Linux Audio

Check our new training course

Loading...
v6.2
 1// SPDX-License-Identifier: GPL-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2
 3#include <linux/pfn.h>
 4#include <asm/xen/page.h>
 5#include <asm/xen/hypercall.h>
 
 
 
 
 
 
 
 6#include <xen/interface/memory.h>
 
 7
 8#include "multicalls.h"
 9#include "mmu.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
11unsigned long arbitrary_virt_to_mfn(void *vaddr)
12{
13	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
14
15	return PFN_DOWN(maddr.maddr);
16}
17
18xmaddr_t arbitrary_virt_to_machine(void *vaddr)
19{
20	unsigned long address = (unsigned long)vaddr;
21	unsigned int level;
22	pte_t *pte;
23	unsigned offset;
24
25	/*
26	 * if the PFN is in the linear mapped vaddr range, we can just use
27	 * the (quick) virt_to_machine() p2m lookup
28	 */
29	if (virt_addr_valid(vaddr))
30		return virt_to_machine(vaddr);
31
32	/* otherwise we have to do a (slower) full page-table walk */
33
34	pte = lookup_address(address, &level);
35	BUG_ON(pte == NULL);
36	offset = address & ~PAGE_MASK;
37	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
38}
39EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
40
41/* Returns: 0 success */
42int xen_unmap_domain_gfn_range(struct vm_area_struct *vma,
43			       int nr, struct page **pages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44{
45	if (xen_feature(XENFEAT_auto_translated_physmap))
46		return xen_xlate_unmap_gfn_range(vma, nr, pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
48	if (!pages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49		return 0;
50
 
 
 
51	return -EINVAL;
 
52}
53EXPORT_SYMBOL_GPL(xen_unmap_domain_gfn_range);
v4.10.11
   1/*
   2 * Xen mmu operations
   3 *
   4 * This file contains the various mmu fetch and update operations.
   5 * The most important job they must perform is the mapping between the
   6 * domain's pfn and the overall machine mfns.
   7 *
   8 * Xen allows guests to directly update the pagetable, in a controlled
   9 * fashion.  In other words, the guest modifies the same pagetable
  10 * that the CPU actually uses, which eliminates the overhead of having
  11 * a separate shadow pagetable.
  12 *
  13 * In order to allow this, it falls on the guest domain to map its
  14 * notion of a "physical" pfn - which is just a domain-local linear
  15 * address - into a real "machine address" which the CPU's MMU can
  16 * use.
  17 *
  18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
  19 * inserted directly into the pagetable.  When creating a new
  20 * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
  21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
  22 * the mfn back into a pfn.
  23 *
  24 * The other constraint is that all pages which make up a pagetable
  25 * must be mapped read-only in the guest.  This prevents uncontrolled
  26 * guest updates to the pagetable.  Xen strictly enforces this, and
  27 * will disallow any pagetable update which will end up mapping a
  28 * pagetable page RW, and will disallow using any writable page as a
  29 * pagetable.
  30 *
  31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
  32 * would need to validate the whole pagetable before going on.
  33 * Naturally, this is quite slow.  The solution is to "pin" a
  34 * pagetable, which enforces all the constraints on the pagetable even
  35 * when it is not actively in use.  This menas that Xen can be assured
  36 * that it is still valid when you do load it into %cr3, and doesn't
  37 * need to revalidate it.
  38 *
  39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  40 */
  41#include <linux/sched.h>
  42#include <linux/highmem.h>
  43#include <linux/debugfs.h>
  44#include <linux/bug.h>
  45#include <linux/vmalloc.h>
  46#include <linux/export.h>
  47#include <linux/init.h>
  48#include <linux/gfp.h>
  49#include <linux/memblock.h>
  50#include <linux/seq_file.h>
  51#include <linux/crash_dump.h>
  52
  53#include <trace/events/xen.h>
  54
  55#include <asm/pgtable.h>
  56#include <asm/tlbflush.h>
  57#include <asm/fixmap.h>
  58#include <asm/mmu_context.h>
  59#include <asm/setup.h>
  60#include <asm/paravirt.h>
  61#include <asm/e820.h>
  62#include <asm/linkage.h>
  63#include <asm/page.h>
  64#include <asm/init.h>
  65#include <asm/pat.h>
  66#include <asm/smp.h>
  67
 
 
  68#include <asm/xen/hypercall.h>
  69#include <asm/xen/hypervisor.h>
  70
  71#include <xen/xen.h>
  72#include <xen/page.h>
  73#include <xen/interface/xen.h>
  74#include <xen/interface/hvm/hvm_op.h>
  75#include <xen/interface/version.h>
  76#include <xen/interface/memory.h>
  77#include <xen/hvc-console.h>
  78
  79#include "multicalls.h"
  80#include "mmu.h"
  81#include "debugfs.h"
  82
  83/*
  84 * Protects atomic reservation decrease/increase against concurrent increases.
  85 * Also protects non-atomic updates of current_pages and balloon lists.
  86 */
  87DEFINE_SPINLOCK(xen_reservation_lock);
  88
  89#ifdef CONFIG_X86_32
  90/*
  91 * Identity map, in addition to plain kernel map.  This needs to be
  92 * large enough to allocate page table pages to allocate the rest.
  93 * Each page can map 2MB.
  94 */
  95#define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4)
  96static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
  97#endif
  98#ifdef CONFIG_X86_64
  99/* l3 pud for userspace vsyscall mapping */
 100static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
 101#endif /* CONFIG_X86_64 */
 102
 103/*
 104 * Note about cr3 (pagetable base) values:
 105 *
 106 * xen_cr3 contains the current logical cr3 value; it contains the
 107 * last set cr3.  This may not be the current effective cr3, because
 108 * its update may be being lazily deferred.  However, a vcpu looking
 109 * at its own cr3 can use this value knowing that it everything will
 110 * be self-consistent.
 111 *
 112 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
 113 * hypercall to set the vcpu cr3 is complete (so it may be a little
 114 * out of date, but it will never be set early).  If one vcpu is
 115 * looking at another vcpu's cr3 value, it should use this variable.
 116 */
 117DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
 118DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
 119
 120static phys_addr_t xen_pt_base, xen_pt_size __initdata;
 121
 122/*
 123 * Just beyond the highest usermode address.  STACK_TOP_MAX has a
 124 * redzone above it, so round it up to a PGD boundary.
 125 */
 126#define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
 127
 128unsigned long arbitrary_virt_to_mfn(void *vaddr)
 129{
 130	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
 131
 132	return PFN_DOWN(maddr.maddr);
 133}
 134
 135xmaddr_t arbitrary_virt_to_machine(void *vaddr)
 136{
 137	unsigned long address = (unsigned long)vaddr;
 138	unsigned int level;
 139	pte_t *pte;
 140	unsigned offset;
 141
 142	/*
 143	 * if the PFN is in the linear mapped vaddr range, we can just use
 144	 * the (quick) virt_to_machine() p2m lookup
 145	 */
 146	if (virt_addr_valid(vaddr))
 147		return virt_to_machine(vaddr);
 148
 149	/* otherwise we have to do a (slower) full page-table walk */
 150
 151	pte = lookup_address(address, &level);
 152	BUG_ON(pte == NULL);
 153	offset = address & ~PAGE_MASK;
 154	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
 155}
 156EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
 157
 158void make_lowmem_page_readonly(void *vaddr)
 159{
 160	pte_t *pte, ptev;
 161	unsigned long address = (unsigned long)vaddr;
 162	unsigned int level;
 163
 164	pte = lookup_address(address, &level);
 165	if (pte == NULL)
 166		return;		/* vaddr missing */
 167
 168	ptev = pte_wrprotect(*pte);
 169
 170	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
 171		BUG();
 172}
 173
 174void make_lowmem_page_readwrite(void *vaddr)
 175{
 176	pte_t *pte, ptev;
 177	unsigned long address = (unsigned long)vaddr;
 178	unsigned int level;
 179
 180	pte = lookup_address(address, &level);
 181	if (pte == NULL)
 182		return;		/* vaddr missing */
 183
 184	ptev = pte_mkwrite(*pte);
 185
 186	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
 187		BUG();
 188}
 189
 190
 191static bool xen_page_pinned(void *ptr)
 192{
 193	struct page *page = virt_to_page(ptr);
 194
 195	return PagePinned(page);
 196}
 197
 198void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
 199{
 200	struct multicall_space mcs;
 201	struct mmu_update *u;
 202
 203	trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
 204
 205	mcs = xen_mc_entry(sizeof(*u));
 206	u = mcs.args;
 207
 208	/* ptep might be kmapped when using 32-bit HIGHPTE */
 209	u->ptr = virt_to_machine(ptep).maddr;
 210	u->val = pte_val_ma(pteval);
 211
 212	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
 213
 214	xen_mc_issue(PARAVIRT_LAZY_MMU);
 215}
 216EXPORT_SYMBOL_GPL(xen_set_domain_pte);
 217
 218static void xen_extend_mmu_update(const struct mmu_update *update)
 219{
 220	struct multicall_space mcs;
 221	struct mmu_update *u;
 222
 223	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
 224
 225	if (mcs.mc != NULL) {
 226		mcs.mc->args[1]++;
 227	} else {
 228		mcs = __xen_mc_entry(sizeof(*u));
 229		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
 230	}
 231
 232	u = mcs.args;
 233	*u = *update;
 234}
 235
 236static void xen_extend_mmuext_op(const struct mmuext_op *op)
 237{
 238	struct multicall_space mcs;
 239	struct mmuext_op *u;
 240
 241	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
 242
 243	if (mcs.mc != NULL) {
 244		mcs.mc->args[1]++;
 245	} else {
 246		mcs = __xen_mc_entry(sizeof(*u));
 247		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
 248	}
 249
 250	u = mcs.args;
 251	*u = *op;
 252}
 253
 254static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
 255{
 256	struct mmu_update u;
 257
 258	preempt_disable();
 259
 260	xen_mc_batch();
 261
 262	/* ptr may be ioremapped for 64-bit pagetable setup */
 263	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
 264	u.val = pmd_val_ma(val);
 265	xen_extend_mmu_update(&u);
 266
 267	xen_mc_issue(PARAVIRT_LAZY_MMU);
 268
 269	preempt_enable();
 270}
 271
 272static void xen_set_pmd(pmd_t *ptr, pmd_t val)
 273{
 274	trace_xen_mmu_set_pmd(ptr, val);
 275
 276	/* If page is not pinned, we can just update the entry
 277	   directly */
 278	if (!xen_page_pinned(ptr)) {
 279		*ptr = val;
 280		return;
 281	}
 282
 283	xen_set_pmd_hyper(ptr, val);
 284}
 285
 286/*
 287 * Associate a virtual page frame with a given physical page frame
 288 * and protection flags for that frame.
 289 */
 290void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
 291{
 292	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
 293}
 294
 295static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
 296{
 297	struct mmu_update u;
 298
 299	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
 300		return false;
 301
 302	xen_mc_batch();
 303
 304	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
 305	u.val = pte_val_ma(pteval);
 306	xen_extend_mmu_update(&u);
 307
 308	xen_mc_issue(PARAVIRT_LAZY_MMU);
 309
 310	return true;
 311}
 312
 313static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
 314{
 315	if (!xen_batched_set_pte(ptep, pteval)) {
 316		/*
 317		 * Could call native_set_pte() here and trap and
 318		 * emulate the PTE write but with 32-bit guests this
 319		 * needs two traps (one for each of the two 32-bit
 320		 * words in the PTE) so do one hypercall directly
 321		 * instead.
 322		 */
 323		struct mmu_update u;
 324
 325		u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
 326		u.val = pte_val_ma(pteval);
 327		HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
 328	}
 329}
 330
 331static void xen_set_pte(pte_t *ptep, pte_t pteval)
 332{
 333	trace_xen_mmu_set_pte(ptep, pteval);
 334	__xen_set_pte(ptep, pteval);
 335}
 336
 337static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
 338		    pte_t *ptep, pte_t pteval)
 339{
 340	trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
 341	__xen_set_pte(ptep, pteval);
 342}
 343
 344pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
 345				 unsigned long addr, pte_t *ptep)
 346{
 347	/* Just return the pte as-is.  We preserve the bits on commit */
 348	trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
 349	return *ptep;
 350}
 351
 352void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
 353				 pte_t *ptep, pte_t pte)
 354{
 355	struct mmu_update u;
 356
 357	trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
 358	xen_mc_batch();
 359
 360	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
 361	u.val = pte_val_ma(pte);
 362	xen_extend_mmu_update(&u);
 363
 364	xen_mc_issue(PARAVIRT_LAZY_MMU);
 365}
 366
 367/* Assume pteval_t is equivalent to all the other *val_t types. */
 368static pteval_t pte_mfn_to_pfn(pteval_t val)
 369{
 370	if (val & _PAGE_PRESENT) {
 371		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 372		unsigned long pfn = mfn_to_pfn(mfn);
 373
 374		pteval_t flags = val & PTE_FLAGS_MASK;
 375		if (unlikely(pfn == ~0))
 376			val = flags & ~_PAGE_PRESENT;
 377		else
 378			val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
 379	}
 380
 381	return val;
 382}
 383
 384static pteval_t pte_pfn_to_mfn(pteval_t val)
 385{
 386	if (val & _PAGE_PRESENT) {
 387		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 388		pteval_t flags = val & PTE_FLAGS_MASK;
 389		unsigned long mfn;
 390
 391		if (!xen_feature(XENFEAT_auto_translated_physmap))
 392			mfn = __pfn_to_mfn(pfn);
 393		else
 394			mfn = pfn;
 395		/*
 396		 * If there's no mfn for the pfn, then just create an
 397		 * empty non-present pte.  Unfortunately this loses
 398		 * information about the original pfn, so
 399		 * pte_mfn_to_pfn is asymmetric.
 400		 */
 401		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
 402			mfn = 0;
 403			flags = 0;
 404		} else
 405			mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
 406		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
 407	}
 408
 409	return val;
 410}
 411
 412__visible pteval_t xen_pte_val(pte_t pte)
 413{
 414	pteval_t pteval = pte.pte;
 415
 416	return pte_mfn_to_pfn(pteval);
 417}
 418PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
 419
 420__visible pgdval_t xen_pgd_val(pgd_t pgd)
 421{
 422	return pte_mfn_to_pfn(pgd.pgd);
 423}
 424PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
 425
 426__visible pte_t xen_make_pte(pteval_t pte)
 427{
 428	pte = pte_pfn_to_mfn(pte);
 429
 430	return native_make_pte(pte);
 431}
 432PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
 433
 434__visible pgd_t xen_make_pgd(pgdval_t pgd)
 435{
 436	pgd = pte_pfn_to_mfn(pgd);
 437	return native_make_pgd(pgd);
 438}
 439PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
 440
 441__visible pmdval_t xen_pmd_val(pmd_t pmd)
 442{
 443	return pte_mfn_to_pfn(pmd.pmd);
 444}
 445PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
 446
 447static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
 448{
 449	struct mmu_update u;
 450
 451	preempt_disable();
 452
 453	xen_mc_batch();
 454
 455	/* ptr may be ioremapped for 64-bit pagetable setup */
 456	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
 457	u.val = pud_val_ma(val);
 458	xen_extend_mmu_update(&u);
 459
 460	xen_mc_issue(PARAVIRT_LAZY_MMU);
 461
 462	preempt_enable();
 463}
 464
 465static void xen_set_pud(pud_t *ptr, pud_t val)
 466{
 467	trace_xen_mmu_set_pud(ptr, val);
 468
 469	/* If page is not pinned, we can just update the entry
 470	   directly */
 471	if (!xen_page_pinned(ptr)) {
 472		*ptr = val;
 473		return;
 474	}
 475
 476	xen_set_pud_hyper(ptr, val);
 477}
 478
 479#ifdef CONFIG_X86_PAE
 480static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
 481{
 482	trace_xen_mmu_set_pte_atomic(ptep, pte);
 483	set_64bit((u64 *)ptep, native_pte_val(pte));
 484}
 485
 486static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 487{
 488	trace_xen_mmu_pte_clear(mm, addr, ptep);
 489	if (!xen_batched_set_pte(ptep, native_make_pte(0)))
 490		native_pte_clear(mm, addr, ptep);
 491}
 492
 493static void xen_pmd_clear(pmd_t *pmdp)
 494{
 495	trace_xen_mmu_pmd_clear(pmdp);
 496	set_pmd(pmdp, __pmd(0));
 497}
 498#endif	/* CONFIG_X86_PAE */
 499
 500__visible pmd_t xen_make_pmd(pmdval_t pmd)
 501{
 502	pmd = pte_pfn_to_mfn(pmd);
 503	return native_make_pmd(pmd);
 504}
 505PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
 506
 507#if CONFIG_PGTABLE_LEVELS == 4
 508__visible pudval_t xen_pud_val(pud_t pud)
 509{
 510	return pte_mfn_to_pfn(pud.pud);
 511}
 512PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
 513
 514__visible pud_t xen_make_pud(pudval_t pud)
 515{
 516	pud = pte_pfn_to_mfn(pud);
 517
 518	return native_make_pud(pud);
 519}
 520PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
 521
 522static pgd_t *xen_get_user_pgd(pgd_t *pgd)
 523{
 524	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
 525	unsigned offset = pgd - pgd_page;
 526	pgd_t *user_ptr = NULL;
 527
 528	if (offset < pgd_index(USER_LIMIT)) {
 529		struct page *page = virt_to_page(pgd_page);
 530		user_ptr = (pgd_t *)page->private;
 531		if (user_ptr)
 532			user_ptr += offset;
 533	}
 534
 535	return user_ptr;
 536}
 537
 538static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
 539{
 540	struct mmu_update u;
 541
 542	u.ptr = virt_to_machine(ptr).maddr;
 543	u.val = pgd_val_ma(val);
 544	xen_extend_mmu_update(&u);
 545}
 546
 547/*
 548 * Raw hypercall-based set_pgd, intended for in early boot before
 549 * there's a page structure.  This implies:
 550 *  1. The only existing pagetable is the kernel's
 551 *  2. It is always pinned
 552 *  3. It has no user pagetable attached to it
 553 */
 554static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
 555{
 556	preempt_disable();
 557
 558	xen_mc_batch();
 559
 560	__xen_set_pgd_hyper(ptr, val);
 561
 562	xen_mc_issue(PARAVIRT_LAZY_MMU);
 563
 564	preempt_enable();
 565}
 566
 567static void xen_set_pgd(pgd_t *ptr, pgd_t val)
 568{
 569	pgd_t *user_ptr = xen_get_user_pgd(ptr);
 570
 571	trace_xen_mmu_set_pgd(ptr, user_ptr, val);
 572
 573	/* If page is not pinned, we can just update the entry
 574	   directly */
 575	if (!xen_page_pinned(ptr)) {
 576		*ptr = val;
 577		if (user_ptr) {
 578			WARN_ON(xen_page_pinned(user_ptr));
 579			*user_ptr = val;
 580		}
 581		return;
 582	}
 583
 584	/* If it's pinned, then we can at least batch the kernel and
 585	   user updates together. */
 586	xen_mc_batch();
 587
 588	__xen_set_pgd_hyper(ptr, val);
 589	if (user_ptr)
 590		__xen_set_pgd_hyper(user_ptr, val);
 591
 592	xen_mc_issue(PARAVIRT_LAZY_MMU);
 593}
 594#endif	/* CONFIG_PGTABLE_LEVELS == 4 */
 595
 596/*
 597 * (Yet another) pagetable walker.  This one is intended for pinning a
 598 * pagetable.  This means that it walks a pagetable and calls the
 599 * callback function on each page it finds making up the page table,
 600 * at every level.  It walks the entire pagetable, but it only bothers
 601 * pinning pte pages which are below limit.  In the normal case this
 602 * will be STACK_TOP_MAX, but at boot we need to pin up to
 603 * FIXADDR_TOP.
 604 *
 605 * For 32-bit the important bit is that we don't pin beyond there,
 606 * because then we start getting into Xen's ptes.
 607 *
 608 * For 64-bit, we must skip the Xen hole in the middle of the address
 609 * space, just after the big x86-64 virtual hole.
 610 */
 611static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
 612			  int (*func)(struct mm_struct *mm, struct page *,
 613				      enum pt_level),
 614			  unsigned long limit)
 615{
 616	int flush = 0;
 617	unsigned hole_low, hole_high;
 618	unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
 619	unsigned pgdidx, pudidx, pmdidx;
 620
 621	/* The limit is the last byte to be touched */
 622	limit--;
 623	BUG_ON(limit >= FIXADDR_TOP);
 624
 625	if (xen_feature(XENFEAT_auto_translated_physmap))
 626		return 0;
 627
 628	/*
 629	 * 64-bit has a great big hole in the middle of the address
 630	 * space, which contains the Xen mappings.  On 32-bit these
 631	 * will end up making a zero-sized hole and so is a no-op.
 632	 */
 633	hole_low = pgd_index(USER_LIMIT);
 634	hole_high = pgd_index(PAGE_OFFSET);
 635
 636	pgdidx_limit = pgd_index(limit);
 637#if PTRS_PER_PUD > 1
 638	pudidx_limit = pud_index(limit);
 639#else
 640	pudidx_limit = 0;
 641#endif
 642#if PTRS_PER_PMD > 1
 643	pmdidx_limit = pmd_index(limit);
 644#else
 645	pmdidx_limit = 0;
 646#endif
 647
 648	for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
 649		pud_t *pud;
 650
 651		if (pgdidx >= hole_low && pgdidx < hole_high)
 652			continue;
 653
 654		if (!pgd_val(pgd[pgdidx]))
 655			continue;
 656
 657		pud = pud_offset(&pgd[pgdidx], 0);
 658
 659		if (PTRS_PER_PUD > 1) /* not folded */
 660			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
 661
 662		for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
 663			pmd_t *pmd;
 664
 665			if (pgdidx == pgdidx_limit &&
 666			    pudidx > pudidx_limit)
 667				goto out;
 668
 669			if (pud_none(pud[pudidx]))
 670				continue;
 671
 672			pmd = pmd_offset(&pud[pudidx], 0);
 673
 674			if (PTRS_PER_PMD > 1) /* not folded */
 675				flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
 676
 677			for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
 678				struct page *pte;
 679
 680				if (pgdidx == pgdidx_limit &&
 681				    pudidx == pudidx_limit &&
 682				    pmdidx > pmdidx_limit)
 683					goto out;
 684
 685				if (pmd_none(pmd[pmdidx]))
 686					continue;
 687
 688				pte = pmd_page(pmd[pmdidx]);
 689				flush |= (*func)(mm, pte, PT_PTE);
 690			}
 691		}
 692	}
 693
 694out:
 695	/* Do the top level last, so that the callbacks can use it as
 696	   a cue to do final things like tlb flushes. */
 697	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
 698
 699	return flush;
 700}
 701
 702static int xen_pgd_walk(struct mm_struct *mm,
 703			int (*func)(struct mm_struct *mm, struct page *,
 704				    enum pt_level),
 705			unsigned long limit)
 706{
 707	return __xen_pgd_walk(mm, mm->pgd, func, limit);
 708}
 709
 710/* If we're using split pte locks, then take the page's lock and
 711   return a pointer to it.  Otherwise return NULL. */
 712static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
 713{
 714	spinlock_t *ptl = NULL;
 715
 716#if USE_SPLIT_PTE_PTLOCKS
 717	ptl = ptlock_ptr(page);
 718	spin_lock_nest_lock(ptl, &mm->page_table_lock);
 719#endif
 720
 721	return ptl;
 722}
 723
 724static void xen_pte_unlock(void *v)
 725{
 726	spinlock_t *ptl = v;
 727	spin_unlock(ptl);
 728}
 729
 730static void xen_do_pin(unsigned level, unsigned long pfn)
 731{
 732	struct mmuext_op op;
 733
 734	op.cmd = level;
 735	op.arg1.mfn = pfn_to_mfn(pfn);
 736
 737	xen_extend_mmuext_op(&op);
 738}
 739
 740static int xen_pin_page(struct mm_struct *mm, struct page *page,
 741			enum pt_level level)
 742{
 743	unsigned pgfl = TestSetPagePinned(page);
 744	int flush;
 745
 746	if (pgfl)
 747		flush = 0;		/* already pinned */
 748	else if (PageHighMem(page))
 749		/* kmaps need flushing if we found an unpinned
 750		   highpage */
 751		flush = 1;
 752	else {
 753		void *pt = lowmem_page_address(page);
 754		unsigned long pfn = page_to_pfn(page);
 755		struct multicall_space mcs = __xen_mc_entry(0);
 756		spinlock_t *ptl;
 757
 758		flush = 0;
 759
 760		/*
 761		 * We need to hold the pagetable lock between the time
 762		 * we make the pagetable RO and when we actually pin
 763		 * it.  If we don't, then other users may come in and
 764		 * attempt to update the pagetable by writing it,
 765		 * which will fail because the memory is RO but not
 766		 * pinned, so Xen won't do the trap'n'emulate.
 767		 *
 768		 * If we're using split pte locks, we can't hold the
 769		 * entire pagetable's worth of locks during the
 770		 * traverse, because we may wrap the preempt count (8
 771		 * bits).  The solution is to mark RO and pin each PTE
 772		 * page while holding the lock.  This means the number
 773		 * of locks we end up holding is never more than a
 774		 * batch size (~32 entries, at present).
 775		 *
 776		 * If we're not using split pte locks, we needn't pin
 777		 * the PTE pages independently, because we're
 778		 * protected by the overall pagetable lock.
 779		 */
 780		ptl = NULL;
 781		if (level == PT_PTE)
 782			ptl = xen_pte_lock(page, mm);
 783
 784		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
 785					pfn_pte(pfn, PAGE_KERNEL_RO),
 786					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
 787
 788		if (ptl) {
 789			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
 790
 791			/* Queue a deferred unlock for when this batch
 792			   is completed. */
 793			xen_mc_callback(xen_pte_unlock, ptl);
 794		}
 795	}
 796
 797	return flush;
 798}
 799
 800/* This is called just after a mm has been created, but it has not
 801   been used yet.  We need to make sure that its pagetable is all
 802   read-only, and can be pinned. */
 803static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
 804{
 805	trace_xen_mmu_pgd_pin(mm, pgd);
 806
 807	xen_mc_batch();
 808
 809	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
 810		/* re-enable interrupts for flushing */
 811		xen_mc_issue(0);
 812
 813		kmap_flush_unused();
 814
 815		xen_mc_batch();
 816	}
 817
 818#ifdef CONFIG_X86_64
 819	{
 820		pgd_t *user_pgd = xen_get_user_pgd(pgd);
 821
 822		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
 823
 824		if (user_pgd) {
 825			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
 826			xen_do_pin(MMUEXT_PIN_L4_TABLE,
 827				   PFN_DOWN(__pa(user_pgd)));
 828		}
 829	}
 830#else /* CONFIG_X86_32 */
 831#ifdef CONFIG_X86_PAE
 832	/* Need to make sure unshared kernel PMD is pinnable */
 833	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
 834		     PT_PMD);
 835#endif
 836	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
 837#endif /* CONFIG_X86_64 */
 838	xen_mc_issue(0);
 839}
 840
 841static void xen_pgd_pin(struct mm_struct *mm)
 842{
 843	__xen_pgd_pin(mm, mm->pgd);
 844}
 845
 846/*
 847 * On save, we need to pin all pagetables to make sure they get their
 848 * mfns turned into pfns.  Search the list for any unpinned pgds and pin
 849 * them (unpinned pgds are not currently in use, probably because the
 850 * process is under construction or destruction).
 851 *
 852 * Expected to be called in stop_machine() ("equivalent to taking
 853 * every spinlock in the system"), so the locking doesn't really
 854 * matter all that much.
 855 */
 856void xen_mm_pin_all(void)
 857{
 858	struct page *page;
 859
 860	spin_lock(&pgd_lock);
 861
 862	list_for_each_entry(page, &pgd_list, lru) {
 863		if (!PagePinned(page)) {
 864			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
 865			SetPageSavePinned(page);
 866		}
 867	}
 868
 869	spin_unlock(&pgd_lock);
 870}
 871
 872/*
 873 * The init_mm pagetable is really pinned as soon as its created, but
 874 * that's before we have page structures to store the bits.  So do all
 875 * the book-keeping now.
 876 */
 877static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
 878				  enum pt_level level)
 879{
 880	SetPagePinned(page);
 881	return 0;
 882}
 883
 884static void __init xen_mark_init_mm_pinned(void)
 885{
 886	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
 887}
 888
 889static int xen_unpin_page(struct mm_struct *mm, struct page *page,
 890			  enum pt_level level)
 891{
 892	unsigned pgfl = TestClearPagePinned(page);
 893
 894	if (pgfl && !PageHighMem(page)) {
 895		void *pt = lowmem_page_address(page);
 896		unsigned long pfn = page_to_pfn(page);
 897		spinlock_t *ptl = NULL;
 898		struct multicall_space mcs;
 899
 900		/*
 901		 * Do the converse to pin_page.  If we're using split
 902		 * pte locks, we must be holding the lock for while
 903		 * the pte page is unpinned but still RO to prevent
 904		 * concurrent updates from seeing it in this
 905		 * partially-pinned state.
 906		 */
 907		if (level == PT_PTE) {
 908			ptl = xen_pte_lock(page, mm);
 909
 910			if (ptl)
 911				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
 912		}
 913
 914		mcs = __xen_mc_entry(0);
 915
 916		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
 917					pfn_pte(pfn, PAGE_KERNEL),
 918					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
 919
 920		if (ptl) {
 921			/* unlock when batch completed */
 922			xen_mc_callback(xen_pte_unlock, ptl);
 923		}
 924	}
 925
 926	return 0;		/* never need to flush on unpin */
 927}
 928
 929/* Release a pagetables pages back as normal RW */
 930static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
 931{
 932	trace_xen_mmu_pgd_unpin(mm, pgd);
 933
 934	xen_mc_batch();
 935
 936	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
 937
 938#ifdef CONFIG_X86_64
 939	{
 940		pgd_t *user_pgd = xen_get_user_pgd(pgd);
 941
 942		if (user_pgd) {
 943			xen_do_pin(MMUEXT_UNPIN_TABLE,
 944				   PFN_DOWN(__pa(user_pgd)));
 945			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
 946		}
 947	}
 948#endif
 949
 950#ifdef CONFIG_X86_PAE
 951	/* Need to make sure unshared kernel PMD is unpinned */
 952	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
 953		       PT_PMD);
 954#endif
 955
 956	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
 957
 958	xen_mc_issue(0);
 959}
 960
 961static void xen_pgd_unpin(struct mm_struct *mm)
 962{
 963	__xen_pgd_unpin(mm, mm->pgd);
 964}
 965
 966/*
 967 * On resume, undo any pinning done at save, so that the rest of the
 968 * kernel doesn't see any unexpected pinned pagetables.
 969 */
 970void xen_mm_unpin_all(void)
 971{
 972	struct page *page;
 973
 974	spin_lock(&pgd_lock);
 975
 976	list_for_each_entry(page, &pgd_list, lru) {
 977		if (PageSavePinned(page)) {
 978			BUG_ON(!PagePinned(page));
 979			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
 980			ClearPageSavePinned(page);
 981		}
 982	}
 983
 984	spin_unlock(&pgd_lock);
 985}
 986
 987static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
 988{
 989	spin_lock(&next->page_table_lock);
 990	xen_pgd_pin(next);
 991	spin_unlock(&next->page_table_lock);
 992}
 993
 994static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
 995{
 996	spin_lock(&mm->page_table_lock);
 997	xen_pgd_pin(mm);
 998	spin_unlock(&mm->page_table_lock);
 999}
1000
1001
1002#ifdef CONFIG_SMP
1003/* Another cpu may still have their %cr3 pointing at the pagetable, so
1004   we need to repoint it somewhere else before we can unpin it. */
1005static void drop_other_mm_ref(void *info)
1006{
1007	struct mm_struct *mm = info;
1008	struct mm_struct *active_mm;
1009
1010	active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1011
1012	if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1013		leave_mm(smp_processor_id());
1014
1015	/* If this cpu still has a stale cr3 reference, then make sure
1016	   it has been flushed. */
1017	if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1018		load_cr3(swapper_pg_dir);
1019}
1020
1021static void xen_drop_mm_ref(struct mm_struct *mm)
1022{
1023	cpumask_var_t mask;
1024	unsigned cpu;
1025
1026	if (current->active_mm == mm) {
1027		if (current->mm == mm)
1028			load_cr3(swapper_pg_dir);
1029		else
1030			leave_mm(smp_processor_id());
1031	}
1032
1033	/* Get the "official" set of cpus referring to our pagetable. */
1034	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1035		for_each_online_cpu(cpu) {
1036			if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1037			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1038				continue;
1039			smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1040		}
1041		return;
1042	}
1043	cpumask_copy(mask, mm_cpumask(mm));
1044
1045	/* It's possible that a vcpu may have a stale reference to our
1046	   cr3, because its in lazy mode, and it hasn't yet flushed
1047	   its set of pending hypercalls yet.  In this case, we can
1048	   look at its actual current cr3 value, and force it to flush
1049	   if needed. */
1050	for_each_online_cpu(cpu) {
1051		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1052			cpumask_set_cpu(cpu, mask);
1053	}
1054
1055	if (!cpumask_empty(mask))
1056		smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1057	free_cpumask_var(mask);
1058}
1059#else
1060static void xen_drop_mm_ref(struct mm_struct *mm)
1061{
1062	if (current->active_mm == mm)
1063		load_cr3(swapper_pg_dir);
1064}
1065#endif
1066
1067/*
1068 * While a process runs, Xen pins its pagetables, which means that the
1069 * hypervisor forces it to be read-only, and it controls all updates
1070 * to it.  This means that all pagetable updates have to go via the
1071 * hypervisor, which is moderately expensive.
1072 *
1073 * Since we're pulling the pagetable down, we switch to use init_mm,
1074 * unpin old process pagetable and mark it all read-write, which
1075 * allows further operations on it to be simple memory accesses.
1076 *
1077 * The only subtle point is that another CPU may be still using the
1078 * pagetable because of lazy tlb flushing.  This means we need need to
1079 * switch all CPUs off this pagetable before we can unpin it.
1080 */
1081static void xen_exit_mmap(struct mm_struct *mm)
1082{
1083	get_cpu();		/* make sure we don't move around */
1084	xen_drop_mm_ref(mm);
1085	put_cpu();
1086
1087	spin_lock(&mm->page_table_lock);
1088
1089	/* pgd may not be pinned in the error exit path of execve */
1090	if (xen_page_pinned(mm->pgd))
1091		xen_pgd_unpin(mm);
1092
1093	spin_unlock(&mm->page_table_lock);
1094}
1095
1096static void xen_post_allocator_init(void);
1097
1098static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1099{
1100	struct mmuext_op op;
1101
1102	op.cmd = cmd;
1103	op.arg1.mfn = pfn_to_mfn(pfn);
1104	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1105		BUG();
1106}
1107
1108#ifdef CONFIG_X86_64
1109static void __init xen_cleanhighmap(unsigned long vaddr,
1110				    unsigned long vaddr_end)
1111{
1112	unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1113	pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1114
1115	/* NOTE: The loop is more greedy than the cleanup_highmap variant.
1116	 * We include the PMD passed in on _both_ boundaries. */
1117	for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1118			pmd++, vaddr += PMD_SIZE) {
1119		if (pmd_none(*pmd))
1120			continue;
1121		if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1122			set_pmd(pmd, __pmd(0));
1123	}
1124	/* In case we did something silly, we should crash in this function
1125	 * instead of somewhere later and be confusing. */
1126	xen_mc_flush();
1127}
1128
1129/*
1130 * Make a page range writeable and free it.
1131 */
1132static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1133{
1134	void *vaddr = __va(paddr);
1135	void *vaddr_end = vaddr + size;
1136
1137	for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1138		make_lowmem_page_readwrite(vaddr);
1139
1140	memblock_free(paddr, size);
1141}
1142
1143static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1144{
1145	unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1146
1147	if (unpin)
1148		pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1149	ClearPagePinned(virt_to_page(__va(pa)));
1150	xen_free_ro_pages(pa, PAGE_SIZE);
1151}
1152
1153/*
1154 * Since it is well isolated we can (and since it is perhaps large we should)
1155 * also free the page tables mapping the initial P->M table.
1156 */
1157static void __init xen_cleanmfnmap(unsigned long vaddr)
1158{
1159	unsigned long va = vaddr & PMD_MASK;
1160	unsigned long pa;
1161	pgd_t *pgd = pgd_offset_k(va);
1162	pud_t *pud_page = pud_offset(pgd, 0);
1163	pud_t *pud;
1164	pmd_t *pmd;
1165	pte_t *pte;
1166	unsigned int i;
1167	bool unpin;
1168
1169	unpin = (vaddr == 2 * PGDIR_SIZE);
1170	set_pgd(pgd, __pgd(0));
1171	do {
1172		pud = pud_page + pud_index(va);
1173		if (pud_none(*pud)) {
1174			va += PUD_SIZE;
1175		} else if (pud_large(*pud)) {
1176			pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1177			xen_free_ro_pages(pa, PUD_SIZE);
1178			va += PUD_SIZE;
1179		} else {
1180			pmd = pmd_offset(pud, va);
1181			if (pmd_large(*pmd)) {
1182				pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1183				xen_free_ro_pages(pa, PMD_SIZE);
1184			} else if (!pmd_none(*pmd)) {
1185				pte = pte_offset_kernel(pmd, va);
1186				set_pmd(pmd, __pmd(0));
1187				for (i = 0; i < PTRS_PER_PTE; ++i) {
1188					if (pte_none(pte[i]))
1189						break;
1190					pa = pte_pfn(pte[i]) << PAGE_SHIFT;
1191					xen_free_ro_pages(pa, PAGE_SIZE);
1192				}
1193				xen_cleanmfnmap_free_pgtbl(pte, unpin);
1194			}
1195			va += PMD_SIZE;
1196			if (pmd_index(va))
1197				continue;
1198			set_pud(pud, __pud(0));
1199			xen_cleanmfnmap_free_pgtbl(pmd, unpin);
1200		}
1201
1202	} while (pud_index(va) || pmd_index(va));
1203	xen_cleanmfnmap_free_pgtbl(pud_page, unpin);
1204}
1205
1206static void __init xen_pagetable_p2m_free(void)
1207{
1208	unsigned long size;
1209	unsigned long addr;
1210
1211	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1212
1213	/* No memory or already called. */
1214	if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1215		return;
1216
1217	/* using __ka address and sticking INVALID_P2M_ENTRY! */
1218	memset((void *)xen_start_info->mfn_list, 0xff, size);
1219
1220	addr = xen_start_info->mfn_list;
1221	/*
1222	 * We could be in __ka space.
1223	 * We roundup to the PMD, which means that if anybody at this stage is
1224	 * using the __ka address of xen_start_info or
1225	 * xen_start_info->shared_info they are in going to crash. Fortunatly
1226	 * we have already revectored in xen_setup_kernel_pagetable and in
1227	 * xen_setup_shared_info.
1228	 */
1229	size = roundup(size, PMD_SIZE);
1230
1231	if (addr >= __START_KERNEL_map) {
1232		xen_cleanhighmap(addr, addr + size);
1233		size = PAGE_ALIGN(xen_start_info->nr_pages *
1234				  sizeof(unsigned long));
1235		memblock_free(__pa(addr), size);
1236	} else {
1237		xen_cleanmfnmap(addr);
1238	}
1239}
1240
1241static void __init xen_pagetable_cleanhighmap(void)
1242{
1243	unsigned long size;
1244	unsigned long addr;
1245
1246	/* At this stage, cleanup_highmap has already cleaned __ka space
1247	 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1248	 * the ramdisk). We continue on, erasing PMD entries that point to page
1249	 * tables - do note that they are accessible at this stage via __va.
1250	 * For good measure we also round up to the PMD - which means that if
1251	 * anybody is using __ka address to the initial boot-stack - and try
1252	 * to use it - they are going to crash. The xen_start_info has been
1253	 * taken care of already in xen_setup_kernel_pagetable. */
1254	addr = xen_start_info->pt_base;
1255	size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1256
1257	xen_cleanhighmap(addr, addr + size);
1258	xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1259#ifdef DEBUG
1260	/* This is superfluous and is not necessary, but you know what
1261	 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1262	 * anything at this stage. */
1263	xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1264#endif
1265}
1266#endif
1267
1268static void __init xen_pagetable_p2m_setup(void)
1269{
1270	if (xen_feature(XENFEAT_auto_translated_physmap))
1271		return;
1272
1273	xen_vmalloc_p2m_tree();
1274
1275#ifdef CONFIG_X86_64
1276	xen_pagetable_p2m_free();
1277
1278	xen_pagetable_cleanhighmap();
1279#endif
1280	/* And revector! Bye bye old array */
1281	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1282}
1283
1284static void __init xen_pagetable_init(void)
1285{
1286	paging_init();
1287	xen_post_allocator_init();
1288
1289	xen_pagetable_p2m_setup();
1290
1291	/* Allocate and initialize top and mid mfn levels for p2m structure */
1292	xen_build_mfn_list_list();
1293
1294	/* Remap memory freed due to conflicts with E820 map */
1295	if (!xen_feature(XENFEAT_auto_translated_physmap))
1296		xen_remap_memory();
1297
1298	xen_setup_shared_info();
1299}
1300static void xen_write_cr2(unsigned long cr2)
1301{
1302	this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1303}
1304
1305static unsigned long xen_read_cr2(void)
1306{
1307	return this_cpu_read(xen_vcpu)->arch.cr2;
1308}
1309
1310unsigned long xen_read_cr2_direct(void)
1311{
1312	return this_cpu_read(xen_vcpu_info.arch.cr2);
1313}
1314
1315void xen_flush_tlb_all(void)
1316{
1317	struct mmuext_op *op;
1318	struct multicall_space mcs;
1319
1320	trace_xen_mmu_flush_tlb_all(0);
1321
1322	preempt_disable();
1323
1324	mcs = xen_mc_entry(sizeof(*op));
1325
1326	op = mcs.args;
1327	op->cmd = MMUEXT_TLB_FLUSH_ALL;
1328	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1329
1330	xen_mc_issue(PARAVIRT_LAZY_MMU);
1331
1332	preempt_enable();
1333}
1334static void xen_flush_tlb(void)
1335{
1336	struct mmuext_op *op;
1337	struct multicall_space mcs;
1338
1339	trace_xen_mmu_flush_tlb(0);
1340
1341	preempt_disable();
1342
1343	mcs = xen_mc_entry(sizeof(*op));
1344
1345	op = mcs.args;
1346	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1347	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1348
1349	xen_mc_issue(PARAVIRT_LAZY_MMU);
1350
1351	preempt_enable();
1352}
1353
1354static void xen_flush_tlb_single(unsigned long addr)
1355{
1356	struct mmuext_op *op;
1357	struct multicall_space mcs;
1358
1359	trace_xen_mmu_flush_tlb_single(addr);
1360
1361	preempt_disable();
1362
1363	mcs = xen_mc_entry(sizeof(*op));
1364	op = mcs.args;
1365	op->cmd = MMUEXT_INVLPG_LOCAL;
1366	op->arg1.linear_addr = addr & PAGE_MASK;
1367	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1368
1369	xen_mc_issue(PARAVIRT_LAZY_MMU);
1370
1371	preempt_enable();
1372}
1373
1374static void xen_flush_tlb_others(const struct cpumask *cpus,
1375				 struct mm_struct *mm, unsigned long start,
1376				 unsigned long end)
1377{
1378	struct {
1379		struct mmuext_op op;
1380#ifdef CONFIG_SMP
1381		DECLARE_BITMAP(mask, num_processors);
1382#else
1383		DECLARE_BITMAP(mask, NR_CPUS);
1384#endif
1385	} *args;
1386	struct multicall_space mcs;
1387
1388	trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1389
1390	if (cpumask_empty(cpus))
1391		return;		/* nothing to do */
1392
1393	mcs = xen_mc_entry(sizeof(*args));
1394	args = mcs.args;
1395	args->op.arg2.vcpumask = to_cpumask(args->mask);
1396
1397	/* Remove us, and any offline CPUS. */
1398	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1399	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1400
1401	args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1402	if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1403		args->op.cmd = MMUEXT_INVLPG_MULTI;
1404		args->op.arg1.linear_addr = start;
1405	}
1406
1407	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1408
1409	xen_mc_issue(PARAVIRT_LAZY_MMU);
1410}
1411
1412static unsigned long xen_read_cr3(void)
1413{
1414	return this_cpu_read(xen_cr3);
1415}
1416
1417static void set_current_cr3(void *v)
1418{
1419	this_cpu_write(xen_current_cr3, (unsigned long)v);
1420}
1421
1422static void __xen_write_cr3(bool kernel, unsigned long cr3)
1423{
1424	struct mmuext_op op;
1425	unsigned long mfn;
1426
1427	trace_xen_mmu_write_cr3(kernel, cr3);
1428
1429	if (cr3)
1430		mfn = pfn_to_mfn(PFN_DOWN(cr3));
1431	else
1432		mfn = 0;
1433
1434	WARN_ON(mfn == 0 && kernel);
1435
1436	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1437	op.arg1.mfn = mfn;
1438
1439	xen_extend_mmuext_op(&op);
1440
1441	if (kernel) {
1442		this_cpu_write(xen_cr3, cr3);
1443
1444		/* Update xen_current_cr3 once the batch has actually
1445		   been submitted. */
1446		xen_mc_callback(set_current_cr3, (void *)cr3);
1447	}
1448}
1449static void xen_write_cr3(unsigned long cr3)
1450{
1451	BUG_ON(preemptible());
1452
1453	xen_mc_batch();  /* disables interrupts */
1454
1455	/* Update while interrupts are disabled, so its atomic with
1456	   respect to ipis */
1457	this_cpu_write(xen_cr3, cr3);
1458
1459	__xen_write_cr3(true, cr3);
1460
1461#ifdef CONFIG_X86_64
1462	{
1463		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1464		if (user_pgd)
1465			__xen_write_cr3(false, __pa(user_pgd));
1466		else
1467			__xen_write_cr3(false, 0);
1468	}
1469#endif
1470
1471	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1472}
1473
1474#ifdef CONFIG_X86_64
1475/*
1476 * At the start of the day - when Xen launches a guest, it has already
1477 * built pagetables for the guest. We diligently look over them
1478 * in xen_setup_kernel_pagetable and graft as appropriate them in the
1479 * init_level4_pgt and its friends. Then when we are happy we load
1480 * the new init_level4_pgt - and continue on.
1481 *
1482 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1483 * up the rest of the pagetables. When it has completed it loads the cr3.
1484 * N.B. that baremetal would start at 'start_kernel' (and the early
1485 * #PF handler would create bootstrap pagetables) - so we are running
1486 * with the same assumptions as what to do when write_cr3 is executed
1487 * at this point.
1488 *
1489 * Since there are no user-page tables at all, we have two variants
1490 * of xen_write_cr3 - the early bootup (this one), and the late one
1491 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1492 * the Linux kernel and user-space are both in ring 3 while the
1493 * hypervisor is in ring 0.
1494 */
1495static void __init xen_write_cr3_init(unsigned long cr3)
1496{
1497	BUG_ON(preemptible());
1498
1499	xen_mc_batch();  /* disables interrupts */
1500
1501	/* Update while interrupts are disabled, so its atomic with
1502	   respect to ipis */
1503	this_cpu_write(xen_cr3, cr3);
1504
1505	__xen_write_cr3(true, cr3);
1506
1507	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1508}
1509#endif
1510
1511static int xen_pgd_alloc(struct mm_struct *mm)
1512{
1513	pgd_t *pgd = mm->pgd;
1514	int ret = 0;
1515
1516	BUG_ON(PagePinned(virt_to_page(pgd)));
1517
1518#ifdef CONFIG_X86_64
1519	{
1520		struct page *page = virt_to_page(pgd);
1521		pgd_t *user_pgd;
1522
1523		BUG_ON(page->private != 0);
1524
1525		ret = -ENOMEM;
1526
1527		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1528		page->private = (unsigned long)user_pgd;
1529
1530		if (user_pgd != NULL) {
1531#ifdef CONFIG_X86_VSYSCALL_EMULATION
1532			user_pgd[pgd_index(VSYSCALL_ADDR)] =
1533				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1534#endif
1535			ret = 0;
1536		}
1537
1538		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1539	}
1540#endif
1541
1542	return ret;
1543}
1544
1545static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1546{
1547#ifdef CONFIG_X86_64
1548	pgd_t *user_pgd = xen_get_user_pgd(pgd);
1549
1550	if (user_pgd)
1551		free_page((unsigned long)user_pgd);
1552#endif
1553}
1554
1555/*
1556 * Init-time set_pte while constructing initial pagetables, which
1557 * doesn't allow RO page table pages to be remapped RW.
1558 *
1559 * If there is no MFN for this PFN then this page is initially
1560 * ballooned out so clear the PTE (as in decrease_reservation() in
1561 * drivers/xen/balloon.c).
1562 *
1563 * Many of these PTE updates are done on unpinned and writable pages
1564 * and doing a hypercall for these is unnecessary and expensive.  At
1565 * this point it is not possible to tell if a page is pinned or not,
1566 * so always write the PTE directly and rely on Xen trapping and
1567 * emulating any updates as necessary.
1568 */
1569__visible pte_t xen_make_pte_init(pteval_t pte)
1570{
1571#ifdef CONFIG_X86_64
1572	unsigned long pfn;
1573
1574	/*
1575	 * Pages belonging to the initial p2m list mapped outside the default
1576	 * address range must be mapped read-only. This region contains the
1577	 * page tables for mapping the p2m list, too, and page tables MUST be
1578	 * mapped read-only.
1579	 */
1580	pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
1581	if (xen_start_info->mfn_list < __START_KERNEL_map &&
1582	    pfn >= xen_start_info->first_p2m_pfn &&
1583	    pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1584		pte &= ~_PAGE_RW;
1585#endif
1586	pte = pte_pfn_to_mfn(pte);
1587	return native_make_pte(pte);
1588}
1589PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
1590
1591static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1592{
1593#ifdef CONFIG_X86_32
1594	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
1595	if (pte_mfn(pte) != INVALID_P2M_ENTRY
1596	    && pte_val_ma(*ptep) & _PAGE_PRESENT)
1597		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1598			       pte_val_ma(pte));
1599#endif
1600	native_set_pte(ptep, pte);
1601}
1602
1603/* Early in boot, while setting up the initial pagetable, assume
1604   everything is pinned. */
1605static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1606{
1607#ifdef CONFIG_FLATMEM
1608	BUG_ON(mem_map);	/* should only be used early */
1609#endif
1610	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1611	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1612}
1613
1614/* Used for pmd and pud */
1615static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1616{
1617#ifdef CONFIG_FLATMEM
1618	BUG_ON(mem_map);	/* should only be used early */
1619#endif
1620	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1621}
1622
1623/* Early release_pte assumes that all pts are pinned, since there's
1624   only init_mm and anything attached to that is pinned. */
1625static void __init xen_release_pte_init(unsigned long pfn)
1626{
1627	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1628	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1629}
1630
1631static void __init xen_release_pmd_init(unsigned long pfn)
1632{
1633	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1634}
1635
1636static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1637{
1638	struct multicall_space mcs;
1639	struct mmuext_op *op;
1640
1641	mcs = __xen_mc_entry(sizeof(*op));
1642	op = mcs.args;
1643	op->cmd = cmd;
1644	op->arg1.mfn = pfn_to_mfn(pfn);
1645
1646	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1647}
1648
1649static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1650{
1651	struct multicall_space mcs;
1652	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1653
1654	mcs = __xen_mc_entry(0);
1655	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1656				pfn_pte(pfn, prot), 0);
1657}
1658
1659/* This needs to make sure the new pte page is pinned iff its being
1660   attached to a pinned pagetable. */
1661static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1662				    unsigned level)
1663{
1664	bool pinned = PagePinned(virt_to_page(mm->pgd));
1665
1666	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1667
1668	if (pinned) {
1669		struct page *page = pfn_to_page(pfn);
1670
1671		SetPagePinned(page);
1672
1673		if (!PageHighMem(page)) {
1674			xen_mc_batch();
1675
1676			__set_pfn_prot(pfn, PAGE_KERNEL_RO);
1677
1678			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1679				__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1680
1681			xen_mc_issue(PARAVIRT_LAZY_MMU);
1682		} else {
1683			/* make sure there are no stray mappings of
1684			   this page */
1685			kmap_flush_unused();
1686		}
1687	}
1688}
1689
1690static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1691{
1692	xen_alloc_ptpage(mm, pfn, PT_PTE);
1693}
1694
1695static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1696{
1697	xen_alloc_ptpage(mm, pfn, PT_PMD);
1698}
1699
1700/* This should never happen until we're OK to use struct page */
1701static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1702{
1703	struct page *page = pfn_to_page(pfn);
1704	bool pinned = PagePinned(page);
1705
1706	trace_xen_mmu_release_ptpage(pfn, level, pinned);
1707
1708	if (pinned) {
1709		if (!PageHighMem(page)) {
1710			xen_mc_batch();
1711
1712			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1713				__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1714
1715			__set_pfn_prot(pfn, PAGE_KERNEL);
1716
1717			xen_mc_issue(PARAVIRT_LAZY_MMU);
1718		}
1719		ClearPagePinned(page);
1720	}
1721}
1722
1723static void xen_release_pte(unsigned long pfn)
1724{
1725	xen_release_ptpage(pfn, PT_PTE);
1726}
1727
1728static void xen_release_pmd(unsigned long pfn)
1729{
1730	xen_release_ptpage(pfn, PT_PMD);
1731}
1732
1733#if CONFIG_PGTABLE_LEVELS == 4
1734static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1735{
1736	xen_alloc_ptpage(mm, pfn, PT_PUD);
1737}
1738
1739static void xen_release_pud(unsigned long pfn)
1740{
1741	xen_release_ptpage(pfn, PT_PUD);
1742}
1743#endif
1744
1745void __init xen_reserve_top(void)
1746{
1747#ifdef CONFIG_X86_32
1748	unsigned long top = HYPERVISOR_VIRT_START;
1749	struct xen_platform_parameters pp;
1750
1751	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1752		top = pp.virt_start;
1753
1754	reserve_top_address(-top);
1755#endif	/* CONFIG_X86_32 */
1756}
1757
1758/*
1759 * Like __va(), but returns address in the kernel mapping (which is
1760 * all we have until the physical memory mapping has been set up.
1761 */
1762static void * __init __ka(phys_addr_t paddr)
1763{
1764#ifdef CONFIG_X86_64
1765	return (void *)(paddr + __START_KERNEL_map);
1766#else
1767	return __va(paddr);
1768#endif
1769}
1770
1771/* Convert a machine address to physical address */
1772static unsigned long __init m2p(phys_addr_t maddr)
1773{
1774	phys_addr_t paddr;
1775
1776	maddr &= PTE_PFN_MASK;
1777	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1778
1779	return paddr;
1780}
1781
1782/* Convert a machine address to kernel virtual */
1783static void * __init m2v(phys_addr_t maddr)
1784{
1785	return __ka(m2p(maddr));
1786}
1787
1788/* Set the page permissions on an identity-mapped pages */
1789static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1790				       unsigned long flags)
1791{
1792	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1793	pte_t pte = pfn_pte(pfn, prot);
1794
1795	/* For PVH no need to set R/O or R/W to pin them or unpin them. */
1796	if (xen_feature(XENFEAT_auto_translated_physmap))
1797		return;
1798
1799	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1800		BUG();
1801}
1802static void __init set_page_prot(void *addr, pgprot_t prot)
1803{
1804	return set_page_prot_flags(addr, prot, UVMF_NONE);
1805}
1806#ifdef CONFIG_X86_32
1807static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1808{
1809	unsigned pmdidx, pteidx;
1810	unsigned ident_pte;
1811	unsigned long pfn;
1812
1813	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1814				      PAGE_SIZE);
1815
1816	ident_pte = 0;
1817	pfn = 0;
1818	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1819		pte_t *pte_page;
1820
1821		/* Reuse or allocate a page of ptes */
1822		if (pmd_present(pmd[pmdidx]))
1823			pte_page = m2v(pmd[pmdidx].pmd);
1824		else {
1825			/* Check for free pte pages */
1826			if (ident_pte == LEVEL1_IDENT_ENTRIES)
1827				break;
1828
1829			pte_page = &level1_ident_pgt[ident_pte];
1830			ident_pte += PTRS_PER_PTE;
1831
1832			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1833		}
1834
1835		/* Install mappings */
1836		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1837			pte_t pte;
1838
1839			if (pfn > max_pfn_mapped)
1840				max_pfn_mapped = pfn;
1841
1842			if (!pte_none(pte_page[pteidx]))
1843				continue;
1844
1845			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1846			pte_page[pteidx] = pte;
1847		}
1848	}
1849
1850	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1851		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1852
1853	set_page_prot(pmd, PAGE_KERNEL_RO);
1854}
1855#endif
1856void __init xen_setup_machphys_mapping(void)
1857{
1858	struct xen_machphys_mapping mapping;
1859
1860	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1861		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1862		machine_to_phys_nr = mapping.max_mfn + 1;
1863	} else {
1864		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1865	}
1866#ifdef CONFIG_X86_32
1867	WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1868		< machine_to_phys_mapping);
1869#endif
1870}
1871
1872#ifdef CONFIG_X86_64
1873static void __init convert_pfn_mfn(void *v)
1874{
1875	pte_t *pte = v;
1876	int i;
1877
1878	/* All levels are converted the same way, so just treat them
1879	   as ptes. */
1880	for (i = 0; i < PTRS_PER_PTE; i++)
1881		pte[i] = xen_make_pte(pte[i].pte);
1882}
1883static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1884				 unsigned long addr)
1885{
1886	if (*pt_base == PFN_DOWN(__pa(addr))) {
1887		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1888		clear_page((void *)addr);
1889		(*pt_base)++;
1890	}
1891	if (*pt_end == PFN_DOWN(__pa(addr))) {
1892		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1893		clear_page((void *)addr);
1894		(*pt_end)--;
1895	}
1896}
1897/*
1898 * Set up the initial kernel pagetable.
1899 *
1900 * We can construct this by grafting the Xen provided pagetable into
1901 * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1902 * level2_ident_pgt, and level2_kernel_pgt.  This means that only the
1903 * kernel has a physical mapping to start with - but that's enough to
1904 * get __va working.  We need to fill in the rest of the physical
1905 * mapping once some sort of allocator has been set up.  NOTE: for
1906 * PVH, the page tables are native.
1907 */
1908void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1909{
1910	pud_t *l3;
1911	pmd_t *l2;
1912	unsigned long addr[3];
1913	unsigned long pt_base, pt_end;
1914	unsigned i;
1915
1916	/* max_pfn_mapped is the last pfn mapped in the initial memory
1917	 * mappings. Considering that on Xen after the kernel mappings we
1918	 * have the mappings of some pages that don't exist in pfn space, we
1919	 * set max_pfn_mapped to the last real pfn mapped. */
1920	if (xen_start_info->mfn_list < __START_KERNEL_map)
1921		max_pfn_mapped = xen_start_info->first_p2m_pfn;
1922	else
1923		max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1924
1925	pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1926	pt_end = pt_base + xen_start_info->nr_pt_frames;
1927
1928	/* Zap identity mapping */
1929	init_level4_pgt[0] = __pgd(0);
1930
1931	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1932		/* Pre-constructed entries are in pfn, so convert to mfn */
1933		/* L4[272] -> level3_ident_pgt
1934		 * L4[511] -> level3_kernel_pgt */
1935		convert_pfn_mfn(init_level4_pgt);
1936
1937		/* L3_i[0] -> level2_ident_pgt */
1938		convert_pfn_mfn(level3_ident_pgt);
1939		/* L3_k[510] -> level2_kernel_pgt
1940		 * L3_k[511] -> level2_fixmap_pgt */
1941		convert_pfn_mfn(level3_kernel_pgt);
1942
1943		/* L3_k[511][506] -> level1_fixmap_pgt */
1944		convert_pfn_mfn(level2_fixmap_pgt);
1945	}
1946	/* We get [511][511] and have Xen's version of level2_kernel_pgt */
1947	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1948	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1949
1950	addr[0] = (unsigned long)pgd;
1951	addr[1] = (unsigned long)l3;
1952	addr[2] = (unsigned long)l2;
1953	/* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1954	 * Both L4[272][0] and L4[511][510] have entries that point to the same
1955	 * L2 (PMD) tables. Meaning that if you modify it in __va space
1956	 * it will be also modified in the __ka space! (But if you just
1957	 * modify the PMD table to point to other PTE's or none, then you
1958	 * are OK - which is what cleanup_highmap does) */
1959	copy_page(level2_ident_pgt, l2);
1960	/* Graft it onto L4[511][510] */
1961	copy_page(level2_kernel_pgt, l2);
1962
1963	/* Copy the initial P->M table mappings if necessary. */
1964	i = pgd_index(xen_start_info->mfn_list);
1965	if (i && i < pgd_index(__START_KERNEL_map))
1966		init_level4_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
1967
1968	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1969		/* Make pagetable pieces RO */
1970		set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1971		set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1972		set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1973		set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1974		set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1975		set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1976		set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1977		set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO);
1978
1979		/* Pin down new L4 */
1980		pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1981				  PFN_DOWN(__pa_symbol(init_level4_pgt)));
1982
1983		/* Unpin Xen-provided one */
1984		pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1985
1986		/*
1987		 * At this stage there can be no user pgd, and no page
1988		 * structure to attach it to, so make sure we just set kernel
1989		 * pgd.
1990		 */
1991		xen_mc_batch();
1992		__xen_write_cr3(true, __pa(init_level4_pgt));
1993		xen_mc_issue(PARAVIRT_LAZY_CPU);
1994	} else
1995		native_write_cr3(__pa(init_level4_pgt));
1996
1997	/* We can't that easily rip out L3 and L2, as the Xen pagetables are
1998	 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
1999	 * the initial domain. For guests using the toolstack, they are in:
2000	 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
2001	 * rip out the [L4] (pgd), but for guests we shave off three pages.
2002	 */
2003	for (i = 0; i < ARRAY_SIZE(addr); i++)
2004		check_pt_base(&pt_base, &pt_end, addr[i]);
2005
2006	/* Our (by three pages) smaller Xen pagetable that we are using */
2007	xen_pt_base = PFN_PHYS(pt_base);
2008	xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
2009	memblock_reserve(xen_pt_base, xen_pt_size);
2010
2011	/* Revector the xen_start_info */
2012	xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
2013}
2014
2015/*
2016 * Read a value from a physical address.
2017 */
2018static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
2019{
2020	unsigned long *vaddr;
2021	unsigned long val;
2022
2023	vaddr = early_memremap_ro(addr, sizeof(val));
2024	val = *vaddr;
2025	early_memunmap(vaddr, sizeof(val));
2026	return val;
2027}
2028
2029/*
2030 * Translate a virtual address to a physical one without relying on mapped
2031 * page tables.
2032 */
2033static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
2034{
2035	phys_addr_t pa;
2036	pgd_t pgd;
2037	pud_t pud;
2038	pmd_t pmd;
2039	pte_t pte;
2040
2041	pa = read_cr3();
2042	pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
2043						       sizeof(pgd)));
2044	if (!pgd_present(pgd))
2045		return 0;
2046
2047	pa = pgd_val(pgd) & PTE_PFN_MASK;
2048	pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
2049						       sizeof(pud)));
2050	if (!pud_present(pud))
2051		return 0;
2052	pa = pud_pfn(pud) << PAGE_SHIFT;
2053	if (pud_large(pud))
2054		return pa + (vaddr & ~PUD_MASK);
2055
2056	pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
2057						       sizeof(pmd)));
2058	if (!pmd_present(pmd))
2059		return 0;
2060	pa = pmd_pfn(pmd) << PAGE_SHIFT;
2061	if (pmd_large(pmd))
2062		return pa + (vaddr & ~PMD_MASK);
2063
2064	pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
2065						       sizeof(pte)));
2066	if (!pte_present(pte))
2067		return 0;
2068	pa = pte_pfn(pte) << PAGE_SHIFT;
2069
2070	return pa | (vaddr & ~PAGE_MASK);
2071}
2072
2073/*
2074 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
2075 * this area.
2076 */
2077void __init xen_relocate_p2m(void)
2078{
2079	phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys;
2080	unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
2081	int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud;
2082	pte_t *pt;
2083	pmd_t *pmd;
2084	pud_t *pud;
2085	pgd_t *pgd;
2086	unsigned long *new_p2m;
2087
2088	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
2089	n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
2090	n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
2091	n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
2092	n_pud = roundup(size, PGDIR_SIZE) >> PGDIR_SHIFT;
2093	n_frames = n_pte + n_pt + n_pmd + n_pud;
2094
2095	new_area = xen_find_free_area(PFN_PHYS(n_frames));
2096	if (!new_area) {
2097		xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
2098		BUG();
2099	}
2100
2101	/*
2102	 * Setup the page tables for addressing the new p2m list.
2103	 * We have asked the hypervisor to map the p2m list at the user address
2104	 * PUD_SIZE. It may have done so, or it may have used a kernel space
2105	 * address depending on the Xen version.
2106	 * To avoid any possible virtual address collision, just use
2107	 * 2 * PUD_SIZE for the new area.
2108	 */
2109	pud_phys = new_area;
2110	pmd_phys = pud_phys + PFN_PHYS(n_pud);
2111	pt_phys = pmd_phys + PFN_PHYS(n_pmd);
2112	p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
2113
2114	pgd = __va(read_cr3());
2115	new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
2116	for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
2117		pud = early_memremap(pud_phys, PAGE_SIZE);
2118		clear_page(pud);
2119		for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
2120		     idx_pmd++) {
2121			pmd = early_memremap(pmd_phys, PAGE_SIZE);
2122			clear_page(pmd);
2123			for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
2124			     idx_pt++) {
2125				pt = early_memremap(pt_phys, PAGE_SIZE);
2126				clear_page(pt);
2127				for (idx_pte = 0;
2128				     idx_pte < min(n_pte, PTRS_PER_PTE);
2129				     idx_pte++) {
2130					set_pte(pt + idx_pte,
2131						pfn_pte(p2m_pfn, PAGE_KERNEL));
2132					p2m_pfn++;
2133				}
2134				n_pte -= PTRS_PER_PTE;
2135				early_memunmap(pt, PAGE_SIZE);
2136				make_lowmem_page_readonly(__va(pt_phys));
2137				pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
2138						  PFN_DOWN(pt_phys));
2139				set_pmd(pmd + idx_pt,
2140					__pmd(_PAGE_TABLE | pt_phys));
2141				pt_phys += PAGE_SIZE;
2142			}
2143			n_pt -= PTRS_PER_PMD;
2144			early_memunmap(pmd, PAGE_SIZE);
2145			make_lowmem_page_readonly(__va(pmd_phys));
2146			pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
2147					  PFN_DOWN(pmd_phys));
2148			set_pud(pud + idx_pmd, __pud(_PAGE_TABLE | pmd_phys));
2149			pmd_phys += PAGE_SIZE;
2150		}
2151		n_pmd -= PTRS_PER_PUD;
2152		early_memunmap(pud, PAGE_SIZE);
2153		make_lowmem_page_readonly(__va(pud_phys));
2154		pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
2155		set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
2156		pud_phys += PAGE_SIZE;
2157	}
2158
2159	/* Now copy the old p2m info to the new area. */
2160	memcpy(new_p2m, xen_p2m_addr, size);
2161	xen_p2m_addr = new_p2m;
2162
2163	/* Release the old p2m list and set new list info. */
2164	p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
2165	BUG_ON(!p2m_pfn);
2166	p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
2167
2168	if (xen_start_info->mfn_list < __START_KERNEL_map) {
2169		pfn = xen_start_info->first_p2m_pfn;
2170		pfn_end = xen_start_info->first_p2m_pfn +
2171			  xen_start_info->nr_p2m_frames;
2172		set_pgd(pgd + 1, __pgd(0));
2173	} else {
2174		pfn = p2m_pfn;
2175		pfn_end = p2m_pfn_end;
2176	}
2177
2178	memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
2179	while (pfn < pfn_end) {
2180		if (pfn == p2m_pfn) {
2181			pfn = p2m_pfn_end;
2182			continue;
2183		}
2184		make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
2185		pfn++;
2186	}
2187
2188	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
2189	xen_start_info->first_p2m_pfn =  PFN_DOWN(new_area);
2190	xen_start_info->nr_p2m_frames = n_frames;
2191}
2192
2193#else	/* !CONFIG_X86_64 */
2194static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
2195static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
2196
2197static void __init xen_write_cr3_init(unsigned long cr3)
2198{
2199	unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
2200
2201	BUG_ON(read_cr3() != __pa(initial_page_table));
2202	BUG_ON(cr3 != __pa(swapper_pg_dir));
2203
2204	/*
2205	 * We are switching to swapper_pg_dir for the first time (from
2206	 * initial_page_table) and therefore need to mark that page
2207	 * read-only and then pin it.
2208	 *
2209	 * Xen disallows sharing of kernel PMDs for PAE
2210	 * guests. Therefore we must copy the kernel PMD from
2211	 * initial_page_table into a new kernel PMD to be used in
2212	 * swapper_pg_dir.
2213	 */
2214	swapper_kernel_pmd =
2215		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2216	copy_page(swapper_kernel_pmd, initial_kernel_pmd);
2217	swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
2218		__pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
2219	set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
2220
2221	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
2222	xen_write_cr3(cr3);
2223	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
2224
2225	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
2226			  PFN_DOWN(__pa(initial_page_table)));
2227	set_page_prot(initial_page_table, PAGE_KERNEL);
2228	set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
2229
2230	pv_mmu_ops.write_cr3 = &xen_write_cr3;
2231}
2232
2233/*
2234 * For 32 bit domains xen_start_info->pt_base is the pgd address which might be
2235 * not the first page table in the page table pool.
2236 * Iterate through the initial page tables to find the real page table base.
2237 */
2238static phys_addr_t xen_find_pt_base(pmd_t *pmd)
2239{
2240	phys_addr_t pt_base, paddr;
2241	unsigned pmdidx;
2242
2243	pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd));
2244
2245	for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++)
2246		if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) {
2247			paddr = m2p(pmd[pmdidx].pmd);
2248			pt_base = min(pt_base, paddr);
2249		}
2250
2251	return pt_base;
2252}
2253
2254void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
2255{
2256	pmd_t *kernel_pmd;
2257
2258	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2259
2260	xen_pt_base = xen_find_pt_base(kernel_pmd);
2261	xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE;
2262
2263	initial_kernel_pmd =
2264		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2265
2266	max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024);
2267
2268	copy_page(initial_kernel_pmd, kernel_pmd);
2269
2270	xen_map_identity_early(initial_kernel_pmd, max_pfn);
2271
2272	copy_page(initial_page_table, pgd);
2273	initial_page_table[KERNEL_PGD_BOUNDARY] =
2274		__pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2275
2276	set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2277	set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2278	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2279
2280	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2281
2282	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2283			  PFN_DOWN(__pa(initial_page_table)));
2284	xen_write_cr3(__pa(initial_page_table));
2285
2286	memblock_reserve(xen_pt_base, xen_pt_size);
2287}
2288#endif	/* CONFIG_X86_64 */
2289
2290void __init xen_reserve_special_pages(void)
2291{
2292	phys_addr_t paddr;
2293
2294	memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2295	if (xen_start_info->store_mfn) {
2296		paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2297		memblock_reserve(paddr, PAGE_SIZE);
2298	}
2299	if (!xen_initial_domain()) {
2300		paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2301		memblock_reserve(paddr, PAGE_SIZE);
2302	}
2303}
2304
2305void __init xen_pt_check_e820(void)
2306{
2307	if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
2308		xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2309		BUG();
2310	}
2311}
2312
2313static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2314
2315static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2316{
2317	pte_t pte;
2318
2319	phys >>= PAGE_SHIFT;
2320
2321	switch (idx) {
2322	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2323	case FIX_RO_IDT:
2324#ifdef CONFIG_X86_32
2325	case FIX_WP_TEST:
2326# ifdef CONFIG_HIGHMEM
2327	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2328# endif
2329#elif defined(CONFIG_X86_VSYSCALL_EMULATION)
2330	case VSYSCALL_PAGE:
2331#endif
2332	case FIX_TEXT_POKE0:
2333	case FIX_TEXT_POKE1:
2334		/* All local page mappings */
2335		pte = pfn_pte(phys, prot);
2336		break;
2337
2338#ifdef CONFIG_X86_LOCAL_APIC
2339	case FIX_APIC_BASE:	/* maps dummy local APIC */
2340		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2341		break;
2342#endif
2343
2344#ifdef CONFIG_X86_IO_APIC
2345	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2346		/*
2347		 * We just don't map the IO APIC - all access is via
2348		 * hypercalls.  Keep the address in the pte for reference.
2349		 */
2350		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2351		break;
2352#endif
2353
2354	case FIX_PARAVIRT_BOOTMAP:
2355		/* This is an MFN, but it isn't an IO mapping from the
2356		   IO domain */
2357		pte = mfn_pte(phys, prot);
2358		break;
2359
2360	default:
2361		/* By default, set_fixmap is used for hardware mappings */
2362		pte = mfn_pte(phys, prot);
2363		break;
2364	}
2365
2366	__native_set_fixmap(idx, pte);
2367
2368#ifdef CONFIG_X86_VSYSCALL_EMULATION
2369	/* Replicate changes to map the vsyscall page into the user
2370	   pagetable vsyscall mapping. */
2371	if (idx == VSYSCALL_PAGE) {
2372		unsigned long vaddr = __fix_to_virt(idx);
2373		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2374	}
2375#endif
2376}
2377
2378static void __init xen_post_allocator_init(void)
2379{
2380	if (xen_feature(XENFEAT_auto_translated_physmap))
2381		return;
2382
2383	pv_mmu_ops.set_pte = xen_set_pte;
2384	pv_mmu_ops.set_pmd = xen_set_pmd;
2385	pv_mmu_ops.set_pud = xen_set_pud;
2386#if CONFIG_PGTABLE_LEVELS == 4
2387	pv_mmu_ops.set_pgd = xen_set_pgd;
2388#endif
2389
2390	/* This will work as long as patching hasn't happened yet
2391	   (which it hasn't) */
2392	pv_mmu_ops.alloc_pte = xen_alloc_pte;
2393	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2394	pv_mmu_ops.release_pte = xen_release_pte;
2395	pv_mmu_ops.release_pmd = xen_release_pmd;
2396#if CONFIG_PGTABLE_LEVELS == 4
2397	pv_mmu_ops.alloc_pud = xen_alloc_pud;
2398	pv_mmu_ops.release_pud = xen_release_pud;
2399#endif
2400	pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte);
2401
2402#ifdef CONFIG_X86_64
2403	pv_mmu_ops.write_cr3 = &xen_write_cr3;
2404	SetPagePinned(virt_to_page(level3_user_vsyscall));
2405#endif
2406	xen_mark_init_mm_pinned();
2407}
2408
2409static void xen_leave_lazy_mmu(void)
2410{
2411	preempt_disable();
2412	xen_mc_flush();
2413	paravirt_leave_lazy_mmu();
2414	preempt_enable();
2415}
2416
2417static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2418	.read_cr2 = xen_read_cr2,
2419	.write_cr2 = xen_write_cr2,
2420
2421	.read_cr3 = xen_read_cr3,
2422	.write_cr3 = xen_write_cr3_init,
2423
2424	.flush_tlb_user = xen_flush_tlb,
2425	.flush_tlb_kernel = xen_flush_tlb,
2426	.flush_tlb_single = xen_flush_tlb_single,
2427	.flush_tlb_others = xen_flush_tlb_others,
2428
2429	.pte_update = paravirt_nop,
2430
2431	.pgd_alloc = xen_pgd_alloc,
2432	.pgd_free = xen_pgd_free,
2433
2434	.alloc_pte = xen_alloc_pte_init,
2435	.release_pte = xen_release_pte_init,
2436	.alloc_pmd = xen_alloc_pmd_init,
2437	.release_pmd = xen_release_pmd_init,
2438
2439	.set_pte = xen_set_pte_init,
2440	.set_pte_at = xen_set_pte_at,
2441	.set_pmd = xen_set_pmd_hyper,
2442
2443	.ptep_modify_prot_start = __ptep_modify_prot_start,
2444	.ptep_modify_prot_commit = __ptep_modify_prot_commit,
2445
2446	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
2447	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2448
2449	.make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
2450	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2451
2452#ifdef CONFIG_X86_PAE
2453	.set_pte_atomic = xen_set_pte_atomic,
2454	.pte_clear = xen_pte_clear,
2455	.pmd_clear = xen_pmd_clear,
2456#endif	/* CONFIG_X86_PAE */
2457	.set_pud = xen_set_pud_hyper,
2458
2459	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2460	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2461
2462#if CONFIG_PGTABLE_LEVELS == 4
2463	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
2464	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2465	.set_pgd = xen_set_pgd_hyper,
2466
2467	.alloc_pud = xen_alloc_pmd_init,
2468	.release_pud = xen_release_pmd_init,
2469#endif	/* CONFIG_PGTABLE_LEVELS == 4 */
2470
2471	.activate_mm = xen_activate_mm,
2472	.dup_mmap = xen_dup_mmap,
2473	.exit_mmap = xen_exit_mmap,
2474
2475	.lazy_mode = {
2476		.enter = paravirt_enter_lazy_mmu,
2477		.leave = xen_leave_lazy_mmu,
2478		.flush = paravirt_flush_lazy_mmu,
2479	},
2480
2481	.set_fixmap = xen_set_fixmap,
2482};
2483
2484void __init xen_init_mmu_ops(void)
2485{
2486	x86_init.paging.pagetable_init = xen_pagetable_init;
2487
2488	if (xen_feature(XENFEAT_auto_translated_physmap))
2489		return;
2490
2491	pv_mmu_ops = xen_mmu_ops;
2492
2493	memset(dummy_mapping, 0xff, PAGE_SIZE);
2494}
2495
2496/* Protected by xen_reservation_lock. */
2497#define MAX_CONTIG_ORDER 9 /* 2MB */
2498static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2499
2500#define VOID_PTE (mfn_pte(0, __pgprot(0)))
2501static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2502				unsigned long *in_frames,
2503				unsigned long *out_frames)
2504{
2505	int i;
2506	struct multicall_space mcs;
2507
2508	xen_mc_batch();
2509	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2510		mcs = __xen_mc_entry(0);
2511
2512		if (in_frames)
2513			in_frames[i] = virt_to_mfn(vaddr);
2514
2515		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2516		__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2517
2518		if (out_frames)
2519			out_frames[i] = virt_to_pfn(vaddr);
2520	}
2521	xen_mc_issue(0);
2522}
2523
2524/*
2525 * Update the pfn-to-mfn mappings for a virtual address range, either to
2526 * point to an array of mfns, or contiguously from a single starting
2527 * mfn.
2528 */
2529static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2530				     unsigned long *mfns,
2531				     unsigned long first_mfn)
2532{
2533	unsigned i, limit;
2534	unsigned long mfn;
2535
2536	xen_mc_batch();
2537
2538	limit = 1u << order;
2539	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2540		struct multicall_space mcs;
2541		unsigned flags;
2542
2543		mcs = __xen_mc_entry(0);
2544		if (mfns)
2545			mfn = mfns[i];
2546		else
2547			mfn = first_mfn + i;
2548
2549		if (i < (limit - 1))
2550			flags = 0;
2551		else {
2552			if (order == 0)
2553				flags = UVMF_INVLPG | UVMF_ALL;
2554			else
2555				flags = UVMF_TLB_FLUSH | UVMF_ALL;
2556		}
2557
2558		MULTI_update_va_mapping(mcs.mc, vaddr,
2559				mfn_pte(mfn, PAGE_KERNEL), flags);
2560
2561		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2562	}
2563
2564	xen_mc_issue(0);
2565}
2566
2567/*
2568 * Perform the hypercall to exchange a region of our pfns to point to
2569 * memory with the required contiguous alignment.  Takes the pfns as
2570 * input, and populates mfns as output.
2571 *
2572 * Returns a success code indicating whether the hypervisor was able to
2573 * satisfy the request or not.
2574 */
2575static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2576			       unsigned long *pfns_in,
2577			       unsigned long extents_out,
2578			       unsigned int order_out,
2579			       unsigned long *mfns_out,
2580			       unsigned int address_bits)
2581{
2582	long rc;
2583	int success;
2584
2585	struct xen_memory_exchange exchange = {
2586		.in = {
2587			.nr_extents   = extents_in,
2588			.extent_order = order_in,
2589			.extent_start = pfns_in,
2590			.domid        = DOMID_SELF
2591		},
2592		.out = {
2593			.nr_extents   = extents_out,
2594			.extent_order = order_out,
2595			.extent_start = mfns_out,
2596			.address_bits = address_bits,
2597			.domid        = DOMID_SELF
2598		}
2599	};
2600
2601	BUG_ON(extents_in << order_in != extents_out << order_out);
2602
2603	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2604	success = (exchange.nr_exchanged == extents_in);
2605
2606	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2607	BUG_ON(success && (rc != 0));
2608
2609	return success;
2610}
2611
2612int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2613				 unsigned int address_bits,
2614				 dma_addr_t *dma_handle)
2615{
2616	unsigned long *in_frames = discontig_frames, out_frame;
2617	unsigned long  flags;
2618	int            success;
2619	unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2620
2621	/*
2622	 * Currently an auto-translated guest will not perform I/O, nor will
2623	 * it require PAE page directories below 4GB. Therefore any calls to
2624	 * this function are redundant and can be ignored.
2625	 */
2626
2627	if (xen_feature(XENFEAT_auto_translated_physmap))
2628		return 0;
2629
2630	if (unlikely(order > MAX_CONTIG_ORDER))
2631		return -ENOMEM;
2632
2633	memset((void *) vstart, 0, PAGE_SIZE << order);
2634
2635	spin_lock_irqsave(&xen_reservation_lock, flags);
2636
2637	/* 1. Zap current PTEs, remembering MFNs. */
2638	xen_zap_pfn_range(vstart, order, in_frames, NULL);
2639
2640	/* 2. Get a new contiguous memory extent. */
2641	out_frame = virt_to_pfn(vstart);
2642	success = xen_exchange_memory(1UL << order, 0, in_frames,
2643				      1, order, &out_frame,
2644				      address_bits);
2645
2646	/* 3. Map the new extent in place of old pages. */
2647	if (success)
2648		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2649	else
2650		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2651
2652	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2653
2654	*dma_handle = virt_to_machine(vstart).maddr;
2655	return success ? 0 : -ENOMEM;
2656}
2657EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2658
2659void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2660{
2661	unsigned long *out_frames = discontig_frames, in_frame;
2662	unsigned long  flags;
2663	int success;
2664	unsigned long vstart;
2665
2666	if (xen_feature(XENFEAT_auto_translated_physmap))
2667		return;
2668
2669	if (unlikely(order > MAX_CONTIG_ORDER))
2670		return;
2671
2672	vstart = (unsigned long)phys_to_virt(pstart);
2673	memset((void *) vstart, 0, PAGE_SIZE << order);
2674
2675	spin_lock_irqsave(&xen_reservation_lock, flags);
2676
2677	/* 1. Find start MFN of contiguous extent. */
2678	in_frame = virt_to_mfn(vstart);
2679
2680	/* 2. Zap current PTEs. */
2681	xen_zap_pfn_range(vstart, order, NULL, out_frames);
2682
2683	/* 3. Do the exchange for non-contiguous MFNs. */
2684	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2685					0, out_frames, 0);
2686
2687	/* 4. Map new pages in place of old pages. */
2688	if (success)
2689		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2690	else
2691		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2692
2693	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2694}
2695EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2696
2697#ifdef CONFIG_XEN_PVHVM
2698#ifdef CONFIG_PROC_VMCORE
2699/*
2700 * This function is used in two contexts:
2701 * - the kdump kernel has to check whether a pfn of the crashed kernel
2702 *   was a ballooned page. vmcore is using this function to decide
2703 *   whether to access a pfn of the crashed kernel.
2704 * - the kexec kernel has to check whether a pfn was ballooned by the
2705 *   previous kernel. If the pfn is ballooned, handle it properly.
2706 * Returns 0 if the pfn is not backed by a RAM page, the caller may
2707 * handle the pfn special in this case.
2708 */
2709static int xen_oldmem_pfn_is_ram(unsigned long pfn)
2710{
2711	struct xen_hvm_get_mem_type a = {
2712		.domid = DOMID_SELF,
2713		.pfn = pfn,
2714	};
2715	int ram;
2716
2717	if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a))
2718		return -ENXIO;
2719
2720	switch (a.mem_type) {
2721		case HVMMEM_mmio_dm:
2722			ram = 0;
2723			break;
2724		case HVMMEM_ram_rw:
2725		case HVMMEM_ram_ro:
2726		default:
2727			ram = 1;
2728			break;
2729	}
2730
2731	return ram;
2732}
2733#endif
2734
2735static void xen_hvm_exit_mmap(struct mm_struct *mm)
2736{
2737	struct xen_hvm_pagetable_dying a;
2738	int rc;
2739
2740	a.domid = DOMID_SELF;
2741	a.gpa = __pa(mm->pgd);
2742	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2743	WARN_ON_ONCE(rc < 0);
2744}
2745
2746static int is_pagetable_dying_supported(void)
2747{
2748	struct xen_hvm_pagetable_dying a;
2749	int rc = 0;
2750
2751	a.domid = DOMID_SELF;
2752	a.gpa = 0x00;
2753	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2754	if (rc < 0) {
2755		printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2756		return 0;
2757	}
2758	return 1;
2759}
2760
2761void __init xen_hvm_init_mmu_ops(void)
2762{
2763	if (is_pagetable_dying_supported())
2764		pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2765#ifdef CONFIG_PROC_VMCORE
2766	register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram);
2767#endif
2768}
2769#endif
2770
2771#define REMAP_BATCH_SIZE 16
2772
2773struct remap_data {
2774	xen_pfn_t *mfn;
2775	bool contiguous;
2776	pgprot_t prot;
2777	struct mmu_update *mmu_update;
2778};
2779
2780static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2781				 unsigned long addr, void *data)
2782{
2783	struct remap_data *rmd = data;
2784	pte_t pte = pte_mkspecial(mfn_pte(*rmd->mfn, rmd->prot));
2785
2786	/* If we have a contiguous range, just update the mfn itself,
2787	   else update pointer to be "next mfn". */
2788	if (rmd->contiguous)
2789		(*rmd->mfn)++;
2790	else
2791		rmd->mfn++;
2792
2793	rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2794	rmd->mmu_update->val = pte_val_ma(pte);
2795	rmd->mmu_update++;
2796
2797	return 0;
2798}
2799
2800static int do_remap_gfn(struct vm_area_struct *vma,
2801			unsigned long addr,
2802			xen_pfn_t *gfn, int nr,
2803			int *err_ptr, pgprot_t prot,
2804			unsigned domid,
2805			struct page **pages)
2806{
2807	int err = 0;
2808	struct remap_data rmd;
2809	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2810	unsigned long range;
2811	int mapped = 0;
2812
2813	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2814
2815	if (xen_feature(XENFEAT_auto_translated_physmap)) {
2816#ifdef CONFIG_XEN_PVH
2817		/* We need to update the local page tables and the xen HAP */
2818		return xen_xlate_remap_gfn_array(vma, addr, gfn, nr, err_ptr,
2819						 prot, domid, pages);
2820#else
2821		return -EINVAL;
2822#endif
2823        }
2824
2825	rmd.mfn = gfn;
2826	rmd.prot = prot;
2827	/* We use the err_ptr to indicate if there we are doing a contiguous
2828	 * mapping or a discontigious mapping. */
2829	rmd.contiguous = !err_ptr;
2830
2831	while (nr) {
2832		int index = 0;
2833		int done = 0;
2834		int batch = min(REMAP_BATCH_SIZE, nr);
2835		int batch_left = batch;
2836		range = (unsigned long)batch << PAGE_SHIFT;
2837
2838		rmd.mmu_update = mmu_update;
2839		err = apply_to_page_range(vma->vm_mm, addr, range,
2840					  remap_area_mfn_pte_fn, &rmd);
2841		if (err)
2842			goto out;
2843
2844		/* We record the error for each page that gives an error, but
2845		 * continue mapping until the whole set is done */
2846		do {
2847			int i;
2848
2849			err = HYPERVISOR_mmu_update(&mmu_update[index],
2850						    batch_left, &done, domid);
2851
2852			/*
2853			 * @err_ptr may be the same buffer as @gfn, so
2854			 * only clear it after each chunk of @gfn is
2855			 * used.
2856			 */
2857			if (err_ptr) {
2858				for (i = index; i < index + done; i++)
2859					err_ptr[i] = 0;
2860			}
2861			if (err < 0) {
2862				if (!err_ptr)
2863					goto out;
2864				err_ptr[i] = err;
2865				done++; /* Skip failed frame. */
2866			} else
2867				mapped += done;
2868			batch_left -= done;
2869			index += done;
2870		} while (batch_left);
2871
2872		nr -= batch;
2873		addr += range;
2874		if (err_ptr)
2875			err_ptr += batch;
2876		cond_resched();
2877	}
2878out:
2879
2880	xen_flush_tlb_all();
2881
2882	return err < 0 ? err : mapped;
2883}
2884
2885int xen_remap_domain_gfn_range(struct vm_area_struct *vma,
2886			       unsigned long addr,
2887			       xen_pfn_t gfn, int nr,
2888			       pgprot_t prot, unsigned domid,
2889			       struct page **pages)
2890{
2891	return do_remap_gfn(vma, addr, &gfn, nr, NULL, prot, domid, pages);
2892}
2893EXPORT_SYMBOL_GPL(xen_remap_domain_gfn_range);
2894
2895int xen_remap_domain_gfn_array(struct vm_area_struct *vma,
2896			       unsigned long addr,
2897			       xen_pfn_t *gfn, int nr,
2898			       int *err_ptr, pgprot_t prot,
2899			       unsigned domid, struct page **pages)
2900{
2901	/* We BUG_ON because it's a programmer error to pass a NULL err_ptr,
2902	 * and the consequences later is quite hard to detect what the actual
2903	 * cause of "wrong memory was mapped in".
2904	 */
2905	BUG_ON(err_ptr == NULL);
2906	return do_remap_gfn(vma, addr, gfn, nr, err_ptr, prot, domid, pages);
2907}
2908EXPORT_SYMBOL_GPL(xen_remap_domain_gfn_array);
2909
2910
2911/* Returns: 0 success */
2912int xen_unmap_domain_gfn_range(struct vm_area_struct *vma,
2913			       int numpgs, struct page **pages)
2914{
2915	if (!pages || !xen_feature(XENFEAT_auto_translated_physmap))
2916		return 0;
2917
2918#ifdef CONFIG_XEN_PVH
2919	return xen_xlate_unmap_gfn_range(vma, numpgs, pages);
2920#else
2921	return -EINVAL;
2922#endif
2923}
2924EXPORT_SYMBOL_GPL(xen_unmap_domain_gfn_range);