(hdr);
1055 data.hdr_len = params.hdr_len;
1056
1057 data.handle = sev->handle;
1058 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1059
1060 kfree(hdr);
1061
1062e_free_blob:
1063 kfree(blob);
1064e_unpin_memory:
1065 /* content of memory is updated, mark pages dirty */
1066 for (i = 0; i < n; i++) {
1067 set_page_dirty_lock(pages[i]);
1068 mark_page_accessed(pages[i]);
1069 }
1070 sev_unpin_memory(kvm, pages, n);
1071 return ret;
1072}
1073
1074static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1075{
1076 void __user *report = (void __user *)(uintptr_t)argp->data;
1077 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1078 struct sev_data_attestation_report data;
1079 struct kvm_sev_attestation_report params;
1080 void __user *p;
1081 void *blob = NULL;
1082 int ret;
1083
1084 if (!sev_guest(kvm))
1085 return -ENOTTY;
1086
1087 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1088 return -EFAULT;
1089
1090 memset(&data, 0, sizeof(data));
1091
1092 /* User wants to query the blob length */
1093 if (!params.len)
1094 goto cmd;
1095
1096 p = (void __user *)(uintptr_t)params.uaddr;
1097 if (p) {
1098 if (params.len > SEV_FW_BLOB_MAX_SIZE)
1099 return -EINVAL;
1100
1101 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1102 if (!blob)
1103 return -ENOMEM;
1104
1105 data.address = __psp_pa(blob);
1106 data.len = params.len;
1107 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1108 }
1109cmd:
1110 data.handle = sev->handle;
1111 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1112 /*
1113 * If we query the session length, FW responded with expected data.
1114 */
1115 if (!params.len)
1116 goto done;
1117
1118 if (ret)
1119 goto e_free_blob;
1120
1121 if (blob) {
1122 if (copy_to_user(p, blob, params.len))
1123 ret = -EFAULT;
1124 }
1125
1126done:
1127 params.len = data.len;
1128 if (copy_to_user(report, ¶ms, sizeof(params)))
1129 ret = -EFAULT;
1130e_free_blob:
1131 kfree(blob);
1132 return ret;
1133}
1134
1135/* Userspace wants to query session length. */
1136static int
1137__sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1138 struct kvm_sev_send_start *params)
1139{
1140 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1141 struct sev_data_send_start data;
1142 int ret;
1143
1144 memset(&data, 0, sizeof(data));
1145 data.handle = sev->handle;
1146 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1147
1148 params->session_len = data.session_len;
1149 if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1150 sizeof(struct kvm_sev_send_start)))
1151 ret = -EFAULT;
1152
1153 return ret;
1154}
1155
1156static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1157{
1158 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1159 struct sev_data_send_start data;
1160 struct kvm_sev_send_start params;
1161 void *amd_certs, *session_data;
1162 void *pdh_cert, *plat_certs;
1163 int ret;
1164
1165 if (!sev_guest(kvm))
1166 return -ENOTTY;
1167
1168 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data,
1169 sizeof(struct kvm_sev_send_start)))
1170 return -EFAULT;
1171
1172 /* if session_len is zero, userspace wants to query the session length */
1173 if (!params.session_len)
1174 return __sev_send_start_query_session_length(kvm, argp,
1175 ¶ms);
1176
1177 /* some sanity checks */
1178 if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1179 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1180 return -EINVAL;
1181
1182 /* allocate the memory to hold the session data blob */
1183 session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1184 if (!session_data)
1185 return -ENOMEM;
1186
1187 /* copy the certificate blobs from userspace */
1188 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1189 params.pdh_cert_len);
1190 if (IS_ERR(pdh_cert)) {
1191 ret = PTR_ERR(pdh_cert);
1192 goto e_free_session;
1193 }
1194
1195 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1196 params.plat_certs_len);
1197 if (IS_ERR(plat_certs)) {
1198 ret = PTR_ERR(plat_certs);
1199 goto e_free_pdh;
1200 }
1201
1202 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1203 params.amd_certs_len);
1204 if (IS_ERR(amd_certs)) {
1205 ret = PTR_ERR(amd_certs);
1206 goto e_free_plat_cert;
1207 }
1208
1209 /* populate the FW SEND_START field with system physical address */
1210 memset(&data, 0, sizeof(data));
1211 data.pdh_cert_address = __psp_pa(pdh_cert);
1212 data.pdh_cert_len = params.pdh_cert_len;
1213 data.plat_certs_address = __psp_pa(plat_certs);
1214 data.plat_certs_len = params.plat_certs_len;
1215 data.amd_certs_address = __psp_pa(amd_certs);
1216 data.amd_certs_len = params.amd_certs_len;
1217 data.session_address = __psp_pa(session_data);
1218 data.session_len = params.session_len;
1219 data.handle = sev->handle;
1220
1221 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1222
1223 if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr,
1224 session_data, params.session_len)) {
1225 ret = -EFAULT;
1226 goto e_free_amd_cert;
1227 }
1228
1229 params.policy = data.policy;
1230 params.session_len = data.session_len;
1231 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms,
1232 sizeof(struct kvm_sev_send_start)))
1233 ret = -EFAULT;
1234
1235e_free_amd_cert:
1236 kfree(amd_certs);
1237e_free_plat_cert:
1238 kfree(plat_certs);
1239e_free_pdh:
1240 kfree(pdh_cert);
1241e_free_session:
1242 kfree(session_data);
1243 return ret;
1244}
1245
1246/* Userspace wants to query either header or trans length. */
1247static int
1248__sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1249 struct kvm_sev_send_update_data *params)
1250{
1251 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1252 struct sev_data_send_update_data data;
1253 int ret;
1254
1255 memset(&data, 0, sizeof(data));
1256 data.handle = sev->handle;
1257 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1258
1259 params->hdr_len = data.hdr_len;
1260 params->trans_len = data.trans_len;
1261
1262 if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1263 sizeof(struct kvm_sev_send_update_data)))
1264 ret = -EFAULT;
1265
1266 return ret;
1267}
1268
1269static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1270{
1271 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1272 struct sev_data_send_update_data data;
1273 struct kvm_sev_send_update_data params;
1274 void *hdr, *trans_data;
1275 struct page **guest_page;
1276 unsigned long n;
1277 int ret, offset;
1278
1279 if (!sev_guest(kvm))
1280 return -ENOTTY;
1281
1282 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data,
1283 sizeof(struct kvm_sev_send_update_data)))
1284 return -EFAULT;
1285
1286 /* userspace wants to query either header or trans length */
1287 if (!params.trans_len || !params.hdr_len)
1288 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms);
1289
1290 if (!params.trans_uaddr || !params.guest_uaddr ||
1291 !params.guest_len || !params.hdr_uaddr)
1292 return -EINVAL;
1293
1294 /* Check if we are crossing the page boundary */
1295 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1296 if ((params.guest_len + offset > PAGE_SIZE))
1297 return -EINVAL;
1298
1299 /* Pin guest memory */
1300 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1301 PAGE_SIZE, &n, 0);
1302 if (IS_ERR(guest_page))
1303 return PTR_ERR(guest_page);
1304
1305 /* allocate memory for header and transport buffer */
1306 ret = -ENOMEM;
1307 hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1308 if (!hdr)
1309 goto e_unpin;
1310
1311 trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1312 if (!trans_data)
1313 goto e_free_hdr;
1314
1315 memset(&data, 0, sizeof(data));
1316 data.hdr_address = __psp_pa(hdr);
1317 data.hdr_len = params.hdr_len;
1318 data.trans_address = __psp_pa(trans_data);
1319 data.trans_len = params.trans_len;
1320
1321 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1322 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1323 data.guest_address |= sev_me_mask;
1324 data.guest_len = params.guest_len;
1325 data.handle = sev->handle;
1326
1327 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1328
1329 if (ret)
1330 goto e_free_trans_data;
1331
1332 /* copy transport buffer to user space */
1333 if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr,
1334 trans_data, params.trans_len)) {
1335 ret = -EFAULT;
1336 goto e_free_trans_data;
1337 }
1338
1339 /* Copy packet header to userspace. */
1340 if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr,
1341 params.hdr_len))
1342 ret = -EFAULT;
1343
1344e_free_trans_data:
1345 kfree(trans_data);
1346e_free_hdr:
1347 kfree(hdr);
1348e_unpin:
1349 sev_unpin_memory(kvm, guest_page, n);
1350
1351 return ret;
1352}
1353
1354static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1355{
1356 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1357 struct sev_data_send_finish data;
1358
1359 if (!sev_guest(kvm))
1360 return -ENOTTY;
1361
1362 data.handle = sev->handle;
1363 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1364}
1365
1366static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1367{
1368 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1369 struct sev_data_send_cancel data;
1370
1371 if (!sev_guest(kvm))
1372 return -ENOTTY;
1373
1374 data.handle = sev->handle;
1375 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1376}
1377
1378static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1379{
1380 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1381 struct sev_data_receive_start start;
1382 struct kvm_sev_receive_start params;
1383 int *error = &argp->error;
1384 void *session_data;
1385 void *pdh_data;
1386 int ret;
1387
1388 if (!sev_guest(kvm))
1389 return -ENOTTY;
1390
1391 /* Get parameter from the userspace */
1392 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data,
1393 sizeof(struct kvm_sev_receive_start)))
1394 return -EFAULT;
1395
1396 /* some sanity checks */
1397 if (!params.pdh_uaddr || !params.pdh_len ||
1398 !params.session_uaddr || !params.session_len)
1399 return -EINVAL;
1400
1401 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1402 if (IS_ERR(pdh_data))
1403 return PTR_ERR(pdh_data);
1404
1405 session_data = psp_copy_user_blob(params.session_uaddr,
1406 params.session_len);
1407 if (IS_ERR(session_data)) {
1408 ret = PTR_ERR(session_data);
1409 goto e_free_pdh;
1410 }
1411
1412 memset(&start, 0, sizeof(start));
1413 start.handle = params.handle;
1414 start.policy = params.policy;
1415 start.pdh_cert_address = __psp_pa(pdh_data);
1416 start.pdh_cert_len = params.pdh_len;
1417 start.session_address = __psp_pa(session_data);
1418 start.session_len = params.session_len;
1419
1420 /* create memory encryption context */
1421 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1422 error);
1423 if (ret)
1424 goto e_free_session;
1425
1426 /* Bind ASID to this guest */
1427 ret = sev_bind_asid(kvm, start.handle, error);
1428 if (ret) {
1429 sev_decommission(start.handle);
1430 goto e_free_session;
1431 }
1432
1433 params.handle = start.handle;
1434 if (copy_to_user((void __user *)(uintptr_t)argp->data,
1435 ¶ms, sizeof(struct kvm_sev_receive_start))) {
1436 ret = -EFAULT;
1437 sev_unbind_asid(kvm, start.handle);
1438 goto e_free_session;
1439 }
1440
1441 sev->handle = start.handle;
1442 sev->fd = argp->sev_fd;
1443
1444e_free_session:
1445 kfree(session_data);
1446e_free_pdh:
1447 kfree(pdh_data);
1448
1449 return ret;
1450}
1451
1452static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1453{
1454 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1455 struct kvm_sev_receive_update_data params;
1456 struct sev_data_receive_update_data data;
1457 void *hdr = NULL, *trans = NULL;
1458 struct page **guest_page;
1459 unsigned long n;
1460 int ret, offset;
1461
1462 if (!sev_guest(kvm))
1463 return -EINVAL;
1464
1465 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data,
1466 sizeof(struct kvm_sev_receive_update_data)))
1467 return -EFAULT;
1468
1469 if (!params.hdr_uaddr || !params.hdr_len ||
1470 !params.guest_uaddr || !params.guest_len ||
1471 !params.trans_uaddr || !params.trans_len)
1472 return -EINVAL;
1473
1474 /* Check if we are crossing the page boundary */
1475 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1476 if ((params.guest_len + offset > PAGE_SIZE))
1477 return -EINVAL;
1478
1479 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1480 if (IS_ERR(hdr))
1481 return PTR_ERR(hdr);
1482
1483 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1484 if (IS_ERR(trans)) {
1485 ret = PTR_ERR(trans);
1486 goto e_free_hdr;
1487 }
1488
1489 memset(&data, 0, sizeof(data));
1490 data.hdr_address = __psp_pa(hdr);
1491 data.hdr_len = params.hdr_len;
1492 data.trans_address = __psp_pa(trans);
1493 data.trans_len = params.trans_len;
1494
1495 /* Pin guest memory */
1496 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1497 PAGE_SIZE, &n, 1);
1498 if (IS_ERR(guest_page)) {
1499 ret = PTR_ERR(guest_page);
1500 goto e_free_trans;
1501 }
1502
1503 /*
1504 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1505 * encrypts the written data with the guest's key, and the cache may
1506 * contain dirty, unencrypted data.
1507 */
1508 sev_clflush_pages(guest_page, n);
1509
1510 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1511 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1512 data.guest_address |= sev_me_mask;
1513 data.guest_len = params.guest_len;
1514 data.handle = sev->handle;
1515
1516 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1517 &argp->error);
1518
1519 sev_unpin_memory(kvm, guest_page, n);
1520
1521e_free_trans:
1522 kfree(trans);
1523e_free_hdr:
1524 kfree(hdr);
1525
1526 return ret;
1527}
1528
1529static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1530{
1531 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1532 struct sev_data_receive_finish data;
1533
1534 if (!sev_guest(kvm))
1535 return -ENOTTY;
1536
1537 data.handle = sev->handle;
1538 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1539}
1540
1541static bool is_cmd_allowed_from_mirror(u32 cmd_id)
1542{
1543 /*
1544 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1545 * active mirror VMs. Also allow the debugging and status commands.
1546 */
1547 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1548 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1549 cmd_id == KVM_SEV_DBG_ENCRYPT)
1550 return true;
1551
1552 return false;
1553}
1554
1555static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1556{
1557 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1558 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1559 int r = -EBUSY;
1560
1561 if (dst_kvm == src_kvm)
1562 return -EINVAL;
1563
1564 /*
1565 * Bail if these VMs are already involved in a migration to avoid
1566 * deadlock between two VMs trying to migrate to/from each other.
1567 */
1568 if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
1569 return -EBUSY;
1570
1571 if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
1572 goto release_dst;
1573
1574 r = -EINTR;
1575 if (mutex_lock_killable(&dst_kvm->lock))
1576 goto release_src;
1577 if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
1578 goto unlock_dst;
1579 return 0;
1580
1581unlock_dst:
1582 mutex_unlock(&dst_kvm->lock);
1583release_src:
1584 atomic_set_release(&src_sev->migration_in_progress, 0);
1585release_dst:
1586 atomic_set_release(&dst_sev->migration_in_progress, 0);
1587 return r;
1588}
1589
1590static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1591{
1592 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1593 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1594
1595 mutex_unlock(&dst_kvm->lock);
1596 mutex_unlock(&src_kvm->lock);
1597 atomic_set_release(&dst_sev->migration_in_progress, 0);
1598 atomic_set_release(&src_sev->migration_in_progress, 0);
1599}
1600
1601/* vCPU mutex subclasses. */
1602enum sev_migration_role {
1603 SEV_MIGRATION_SOURCE = 0,
1604 SEV_MIGRATION_TARGET,
1605 SEV_NR_MIGRATION_ROLES,
1606};
1607
1608static int sev_lock_vcpus_for_migration(struct kvm *kvm,
1609 enum sev_migration_role role)
1610{
1611 struct kvm_vcpu *vcpu;
1612 unsigned long i, j;
1613
1614 kvm_for_each_vcpu(i, vcpu, kvm) {
1615 if (mutex_lock_killable_nested(&vcpu->mutex, role))
1616 goto out_unlock;
1617
1618#ifdef CONFIG_PROVE_LOCKING
1619 if (!i)
1620 /*
1621 * Reset the role to one that avoids colliding with
1622 * the role used for the first vcpu mutex.
1623 */
1624 role = SEV_NR_MIGRATION_ROLES;
1625 else
1626 mutex_release(&vcpu->mutex.dep_map, _THIS_IP_);
1627#endif
1628 }
1629
1630 return 0;
1631
1632out_unlock:
1633
1634 kvm_for_each_vcpu(j, vcpu, kvm) {
1635 if (i == j)
1636 break;
1637
1638#ifdef CONFIG_PROVE_LOCKING
1639 if (j)
1640 mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_);
1641#endif
1642
1643 mutex_unlock(&vcpu->mutex);
1644 }
1645 return -EINTR;
1646}
1647
1648static void sev_unlock_vcpus_for_migration(struct kvm *kvm)
1649{
1650 struct kvm_vcpu *vcpu;
1651 unsigned long i;
1652 bool first = true;
1653
1654 kvm_for_each_vcpu(i, vcpu, kvm) {
1655 if (first)
1656 first = false;
1657 else
1658 mutex_acquire(&vcpu->mutex.dep_map,
1659 SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_);
1660
1661 mutex_unlock(&vcpu->mutex);
1662 }
1663}
1664
1665static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
1666{
1667 struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info;
1668 struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info;
1669 struct kvm_vcpu *dst_vcpu, *src_vcpu;
1670 struct vcpu_svm *dst_svm, *src_svm;
1671 struct kvm_sev_info *mirror;
1672 unsigned long i;
1673
1674 dst->active = true;
1675 dst->asid = src->asid;
1676 dst->handle = src->handle;
1677 dst->pages_locked = src->pages_locked;
1678 dst->enc_context_owner = src->enc_context_owner;
1679 dst->es_active = src->es_active;
1680
1681 src->asid = 0;
1682 src->active = false;
1683 src->handle = 0;
1684 src->pages_locked = 0;
1685 src->enc_context_owner = NULL;
1686 src->es_active = false;
1687
1688 list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
1689
1690 /*
1691 * If this VM has mirrors, "transfer" each mirror's refcount of the
1692 * source to the destination (this KVM). The caller holds a reference
1693 * to the source, so there's no danger of use-after-free.
1694 */
1695 list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms);
1696 list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
1697 kvm_get_kvm(dst_kvm);
1698 kvm_put_kvm(src_kvm);
1699 mirror->enc_context_owner = dst_kvm;
1700 }
1701
1702 /*
1703 * If this VM is a mirror, remove the old mirror from the owners list
1704 * and add the new mirror to the list.
1705 */
1706 if (is_mirroring_enc_context(dst_kvm)) {
1707 struct kvm_sev_info *owner_sev_info =
1708 &to_kvm_svm(dst->enc_context_owner)->sev_info;
1709
1710 list_del(&src->mirror_entry);
1711 list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
1712 }
1713
1714 kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
1715 dst_svm = to_svm(dst_vcpu);
1716
1717 sev_init_vmcb(dst_svm);
1718
1719 if (!dst->es_active)
1720 continue;
1721
1722 /*
1723 * Note, the source is not required to have the same number of
1724 * vCPUs as the destination when migrating a vanilla SEV VM.
1725 */
1726 src_vcpu = kvm_get_vcpu(dst_kvm, i);
1727 src_svm = to_svm(src_vcpu);
1728
1729 /*
1730 * Transfer VMSA and GHCB state to the destination. Nullify and
1731 * clear source fields as appropriate, the state now belongs to
1732 * the destination.
1733 */
1734 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
1735 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
1736 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
1737 dst_vcpu->arch.guest_state_protected = true;
1738
1739 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
1740 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
1741 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
1742 src_vcpu->arch.guest_state_protected = false;
1743 }
1744}
1745
1746static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
1747{
1748 struct kvm_vcpu *src_vcpu;
1749 unsigned long i;
1750
1751 if (!sev_es_guest(src))
1752 return 0;
1753
1754 if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
1755 return -EINVAL;
1756
1757 kvm_for_each_vcpu(i, src_vcpu, src) {
1758 if (!src_vcpu->arch.guest_state_protected)
1759 return -EINVAL;
1760 }
1761
1762 return 0;
1763}
1764
1765int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
1766{
1767 struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info;
1768 struct kvm_sev_info *src_sev, *cg_cleanup_sev;
1769 struct file *source_kvm_file;
1770 struct kvm *source_kvm;
1771 bool charged = false;
1772 int ret;
1773
1774 source_kvm_file = fget(source_fd);
1775 if (!file_is_kvm(source_kvm_file)) {
1776 ret = -EBADF;
1777 goto out_fput;
1778 }
1779
1780 source_kvm = source_kvm_file->private_data;
1781 ret = sev_lock_two_vms(kvm, source_kvm);
1782 if (ret)
1783 goto out_fput;
1784
1785 if (sev_guest(kvm) || !sev_guest(source_kvm)) {
1786 ret = -EINVAL;
1787 goto out_unlock;
1788 }
1789
1790 src_sev = &to_kvm_svm(source_kvm)->sev_info;
1791
1792 dst_sev->misc_cg = get_current_misc_cg();
1793 cg_cleanup_sev = dst_sev;
1794 if (dst_sev->misc_cg != src_sev->misc_cg) {
1795 ret = sev_misc_cg_try_charge(dst_sev);
1796 if (ret)
1797 goto out_dst_cgroup;
1798 charged = true;
1799 }
1800
1801 ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE);
1802 if (ret)
1803 goto out_dst_cgroup;
1804 ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET);
1805 if (ret)
1806 goto out_dst_vcpu;
1807
1808 ret = sev_check_source_vcpus(kvm, source_kvm);
1809 if (ret)
1810 goto out_source_vcpu;
1811
1812 sev_migrate_from(kvm, source_kvm);
1813 kvm_vm_dead(source_kvm);
1814 cg_cleanup_sev = src_sev;
1815 ret = 0;
1816
1817out_source_vcpu:
1818 sev_unlock_vcpus_for_migration(source_kvm);
1819out_dst_vcpu:
1820 sev_unlock_vcpus_for_migration(kvm);
1821out_dst_cgroup:
1822 /* Operates on the source on success, on the destination on failure. */
1823 if (charged)
1824 sev_misc_cg_uncharge(cg_cleanup_sev);
1825 put_misc_cg(cg_cleanup_sev->misc_cg);
1826 cg_cleanup_sev->misc_cg = NULL;
1827out_unlock:
1828 sev_unlock_two_vms(kvm, source_kvm);
1829out_fput:
1830 if (source_kvm_file)
1831 fput(source_kvm_file);
1832 return ret;
1833}
1834
1835int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
1836{
1837 struct kvm_sev_cmd sev_cmd;
1838 int r;
1839
1840 if (!sev_enabled)
1841 return -ENOTTY;
1842
1843 if (!argp)
1844 return 0;
1845
1846 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
1847 return -EFAULT;
1848
1849 mutex_lock(&kvm->lock);
1850
1851 /* Only the enc_context_owner handles some memory enc operations. */
1852 if (is_mirroring_enc_context(kvm) &&
1853 !is_cmd_allowed_from_mirror(sev_cmd.id)) {
1854 r = -EINVAL;
1855 goto out;
1856 }
1857
1858 switch (sev_cmd.id) {
1859 case KVM_SEV_ES_INIT:
1860 if (!sev_es_enabled) {
1861 r = -ENOTTY;
1862 goto out;
1863 }
1864 fallthrough;
1865 case KVM_SEV_INIT:
1866 r = sev_guest_init(kvm, &sev_cmd);
1867 break;
1868 case KVM_SEV_LAUNCH_START:
1869 r = sev_launch_start(kvm, &sev_cmd);
1870 break;
1871 case KVM_SEV_LAUNCH_UPDATE_DATA:
1872 r = sev_launch_update_data(kvm, &sev_cmd);
1873 break;
1874 case KVM_SEV_LAUNCH_UPDATE_VMSA:
1875 r = sev_launch_update_vmsa(kvm, &sev_cmd);
1876 break;
1877 case KVM_SEV_LAUNCH_MEASURE:
1878 r = sev_launch_measure(kvm, &sev_cmd);
1879 break;
1880 case KVM_SEV_LAUNCH_FINISH:
1881 r = sev_launch_finish(kvm, &sev_cmd);
1882 break;
1883 case KVM_SEV_GUEST_STATUS:
1884 r = sev_guest_status(kvm, &sev_cmd);
1885 break;
1886 case KVM_SEV_DBG_DECRYPT:
1887 r = sev_dbg_crypt(kvm, &sev_cmd, true);
1888 break;
1889 case KVM_SEV_DBG_ENCRYPT:
1890 r = sev_dbg_crypt(kvm, &sev_cmd, false);
1891 break;
1892 case KVM_SEV_LAUNCH_SECRET:
1893 r = sev_launch_secret(kvm, &sev_cmd);
1894 break;
1895 case KVM_SEV_GET_ATTESTATION_REPORT:
1896 r = sev_get_attestation_report(kvm, &sev_cmd);
1897 break;
1898 case KVM_SEV_SEND_START:
1899 r = sev_send_start(kvm, &sev_cmd);
1900 break;
1901 case KVM_SEV_SEND_UPDATE_DATA:
1902 r = sev_send_update_data(kvm, &sev_cmd);
1903 break;
1904 case KVM_SEV_SEND_FINISH:
1905 r = sev_send_finish(kvm, &sev_cmd);
1906 break;
1907 case KVM_SEV_SEND_CANCEL:
1908 r = sev_send_cancel(kvm, &sev_cmd);
1909 break;
1910 case KVM_SEV_RECEIVE_START:
1911 r = sev_receive_start(kvm, &sev_cmd);
1912 break;
1913 case KVM_SEV_RECEIVE_UPDATE_DATA:
1914 r = sev_receive_update_data(kvm, &sev_cmd);
1915 break;
1916 case KVM_SEV_RECEIVE_FINISH:
1917 r = sev_receive_finish(kvm, &sev_cmd);
1918 break;
1919 default:
1920 r = -EINVAL;
1921 goto out;
1922 }
1923
1924 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
1925 r = -EFAULT;
1926
1927out:
1928 mutex_unlock(&kvm->lock);
1929 return r;
1930}
1931
1932int sev_mem_enc_register_region(struct kvm *kvm,
1933 struct kvm_enc_region *range)
1934{
1935 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1936 struct enc_region *region;
1937 int ret = 0;
1938
1939 if (!sev_guest(kvm))
1940 return -ENOTTY;
1941
1942 /* If kvm is mirroring encryption context it isn't responsible for it */
1943 if (is_mirroring_enc_context(kvm))
1944 return -EINVAL;
1945
1946 if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
1947 return -EINVAL;
1948
1949 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
1950 if (!region)
1951 return -ENOMEM;
1952
1953 mutex_lock(&kvm->lock);
1954 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1);
1955 if (IS_ERR(region->pages)) {
1956 ret = PTR_ERR(region->pages);
1957 mutex_unlock(&kvm->lock);
1958 goto e_free;
1959 }
1960
1961 region->uaddr = range->addr;
1962 region->size = range->size;
1963
1964 list_add_tail(®ion->list, &sev->regions_list);
1965 mutex_unlock(&kvm->lock);
1966
1967 /*
1968 * The guest may change the memory encryption attribute from C=0 -> C=1
1969 * or vice versa for this memory range. Lets make sure caches are
1970 * flushed to ensure that guest data gets written into memory with
1971 * correct C-bit.
1972 */
1973 sev_clflush_pages(region->pages, region->npages);
1974
1975 return ret;
1976
1977e_free:
1978 kfree(region);
1979 return ret;
1980}
1981
1982static struct enc_region *
1983find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
1984{
1985 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1986 struct list_head *head = &sev->regions_list;
1987 struct enc_region *i;
1988
1989 list_for_each_entry(i, head, list) {
1990 if (i->uaddr == range->addr &&
1991 i->size == range->size)
1992 return i;
1993 }
1994
1995 return NULL;
1996}
1997
1998static void __unregister_enc_region_locked(struct kvm *kvm,
1999 struct enc_region *region)
2000{
2001 sev_unpin_memory(kvm, region->pages, region->npages);
2002 list_del(®ion->list);
2003 kfree(region);
2004}
2005
2006int sev_mem_enc_unregister_region(struct kvm *kvm,
2007 struct kvm_enc_region *range)
2008{
2009 struct enc_region *region;
2010 int ret;
2011
2012 /* If kvm is mirroring encryption context it isn't responsible for it */
2013 if (is_mirroring_enc_context(kvm))
2014 return -EINVAL;
2015
2016 mutex_lock(&kvm->lock);
2017
2018 if (!sev_guest(kvm)) {
2019 ret = -ENOTTY;
2020 goto failed;
2021 }
2022
2023 region = find_enc_region(kvm, range);
2024 if (!region) {
2025 ret = -EINVAL;
2026 goto failed;
2027 }
2028
2029 /*
2030 * Ensure that all guest tagged cache entries are flushed before
2031 * releasing the pages back to the system for use. CLFLUSH will
2032 * not do this, so issue a WBINVD.
2033 */
2034 wbinvd_on_all_cpus();
2035
2036 __unregister_enc_region_locked(kvm, region);
2037
2038 mutex_unlock(&kvm->lock);
2039 return 0;
2040
2041failed:
2042 mutex_unlock(&kvm->lock);
2043 return ret;
2044}
2045
2046int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2047{
2048 struct file *source_kvm_file;
2049 struct kvm *source_kvm;
2050 struct kvm_sev_info *source_sev, *mirror_sev;
2051 int ret;
2052
2053 source_kvm_file = fget(source_fd);
2054 if (!file_is_kvm(source_kvm_file)) {
2055 ret = -EBADF;
2056 goto e_source_fput;
2057 }
2058
2059 source_kvm = source_kvm_file->private_data;
2060 ret = sev_lock_two_vms(kvm, source_kvm);
2061 if (ret)
2062 goto e_source_fput;
2063
2064 /*
2065 * Mirrors of mirrors should work, but let's not get silly. Also
2066 * disallow out-of-band SEV/SEV-ES init if the target is already an
2067 * SEV guest, or if vCPUs have been created. KVM relies on vCPUs being
2068 * created after SEV/SEV-ES initialization, e.g. to init intercepts.
2069 */
2070 if (sev_guest(kvm) || !sev_guest(source_kvm) ||
2071 is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
2072 ret = -EINVAL;
2073 goto e_unlock;
2074 }
2075
2076 /*
2077 * The mirror kvm holds an enc_context_owner ref so its asid can't
2078 * disappear until we're done with it
2079 */
2080 source_sev = &to_kvm_svm(source_kvm)->sev_info;
2081 kvm_get_kvm(source_kvm);
2082 mirror_sev = &to_kvm_svm(kvm)->sev_info;
2083 list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);
2084
2085 /* Set enc_context_owner and copy its encryption context over */
2086 mirror_sev->enc_context_owner = source_kvm;
2087 mirror_sev->active = true;
2088 mirror_sev->asid = source_sev->asid;
2089 mirror_sev->fd = source_sev->fd;
2090 mirror_sev->es_active = source_sev->es_active;
2091 mirror_sev->handle = source_sev->handle;
2092 INIT_LIST_HEAD(&mirror_sev->regions_list);
2093 INIT_LIST_HEAD(&mirror_sev->mirror_vms);
2094 ret = 0;
2095
2096 /*
2097 * Do not copy ap_jump_table. Since the mirror does not share the same
2098 * KVM contexts as the original, and they may have different
2099 * memory-views.
2100 */
2101
2102e_unlock:
2103 sev_unlock_two_vms(kvm, source_kvm);
2104e_source_fput:
2105 if (source_kvm_file)
2106 fput(source_kvm_file);
2107 return ret;
2108}
2109
2110void sev_vm_destroy(struct kvm *kvm)
2111{
2112 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2113 struct list_head *head = &sev->regions_list;
2114 struct list_head *pos, *q;
2115
2116 if (!sev_guest(kvm))
2117 return;
2118
2119 WARN_ON(!list_empty(&sev->mirror_vms));
2120
2121 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
2122 if (is_mirroring_enc_context(kvm)) {
2123 struct kvm *owner_kvm = sev->enc_context_owner;
2124
2125 mutex_lock(&owner_kvm->lock);
2126 list_del(&sev->mirror_entry);
2127 mutex_unlock(&owner_kvm->lock);
2128 kvm_put_kvm(owner_kvm);
2129 return;
2130 }
2131
2132 /*
2133 * Ensure that all guest tagged cache entries are flushed before
2134 * releasing the pages back to the system for use. CLFLUSH will
2135 * not do this, so issue a WBINVD.
2136 */
2137 wbinvd_on_all_cpus();
2138
2139 /*
2140 * if userspace was terminated before unregistering the memory regions
2141 * then lets unpin all the registered memory.
2142 */
2143 if (!list_empty(head)) {
2144 list_for_each_safe(pos, q, head) {
2145 __unregister_enc_region_locked(kvm,
2146 list_entry(pos, struct enc_region, list));
2147 cond_resched();
2148 }
2149 }
2150
2151 sev_unbind_asid(kvm, sev->handle);
2152 sev_asid_free(sev);
2153}
2154
2155void __init sev_set_cpu_caps(void)
2156{
2157 if (!sev_enabled)
2158 kvm_cpu_cap_clear(X86_FEATURE_SEV);
2159 if (!sev_es_enabled)
2160 kvm_cpu_cap_clear(X86_FEATURE_SEV_ES);
2161}
2162
2163void __init sev_hardware_setup(void)
2164{
2165#ifdef CONFIG_KVM_AMD_SEV
2166 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
2167 bool sev_es_supported = false;
2168 bool sev_supported = false;
2169
2170 if (!sev_enabled || !npt_enabled)
2171 goto out;
2172
2173 /*
2174 * SEV must obviously be supported in hardware. Sanity check that the
2175 * CPU supports decode assists, which is mandatory for SEV guests to
2176 * support instruction emulation.
2177 */
2178 if (!boot_cpu_has(X86_FEATURE_SEV) ||
2179 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)))
2180 goto out;
2181
2182 /* Retrieve SEV CPUID information */
2183 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
2184
2185 /* Set encryption bit location for SEV-ES guests */
2186 sev_enc_bit = ebx & 0x3f;
2187
2188 /* Maximum number of encrypted guests supported simultaneously */
2189 max_sev_asid = ecx;
2190 if (!max_sev_asid)
2191 goto out;
2192
2193 /* Minimum ASID value that should be used for SEV guest */
2194 min_sev_asid = edx;
2195 sev_me_mask = 1UL << (ebx & 0x3f);
2196
2197 /*
2198 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
2199 * even though it's never used, so that the bitmap is indexed by the
2200 * actual ASID.
2201 */
2202 nr_asids = max_sev_asid + 1;
2203 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2204 if (!sev_asid_bitmap)
2205 goto out;
2206
2207 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2208 if (!sev_reclaim_asid_bitmap) {
2209 bitmap_free(sev_asid_bitmap);
2210 sev_asid_bitmap = NULL;
2211 goto out;
2212 }
2213
2214 sev_asid_count = max_sev_asid - min_sev_asid + 1;
2215 if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count))
2216 goto out;
2217
2218 pr_info("SEV supported: %u ASIDs\n", sev_asid_count);
2219 sev_supported = true;
2220
2221 /* SEV-ES support requested? */
2222 if (!sev_es_enabled)
2223 goto out;
2224
2225 /*
2226 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest
2227 * instruction stream, i.e. can't emulate in response to a #NPF and
2228 * instead relies on #NPF(RSVD) being reflected into the guest as #VC
2229 * (the guest can then do a #VMGEXIT to request MMIO emulation).
2230 */
2231 if (!enable_mmio_caching)
2232 goto out;
2233
2234 /* Does the CPU support SEV-ES? */
2235 if (!boot_cpu_has(X86_FEATURE_SEV_ES))
2236 goto out;
2237
2238 /* Has the system been allocated ASIDs for SEV-ES? */
2239 if (min_sev_asid == 1)
2240 goto out;
2241
2242 sev_es_asid_count = min_sev_asid - 1;
2243 if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count))
2244 goto out;
2245
2246 pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count);
2247 sev_es_supported = true;
2248
2249out:
2250 sev_enabled = sev_supported;
2251 sev_es_enabled = sev_es_supported;
2252#endif
2253}
2254
2255void sev_hardware_unsetup(void)
2256{
2257 if (!sev_enabled)
2258 return;
2259
2260 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */
2261 sev_flush_asids(1, max_sev_asid);
2262
2263 bitmap_free(sev_asid_bitmap);
2264 bitmap_free(sev_reclaim_asid_bitmap);
2265
2266 misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
2267 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
2268}
2269
2270int sev_cpu_init(struct svm_cpu_data *sd)
2271{
2272 if (!sev_enabled)
2273 return 0;
2274
2275 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
2276 if (!sd->sev_vmcbs)
2277 return -ENOMEM;
2278
2279 return 0;
2280}
2281
2282/*
2283 * Pages used by hardware to hold guest encrypted state must be flushed before
2284 * returning them to the system.
2285 */
2286static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
2287{
2288 int asid = to_kvm_svm(vcpu->kvm)->sev_info.asid;
2289
2290 /*
2291 * Note! The address must be a kernel address, as regular page walk
2292 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
2293 * address is non-deterministic and unsafe. This function deliberately
2294 * takes a pointer to deter passing in a user address.
2295 */
2296 unsigned long addr = (unsigned long)va;
2297
2298 /*
2299 * If CPU enforced cache coherency for encrypted mappings of the
2300 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
2301 * flush is still needed in order to work properly with DMA devices.
2302 */
2303 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
2304 clflush_cache_range(va, PAGE_SIZE);
2305 return;
2306 }
2307
2308 /*
2309 * VM Page Flush takes a host virtual address and a guest ASID. Fall
2310 * back to WBINVD if this faults so as not to make any problems worse
2311 * by leaving stale encrypted data in the cache.
2312 */
2313 if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
2314 goto do_wbinvd;
2315
2316 return;
2317
2318do_wbinvd:
2319 wbinvd_on_all_cpus();
2320}
2321
2322void sev_guest_memory_reclaimed(struct kvm *kvm)
2323{
2324 if (!sev_guest(kvm))
2325 return;
2326
2327 wbinvd_on_all_cpus();
2328}
2329
2330void sev_free_vcpu(struct kvm_vcpu *vcpu)
2331{
2332 struct vcpu_svm *svm;
2333
2334 if (!sev_es_guest(vcpu->kvm))
2335 return;
2336
2337 svm = to_svm(vcpu);
2338
2339 if (vcpu->arch.guest_state_protected)
2340 sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa);
2341
2342 __free_page(virt_to_page(svm->sev_es.vmsa));
2343
2344 if (svm->sev_es.ghcb_sa_free)
2345 kvfree(svm->sev_es.ghcb_sa);
2346}
2347
2348static void dump_ghcb(struct vcpu_svm *svm)
2349{
2350 struct ghcb *ghcb = svm->sev_es.ghcb;
2351 unsigned int nbits;
2352
2353 /* Re-use the dump_invalid_vmcb module parameter */
2354 if (!dump_invalid_vmcb) {
2355 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2356 return;
2357 }
2358
2359 nbits = sizeof(ghcb->save.valid_bitmap) * 8;
2360
2361 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
2362 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
2363 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
2364 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
2365 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
2366 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
2367 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
2368 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
2369 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
2370 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
2371}
2372
2373static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
2374{
2375 struct kvm_vcpu *vcpu = &svm->vcpu;
2376 struct ghcb *ghcb = svm->sev_es.ghcb;
2377
2378 /*
2379 * The GHCB protocol so far allows for the following data
2380 * to be returned:
2381 * GPRs RAX, RBX, RCX, RDX
2382 *
2383 * Copy their values, even if they may not have been written during the
2384 * VM-Exit. It's the guest's responsibility to not consume random data.
2385 */
2386 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
2387 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
2388 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
2389 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
2390}
2391
2392static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
2393{
2394 struct vmcb_control_area *control = &svm->vmcb->control;
2395 struct kvm_vcpu *vcpu = &svm->vcpu;
2396 struct ghcb *ghcb = svm->sev_es.ghcb;
2397 u64 exit_code;
2398
2399 /*
2400 * The GHCB protocol so far allows for the following data
2401 * to be supplied:
2402 * GPRs RAX, RBX, RCX, RDX
2403 * XCR0
2404 * CPL
2405 *
2406 * VMMCALL allows the guest to provide extra registers. KVM also
2407 * expects RSI for hypercalls, so include that, too.
2408 *
2409 * Copy their values to the appropriate location if supplied.
2410 */
2411 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
2412
2413 vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb);
2414 vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb);
2415 vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb);
2416 vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb);
2417 vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb);
2418
2419 svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb);
2420
2421 if (ghcb_xcr0_is_valid(ghcb)) {
2422 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
2423 kvm_update_cpuid_runtime(vcpu);
2424 }
2425
2426 /* Copy the GHCB exit information into the VMCB fields */
2427 exit_code = ghcb_get_sw_exit_code(ghcb);
2428 control->exit_code = lower_32_bits(exit_code);
2429 control->exit_code_hi = upper_32_bits(exit_code);
2430 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
2431 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
2432
2433 /* Clear the valid entries fields */
2434 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2435}
2436
2437static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
2438{
2439 struct kvm_vcpu *vcpu;
2440 struct ghcb *ghcb;
2441 u64 exit_code;
2442 u64 reason;
2443
2444 ghcb = svm->sev_es.ghcb;
2445
2446 /*
2447 * Retrieve the exit code now even though it may not be marked valid
2448 * as it could help with debugging.
2449 */
2450 exit_code = ghcb_get_sw_exit_code(ghcb);
2451
2452 /* Only GHCB Usage code 0 is supported */
2453 if (ghcb->ghcb_usage) {
2454 reason = GHCB_ERR_INVALID_USAGE;
2455 goto vmgexit_err;
2456 }
2457
2458 reason = GHCB_ERR_MISSING_INPUT;
2459
2460 if (!ghcb_sw_exit_code_is_valid(ghcb) ||
2461 !ghcb_sw_exit_info_1_is_valid(ghcb) ||
2462 !ghcb_sw_exit_info_2_is_valid(ghcb))
2463 goto vmgexit_err;
2464
2465 switch (ghcb_get_sw_exit_code(ghcb)) {
2466 case SVM_EXIT_READ_DR7:
2467 break;
2468 case SVM_EXIT_WRITE_DR7:
2469 if (!ghcb_rax_is_valid(ghcb))
2470 goto vmgexit_err;
2471 break;
2472 case SVM_EXIT_RDTSC:
2473 break;
2474 case SVM_EXIT_RDPMC:
2475 if (!ghcb_rcx_is_valid(ghcb))
2476 goto vmgexit_err;
2477 break;
2478 case SVM_EXIT_CPUID:
2479 if (!ghcb_rax_is_valid(ghcb) ||
2480 !ghcb_rcx_is_valid(ghcb))
2481 goto vmgexit_err;
2482 if (ghcb_get_rax(ghcb) == 0xd)
2483 if (!ghcb_xcr0_is_valid(ghcb))
2484 goto vmgexit_err;
2485 break;
2486 case SVM_EXIT_INVD:
2487 break;
2488 case SVM_EXIT_IOIO:
2489 if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) {
2490 if (!ghcb_sw_scratch_is_valid(ghcb))
2491 goto vmgexit_err;
2492 } else {
2493 if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK))
2494 if (!ghcb_rax_is_valid(ghcb))
2495 goto vmgexit_err;
2496 }
2497 break;
2498 case SVM_EXIT_MSR:
2499 if (!ghcb_rcx_is_valid(ghcb))
2500 goto vmgexit_err;
2501 if (ghcb_get_sw_exit_info_1(ghcb)) {
2502 if (!ghcb_rax_is_valid(ghcb) ||
2503 !ghcb_rdx_is_valid(ghcb))
2504 goto vmgexit_err;
2505 }
2506 break;
2507 case SVM_EXIT_VMMCALL:
2508 if (!ghcb_rax_is_valid(ghcb) ||
2509 !ghcb_cpl_is_valid(ghcb))
2510 goto vmgexit_err;
2511 break;
2512 case SVM_EXIT_RDTSCP:
2513 break;
2514 case SVM_EXIT_WBINVD:
2515 break;
2516 case SVM_EXIT_MONITOR:
2517 if (!ghcb_rax_is_valid(ghcb) ||
2518 !ghcb_rcx_is_valid(ghcb) ||
2519 !ghcb_rdx_is_valid(ghcb))
2520 goto vmgexit_err;
2521 break;
2522 case SVM_EXIT_MWAIT:
2523 if (!ghcb_rax_is_valid(ghcb) ||
2524 !ghcb_rcx_is_valid(ghcb))
2525 goto vmgexit_err;
2526 break;
2527 case SVM_VMGEXIT_MMIO_READ:
2528 case SVM_VMGEXIT_MMIO_WRITE:
2529 if (!ghcb_sw_scratch_is_valid(ghcb))
2530 goto vmgexit_err;
2531 break;
2532 case SVM_VMGEXIT_NMI_COMPLETE:
2533 case SVM_VMGEXIT_AP_HLT_LOOP:
2534 case SVM_VMGEXIT_AP_JUMP_TABLE:
2535 case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2536 break;
2537 default:
2538 reason = GHCB_ERR_INVALID_EVENT;
2539 goto vmgexit_err;
2540 }
2541
2542 return 0;
2543
2544vmgexit_err:
2545 vcpu = &svm->vcpu;
2546
2547 if (reason == GHCB_ERR_INVALID_USAGE) {
2548 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
2549 ghcb->ghcb_usage);
2550 } else if (reason == GHCB_ERR_INVALID_EVENT) {
2551 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
2552 exit_code);
2553 } else {
2554 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
2555 exit_code);
2556 dump_ghcb(svm);
2557 }
2558
2559 /* Clear the valid entries fields */
2560 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2561
2562 ghcb_set_sw_exit_info_1(ghcb, 2);
2563 ghcb_set_sw_exit_info_2(ghcb, reason);
2564
2565 /* Resume the guest to "return" the error code. */
2566 return 1;
2567}
2568
2569void sev_es_unmap_ghcb(struct vcpu_svm *svm)
2570{
2571 if (!svm->sev_es.ghcb)
2572 return;
2573
2574 if (svm->sev_es.ghcb_sa_free) {
2575 /*
2576 * The scratch area lives outside the GHCB, so there is a
2577 * buffer that, depending on the operation performed, may
2578 * need to be synced, then freed.
2579 */
2580 if (svm->sev_es.ghcb_sa_sync) {
2581 kvm_write_guest(svm->vcpu.kvm,
2582 ghcb_get_sw_scratch(svm->sev_es.ghcb),
2583 svm->sev_es.ghcb_sa,
2584 svm->sev_es.ghcb_sa_len);
2585 svm->sev_es.ghcb_sa_sync = false;
2586 }
2587
2588 kvfree(svm->sev_es.ghcb_sa);
2589 svm->sev_es.ghcb_sa = NULL;
2590 svm->sev_es.ghcb_sa_free = false;
2591 }
2592
2593 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
2594
2595 sev_es_sync_to_ghcb(svm);
2596
2597 kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true);
2598 svm->sev_es.ghcb = NULL;
2599}
2600
2601void pre_sev_run(struct vcpu_svm *svm, int cpu)
2602{
2603 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
2604 int asid = sev_get_asid(svm->vcpu.kvm);
2605
2606 /* Assign the asid allocated with this SEV guest */
2607 svm->asid = asid;
2608
2609 /*
2610 * Flush guest TLB:
2611 *
2612 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
2613 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
2614 */
2615 if (sd->sev_vmcbs[asid] == svm->vmcb &&
2616 svm->vcpu.arch.last_vmentry_cpu == cpu)
2617 return;
2618
2619 sd->sev_vmcbs[asid] = svm->vmcb;
2620 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
2621 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2622}
2623
2624#define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE)
2625static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
2626{
2627 struct vmcb_control_area *control = &svm->vmcb->control;
2628 struct ghcb *ghcb = svm->sev_es.ghcb;
2629 u64 ghcb_scratch_beg, ghcb_scratch_end;
2630 u64 scratch_gpa_beg, scratch_gpa_end;
2631 void *scratch_va;
2632
2633 scratch_gpa_beg = ghcb_get_sw_scratch(ghcb);
2634 if (!scratch_gpa_beg) {
2635 pr_err("vmgexit: scratch gpa not provided\n");
2636 goto e_scratch;
2637 }
2638
2639 scratch_gpa_end = scratch_gpa_beg + len;
2640 if (scratch_gpa_end < scratch_gpa_beg) {
2641 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
2642 len, scratch_gpa_beg);
2643 goto e_scratch;
2644 }
2645
2646 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
2647 /* Scratch area begins within GHCB */
2648 ghcb_scratch_beg = control->ghcb_gpa +
2649 offsetof(struct ghcb, shared_buffer);
2650 ghcb_scratch_end = control->ghcb_gpa +
2651 offsetof(struct ghcb, reserved_0xff0);
2652
2653 /*
2654 * If the scratch area begins within the GHCB, it must be
2655 * completely contained in the GHCB shared buffer area.
2656 */
2657 if (scratch_gpa_beg < ghcb_scratch_beg ||
2658 scratch_gpa_end > ghcb_scratch_end) {
2659 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
2660 scratch_gpa_beg, scratch_gpa_end);
2661 goto e_scratch;
2662 }
2663
2664 scratch_va = (void *)svm->sev_es.ghcb;
2665 scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
2666 } else {
2667 /*
2668 * The guest memory must be read into a kernel buffer, so
2669 * limit the size
2670 */
2671 if (len > GHCB_SCRATCH_AREA_LIMIT) {
2672 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
2673 len, GHCB_SCRATCH_AREA_LIMIT);
2674 goto e_scratch;
2675 }
2676 scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
2677 if (!scratch_va)
2678 return -ENOMEM;
2679
2680 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
2681 /* Unable to copy scratch area from guest */
2682 pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
2683
2684 kvfree(scratch_va);
2685 return -EFAULT;
2686 }
2687
2688 /*
2689 * The scratch area is outside the GHCB. The operation will
2690 * dictate whether the buffer needs to be synced before running
2691 * the vCPU next time (i.e. a read was requested so the data
2692 * must be written back to the guest memory).
2693 */
2694 svm->sev_es.ghcb_sa_sync = sync;
2695 svm->sev_es.ghcb_sa_free = true;
2696 }
2697
2698 svm->sev_es.ghcb_sa = scratch_va;
2699 svm->sev_es.ghcb_sa_len = len;
2700
2701 return 0;
2702
2703e_scratch:
2704 ghcb_set_sw_exit_info_1(ghcb, 2);
2705 ghcb_set_sw_exit_info_2(ghcb, GHCB_ERR_INVALID_SCRATCH_AREA);
2706
2707 return 1;
2708}
2709
2710static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
2711 unsigned int pos)
2712{
2713 svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
2714 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
2715}
2716
2717static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
2718{
2719 return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
2720}
2721
2722static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
2723{
2724 svm->vmcb->control.ghcb_gpa = value;
2725}
2726
2727static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
2728{
2729 struct vmcb_control_area *control = &svm->vmcb->control;
2730 struct kvm_vcpu *vcpu = &svm->vcpu;
2731 u64 ghcb_info;
2732 int ret = 1;
2733
2734 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
2735
2736 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
2737 control->ghcb_gpa);
2738
2739 switch (ghcb_info) {
2740 case GHCB_MSR_SEV_INFO_REQ:
2741 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2742 GHCB_VERSION_MIN,
2743 sev_enc_bit));
2744 break;
2745 case GHCB_MSR_CPUID_REQ: {
2746 u64 cpuid_fn, cpuid_reg, cpuid_value;
2747
2748 cpuid_fn = get_ghcb_msr_bits(svm,
2749 GHCB_MSR_CPUID_FUNC_MASK,
2750 GHCB_MSR_CPUID_FUNC_POS);
2751
2752 /* Initialize the registers needed by the CPUID intercept */
2753 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
2754 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2755
2756 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
2757 if (!ret) {
2758 /* Error, keep GHCB MSR value as-is */
2759 break;
2760 }
2761
2762 cpuid_reg = get_ghcb_msr_bits(svm,
2763 GHCB_MSR_CPUID_REG_MASK,
2764 GHCB_MSR_CPUID_REG_POS);
2765 if (cpuid_reg == 0)
2766 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
2767 else if (cpuid_reg == 1)
2768 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
2769 else if (cpuid_reg == 2)
2770 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
2771 else
2772 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
2773
2774 set_ghcb_msr_bits(svm, cpuid_value,
2775 GHCB_MSR_CPUID_VALUE_MASK,
2776 GHCB_MSR_CPUID_VALUE_POS);
2777
2778 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
2779 GHCB_MSR_INFO_MASK,
2780 GHCB_MSR_INFO_POS);
2781 break;
2782 }
2783 case GHCB_MSR_TERM_REQ: {
2784 u64 reason_set, reason_code;
2785
2786 reason_set = get_ghcb_msr_bits(svm,
2787 GHCB_MSR_TERM_REASON_SET_MASK,
2788 GHCB_MSR_TERM_REASON_SET_POS);
2789 reason_code = get_ghcb_msr_bits(svm,
2790 GHCB_MSR_TERM_REASON_MASK,
2791 GHCB_MSR_TERM_REASON_POS);
2792 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
2793 reason_set, reason_code);
2794
2795 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
2796 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
2797 vcpu->run->system_event.ndata = 1;
2798 vcpu->run->system_event.data[0] = control->ghcb_gpa;
2799
2800 return 0;
2801 }
2802 default:
2803 /* Error, keep GHCB MSR value as-is */
2804 break;
2805 }
2806
2807 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
2808 control->ghcb_gpa, ret);
2809
2810 return ret;
2811}
2812
2813int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
2814{
2815 struct vcpu_svm *svm = to_svm(vcpu);
2816 struct vmcb_control_area *control = &svm->vmcb->control;
2817 u64 ghcb_gpa, exit_code;
2818 struct ghcb *ghcb;
2819 int ret;
2820
2821 /* Validate the GHCB */
2822 ghcb_gpa = control->ghcb_gpa;
2823 if (ghcb_gpa & GHCB_MSR_INFO_MASK)
2824 return sev_handle_vmgexit_msr_protocol(svm);
2825
2826 if (!ghcb_gpa) {
2827 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
2828
2829 /* Without a GHCB, just return right back to the guest */
2830 return 1;
2831 }
2832
2833 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
2834 /* Unable to map GHCB from guest */
2835 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
2836 ghcb_gpa);
2837
2838 /* Without a GHCB, just return right back to the guest */
2839 return 1;
2840 }
2841
2842 svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
2843 ghcb = svm->sev_es.ghcb_map.hva;
2844
2845 trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb);
2846
2847 exit_code = ghcb_get_sw_exit_code(ghcb);
2848
2849 ret = sev_es_validate_vmgexit(svm);
2850 if (ret)
2851 return ret;
2852
2853 sev_es_sync_from_ghcb(svm);
2854 ghcb_set_sw_exit_info_1(ghcb, 0);
2855 ghcb_set_sw_exit_info_2(ghcb, 0);
2856
2857 switch (exit_code) {
2858 case SVM_VMGEXIT_MMIO_READ:
2859 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
2860 if (ret)
2861 break;
2862
2863 ret = kvm_sev_es_mmio_read(vcpu,
2864 control->exit_info_1,
2865 control->exit_info_2,
2866 svm->sev_es.ghcb_sa);
2867 break;
2868 case SVM_VMGEXIT_MMIO_WRITE:
2869 ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
2870 if (ret)
2871 break;
2872
2873 ret = kvm_sev_es_mmio_write(vcpu,
2874 control->exit_info_1,
2875 control->exit_info_2,
2876 svm->sev_es.ghcb_sa);
2877 break;
2878 case SVM_VMGEXIT_NMI_COMPLETE:
2879 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET);
2880 break;
2881 case SVM_VMGEXIT_AP_HLT_LOOP:
2882 ret = kvm_emulate_ap_reset_hold(vcpu);
2883 break;
2884 case SVM_VMGEXIT_AP_JUMP_TABLE: {
2885 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
2886
2887 switch (control->exit_info_1) {
2888 case 0:
2889 /* Set AP jump table address */
2890 sev->ap_jump_table = control->exit_info_2;
2891 break;
2892 case 1:
2893 /* Get AP jump table address */
2894 ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table);
2895 break;
2896 default:
2897 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
2898 control->exit_info_1);
2899 ghcb_set_sw_exit_info_1(ghcb, 2);
2900 ghcb_set_sw_exit_info_2(ghcb, GHCB_ERR_INVALID_INPUT);
2901 }
2902
2903 ret = 1;
2904 break;
2905 }
2906 case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2907 vcpu_unimpl(vcpu,
2908 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
2909 control->exit_info_1, control->exit_info_2);
2910 ret = -EINVAL;
2911 break;
2912 default:
2913 ret = svm_invoke_exit_handler(vcpu, exit_code);
2914 }
2915
2916 return ret;
2917}
2918
2919int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
2920{
2921 int count;
2922 int bytes;
2923 int r;
2924
2925 if (svm->vmcb->control.exit_info_2 > INT_MAX)
2926 return -EINVAL;
2927
2928 count = svm->vmcb->control.exit_info_2;
2929 if (unlikely(check_mul_overflow(count, size, &bytes)))
2930 return -EINVAL;
2931
2932 r = setup_vmgexit_scratch(svm, in, bytes);
2933 if (r)
2934 return r;
2935
2936 return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
2937 count, in);
2938}
2939
2940static void sev_es_init_vmcb(struct vcpu_svm *svm)
2941{
2942 struct kvm_vcpu *vcpu = &svm->vcpu;
2943
2944 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
2945 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
2946
2947 /*
2948 * An SEV-ES guest requires a VMSA area that is a separate from the
2949 * VMCB page. Do not include the encryption mask on the VMSA physical
2950 * address since hardware will access it using the guest key.
2951 */
2952 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
2953
2954 /* Can't intercept CR register access, HV can't modify CR registers */
2955 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
2956 svm_clr_intercept(svm, INTERCEPT_CR4_READ);
2957 svm_clr_intercept(svm, INTERCEPT_CR8_READ);
2958 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
2959 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
2960 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
2961
2962 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
2963
2964 /* Track EFER/CR register changes */
2965 svm_set_intercept(svm, TRAP_EFER_WRITE);
2966 svm_set_intercept(svm, TRAP_CR0_WRITE);
2967 svm_set_intercept(svm, TRAP_CR4_WRITE);
2968 svm_set_intercept(svm, TRAP_CR8_WRITE);
2969
2970 /* No support for enable_vmware_backdoor */
2971 clr_exception_intercept(svm, GP_VECTOR);
2972
2973 /* Can't intercept XSETBV, HV can't modify XCR0 directly */
2974 svm_clr_intercept(svm, INTERCEPT_XSETBV);
2975
2976 /* Clear intercepts on selected MSRs */
2977 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
2978 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
2979 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
2980 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
2981 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
2982 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
2983
2984 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) &&
2985 (guest_cpuid_has(&svm->vcpu, X86_FEATURE_RDTSCP) ||
2986 guest_cpuid_has(&svm->vcpu, X86_FEATURE_RDPID))) {
2987 set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, 1, 1);
2988 if (guest_cpuid_has(&svm->vcpu, X86_FEATURE_RDTSCP))
2989 svm_clr_intercept(svm, INTERCEPT_RDTSCP);
2990 }
2991}
2992
2993void sev_init_vmcb(struct vcpu_svm *svm)
2994{
2995 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
2996 clr_exception_intercept(svm, UD_VECTOR);
2997
2998 if (sev_es_guest(svm->vcpu.kvm))
2999 sev_es_init_vmcb(svm);
3000}
3001
3002void sev_es_vcpu_reset(struct vcpu_svm *svm)
3003{
3004 /*
3005 * Set the GHCB MSR value as per the GHCB specification when emulating
3006 * vCPU RESET for an SEV-ES guest.
3007 */
3008 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
3009 GHCB_VERSION_MIN,
3010 sev_enc_bit));
3011}
3012
3013void sev_es_prepare_switch_to_guest(struct sev_es_save_area *hostsa)
3014{
3015 /*
3016 * As an SEV-ES guest, hardware will restore the host state on VMEXIT,
3017 * of which one step is to perform a VMLOAD. KVM performs the
3018 * corresponding VMSAVE in svm_prepare_guest_switch for both
3019 * traditional and SEV-ES guests.
3020 */
3021
3022 /* XCR0 is restored on VMEXIT, save the current host value */
3023 hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
3024
3025 /* PKRU is restored on VMEXIT, save the current host value */
3026 hostsa->pkru = read_pkru();
3027
3028 /* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */
3029 hostsa->xss = host_xss;
3030}
3031
3032void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
3033{
3034 struct vcpu_svm *svm = to_svm(vcpu);
3035
3036 /* First SIPI: Use the values as initially set by the VMM */
3037 if (!svm->sev_es.received_first_sipi) {
3038 svm->sev_es.received_first_sipi = true;
3039 return;
3040 }
3041
3042 /*
3043 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
3044 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
3045 * non-zero value.
3046 */
3047 if (!svm->sev_es.ghcb)
3048 return;
3049
3050 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1);
3051}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * AMD SVM-SEV support
6 *
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 */
9
10#include <linux/kvm_types.h>
11#include <linux/kvm_host.h>
12#include <linux/kernel.h>
13#include <linux/highmem.h>
14#include <linux/psp-sev.h>
15#include <linux/pagemap.h>
16#include <linux/swap.h>
17#include <linux/misc_cgroup.h>
18#include <linux/processor.h>
19#include <linux/trace_events.h>
20#include <asm/fpu/internal.h>
21
22#include <asm/pkru.h>
23#include <asm/trapnr.h>
24
25#include "x86.h"
26#include "svm.h"
27#include "svm_ops.h"
28#include "cpuid.h"
29#include "trace.h"
30
31#define __ex(x) __kvm_handle_fault_on_reboot(x)
32
33#ifndef CONFIG_KVM_AMD_SEV
34/*
35 * When this config is not defined, SEV feature is not supported and APIs in
36 * this file are not used but this file still gets compiled into the KVM AMD
37 * module.
38 *
39 * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
40 * misc_res_type {} defined in linux/misc_cgroup.h.
41 *
42 * Below macros allow compilation to succeed.
43 */
44#define MISC_CG_RES_SEV MISC_CG_RES_TYPES
45#define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
46#endif
47
48#ifdef CONFIG_KVM_AMD_SEV
49/* enable/disable SEV support */
50static bool sev_enabled = true;
51module_param_named(sev, sev_enabled, bool, 0444);
52
53/* enable/disable SEV-ES support */
54static bool sev_es_enabled = true;
55module_param_named(sev_es, sev_es_enabled, bool, 0444);
56#else
57#define sev_enabled false
58#define sev_es_enabled false
59#endif /* CONFIG_KVM_AMD_SEV */
60
61static u8 sev_enc_bit;
62static DECLARE_RWSEM(sev_deactivate_lock);
63static DEFINE_MUTEX(sev_bitmap_lock);
64unsigned int max_sev_asid;
65static unsigned int min_sev_asid;
66static unsigned long sev_me_mask;
67static unsigned int nr_asids;
68static unsigned long *sev_asid_bitmap;
69static unsigned long *sev_reclaim_asid_bitmap;
70
71struct enc_region {
72 struct list_head list;
73 unsigned long npages;
74 struct page **pages;
75 unsigned long uaddr;
76 unsigned long size;
77};
78
79/* Called with the sev_bitmap_lock held, or on shutdown */
80static int sev_flush_asids(int min_asid, int max_asid)
81{
82 int ret, asid, error = 0;
83
84 /* Check if there are any ASIDs to reclaim before performing a flush */
85 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
86 if (asid > max_asid)
87 return -EBUSY;
88
89 /*
90 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
91 * so it must be guarded.
92 */
93 down_write(&sev_deactivate_lock);
94
95 wbinvd_on_all_cpus();
96 ret = sev_guest_df_flush(&error);
97
98 up_write(&sev_deactivate_lock);
99
100 if (ret)
101 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
102
103 return ret;
104}
105
106static inline bool is_mirroring_enc_context(struct kvm *kvm)
107{
108 return !!to_kvm_svm(kvm)->sev_info.enc_context_owner;
109}
110
111/* Must be called with the sev_bitmap_lock held */
112static bool __sev_recycle_asids(int min_asid, int max_asid)
113{
114 if (sev_flush_asids(min_asid, max_asid))
115 return false;
116
117 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
118 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
119 nr_asids);
120 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
121
122 return true;
123}
124
125static int sev_asid_new(struct kvm_sev_info *sev)
126{
127 int asid, min_asid, max_asid, ret;
128 bool retry = true;
129 enum misc_res_type type;
130
131 type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
132 WARN_ON(sev->misc_cg);
133 sev->misc_cg = get_current_misc_cg();
134 ret = misc_cg_try_charge(type, sev->misc_cg, 1);
135 if (ret) {
136 put_misc_cg(sev->misc_cg);
137 sev->misc_cg = NULL;
138 return ret;
139 }
140
141 mutex_lock(&sev_bitmap_lock);
142
143 /*
144 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
145 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
146 */
147 min_asid = sev->es_active ? 1 : min_sev_asid;
148 max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
149again:
150 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
151 if (asid > max_asid) {
152 if (retry && __sev_recycle_asids(min_asid, max_asid)) {
153 retry = false;
154 goto again;
155 }
156 mutex_unlock(&sev_bitmap_lock);
157 ret = -EBUSY;
158 goto e_uncharge;
159 }
160
161 __set_bit(asid, sev_asid_bitmap);
162
163 mutex_unlock(&sev_bitmap_lock);
164
165 return asid;
166e_uncharge:
167 misc_cg_uncharge(type, sev->misc_cg, 1);
168 put_misc_cg(sev->misc_cg);
169 sev->misc_cg = NULL;
170 return ret;
171}
172
173static int sev_get_asid(struct kvm *kvm)
174{
175 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
176
177 return sev->asid;
178}
179
180static void sev_asid_free(struct kvm_sev_info *sev)
181{
182 struct svm_cpu_data *sd;
183 int cpu;
184 enum misc_res_type type;
185
186 mutex_lock(&sev_bitmap_lock);
187
188 __set_bit(sev->asid, sev_reclaim_asid_bitmap);
189
190 for_each_possible_cpu(cpu) {
191 sd = per_cpu(svm_data, cpu);
192 sd->sev_vmcbs[sev->asid] = NULL;
193 }
194
195 mutex_unlock(&sev_bitmap_lock);
196
197 type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
198 misc_cg_uncharge(type, sev->misc_cg, 1);
199 put_misc_cg(sev->misc_cg);
200 sev->misc_cg = NULL;
201}
202
203static void sev_decommission(unsigned int handle)
204{
205 struct sev_data_decommission decommission;
206
207 if (!handle)
208 return;
209
210 decommission.handle = handle;
211 sev_guest_decommission(&decommission, NULL);
212}
213
214static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
215{
216 struct sev_data_deactivate deactivate;
217
218 if (!handle)
219 return;
220
221 deactivate.handle = handle;
222
223 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
224 down_read(&sev_deactivate_lock);
225 sev_guest_deactivate(&deactivate, NULL);
226 up_read(&sev_deactivate_lock);
227
228 sev_decommission(handle);
229}
230
231static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
232{
233 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
234 bool es_active = argp->id == KVM_SEV_ES_INIT;
235 int asid, ret;
236
237 if (kvm->created_vcpus)
238 return -EINVAL;
239
240 ret = -EBUSY;
241 if (unlikely(sev->active))
242 return ret;
243
244 sev->es_active = es_active;
245 asid = sev_asid_new(sev);
246 if (asid < 0)
247 goto e_no_asid;
248 sev->asid = asid;
249
250 ret = sev_platform_init(&argp->error);
251 if (ret)
252 goto e_free;
253
254 sev->active = true;
255 sev->asid = asid;
256 INIT_LIST_HEAD(&sev->regions_list);
257
258 return 0;
259
260e_free:
261 sev_asid_free(sev);
262 sev->asid = 0;
263e_no_asid:
264 sev->es_active = false;
265 return ret;
266}
267
268static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
269{
270 struct sev_data_activate activate;
271 int asid = sev_get_asid(kvm);
272 int ret;
273
274 /* activate ASID on the given handle */
275 activate.handle = handle;
276 activate.asid = asid;
277 ret = sev_guest_activate(&activate, error);
278
279 return ret;
280}
281
282static int __sev_issue_cmd(int fd, int id, void *data, int *error)
283{
284 struct fd f;
285 int ret;
286
287 f = fdget(fd);
288 if (!f.file)
289 return -EBADF;
290
291 ret = sev_issue_cmd_external_user(f.file, id, data, error);
292
293 fdput(f);
294 return ret;
295}
296
297static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
298{
299 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
300
301 return __sev_issue_cmd(sev->fd, id, data, error);
302}
303
304static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
305{
306 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
307 struct sev_data_launch_start start;
308 struct kvm_sev_launch_start params;
309 void *dh_blob, *session_blob;
310 int *error = &argp->error;
311 int ret;
312
313 if (!sev_guest(kvm))
314 return -ENOTTY;
315
316 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
317 return -EFAULT;
318
319 memset(&start, 0, sizeof(start));
320
321 dh_blob = NULL;
322 if (params.dh_uaddr) {
323 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
324 if (IS_ERR(dh_blob))
325 return PTR_ERR(dh_blob);
326
327 start.dh_cert_address = __sme_set(__pa(dh_blob));
328 start.dh_cert_len = params.dh_len;
329 }
330
331 session_blob = NULL;
332 if (params.session_uaddr) {
333 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
334 if (IS_ERR(session_blob)) {
335 ret = PTR_ERR(session_blob);
336 goto e_free_dh;
337 }
338
339 start.session_address = __sme_set(__pa(session_blob));
340 start.session_len = params.session_len;
341 }
342
343 start.handle = params.handle;
344 start.policy = params.policy;
345
346 /* create memory encryption context */
347 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
348 if (ret)
349 goto e_free_session;
350
351 /* Bind ASID to this guest */
352 ret = sev_bind_asid(kvm, start.handle, error);
353 if (ret) {
354 sev_decommission(start.handle);
355 goto e_free_session;
356 }
357
358 /* return handle to userspace */
359 params.handle = start.handle;
360 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) {
361 sev_unbind_asid(kvm, start.handle);
362 ret = -EFAULT;
363 goto e_free_session;
364 }
365
366 sev->handle = start.handle;
367 sev->fd = argp->sev_fd;
368
369e_free_session:
370 kfree(session_blob);
371e_free_dh:
372 kfree(dh_blob);
373 return ret;
374}
375
376static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
377 unsigned long ulen, unsigned long *n,
378 int write)
379{
380 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
381 unsigned long npages, size;
382 int npinned;
383 unsigned long locked, lock_limit;
384 struct page **pages;
385 unsigned long first, last;
386 int ret;
387
388 lockdep_assert_held(&kvm->lock);
389
390 if (ulen == 0 || uaddr + ulen < uaddr)
391 return ERR_PTR(-EINVAL);
392
393 /* Calculate number of pages. */
394 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
395 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
396 npages = (last - first + 1);
397
398 locked = sev->pages_locked + npages;
399 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
400 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
401 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
402 return ERR_PTR(-ENOMEM);
403 }
404
405 if (WARN_ON_ONCE(npages > INT_MAX))
406 return ERR_PTR(-EINVAL);
407
408 /* Avoid using vmalloc for smaller buffers. */
409 size = npages * sizeof(struct page *);
410 if (size > PAGE_SIZE)
411 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
412 else
413 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
414
415 if (!pages)
416 return ERR_PTR(-ENOMEM);
417
418 /* Pin the user virtual address. */
419 npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
420 if (npinned != npages) {
421 pr_err("SEV: Failure locking %lu pages.\n", npages);
422 ret = -ENOMEM;
423 goto err;
424 }
425
426 *n = npages;
427 sev->pages_locked = locked;
428
429 return pages;
430
431err:
432 if (npinned > 0)
433 unpin_user_pages(pages, npinned);
434
435 kvfree(pages);
436 return ERR_PTR(ret);
437}
438
439static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
440 unsigned long npages)
441{
442 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
443
444 unpin_user_pages(pages, npages);
445 kvfree(pages);
446 sev->pages_locked -= npages;
447}
448
449static void sev_clflush_pages(struct page *pages[], unsigned long npages)
450{
451 uint8_t *page_virtual;
452 unsigned long i;
453
454 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
455 pages == NULL)
456 return;
457
458 for (i = 0; i < npages; i++) {
459 page_virtual = kmap_atomic(pages[i]);
460 clflush_cache_range(page_virtual, PAGE_SIZE);
461 kunmap_atomic(page_virtual);
462 }
463}
464
465static unsigned long get_num_contig_pages(unsigned long idx,
466 struct page **inpages, unsigned long npages)
467{
468 unsigned long paddr, next_paddr;
469 unsigned long i = idx + 1, pages = 1;
470
471 /* find the number of contiguous pages starting from idx */
472 paddr = __sme_page_pa(inpages[idx]);
473 while (i < npages) {
474 next_paddr = __sme_page_pa(inpages[i++]);
475 if ((paddr + PAGE_SIZE) == next_paddr) {
476 pages++;
477 paddr = next_paddr;
478 continue;
479 }
480 break;
481 }
482
483 return pages;
484}
485
486static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
487{
488 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
489 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
490 struct kvm_sev_launch_update_data params;
491 struct sev_data_launch_update_data data;
492 struct page **inpages;
493 int ret;
494
495 if (!sev_guest(kvm))
496 return -ENOTTY;
497
498 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
499 return -EFAULT;
500
501 vaddr = params.uaddr;
502 size = params.len;
503 vaddr_end = vaddr + size;
504
505 /* Lock the user memory. */
506 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
507 if (IS_ERR(inpages))
508 return PTR_ERR(inpages);
509
510 /*
511 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
512 * place; the cache may contain the data that was written unencrypted.
513 */
514 sev_clflush_pages(inpages, npages);
515
516 data.reserved = 0;
517 data.handle = sev->handle;
518
519 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
520 int offset, len;
521
522 /*
523 * If the user buffer is not page-aligned, calculate the offset
524 * within the page.
525 */
526 offset = vaddr & (PAGE_SIZE - 1);
527
528 /* Calculate the number of pages that can be encrypted in one go. */
529 pages = get_num_contig_pages(i, inpages, npages);
530
531 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
532
533 data.len = len;
534 data.address = __sme_page_pa(inpages[i]) + offset;
535 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
536 if (ret)
537 goto e_unpin;
538
539 size -= len;
540 next_vaddr = vaddr + len;
541 }
542
543e_unpin:
544 /* content of memory is updated, mark pages dirty */
545 for (i = 0; i < npages; i++) {
546 set_page_dirty_lock(inpages[i]);
547 mark_page_accessed(inpages[i]);
548 }
549 /* unlock the user pages */
550 sev_unpin_memory(kvm, inpages, npages);
551 return ret;
552}
553
554static int sev_es_sync_vmsa(struct vcpu_svm *svm)
555{
556 struct vmcb_save_area *save = &svm->vmcb->save;
557
558 /* Check some debug related fields before encrypting the VMSA */
559 if (svm->vcpu.guest_debug || (save->dr7 & ~DR7_FIXED_1))
560 return -EINVAL;
561
562 /* Sync registgers */
563 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
564 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
565 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
566 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
567 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
568 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
569 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
570 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
571#ifdef CONFIG_X86_64
572 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8];
573 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9];
574 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
575 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
576 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
577 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
578 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
579 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
580#endif
581 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
582
583 /* Sync some non-GPR registers before encrypting */
584 save->xcr0 = svm->vcpu.arch.xcr0;
585 save->pkru = svm->vcpu.arch.pkru;
586 save->xss = svm->vcpu.arch.ia32_xss;
587
588 /*
589 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
590 * the traditional VMSA that is part of the VMCB. Copy the
591 * traditional VMSA as it has been built so far (in prep
592 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
593 */
594 memcpy(svm->vmsa, save, sizeof(*save));
595
596 return 0;
597}
598
599static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
600 int *error)
601{
602 struct sev_data_launch_update_vmsa vmsa;
603 struct vcpu_svm *svm = to_svm(vcpu);
604 int ret;
605
606 /* Perform some pre-encryption checks against the VMSA */
607 ret = sev_es_sync_vmsa(svm);
608 if (ret)
609 return ret;
610
611 /*
612 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
613 * the VMSA memory content (i.e it will write the same memory region
614 * with the guest's key), so invalidate it first.
615 */
616 clflush_cache_range(svm->vmsa, PAGE_SIZE);
617
618 vmsa.reserved = 0;
619 vmsa.handle = to_kvm_svm(kvm)->sev_info.handle;
620 vmsa.address = __sme_pa(svm->vmsa);
621 vmsa.len = PAGE_SIZE;
622 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
623 if (ret)
624 return ret;
625
626 vcpu->arch.guest_state_protected = true;
627 return 0;
628}
629
630static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
631{
632 struct kvm_vcpu *vcpu;
633 int i, ret;
634
635 if (!sev_es_guest(kvm))
636 return -ENOTTY;
637
638 kvm_for_each_vcpu(i, vcpu, kvm) {
639 ret = mutex_lock_killable(&vcpu->mutex);
640 if (ret)
641 return ret;
642
643 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
644
645 mutex_unlock(&vcpu->mutex);
646 if (ret)
647 return ret;
648 }
649
650 return 0;
651}
652
653static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
654{
655 void __user *measure = (void __user *)(uintptr_t)argp->data;
656 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
657 struct sev_data_launch_measure data;
658 struct kvm_sev_launch_measure params;
659 void __user *p = NULL;
660 void *blob = NULL;
661 int ret;
662
663 if (!sev_guest(kvm))
664 return -ENOTTY;
665
666 if (copy_from_user(¶ms, measure, sizeof(params)))
667 return -EFAULT;
668
669 memset(&data, 0, sizeof(data));
670
671 /* User wants to query the blob length */
672 if (!params.len)
673 goto cmd;
674
675 p = (void __user *)(uintptr_t)params.uaddr;
676 if (p) {
677 if (params.len > SEV_FW_BLOB_MAX_SIZE)
678 return -EINVAL;
679
680 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT);
681 if (!blob)
682 return -ENOMEM;
683
684 data.address = __psp_pa(blob);
685 data.len = params.len;
686 }
687
688cmd:
689 data.handle = sev->handle;
690 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
691
692 /*
693 * If we query the session length, FW responded with expected data.
694 */
695 if (!params.len)
696 goto done;
697
698 if (ret)
699 goto e_free_blob;
700
701 if (blob) {
702 if (copy_to_user(p, blob, params.len))
703 ret = -EFAULT;
704 }
705
706done:
707 params.len = data.len;
708 if (copy_to_user(measure, ¶ms, sizeof(params)))
709 ret = -EFAULT;
710e_free_blob:
711 kfree(blob);
712 return ret;
713}
714
715static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
716{
717 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
718 struct sev_data_launch_finish data;
719
720 if (!sev_guest(kvm))
721 return -ENOTTY;
722
723 data.handle = sev->handle;
724 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
725}
726
727static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
728{
729 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
730 struct kvm_sev_guest_status params;
731 struct sev_data_guest_status data;
732 int ret;
733
734 if (!sev_guest(kvm))
735 return -ENOTTY;
736
737 memset(&data, 0, sizeof(data));
738
739 data.handle = sev->handle;
740 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
741 if (ret)
742 return ret;
743
744 params.policy = data.policy;
745 params.state = data.state;
746 params.handle = data.handle;
747
748 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params)))
749 ret = -EFAULT;
750
751 return ret;
752}
753
754static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
755 unsigned long dst, int size,
756 int *error, bool enc)
757{
758 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
759 struct sev_data_dbg data;
760
761 data.reserved = 0;
762 data.handle = sev->handle;
763 data.dst_addr = dst;
764 data.src_addr = src;
765 data.len = size;
766
767 return sev_issue_cmd(kvm,
768 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
769 &data, error);
770}
771
772static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
773 unsigned long dst_paddr, int sz, int *err)
774{
775 int offset;
776
777 /*
778 * Its safe to read more than we are asked, caller should ensure that
779 * destination has enough space.
780 */
781 offset = src_paddr & 15;
782 src_paddr = round_down(src_paddr, 16);
783 sz = round_up(sz + offset, 16);
784
785 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
786}
787
788static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
789 void __user *dst_uaddr,
790 unsigned long dst_paddr,
791 int size, int *err)
792{
793 struct page *tpage = NULL;
794 int ret, offset;
795
796 /* if inputs are not 16-byte then use intermediate buffer */
797 if (!IS_ALIGNED(dst_paddr, 16) ||
798 !IS_ALIGNED(paddr, 16) ||
799 !IS_ALIGNED(size, 16)) {
800 tpage = (void *)alloc_page(GFP_KERNEL);
801 if (!tpage)
802 return -ENOMEM;
803
804 dst_paddr = __sme_page_pa(tpage);
805 }
806
807 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
808 if (ret)
809 goto e_free;
810
811 if (tpage) {
812 offset = paddr & 15;
813 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
814 ret = -EFAULT;
815 }
816
817e_free:
818 if (tpage)
819 __free_page(tpage);
820
821 return ret;
822}
823
824static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
825 void __user *vaddr,
826 unsigned long dst_paddr,
827 void __user *dst_vaddr,
828 int size, int *error)
829{
830 struct page *src_tpage = NULL;
831 struct page *dst_tpage = NULL;
832 int ret, len = size;
833
834 /* If source buffer is not aligned then use an intermediate buffer */
835 if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
836 src_tpage = alloc_page(GFP_KERNEL);
837 if (!src_tpage)
838 return -ENOMEM;
839
840 if (copy_from_user(page_address(src_tpage), vaddr, size)) {
841 __free_page(src_tpage);
842 return -EFAULT;
843 }
844
845 paddr = __sme_page_pa(src_tpage);
846 }
847
848 /*
849 * If destination buffer or length is not aligned then do read-modify-write:
850 * - decrypt destination in an intermediate buffer
851 * - copy the source buffer in an intermediate buffer
852 * - use the intermediate buffer as source buffer
853 */
854 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
855 int dst_offset;
856
857 dst_tpage = alloc_page(GFP_KERNEL);
858 if (!dst_tpage) {
859 ret = -ENOMEM;
860 goto e_free;
861 }
862
863 ret = __sev_dbg_decrypt(kvm, dst_paddr,
864 __sme_page_pa(dst_tpage), size, error);
865 if (ret)
866 goto e_free;
867
868 /*
869 * If source is kernel buffer then use memcpy() otherwise
870 * copy_from_user().
871 */
872 dst_offset = dst_paddr & 15;
873
874 if (src_tpage)
875 memcpy(page_address(dst_tpage) + dst_offset,
876 page_address(src_tpage), size);
877 else {
878 if (copy_from_user(page_address(dst_tpage) + dst_offset,
879 vaddr, size)) {
880 ret = -EFAULT;
881 goto e_free;
882 }
883 }
884
885 paddr = __sme_page_pa(dst_tpage);
886 dst_paddr = round_down(dst_paddr, 16);
887 len = round_up(size, 16);
888 }
889
890 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
891
892e_free:
893 if (src_tpage)
894 __free_page(src_tpage);
895 if (dst_tpage)
896 __free_page(dst_tpage);
897 return ret;
898}
899
900static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
901{
902 unsigned long vaddr, vaddr_end, next_vaddr;
903 unsigned long dst_vaddr;
904 struct page **src_p, **dst_p;
905 struct kvm_sev_dbg debug;
906 unsigned long n;
907 unsigned int size;
908 int ret;
909
910 if (!sev_guest(kvm))
911 return -ENOTTY;
912
913 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
914 return -EFAULT;
915
916 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
917 return -EINVAL;
918 if (!debug.dst_uaddr)
919 return -EINVAL;
920
921 vaddr = debug.src_uaddr;
922 size = debug.len;
923 vaddr_end = vaddr + size;
924 dst_vaddr = debug.dst_uaddr;
925
926 for (; vaddr < vaddr_end; vaddr = next_vaddr) {
927 int len, s_off, d_off;
928
929 /* lock userspace source and destination page */
930 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
931 if (IS_ERR(src_p))
932 return PTR_ERR(src_p);
933
934 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
935 if (IS_ERR(dst_p)) {
936 sev_unpin_memory(kvm, src_p, n);
937 return PTR_ERR(dst_p);
938 }
939
940 /*
941 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
942 * the pages; flush the destination too so that future accesses do not
943 * see stale data.
944 */
945 sev_clflush_pages(src_p, 1);
946 sev_clflush_pages(dst_p, 1);
947
948 /*
949 * Since user buffer may not be page aligned, calculate the
950 * offset within the page.
951 */
952 s_off = vaddr & ~PAGE_MASK;
953 d_off = dst_vaddr & ~PAGE_MASK;
954 len = min_t(size_t, (PAGE_SIZE - s_off), size);
955
956 if (dec)
957 ret = __sev_dbg_decrypt_user(kvm,
958 __sme_page_pa(src_p[0]) + s_off,
959 (void __user *)dst_vaddr,
960 __sme_page_pa(dst_p[0]) + d_off,
961 len, &argp->error);
962 else
963 ret = __sev_dbg_encrypt_user(kvm,
964 __sme_page_pa(src_p[0]) + s_off,
965 (void __user *)vaddr,
966 __sme_page_pa(dst_p[0]) + d_off,
967 (void __user *)dst_vaddr,
968 len, &argp->error);
969
970 sev_unpin_memory(kvm, src_p, n);
971 sev_unpin_memory(kvm, dst_p, n);
972
973 if (ret)
974 goto err;
975
976 next_vaddr = vaddr + len;
977 dst_vaddr = dst_vaddr + len;
978 size -= len;
979 }
980err:
981 return ret;
982}
983
984static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
985{
986 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
987 struct sev_data_launch_secret data;
988 struct kvm_sev_launch_secret params;
989 struct page **pages;
990 void *blob, *hdr;
991 unsigned long n, i;
992 int ret, offset;
993
994 if (!sev_guest(kvm))
995 return -ENOTTY;
996
997 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
998 return -EFAULT;
999
1000 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
1001 if (IS_ERR(pages))
1002 return PTR_ERR(pages);
1003
1004 /*
1005 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1006 * place; the cache may contain the data that was written unencrypted.
1007 */
1008 sev_clflush_pages(pages, n);
1009
1010 /*
1011 * The secret must be copied into contiguous memory region, lets verify
1012 * that userspace memory pages are contiguous before we issue command.
1013 */
1014 if (get_num_contig_pages(0, pages, n) != n) {
1015 ret = -EINVAL;
1016 goto e_unpin_memory;
1017 }
1018
1019 memset(&data, 0, sizeof(data));
1020
1021 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1022 data.guest_address = __sme_page_pa(pages[0]) + offset;
1023 data.guest_len = params.guest_len;
1024
1025 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1026 if (IS_ERR(blob)) {
1027 ret = PTR_ERR(blob);
1028 goto e_unpin_memory;
1029 }
1030
1031 data.trans_address = __psp_pa(blob);
1032 data.trans_len = params.trans_len;
1033
1034 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1035 if (IS_ERR(hdr)) {
1036 ret = PTR_ERR(hdr);
1037 goto e_free_blob;
1038 }
1039 data.hdr_address = __psp_pa(hdr);
1040 data.hdr_len = params.hdr_len;
1041
1042 data.handle = sev->handle;
1043 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1044
1045 kfree(hdr);
1046
1047e_free_blob:
1048 kfree(blob);
1049e_unpin_memory:
1050 /* content of memory is updated, mark pages dirty */
1051 for (i = 0; i < n; i++) {
1052 set_page_dirty_lock(pages[i]);
1053 mark_page_accessed(pages[i]);
1054 }
1055 sev_unpin_memory(kvm, pages, n);
1056 return ret;
1057}
1058
1059static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1060{
1061 void __user *report = (void __user *)(uintptr_t)argp->data;
1062 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1063 struct sev_data_attestation_report data;
1064 struct kvm_sev_attestation_report params;
1065 void __user *p;
1066 void *blob = NULL;
1067 int ret;
1068
1069 if (!sev_guest(kvm))
1070 return -ENOTTY;
1071
1072 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1073 return -EFAULT;
1074
1075 memset(&data, 0, sizeof(data));
1076
1077 /* User wants to query the blob length */
1078 if (!params.len)
1079 goto cmd;
1080
1081 p = (void __user *)(uintptr_t)params.uaddr;
1082 if (p) {
1083 if (params.len > SEV_FW_BLOB_MAX_SIZE)
1084 return -EINVAL;
1085
1086 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT);
1087 if (!blob)
1088 return -ENOMEM;
1089
1090 data.address = __psp_pa(blob);
1091 data.len = params.len;
1092 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1093 }
1094cmd:
1095 data.handle = sev->handle;
1096 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1097 /*
1098 * If we query the session length, FW responded with expected data.
1099 */
1100 if (!params.len)
1101 goto done;
1102
1103 if (ret)
1104 goto e_free_blob;
1105
1106 if (blob) {
1107 if (copy_to_user(p, blob, params.len))
1108 ret = -EFAULT;
1109 }
1110
1111done:
1112 params.len = data.len;
1113 if (copy_to_user(report, ¶ms, sizeof(params)))
1114 ret = -EFAULT;
1115e_free_blob:
1116 kfree(blob);
1117 return ret;
1118}
1119
1120/* Userspace wants to query session length. */
1121static int
1122__sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1123 struct kvm_sev_send_start *params)
1124{
1125 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1126 struct sev_data_send_start data;
1127 int ret;
1128
1129 memset(&data, 0, sizeof(data));
1130 data.handle = sev->handle;
1131 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1132
1133 params->session_len = data.session_len;
1134 if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1135 sizeof(struct kvm_sev_send_start)))
1136 ret = -EFAULT;
1137
1138 return ret;
1139}
1140
1141static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1142{
1143 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1144 struct sev_data_send_start data;
1145 struct kvm_sev_send_start params;
1146 void *amd_certs, *session_data;
1147 void *pdh_cert, *plat_certs;
1148 int ret;
1149
1150 if (!sev_guest(kvm))
1151 return -ENOTTY;
1152
1153 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data,
1154 sizeof(struct kvm_sev_send_start)))
1155 return -EFAULT;
1156
1157 /* if session_len is zero, userspace wants to query the session length */
1158 if (!params.session_len)
1159 return __sev_send_start_query_session_length(kvm, argp,
1160 ¶ms);
1161
1162 /* some sanity checks */
1163 if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1164 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1165 return -EINVAL;
1166
1167 /* allocate the memory to hold the session data blob */
1168 session_data = kmalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1169 if (!session_data)
1170 return -ENOMEM;
1171
1172 /* copy the certificate blobs from userspace */
1173 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1174 params.pdh_cert_len);
1175 if (IS_ERR(pdh_cert)) {
1176 ret = PTR_ERR(pdh_cert);
1177 goto e_free_session;
1178 }
1179
1180 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1181 params.plat_certs_len);
1182 if (IS_ERR(plat_certs)) {
1183 ret = PTR_ERR(plat_certs);
1184 goto e_free_pdh;
1185 }
1186
1187 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1188 params.amd_certs_len);
1189 if (IS_ERR(amd_certs)) {
1190 ret = PTR_ERR(amd_certs);
1191 goto e_free_plat_cert;
1192 }
1193
1194 /* populate the FW SEND_START field with system physical address */
1195 memset(&data, 0, sizeof(data));
1196 data.pdh_cert_address = __psp_pa(pdh_cert);
1197 data.pdh_cert_len = params.pdh_cert_len;
1198 data.plat_certs_address = __psp_pa(plat_certs);
1199 data.plat_certs_len = params.plat_certs_len;
1200 data.amd_certs_address = __psp_pa(amd_certs);
1201 data.amd_certs_len = params.amd_certs_len;
1202 data.session_address = __psp_pa(session_data);
1203 data.session_len = params.session_len;
1204 data.handle = sev->handle;
1205
1206 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1207
1208 if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr,
1209 session_data, params.session_len)) {
1210 ret = -EFAULT;
1211 goto e_free_amd_cert;
1212 }
1213
1214 params.policy = data.policy;
1215 params.session_len = data.session_len;
1216 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms,
1217 sizeof(struct kvm_sev_send_start)))
1218 ret = -EFAULT;
1219
1220e_free_amd_cert:
1221 kfree(amd_certs);
1222e_free_plat_cert:
1223 kfree(plat_certs);
1224e_free_pdh:
1225 kfree(pdh_cert);
1226e_free_session:
1227 kfree(session_data);
1228 return ret;
1229}
1230
1231/* Userspace wants to query either header or trans length. */
1232static int
1233__sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1234 struct kvm_sev_send_update_data *params)
1235{
1236 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1237 struct sev_data_send_update_data data;
1238 int ret;
1239
1240 memset(&data, 0, sizeof(data));
1241 data.handle = sev->handle;
1242 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1243
1244 params->hdr_len = data.hdr_len;
1245 params->trans_len = data.trans_len;
1246
1247 if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1248 sizeof(struct kvm_sev_send_update_data)))
1249 ret = -EFAULT;
1250
1251 return ret;
1252}
1253
1254static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1255{
1256 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1257 struct sev_data_send_update_data data;
1258 struct kvm_sev_send_update_data params;
1259 void *hdr, *trans_data;
1260 struct page **guest_page;
1261 unsigned long n;
1262 int ret, offset;
1263
1264 if (!sev_guest(kvm))
1265 return -ENOTTY;
1266
1267 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data,
1268 sizeof(struct kvm_sev_send_update_data)))
1269 return -EFAULT;
1270
1271 /* userspace wants to query either header or trans length */
1272 if (!params.trans_len || !params.hdr_len)
1273 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms);
1274
1275 if (!params.trans_uaddr || !params.guest_uaddr ||
1276 !params.guest_len || !params.hdr_uaddr)
1277 return -EINVAL;
1278
1279 /* Check if we are crossing the page boundary */
1280 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1281 if ((params.guest_len + offset > PAGE_SIZE))
1282 return -EINVAL;
1283
1284 /* Pin guest memory */
1285 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1286 PAGE_SIZE, &n, 0);
1287 if (IS_ERR(guest_page))
1288 return PTR_ERR(guest_page);
1289
1290 /* allocate memory for header and transport buffer */
1291 ret = -ENOMEM;
1292 hdr = kmalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1293 if (!hdr)
1294 goto e_unpin;
1295
1296 trans_data = kmalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1297 if (!trans_data)
1298 goto e_free_hdr;
1299
1300 memset(&data, 0, sizeof(data));
1301 data.hdr_address = __psp_pa(hdr);
1302 data.hdr_len = params.hdr_len;
1303 data.trans_address = __psp_pa(trans_data);
1304 data.trans_len = params.trans_len;
1305
1306 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1307 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1308 data.guest_address |= sev_me_mask;
1309 data.guest_len = params.guest_len;
1310 data.handle = sev->handle;
1311
1312 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1313
1314 if (ret)
1315 goto e_free_trans_data;
1316
1317 /* copy transport buffer to user space */
1318 if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr,
1319 trans_data, params.trans_len)) {
1320 ret = -EFAULT;
1321 goto e_free_trans_data;
1322 }
1323
1324 /* Copy packet header to userspace. */
1325 if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr,
1326 params.hdr_len))
1327 ret = -EFAULT;
1328
1329e_free_trans_data:
1330 kfree(trans_data);
1331e_free_hdr:
1332 kfree(hdr);
1333e_unpin:
1334 sev_unpin_memory(kvm, guest_page, n);
1335
1336 return ret;
1337}
1338
1339static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1340{
1341 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1342 struct sev_data_send_finish data;
1343
1344 if (!sev_guest(kvm))
1345 return -ENOTTY;
1346
1347 data.handle = sev->handle;
1348 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1349}
1350
1351static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1352{
1353 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1354 struct sev_data_send_cancel data;
1355
1356 if (!sev_guest(kvm))
1357 return -ENOTTY;
1358
1359 data.handle = sev->handle;
1360 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1361}
1362
1363static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1364{
1365 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1366 struct sev_data_receive_start start;
1367 struct kvm_sev_receive_start params;
1368 int *error = &argp->error;
1369 void *session_data;
1370 void *pdh_data;
1371 int ret;
1372
1373 if (!sev_guest(kvm))
1374 return -ENOTTY;
1375
1376 /* Get parameter from the userspace */
1377 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data,
1378 sizeof(struct kvm_sev_receive_start)))
1379 return -EFAULT;
1380
1381 /* some sanity checks */
1382 if (!params.pdh_uaddr || !params.pdh_len ||
1383 !params.session_uaddr || !params.session_len)
1384 return -EINVAL;
1385
1386 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1387 if (IS_ERR(pdh_data))
1388 return PTR_ERR(pdh_data);
1389
1390 session_data = psp_copy_user_blob(params.session_uaddr,
1391 params.session_len);
1392 if (IS_ERR(session_data)) {
1393 ret = PTR_ERR(session_data);
1394 goto e_free_pdh;
1395 }
1396
1397 memset(&start, 0, sizeof(start));
1398 start.handle = params.handle;
1399 start.policy = params.policy;
1400 start.pdh_cert_address = __psp_pa(pdh_data);
1401 start.pdh_cert_len = params.pdh_len;
1402 start.session_address = __psp_pa(session_data);
1403 start.session_len = params.session_len;
1404
1405 /* create memory encryption context */
1406 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1407 error);
1408 if (ret)
1409 goto e_free_session;
1410
1411 /* Bind ASID to this guest */
1412 ret = sev_bind_asid(kvm, start.handle, error);
1413 if (ret) {
1414 sev_decommission(start.handle);
1415 goto e_free_session;
1416 }
1417
1418 params.handle = start.handle;
1419 if (copy_to_user((void __user *)(uintptr_t)argp->data,
1420 ¶ms, sizeof(struct kvm_sev_receive_start))) {
1421 ret = -EFAULT;
1422 sev_unbind_asid(kvm, start.handle);
1423 goto e_free_session;
1424 }
1425
1426 sev->handle = start.handle;
1427 sev->fd = argp->sev_fd;
1428
1429e_free_session:
1430 kfree(session_data);
1431e_free_pdh:
1432 kfree(pdh_data);
1433
1434 return ret;
1435}
1436
1437static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1438{
1439 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1440 struct kvm_sev_receive_update_data params;
1441 struct sev_data_receive_update_data data;
1442 void *hdr = NULL, *trans = NULL;
1443 struct page **guest_page;
1444 unsigned long n;
1445 int ret, offset;
1446
1447 if (!sev_guest(kvm))
1448 return -EINVAL;
1449
1450 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data,
1451 sizeof(struct kvm_sev_receive_update_data)))
1452 return -EFAULT;
1453
1454 if (!params.hdr_uaddr || !params.hdr_len ||
1455 !params.guest_uaddr || !params.guest_len ||
1456 !params.trans_uaddr || !params.trans_len)
1457 return -EINVAL;
1458
1459 /* Check if we are crossing the page boundary */
1460 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1461 if ((params.guest_len + offset > PAGE_SIZE))
1462 return -EINVAL;
1463
1464 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1465 if (IS_ERR(hdr))
1466 return PTR_ERR(hdr);
1467
1468 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1469 if (IS_ERR(trans)) {
1470 ret = PTR_ERR(trans);
1471 goto e_free_hdr;
1472 }
1473
1474 memset(&data, 0, sizeof(data));
1475 data.hdr_address = __psp_pa(hdr);
1476 data.hdr_len = params.hdr_len;
1477 data.trans_address = __psp_pa(trans);
1478 data.trans_len = params.trans_len;
1479
1480 /* Pin guest memory */
1481 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1482 PAGE_SIZE, &n, 1);
1483 if (IS_ERR(guest_page)) {
1484 ret = PTR_ERR(guest_page);
1485 goto e_free_trans;
1486 }
1487
1488 /*
1489 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1490 * encrypts the written data with the guest's key, and the cache may
1491 * contain dirty, unencrypted data.
1492 */
1493 sev_clflush_pages(guest_page, n);
1494
1495 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1496 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1497 data.guest_address |= sev_me_mask;
1498 data.guest_len = params.guest_len;
1499 data.handle = sev->handle;
1500
1501 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1502 &argp->error);
1503
1504 sev_unpin_memory(kvm, guest_page, n);
1505
1506e_free_trans:
1507 kfree(trans);
1508e_free_hdr:
1509 kfree(hdr);
1510
1511 return ret;
1512}
1513
1514static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1515{
1516 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1517 struct sev_data_receive_finish data;
1518
1519 if (!sev_guest(kvm))
1520 return -ENOTTY;
1521
1522 data.handle = sev->handle;
1523 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1524}
1525
1526static bool cmd_allowed_from_miror(u32 cmd_id)
1527{
1528 /*
1529 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1530 * active mirror VMs. Also allow the debugging and status commands.
1531 */
1532 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1533 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1534 cmd_id == KVM_SEV_DBG_ENCRYPT)
1535 return true;
1536
1537 return false;
1538}
1539
1540int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
1541{
1542 struct kvm_sev_cmd sev_cmd;
1543 int r;
1544
1545 if (!sev_enabled)
1546 return -ENOTTY;
1547
1548 if (!argp)
1549 return 0;
1550
1551 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
1552 return -EFAULT;
1553
1554 mutex_lock(&kvm->lock);
1555
1556 /* Only the enc_context_owner handles some memory enc operations. */
1557 if (is_mirroring_enc_context(kvm) &&
1558 !cmd_allowed_from_miror(sev_cmd.id)) {
1559 r = -EINVAL;
1560 goto out;
1561 }
1562
1563 switch (sev_cmd.id) {
1564 case KVM_SEV_ES_INIT:
1565 if (!sev_es_enabled) {
1566 r = -ENOTTY;
1567 goto out;
1568 }
1569 fallthrough;
1570 case KVM_SEV_INIT:
1571 r = sev_guest_init(kvm, &sev_cmd);
1572 break;
1573 case KVM_SEV_LAUNCH_START:
1574 r = sev_launch_start(kvm, &sev_cmd);
1575 break;
1576 case KVM_SEV_LAUNCH_UPDATE_DATA:
1577 r = sev_launch_update_data(kvm, &sev_cmd);
1578 break;
1579 case KVM_SEV_LAUNCH_UPDATE_VMSA:
1580 r = sev_launch_update_vmsa(kvm, &sev_cmd);
1581 break;
1582 case KVM_SEV_LAUNCH_MEASURE:
1583 r = sev_launch_measure(kvm, &sev_cmd);
1584 break;
1585 case KVM_SEV_LAUNCH_FINISH:
1586 r = sev_launch_finish(kvm, &sev_cmd);
1587 break;
1588 case KVM_SEV_GUEST_STATUS:
1589 r = sev_guest_status(kvm, &sev_cmd);
1590 break;
1591 case KVM_SEV_DBG_DECRYPT:
1592 r = sev_dbg_crypt(kvm, &sev_cmd, true);
1593 break;
1594 case KVM_SEV_DBG_ENCRYPT:
1595 r = sev_dbg_crypt(kvm, &sev_cmd, false);
1596 break;
1597 case KVM_SEV_LAUNCH_SECRET:
1598 r = sev_launch_secret(kvm, &sev_cmd);
1599 break;
1600 case KVM_SEV_GET_ATTESTATION_REPORT:
1601 r = sev_get_attestation_report(kvm, &sev_cmd);
1602 break;
1603 case KVM_SEV_SEND_START:
1604 r = sev_send_start(kvm, &sev_cmd);
1605 break;
1606 case KVM_SEV_SEND_UPDATE_DATA:
1607 r = sev_send_update_data(kvm, &sev_cmd);
1608 break;
1609 case KVM_SEV_SEND_FINISH:
1610 r = sev_send_finish(kvm, &sev_cmd);
1611 break;
1612 case KVM_SEV_SEND_CANCEL:
1613 r = sev_send_cancel(kvm, &sev_cmd);
1614 break;
1615 case KVM_SEV_RECEIVE_START:
1616 r = sev_receive_start(kvm, &sev_cmd);
1617 break;
1618 case KVM_SEV_RECEIVE_UPDATE_DATA:
1619 r = sev_receive_update_data(kvm, &sev_cmd);
1620 break;
1621 case KVM_SEV_RECEIVE_FINISH:
1622 r = sev_receive_finish(kvm, &sev_cmd);
1623 break;
1624 default:
1625 r = -EINVAL;
1626 goto out;
1627 }
1628
1629 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
1630 r = -EFAULT;
1631
1632out:
1633 mutex_unlock(&kvm->lock);
1634 return r;
1635}
1636
1637int svm_register_enc_region(struct kvm *kvm,
1638 struct kvm_enc_region *range)
1639{
1640 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1641 struct enc_region *region;
1642 int ret = 0;
1643
1644 if (!sev_guest(kvm))
1645 return -ENOTTY;
1646
1647 /* If kvm is mirroring encryption context it isn't responsible for it */
1648 if (is_mirroring_enc_context(kvm))
1649 return -EINVAL;
1650
1651 if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
1652 return -EINVAL;
1653
1654 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
1655 if (!region)
1656 return -ENOMEM;
1657
1658 mutex_lock(&kvm->lock);
1659 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1);
1660 if (IS_ERR(region->pages)) {
1661 ret = PTR_ERR(region->pages);
1662 mutex_unlock(&kvm->lock);
1663 goto e_free;
1664 }
1665
1666 region->uaddr = range->addr;
1667 region->size = range->size;
1668
1669 list_add_tail(®ion->list, &sev->regions_list);
1670 mutex_unlock(&kvm->lock);
1671
1672 /*
1673 * The guest may change the memory encryption attribute from C=0 -> C=1
1674 * or vice versa for this memory range. Lets make sure caches are
1675 * flushed to ensure that guest data gets written into memory with
1676 * correct C-bit.
1677 */
1678 sev_clflush_pages(region->pages, region->npages);
1679
1680 return ret;
1681
1682e_free:
1683 kfree(region);
1684 return ret;
1685}
1686
1687static struct enc_region *
1688find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
1689{
1690 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1691 struct list_head *head = &sev->regions_list;
1692 struct enc_region *i;
1693
1694 list_for_each_entry(i, head, list) {
1695 if (i->uaddr == range->addr &&
1696 i->size == range->size)
1697 return i;
1698 }
1699
1700 return NULL;
1701}
1702
1703static void __unregister_enc_region_locked(struct kvm *kvm,
1704 struct enc_region *region)
1705{
1706 sev_unpin_memory(kvm, region->pages, region->npages);
1707 list_del(®ion->list);
1708 kfree(region);
1709}
1710
1711int svm_unregister_enc_region(struct kvm *kvm,
1712 struct kvm_enc_region *range)
1713{
1714 struct enc_region *region;
1715 int ret;
1716
1717 /* If kvm is mirroring encryption context it isn't responsible for it */
1718 if (is_mirroring_enc_context(kvm))
1719 return -EINVAL;
1720
1721 mutex_lock(&kvm->lock);
1722
1723 if (!sev_guest(kvm)) {
1724 ret = -ENOTTY;
1725 goto failed;
1726 }
1727
1728 region = find_enc_region(kvm, range);
1729 if (!region) {
1730 ret = -EINVAL;
1731 goto failed;
1732 }
1733
1734 /*
1735 * Ensure that all guest tagged cache entries are flushed before
1736 * releasing the pages back to the system for use. CLFLUSH will
1737 * not do this, so issue a WBINVD.
1738 */
1739 wbinvd_on_all_cpus();
1740
1741 __unregister_enc_region_locked(kvm, region);
1742
1743 mutex_unlock(&kvm->lock);
1744 return 0;
1745
1746failed:
1747 mutex_unlock(&kvm->lock);
1748 return ret;
1749}
1750
1751int svm_vm_copy_asid_from(struct kvm *kvm, unsigned int source_fd)
1752{
1753 struct file *source_kvm_file;
1754 struct kvm *source_kvm;
1755 struct kvm_sev_info source_sev, *mirror_sev;
1756 int ret;
1757
1758 source_kvm_file = fget(source_fd);
1759 if (!file_is_kvm(source_kvm_file)) {
1760 ret = -EBADF;
1761 goto e_source_put;
1762 }
1763
1764 source_kvm = source_kvm_file->private_data;
1765 mutex_lock(&source_kvm->lock);
1766
1767 if (!sev_guest(source_kvm)) {
1768 ret = -EINVAL;
1769 goto e_source_unlock;
1770 }
1771
1772 /* Mirrors of mirrors should work, but let's not get silly */
1773 if (is_mirroring_enc_context(source_kvm) || source_kvm == kvm) {
1774 ret = -EINVAL;
1775 goto e_source_unlock;
1776 }
1777
1778 memcpy(&source_sev, &to_kvm_svm(source_kvm)->sev_info,
1779 sizeof(source_sev));
1780
1781 /*
1782 * The mirror kvm holds an enc_context_owner ref so its asid can't
1783 * disappear until we're done with it
1784 */
1785 kvm_get_kvm(source_kvm);
1786
1787 fput(source_kvm_file);
1788 mutex_unlock(&source_kvm->lock);
1789 mutex_lock(&kvm->lock);
1790
1791 if (sev_guest(kvm)) {
1792 ret = -EINVAL;
1793 goto e_mirror_unlock;
1794 }
1795
1796 /* Set enc_context_owner and copy its encryption context over */
1797 mirror_sev = &to_kvm_svm(kvm)->sev_info;
1798 mirror_sev->enc_context_owner = source_kvm;
1799 mirror_sev->active = true;
1800 mirror_sev->asid = source_sev.asid;
1801 mirror_sev->fd = source_sev.fd;
1802 mirror_sev->es_active = source_sev.es_active;
1803 mirror_sev->handle = source_sev.handle;
1804 /*
1805 * Do not copy ap_jump_table. Since the mirror does not share the same
1806 * KVM contexts as the original, and they may have different
1807 * memory-views.
1808 */
1809
1810 mutex_unlock(&kvm->lock);
1811 return 0;
1812
1813e_mirror_unlock:
1814 mutex_unlock(&kvm->lock);
1815 kvm_put_kvm(source_kvm);
1816 return ret;
1817e_source_unlock:
1818 mutex_unlock(&source_kvm->lock);
1819e_source_put:
1820 if (source_kvm_file)
1821 fput(source_kvm_file);
1822 return ret;
1823}
1824
1825void sev_vm_destroy(struct kvm *kvm)
1826{
1827 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1828 struct list_head *head = &sev->regions_list;
1829 struct list_head *pos, *q;
1830
1831 if (!sev_guest(kvm))
1832 return;
1833
1834 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
1835 if (is_mirroring_enc_context(kvm)) {
1836 kvm_put_kvm(sev->enc_context_owner);
1837 return;
1838 }
1839
1840 mutex_lock(&kvm->lock);
1841
1842 /*
1843 * Ensure that all guest tagged cache entries are flushed before
1844 * releasing the pages back to the system for use. CLFLUSH will
1845 * not do this, so issue a WBINVD.
1846 */
1847 wbinvd_on_all_cpus();
1848
1849 /*
1850 * if userspace was terminated before unregistering the memory regions
1851 * then lets unpin all the registered memory.
1852 */
1853 if (!list_empty(head)) {
1854 list_for_each_safe(pos, q, head) {
1855 __unregister_enc_region_locked(kvm,
1856 list_entry(pos, struct enc_region, list));
1857 cond_resched();
1858 }
1859 }
1860
1861 mutex_unlock(&kvm->lock);
1862
1863 sev_unbind_asid(kvm, sev->handle);
1864 sev_asid_free(sev);
1865}
1866
1867void __init sev_set_cpu_caps(void)
1868{
1869 if (!sev_enabled)
1870 kvm_cpu_cap_clear(X86_FEATURE_SEV);
1871 if (!sev_es_enabled)
1872 kvm_cpu_cap_clear(X86_FEATURE_SEV_ES);
1873}
1874
1875void __init sev_hardware_setup(void)
1876{
1877#ifdef CONFIG_KVM_AMD_SEV
1878 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
1879 bool sev_es_supported = false;
1880 bool sev_supported = false;
1881
1882 if (!sev_enabled || !npt_enabled)
1883 goto out;
1884
1885 /* Does the CPU support SEV? */
1886 if (!boot_cpu_has(X86_FEATURE_SEV))
1887 goto out;
1888
1889 /* Retrieve SEV CPUID information */
1890 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
1891
1892 /* Set encryption bit location for SEV-ES guests */
1893 sev_enc_bit = ebx & 0x3f;
1894
1895 /* Maximum number of encrypted guests supported simultaneously */
1896 max_sev_asid = ecx;
1897 if (!max_sev_asid)
1898 goto out;
1899
1900 /* Minimum ASID value that should be used for SEV guest */
1901 min_sev_asid = edx;
1902 sev_me_mask = 1UL << (ebx & 0x3f);
1903
1904 /*
1905 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
1906 * even though it's never used, so that the bitmap is indexed by the
1907 * actual ASID.
1908 */
1909 nr_asids = max_sev_asid + 1;
1910 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
1911 if (!sev_asid_bitmap)
1912 goto out;
1913
1914 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
1915 if (!sev_reclaim_asid_bitmap) {
1916 bitmap_free(sev_asid_bitmap);
1917 sev_asid_bitmap = NULL;
1918 goto out;
1919 }
1920
1921 sev_asid_count = max_sev_asid - min_sev_asid + 1;
1922 if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count))
1923 goto out;
1924
1925 pr_info("SEV supported: %u ASIDs\n", sev_asid_count);
1926 sev_supported = true;
1927
1928 /* SEV-ES support requested? */
1929 if (!sev_es_enabled)
1930 goto out;
1931
1932 /* Does the CPU support SEV-ES? */
1933 if (!boot_cpu_has(X86_FEATURE_SEV_ES))
1934 goto out;
1935
1936 /* Has the system been allocated ASIDs for SEV-ES? */
1937 if (min_sev_asid == 1)
1938 goto out;
1939
1940 sev_es_asid_count = min_sev_asid - 1;
1941 if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count))
1942 goto out;
1943
1944 pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count);
1945 sev_es_supported = true;
1946
1947out:
1948 sev_enabled = sev_supported;
1949 sev_es_enabled = sev_es_supported;
1950#endif
1951}
1952
1953void sev_hardware_teardown(void)
1954{
1955 if (!sev_enabled)
1956 return;
1957
1958 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */
1959 sev_flush_asids(1, max_sev_asid);
1960
1961 bitmap_free(sev_asid_bitmap);
1962 bitmap_free(sev_reclaim_asid_bitmap);
1963
1964 misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
1965 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
1966}
1967
1968int sev_cpu_init(struct svm_cpu_data *sd)
1969{
1970 if (!sev_enabled)
1971 return 0;
1972
1973 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
1974 if (!sd->sev_vmcbs)
1975 return -ENOMEM;
1976
1977 return 0;
1978}
1979
1980/*
1981 * Pages used by hardware to hold guest encrypted state must be flushed before
1982 * returning them to the system.
1983 */
1984static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va,
1985 unsigned long len)
1986{
1987 /*
1988 * If hardware enforced cache coherency for encrypted mappings of the
1989 * same physical page is supported, nothing to do.
1990 */
1991 if (boot_cpu_has(X86_FEATURE_SME_COHERENT))
1992 return;
1993
1994 /*
1995 * If the VM Page Flush MSR is supported, use it to flush the page
1996 * (using the page virtual address and the guest ASID).
1997 */
1998 if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) {
1999 struct kvm_sev_info *sev;
2000 unsigned long va_start;
2001 u64 start, stop;
2002
2003 /* Align start and stop to page boundaries. */
2004 va_start = (unsigned long)va;
2005 start = (u64)va_start & PAGE_MASK;
2006 stop = PAGE_ALIGN((u64)va_start + len);
2007
2008 if (start < stop) {
2009 sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info;
2010
2011 while (start < stop) {
2012 wrmsrl(MSR_AMD64_VM_PAGE_FLUSH,
2013 start | sev->asid);
2014
2015 start += PAGE_SIZE;
2016 }
2017
2018 return;
2019 }
2020
2021 WARN(1, "Address overflow, using WBINVD\n");
2022 }
2023
2024 /*
2025 * Hardware should always have one of the above features,
2026 * but if not, use WBINVD and issue a warning.
2027 */
2028 WARN_ONCE(1, "Using WBINVD to flush guest memory\n");
2029 wbinvd_on_all_cpus();
2030}
2031
2032void sev_free_vcpu(struct kvm_vcpu *vcpu)
2033{
2034 struct vcpu_svm *svm;
2035
2036 if (!sev_es_guest(vcpu->kvm))
2037 return;
2038
2039 svm = to_svm(vcpu);
2040
2041 if (vcpu->arch.guest_state_protected)
2042 sev_flush_guest_memory(svm, svm->vmsa, PAGE_SIZE);
2043 __free_page(virt_to_page(svm->vmsa));
2044
2045 if (svm->ghcb_sa_free)
2046 kfree(svm->ghcb_sa);
2047}
2048
2049static void dump_ghcb(struct vcpu_svm *svm)
2050{
2051 struct ghcb *ghcb = svm->ghcb;
2052 unsigned int nbits;
2053
2054 /* Re-use the dump_invalid_vmcb module parameter */
2055 if (!dump_invalid_vmcb) {
2056 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2057 return;
2058 }
2059
2060 nbits = sizeof(ghcb->save.valid_bitmap) * 8;
2061
2062 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
2063 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
2064 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
2065 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
2066 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
2067 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
2068 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
2069 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
2070 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
2071 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
2072}
2073
2074static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
2075{
2076 struct kvm_vcpu *vcpu = &svm->vcpu;
2077 struct ghcb *ghcb = svm->ghcb;
2078
2079 /*
2080 * The GHCB protocol so far allows for the following data
2081 * to be returned:
2082 * GPRs RAX, RBX, RCX, RDX
2083 *
2084 * Copy their values, even if they may not have been written during the
2085 * VM-Exit. It's the guest's responsibility to not consume random data.
2086 */
2087 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
2088 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
2089 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
2090 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
2091}
2092
2093static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
2094{
2095 struct vmcb_control_area *control = &svm->vmcb->control;
2096 struct kvm_vcpu *vcpu = &svm->vcpu;
2097 struct ghcb *ghcb = svm->ghcb;
2098 u64 exit_code;
2099
2100 /*
2101 * The GHCB protocol so far allows for the following data
2102 * to be supplied:
2103 * GPRs RAX, RBX, RCX, RDX
2104 * XCR0
2105 * CPL
2106 *
2107 * VMMCALL allows the guest to provide extra registers. KVM also
2108 * expects RSI for hypercalls, so include that, too.
2109 *
2110 * Copy their values to the appropriate location if supplied.
2111 */
2112 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
2113
2114 vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb);
2115 vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb);
2116 vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb);
2117 vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb);
2118 vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb);
2119
2120 svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb);
2121
2122 if (ghcb_xcr0_is_valid(ghcb)) {
2123 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
2124 kvm_update_cpuid_runtime(vcpu);
2125 }
2126
2127 /* Copy the GHCB exit information into the VMCB fields */
2128 exit_code = ghcb_get_sw_exit_code(ghcb);
2129 control->exit_code = lower_32_bits(exit_code);
2130 control->exit_code_hi = upper_32_bits(exit_code);
2131 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
2132 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
2133
2134 /* Clear the valid entries fields */
2135 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2136}
2137
2138static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
2139{
2140 struct kvm_vcpu *vcpu;
2141 struct ghcb *ghcb;
2142 u64 exit_code = 0;
2143
2144 ghcb = svm->ghcb;
2145
2146 /* Only GHCB Usage code 0 is supported */
2147 if (ghcb->ghcb_usage)
2148 goto vmgexit_err;
2149
2150 /*
2151 * Retrieve the exit code now even though is may not be marked valid
2152 * as it could help with debugging.
2153 */
2154 exit_code = ghcb_get_sw_exit_code(ghcb);
2155
2156 if (!ghcb_sw_exit_code_is_valid(ghcb) ||
2157 !ghcb_sw_exit_info_1_is_valid(ghcb) ||
2158 !ghcb_sw_exit_info_2_is_valid(ghcb))
2159 goto vmgexit_err;
2160
2161 switch (ghcb_get_sw_exit_code(ghcb)) {
2162 case SVM_EXIT_READ_DR7:
2163 break;
2164 case SVM_EXIT_WRITE_DR7:
2165 if (!ghcb_rax_is_valid(ghcb))
2166 goto vmgexit_err;
2167 break;
2168 case SVM_EXIT_RDTSC:
2169 break;
2170 case SVM_EXIT_RDPMC:
2171 if (!ghcb_rcx_is_valid(ghcb))
2172 goto vmgexit_err;
2173 break;
2174 case SVM_EXIT_CPUID:
2175 if (!ghcb_rax_is_valid(ghcb) ||
2176 !ghcb_rcx_is_valid(ghcb))
2177 goto vmgexit_err;
2178 if (ghcb_get_rax(ghcb) == 0xd)
2179 if (!ghcb_xcr0_is_valid(ghcb))
2180 goto vmgexit_err;
2181 break;
2182 case SVM_EXIT_INVD:
2183 break;
2184 case SVM_EXIT_IOIO:
2185 if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) {
2186 if (!ghcb_sw_scratch_is_valid(ghcb))
2187 goto vmgexit_err;
2188 } else {
2189 if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK))
2190 if (!ghcb_rax_is_valid(ghcb))
2191 goto vmgexit_err;
2192 }
2193 break;
2194 case SVM_EXIT_MSR:
2195 if (!ghcb_rcx_is_valid(ghcb))
2196 goto vmgexit_err;
2197 if (ghcb_get_sw_exit_info_1(ghcb)) {
2198 if (!ghcb_rax_is_valid(ghcb) ||
2199 !ghcb_rdx_is_valid(ghcb))
2200 goto vmgexit_err;
2201 }
2202 break;
2203 case SVM_EXIT_VMMCALL:
2204 if (!ghcb_rax_is_valid(ghcb) ||
2205 !ghcb_cpl_is_valid(ghcb))
2206 goto vmgexit_err;
2207 break;
2208 case SVM_EXIT_RDTSCP:
2209 break;
2210 case SVM_EXIT_WBINVD:
2211 break;
2212 case SVM_EXIT_MONITOR:
2213 if (!ghcb_rax_is_valid(ghcb) ||
2214 !ghcb_rcx_is_valid(ghcb) ||
2215 !ghcb_rdx_is_valid(ghcb))
2216 goto vmgexit_err;
2217 break;
2218 case SVM_EXIT_MWAIT:
2219 if (!ghcb_rax_is_valid(ghcb) ||
2220 !ghcb_rcx_is_valid(ghcb))
2221 goto vmgexit_err;
2222 break;
2223 case SVM_VMGEXIT_MMIO_READ:
2224 case SVM_VMGEXIT_MMIO_WRITE:
2225 if (!ghcb_sw_scratch_is_valid(ghcb))
2226 goto vmgexit_err;
2227 break;
2228 case SVM_VMGEXIT_NMI_COMPLETE:
2229 case SVM_VMGEXIT_AP_HLT_LOOP:
2230 case SVM_VMGEXIT_AP_JUMP_TABLE:
2231 case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2232 break;
2233 default:
2234 goto vmgexit_err;
2235 }
2236
2237 return 0;
2238
2239vmgexit_err:
2240 vcpu = &svm->vcpu;
2241
2242 if (ghcb->ghcb_usage) {
2243 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
2244 ghcb->ghcb_usage);
2245 } else {
2246 vcpu_unimpl(vcpu, "vmgexit: exit reason %#llx is not valid\n",
2247 exit_code);
2248 dump_ghcb(svm);
2249 }
2250
2251 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2252 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
2253 vcpu->run->internal.ndata = 2;
2254 vcpu->run->internal.data[0] = exit_code;
2255 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
2256
2257 return -EINVAL;
2258}
2259
2260void sev_es_unmap_ghcb(struct vcpu_svm *svm)
2261{
2262 if (!svm->ghcb)
2263 return;
2264
2265 if (svm->ghcb_sa_free) {
2266 /*
2267 * The scratch area lives outside the GHCB, so there is a
2268 * buffer that, depending on the operation performed, may
2269 * need to be synced, then freed.
2270 */
2271 if (svm->ghcb_sa_sync) {
2272 kvm_write_guest(svm->vcpu.kvm,
2273 ghcb_get_sw_scratch(svm->ghcb),
2274 svm->ghcb_sa, svm->ghcb_sa_len);
2275 svm->ghcb_sa_sync = false;
2276 }
2277
2278 kfree(svm->ghcb_sa);
2279 svm->ghcb_sa = NULL;
2280 svm->ghcb_sa_free = false;
2281 }
2282
2283 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->ghcb);
2284
2285 sev_es_sync_to_ghcb(svm);
2286
2287 kvm_vcpu_unmap(&svm->vcpu, &svm->ghcb_map, true);
2288 svm->ghcb = NULL;
2289}
2290
2291void pre_sev_run(struct vcpu_svm *svm, int cpu)
2292{
2293 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2294 int asid = sev_get_asid(svm->vcpu.kvm);
2295
2296 /* Assign the asid allocated with this SEV guest */
2297 svm->asid = asid;
2298
2299 /*
2300 * Flush guest TLB:
2301 *
2302 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
2303 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
2304 */
2305 if (sd->sev_vmcbs[asid] == svm->vmcb &&
2306 svm->vcpu.arch.last_vmentry_cpu == cpu)
2307 return;
2308
2309 sd->sev_vmcbs[asid] = svm->vmcb;
2310 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
2311 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2312}
2313
2314#define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE)
2315static bool setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
2316{
2317 struct vmcb_control_area *control = &svm->vmcb->control;
2318 struct ghcb *ghcb = svm->ghcb;
2319 u64 ghcb_scratch_beg, ghcb_scratch_end;
2320 u64 scratch_gpa_beg, scratch_gpa_end;
2321 void *scratch_va;
2322
2323 scratch_gpa_beg = ghcb_get_sw_scratch(ghcb);
2324 if (!scratch_gpa_beg) {
2325 pr_err("vmgexit: scratch gpa not provided\n");
2326 return false;
2327 }
2328
2329 scratch_gpa_end = scratch_gpa_beg + len;
2330 if (scratch_gpa_end < scratch_gpa_beg) {
2331 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
2332 len, scratch_gpa_beg);
2333 return false;
2334 }
2335
2336 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
2337 /* Scratch area begins within GHCB */
2338 ghcb_scratch_beg = control->ghcb_gpa +
2339 offsetof(struct ghcb, shared_buffer);
2340 ghcb_scratch_end = control->ghcb_gpa +
2341 offsetof(struct ghcb, reserved_1);
2342
2343 /*
2344 * If the scratch area begins within the GHCB, it must be
2345 * completely contained in the GHCB shared buffer area.
2346 */
2347 if (scratch_gpa_beg < ghcb_scratch_beg ||
2348 scratch_gpa_end > ghcb_scratch_end) {
2349 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
2350 scratch_gpa_beg, scratch_gpa_end);
2351 return false;
2352 }
2353
2354 scratch_va = (void *)svm->ghcb;
2355 scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
2356 } else {
2357 /*
2358 * The guest memory must be read into a kernel buffer, so
2359 * limit the size
2360 */
2361 if (len > GHCB_SCRATCH_AREA_LIMIT) {
2362 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
2363 len, GHCB_SCRATCH_AREA_LIMIT);
2364 return false;
2365 }
2366 scratch_va = kzalloc(len, GFP_KERNEL_ACCOUNT);
2367 if (!scratch_va)
2368 return false;
2369
2370 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
2371 /* Unable to copy scratch area from guest */
2372 pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
2373
2374 kfree(scratch_va);
2375 return false;
2376 }
2377
2378 /*
2379 * The scratch area is outside the GHCB. The operation will
2380 * dictate whether the buffer needs to be synced before running
2381 * the vCPU next time (i.e. a read was requested so the data
2382 * must be written back to the guest memory).
2383 */
2384 svm->ghcb_sa_sync = sync;
2385 svm->ghcb_sa_free = true;
2386 }
2387
2388 svm->ghcb_sa = scratch_va;
2389 svm->ghcb_sa_len = len;
2390
2391 return true;
2392}
2393
2394static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
2395 unsigned int pos)
2396{
2397 svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
2398 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
2399}
2400
2401static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
2402{
2403 return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
2404}
2405
2406static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
2407{
2408 svm->vmcb->control.ghcb_gpa = value;
2409}
2410
2411static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
2412{
2413 struct vmcb_control_area *control = &svm->vmcb->control;
2414 struct kvm_vcpu *vcpu = &svm->vcpu;
2415 u64 ghcb_info;
2416 int ret = 1;
2417
2418 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
2419
2420 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
2421 control->ghcb_gpa);
2422
2423 switch (ghcb_info) {
2424 case GHCB_MSR_SEV_INFO_REQ:
2425 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2426 GHCB_VERSION_MIN,
2427 sev_enc_bit));
2428 break;
2429 case GHCB_MSR_CPUID_REQ: {
2430 u64 cpuid_fn, cpuid_reg, cpuid_value;
2431
2432 cpuid_fn = get_ghcb_msr_bits(svm,
2433 GHCB_MSR_CPUID_FUNC_MASK,
2434 GHCB_MSR_CPUID_FUNC_POS);
2435
2436 /* Initialize the registers needed by the CPUID intercept */
2437 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
2438 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2439
2440 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
2441 if (!ret) {
2442 ret = -EINVAL;
2443 break;
2444 }
2445
2446 cpuid_reg = get_ghcb_msr_bits(svm,
2447 GHCB_MSR_CPUID_REG_MASK,
2448 GHCB_MSR_CPUID_REG_POS);
2449 if (cpuid_reg == 0)
2450 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
2451 else if (cpuid_reg == 1)
2452 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
2453 else if (cpuid_reg == 2)
2454 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
2455 else
2456 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
2457
2458 set_ghcb_msr_bits(svm, cpuid_value,
2459 GHCB_MSR_CPUID_VALUE_MASK,
2460 GHCB_MSR_CPUID_VALUE_POS);
2461
2462 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
2463 GHCB_MSR_INFO_MASK,
2464 GHCB_MSR_INFO_POS);
2465 break;
2466 }
2467 case GHCB_MSR_TERM_REQ: {
2468 u64 reason_set, reason_code;
2469
2470 reason_set = get_ghcb_msr_bits(svm,
2471 GHCB_MSR_TERM_REASON_SET_MASK,
2472 GHCB_MSR_TERM_REASON_SET_POS);
2473 reason_code = get_ghcb_msr_bits(svm,
2474 GHCB_MSR_TERM_REASON_MASK,
2475 GHCB_MSR_TERM_REASON_POS);
2476 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
2477 reason_set, reason_code);
2478 fallthrough;
2479 }
2480 default:
2481 ret = -EINVAL;
2482 }
2483
2484 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
2485 control->ghcb_gpa, ret);
2486
2487 return ret;
2488}
2489
2490int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
2491{
2492 struct vcpu_svm *svm = to_svm(vcpu);
2493 struct vmcb_control_area *control = &svm->vmcb->control;
2494 u64 ghcb_gpa, exit_code;
2495 struct ghcb *ghcb;
2496 int ret;
2497
2498 /* Validate the GHCB */
2499 ghcb_gpa = control->ghcb_gpa;
2500 if (ghcb_gpa & GHCB_MSR_INFO_MASK)
2501 return sev_handle_vmgexit_msr_protocol(svm);
2502
2503 if (!ghcb_gpa) {
2504 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
2505 return -EINVAL;
2506 }
2507
2508 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->ghcb_map)) {
2509 /* Unable to map GHCB from guest */
2510 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
2511 ghcb_gpa);
2512 return -EINVAL;
2513 }
2514
2515 svm->ghcb = svm->ghcb_map.hva;
2516 ghcb = svm->ghcb_map.hva;
2517
2518 trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb);
2519
2520 exit_code = ghcb_get_sw_exit_code(ghcb);
2521
2522 ret = sev_es_validate_vmgexit(svm);
2523 if (ret)
2524 return ret;
2525
2526 sev_es_sync_from_ghcb(svm);
2527 ghcb_set_sw_exit_info_1(ghcb, 0);
2528 ghcb_set_sw_exit_info_2(ghcb, 0);
2529
2530 ret = -EINVAL;
2531 switch (exit_code) {
2532 case SVM_VMGEXIT_MMIO_READ:
2533 if (!setup_vmgexit_scratch(svm, true, control->exit_info_2))
2534 break;
2535
2536 ret = kvm_sev_es_mmio_read(vcpu,
2537 control->exit_info_1,
2538 control->exit_info_2,
2539 svm->ghcb_sa);
2540 break;
2541 case SVM_VMGEXIT_MMIO_WRITE:
2542 if (!setup_vmgexit_scratch(svm, false, control->exit_info_2))
2543 break;
2544
2545 ret = kvm_sev_es_mmio_write(vcpu,
2546 control->exit_info_1,
2547 control->exit_info_2,
2548 svm->ghcb_sa);
2549 break;
2550 case SVM_VMGEXIT_NMI_COMPLETE:
2551 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET);
2552 break;
2553 case SVM_VMGEXIT_AP_HLT_LOOP:
2554 ret = kvm_emulate_ap_reset_hold(vcpu);
2555 break;
2556 case SVM_VMGEXIT_AP_JUMP_TABLE: {
2557 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
2558
2559 switch (control->exit_info_1) {
2560 case 0:
2561 /* Set AP jump table address */
2562 sev->ap_jump_table = control->exit_info_2;
2563 break;
2564 case 1:
2565 /* Get AP jump table address */
2566 ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table);
2567 break;
2568 default:
2569 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
2570 control->exit_info_1);
2571 ghcb_set_sw_exit_info_1(ghcb, 1);
2572 ghcb_set_sw_exit_info_2(ghcb,
2573 X86_TRAP_UD |
2574 SVM_EVTINJ_TYPE_EXEPT |
2575 SVM_EVTINJ_VALID);
2576 }
2577
2578 ret = 1;
2579 break;
2580 }
2581 case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2582 vcpu_unimpl(vcpu,
2583 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
2584 control->exit_info_1, control->exit_info_2);
2585 break;
2586 default:
2587 ret = svm_invoke_exit_handler(vcpu, exit_code);
2588 }
2589
2590 return ret;
2591}
2592
2593int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
2594{
2595 if (!setup_vmgexit_scratch(svm, in, svm->vmcb->control.exit_info_2))
2596 return -EINVAL;
2597
2598 return kvm_sev_es_string_io(&svm->vcpu, size, port,
2599 svm->ghcb_sa, svm->ghcb_sa_len / size, in);
2600}
2601
2602void sev_es_init_vmcb(struct vcpu_svm *svm)
2603{
2604 struct kvm_vcpu *vcpu = &svm->vcpu;
2605
2606 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
2607 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
2608
2609 /*
2610 * An SEV-ES guest requires a VMSA area that is a separate from the
2611 * VMCB page. Do not include the encryption mask on the VMSA physical
2612 * address since hardware will access it using the guest key.
2613 */
2614 svm->vmcb->control.vmsa_pa = __pa(svm->vmsa);
2615
2616 /* Can't intercept CR register access, HV can't modify CR registers */
2617 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
2618 svm_clr_intercept(svm, INTERCEPT_CR4_READ);
2619 svm_clr_intercept(svm, INTERCEPT_CR8_READ);
2620 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
2621 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
2622 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
2623
2624 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
2625
2626 /* Track EFER/CR register changes */
2627 svm_set_intercept(svm, TRAP_EFER_WRITE);
2628 svm_set_intercept(svm, TRAP_CR0_WRITE);
2629 svm_set_intercept(svm, TRAP_CR4_WRITE);
2630 svm_set_intercept(svm, TRAP_CR8_WRITE);
2631
2632 /* No support for enable_vmware_backdoor */
2633 clr_exception_intercept(svm, GP_VECTOR);
2634
2635 /* Can't intercept XSETBV, HV can't modify XCR0 directly */
2636 svm_clr_intercept(svm, INTERCEPT_XSETBV);
2637
2638 /* Clear intercepts on selected MSRs */
2639 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
2640 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
2641 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
2642 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
2643 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
2644 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
2645}
2646
2647void sev_es_create_vcpu(struct vcpu_svm *svm)
2648{
2649 /*
2650 * Set the GHCB MSR value as per the GHCB specification when creating
2651 * a vCPU for an SEV-ES guest.
2652 */
2653 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2654 GHCB_VERSION_MIN,
2655 sev_enc_bit));
2656}
2657
2658void sev_es_prepare_guest_switch(struct vcpu_svm *svm, unsigned int cpu)
2659{
2660 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2661 struct vmcb_save_area *hostsa;
2662
2663 /*
2664 * As an SEV-ES guest, hardware will restore the host state on VMEXIT,
2665 * of which one step is to perform a VMLOAD. Since hardware does not
2666 * perform a VMSAVE on VMRUN, the host savearea must be updated.
2667 */
2668 vmsave(__sme_page_pa(sd->save_area));
2669
2670 /* XCR0 is restored on VMEXIT, save the current host value */
2671 hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400);
2672 hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
2673
2674 /* PKRU is restored on VMEXIT, save the current host value */
2675 hostsa->pkru = read_pkru();
2676
2677 /* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */
2678 hostsa->xss = host_xss;
2679}
2680
2681void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
2682{
2683 struct vcpu_svm *svm = to_svm(vcpu);
2684
2685 /* First SIPI: Use the values as initially set by the VMM */
2686 if (!svm->received_first_sipi) {
2687 svm->received_first_sipi = true;
2688 return;
2689 }
2690
2691 /*
2692 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
2693 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
2694 * non-zero value.
2695 */
2696 if (!svm->ghcb)
2697 return;
2698
2699 ghcb_set_sw_exit_info_2(svm->ghcb, 1);
2700}