Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Freescale eSPI controller driver.
  4 *
  5 * Copyright 2010 Freescale Semiconductor, Inc.
 
 
 
 
 
  6 */
  7#include <linux/delay.h>
  8#include <linux/err.h>
  9#include <linux/fsl_devices.h>
 10#include <linux/interrupt.h>
 11#include <linux/module.h>
 12#include <linux/mm.h>
 13#include <linux/of.h>
 14#include <linux/of_address.h>
 15#include <linux/of_irq.h>
 16#include <linux/of_platform.h>
 17#include <linux/platform_device.h>
 18#include <linux/spi/spi.h>
 19#include <linux/pm_runtime.h>
 20#include <sysdev/fsl_soc.h>
 21
 22/* eSPI Controller registers */
 23#define ESPI_SPMODE	0x00	/* eSPI mode register */
 24#define ESPI_SPIE	0x04	/* eSPI event register */
 25#define ESPI_SPIM	0x08	/* eSPI mask register */
 26#define ESPI_SPCOM	0x0c	/* eSPI command register */
 27#define ESPI_SPITF	0x10	/* eSPI transmit FIFO access register*/
 28#define ESPI_SPIRF	0x14	/* eSPI receive FIFO access register*/
 29#define ESPI_SPMODE0	0x20	/* eSPI cs0 mode register */
 30
 31#define ESPI_SPMODEx(x)	(ESPI_SPMODE0 + (x) * 4)
 32
 33/* eSPI Controller mode register definitions */
 34#define SPMODE_ENABLE		BIT(31)
 35#define SPMODE_LOOP		BIT(30)
 36#define SPMODE_TXTHR(x)		((x) << 8)
 37#define SPMODE_RXTHR(x)		((x) << 0)
 38
 39/* eSPI Controller CS mode register definitions */
 40#define CSMODE_CI_INACTIVEHIGH	BIT(31)
 41#define CSMODE_CP_BEGIN_EDGECLK	BIT(30)
 42#define CSMODE_REV		BIT(29)
 43#define CSMODE_DIV16		BIT(28)
 44#define CSMODE_PM(x)		((x) << 24)
 45#define CSMODE_POL_1		BIT(20)
 46#define CSMODE_LEN(x)		((x) << 16)
 47#define CSMODE_BEF(x)		((x) << 12)
 48#define CSMODE_AFT(x)		((x) << 8)
 49#define CSMODE_CG(x)		((x) << 3)
 50
 51#define FSL_ESPI_FIFO_SIZE	32
 52#define FSL_ESPI_RXTHR		15
 53
 54/* Default mode/csmode for eSPI controller */
 55#define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(FSL_ESPI_RXTHR))
 56#define CSMODE_INIT_VAL (CSMODE_POL_1 | CSMODE_BEF(0) \
 57		| CSMODE_AFT(0) | CSMODE_CG(1))
 58
 59/* SPIE register values */
 60#define SPIE_RXCNT(reg)     ((reg >> 24) & 0x3F)
 61#define SPIE_TXCNT(reg)     ((reg >> 16) & 0x3F)
 62#define	SPIE_TXE		BIT(15)	/* TX FIFO empty */
 63#define	SPIE_DON		BIT(14)	/* TX done */
 64#define	SPIE_RXT		BIT(13)	/* RX FIFO threshold */
 65#define	SPIE_RXF		BIT(12)	/* RX FIFO full */
 66#define	SPIE_TXT		BIT(11)	/* TX FIFO threshold*/
 67#define	SPIE_RNE		BIT(9)	/* RX FIFO not empty */
 68#define	SPIE_TNF		BIT(8)	/* TX FIFO not full */
 69
 70/* SPIM register values */
 71#define	SPIM_TXE		BIT(15)	/* TX FIFO empty */
 72#define	SPIM_DON		BIT(14)	/* TX done */
 73#define	SPIM_RXT		BIT(13)	/* RX FIFO threshold */
 74#define	SPIM_RXF		BIT(12)	/* RX FIFO full */
 75#define	SPIM_TXT		BIT(11)	/* TX FIFO threshold*/
 76#define	SPIM_RNE		BIT(9)	/* RX FIFO not empty */
 77#define	SPIM_TNF		BIT(8)	/* TX FIFO not full */
 78
 79/* SPCOM register values */
 80#define SPCOM_CS(x)		((x) << 30)
 81#define SPCOM_DO		BIT(28) /* Dual output */
 82#define SPCOM_TO		BIT(27) /* TX only */
 83#define SPCOM_RXSKIP(x)		((x) << 16)
 84#define SPCOM_TRANLEN(x)	((x) << 0)
 85
 86#define	SPCOM_TRANLEN_MAX	0x10000	/* Max transaction length */
 87
 88#define AUTOSUSPEND_TIMEOUT 2000
 89
 90struct fsl_espi {
 91	struct device *dev;
 92	void __iomem *reg_base;
 93
 94	struct list_head *m_transfers;
 95	struct spi_transfer *tx_t;
 96	unsigned int tx_pos;
 97	bool tx_done;
 98	struct spi_transfer *rx_t;
 99	unsigned int rx_pos;
100	bool rx_done;
101
102	bool swab;
103	unsigned int rxskip;
104
105	spinlock_t lock;
106
107	u32 spibrg;             /* SPIBRG input clock */
108
109	struct completion done;
110};
111
112struct fsl_espi_cs {
113	u32 hw_mode;
114};
115
116static inline u32 fsl_espi_read_reg(struct fsl_espi *espi, int offset)
117{
118	return ioread32be(espi->reg_base + offset);
119}
120
121static inline u16 fsl_espi_read_reg16(struct fsl_espi *espi, int offset)
122{
123	return ioread16be(espi->reg_base + offset);
124}
125
126static inline u8 fsl_espi_read_reg8(struct fsl_espi *espi, int offset)
127{
128	return ioread8(espi->reg_base + offset);
129}
130
131static inline void fsl_espi_write_reg(struct fsl_espi *espi, int offset,
132				      u32 val)
133{
134	iowrite32be(val, espi->reg_base + offset);
135}
136
137static inline void fsl_espi_write_reg16(struct fsl_espi *espi, int offset,
138					u16 val)
139{
140	iowrite16be(val, espi->reg_base + offset);
141}
142
143static inline void fsl_espi_write_reg8(struct fsl_espi *espi, int offset,
144				       u8 val)
145{
146	iowrite8(val, espi->reg_base + offset);
147}
148
149static int fsl_espi_check_message(struct spi_message *m)
150{
151	struct fsl_espi *espi = spi_master_get_devdata(m->spi->master);
152	struct spi_transfer *t, *first;
153
154	if (m->frame_length > SPCOM_TRANLEN_MAX) {
155		dev_err(espi->dev, "message too long, size is %u bytes\n",
156			m->frame_length);
157		return -EMSGSIZE;
158	}
159
160	first = list_first_entry(&m->transfers, struct spi_transfer,
161				 transfer_list);
162
163	list_for_each_entry(t, &m->transfers, transfer_list) {
164		if (first->bits_per_word != t->bits_per_word ||
165		    first->speed_hz != t->speed_hz) {
166			dev_err(espi->dev, "bits_per_word/speed_hz should be the same for all transfers\n");
167			return -EINVAL;
168		}
169	}
170
171	/* ESPI supports MSB-first transfers for word size 8 / 16 only */
172	if (!(m->spi->mode & SPI_LSB_FIRST) && first->bits_per_word != 8 &&
173	    first->bits_per_word != 16) {
174		dev_err(espi->dev,
175			"MSB-first transfer not supported for wordsize %u\n",
176			first->bits_per_word);
177		return -EINVAL;
178	}
179
180	return 0;
181}
182
183static unsigned int fsl_espi_check_rxskip_mode(struct spi_message *m)
184{
185	struct spi_transfer *t;
186	unsigned int i = 0, rxskip = 0;
187
188	/*
189	 * prerequisites for ESPI rxskip mode:
190	 * - message has two transfers
191	 * - first transfer is a write and second is a read
192	 *
193	 * In addition the current low-level transfer mechanism requires
194	 * that the rxskip bytes fit into the TX FIFO. Else the transfer
195	 * would hang because after the first FSL_ESPI_FIFO_SIZE bytes
196	 * the TX FIFO isn't re-filled.
197	 */
198	list_for_each_entry(t, &m->transfers, transfer_list) {
199		if (i == 0) {
200			if (!t->tx_buf || t->rx_buf ||
201			    t->len > FSL_ESPI_FIFO_SIZE)
202				return 0;
203			rxskip = t->len;
204		} else if (i == 1) {
205			if (t->tx_buf || !t->rx_buf)
206				return 0;
207		}
208		i++;
209	}
210
211	return i == 2 ? rxskip : 0;
212}
213
214static void fsl_espi_fill_tx_fifo(struct fsl_espi *espi, u32 events)
215{
216	u32 tx_fifo_avail;
217	unsigned int tx_left;
218	const void *tx_buf;
219
220	/* if events is zero transfer has not started and tx fifo is empty */
221	tx_fifo_avail = events ? SPIE_TXCNT(events) :  FSL_ESPI_FIFO_SIZE;
222start:
223	tx_left = espi->tx_t->len - espi->tx_pos;
224	tx_buf = espi->tx_t->tx_buf;
225	while (tx_fifo_avail >= min(4U, tx_left) && tx_left) {
226		if (tx_left >= 4) {
227			if (!tx_buf)
228				fsl_espi_write_reg(espi, ESPI_SPITF, 0);
229			else if (espi->swab)
230				fsl_espi_write_reg(espi, ESPI_SPITF,
231					swahb32p(tx_buf + espi->tx_pos));
232			else
233				fsl_espi_write_reg(espi, ESPI_SPITF,
234					*(u32 *)(tx_buf + espi->tx_pos));
235			espi->tx_pos += 4;
236			tx_left -= 4;
237			tx_fifo_avail -= 4;
238		} else if (tx_left >= 2 && tx_buf && espi->swab) {
239			fsl_espi_write_reg16(espi, ESPI_SPITF,
240					swab16p(tx_buf + espi->tx_pos));
241			espi->tx_pos += 2;
242			tx_left -= 2;
243			tx_fifo_avail -= 2;
244		} else {
245			if (!tx_buf)
246				fsl_espi_write_reg8(espi, ESPI_SPITF, 0);
247			else
248				fsl_espi_write_reg8(espi, ESPI_SPITF,
249					*(u8 *)(tx_buf + espi->tx_pos));
250			espi->tx_pos += 1;
251			tx_left -= 1;
252			tx_fifo_avail -= 1;
253		}
254	}
255
256	if (!tx_left) {
257		/* Last transfer finished, in rxskip mode only one is needed */
258		if (list_is_last(&espi->tx_t->transfer_list,
259		    espi->m_transfers) || espi->rxskip) {
260			espi->tx_done = true;
261			return;
262		}
263		espi->tx_t = list_next_entry(espi->tx_t, transfer_list);
264		espi->tx_pos = 0;
265		/* continue with next transfer if tx fifo is not full */
266		if (tx_fifo_avail)
267			goto start;
268	}
269}
270
271static void fsl_espi_read_rx_fifo(struct fsl_espi *espi, u32 events)
272{
273	u32 rx_fifo_avail = SPIE_RXCNT(events);
274	unsigned int rx_left;
275	void *rx_buf;
276
277start:
278	rx_left = espi->rx_t->len - espi->rx_pos;
279	rx_buf = espi->rx_t->rx_buf;
280	while (rx_fifo_avail >= min(4U, rx_left) && rx_left) {
281		if (rx_left >= 4) {
282			u32 val = fsl_espi_read_reg(espi, ESPI_SPIRF);
283
284			if (rx_buf && espi->swab)
285				*(u32 *)(rx_buf + espi->rx_pos) = swahb32(val);
286			else if (rx_buf)
287				*(u32 *)(rx_buf + espi->rx_pos) = val;
288			espi->rx_pos += 4;
289			rx_left -= 4;
290			rx_fifo_avail -= 4;
291		} else if (rx_left >= 2 && rx_buf && espi->swab) {
292			u16 val = fsl_espi_read_reg16(espi, ESPI_SPIRF);
293
294			*(u16 *)(rx_buf + espi->rx_pos) = swab16(val);
295			espi->rx_pos += 2;
296			rx_left -= 2;
297			rx_fifo_avail -= 2;
298		} else {
299			u8 val = fsl_espi_read_reg8(espi, ESPI_SPIRF);
300
301			if (rx_buf)
302				*(u8 *)(rx_buf + espi->rx_pos) = val;
303			espi->rx_pos += 1;
304			rx_left -= 1;
305			rx_fifo_avail -= 1;
306		}
307	}
308
309	if (!rx_left) {
310		if (list_is_last(&espi->rx_t->transfer_list,
311		    espi->m_transfers)) {
312			espi->rx_done = true;
313			return;
314		}
315		espi->rx_t = list_next_entry(espi->rx_t, transfer_list);
316		espi->rx_pos = 0;
317		/* continue with next transfer if rx fifo is not empty */
318		if (rx_fifo_avail)
319			goto start;
320	}
321}
322
323static void fsl_espi_setup_transfer(struct spi_device *spi,
324					struct spi_transfer *t)
325{
326	struct fsl_espi *espi = spi_master_get_devdata(spi->master);
327	int bits_per_word = t ? t->bits_per_word : spi->bits_per_word;
328	u32 pm, hz = t ? t->speed_hz : spi->max_speed_hz;
329	struct fsl_espi_cs *cs = spi_get_ctldata(spi);
330	u32 hw_mode_old = cs->hw_mode;
331
332	/* mask out bits we are going to set */
333	cs->hw_mode &= ~(CSMODE_LEN(0xF) | CSMODE_DIV16 | CSMODE_PM(0xF));
334
335	cs->hw_mode |= CSMODE_LEN(bits_per_word - 1);
336
337	pm = DIV_ROUND_UP(espi->spibrg, hz * 4) - 1;
338
339	if (pm > 15) {
340		cs->hw_mode |= CSMODE_DIV16;
341		pm = DIV_ROUND_UP(espi->spibrg, hz * 16 * 4) - 1;
342	}
343
344	cs->hw_mode |= CSMODE_PM(pm);
345
346	/* don't write the mode register if the mode doesn't change */
347	if (cs->hw_mode != hw_mode_old)
348		fsl_espi_write_reg(espi, ESPI_SPMODEx(spi->chip_select),
349				   cs->hw_mode);
350}
351
352static int fsl_espi_bufs(struct spi_device *spi, struct spi_transfer *t)
353{
354	struct fsl_espi *espi = spi_master_get_devdata(spi->master);
355	unsigned int rx_len = t->len;
356	u32 mask, spcom;
357	int ret;
358
359	reinit_completion(&espi->done);
360
361	/* Set SPCOM[CS] and SPCOM[TRANLEN] field */
362	spcom = SPCOM_CS(spi->chip_select);
363	spcom |= SPCOM_TRANLEN(t->len - 1);
364
365	/* configure RXSKIP mode */
366	if (espi->rxskip) {
367		spcom |= SPCOM_RXSKIP(espi->rxskip);
368		rx_len = t->len - espi->rxskip;
369		if (t->rx_nbits == SPI_NBITS_DUAL)
370			spcom |= SPCOM_DO;
371	}
372
373	fsl_espi_write_reg(espi, ESPI_SPCOM, spcom);
374
375	/* enable interrupts */
376	mask = SPIM_DON;
377	if (rx_len > FSL_ESPI_FIFO_SIZE)
378		mask |= SPIM_RXT;
379	fsl_espi_write_reg(espi, ESPI_SPIM, mask);
380
381	/* Prevent filling the fifo from getting interrupted */
382	spin_lock_irq(&espi->lock);
383	fsl_espi_fill_tx_fifo(espi, 0);
384	spin_unlock_irq(&espi->lock);
385
386	/* Won't hang up forever, SPI bus sometimes got lost interrupts... */
387	ret = wait_for_completion_timeout(&espi->done, 2 * HZ);
388	if (ret == 0)
389		dev_err(espi->dev, "Transfer timed out!\n");
390
391	/* disable rx ints */
392	fsl_espi_write_reg(espi, ESPI_SPIM, 0);
393
394	return ret == 0 ? -ETIMEDOUT : 0;
395}
396
397static int fsl_espi_trans(struct spi_message *m, struct spi_transfer *trans)
398{
399	struct fsl_espi *espi = spi_master_get_devdata(m->spi->master);
400	struct spi_device *spi = m->spi;
401	int ret;
402
403	/* In case of LSB-first and bits_per_word > 8 byte-swap all words */
404	espi->swab = spi->mode & SPI_LSB_FIRST && trans->bits_per_word > 8;
405
406	espi->m_transfers = &m->transfers;
407	espi->tx_t = list_first_entry(&m->transfers, struct spi_transfer,
408				      transfer_list);
409	espi->tx_pos = 0;
410	espi->tx_done = false;
411	espi->rx_t = list_first_entry(&m->transfers, struct spi_transfer,
412				      transfer_list);
413	espi->rx_pos = 0;
414	espi->rx_done = false;
415
416	espi->rxskip = fsl_espi_check_rxskip_mode(m);
417	if (trans->rx_nbits == SPI_NBITS_DUAL && !espi->rxskip) {
418		dev_err(espi->dev, "Dual output mode requires RXSKIP mode!\n");
419		return -EINVAL;
420	}
421
422	/* In RXSKIP mode skip first transfer for reads */
423	if (espi->rxskip)
424		espi->rx_t = list_next_entry(espi->rx_t, transfer_list);
425
426	fsl_espi_setup_transfer(spi, trans);
427
428	ret = fsl_espi_bufs(spi, trans);
429
430	spi_transfer_delay_exec(trans);
 
431
432	return ret;
433}
434
435static int fsl_espi_do_one_msg(struct spi_master *master,
436			       struct spi_message *m)
437{
438	unsigned int rx_nbits = 0, delay_nsecs = 0;
439	struct spi_transfer *t, trans = {};
440	int ret;
441
442	ret = fsl_espi_check_message(m);
443	if (ret)
444		goto out;
445
446	list_for_each_entry(t, &m->transfers, transfer_list) {
447		unsigned int delay = spi_delay_to_ns(&t->delay, t);
448
449		if (delay > delay_nsecs)
450			delay_nsecs = delay;
451		if (t->rx_nbits > rx_nbits)
452			rx_nbits = t->rx_nbits;
453	}
454
455	t = list_first_entry(&m->transfers, struct spi_transfer,
456			     transfer_list);
457
458	trans.len = m->frame_length;
459	trans.speed_hz = t->speed_hz;
460	trans.bits_per_word = t->bits_per_word;
461	trans.delay.value = delay_nsecs;
462	trans.delay.unit = SPI_DELAY_UNIT_NSECS;
463	trans.rx_nbits = rx_nbits;
464
465	if (trans.len)
466		ret = fsl_espi_trans(m, &trans);
467
468	m->actual_length = ret ? 0 : trans.len;
469out:
470	if (m->status == -EINPROGRESS)
471		m->status = ret;
472
473	spi_finalize_current_message(master);
474
475	return ret;
476}
477
478static int fsl_espi_setup(struct spi_device *spi)
479{
480	struct fsl_espi *espi;
481	u32 loop_mode;
482	struct fsl_espi_cs *cs = spi_get_ctldata(spi);
483
484	if (!cs) {
485		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
486		if (!cs)
487			return -ENOMEM;
488		spi_set_ctldata(spi, cs);
489	}
490
491	espi = spi_master_get_devdata(spi->master);
492
493	pm_runtime_get_sync(espi->dev);
494
495	cs->hw_mode = fsl_espi_read_reg(espi, ESPI_SPMODEx(spi->chip_select));
496	/* mask out bits we are going to set */
497	cs->hw_mode &= ~(CSMODE_CP_BEGIN_EDGECLK | CSMODE_CI_INACTIVEHIGH
498			 | CSMODE_REV);
499
500	if (spi->mode & SPI_CPHA)
501		cs->hw_mode |= CSMODE_CP_BEGIN_EDGECLK;
502	if (spi->mode & SPI_CPOL)
503		cs->hw_mode |= CSMODE_CI_INACTIVEHIGH;
504	if (!(spi->mode & SPI_LSB_FIRST))
505		cs->hw_mode |= CSMODE_REV;
506
507	/* Handle the loop mode */
508	loop_mode = fsl_espi_read_reg(espi, ESPI_SPMODE);
509	loop_mode &= ~SPMODE_LOOP;
510	if (spi->mode & SPI_LOOP)
511		loop_mode |= SPMODE_LOOP;
512	fsl_espi_write_reg(espi, ESPI_SPMODE, loop_mode);
513
514	fsl_espi_setup_transfer(spi, NULL);
515
516	pm_runtime_mark_last_busy(espi->dev);
517	pm_runtime_put_autosuspend(espi->dev);
518
519	return 0;
520}
521
522static void fsl_espi_cleanup(struct spi_device *spi)
523{
524	struct fsl_espi_cs *cs = spi_get_ctldata(spi);
525
526	kfree(cs);
527	spi_set_ctldata(spi, NULL);
528}
529
530static void fsl_espi_cpu_irq(struct fsl_espi *espi, u32 events)
531{
532	if (!espi->rx_done)
533		fsl_espi_read_rx_fifo(espi, events);
534
535	if (!espi->tx_done)
536		fsl_espi_fill_tx_fifo(espi, events);
537
538	if (!espi->tx_done || !espi->rx_done)
539		return;
540
541	/* we're done, but check for errors before returning */
542	events = fsl_espi_read_reg(espi, ESPI_SPIE);
543
544	if (!(events & SPIE_DON))
545		dev_err(espi->dev,
546			"Transfer done but SPIE_DON isn't set!\n");
547
548	if (SPIE_RXCNT(events) || SPIE_TXCNT(events) != FSL_ESPI_FIFO_SIZE) {
549		dev_err(espi->dev, "Transfer done but rx/tx fifo's aren't empty!\n");
550		dev_err(espi->dev, "SPIE_RXCNT = %d, SPIE_TXCNT = %d\n",
551			SPIE_RXCNT(events), SPIE_TXCNT(events));
552	}
553
554	complete(&espi->done);
555}
556
557static irqreturn_t fsl_espi_irq(s32 irq, void *context_data)
558{
559	struct fsl_espi *espi = context_data;
560	u32 events, mask;
561
562	spin_lock(&espi->lock);
563
564	/* Get interrupt events(tx/rx) */
565	events = fsl_espi_read_reg(espi, ESPI_SPIE);
566	mask = fsl_espi_read_reg(espi, ESPI_SPIM);
567	if (!(events & mask)) {
568		spin_unlock(&espi->lock);
569		return IRQ_NONE;
570	}
571
572	dev_vdbg(espi->dev, "%s: events %x\n", __func__, events);
573
574	fsl_espi_cpu_irq(espi, events);
575
576	/* Clear the events */
577	fsl_espi_write_reg(espi, ESPI_SPIE, events);
578
579	spin_unlock(&espi->lock);
580
581	return IRQ_HANDLED;
582}
583
584#ifdef CONFIG_PM
585static int fsl_espi_runtime_suspend(struct device *dev)
586{
587	struct spi_master *master = dev_get_drvdata(dev);
588	struct fsl_espi *espi = spi_master_get_devdata(master);
589	u32 regval;
590
591	regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
592	regval &= ~SPMODE_ENABLE;
593	fsl_espi_write_reg(espi, ESPI_SPMODE, regval);
594
595	return 0;
596}
597
598static int fsl_espi_runtime_resume(struct device *dev)
599{
600	struct spi_master *master = dev_get_drvdata(dev);
601	struct fsl_espi *espi = spi_master_get_devdata(master);
602	u32 regval;
603
604	regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
605	regval |= SPMODE_ENABLE;
606	fsl_espi_write_reg(espi, ESPI_SPMODE, regval);
607
608	return 0;
609}
610#endif
611
612static size_t fsl_espi_max_message_size(struct spi_device *spi)
613{
614	return SPCOM_TRANLEN_MAX;
615}
616
617static void fsl_espi_init_regs(struct device *dev, bool initial)
618{
619	struct spi_master *master = dev_get_drvdata(dev);
620	struct fsl_espi *espi = spi_master_get_devdata(master);
621	struct device_node *nc;
622	u32 csmode, cs, prop;
623	int ret;
624
625	/* SPI controller initializations */
626	fsl_espi_write_reg(espi, ESPI_SPMODE, 0);
627	fsl_espi_write_reg(espi, ESPI_SPIM, 0);
628	fsl_espi_write_reg(espi, ESPI_SPCOM, 0);
629	fsl_espi_write_reg(espi, ESPI_SPIE, 0xffffffff);
630
631	/* Init eSPI CS mode register */
632	for_each_available_child_of_node(master->dev.of_node, nc) {
633		/* get chip select */
634		ret = of_property_read_u32(nc, "reg", &cs);
635		if (ret || cs >= master->num_chipselect)
636			continue;
637
638		csmode = CSMODE_INIT_VAL;
639
640		/* check if CSBEF is set in device tree */
641		ret = of_property_read_u32(nc, "fsl,csbef", &prop);
642		if (!ret) {
643			csmode &= ~(CSMODE_BEF(0xf));
644			csmode |= CSMODE_BEF(prop);
645		}
646
647		/* check if CSAFT is set in device tree */
648		ret = of_property_read_u32(nc, "fsl,csaft", &prop);
649		if (!ret) {
650			csmode &= ~(CSMODE_AFT(0xf));
651			csmode |= CSMODE_AFT(prop);
652		}
653
654		fsl_espi_write_reg(espi, ESPI_SPMODEx(cs), csmode);
655
656		if (initial)
657			dev_info(dev, "cs=%u, init_csmode=0x%x\n", cs, csmode);
658	}
659
660	/* Enable SPI interface */
661	fsl_espi_write_reg(espi, ESPI_SPMODE, SPMODE_INIT_VAL | SPMODE_ENABLE);
662}
663
664static int fsl_espi_probe(struct device *dev, struct resource *mem,
665			  unsigned int irq, unsigned int num_cs)
666{
667	struct spi_master *master;
668	struct fsl_espi *espi;
669	int ret;
670
671	master = spi_alloc_master(dev, sizeof(struct fsl_espi));
672	if (!master)
673		return -ENOMEM;
674
675	dev_set_drvdata(dev, master);
676
677	master->mode_bits = SPI_RX_DUAL | SPI_CPOL | SPI_CPHA | SPI_CS_HIGH |
678			    SPI_LSB_FIRST | SPI_LOOP;
679	master->dev.of_node = dev->of_node;
680	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
681	master->setup = fsl_espi_setup;
682	master->cleanup = fsl_espi_cleanup;
683	master->transfer_one_message = fsl_espi_do_one_msg;
684	master->auto_runtime_pm = true;
685	master->max_message_size = fsl_espi_max_message_size;
686	master->num_chipselect = num_cs;
687
688	espi = spi_master_get_devdata(master);
689	spin_lock_init(&espi->lock);
690
691	espi->dev = dev;
692	espi->spibrg = fsl_get_sys_freq();
693	if (espi->spibrg == -1) {
694		dev_err(dev, "Can't get sys frequency!\n");
695		ret = -EINVAL;
696		goto err_probe;
697	}
698	/* determined by clock divider fields DIV16/PM in register SPMODEx */
699	master->min_speed_hz = DIV_ROUND_UP(espi->spibrg, 4 * 16 * 16);
700	master->max_speed_hz = DIV_ROUND_UP(espi->spibrg, 4);
701
702	init_completion(&espi->done);
703
704	espi->reg_base = devm_ioremap_resource(dev, mem);
705	if (IS_ERR(espi->reg_base)) {
706		ret = PTR_ERR(espi->reg_base);
707		goto err_probe;
708	}
709
710	/* Register for SPI Interrupt */
711	ret = devm_request_irq(dev, irq, fsl_espi_irq, 0, "fsl_espi", espi);
712	if (ret)
713		goto err_probe;
714
715	fsl_espi_init_regs(dev, true);
716
717	pm_runtime_set_autosuspend_delay(dev, AUTOSUSPEND_TIMEOUT);
718	pm_runtime_use_autosuspend(dev);
719	pm_runtime_set_active(dev);
720	pm_runtime_enable(dev);
721	pm_runtime_get_sync(dev);
722
723	ret = devm_spi_register_master(dev, master);
724	if (ret < 0)
725		goto err_pm;
726
727	dev_info(dev, "irq = %u\n", irq);
728
729	pm_runtime_mark_last_busy(dev);
730	pm_runtime_put_autosuspend(dev);
731
732	return 0;
733
734err_pm:
735	pm_runtime_put_noidle(dev);
736	pm_runtime_disable(dev);
737	pm_runtime_set_suspended(dev);
738err_probe:
739	spi_master_put(master);
740	return ret;
741}
742
743static int of_fsl_espi_get_chipselects(struct device *dev)
744{
745	struct device_node *np = dev->of_node;
746	u32 num_cs;
747	int ret;
748
749	ret = of_property_read_u32(np, "fsl,espi-num-chipselects", &num_cs);
750	if (ret) {
751		dev_err(dev, "No 'fsl,espi-num-chipselects' property\n");
752		return 0;
753	}
754
755	return num_cs;
756}
757
758static int of_fsl_espi_probe(struct platform_device *ofdev)
759{
760	struct device *dev = &ofdev->dev;
761	struct device_node *np = ofdev->dev.of_node;
762	struct resource mem;
763	unsigned int irq, num_cs;
764	int ret;
765
766	if (of_property_read_bool(np, "mode")) {
767		dev_err(dev, "mode property is not supported on ESPI!\n");
768		return -EINVAL;
769	}
770
771	num_cs = of_fsl_espi_get_chipselects(dev);
772	if (!num_cs)
773		return -EINVAL;
774
775	ret = of_address_to_resource(np, 0, &mem);
776	if (ret)
777		return ret;
778
779	irq = irq_of_parse_and_map(np, 0);
780	if (!irq)
781		return -EINVAL;
782
783	return fsl_espi_probe(dev, &mem, irq, num_cs);
784}
785
786static int of_fsl_espi_remove(struct platform_device *dev)
787{
788	pm_runtime_disable(&dev->dev);
789
790	return 0;
791}
792
793#ifdef CONFIG_PM_SLEEP
794static int of_fsl_espi_suspend(struct device *dev)
795{
796	struct spi_master *master = dev_get_drvdata(dev);
797	int ret;
798
799	ret = spi_master_suspend(master);
800	if (ret)
 
801		return ret;
 
802
803	return pm_runtime_force_suspend(dev);
804}
805
806static int of_fsl_espi_resume(struct device *dev)
807{
808	struct spi_master *master = dev_get_drvdata(dev);
809	int ret;
810
811	fsl_espi_init_regs(dev, false);
812
813	ret = pm_runtime_force_resume(dev);
814	if (ret < 0)
815		return ret;
816
817	return spi_master_resume(master);
818}
819#endif /* CONFIG_PM_SLEEP */
820
821static const struct dev_pm_ops espi_pm = {
822	SET_RUNTIME_PM_OPS(fsl_espi_runtime_suspend,
823			   fsl_espi_runtime_resume, NULL)
824	SET_SYSTEM_SLEEP_PM_OPS(of_fsl_espi_suspend, of_fsl_espi_resume)
825};
826
827static const struct of_device_id of_fsl_espi_match[] = {
828	{ .compatible = "fsl,mpc8536-espi" },
829	{}
830};
831MODULE_DEVICE_TABLE(of, of_fsl_espi_match);
832
833static struct platform_driver fsl_espi_driver = {
834	.driver = {
835		.name = "fsl_espi",
836		.of_match_table = of_fsl_espi_match,
837		.pm = &espi_pm,
838	},
839	.probe		= of_fsl_espi_probe,
840	.remove		= of_fsl_espi_remove,
841};
842module_platform_driver(fsl_espi_driver);
843
844MODULE_AUTHOR("Mingkai Hu");
845MODULE_DESCRIPTION("Enhanced Freescale SPI Driver");
846MODULE_LICENSE("GPL");
v4.10.11
 
  1/*
  2 * Freescale eSPI controller driver.
  3 *
  4 * Copyright 2010 Freescale Semiconductor, Inc.
  5 *
  6 * This program is free software; you can redistribute  it and/or modify it
  7 * under  the terms of  the GNU General  Public License as published by the
  8 * Free Software Foundation;  either version 2 of the  License, or (at your
  9 * option) any later version.
 10 */
 11#include <linux/delay.h>
 12#include <linux/err.h>
 13#include <linux/fsl_devices.h>
 14#include <linux/interrupt.h>
 15#include <linux/module.h>
 16#include <linux/mm.h>
 17#include <linux/of.h>
 18#include <linux/of_address.h>
 19#include <linux/of_irq.h>
 20#include <linux/of_platform.h>
 21#include <linux/platform_device.h>
 22#include <linux/spi/spi.h>
 23#include <linux/pm_runtime.h>
 24#include <sysdev/fsl_soc.h>
 25
 26/* eSPI Controller registers */
 27#define ESPI_SPMODE	0x00	/* eSPI mode register */
 28#define ESPI_SPIE	0x04	/* eSPI event register */
 29#define ESPI_SPIM	0x08	/* eSPI mask register */
 30#define ESPI_SPCOM	0x0c	/* eSPI command register */
 31#define ESPI_SPITF	0x10	/* eSPI transmit FIFO access register*/
 32#define ESPI_SPIRF	0x14	/* eSPI receive FIFO access register*/
 33#define ESPI_SPMODE0	0x20	/* eSPI cs0 mode register */
 34
 35#define ESPI_SPMODEx(x)	(ESPI_SPMODE0 + (x) * 4)
 36
 37/* eSPI Controller mode register definitions */
 38#define SPMODE_ENABLE		BIT(31)
 39#define SPMODE_LOOP		BIT(30)
 40#define SPMODE_TXTHR(x)		((x) << 8)
 41#define SPMODE_RXTHR(x)		((x) << 0)
 42
 43/* eSPI Controller CS mode register definitions */
 44#define CSMODE_CI_INACTIVEHIGH	BIT(31)
 45#define CSMODE_CP_BEGIN_EDGECLK	BIT(30)
 46#define CSMODE_REV		BIT(29)
 47#define CSMODE_DIV16		BIT(28)
 48#define CSMODE_PM(x)		((x) << 24)
 49#define CSMODE_POL_1		BIT(20)
 50#define CSMODE_LEN(x)		((x) << 16)
 51#define CSMODE_BEF(x)		((x) << 12)
 52#define CSMODE_AFT(x)		((x) << 8)
 53#define CSMODE_CG(x)		((x) << 3)
 54
 55#define FSL_ESPI_FIFO_SIZE	32
 56#define FSL_ESPI_RXTHR		15
 57
 58/* Default mode/csmode for eSPI controller */
 59#define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(FSL_ESPI_RXTHR))
 60#define CSMODE_INIT_VAL (CSMODE_POL_1 | CSMODE_BEF(0) \
 61		| CSMODE_AFT(0) | CSMODE_CG(1))
 62
 63/* SPIE register values */
 64#define SPIE_RXCNT(reg)     ((reg >> 24) & 0x3F)
 65#define SPIE_TXCNT(reg)     ((reg >> 16) & 0x3F)
 66#define	SPIE_TXE		BIT(15)	/* TX FIFO empty */
 67#define	SPIE_DON		BIT(14)	/* TX done */
 68#define	SPIE_RXT		BIT(13)	/* RX FIFO threshold */
 69#define	SPIE_RXF		BIT(12)	/* RX FIFO full */
 70#define	SPIE_TXT		BIT(11)	/* TX FIFO threshold*/
 71#define	SPIE_RNE		BIT(9)	/* RX FIFO not empty */
 72#define	SPIE_TNF		BIT(8)	/* TX FIFO not full */
 73
 74/* SPIM register values */
 75#define	SPIM_TXE		BIT(15)	/* TX FIFO empty */
 76#define	SPIM_DON		BIT(14)	/* TX done */
 77#define	SPIM_RXT		BIT(13)	/* RX FIFO threshold */
 78#define	SPIM_RXF		BIT(12)	/* RX FIFO full */
 79#define	SPIM_TXT		BIT(11)	/* TX FIFO threshold*/
 80#define	SPIM_RNE		BIT(9)	/* RX FIFO not empty */
 81#define	SPIM_TNF		BIT(8)	/* TX FIFO not full */
 82
 83/* SPCOM register values */
 84#define SPCOM_CS(x)		((x) << 30)
 85#define SPCOM_DO		BIT(28) /* Dual output */
 86#define SPCOM_TO		BIT(27) /* TX only */
 87#define SPCOM_RXSKIP(x)		((x) << 16)
 88#define SPCOM_TRANLEN(x)	((x) << 0)
 89
 90#define	SPCOM_TRANLEN_MAX	0x10000	/* Max transaction length */
 91
 92#define AUTOSUSPEND_TIMEOUT 2000
 93
 94struct fsl_espi {
 95	struct device *dev;
 96	void __iomem *reg_base;
 97
 98	struct list_head *m_transfers;
 99	struct spi_transfer *tx_t;
100	unsigned int tx_pos;
101	bool tx_done;
102	struct spi_transfer *rx_t;
103	unsigned int rx_pos;
104	bool rx_done;
105
106	bool swab;
107	unsigned int rxskip;
108
109	spinlock_t lock;
110
111	u32 spibrg;             /* SPIBRG input clock */
112
113	struct completion done;
114};
115
116struct fsl_espi_cs {
117	u32 hw_mode;
118};
119
120static inline u32 fsl_espi_read_reg(struct fsl_espi *espi, int offset)
121{
122	return ioread32be(espi->reg_base + offset);
123}
124
125static inline u16 fsl_espi_read_reg16(struct fsl_espi *espi, int offset)
126{
127	return ioread16be(espi->reg_base + offset);
128}
129
130static inline u8 fsl_espi_read_reg8(struct fsl_espi *espi, int offset)
131{
132	return ioread8(espi->reg_base + offset);
133}
134
135static inline void fsl_espi_write_reg(struct fsl_espi *espi, int offset,
136				      u32 val)
137{
138	iowrite32be(val, espi->reg_base + offset);
139}
140
141static inline void fsl_espi_write_reg16(struct fsl_espi *espi, int offset,
142					u16 val)
143{
144	iowrite16be(val, espi->reg_base + offset);
145}
146
147static inline void fsl_espi_write_reg8(struct fsl_espi *espi, int offset,
148				       u8 val)
149{
150	iowrite8(val, espi->reg_base + offset);
151}
152
153static int fsl_espi_check_message(struct spi_message *m)
154{
155	struct fsl_espi *espi = spi_master_get_devdata(m->spi->master);
156	struct spi_transfer *t, *first;
157
158	if (m->frame_length > SPCOM_TRANLEN_MAX) {
159		dev_err(espi->dev, "message too long, size is %u bytes\n",
160			m->frame_length);
161		return -EMSGSIZE;
162	}
163
164	first = list_first_entry(&m->transfers, struct spi_transfer,
165				 transfer_list);
166
167	list_for_each_entry(t, &m->transfers, transfer_list) {
168		if (first->bits_per_word != t->bits_per_word ||
169		    first->speed_hz != t->speed_hz) {
170			dev_err(espi->dev, "bits_per_word/speed_hz should be the same for all transfers\n");
171			return -EINVAL;
172		}
173	}
174
175	/* ESPI supports MSB-first transfers for word size 8 / 16 only */
176	if (!(m->spi->mode & SPI_LSB_FIRST) && first->bits_per_word != 8 &&
177	    first->bits_per_word != 16) {
178		dev_err(espi->dev,
179			"MSB-first transfer not supported for wordsize %u\n",
180			first->bits_per_word);
181		return -EINVAL;
182	}
183
184	return 0;
185}
186
187static unsigned int fsl_espi_check_rxskip_mode(struct spi_message *m)
188{
189	struct spi_transfer *t;
190	unsigned int i = 0, rxskip = 0;
191
192	/*
193	 * prerequisites for ESPI rxskip mode:
194	 * - message has two transfers
195	 * - first transfer is a write and second is a read
196	 *
197	 * In addition the current low-level transfer mechanism requires
198	 * that the rxskip bytes fit into the TX FIFO. Else the transfer
199	 * would hang because after the first FSL_ESPI_FIFO_SIZE bytes
200	 * the TX FIFO isn't re-filled.
201	 */
202	list_for_each_entry(t, &m->transfers, transfer_list) {
203		if (i == 0) {
204			if (!t->tx_buf || t->rx_buf ||
205			    t->len > FSL_ESPI_FIFO_SIZE)
206				return 0;
207			rxskip = t->len;
208		} else if (i == 1) {
209			if (t->tx_buf || !t->rx_buf)
210				return 0;
211		}
212		i++;
213	}
214
215	return i == 2 ? rxskip : 0;
216}
217
218static void fsl_espi_fill_tx_fifo(struct fsl_espi *espi, u32 events)
219{
220	u32 tx_fifo_avail;
221	unsigned int tx_left;
222	const void *tx_buf;
223
224	/* if events is zero transfer has not started and tx fifo is empty */
225	tx_fifo_avail = events ? SPIE_TXCNT(events) :  FSL_ESPI_FIFO_SIZE;
226start:
227	tx_left = espi->tx_t->len - espi->tx_pos;
228	tx_buf = espi->tx_t->tx_buf;
229	while (tx_fifo_avail >= min(4U, tx_left) && tx_left) {
230		if (tx_left >= 4) {
231			if (!tx_buf)
232				fsl_espi_write_reg(espi, ESPI_SPITF, 0);
233			else if (espi->swab)
234				fsl_espi_write_reg(espi, ESPI_SPITF,
235					swahb32p(tx_buf + espi->tx_pos));
236			else
237				fsl_espi_write_reg(espi, ESPI_SPITF,
238					*(u32 *)(tx_buf + espi->tx_pos));
239			espi->tx_pos += 4;
240			tx_left -= 4;
241			tx_fifo_avail -= 4;
242		} else if (tx_left >= 2 && tx_buf && espi->swab) {
243			fsl_espi_write_reg16(espi, ESPI_SPITF,
244					swab16p(tx_buf + espi->tx_pos));
245			espi->tx_pos += 2;
246			tx_left -= 2;
247			tx_fifo_avail -= 2;
248		} else {
249			if (!tx_buf)
250				fsl_espi_write_reg8(espi, ESPI_SPITF, 0);
251			else
252				fsl_espi_write_reg8(espi, ESPI_SPITF,
253					*(u8 *)(tx_buf + espi->tx_pos));
254			espi->tx_pos += 1;
255			tx_left -= 1;
256			tx_fifo_avail -= 1;
257		}
258	}
259
260	if (!tx_left) {
261		/* Last transfer finished, in rxskip mode only one is needed */
262		if (list_is_last(&espi->tx_t->transfer_list,
263		    espi->m_transfers) || espi->rxskip) {
264			espi->tx_done = true;
265			return;
266		}
267		espi->tx_t = list_next_entry(espi->tx_t, transfer_list);
268		espi->tx_pos = 0;
269		/* continue with next transfer if tx fifo is not full */
270		if (tx_fifo_avail)
271			goto start;
272	}
273}
274
275static void fsl_espi_read_rx_fifo(struct fsl_espi *espi, u32 events)
276{
277	u32 rx_fifo_avail = SPIE_RXCNT(events);
278	unsigned int rx_left;
279	void *rx_buf;
280
281start:
282	rx_left = espi->rx_t->len - espi->rx_pos;
283	rx_buf = espi->rx_t->rx_buf;
284	while (rx_fifo_avail >= min(4U, rx_left) && rx_left) {
285		if (rx_left >= 4) {
286			u32 val = fsl_espi_read_reg(espi, ESPI_SPIRF);
287
288			if (rx_buf && espi->swab)
289				*(u32 *)(rx_buf + espi->rx_pos) = swahb32(val);
290			else if (rx_buf)
291				*(u32 *)(rx_buf + espi->rx_pos) = val;
292			espi->rx_pos += 4;
293			rx_left -= 4;
294			rx_fifo_avail -= 4;
295		} else if (rx_left >= 2 && rx_buf && espi->swab) {
296			u16 val = fsl_espi_read_reg16(espi, ESPI_SPIRF);
297
298			*(u16 *)(rx_buf + espi->rx_pos) = swab16(val);
299			espi->rx_pos += 2;
300			rx_left -= 2;
301			rx_fifo_avail -= 2;
302		} else {
303			u8 val = fsl_espi_read_reg8(espi, ESPI_SPIRF);
304
305			if (rx_buf)
306				*(u8 *)(rx_buf + espi->rx_pos) = val;
307			espi->rx_pos += 1;
308			rx_left -= 1;
309			rx_fifo_avail -= 1;
310		}
311	}
312
313	if (!rx_left) {
314		if (list_is_last(&espi->rx_t->transfer_list,
315		    espi->m_transfers)) {
316			espi->rx_done = true;
317			return;
318		}
319		espi->rx_t = list_next_entry(espi->rx_t, transfer_list);
320		espi->rx_pos = 0;
321		/* continue with next transfer if rx fifo is not empty */
322		if (rx_fifo_avail)
323			goto start;
324	}
325}
326
327static void fsl_espi_setup_transfer(struct spi_device *spi,
328					struct spi_transfer *t)
329{
330	struct fsl_espi *espi = spi_master_get_devdata(spi->master);
331	int bits_per_word = t ? t->bits_per_word : spi->bits_per_word;
332	u32 pm, hz = t ? t->speed_hz : spi->max_speed_hz;
333	struct fsl_espi_cs *cs = spi_get_ctldata(spi);
334	u32 hw_mode_old = cs->hw_mode;
335
336	/* mask out bits we are going to set */
337	cs->hw_mode &= ~(CSMODE_LEN(0xF) | CSMODE_DIV16 | CSMODE_PM(0xF));
338
339	cs->hw_mode |= CSMODE_LEN(bits_per_word - 1);
340
341	pm = DIV_ROUND_UP(espi->spibrg, hz * 4) - 1;
342
343	if (pm > 15) {
344		cs->hw_mode |= CSMODE_DIV16;
345		pm = DIV_ROUND_UP(espi->spibrg, hz * 16 * 4) - 1;
346	}
347
348	cs->hw_mode |= CSMODE_PM(pm);
349
350	/* don't write the mode register if the mode doesn't change */
351	if (cs->hw_mode != hw_mode_old)
352		fsl_espi_write_reg(espi, ESPI_SPMODEx(spi->chip_select),
353				   cs->hw_mode);
354}
355
356static int fsl_espi_bufs(struct spi_device *spi, struct spi_transfer *t)
357{
358	struct fsl_espi *espi = spi_master_get_devdata(spi->master);
359	unsigned int rx_len = t->len;
360	u32 mask, spcom;
361	int ret;
362
363	reinit_completion(&espi->done);
364
365	/* Set SPCOM[CS] and SPCOM[TRANLEN] field */
366	spcom = SPCOM_CS(spi->chip_select);
367	spcom |= SPCOM_TRANLEN(t->len - 1);
368
369	/* configure RXSKIP mode */
370	if (espi->rxskip) {
371		spcom |= SPCOM_RXSKIP(espi->rxskip);
372		rx_len = t->len - espi->rxskip;
373		if (t->rx_nbits == SPI_NBITS_DUAL)
374			spcom |= SPCOM_DO;
375	}
376
377	fsl_espi_write_reg(espi, ESPI_SPCOM, spcom);
378
379	/* enable interrupts */
380	mask = SPIM_DON;
381	if (rx_len > FSL_ESPI_FIFO_SIZE)
382		mask |= SPIM_RXT;
383	fsl_espi_write_reg(espi, ESPI_SPIM, mask);
384
385	/* Prevent filling the fifo from getting interrupted */
386	spin_lock_irq(&espi->lock);
387	fsl_espi_fill_tx_fifo(espi, 0);
388	spin_unlock_irq(&espi->lock);
389
390	/* Won't hang up forever, SPI bus sometimes got lost interrupts... */
391	ret = wait_for_completion_timeout(&espi->done, 2 * HZ);
392	if (ret == 0)
393		dev_err(espi->dev, "Transfer timed out!\n");
394
395	/* disable rx ints */
396	fsl_espi_write_reg(espi, ESPI_SPIM, 0);
397
398	return ret == 0 ? -ETIMEDOUT : 0;
399}
400
401static int fsl_espi_trans(struct spi_message *m, struct spi_transfer *trans)
402{
403	struct fsl_espi *espi = spi_master_get_devdata(m->spi->master);
404	struct spi_device *spi = m->spi;
405	int ret;
406
407	/* In case of LSB-first and bits_per_word > 8 byte-swap all words */
408	espi->swab = spi->mode & SPI_LSB_FIRST && trans->bits_per_word > 8;
409
410	espi->m_transfers = &m->transfers;
411	espi->tx_t = list_first_entry(&m->transfers, struct spi_transfer,
412				      transfer_list);
413	espi->tx_pos = 0;
414	espi->tx_done = false;
415	espi->rx_t = list_first_entry(&m->transfers, struct spi_transfer,
416				      transfer_list);
417	espi->rx_pos = 0;
418	espi->rx_done = false;
419
420	espi->rxskip = fsl_espi_check_rxskip_mode(m);
421	if (trans->rx_nbits == SPI_NBITS_DUAL && !espi->rxskip) {
422		dev_err(espi->dev, "Dual output mode requires RXSKIP mode!\n");
423		return -EINVAL;
424	}
425
426	/* In RXSKIP mode skip first transfer for reads */
427	if (espi->rxskip)
428		espi->rx_t = list_next_entry(espi->rx_t, transfer_list);
429
430	fsl_espi_setup_transfer(spi, trans);
431
432	ret = fsl_espi_bufs(spi, trans);
433
434	if (trans->delay_usecs)
435		udelay(trans->delay_usecs);
436
437	return ret;
438}
439
440static int fsl_espi_do_one_msg(struct spi_master *master,
441			       struct spi_message *m)
442{
443	unsigned int delay_usecs = 0, rx_nbits = 0;
444	struct spi_transfer *t, trans = {};
445	int ret;
446
447	ret = fsl_espi_check_message(m);
448	if (ret)
449		goto out;
450
451	list_for_each_entry(t, &m->transfers, transfer_list) {
452		if (t->delay_usecs > delay_usecs)
453			delay_usecs = t->delay_usecs;
 
 
454		if (t->rx_nbits > rx_nbits)
455			rx_nbits = t->rx_nbits;
456	}
457
458	t = list_first_entry(&m->transfers, struct spi_transfer,
459			     transfer_list);
460
461	trans.len = m->frame_length;
462	trans.speed_hz = t->speed_hz;
463	trans.bits_per_word = t->bits_per_word;
464	trans.delay_usecs = delay_usecs;
 
465	trans.rx_nbits = rx_nbits;
466
467	if (trans.len)
468		ret = fsl_espi_trans(m, &trans);
469
470	m->actual_length = ret ? 0 : trans.len;
471out:
472	if (m->status == -EINPROGRESS)
473		m->status = ret;
474
475	spi_finalize_current_message(master);
476
477	return ret;
478}
479
480static int fsl_espi_setup(struct spi_device *spi)
481{
482	struct fsl_espi *espi;
483	u32 loop_mode;
484	struct fsl_espi_cs *cs = spi_get_ctldata(spi);
485
486	if (!cs) {
487		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
488		if (!cs)
489			return -ENOMEM;
490		spi_set_ctldata(spi, cs);
491	}
492
493	espi = spi_master_get_devdata(spi->master);
494
495	pm_runtime_get_sync(espi->dev);
496
497	cs->hw_mode = fsl_espi_read_reg(espi, ESPI_SPMODEx(spi->chip_select));
498	/* mask out bits we are going to set */
499	cs->hw_mode &= ~(CSMODE_CP_BEGIN_EDGECLK | CSMODE_CI_INACTIVEHIGH
500			 | CSMODE_REV);
501
502	if (spi->mode & SPI_CPHA)
503		cs->hw_mode |= CSMODE_CP_BEGIN_EDGECLK;
504	if (spi->mode & SPI_CPOL)
505		cs->hw_mode |= CSMODE_CI_INACTIVEHIGH;
506	if (!(spi->mode & SPI_LSB_FIRST))
507		cs->hw_mode |= CSMODE_REV;
508
509	/* Handle the loop mode */
510	loop_mode = fsl_espi_read_reg(espi, ESPI_SPMODE);
511	loop_mode &= ~SPMODE_LOOP;
512	if (spi->mode & SPI_LOOP)
513		loop_mode |= SPMODE_LOOP;
514	fsl_espi_write_reg(espi, ESPI_SPMODE, loop_mode);
515
516	fsl_espi_setup_transfer(spi, NULL);
517
518	pm_runtime_mark_last_busy(espi->dev);
519	pm_runtime_put_autosuspend(espi->dev);
520
521	return 0;
522}
523
524static void fsl_espi_cleanup(struct spi_device *spi)
525{
526	struct fsl_espi_cs *cs = spi_get_ctldata(spi);
527
528	kfree(cs);
529	spi_set_ctldata(spi, NULL);
530}
531
532static void fsl_espi_cpu_irq(struct fsl_espi *espi, u32 events)
533{
534	if (!espi->rx_done)
535		fsl_espi_read_rx_fifo(espi, events);
536
537	if (!espi->tx_done)
538		fsl_espi_fill_tx_fifo(espi, events);
539
540	if (!espi->tx_done || !espi->rx_done)
541		return;
542
543	/* we're done, but check for errors before returning */
544	events = fsl_espi_read_reg(espi, ESPI_SPIE);
545
546	if (!(events & SPIE_DON))
547		dev_err(espi->dev,
548			"Transfer done but SPIE_DON isn't set!\n");
549
550	if (SPIE_RXCNT(events) || SPIE_TXCNT(events) != FSL_ESPI_FIFO_SIZE)
551		dev_err(espi->dev, "Transfer done but rx/tx fifo's aren't empty!\n");
 
 
 
552
553	complete(&espi->done);
554}
555
556static irqreturn_t fsl_espi_irq(s32 irq, void *context_data)
557{
558	struct fsl_espi *espi = context_data;
559	u32 events;
560
561	spin_lock(&espi->lock);
562
563	/* Get interrupt events(tx/rx) */
564	events = fsl_espi_read_reg(espi, ESPI_SPIE);
565	if (!events) {
 
566		spin_unlock(&espi->lock);
567		return IRQ_NONE;
568	}
569
570	dev_vdbg(espi->dev, "%s: events %x\n", __func__, events);
571
572	fsl_espi_cpu_irq(espi, events);
573
574	/* Clear the events */
575	fsl_espi_write_reg(espi, ESPI_SPIE, events);
576
577	spin_unlock(&espi->lock);
578
579	return IRQ_HANDLED;
580}
581
582#ifdef CONFIG_PM
583static int fsl_espi_runtime_suspend(struct device *dev)
584{
585	struct spi_master *master = dev_get_drvdata(dev);
586	struct fsl_espi *espi = spi_master_get_devdata(master);
587	u32 regval;
588
589	regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
590	regval &= ~SPMODE_ENABLE;
591	fsl_espi_write_reg(espi, ESPI_SPMODE, regval);
592
593	return 0;
594}
595
596static int fsl_espi_runtime_resume(struct device *dev)
597{
598	struct spi_master *master = dev_get_drvdata(dev);
599	struct fsl_espi *espi = spi_master_get_devdata(master);
600	u32 regval;
601
602	regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
603	regval |= SPMODE_ENABLE;
604	fsl_espi_write_reg(espi, ESPI_SPMODE, regval);
605
606	return 0;
607}
608#endif
609
610static size_t fsl_espi_max_message_size(struct spi_device *spi)
611{
612	return SPCOM_TRANLEN_MAX;
613}
614
615static void fsl_espi_init_regs(struct device *dev, bool initial)
616{
617	struct spi_master *master = dev_get_drvdata(dev);
618	struct fsl_espi *espi = spi_master_get_devdata(master);
619	struct device_node *nc;
620	u32 csmode, cs, prop;
621	int ret;
622
623	/* SPI controller initializations */
624	fsl_espi_write_reg(espi, ESPI_SPMODE, 0);
625	fsl_espi_write_reg(espi, ESPI_SPIM, 0);
626	fsl_espi_write_reg(espi, ESPI_SPCOM, 0);
627	fsl_espi_write_reg(espi, ESPI_SPIE, 0xffffffff);
628
629	/* Init eSPI CS mode register */
630	for_each_available_child_of_node(master->dev.of_node, nc) {
631		/* get chip select */
632		ret = of_property_read_u32(nc, "reg", &cs);
633		if (ret || cs >= master->num_chipselect)
634			continue;
635
636		csmode = CSMODE_INIT_VAL;
637
638		/* check if CSBEF is set in device tree */
639		ret = of_property_read_u32(nc, "fsl,csbef", &prop);
640		if (!ret) {
641			csmode &= ~(CSMODE_BEF(0xf));
642			csmode |= CSMODE_BEF(prop);
643		}
644
645		/* check if CSAFT is set in device tree */
646		ret = of_property_read_u32(nc, "fsl,csaft", &prop);
647		if (!ret) {
648			csmode &= ~(CSMODE_AFT(0xf));
649			csmode |= CSMODE_AFT(prop);
650		}
651
652		fsl_espi_write_reg(espi, ESPI_SPMODEx(cs), csmode);
653
654		if (initial)
655			dev_info(dev, "cs=%u, init_csmode=0x%x\n", cs, csmode);
656	}
657
658	/* Enable SPI interface */
659	fsl_espi_write_reg(espi, ESPI_SPMODE, SPMODE_INIT_VAL | SPMODE_ENABLE);
660}
661
662static int fsl_espi_probe(struct device *dev, struct resource *mem,
663			  unsigned int irq, unsigned int num_cs)
664{
665	struct spi_master *master;
666	struct fsl_espi *espi;
667	int ret;
668
669	master = spi_alloc_master(dev, sizeof(struct fsl_espi));
670	if (!master)
671		return -ENOMEM;
672
673	dev_set_drvdata(dev, master);
674
675	master->mode_bits = SPI_RX_DUAL | SPI_CPOL | SPI_CPHA | SPI_CS_HIGH |
676			    SPI_LSB_FIRST | SPI_LOOP;
677	master->dev.of_node = dev->of_node;
678	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
679	master->setup = fsl_espi_setup;
680	master->cleanup = fsl_espi_cleanup;
681	master->transfer_one_message = fsl_espi_do_one_msg;
682	master->auto_runtime_pm = true;
683	master->max_message_size = fsl_espi_max_message_size;
684	master->num_chipselect = num_cs;
685
686	espi = spi_master_get_devdata(master);
687	spin_lock_init(&espi->lock);
688
689	espi->dev = dev;
690	espi->spibrg = fsl_get_sys_freq();
691	if (espi->spibrg == -1) {
692		dev_err(dev, "Can't get sys frequency!\n");
693		ret = -EINVAL;
694		goto err_probe;
695	}
696	/* determined by clock divider fields DIV16/PM in register SPMODEx */
697	master->min_speed_hz = DIV_ROUND_UP(espi->spibrg, 4 * 16 * 16);
698	master->max_speed_hz = DIV_ROUND_UP(espi->spibrg, 4);
699
700	init_completion(&espi->done);
701
702	espi->reg_base = devm_ioremap_resource(dev, mem);
703	if (IS_ERR(espi->reg_base)) {
704		ret = PTR_ERR(espi->reg_base);
705		goto err_probe;
706	}
707
708	/* Register for SPI Interrupt */
709	ret = devm_request_irq(dev, irq, fsl_espi_irq, 0, "fsl_espi", espi);
710	if (ret)
711		goto err_probe;
712
713	fsl_espi_init_regs(dev, true);
714
715	pm_runtime_set_autosuspend_delay(dev, AUTOSUSPEND_TIMEOUT);
716	pm_runtime_use_autosuspend(dev);
717	pm_runtime_set_active(dev);
718	pm_runtime_enable(dev);
719	pm_runtime_get_sync(dev);
720
721	ret = devm_spi_register_master(dev, master);
722	if (ret < 0)
723		goto err_pm;
724
725	dev_info(dev, "at 0x%p (irq = %u)\n", espi->reg_base, irq);
726
727	pm_runtime_mark_last_busy(dev);
728	pm_runtime_put_autosuspend(dev);
729
730	return 0;
731
732err_pm:
733	pm_runtime_put_noidle(dev);
734	pm_runtime_disable(dev);
735	pm_runtime_set_suspended(dev);
736err_probe:
737	spi_master_put(master);
738	return ret;
739}
740
741static int of_fsl_espi_get_chipselects(struct device *dev)
742{
743	struct device_node *np = dev->of_node;
744	u32 num_cs;
745	int ret;
746
747	ret = of_property_read_u32(np, "fsl,espi-num-chipselects", &num_cs);
748	if (ret) {
749		dev_err(dev, "No 'fsl,espi-num-chipselects' property\n");
750		return 0;
751	}
752
753	return num_cs;
754}
755
756static int of_fsl_espi_probe(struct platform_device *ofdev)
757{
758	struct device *dev = &ofdev->dev;
759	struct device_node *np = ofdev->dev.of_node;
760	struct resource mem;
761	unsigned int irq, num_cs;
762	int ret;
763
764	if (of_property_read_bool(np, "mode")) {
765		dev_err(dev, "mode property is not supported on ESPI!\n");
766		return -EINVAL;
767	}
768
769	num_cs = of_fsl_espi_get_chipselects(dev);
770	if (!num_cs)
771		return -EINVAL;
772
773	ret = of_address_to_resource(np, 0, &mem);
774	if (ret)
775		return ret;
776
777	irq = irq_of_parse_and_map(np, 0);
778	if (!irq)
779		return -EINVAL;
780
781	return fsl_espi_probe(dev, &mem, irq, num_cs);
782}
783
784static int of_fsl_espi_remove(struct platform_device *dev)
785{
786	pm_runtime_disable(&dev->dev);
787
788	return 0;
789}
790
791#ifdef CONFIG_PM_SLEEP
792static int of_fsl_espi_suspend(struct device *dev)
793{
794	struct spi_master *master = dev_get_drvdata(dev);
795	int ret;
796
797	ret = spi_master_suspend(master);
798	if (ret) {
799		dev_warn(dev, "cannot suspend master\n");
800		return ret;
801	}
802
803	return pm_runtime_force_suspend(dev);
804}
805
806static int of_fsl_espi_resume(struct device *dev)
807{
808	struct spi_master *master = dev_get_drvdata(dev);
809	int ret;
810
811	fsl_espi_init_regs(dev, false);
812
813	ret = pm_runtime_force_resume(dev);
814	if (ret < 0)
815		return ret;
816
817	return spi_master_resume(master);
818}
819#endif /* CONFIG_PM_SLEEP */
820
821static const struct dev_pm_ops espi_pm = {
822	SET_RUNTIME_PM_OPS(fsl_espi_runtime_suspend,
823			   fsl_espi_runtime_resume, NULL)
824	SET_SYSTEM_SLEEP_PM_OPS(of_fsl_espi_suspend, of_fsl_espi_resume)
825};
826
827static const struct of_device_id of_fsl_espi_match[] = {
828	{ .compatible = "fsl,mpc8536-espi" },
829	{}
830};
831MODULE_DEVICE_TABLE(of, of_fsl_espi_match);
832
833static struct platform_driver fsl_espi_driver = {
834	.driver = {
835		.name = "fsl_espi",
836		.of_match_table = of_fsl_espi_match,
837		.pm = &espi_pm,
838	},
839	.probe		= of_fsl_espi_probe,
840	.remove		= of_fsl_espi_remove,
841};
842module_platform_driver(fsl_espi_driver);
843
844MODULE_AUTHOR("Mingkai Hu");
845MODULE_DESCRIPTION("Enhanced Freescale SPI Driver");
846MODULE_LICENSE("GPL");