Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * NILFS module and super block management.
   4 *
   5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
   6 *
 
 
 
 
 
 
 
 
 
 
   7 * Written by Ryusuke Konishi.
   8 */
   9/*
  10 *  linux/fs/ext2/super.c
  11 *
  12 * Copyright (C) 1992, 1993, 1994, 1995
  13 * Remy Card (card@masi.ibp.fr)
  14 * Laboratoire MASI - Institut Blaise Pascal
  15 * Universite Pierre et Marie Curie (Paris VI)
  16 *
  17 *  from
  18 *
  19 *  linux/fs/minix/inode.c
  20 *
  21 *  Copyright (C) 1991, 1992  Linus Torvalds
  22 *
  23 *  Big-endian to little-endian byte-swapping/bitmaps by
  24 *        David S. Miller (davem@caip.rutgers.edu), 1995
  25 */
  26
  27#include <linux/module.h>
  28#include <linux/string.h>
  29#include <linux/slab.h>
  30#include <linux/init.h>
  31#include <linux/blkdev.h>
  32#include <linux/parser.h>
  33#include <linux/crc32.h>
  34#include <linux/vfs.h>
  35#include <linux/writeback.h>
  36#include <linux/seq_file.h>
  37#include <linux/mount.h>
  38#include "nilfs.h"
  39#include "export.h"
  40#include "mdt.h"
  41#include "alloc.h"
  42#include "btree.h"
  43#include "btnode.h"
  44#include "page.h"
  45#include "cpfile.h"
  46#include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
  47#include "ifile.h"
  48#include "dat.h"
  49#include "segment.h"
  50#include "segbuf.h"
  51
  52MODULE_AUTHOR("NTT Corp.");
  53MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
  54		   "(NILFS)");
  55MODULE_LICENSE("GPL");
  56
  57static struct kmem_cache *nilfs_inode_cachep;
  58struct kmem_cache *nilfs_transaction_cachep;
  59struct kmem_cache *nilfs_segbuf_cachep;
  60struct kmem_cache *nilfs_btree_path_cache;
  61
  62static int nilfs_setup_super(struct super_block *sb, int is_mount);
  63static int nilfs_remount(struct super_block *sb, int *flags, char *data);
  64
  65void __nilfs_msg(struct super_block *sb, const char *fmt, ...)
 
  66{
  67	struct va_format vaf;
  68	va_list args;
  69	int level;
  70
  71	va_start(args, fmt);
  72
  73	level = printk_get_level(fmt);
  74	vaf.fmt = printk_skip_level(fmt);
  75	vaf.va = &args;
  76
  77	if (sb)
  78		printk("%c%cNILFS (%s): %pV\n",
  79		       KERN_SOH_ASCII, level, sb->s_id, &vaf);
  80	else
  81		printk("%c%cNILFS: %pV\n",
  82		       KERN_SOH_ASCII, level, &vaf);
  83
  84	va_end(args);
  85}
  86
  87static void nilfs_set_error(struct super_block *sb)
  88{
  89	struct the_nilfs *nilfs = sb->s_fs_info;
  90	struct nilfs_super_block **sbp;
  91
  92	down_write(&nilfs->ns_sem);
  93	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
  94		nilfs->ns_mount_state |= NILFS_ERROR_FS;
  95		sbp = nilfs_prepare_super(sb, 0);
  96		if (likely(sbp)) {
  97			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
  98			if (sbp[1])
  99				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
 100			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 101		}
 102	}
 103	up_write(&nilfs->ns_sem);
 104}
 105
 106/**
 107 * __nilfs_error() - report failure condition on a filesystem
 108 *
 109 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
 110 * reporting an error message.  This function should be called when
 111 * NILFS detects incoherences or defects of meta data on disk.
 112 *
 113 * This implements the body of nilfs_error() macro.  Normally,
 114 * nilfs_error() should be used.  As for sustainable errors such as a
 115 * single-shot I/O error, nilfs_err() should be used instead.
 116 *
 117 * Callers should not add a trailing newline since this will do it.
 118 */
 119void __nilfs_error(struct super_block *sb, const char *function,
 120		   const char *fmt, ...)
 121{
 122	struct the_nilfs *nilfs = sb->s_fs_info;
 123	struct va_format vaf;
 124	va_list args;
 125
 126	va_start(args, fmt);
 127
 128	vaf.fmt = fmt;
 129	vaf.va = &args;
 130
 131	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
 132	       sb->s_id, function, &vaf);
 133
 134	va_end(args);
 135
 136	if (!sb_rdonly(sb)) {
 137		nilfs_set_error(sb);
 138
 139		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
 140			printk(KERN_CRIT "Remounting filesystem read-only\n");
 141			sb->s_flags |= SB_RDONLY;
 142		}
 143	}
 144
 145	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 146		panic("NILFS (device %s): panic forced after error\n",
 147		      sb->s_id);
 148}
 149
 150struct inode *nilfs_alloc_inode(struct super_block *sb)
 151{
 152	struct nilfs_inode_info *ii;
 153
 154	ii = alloc_inode_sb(sb, nilfs_inode_cachep, GFP_NOFS);
 155	if (!ii)
 156		return NULL;
 157	ii->i_bh = NULL;
 158	ii->i_state = 0;
 159	ii->i_cno = 0;
 160	ii->i_assoc_inode = NULL;
 161	ii->i_bmap = &ii->i_bmap_data;
 162	return &ii->vfs_inode;
 163}
 164
 165static void nilfs_free_inode(struct inode *inode)
 166{
 
 
 167	if (nilfs_is_metadata_file_inode(inode))
 168		nilfs_mdt_destroy(inode);
 169
 170	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
 171}
 172
 
 
 
 
 
 173static int nilfs_sync_super(struct super_block *sb, int flag)
 174{
 175	struct the_nilfs *nilfs = sb->s_fs_info;
 176	int err;
 177
 178 retry:
 179	set_buffer_dirty(nilfs->ns_sbh[0]);
 180	if (nilfs_test_opt(nilfs, BARRIER)) {
 181		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
 182					  REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
 183	} else {
 184		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
 185	}
 186
 187	if (unlikely(err)) {
 188		nilfs_err(sb, "unable to write superblock: err=%d", err);
 
 189		if (err == -EIO && nilfs->ns_sbh[1]) {
 190			/*
 191			 * sbp[0] points to newer log than sbp[1],
 192			 * so copy sbp[0] to sbp[1] to take over sbp[0].
 193			 */
 194			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
 195			       nilfs->ns_sbsize);
 196			nilfs_fall_back_super_block(nilfs);
 197			goto retry;
 198		}
 199	} else {
 200		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
 201
 202		nilfs->ns_sbwcount++;
 203
 204		/*
 205		 * The latest segment becomes trailable from the position
 206		 * written in superblock.
 207		 */
 208		clear_nilfs_discontinued(nilfs);
 209
 210		/* update GC protection for recent segments */
 211		if (nilfs->ns_sbh[1]) {
 212			if (flag == NILFS_SB_COMMIT_ALL) {
 213				set_buffer_dirty(nilfs->ns_sbh[1]);
 214				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
 215					goto out;
 216			}
 217			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
 218			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
 219				sbp = nilfs->ns_sbp[1];
 220		}
 221
 222		spin_lock(&nilfs->ns_last_segment_lock);
 223		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
 224		spin_unlock(&nilfs->ns_last_segment_lock);
 225	}
 226 out:
 227	return err;
 228}
 229
 230void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
 231			  struct the_nilfs *nilfs)
 232{
 233	sector_t nfreeblocks;
 234
 235	/* nilfs->ns_sem must be locked by the caller. */
 236	nilfs_count_free_blocks(nilfs, &nfreeblocks);
 237	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
 238
 239	spin_lock(&nilfs->ns_last_segment_lock);
 240	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
 241	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
 242	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
 243	spin_unlock(&nilfs->ns_last_segment_lock);
 244}
 245
 246struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
 247					       int flip)
 248{
 249	struct the_nilfs *nilfs = sb->s_fs_info;
 250	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 251
 252	/* nilfs->ns_sem must be locked by the caller. */
 253	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 254		if (sbp[1] &&
 255		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
 256			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
 257		} else {
 258			nilfs_crit(sb, "superblock broke");
 259			return NULL;
 260		}
 261	} else if (sbp[1] &&
 262		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 263		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 264	}
 265
 266	if (flip && sbp[1])
 267		nilfs_swap_super_block(nilfs);
 268
 269	return sbp;
 270}
 271
 272int nilfs_commit_super(struct super_block *sb, int flag)
 273{
 274	struct the_nilfs *nilfs = sb->s_fs_info;
 275	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 276	time64_t t;
 277
 278	/* nilfs->ns_sem must be locked by the caller. */
 279	t = ktime_get_real_seconds();
 280	nilfs->ns_sbwtime = t;
 281	sbp[0]->s_wtime = cpu_to_le64(t);
 282	sbp[0]->s_sum = 0;
 283	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 284					     (unsigned char *)sbp[0],
 285					     nilfs->ns_sbsize));
 286	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
 287		sbp[1]->s_wtime = sbp[0]->s_wtime;
 288		sbp[1]->s_sum = 0;
 289		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 290					    (unsigned char *)sbp[1],
 291					    nilfs->ns_sbsize));
 292	}
 293	clear_nilfs_sb_dirty(nilfs);
 294	nilfs->ns_flushed_device = 1;
 295	/* make sure store to ns_flushed_device cannot be reordered */
 296	smp_wmb();
 297	return nilfs_sync_super(sb, flag);
 298}
 299
 300/**
 301 * nilfs_cleanup_super() - write filesystem state for cleanup
 302 * @sb: super block instance to be unmounted or degraded to read-only
 303 *
 304 * This function restores state flags in the on-disk super block.
 305 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
 306 * filesystem was not clean previously.
 307 */
 308int nilfs_cleanup_super(struct super_block *sb)
 309{
 310	struct the_nilfs *nilfs = sb->s_fs_info;
 311	struct nilfs_super_block **sbp;
 312	int flag = NILFS_SB_COMMIT;
 313	int ret = -EIO;
 314
 315	sbp = nilfs_prepare_super(sb, 0);
 316	if (sbp) {
 317		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
 318		nilfs_set_log_cursor(sbp[0], nilfs);
 319		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
 320			/*
 321			 * make the "clean" flag also to the opposite
 322			 * super block if both super blocks point to
 323			 * the same checkpoint.
 324			 */
 325			sbp[1]->s_state = sbp[0]->s_state;
 326			flag = NILFS_SB_COMMIT_ALL;
 327		}
 328		ret = nilfs_commit_super(sb, flag);
 329	}
 330	return ret;
 331}
 332
 333/**
 334 * nilfs_move_2nd_super - relocate secondary super block
 335 * @sb: super block instance
 336 * @sb2off: new offset of the secondary super block (in bytes)
 337 */
 338static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
 339{
 340	struct the_nilfs *nilfs = sb->s_fs_info;
 341	struct buffer_head *nsbh;
 342	struct nilfs_super_block *nsbp;
 343	sector_t blocknr, newblocknr;
 344	unsigned long offset;
 345	int sb2i;  /* array index of the secondary superblock */
 346	int ret = 0;
 347
 348	/* nilfs->ns_sem must be locked by the caller. */
 349	if (nilfs->ns_sbh[1] &&
 350	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
 351		sb2i = 1;
 352		blocknr = nilfs->ns_sbh[1]->b_blocknr;
 353	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
 354		sb2i = 0;
 355		blocknr = nilfs->ns_sbh[0]->b_blocknr;
 356	} else {
 357		sb2i = -1;
 358		blocknr = 0;
 359	}
 360	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
 361		goto out;  /* super block location is unchanged */
 362
 363	/* Get new super block buffer */
 364	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
 365	offset = sb2off & (nilfs->ns_blocksize - 1);
 366	nsbh = sb_getblk(sb, newblocknr);
 367	if (!nsbh) {
 368		nilfs_warn(sb,
 369			   "unable to move secondary superblock to block %llu",
 370			   (unsigned long long)newblocknr);
 371		ret = -EIO;
 372		goto out;
 373	}
 374	nsbp = (void *)nsbh->b_data + offset;
 375	memset(nsbp, 0, nilfs->ns_blocksize);
 376
 377	if (sb2i >= 0) {
 378		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
 379		brelse(nilfs->ns_sbh[sb2i]);
 380		nilfs->ns_sbh[sb2i] = nsbh;
 381		nilfs->ns_sbp[sb2i] = nsbp;
 382	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
 383		/* secondary super block will be restored to index 1 */
 384		nilfs->ns_sbh[1] = nsbh;
 385		nilfs->ns_sbp[1] = nsbp;
 386	} else {
 387		brelse(nsbh);
 388	}
 389out:
 390	return ret;
 391}
 392
 393/**
 394 * nilfs_resize_fs - resize the filesystem
 395 * @sb: super block instance
 396 * @newsize: new size of the filesystem (in bytes)
 397 */
 398int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
 399{
 400	struct the_nilfs *nilfs = sb->s_fs_info;
 401	struct nilfs_super_block **sbp;
 402	__u64 devsize, newnsegs;
 403	loff_t sb2off;
 404	int ret;
 405
 406	ret = -ERANGE;
 407	devsize = bdev_nr_bytes(sb->s_bdev);
 408	if (newsize > devsize)
 409		goto out;
 410
 411	/*
 412	 * Prevent underflow in second superblock position calculation.
 413	 * The exact minimum size check is done in nilfs_sufile_resize().
 414	 */
 415	if (newsize < 4096) {
 416		ret = -ENOSPC;
 417		goto out;
 418	}
 419
 420	/*
 421	 * Write lock is required to protect some functions depending
 422	 * on the number of segments, the number of reserved segments,
 423	 * and so forth.
 424	 */
 425	down_write(&nilfs->ns_segctor_sem);
 426
 427	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
 428	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
 429	do_div(newnsegs, nilfs->ns_blocks_per_segment);
 430
 431	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
 432	up_write(&nilfs->ns_segctor_sem);
 433	if (ret < 0)
 434		goto out;
 435
 436	ret = nilfs_construct_segment(sb);
 437	if (ret < 0)
 438		goto out;
 439
 440	down_write(&nilfs->ns_sem);
 441	nilfs_move_2nd_super(sb, sb2off);
 442	ret = -EIO;
 443	sbp = nilfs_prepare_super(sb, 0);
 444	if (likely(sbp)) {
 445		nilfs_set_log_cursor(sbp[0], nilfs);
 446		/*
 447		 * Drop NILFS_RESIZE_FS flag for compatibility with
 448		 * mount-time resize which may be implemented in a
 449		 * future release.
 450		 */
 451		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
 452					      ~NILFS_RESIZE_FS);
 453		sbp[0]->s_dev_size = cpu_to_le64(newsize);
 454		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
 455		if (sbp[1])
 456			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 457		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 458	}
 459	up_write(&nilfs->ns_sem);
 460
 461	/*
 462	 * Reset the range of allocatable segments last.  This order
 463	 * is important in the case of expansion because the secondary
 464	 * superblock must be protected from log write until migration
 465	 * completes.
 466	 */
 467	if (!ret)
 468		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
 469out:
 470	return ret;
 471}
 472
 473static void nilfs_put_super(struct super_block *sb)
 474{
 475	struct the_nilfs *nilfs = sb->s_fs_info;
 476
 477	nilfs_detach_log_writer(sb);
 478
 479	if (!sb_rdonly(sb)) {
 480		down_write(&nilfs->ns_sem);
 481		nilfs_cleanup_super(sb);
 482		up_write(&nilfs->ns_sem);
 483	}
 484
 485	iput(nilfs->ns_sufile);
 486	iput(nilfs->ns_cpfile);
 487	iput(nilfs->ns_dat);
 488
 489	destroy_nilfs(nilfs);
 490	sb->s_fs_info = NULL;
 491}
 492
 493static int nilfs_sync_fs(struct super_block *sb, int wait)
 494{
 495	struct the_nilfs *nilfs = sb->s_fs_info;
 496	struct nilfs_super_block **sbp;
 497	int err = 0;
 498
 499	/* This function is called when super block should be written back */
 500	if (wait)
 501		err = nilfs_construct_segment(sb);
 502
 503	down_write(&nilfs->ns_sem);
 504	if (nilfs_sb_dirty(nilfs)) {
 505		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
 506		if (likely(sbp)) {
 507			nilfs_set_log_cursor(sbp[0], nilfs);
 508			nilfs_commit_super(sb, NILFS_SB_COMMIT);
 509		}
 510	}
 511	up_write(&nilfs->ns_sem);
 512
 513	if (!err)
 514		err = nilfs_flush_device(nilfs);
 515
 516	return err;
 517}
 518
 519int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
 520			    struct nilfs_root **rootp)
 521{
 522	struct the_nilfs *nilfs = sb->s_fs_info;
 523	struct nilfs_root *root;
 524	struct nilfs_checkpoint *raw_cp;
 525	struct buffer_head *bh_cp;
 526	int err = -ENOMEM;
 527
 528	root = nilfs_find_or_create_root(
 529		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
 530	if (!root)
 531		return err;
 532
 533	if (root->ifile)
 534		goto reuse; /* already attached checkpoint */
 535
 536	down_read(&nilfs->ns_segctor_sem);
 537	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
 538					  &bh_cp);
 539	up_read(&nilfs->ns_segctor_sem);
 540	if (unlikely(err)) {
 541		if (err == -ENOENT || err == -EINVAL) {
 542			nilfs_err(sb,
 543				  "Invalid checkpoint (checkpoint number=%llu)",
 544				  (unsigned long long)cno);
 545			err = -EINVAL;
 546		}
 547		goto failed;
 548	}
 549
 550	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
 551			       &raw_cp->cp_ifile_inode, &root->ifile);
 552	if (err)
 553		goto failed_bh;
 554
 555	atomic64_set(&root->inodes_count,
 556			le64_to_cpu(raw_cp->cp_inodes_count));
 557	atomic64_set(&root->blocks_count,
 558			le64_to_cpu(raw_cp->cp_blocks_count));
 559
 560	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 561
 562 reuse:
 563	*rootp = root;
 564	return 0;
 565
 566 failed_bh:
 567	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 568 failed:
 569	nilfs_put_root(root);
 570
 571	return err;
 572}
 573
 574static int nilfs_freeze(struct super_block *sb)
 575{
 576	struct the_nilfs *nilfs = sb->s_fs_info;
 577	int err;
 578
 579	if (sb_rdonly(sb))
 580		return 0;
 581
 582	/* Mark super block clean */
 583	down_write(&nilfs->ns_sem);
 584	err = nilfs_cleanup_super(sb);
 585	up_write(&nilfs->ns_sem);
 586	return err;
 587}
 588
 589static int nilfs_unfreeze(struct super_block *sb)
 590{
 591	struct the_nilfs *nilfs = sb->s_fs_info;
 592
 593	if (sb_rdonly(sb))
 594		return 0;
 595
 596	down_write(&nilfs->ns_sem);
 597	nilfs_setup_super(sb, false);
 598	up_write(&nilfs->ns_sem);
 599	return 0;
 600}
 601
 602static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 603{
 604	struct super_block *sb = dentry->d_sb;
 605	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 606	struct the_nilfs *nilfs = root->nilfs;
 607	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 608	unsigned long long blocks;
 609	unsigned long overhead;
 610	unsigned long nrsvblocks;
 611	sector_t nfreeblocks;
 612	u64 nmaxinodes, nfreeinodes;
 613	int err;
 614
 615	/*
 616	 * Compute all of the segment blocks
 617	 *
 618	 * The blocks before first segment and after last segment
 619	 * are excluded.
 620	 */
 621	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
 622		- nilfs->ns_first_data_block;
 623	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
 624
 625	/*
 626	 * Compute the overhead
 627	 *
 628	 * When distributing meta data blocks outside segment structure,
 629	 * We must count them as the overhead.
 630	 */
 631	overhead = 0;
 632
 633	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
 634	if (unlikely(err))
 635		return err;
 636
 637	err = nilfs_ifile_count_free_inodes(root->ifile,
 638					    &nmaxinodes, &nfreeinodes);
 639	if (unlikely(err)) {
 640		nilfs_warn(sb, "failed to count free inodes: err=%d", err);
 
 641		if (err == -ERANGE) {
 642			/*
 643			 * If nilfs_palloc_count_max_entries() returns
 644			 * -ERANGE error code then we simply treat
 645			 * curent inodes count as maximum possible and
 646			 * zero as free inodes value.
 647			 */
 648			nmaxinodes = atomic64_read(&root->inodes_count);
 649			nfreeinodes = 0;
 650			err = 0;
 651		} else
 652			return err;
 653	}
 654
 655	buf->f_type = NILFS_SUPER_MAGIC;
 656	buf->f_bsize = sb->s_blocksize;
 657	buf->f_blocks = blocks - overhead;
 658	buf->f_bfree = nfreeblocks;
 659	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
 660		(buf->f_bfree - nrsvblocks) : 0;
 661	buf->f_files = nmaxinodes;
 662	buf->f_ffree = nfreeinodes;
 663	buf->f_namelen = NILFS_NAME_LEN;
 664	buf->f_fsid = u64_to_fsid(id);
 
 665
 666	return 0;
 667}
 668
 669static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
 670{
 671	struct super_block *sb = dentry->d_sb;
 672	struct the_nilfs *nilfs = sb->s_fs_info;
 673	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 674
 675	if (!nilfs_test_opt(nilfs, BARRIER))
 676		seq_puts(seq, ",nobarrier");
 677	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
 678		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
 679	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 680		seq_puts(seq, ",errors=panic");
 681	if (nilfs_test_opt(nilfs, ERRORS_CONT))
 682		seq_puts(seq, ",errors=continue");
 683	if (nilfs_test_opt(nilfs, STRICT_ORDER))
 684		seq_puts(seq, ",order=strict");
 685	if (nilfs_test_opt(nilfs, NORECOVERY))
 686		seq_puts(seq, ",norecovery");
 687	if (nilfs_test_opt(nilfs, DISCARD))
 688		seq_puts(seq, ",discard");
 689
 690	return 0;
 691}
 692
 693static const struct super_operations nilfs_sops = {
 694	.alloc_inode    = nilfs_alloc_inode,
 695	.free_inode     = nilfs_free_inode,
 696	.dirty_inode    = nilfs_dirty_inode,
 697	.evict_inode    = nilfs_evict_inode,
 698	.put_super      = nilfs_put_super,
 699	.sync_fs        = nilfs_sync_fs,
 700	.freeze_fs	= nilfs_freeze,
 701	.unfreeze_fs	= nilfs_unfreeze,
 702	.statfs         = nilfs_statfs,
 703	.remount_fs     = nilfs_remount,
 704	.show_options = nilfs_show_options
 705};
 706
 707enum {
 708	Opt_err_cont, Opt_err_panic, Opt_err_ro,
 709	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
 710	Opt_discard, Opt_nodiscard, Opt_err,
 711};
 712
 713static match_table_t tokens = {
 714	{Opt_err_cont, "errors=continue"},
 715	{Opt_err_panic, "errors=panic"},
 716	{Opt_err_ro, "errors=remount-ro"},
 717	{Opt_barrier, "barrier"},
 718	{Opt_nobarrier, "nobarrier"},
 719	{Opt_snapshot, "cp=%u"},
 720	{Opt_order, "order=%s"},
 721	{Opt_norecovery, "norecovery"},
 722	{Opt_discard, "discard"},
 723	{Opt_nodiscard, "nodiscard"},
 724	{Opt_err, NULL}
 725};
 726
 727static int parse_options(char *options, struct super_block *sb, int is_remount)
 728{
 729	struct the_nilfs *nilfs = sb->s_fs_info;
 730	char *p;
 731	substring_t args[MAX_OPT_ARGS];
 732
 733	if (!options)
 734		return 1;
 735
 736	while ((p = strsep(&options, ",")) != NULL) {
 737		int token;
 738
 739		if (!*p)
 740			continue;
 741
 742		token = match_token(p, tokens, args);
 743		switch (token) {
 744		case Opt_barrier:
 745			nilfs_set_opt(nilfs, BARRIER);
 746			break;
 747		case Opt_nobarrier:
 748			nilfs_clear_opt(nilfs, BARRIER);
 749			break;
 750		case Opt_order:
 751			if (strcmp(args[0].from, "relaxed") == 0)
 752				/* Ordered data semantics */
 753				nilfs_clear_opt(nilfs, STRICT_ORDER);
 754			else if (strcmp(args[0].from, "strict") == 0)
 755				/* Strict in-order semantics */
 756				nilfs_set_opt(nilfs, STRICT_ORDER);
 757			else
 758				return 0;
 759			break;
 760		case Opt_err_panic:
 761			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
 762			break;
 763		case Opt_err_ro:
 764			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
 765			break;
 766		case Opt_err_cont:
 767			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
 768			break;
 769		case Opt_snapshot:
 770			if (is_remount) {
 771				nilfs_err(sb,
 772					  "\"%s\" option is invalid for remount",
 773					  p);
 774				return 0;
 775			}
 776			break;
 777		case Opt_norecovery:
 778			nilfs_set_opt(nilfs, NORECOVERY);
 779			break;
 780		case Opt_discard:
 781			nilfs_set_opt(nilfs, DISCARD);
 782			break;
 783		case Opt_nodiscard:
 784			nilfs_clear_opt(nilfs, DISCARD);
 785			break;
 786		default:
 787			nilfs_err(sb, "unrecognized mount option \"%s\"", p);
 
 788			return 0;
 789		}
 790	}
 791	return 1;
 792}
 793
 794static inline void
 795nilfs_set_default_options(struct super_block *sb,
 796			  struct nilfs_super_block *sbp)
 797{
 798	struct the_nilfs *nilfs = sb->s_fs_info;
 799
 800	nilfs->ns_mount_opt =
 801		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
 802}
 803
 804static int nilfs_setup_super(struct super_block *sb, int is_mount)
 805{
 806	struct the_nilfs *nilfs = sb->s_fs_info;
 807	struct nilfs_super_block **sbp;
 808	int max_mnt_count;
 809	int mnt_count;
 810
 811	/* nilfs->ns_sem must be locked by the caller. */
 812	sbp = nilfs_prepare_super(sb, 0);
 813	if (!sbp)
 814		return -EIO;
 815
 816	if (!is_mount)
 817		goto skip_mount_setup;
 818
 819	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
 820	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
 821
 822	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
 823		nilfs_warn(sb, "mounting fs with errors");
 824#if 0
 825	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
 826		nilfs_warn(sb, "maximal mount count reached");
 827#endif
 828	}
 829	if (!max_mnt_count)
 830		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
 831
 832	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
 833	sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds());
 834
 835skip_mount_setup:
 836	sbp[0]->s_state =
 837		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
 838	/* synchronize sbp[1] with sbp[0] */
 839	if (sbp[1])
 840		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 841	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 842}
 843
 844struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
 845						 u64 pos, int blocksize,
 846						 struct buffer_head **pbh)
 847{
 848	unsigned long long sb_index = pos;
 849	unsigned long offset;
 850
 851	offset = do_div(sb_index, blocksize);
 852	*pbh = sb_bread(sb, sb_index);
 853	if (!*pbh)
 854		return NULL;
 855	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
 856}
 857
 858int nilfs_store_magic_and_option(struct super_block *sb,
 859				 struct nilfs_super_block *sbp,
 860				 char *data)
 861{
 862	struct the_nilfs *nilfs = sb->s_fs_info;
 863
 864	sb->s_magic = le16_to_cpu(sbp->s_magic);
 865
 866	/* FS independent flags */
 867#ifdef NILFS_ATIME_DISABLE
 868	sb->s_flags |= SB_NOATIME;
 869#endif
 870
 871	nilfs_set_default_options(sb, sbp);
 872
 873	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
 874	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
 875	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
 876	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
 877
 878	return !parse_options(data, sb, 0) ? -EINVAL : 0;
 879}
 880
 881int nilfs_check_feature_compatibility(struct super_block *sb,
 882				      struct nilfs_super_block *sbp)
 883{
 884	__u64 features;
 885
 886	features = le64_to_cpu(sbp->s_feature_incompat) &
 887		~NILFS_FEATURE_INCOMPAT_SUPP;
 888	if (features) {
 889		nilfs_err(sb,
 890			  "couldn't mount because of unsupported optional features (%llx)",
 891			  (unsigned long long)features);
 892		return -EINVAL;
 893	}
 894	features = le64_to_cpu(sbp->s_feature_compat_ro) &
 895		~NILFS_FEATURE_COMPAT_RO_SUPP;
 896	if (!sb_rdonly(sb) && features) {
 897		nilfs_err(sb,
 898			  "couldn't mount RDWR because of unsupported optional features (%llx)",
 899			  (unsigned long long)features);
 900		return -EINVAL;
 901	}
 902	return 0;
 903}
 904
 905static int nilfs_get_root_dentry(struct super_block *sb,
 906				 struct nilfs_root *root,
 907				 struct dentry **root_dentry)
 908{
 909	struct inode *inode;
 910	struct dentry *dentry;
 911	int ret = 0;
 912
 913	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
 914	if (IS_ERR(inode)) {
 915		ret = PTR_ERR(inode);
 916		nilfs_err(sb, "error %d getting root inode", ret);
 917		goto out;
 918	}
 919	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
 920		iput(inode);
 921		nilfs_err(sb, "corrupt root inode");
 922		ret = -EINVAL;
 923		goto out;
 924	}
 925
 926	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
 927		dentry = d_find_alias(inode);
 928		if (!dentry) {
 929			dentry = d_make_root(inode);
 930			if (!dentry) {
 931				ret = -ENOMEM;
 932				goto failed_dentry;
 933			}
 934		} else {
 935			iput(inode);
 936		}
 937	} else {
 938		dentry = d_obtain_root(inode);
 939		if (IS_ERR(dentry)) {
 940			ret = PTR_ERR(dentry);
 941			goto failed_dentry;
 942		}
 943	}
 944	*root_dentry = dentry;
 945 out:
 946	return ret;
 947
 948 failed_dentry:
 949	nilfs_err(sb, "error %d getting root dentry", ret);
 950	goto out;
 951}
 952
 953static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
 954				 struct dentry **root_dentry)
 955{
 956	struct the_nilfs *nilfs = s->s_fs_info;
 957	struct nilfs_root *root;
 958	int ret;
 959
 960	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
 961
 962	down_read(&nilfs->ns_segctor_sem);
 963	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
 964	up_read(&nilfs->ns_segctor_sem);
 965	if (ret < 0) {
 966		ret = (ret == -ENOENT) ? -EINVAL : ret;
 967		goto out;
 968	} else if (!ret) {
 969		nilfs_err(s,
 970			  "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
 971			  (unsigned long long)cno);
 972		ret = -EINVAL;
 973		goto out;
 974	}
 975
 976	ret = nilfs_attach_checkpoint(s, cno, false, &root);
 977	if (ret) {
 978		nilfs_err(s,
 979			  "error %d while loading snapshot (checkpoint number=%llu)",
 980			  ret, (unsigned long long)cno);
 981		goto out;
 982	}
 983	ret = nilfs_get_root_dentry(s, root, root_dentry);
 984	nilfs_put_root(root);
 985 out:
 986	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
 987	return ret;
 988}
 989
 990/**
 991 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
 992 * @root_dentry: root dentry of the tree to be shrunk
 993 *
 994 * This function returns true if the tree was in-use.
 995 */
 996static bool nilfs_tree_is_busy(struct dentry *root_dentry)
 997{
 998	shrink_dcache_parent(root_dentry);
 999	return d_count(root_dentry) > 1;
1000}
1001
1002int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1003{
1004	struct the_nilfs *nilfs = sb->s_fs_info;
1005	struct nilfs_root *root;
1006	struct inode *inode;
1007	struct dentry *dentry;
1008	int ret;
1009
1010	if (cno > nilfs->ns_cno)
1011		return false;
1012
1013	if (cno >= nilfs_last_cno(nilfs))
1014		return true;	/* protect recent checkpoints */
1015
1016	ret = false;
1017	root = nilfs_lookup_root(nilfs, cno);
1018	if (root) {
1019		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1020		if (inode) {
1021			dentry = d_find_alias(inode);
1022			if (dentry) {
1023				ret = nilfs_tree_is_busy(dentry);
1024				dput(dentry);
1025			}
1026			iput(inode);
1027		}
1028		nilfs_put_root(root);
1029	}
1030	return ret;
1031}
1032
1033/**
1034 * nilfs_fill_super() - initialize a super block instance
1035 * @sb: super_block
1036 * @data: mount options
1037 * @silent: silent mode flag
1038 *
1039 * This function is called exclusively by nilfs->ns_mount_mutex.
1040 * So, the recovery process is protected from other simultaneous mounts.
1041 */
1042static int
1043nilfs_fill_super(struct super_block *sb, void *data, int silent)
1044{
1045	struct the_nilfs *nilfs;
1046	struct nilfs_root *fsroot;
1047	__u64 cno;
1048	int err;
1049
1050	nilfs = alloc_nilfs(sb);
1051	if (!nilfs)
1052		return -ENOMEM;
1053
1054	sb->s_fs_info = nilfs;
1055
1056	err = init_nilfs(nilfs, sb, (char *)data);
1057	if (err)
1058		goto failed_nilfs;
1059
1060	sb->s_op = &nilfs_sops;
1061	sb->s_export_op = &nilfs_export_ops;
1062	sb->s_root = NULL;
1063	sb->s_time_gran = 1;
1064	sb->s_max_links = NILFS_LINK_MAX;
1065
1066	sb->s_bdi = bdi_get(sb->s_bdev->bd_disk->bdi);
1067
1068	err = load_nilfs(nilfs, sb);
1069	if (err)
1070		goto failed_nilfs;
1071
1072	cno = nilfs_last_cno(nilfs);
1073	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1074	if (err) {
1075		nilfs_err(sb,
1076			  "error %d while loading last checkpoint (checkpoint number=%llu)",
1077			  err, (unsigned long long)cno);
1078		goto failed_unload;
1079	}
1080
1081	if (!sb_rdonly(sb)) {
1082		err = nilfs_attach_log_writer(sb, fsroot);
1083		if (err)
1084			goto failed_checkpoint;
1085	}
1086
1087	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1088	if (err)
1089		goto failed_segctor;
1090
1091	nilfs_put_root(fsroot);
1092
1093	if (!sb_rdonly(sb)) {
1094		down_write(&nilfs->ns_sem);
1095		nilfs_setup_super(sb, true);
1096		up_write(&nilfs->ns_sem);
1097	}
1098
1099	return 0;
1100
1101 failed_segctor:
1102	nilfs_detach_log_writer(sb);
1103
1104 failed_checkpoint:
1105	nilfs_put_root(fsroot);
1106
1107 failed_unload:
1108	iput(nilfs->ns_sufile);
1109	iput(nilfs->ns_cpfile);
1110	iput(nilfs->ns_dat);
1111
1112 failed_nilfs:
1113	destroy_nilfs(nilfs);
1114	return err;
1115}
1116
1117static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1118{
1119	struct the_nilfs *nilfs = sb->s_fs_info;
1120	unsigned long old_sb_flags;
1121	unsigned long old_mount_opt;
1122	int err;
1123
1124	sync_filesystem(sb);
1125	old_sb_flags = sb->s_flags;
1126	old_mount_opt = nilfs->ns_mount_opt;
1127
1128	if (!parse_options(data, sb, 1)) {
1129		err = -EINVAL;
1130		goto restore_opts;
1131	}
1132	sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1133
1134	err = -EINVAL;
1135
1136	if (!nilfs_valid_fs(nilfs)) {
1137		nilfs_warn(sb,
1138			   "couldn't remount because the filesystem is in an incomplete recovery state");
1139		goto restore_opts;
1140	}
1141
1142	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1143		goto out;
1144	if (*flags & SB_RDONLY) {
1145		sb->s_flags |= SB_RDONLY;
 
 
1146
1147		/*
1148		 * Remounting a valid RW partition RDONLY, so set
1149		 * the RDONLY flag and then mark the partition as valid again.
1150		 */
1151		down_write(&nilfs->ns_sem);
1152		nilfs_cleanup_super(sb);
1153		up_write(&nilfs->ns_sem);
1154	} else {
1155		__u64 features;
1156		struct nilfs_root *root;
1157
1158		/*
1159		 * Mounting a RDONLY partition read-write, so reread and
1160		 * store the current valid flag.  (It may have been changed
1161		 * by fsck since we originally mounted the partition.)
1162		 */
1163		down_read(&nilfs->ns_sem);
1164		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1165			~NILFS_FEATURE_COMPAT_RO_SUPP;
1166		up_read(&nilfs->ns_sem);
1167		if (features) {
1168			nilfs_warn(sb,
1169				   "couldn't remount RDWR because of unsupported optional features (%llx)",
1170				   (unsigned long long)features);
1171			err = -EROFS;
1172			goto restore_opts;
1173		}
1174
1175		sb->s_flags &= ~SB_RDONLY;
1176
1177		root = NILFS_I(d_inode(sb->s_root))->i_root;
1178		err = nilfs_attach_log_writer(sb, root);
1179		if (err)
1180			goto restore_opts;
1181
1182		down_write(&nilfs->ns_sem);
1183		nilfs_setup_super(sb, true);
1184		up_write(&nilfs->ns_sem);
1185	}
1186 out:
1187	return 0;
1188
1189 restore_opts:
1190	sb->s_flags = old_sb_flags;
1191	nilfs->ns_mount_opt = old_mount_opt;
1192	return err;
1193}
1194
1195struct nilfs_super_data {
1196	struct block_device *bdev;
1197	__u64 cno;
1198	int flags;
1199};
1200
1201static int nilfs_parse_snapshot_option(const char *option,
1202				       const substring_t *arg,
1203				       struct nilfs_super_data *sd)
1204{
1205	unsigned long long val;
1206	const char *msg = NULL;
1207	int err;
1208
1209	if (!(sd->flags & SB_RDONLY)) {
1210		msg = "read-only option is not specified";
1211		goto parse_error;
1212	}
1213
1214	err = kstrtoull(arg->from, 0, &val);
1215	if (err) {
1216		if (err == -ERANGE)
1217			msg = "too large checkpoint number";
1218		else
1219			msg = "malformed argument";
1220		goto parse_error;
1221	} else if (val == 0) {
1222		msg = "invalid checkpoint number 0";
1223		goto parse_error;
1224	}
1225	sd->cno = val;
1226	return 0;
1227
1228parse_error:
1229	nilfs_err(NULL, "invalid option \"%s\": %s", option, msg);
1230	return 1;
1231}
1232
1233/**
1234 * nilfs_identify - pre-read mount options needed to identify mount instance
1235 * @data: mount options
1236 * @sd: nilfs_super_data
1237 */
1238static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1239{
1240	char *p, *options = data;
1241	substring_t args[MAX_OPT_ARGS];
1242	int token;
1243	int ret = 0;
1244
1245	do {
1246		p = strsep(&options, ",");
1247		if (p != NULL && *p) {
1248			token = match_token(p, tokens, args);
1249			if (token == Opt_snapshot)
1250				ret = nilfs_parse_snapshot_option(p, &args[0],
1251								  sd);
1252		}
1253		if (!options)
1254			break;
1255		BUG_ON(options == data);
1256		*(options - 1) = ',';
1257	} while (!ret);
1258	return ret;
1259}
1260
1261static int nilfs_set_bdev_super(struct super_block *s, void *data)
1262{
1263	s->s_bdev = data;
1264	s->s_dev = s->s_bdev->bd_dev;
1265	return 0;
1266}
1267
1268static int nilfs_test_bdev_super(struct super_block *s, void *data)
1269{
1270	return (void *)s->s_bdev == data;
1271}
1272
1273static struct dentry *
1274nilfs_mount(struct file_system_type *fs_type, int flags,
1275	     const char *dev_name, void *data)
1276{
1277	struct nilfs_super_data sd;
1278	struct super_block *s;
1279	fmode_t mode = FMODE_READ | FMODE_EXCL;
1280	struct dentry *root_dentry;
1281	int err, s_new = false;
1282
1283	if (!(flags & SB_RDONLY))
1284		mode |= FMODE_WRITE;
1285
1286	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1287	if (IS_ERR(sd.bdev))
1288		return ERR_CAST(sd.bdev);
1289
1290	sd.cno = 0;
1291	sd.flags = flags;
1292	if (nilfs_identify((char *)data, &sd)) {
1293		err = -EINVAL;
1294		goto failed;
1295	}
1296
1297	/*
1298	 * once the super is inserted into the list by sget, s_umount
1299	 * will protect the lockfs code from trying to start a snapshot
1300	 * while we are mounting
1301	 */
1302	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1303	if (sd.bdev->bd_fsfreeze_count > 0) {
1304		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1305		err = -EBUSY;
1306		goto failed;
1307	}
1308	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1309		 sd.bdev);
1310	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1311	if (IS_ERR(s)) {
1312		err = PTR_ERR(s);
1313		goto failed;
1314	}
1315
1316	if (!s->s_root) {
1317		s_new = true;
1318
1319		/* New superblock instance created */
1320		s->s_mode = mode;
1321		snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1322		sb_set_blocksize(s, block_size(sd.bdev));
1323
1324		err = nilfs_fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1325		if (err)
1326			goto failed_super;
1327
1328		s->s_flags |= SB_ACTIVE;
1329	} else if (!sd.cno) {
1330		if (nilfs_tree_is_busy(s->s_root)) {
1331			if ((flags ^ s->s_flags) & SB_RDONLY) {
1332				nilfs_err(s,
1333					  "the device already has a %s mount.",
1334					  sb_rdonly(s) ? "read-only" : "read/write");
 
1335				err = -EBUSY;
1336				goto failed_super;
1337			}
1338		} else {
1339			/*
1340			 * Try remount to setup mount states if the current
1341			 * tree is not mounted and only snapshots use this sb.
1342			 */
1343			err = nilfs_remount(s, &flags, data);
1344			if (err)
1345				goto failed_super;
1346		}
1347	}
1348
1349	if (sd.cno) {
1350		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1351		if (err)
1352			goto failed_super;
1353	} else {
1354		root_dentry = dget(s->s_root);
1355	}
1356
1357	if (!s_new)
1358		blkdev_put(sd.bdev, mode);
1359
1360	return root_dentry;
1361
1362 failed_super:
1363	deactivate_locked_super(s);
1364
1365 failed:
1366	if (!s_new)
1367		blkdev_put(sd.bdev, mode);
1368	return ERR_PTR(err);
1369}
1370
1371struct file_system_type nilfs_fs_type = {
1372	.owner    = THIS_MODULE,
1373	.name     = "nilfs2",
1374	.mount    = nilfs_mount,
1375	.kill_sb  = kill_block_super,
1376	.fs_flags = FS_REQUIRES_DEV,
1377};
1378MODULE_ALIAS_FS("nilfs2");
1379
1380static void nilfs_inode_init_once(void *obj)
1381{
1382	struct nilfs_inode_info *ii = obj;
1383
1384	INIT_LIST_HEAD(&ii->i_dirty);
1385#ifdef CONFIG_NILFS_XATTR
1386	init_rwsem(&ii->xattr_sem);
1387#endif
 
 
1388	inode_init_once(&ii->vfs_inode);
1389}
1390
1391static void nilfs_segbuf_init_once(void *obj)
1392{
1393	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1394}
1395
1396static void nilfs_destroy_cachep(void)
1397{
1398	/*
1399	 * Make sure all delayed rcu free inodes are flushed before we
1400	 * destroy cache.
1401	 */
1402	rcu_barrier();
1403
1404	kmem_cache_destroy(nilfs_inode_cachep);
1405	kmem_cache_destroy(nilfs_transaction_cachep);
1406	kmem_cache_destroy(nilfs_segbuf_cachep);
1407	kmem_cache_destroy(nilfs_btree_path_cache);
1408}
1409
1410static int __init nilfs_init_cachep(void)
1411{
1412	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1413			sizeof(struct nilfs_inode_info), 0,
1414			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1415			nilfs_inode_init_once);
1416	if (!nilfs_inode_cachep)
1417		goto fail;
1418
1419	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1420			sizeof(struct nilfs_transaction_info), 0,
1421			SLAB_RECLAIM_ACCOUNT, NULL);
1422	if (!nilfs_transaction_cachep)
1423		goto fail;
1424
1425	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1426			sizeof(struct nilfs_segment_buffer), 0,
1427			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1428	if (!nilfs_segbuf_cachep)
1429		goto fail;
1430
1431	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1432			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1433			0, 0, NULL);
1434	if (!nilfs_btree_path_cache)
1435		goto fail;
1436
1437	return 0;
1438
1439fail:
1440	nilfs_destroy_cachep();
1441	return -ENOMEM;
1442}
1443
1444static int __init init_nilfs_fs(void)
1445{
1446	int err;
1447
1448	err = nilfs_init_cachep();
1449	if (err)
1450		goto fail;
1451
1452	err = nilfs_sysfs_init();
1453	if (err)
1454		goto free_cachep;
1455
1456	err = register_filesystem(&nilfs_fs_type);
1457	if (err)
1458		goto deinit_sysfs_entry;
1459
1460	printk(KERN_INFO "NILFS version 2 loaded\n");
1461	return 0;
1462
1463deinit_sysfs_entry:
1464	nilfs_sysfs_exit();
1465free_cachep:
1466	nilfs_destroy_cachep();
1467fail:
1468	return err;
1469}
1470
1471static void __exit exit_nilfs_fs(void)
1472{
1473	nilfs_destroy_cachep();
1474	nilfs_sysfs_exit();
1475	unregister_filesystem(&nilfs_fs_type);
1476}
1477
1478module_init(init_nilfs_fs)
1479module_exit(exit_nilfs_fs)
v4.10.11
 
   1/*
   2 * super.c - NILFS module and super block management.
   3 *
   4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * Written by Ryusuke Konishi.
  17 */
  18/*
  19 *  linux/fs/ext2/super.c
  20 *
  21 * Copyright (C) 1992, 1993, 1994, 1995
  22 * Remy Card (card@masi.ibp.fr)
  23 * Laboratoire MASI - Institut Blaise Pascal
  24 * Universite Pierre et Marie Curie (Paris VI)
  25 *
  26 *  from
  27 *
  28 *  linux/fs/minix/inode.c
  29 *
  30 *  Copyright (C) 1991, 1992  Linus Torvalds
  31 *
  32 *  Big-endian to little-endian byte-swapping/bitmaps by
  33 *        David S. Miller (davem@caip.rutgers.edu), 1995
  34 */
  35
  36#include <linux/module.h>
  37#include <linux/string.h>
  38#include <linux/slab.h>
  39#include <linux/init.h>
  40#include <linux/blkdev.h>
  41#include <linux/parser.h>
  42#include <linux/crc32.h>
  43#include <linux/vfs.h>
  44#include <linux/writeback.h>
  45#include <linux/seq_file.h>
  46#include <linux/mount.h>
  47#include "nilfs.h"
  48#include "export.h"
  49#include "mdt.h"
  50#include "alloc.h"
  51#include "btree.h"
  52#include "btnode.h"
  53#include "page.h"
  54#include "cpfile.h"
  55#include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
  56#include "ifile.h"
  57#include "dat.h"
  58#include "segment.h"
  59#include "segbuf.h"
  60
  61MODULE_AUTHOR("NTT Corp.");
  62MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
  63		   "(NILFS)");
  64MODULE_LICENSE("GPL");
  65
  66static struct kmem_cache *nilfs_inode_cachep;
  67struct kmem_cache *nilfs_transaction_cachep;
  68struct kmem_cache *nilfs_segbuf_cachep;
  69struct kmem_cache *nilfs_btree_path_cache;
  70
  71static int nilfs_setup_super(struct super_block *sb, int is_mount);
  72static int nilfs_remount(struct super_block *sb, int *flags, char *data);
  73
  74void __nilfs_msg(struct super_block *sb, const char *level, const char *fmt,
  75		 ...)
  76{
  77	struct va_format vaf;
  78	va_list args;
 
  79
  80	va_start(args, fmt);
  81	vaf.fmt = fmt;
 
 
  82	vaf.va = &args;
 
  83	if (sb)
  84		printk("%sNILFS (%s): %pV\n", level, sb->s_id, &vaf);
 
  85	else
  86		printk("%sNILFS: %pV\n", level, &vaf);
 
 
  87	va_end(args);
  88}
  89
  90static void nilfs_set_error(struct super_block *sb)
  91{
  92	struct the_nilfs *nilfs = sb->s_fs_info;
  93	struct nilfs_super_block **sbp;
  94
  95	down_write(&nilfs->ns_sem);
  96	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
  97		nilfs->ns_mount_state |= NILFS_ERROR_FS;
  98		sbp = nilfs_prepare_super(sb, 0);
  99		if (likely(sbp)) {
 100			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
 101			if (sbp[1])
 102				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
 103			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 104		}
 105	}
 106	up_write(&nilfs->ns_sem);
 107}
 108
 109/**
 110 * __nilfs_error() - report failure condition on a filesystem
 111 *
 112 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
 113 * reporting an error message.  This function should be called when
 114 * NILFS detects incoherences or defects of meta data on disk.
 115 *
 116 * This implements the body of nilfs_error() macro.  Normally,
 117 * nilfs_error() should be used.  As for sustainable errors such as a
 118 * single-shot I/O error, nilfs_msg() should be used instead.
 119 *
 120 * Callers should not add a trailing newline since this will do it.
 121 */
 122void __nilfs_error(struct super_block *sb, const char *function,
 123		   const char *fmt, ...)
 124{
 125	struct the_nilfs *nilfs = sb->s_fs_info;
 126	struct va_format vaf;
 127	va_list args;
 128
 129	va_start(args, fmt);
 130
 131	vaf.fmt = fmt;
 132	vaf.va = &args;
 133
 134	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
 135	       sb->s_id, function, &vaf);
 136
 137	va_end(args);
 138
 139	if (!(sb->s_flags & MS_RDONLY)) {
 140		nilfs_set_error(sb);
 141
 142		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
 143			printk(KERN_CRIT "Remounting filesystem read-only\n");
 144			sb->s_flags |= MS_RDONLY;
 145		}
 146	}
 147
 148	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 149		panic("NILFS (device %s): panic forced after error\n",
 150		      sb->s_id);
 151}
 152
 153struct inode *nilfs_alloc_inode(struct super_block *sb)
 154{
 155	struct nilfs_inode_info *ii;
 156
 157	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
 158	if (!ii)
 159		return NULL;
 160	ii->i_bh = NULL;
 161	ii->i_state = 0;
 162	ii->i_cno = 0;
 163	ii->vfs_inode.i_version = 1;
 164	nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
 165	return &ii->vfs_inode;
 166}
 167
 168static void nilfs_i_callback(struct rcu_head *head)
 169{
 170	struct inode *inode = container_of(head, struct inode, i_rcu);
 171
 172	if (nilfs_is_metadata_file_inode(inode))
 173		nilfs_mdt_destroy(inode);
 174
 175	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
 176}
 177
 178void nilfs_destroy_inode(struct inode *inode)
 179{
 180	call_rcu(&inode->i_rcu, nilfs_i_callback);
 181}
 182
 183static int nilfs_sync_super(struct super_block *sb, int flag)
 184{
 185	struct the_nilfs *nilfs = sb->s_fs_info;
 186	int err;
 187
 188 retry:
 189	set_buffer_dirty(nilfs->ns_sbh[0]);
 190	if (nilfs_test_opt(nilfs, BARRIER)) {
 191		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
 192					  REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
 193	} else {
 194		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
 195	}
 196
 197	if (unlikely(err)) {
 198		nilfs_msg(sb, KERN_ERR, "unable to write superblock: err=%d",
 199			  err);
 200		if (err == -EIO && nilfs->ns_sbh[1]) {
 201			/*
 202			 * sbp[0] points to newer log than sbp[1],
 203			 * so copy sbp[0] to sbp[1] to take over sbp[0].
 204			 */
 205			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
 206			       nilfs->ns_sbsize);
 207			nilfs_fall_back_super_block(nilfs);
 208			goto retry;
 209		}
 210	} else {
 211		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
 212
 213		nilfs->ns_sbwcount++;
 214
 215		/*
 216		 * The latest segment becomes trailable from the position
 217		 * written in superblock.
 218		 */
 219		clear_nilfs_discontinued(nilfs);
 220
 221		/* update GC protection for recent segments */
 222		if (nilfs->ns_sbh[1]) {
 223			if (flag == NILFS_SB_COMMIT_ALL) {
 224				set_buffer_dirty(nilfs->ns_sbh[1]);
 225				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
 226					goto out;
 227			}
 228			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
 229			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
 230				sbp = nilfs->ns_sbp[1];
 231		}
 232
 233		spin_lock(&nilfs->ns_last_segment_lock);
 234		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
 235		spin_unlock(&nilfs->ns_last_segment_lock);
 236	}
 237 out:
 238	return err;
 239}
 240
 241void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
 242			  struct the_nilfs *nilfs)
 243{
 244	sector_t nfreeblocks;
 245
 246	/* nilfs->ns_sem must be locked by the caller. */
 247	nilfs_count_free_blocks(nilfs, &nfreeblocks);
 248	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
 249
 250	spin_lock(&nilfs->ns_last_segment_lock);
 251	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
 252	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
 253	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
 254	spin_unlock(&nilfs->ns_last_segment_lock);
 255}
 256
 257struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
 258					       int flip)
 259{
 260	struct the_nilfs *nilfs = sb->s_fs_info;
 261	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 262
 263	/* nilfs->ns_sem must be locked by the caller. */
 264	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 265		if (sbp[1] &&
 266		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
 267			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
 268		} else {
 269			nilfs_msg(sb, KERN_CRIT, "superblock broke");
 270			return NULL;
 271		}
 272	} else if (sbp[1] &&
 273		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 274		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 275	}
 276
 277	if (flip && sbp[1])
 278		nilfs_swap_super_block(nilfs);
 279
 280	return sbp;
 281}
 282
 283int nilfs_commit_super(struct super_block *sb, int flag)
 284{
 285	struct the_nilfs *nilfs = sb->s_fs_info;
 286	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 287	time_t t;
 288
 289	/* nilfs->ns_sem must be locked by the caller. */
 290	t = get_seconds();
 291	nilfs->ns_sbwtime = t;
 292	sbp[0]->s_wtime = cpu_to_le64(t);
 293	sbp[0]->s_sum = 0;
 294	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 295					     (unsigned char *)sbp[0],
 296					     nilfs->ns_sbsize));
 297	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
 298		sbp[1]->s_wtime = sbp[0]->s_wtime;
 299		sbp[1]->s_sum = 0;
 300		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 301					    (unsigned char *)sbp[1],
 302					    nilfs->ns_sbsize));
 303	}
 304	clear_nilfs_sb_dirty(nilfs);
 305	nilfs->ns_flushed_device = 1;
 306	/* make sure store to ns_flushed_device cannot be reordered */
 307	smp_wmb();
 308	return nilfs_sync_super(sb, flag);
 309}
 310
 311/**
 312 * nilfs_cleanup_super() - write filesystem state for cleanup
 313 * @sb: super block instance to be unmounted or degraded to read-only
 314 *
 315 * This function restores state flags in the on-disk super block.
 316 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
 317 * filesystem was not clean previously.
 318 */
 319int nilfs_cleanup_super(struct super_block *sb)
 320{
 321	struct the_nilfs *nilfs = sb->s_fs_info;
 322	struct nilfs_super_block **sbp;
 323	int flag = NILFS_SB_COMMIT;
 324	int ret = -EIO;
 325
 326	sbp = nilfs_prepare_super(sb, 0);
 327	if (sbp) {
 328		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
 329		nilfs_set_log_cursor(sbp[0], nilfs);
 330		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
 331			/*
 332			 * make the "clean" flag also to the opposite
 333			 * super block if both super blocks point to
 334			 * the same checkpoint.
 335			 */
 336			sbp[1]->s_state = sbp[0]->s_state;
 337			flag = NILFS_SB_COMMIT_ALL;
 338		}
 339		ret = nilfs_commit_super(sb, flag);
 340	}
 341	return ret;
 342}
 343
 344/**
 345 * nilfs_move_2nd_super - relocate secondary super block
 346 * @sb: super block instance
 347 * @sb2off: new offset of the secondary super block (in bytes)
 348 */
 349static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
 350{
 351	struct the_nilfs *nilfs = sb->s_fs_info;
 352	struct buffer_head *nsbh;
 353	struct nilfs_super_block *nsbp;
 354	sector_t blocknr, newblocknr;
 355	unsigned long offset;
 356	int sb2i;  /* array index of the secondary superblock */
 357	int ret = 0;
 358
 359	/* nilfs->ns_sem must be locked by the caller. */
 360	if (nilfs->ns_sbh[1] &&
 361	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
 362		sb2i = 1;
 363		blocknr = nilfs->ns_sbh[1]->b_blocknr;
 364	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
 365		sb2i = 0;
 366		blocknr = nilfs->ns_sbh[0]->b_blocknr;
 367	} else {
 368		sb2i = -1;
 369		blocknr = 0;
 370	}
 371	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
 372		goto out;  /* super block location is unchanged */
 373
 374	/* Get new super block buffer */
 375	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
 376	offset = sb2off & (nilfs->ns_blocksize - 1);
 377	nsbh = sb_getblk(sb, newblocknr);
 378	if (!nsbh) {
 379		nilfs_msg(sb, KERN_WARNING,
 380			  "unable to move secondary superblock to block %llu",
 381			  (unsigned long long)newblocknr);
 382		ret = -EIO;
 383		goto out;
 384	}
 385	nsbp = (void *)nsbh->b_data + offset;
 386	memset(nsbp, 0, nilfs->ns_blocksize);
 387
 388	if (sb2i >= 0) {
 389		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
 390		brelse(nilfs->ns_sbh[sb2i]);
 391		nilfs->ns_sbh[sb2i] = nsbh;
 392		nilfs->ns_sbp[sb2i] = nsbp;
 393	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
 394		/* secondary super block will be restored to index 1 */
 395		nilfs->ns_sbh[1] = nsbh;
 396		nilfs->ns_sbp[1] = nsbp;
 397	} else {
 398		brelse(nsbh);
 399	}
 400out:
 401	return ret;
 402}
 403
 404/**
 405 * nilfs_resize_fs - resize the filesystem
 406 * @sb: super block instance
 407 * @newsize: new size of the filesystem (in bytes)
 408 */
 409int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
 410{
 411	struct the_nilfs *nilfs = sb->s_fs_info;
 412	struct nilfs_super_block **sbp;
 413	__u64 devsize, newnsegs;
 414	loff_t sb2off;
 415	int ret;
 416
 417	ret = -ERANGE;
 418	devsize = i_size_read(sb->s_bdev->bd_inode);
 419	if (newsize > devsize)
 420		goto out;
 421
 422	/*
 
 
 
 
 
 
 
 
 
 423	 * Write lock is required to protect some functions depending
 424	 * on the number of segments, the number of reserved segments,
 425	 * and so forth.
 426	 */
 427	down_write(&nilfs->ns_segctor_sem);
 428
 429	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
 430	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
 431	do_div(newnsegs, nilfs->ns_blocks_per_segment);
 432
 433	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
 434	up_write(&nilfs->ns_segctor_sem);
 435	if (ret < 0)
 436		goto out;
 437
 438	ret = nilfs_construct_segment(sb);
 439	if (ret < 0)
 440		goto out;
 441
 442	down_write(&nilfs->ns_sem);
 443	nilfs_move_2nd_super(sb, sb2off);
 444	ret = -EIO;
 445	sbp = nilfs_prepare_super(sb, 0);
 446	if (likely(sbp)) {
 447		nilfs_set_log_cursor(sbp[0], nilfs);
 448		/*
 449		 * Drop NILFS_RESIZE_FS flag for compatibility with
 450		 * mount-time resize which may be implemented in a
 451		 * future release.
 452		 */
 453		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
 454					      ~NILFS_RESIZE_FS);
 455		sbp[0]->s_dev_size = cpu_to_le64(newsize);
 456		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
 457		if (sbp[1])
 458			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 459		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 460	}
 461	up_write(&nilfs->ns_sem);
 462
 463	/*
 464	 * Reset the range of allocatable segments last.  This order
 465	 * is important in the case of expansion because the secondary
 466	 * superblock must be protected from log write until migration
 467	 * completes.
 468	 */
 469	if (!ret)
 470		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
 471out:
 472	return ret;
 473}
 474
 475static void nilfs_put_super(struct super_block *sb)
 476{
 477	struct the_nilfs *nilfs = sb->s_fs_info;
 478
 479	nilfs_detach_log_writer(sb);
 480
 481	if (!(sb->s_flags & MS_RDONLY)) {
 482		down_write(&nilfs->ns_sem);
 483		nilfs_cleanup_super(sb);
 484		up_write(&nilfs->ns_sem);
 485	}
 486
 487	iput(nilfs->ns_sufile);
 488	iput(nilfs->ns_cpfile);
 489	iput(nilfs->ns_dat);
 490
 491	destroy_nilfs(nilfs);
 492	sb->s_fs_info = NULL;
 493}
 494
 495static int nilfs_sync_fs(struct super_block *sb, int wait)
 496{
 497	struct the_nilfs *nilfs = sb->s_fs_info;
 498	struct nilfs_super_block **sbp;
 499	int err = 0;
 500
 501	/* This function is called when super block should be written back */
 502	if (wait)
 503		err = nilfs_construct_segment(sb);
 504
 505	down_write(&nilfs->ns_sem);
 506	if (nilfs_sb_dirty(nilfs)) {
 507		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
 508		if (likely(sbp)) {
 509			nilfs_set_log_cursor(sbp[0], nilfs);
 510			nilfs_commit_super(sb, NILFS_SB_COMMIT);
 511		}
 512	}
 513	up_write(&nilfs->ns_sem);
 514
 515	if (!err)
 516		err = nilfs_flush_device(nilfs);
 517
 518	return err;
 519}
 520
 521int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
 522			    struct nilfs_root **rootp)
 523{
 524	struct the_nilfs *nilfs = sb->s_fs_info;
 525	struct nilfs_root *root;
 526	struct nilfs_checkpoint *raw_cp;
 527	struct buffer_head *bh_cp;
 528	int err = -ENOMEM;
 529
 530	root = nilfs_find_or_create_root(
 531		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
 532	if (!root)
 533		return err;
 534
 535	if (root->ifile)
 536		goto reuse; /* already attached checkpoint */
 537
 538	down_read(&nilfs->ns_segctor_sem);
 539	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
 540					  &bh_cp);
 541	up_read(&nilfs->ns_segctor_sem);
 542	if (unlikely(err)) {
 543		if (err == -ENOENT || err == -EINVAL) {
 544			nilfs_msg(sb, KERN_ERR,
 545				  "Invalid checkpoint (checkpoint number=%llu)",
 546				  (unsigned long long)cno);
 547			err = -EINVAL;
 548		}
 549		goto failed;
 550	}
 551
 552	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
 553			       &raw_cp->cp_ifile_inode, &root->ifile);
 554	if (err)
 555		goto failed_bh;
 556
 557	atomic64_set(&root->inodes_count,
 558			le64_to_cpu(raw_cp->cp_inodes_count));
 559	atomic64_set(&root->blocks_count,
 560			le64_to_cpu(raw_cp->cp_blocks_count));
 561
 562	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 563
 564 reuse:
 565	*rootp = root;
 566	return 0;
 567
 568 failed_bh:
 569	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 570 failed:
 571	nilfs_put_root(root);
 572
 573	return err;
 574}
 575
 576static int nilfs_freeze(struct super_block *sb)
 577{
 578	struct the_nilfs *nilfs = sb->s_fs_info;
 579	int err;
 580
 581	if (sb->s_flags & MS_RDONLY)
 582		return 0;
 583
 584	/* Mark super block clean */
 585	down_write(&nilfs->ns_sem);
 586	err = nilfs_cleanup_super(sb);
 587	up_write(&nilfs->ns_sem);
 588	return err;
 589}
 590
 591static int nilfs_unfreeze(struct super_block *sb)
 592{
 593	struct the_nilfs *nilfs = sb->s_fs_info;
 594
 595	if (sb->s_flags & MS_RDONLY)
 596		return 0;
 597
 598	down_write(&nilfs->ns_sem);
 599	nilfs_setup_super(sb, false);
 600	up_write(&nilfs->ns_sem);
 601	return 0;
 602}
 603
 604static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 605{
 606	struct super_block *sb = dentry->d_sb;
 607	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 608	struct the_nilfs *nilfs = root->nilfs;
 609	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 610	unsigned long long blocks;
 611	unsigned long overhead;
 612	unsigned long nrsvblocks;
 613	sector_t nfreeblocks;
 614	u64 nmaxinodes, nfreeinodes;
 615	int err;
 616
 617	/*
 618	 * Compute all of the segment blocks
 619	 *
 620	 * The blocks before first segment and after last segment
 621	 * are excluded.
 622	 */
 623	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
 624		- nilfs->ns_first_data_block;
 625	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
 626
 627	/*
 628	 * Compute the overhead
 629	 *
 630	 * When distributing meta data blocks outside segment structure,
 631	 * We must count them as the overhead.
 632	 */
 633	overhead = 0;
 634
 635	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
 636	if (unlikely(err))
 637		return err;
 638
 639	err = nilfs_ifile_count_free_inodes(root->ifile,
 640					    &nmaxinodes, &nfreeinodes);
 641	if (unlikely(err)) {
 642		nilfs_msg(sb, KERN_WARNING,
 643			  "failed to count free inodes: err=%d", err);
 644		if (err == -ERANGE) {
 645			/*
 646			 * If nilfs_palloc_count_max_entries() returns
 647			 * -ERANGE error code then we simply treat
 648			 * curent inodes count as maximum possible and
 649			 * zero as free inodes value.
 650			 */
 651			nmaxinodes = atomic64_read(&root->inodes_count);
 652			nfreeinodes = 0;
 653			err = 0;
 654		} else
 655			return err;
 656	}
 657
 658	buf->f_type = NILFS_SUPER_MAGIC;
 659	buf->f_bsize = sb->s_blocksize;
 660	buf->f_blocks = blocks - overhead;
 661	buf->f_bfree = nfreeblocks;
 662	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
 663		(buf->f_bfree - nrsvblocks) : 0;
 664	buf->f_files = nmaxinodes;
 665	buf->f_ffree = nfreeinodes;
 666	buf->f_namelen = NILFS_NAME_LEN;
 667	buf->f_fsid.val[0] = (u32)id;
 668	buf->f_fsid.val[1] = (u32)(id >> 32);
 669
 670	return 0;
 671}
 672
 673static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
 674{
 675	struct super_block *sb = dentry->d_sb;
 676	struct the_nilfs *nilfs = sb->s_fs_info;
 677	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 678
 679	if (!nilfs_test_opt(nilfs, BARRIER))
 680		seq_puts(seq, ",nobarrier");
 681	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
 682		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
 683	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 684		seq_puts(seq, ",errors=panic");
 685	if (nilfs_test_opt(nilfs, ERRORS_CONT))
 686		seq_puts(seq, ",errors=continue");
 687	if (nilfs_test_opt(nilfs, STRICT_ORDER))
 688		seq_puts(seq, ",order=strict");
 689	if (nilfs_test_opt(nilfs, NORECOVERY))
 690		seq_puts(seq, ",norecovery");
 691	if (nilfs_test_opt(nilfs, DISCARD))
 692		seq_puts(seq, ",discard");
 693
 694	return 0;
 695}
 696
 697static const struct super_operations nilfs_sops = {
 698	.alloc_inode    = nilfs_alloc_inode,
 699	.destroy_inode  = nilfs_destroy_inode,
 700	.dirty_inode    = nilfs_dirty_inode,
 701	.evict_inode    = nilfs_evict_inode,
 702	.put_super      = nilfs_put_super,
 703	.sync_fs        = nilfs_sync_fs,
 704	.freeze_fs	= nilfs_freeze,
 705	.unfreeze_fs	= nilfs_unfreeze,
 706	.statfs         = nilfs_statfs,
 707	.remount_fs     = nilfs_remount,
 708	.show_options = nilfs_show_options
 709};
 710
 711enum {
 712	Opt_err_cont, Opt_err_panic, Opt_err_ro,
 713	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
 714	Opt_discard, Opt_nodiscard, Opt_err,
 715};
 716
 717static match_table_t tokens = {
 718	{Opt_err_cont, "errors=continue"},
 719	{Opt_err_panic, "errors=panic"},
 720	{Opt_err_ro, "errors=remount-ro"},
 721	{Opt_barrier, "barrier"},
 722	{Opt_nobarrier, "nobarrier"},
 723	{Opt_snapshot, "cp=%u"},
 724	{Opt_order, "order=%s"},
 725	{Opt_norecovery, "norecovery"},
 726	{Opt_discard, "discard"},
 727	{Opt_nodiscard, "nodiscard"},
 728	{Opt_err, NULL}
 729};
 730
 731static int parse_options(char *options, struct super_block *sb, int is_remount)
 732{
 733	struct the_nilfs *nilfs = sb->s_fs_info;
 734	char *p;
 735	substring_t args[MAX_OPT_ARGS];
 736
 737	if (!options)
 738		return 1;
 739
 740	while ((p = strsep(&options, ",")) != NULL) {
 741		int token;
 742
 743		if (!*p)
 744			continue;
 745
 746		token = match_token(p, tokens, args);
 747		switch (token) {
 748		case Opt_barrier:
 749			nilfs_set_opt(nilfs, BARRIER);
 750			break;
 751		case Opt_nobarrier:
 752			nilfs_clear_opt(nilfs, BARRIER);
 753			break;
 754		case Opt_order:
 755			if (strcmp(args[0].from, "relaxed") == 0)
 756				/* Ordered data semantics */
 757				nilfs_clear_opt(nilfs, STRICT_ORDER);
 758			else if (strcmp(args[0].from, "strict") == 0)
 759				/* Strict in-order semantics */
 760				nilfs_set_opt(nilfs, STRICT_ORDER);
 761			else
 762				return 0;
 763			break;
 764		case Opt_err_panic:
 765			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
 766			break;
 767		case Opt_err_ro:
 768			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
 769			break;
 770		case Opt_err_cont:
 771			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
 772			break;
 773		case Opt_snapshot:
 774			if (is_remount) {
 775				nilfs_msg(sb, KERN_ERR,
 776					  "\"%s\" option is invalid for remount",
 777					  p);
 778				return 0;
 779			}
 780			break;
 781		case Opt_norecovery:
 782			nilfs_set_opt(nilfs, NORECOVERY);
 783			break;
 784		case Opt_discard:
 785			nilfs_set_opt(nilfs, DISCARD);
 786			break;
 787		case Opt_nodiscard:
 788			nilfs_clear_opt(nilfs, DISCARD);
 789			break;
 790		default:
 791			nilfs_msg(sb, KERN_ERR,
 792				  "unrecognized mount option \"%s\"", p);
 793			return 0;
 794		}
 795	}
 796	return 1;
 797}
 798
 799static inline void
 800nilfs_set_default_options(struct super_block *sb,
 801			  struct nilfs_super_block *sbp)
 802{
 803	struct the_nilfs *nilfs = sb->s_fs_info;
 804
 805	nilfs->ns_mount_opt =
 806		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
 807}
 808
 809static int nilfs_setup_super(struct super_block *sb, int is_mount)
 810{
 811	struct the_nilfs *nilfs = sb->s_fs_info;
 812	struct nilfs_super_block **sbp;
 813	int max_mnt_count;
 814	int mnt_count;
 815
 816	/* nilfs->ns_sem must be locked by the caller. */
 817	sbp = nilfs_prepare_super(sb, 0);
 818	if (!sbp)
 819		return -EIO;
 820
 821	if (!is_mount)
 822		goto skip_mount_setup;
 823
 824	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
 825	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
 826
 827	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
 828		nilfs_msg(sb, KERN_WARNING, "mounting fs with errors");
 829#if 0
 830	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
 831		nilfs_msg(sb, KERN_WARNING, "maximal mount count reached");
 832#endif
 833	}
 834	if (!max_mnt_count)
 835		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
 836
 837	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
 838	sbp[0]->s_mtime = cpu_to_le64(get_seconds());
 839
 840skip_mount_setup:
 841	sbp[0]->s_state =
 842		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
 843	/* synchronize sbp[1] with sbp[0] */
 844	if (sbp[1])
 845		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 846	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 847}
 848
 849struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
 850						 u64 pos, int blocksize,
 851						 struct buffer_head **pbh)
 852{
 853	unsigned long long sb_index = pos;
 854	unsigned long offset;
 855
 856	offset = do_div(sb_index, blocksize);
 857	*pbh = sb_bread(sb, sb_index);
 858	if (!*pbh)
 859		return NULL;
 860	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
 861}
 862
 863int nilfs_store_magic_and_option(struct super_block *sb,
 864				 struct nilfs_super_block *sbp,
 865				 char *data)
 866{
 867	struct the_nilfs *nilfs = sb->s_fs_info;
 868
 869	sb->s_magic = le16_to_cpu(sbp->s_magic);
 870
 871	/* FS independent flags */
 872#ifdef NILFS_ATIME_DISABLE
 873	sb->s_flags |= MS_NOATIME;
 874#endif
 875
 876	nilfs_set_default_options(sb, sbp);
 877
 878	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
 879	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
 880	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
 881	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
 882
 883	return !parse_options(data, sb, 0) ? -EINVAL : 0;
 884}
 885
 886int nilfs_check_feature_compatibility(struct super_block *sb,
 887				      struct nilfs_super_block *sbp)
 888{
 889	__u64 features;
 890
 891	features = le64_to_cpu(sbp->s_feature_incompat) &
 892		~NILFS_FEATURE_INCOMPAT_SUPP;
 893	if (features) {
 894		nilfs_msg(sb, KERN_ERR,
 895			  "couldn't mount because of unsupported optional features (%llx)",
 896			  (unsigned long long)features);
 897		return -EINVAL;
 898	}
 899	features = le64_to_cpu(sbp->s_feature_compat_ro) &
 900		~NILFS_FEATURE_COMPAT_RO_SUPP;
 901	if (!(sb->s_flags & MS_RDONLY) && features) {
 902		nilfs_msg(sb, KERN_ERR,
 903			  "couldn't mount RDWR because of unsupported optional features (%llx)",
 904			  (unsigned long long)features);
 905		return -EINVAL;
 906	}
 907	return 0;
 908}
 909
 910static int nilfs_get_root_dentry(struct super_block *sb,
 911				 struct nilfs_root *root,
 912				 struct dentry **root_dentry)
 913{
 914	struct inode *inode;
 915	struct dentry *dentry;
 916	int ret = 0;
 917
 918	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
 919	if (IS_ERR(inode)) {
 920		ret = PTR_ERR(inode);
 921		nilfs_msg(sb, KERN_ERR, "error %d getting root inode", ret);
 922		goto out;
 923	}
 924	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
 925		iput(inode);
 926		nilfs_msg(sb, KERN_ERR, "corrupt root inode");
 927		ret = -EINVAL;
 928		goto out;
 929	}
 930
 931	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
 932		dentry = d_find_alias(inode);
 933		if (!dentry) {
 934			dentry = d_make_root(inode);
 935			if (!dentry) {
 936				ret = -ENOMEM;
 937				goto failed_dentry;
 938			}
 939		} else {
 940			iput(inode);
 941		}
 942	} else {
 943		dentry = d_obtain_root(inode);
 944		if (IS_ERR(dentry)) {
 945			ret = PTR_ERR(dentry);
 946			goto failed_dentry;
 947		}
 948	}
 949	*root_dentry = dentry;
 950 out:
 951	return ret;
 952
 953 failed_dentry:
 954	nilfs_msg(sb, KERN_ERR, "error %d getting root dentry", ret);
 955	goto out;
 956}
 957
 958static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
 959				 struct dentry **root_dentry)
 960{
 961	struct the_nilfs *nilfs = s->s_fs_info;
 962	struct nilfs_root *root;
 963	int ret;
 964
 965	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
 966
 967	down_read(&nilfs->ns_segctor_sem);
 968	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
 969	up_read(&nilfs->ns_segctor_sem);
 970	if (ret < 0) {
 971		ret = (ret == -ENOENT) ? -EINVAL : ret;
 972		goto out;
 973	} else if (!ret) {
 974		nilfs_msg(s, KERN_ERR,
 975			  "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
 976			  (unsigned long long)cno);
 977		ret = -EINVAL;
 978		goto out;
 979	}
 980
 981	ret = nilfs_attach_checkpoint(s, cno, false, &root);
 982	if (ret) {
 983		nilfs_msg(s, KERN_ERR,
 984			  "error %d while loading snapshot (checkpoint number=%llu)",
 985			  ret, (unsigned long long)cno);
 986		goto out;
 987	}
 988	ret = nilfs_get_root_dentry(s, root, root_dentry);
 989	nilfs_put_root(root);
 990 out:
 991	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
 992	return ret;
 993}
 994
 995/**
 996 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
 997 * @root_dentry: root dentry of the tree to be shrunk
 998 *
 999 * This function returns true if the tree was in-use.
1000 */
1001static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1002{
1003	shrink_dcache_parent(root_dentry);
1004	return d_count(root_dentry) > 1;
1005}
1006
1007int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1008{
1009	struct the_nilfs *nilfs = sb->s_fs_info;
1010	struct nilfs_root *root;
1011	struct inode *inode;
1012	struct dentry *dentry;
1013	int ret;
1014
1015	if (cno > nilfs->ns_cno)
1016		return false;
1017
1018	if (cno >= nilfs_last_cno(nilfs))
1019		return true;	/* protect recent checkpoints */
1020
1021	ret = false;
1022	root = nilfs_lookup_root(nilfs, cno);
1023	if (root) {
1024		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1025		if (inode) {
1026			dentry = d_find_alias(inode);
1027			if (dentry) {
1028				ret = nilfs_tree_is_busy(dentry);
1029				dput(dentry);
1030			}
1031			iput(inode);
1032		}
1033		nilfs_put_root(root);
1034	}
1035	return ret;
1036}
1037
1038/**
1039 * nilfs_fill_super() - initialize a super block instance
1040 * @sb: super_block
1041 * @data: mount options
1042 * @silent: silent mode flag
1043 *
1044 * This function is called exclusively by nilfs->ns_mount_mutex.
1045 * So, the recovery process is protected from other simultaneous mounts.
1046 */
1047static int
1048nilfs_fill_super(struct super_block *sb, void *data, int silent)
1049{
1050	struct the_nilfs *nilfs;
1051	struct nilfs_root *fsroot;
1052	__u64 cno;
1053	int err;
1054
1055	nilfs = alloc_nilfs(sb);
1056	if (!nilfs)
1057		return -ENOMEM;
1058
1059	sb->s_fs_info = nilfs;
1060
1061	err = init_nilfs(nilfs, sb, (char *)data);
1062	if (err)
1063		goto failed_nilfs;
1064
1065	sb->s_op = &nilfs_sops;
1066	sb->s_export_op = &nilfs_export_ops;
1067	sb->s_root = NULL;
1068	sb->s_time_gran = 1;
1069	sb->s_max_links = NILFS_LINK_MAX;
1070
1071	sb->s_bdi = &bdev_get_queue(sb->s_bdev)->backing_dev_info;
1072
1073	err = load_nilfs(nilfs, sb);
1074	if (err)
1075		goto failed_nilfs;
1076
1077	cno = nilfs_last_cno(nilfs);
1078	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1079	if (err) {
1080		nilfs_msg(sb, KERN_ERR,
1081			  "error %d while loading last checkpoint (checkpoint number=%llu)",
1082			  err, (unsigned long long)cno);
1083		goto failed_unload;
1084	}
1085
1086	if (!(sb->s_flags & MS_RDONLY)) {
1087		err = nilfs_attach_log_writer(sb, fsroot);
1088		if (err)
1089			goto failed_checkpoint;
1090	}
1091
1092	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1093	if (err)
1094		goto failed_segctor;
1095
1096	nilfs_put_root(fsroot);
1097
1098	if (!(sb->s_flags & MS_RDONLY)) {
1099		down_write(&nilfs->ns_sem);
1100		nilfs_setup_super(sb, true);
1101		up_write(&nilfs->ns_sem);
1102	}
1103
1104	return 0;
1105
1106 failed_segctor:
1107	nilfs_detach_log_writer(sb);
1108
1109 failed_checkpoint:
1110	nilfs_put_root(fsroot);
1111
1112 failed_unload:
1113	iput(nilfs->ns_sufile);
1114	iput(nilfs->ns_cpfile);
1115	iput(nilfs->ns_dat);
1116
1117 failed_nilfs:
1118	destroy_nilfs(nilfs);
1119	return err;
1120}
1121
1122static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1123{
1124	struct the_nilfs *nilfs = sb->s_fs_info;
1125	unsigned long old_sb_flags;
1126	unsigned long old_mount_opt;
1127	int err;
1128
1129	sync_filesystem(sb);
1130	old_sb_flags = sb->s_flags;
1131	old_mount_opt = nilfs->ns_mount_opt;
1132
1133	if (!parse_options(data, sb, 1)) {
1134		err = -EINVAL;
1135		goto restore_opts;
1136	}
1137	sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
1138
1139	err = -EINVAL;
1140
1141	if (!nilfs_valid_fs(nilfs)) {
1142		nilfs_msg(sb, KERN_WARNING,
1143			  "couldn't remount because the filesystem is in an incomplete recovery state");
1144		goto restore_opts;
1145	}
1146
1147	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1148		goto out;
1149	if (*flags & MS_RDONLY) {
1150		/* Shutting down log writer */
1151		nilfs_detach_log_writer(sb);
1152		sb->s_flags |= MS_RDONLY;
1153
1154		/*
1155		 * Remounting a valid RW partition RDONLY, so set
1156		 * the RDONLY flag and then mark the partition as valid again.
1157		 */
1158		down_write(&nilfs->ns_sem);
1159		nilfs_cleanup_super(sb);
1160		up_write(&nilfs->ns_sem);
1161	} else {
1162		__u64 features;
1163		struct nilfs_root *root;
1164
1165		/*
1166		 * Mounting a RDONLY partition read-write, so reread and
1167		 * store the current valid flag.  (It may have been changed
1168		 * by fsck since we originally mounted the partition.)
1169		 */
1170		down_read(&nilfs->ns_sem);
1171		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1172			~NILFS_FEATURE_COMPAT_RO_SUPP;
1173		up_read(&nilfs->ns_sem);
1174		if (features) {
1175			nilfs_msg(sb, KERN_WARNING,
1176				  "couldn't remount RDWR because of unsupported optional features (%llx)",
1177				  (unsigned long long)features);
1178			err = -EROFS;
1179			goto restore_opts;
1180		}
1181
1182		sb->s_flags &= ~MS_RDONLY;
1183
1184		root = NILFS_I(d_inode(sb->s_root))->i_root;
1185		err = nilfs_attach_log_writer(sb, root);
1186		if (err)
1187			goto restore_opts;
1188
1189		down_write(&nilfs->ns_sem);
1190		nilfs_setup_super(sb, true);
1191		up_write(&nilfs->ns_sem);
1192	}
1193 out:
1194	return 0;
1195
1196 restore_opts:
1197	sb->s_flags = old_sb_flags;
1198	nilfs->ns_mount_opt = old_mount_opt;
1199	return err;
1200}
1201
1202struct nilfs_super_data {
1203	struct block_device *bdev;
1204	__u64 cno;
1205	int flags;
1206};
1207
1208static int nilfs_parse_snapshot_option(const char *option,
1209				       const substring_t *arg,
1210				       struct nilfs_super_data *sd)
1211{
1212	unsigned long long val;
1213	const char *msg = NULL;
1214	int err;
1215
1216	if (!(sd->flags & MS_RDONLY)) {
1217		msg = "read-only option is not specified";
1218		goto parse_error;
1219	}
1220
1221	err = kstrtoull(arg->from, 0, &val);
1222	if (err) {
1223		if (err == -ERANGE)
1224			msg = "too large checkpoint number";
1225		else
1226			msg = "malformed argument";
1227		goto parse_error;
1228	} else if (val == 0) {
1229		msg = "invalid checkpoint number 0";
1230		goto parse_error;
1231	}
1232	sd->cno = val;
1233	return 0;
1234
1235parse_error:
1236	nilfs_msg(NULL, KERN_ERR, "invalid option \"%s\": %s", option, msg);
1237	return 1;
1238}
1239
1240/**
1241 * nilfs_identify - pre-read mount options needed to identify mount instance
1242 * @data: mount options
1243 * @sd: nilfs_super_data
1244 */
1245static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1246{
1247	char *p, *options = data;
1248	substring_t args[MAX_OPT_ARGS];
1249	int token;
1250	int ret = 0;
1251
1252	do {
1253		p = strsep(&options, ",");
1254		if (p != NULL && *p) {
1255			token = match_token(p, tokens, args);
1256			if (token == Opt_snapshot)
1257				ret = nilfs_parse_snapshot_option(p, &args[0],
1258								  sd);
1259		}
1260		if (!options)
1261			break;
1262		BUG_ON(options == data);
1263		*(options - 1) = ',';
1264	} while (!ret);
1265	return ret;
1266}
1267
1268static int nilfs_set_bdev_super(struct super_block *s, void *data)
1269{
1270	s->s_bdev = data;
1271	s->s_dev = s->s_bdev->bd_dev;
1272	return 0;
1273}
1274
1275static int nilfs_test_bdev_super(struct super_block *s, void *data)
1276{
1277	return (void *)s->s_bdev == data;
1278}
1279
1280static struct dentry *
1281nilfs_mount(struct file_system_type *fs_type, int flags,
1282	     const char *dev_name, void *data)
1283{
1284	struct nilfs_super_data sd;
1285	struct super_block *s;
1286	fmode_t mode = FMODE_READ | FMODE_EXCL;
1287	struct dentry *root_dentry;
1288	int err, s_new = false;
1289
1290	if (!(flags & MS_RDONLY))
1291		mode |= FMODE_WRITE;
1292
1293	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1294	if (IS_ERR(sd.bdev))
1295		return ERR_CAST(sd.bdev);
1296
1297	sd.cno = 0;
1298	sd.flags = flags;
1299	if (nilfs_identify((char *)data, &sd)) {
1300		err = -EINVAL;
1301		goto failed;
1302	}
1303
1304	/*
1305	 * once the super is inserted into the list by sget, s_umount
1306	 * will protect the lockfs code from trying to start a snapshot
1307	 * while we are mounting
1308	 */
1309	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1310	if (sd.bdev->bd_fsfreeze_count > 0) {
1311		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1312		err = -EBUSY;
1313		goto failed;
1314	}
1315	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1316		 sd.bdev);
1317	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1318	if (IS_ERR(s)) {
1319		err = PTR_ERR(s);
1320		goto failed;
1321	}
1322
1323	if (!s->s_root) {
1324		s_new = true;
1325
1326		/* New superblock instance created */
1327		s->s_mode = mode;
1328		snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1329		sb_set_blocksize(s, block_size(sd.bdev));
1330
1331		err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1332		if (err)
1333			goto failed_super;
1334
1335		s->s_flags |= MS_ACTIVE;
1336	} else if (!sd.cno) {
1337		if (nilfs_tree_is_busy(s->s_root)) {
1338			if ((flags ^ s->s_flags) & MS_RDONLY) {
1339				nilfs_msg(s, KERN_ERR,
1340					  "the device already has a %s mount.",
1341					  (s->s_flags & MS_RDONLY) ?
1342					  "read-only" : "read/write");
1343				err = -EBUSY;
1344				goto failed_super;
1345			}
1346		} else {
1347			/*
1348			 * Try remount to setup mount states if the current
1349			 * tree is not mounted and only snapshots use this sb.
1350			 */
1351			err = nilfs_remount(s, &flags, data);
1352			if (err)
1353				goto failed_super;
1354		}
1355	}
1356
1357	if (sd.cno) {
1358		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1359		if (err)
1360			goto failed_super;
1361	} else {
1362		root_dentry = dget(s->s_root);
1363	}
1364
1365	if (!s_new)
1366		blkdev_put(sd.bdev, mode);
1367
1368	return root_dentry;
1369
1370 failed_super:
1371	deactivate_locked_super(s);
1372
1373 failed:
1374	if (!s_new)
1375		blkdev_put(sd.bdev, mode);
1376	return ERR_PTR(err);
1377}
1378
1379struct file_system_type nilfs_fs_type = {
1380	.owner    = THIS_MODULE,
1381	.name     = "nilfs2",
1382	.mount    = nilfs_mount,
1383	.kill_sb  = kill_block_super,
1384	.fs_flags = FS_REQUIRES_DEV,
1385};
1386MODULE_ALIAS_FS("nilfs2");
1387
1388static void nilfs_inode_init_once(void *obj)
1389{
1390	struct nilfs_inode_info *ii = obj;
1391
1392	INIT_LIST_HEAD(&ii->i_dirty);
1393#ifdef CONFIG_NILFS_XATTR
1394	init_rwsem(&ii->xattr_sem);
1395#endif
1396	address_space_init_once(&ii->i_btnode_cache);
1397	ii->i_bmap = &ii->i_bmap_data;
1398	inode_init_once(&ii->vfs_inode);
1399}
1400
1401static void nilfs_segbuf_init_once(void *obj)
1402{
1403	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1404}
1405
1406static void nilfs_destroy_cachep(void)
1407{
1408	/*
1409	 * Make sure all delayed rcu free inodes are flushed before we
1410	 * destroy cache.
1411	 */
1412	rcu_barrier();
1413
1414	kmem_cache_destroy(nilfs_inode_cachep);
1415	kmem_cache_destroy(nilfs_transaction_cachep);
1416	kmem_cache_destroy(nilfs_segbuf_cachep);
1417	kmem_cache_destroy(nilfs_btree_path_cache);
1418}
1419
1420static int __init nilfs_init_cachep(void)
1421{
1422	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1423			sizeof(struct nilfs_inode_info), 0,
1424			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1425			nilfs_inode_init_once);
1426	if (!nilfs_inode_cachep)
1427		goto fail;
1428
1429	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1430			sizeof(struct nilfs_transaction_info), 0,
1431			SLAB_RECLAIM_ACCOUNT, NULL);
1432	if (!nilfs_transaction_cachep)
1433		goto fail;
1434
1435	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1436			sizeof(struct nilfs_segment_buffer), 0,
1437			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1438	if (!nilfs_segbuf_cachep)
1439		goto fail;
1440
1441	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1442			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1443			0, 0, NULL);
1444	if (!nilfs_btree_path_cache)
1445		goto fail;
1446
1447	return 0;
1448
1449fail:
1450	nilfs_destroy_cachep();
1451	return -ENOMEM;
1452}
1453
1454static int __init init_nilfs_fs(void)
1455{
1456	int err;
1457
1458	err = nilfs_init_cachep();
1459	if (err)
1460		goto fail;
1461
1462	err = nilfs_sysfs_init();
1463	if (err)
1464		goto free_cachep;
1465
1466	err = register_filesystem(&nilfs_fs_type);
1467	if (err)
1468		goto deinit_sysfs_entry;
1469
1470	printk(KERN_INFO "NILFS version 2 loaded\n");
1471	return 0;
1472
1473deinit_sysfs_entry:
1474	nilfs_sysfs_exit();
1475free_cachep:
1476	nilfs_destroy_cachep();
1477fail:
1478	return err;
1479}
1480
1481static void __exit exit_nilfs_fs(void)
1482{
1483	nilfs_destroy_cachep();
1484	nilfs_sysfs_exit();
1485	unregister_filesystem(&nilfs_fs_type);
1486}
1487
1488module_init(init_nilfs_fs)
1489module_exit(exit_nilfs_fs)