Linux Audio

Check our new training course

Loading...
v6.2
 1// SPDX-License-Identifier: GPL-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2
 3#include <linux/pfn.h>
 4#include <asm/xen/page.h>
 5#include <asm/xen/hypercall.h>
 
 
 
 
 
 
 
 6#include <xen/interface/memory.h>
 
 7
 8#include "multicalls.h"
 9#include "mmu.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
11unsigned long arbitrary_virt_to_mfn(void *vaddr)
12{
13	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
14
15	return PFN_DOWN(maddr.maddr);
16}
17
18xmaddr_t arbitrary_virt_to_machine(void *vaddr)
19{
20	unsigned long address = (unsigned long)vaddr;
21	unsigned int level;
22	pte_t *pte;
23	unsigned offset;
24
25	/*
26	 * if the PFN is in the linear mapped vaddr range, we can just use
27	 * the (quick) virt_to_machine() p2m lookup
28	 */
29	if (virt_addr_valid(vaddr))
30		return virt_to_machine(vaddr);
31
32	/* otherwise we have to do a (slower) full page-table walk */
33
34	pte = lookup_address(address, &level);
35	BUG_ON(pte == NULL);
36	offset = address & ~PAGE_MASK;
37	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
38}
39EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
40
41/* Returns: 0 success */
42int xen_unmap_domain_gfn_range(struct vm_area_struct *vma,
43			       int nr, struct page **pages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45	if (xen_feature(XENFEAT_auto_translated_physmap))
46		return xen_xlate_unmap_gfn_range(vma, nr, pages);
47
48	if (!pages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49		return 0;
50
51	return -EINVAL;
52}
53EXPORT_SYMBOL_GPL(xen_unmap_domain_gfn_range);
v3.15
   1/*
   2 * Xen mmu operations
   3 *
   4 * This file contains the various mmu fetch and update operations.
   5 * The most important job they must perform is the mapping between the
   6 * domain's pfn and the overall machine mfns.
   7 *
   8 * Xen allows guests to directly update the pagetable, in a controlled
   9 * fashion.  In other words, the guest modifies the same pagetable
  10 * that the CPU actually uses, which eliminates the overhead of having
  11 * a separate shadow pagetable.
  12 *
  13 * In order to allow this, it falls on the guest domain to map its
  14 * notion of a "physical" pfn - which is just a domain-local linear
  15 * address - into a real "machine address" which the CPU's MMU can
  16 * use.
  17 *
  18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
  19 * inserted directly into the pagetable.  When creating a new
  20 * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
  21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
  22 * the mfn back into a pfn.
  23 *
  24 * The other constraint is that all pages which make up a pagetable
  25 * must be mapped read-only in the guest.  This prevents uncontrolled
  26 * guest updates to the pagetable.  Xen strictly enforces this, and
  27 * will disallow any pagetable update which will end up mapping a
  28 * pagetable page RW, and will disallow using any writable page as a
  29 * pagetable.
  30 *
  31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
  32 * would need to validate the whole pagetable before going on.
  33 * Naturally, this is quite slow.  The solution is to "pin" a
  34 * pagetable, which enforces all the constraints on the pagetable even
  35 * when it is not actively in use.  This menas that Xen can be assured
  36 * that it is still valid when you do load it into %cr3, and doesn't
  37 * need to revalidate it.
  38 *
  39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  40 */
  41#include <linux/sched.h>
  42#include <linux/highmem.h>
  43#include <linux/debugfs.h>
  44#include <linux/bug.h>
  45#include <linux/vmalloc.h>
  46#include <linux/module.h>
  47#include <linux/gfp.h>
  48#include <linux/memblock.h>
  49#include <linux/seq_file.h>
  50#include <linux/crash_dump.h>
  51
  52#include <trace/events/xen.h>
  53
  54#include <asm/pgtable.h>
  55#include <asm/tlbflush.h>
  56#include <asm/fixmap.h>
  57#include <asm/mmu_context.h>
  58#include <asm/setup.h>
  59#include <asm/paravirt.h>
  60#include <asm/e820.h>
  61#include <asm/linkage.h>
  62#include <asm/page.h>
  63#include <asm/init.h>
  64#include <asm/pat.h>
  65#include <asm/smp.h>
  66
 
 
  67#include <asm/xen/hypercall.h>
  68#include <asm/xen/hypervisor.h>
  69
  70#include <xen/xen.h>
  71#include <xen/page.h>
  72#include <xen/interface/xen.h>
  73#include <xen/interface/hvm/hvm_op.h>
  74#include <xen/interface/version.h>
  75#include <xen/interface/memory.h>
  76#include <xen/hvc-console.h>
  77
  78#include "multicalls.h"
  79#include "mmu.h"
  80#include "debugfs.h"
  81
  82/*
  83 * Protects atomic reservation decrease/increase against concurrent increases.
  84 * Also protects non-atomic updates of current_pages and balloon lists.
  85 */
  86DEFINE_SPINLOCK(xen_reservation_lock);
  87
  88#ifdef CONFIG_X86_32
  89/*
  90 * Identity map, in addition to plain kernel map.  This needs to be
  91 * large enough to allocate page table pages to allocate the rest.
  92 * Each page can map 2MB.
  93 */
  94#define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4)
  95static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
  96#endif
  97#ifdef CONFIG_X86_64
  98/* l3 pud for userspace vsyscall mapping */
  99static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
 100#endif /* CONFIG_X86_64 */
 101
 102/*
 103 * Note about cr3 (pagetable base) values:
 104 *
 105 * xen_cr3 contains the current logical cr3 value; it contains the
 106 * last set cr3.  This may not be the current effective cr3, because
 107 * its update may be being lazily deferred.  However, a vcpu looking
 108 * at its own cr3 can use this value knowing that it everything will
 109 * be self-consistent.
 110 *
 111 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
 112 * hypercall to set the vcpu cr3 is complete (so it may be a little
 113 * out of date, but it will never be set early).  If one vcpu is
 114 * looking at another vcpu's cr3 value, it should use this variable.
 115 */
 116DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
 117DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
 118
 119
 120/*
 121 * Just beyond the highest usermode address.  STACK_TOP_MAX has a
 122 * redzone above it, so round it up to a PGD boundary.
 123 */
 124#define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
 125
 126unsigned long arbitrary_virt_to_mfn(void *vaddr)
 127{
 128	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
 129
 130	return PFN_DOWN(maddr.maddr);
 131}
 132
 133xmaddr_t arbitrary_virt_to_machine(void *vaddr)
 134{
 135	unsigned long address = (unsigned long)vaddr;
 136	unsigned int level;
 137	pte_t *pte;
 138	unsigned offset;
 139
 140	/*
 141	 * if the PFN is in the linear mapped vaddr range, we can just use
 142	 * the (quick) virt_to_machine() p2m lookup
 143	 */
 144	if (virt_addr_valid(vaddr))
 145		return virt_to_machine(vaddr);
 146
 147	/* otherwise we have to do a (slower) full page-table walk */
 148
 149	pte = lookup_address(address, &level);
 150	BUG_ON(pte == NULL);
 151	offset = address & ~PAGE_MASK;
 152	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
 153}
 154EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
 155
 156void make_lowmem_page_readonly(void *vaddr)
 157{
 158	pte_t *pte, ptev;
 159	unsigned long address = (unsigned long)vaddr;
 160	unsigned int level;
 161
 162	pte = lookup_address(address, &level);
 163	if (pte == NULL)
 164		return;		/* vaddr missing */
 165
 166	ptev = pte_wrprotect(*pte);
 167
 168	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
 169		BUG();
 170}
 171
 172void make_lowmem_page_readwrite(void *vaddr)
 173{
 174	pte_t *pte, ptev;
 175	unsigned long address = (unsigned long)vaddr;
 176	unsigned int level;
 177
 178	pte = lookup_address(address, &level);
 179	if (pte == NULL)
 180		return;		/* vaddr missing */
 181
 182	ptev = pte_mkwrite(*pte);
 183
 184	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
 185		BUG();
 186}
 187
 188
 189static bool xen_page_pinned(void *ptr)
 190{
 191	struct page *page = virt_to_page(ptr);
 192
 193	return PagePinned(page);
 194}
 195
 196void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
 197{
 198	struct multicall_space mcs;
 199	struct mmu_update *u;
 200
 201	trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
 202
 203	mcs = xen_mc_entry(sizeof(*u));
 204	u = mcs.args;
 205
 206	/* ptep might be kmapped when using 32-bit HIGHPTE */
 207	u->ptr = virt_to_machine(ptep).maddr;
 208	u->val = pte_val_ma(pteval);
 209
 210	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
 211
 212	xen_mc_issue(PARAVIRT_LAZY_MMU);
 213}
 214EXPORT_SYMBOL_GPL(xen_set_domain_pte);
 215
 216static void xen_extend_mmu_update(const struct mmu_update *update)
 217{
 218	struct multicall_space mcs;
 219	struct mmu_update *u;
 220
 221	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
 222
 223	if (mcs.mc != NULL) {
 224		mcs.mc->args[1]++;
 225	} else {
 226		mcs = __xen_mc_entry(sizeof(*u));
 227		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
 228	}
 229
 230	u = mcs.args;
 231	*u = *update;
 232}
 233
 234static void xen_extend_mmuext_op(const struct mmuext_op *op)
 235{
 236	struct multicall_space mcs;
 237	struct mmuext_op *u;
 238
 239	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
 240
 241	if (mcs.mc != NULL) {
 242		mcs.mc->args[1]++;
 243	} else {
 244		mcs = __xen_mc_entry(sizeof(*u));
 245		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
 246	}
 247
 248	u = mcs.args;
 249	*u = *op;
 250}
 251
 252static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
 253{
 254	struct mmu_update u;
 255
 256	preempt_disable();
 257
 258	xen_mc_batch();
 259
 260	/* ptr may be ioremapped for 64-bit pagetable setup */
 261	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
 262	u.val = pmd_val_ma(val);
 263	xen_extend_mmu_update(&u);
 264
 265	xen_mc_issue(PARAVIRT_LAZY_MMU);
 266
 267	preempt_enable();
 268}
 269
 270static void xen_set_pmd(pmd_t *ptr, pmd_t val)
 271{
 272	trace_xen_mmu_set_pmd(ptr, val);
 273
 274	/* If page is not pinned, we can just update the entry
 275	   directly */
 276	if (!xen_page_pinned(ptr)) {
 277		*ptr = val;
 278		return;
 279	}
 280
 281	xen_set_pmd_hyper(ptr, val);
 282}
 283
 284/*
 285 * Associate a virtual page frame with a given physical page frame
 286 * and protection flags for that frame.
 287 */
 288void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
 289{
 290	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
 291}
 292
 293static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
 294{
 295	struct mmu_update u;
 296
 297	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
 298		return false;
 299
 300	xen_mc_batch();
 301
 302	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
 303	u.val = pte_val_ma(pteval);
 304	xen_extend_mmu_update(&u);
 305
 306	xen_mc_issue(PARAVIRT_LAZY_MMU);
 307
 308	return true;
 309}
 310
 311static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
 312{
 313	if (!xen_batched_set_pte(ptep, pteval)) {
 314		/*
 315		 * Could call native_set_pte() here and trap and
 316		 * emulate the PTE write but with 32-bit guests this
 317		 * needs two traps (one for each of the two 32-bit
 318		 * words in the PTE) so do one hypercall directly
 319		 * instead.
 320		 */
 321		struct mmu_update u;
 322
 323		u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
 324		u.val = pte_val_ma(pteval);
 325		HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
 326	}
 327}
 328
 329static void xen_set_pte(pte_t *ptep, pte_t pteval)
 330{
 331	trace_xen_mmu_set_pte(ptep, pteval);
 332	__xen_set_pte(ptep, pteval);
 333}
 334
 335static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
 336		    pte_t *ptep, pte_t pteval)
 337{
 338	trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
 339	__xen_set_pte(ptep, pteval);
 340}
 341
 342pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
 343				 unsigned long addr, pte_t *ptep)
 344{
 345	/* Just return the pte as-is.  We preserve the bits on commit */
 346	trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
 347	return *ptep;
 348}
 349
 350void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
 351				 pte_t *ptep, pte_t pte)
 352{
 353	struct mmu_update u;
 354
 355	trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
 356	xen_mc_batch();
 357
 358	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
 359	u.val = pte_val_ma(pte);
 360	xen_extend_mmu_update(&u);
 361
 362	xen_mc_issue(PARAVIRT_LAZY_MMU);
 363}
 364
 365/* Assume pteval_t is equivalent to all the other *val_t types. */
 366static pteval_t pte_mfn_to_pfn(pteval_t val)
 367{
 368	if (val & _PAGE_PRESENT) {
 369		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 370		unsigned long pfn = mfn_to_pfn(mfn);
 371
 372		pteval_t flags = val & PTE_FLAGS_MASK;
 373		if (unlikely(pfn == ~0))
 374			val = flags & ~_PAGE_PRESENT;
 375		else
 376			val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
 377	}
 378
 379	return val;
 380}
 381
 382static pteval_t pte_pfn_to_mfn(pteval_t val)
 383{
 384	if (val & _PAGE_PRESENT) {
 385		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 386		pteval_t flags = val & PTE_FLAGS_MASK;
 387		unsigned long mfn;
 388
 389		if (!xen_feature(XENFEAT_auto_translated_physmap))
 390			mfn = get_phys_to_machine(pfn);
 391		else
 392			mfn = pfn;
 393		/*
 394		 * If there's no mfn for the pfn, then just create an
 395		 * empty non-present pte.  Unfortunately this loses
 396		 * information about the original pfn, so
 397		 * pte_mfn_to_pfn is asymmetric.
 398		 */
 399		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
 400			mfn = 0;
 401			flags = 0;
 402		} else {
 403			/*
 404			 * Paramount to do this test _after_ the
 405			 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
 406			 * IDENTITY_FRAME_BIT resolves to true.
 407			 */
 408			mfn &= ~FOREIGN_FRAME_BIT;
 409			if (mfn & IDENTITY_FRAME_BIT) {
 410				mfn &= ~IDENTITY_FRAME_BIT;
 411				flags |= _PAGE_IOMAP;
 412			}
 413		}
 414		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
 415	}
 416
 417	return val;
 418}
 419
 420static pteval_t iomap_pte(pteval_t val)
 421{
 422	if (val & _PAGE_PRESENT) {
 423		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 424		pteval_t flags = val & PTE_FLAGS_MASK;
 425
 426		/* We assume the pte frame number is a MFN, so
 427		   just use it as-is. */
 428		val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
 429	}
 430
 431	return val;
 432}
 433
 434__visible pteval_t xen_pte_val(pte_t pte)
 435{
 436	pteval_t pteval = pte.pte;
 437#if 0
 438	/* If this is a WC pte, convert back from Xen WC to Linux WC */
 439	if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
 440		WARN_ON(!pat_enabled);
 441		pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
 442	}
 443#endif
 444	if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
 445		return pteval;
 446
 447	return pte_mfn_to_pfn(pteval);
 448}
 449PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
 450
 451__visible pgdval_t xen_pgd_val(pgd_t pgd)
 452{
 453	return pte_mfn_to_pfn(pgd.pgd);
 454}
 455PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
 456
 457/*
 458 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
 459 * are reserved for now, to correspond to the Intel-reserved PAT
 460 * types.
 461 *
 462 * We expect Linux's PAT set as follows:
 463 *
 464 * Idx  PTE flags        Linux    Xen    Default
 465 * 0                     WB       WB     WB
 466 * 1            PWT      WC       WT     WT
 467 * 2        PCD          UC-      UC-    UC-
 468 * 3        PCD PWT      UC       UC     UC
 469 * 4    PAT              WB       WC     WB
 470 * 5    PAT     PWT      WC       WP     WT
 471 * 6    PAT PCD          UC-      rsv    UC-
 472 * 7    PAT PCD PWT      UC       rsv    UC
 473 */
 474
 475void xen_set_pat(u64 pat)
 476{
 477	/* We expect Linux to use a PAT setting of
 478	 * UC UC- WC WB (ignoring the PAT flag) */
 479	WARN_ON(pat != 0x0007010600070106ull);
 480}
 481
 482__visible pte_t xen_make_pte(pteval_t pte)
 483{
 484	phys_addr_t addr = (pte & PTE_PFN_MASK);
 485#if 0
 486	/* If Linux is trying to set a WC pte, then map to the Xen WC.
 487	 * If _PAGE_PAT is set, then it probably means it is really
 488	 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
 489	 * things work out OK...
 490	 *
 491	 * (We should never see kernel mappings with _PAGE_PSE set,
 492	 * but we could see hugetlbfs mappings, I think.).
 493	 */
 494	if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
 495		if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
 496			pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
 497	}
 498#endif
 499	/*
 500	 * Unprivileged domains are allowed to do IOMAPpings for
 501	 * PCI passthrough, but not map ISA space.  The ISA
 502	 * mappings are just dummy local mappings to keep other
 503	 * parts of the kernel happy.
 504	 */
 505	if (unlikely(pte & _PAGE_IOMAP) &&
 506	    (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
 507		pte = iomap_pte(pte);
 508	} else {
 509		pte &= ~_PAGE_IOMAP;
 510		pte = pte_pfn_to_mfn(pte);
 511	}
 512
 513	return native_make_pte(pte);
 514}
 515PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
 516
 517__visible pgd_t xen_make_pgd(pgdval_t pgd)
 518{
 519	pgd = pte_pfn_to_mfn(pgd);
 520	return native_make_pgd(pgd);
 521}
 522PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
 523
 524__visible pmdval_t xen_pmd_val(pmd_t pmd)
 525{
 526	return pte_mfn_to_pfn(pmd.pmd);
 527}
 528PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
 529
 530static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
 531{
 532	struct mmu_update u;
 533
 534	preempt_disable();
 535
 536	xen_mc_batch();
 537
 538	/* ptr may be ioremapped for 64-bit pagetable setup */
 539	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
 540	u.val = pud_val_ma(val);
 541	xen_extend_mmu_update(&u);
 542
 543	xen_mc_issue(PARAVIRT_LAZY_MMU);
 544
 545	preempt_enable();
 546}
 547
 548static void xen_set_pud(pud_t *ptr, pud_t val)
 549{
 550	trace_xen_mmu_set_pud(ptr, val);
 551
 552	/* If page is not pinned, we can just update the entry
 553	   directly */
 554	if (!xen_page_pinned(ptr)) {
 555		*ptr = val;
 556		return;
 557	}
 558
 559	xen_set_pud_hyper(ptr, val);
 560}
 561
 562#ifdef CONFIG_X86_PAE
 563static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
 564{
 565	trace_xen_mmu_set_pte_atomic(ptep, pte);
 566	set_64bit((u64 *)ptep, native_pte_val(pte));
 567}
 568
 569static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 570{
 571	trace_xen_mmu_pte_clear(mm, addr, ptep);
 572	if (!xen_batched_set_pte(ptep, native_make_pte(0)))
 573		native_pte_clear(mm, addr, ptep);
 574}
 575
 576static void xen_pmd_clear(pmd_t *pmdp)
 577{
 578	trace_xen_mmu_pmd_clear(pmdp);
 579	set_pmd(pmdp, __pmd(0));
 580}
 581#endif	/* CONFIG_X86_PAE */
 582
 583__visible pmd_t xen_make_pmd(pmdval_t pmd)
 584{
 585	pmd = pte_pfn_to_mfn(pmd);
 586	return native_make_pmd(pmd);
 587}
 588PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
 589
 590#if PAGETABLE_LEVELS == 4
 591__visible pudval_t xen_pud_val(pud_t pud)
 592{
 593	return pte_mfn_to_pfn(pud.pud);
 594}
 595PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
 596
 597__visible pud_t xen_make_pud(pudval_t pud)
 598{
 599	pud = pte_pfn_to_mfn(pud);
 600
 601	return native_make_pud(pud);
 602}
 603PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
 604
 605static pgd_t *xen_get_user_pgd(pgd_t *pgd)
 606{
 607	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
 608	unsigned offset = pgd - pgd_page;
 609	pgd_t *user_ptr = NULL;
 610
 611	if (offset < pgd_index(USER_LIMIT)) {
 612		struct page *page = virt_to_page(pgd_page);
 613		user_ptr = (pgd_t *)page->private;
 614		if (user_ptr)
 615			user_ptr += offset;
 616	}
 617
 618	return user_ptr;
 619}
 620
 621static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
 622{
 623	struct mmu_update u;
 624
 625	u.ptr = virt_to_machine(ptr).maddr;
 626	u.val = pgd_val_ma(val);
 627	xen_extend_mmu_update(&u);
 628}
 629
 630/*
 631 * Raw hypercall-based set_pgd, intended for in early boot before
 632 * there's a page structure.  This implies:
 633 *  1. The only existing pagetable is the kernel's
 634 *  2. It is always pinned
 635 *  3. It has no user pagetable attached to it
 636 */
 637static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
 638{
 639	preempt_disable();
 640
 641	xen_mc_batch();
 642
 643	__xen_set_pgd_hyper(ptr, val);
 644
 645	xen_mc_issue(PARAVIRT_LAZY_MMU);
 646
 647	preempt_enable();
 648}
 649
 650static void xen_set_pgd(pgd_t *ptr, pgd_t val)
 651{
 652	pgd_t *user_ptr = xen_get_user_pgd(ptr);
 653
 654	trace_xen_mmu_set_pgd(ptr, user_ptr, val);
 655
 656	/* If page is not pinned, we can just update the entry
 657	   directly */
 658	if (!xen_page_pinned(ptr)) {
 659		*ptr = val;
 660		if (user_ptr) {
 661			WARN_ON(xen_page_pinned(user_ptr));
 662			*user_ptr = val;
 663		}
 664		return;
 665	}
 666
 667	/* If it's pinned, then we can at least batch the kernel and
 668	   user updates together. */
 669	xen_mc_batch();
 670
 671	__xen_set_pgd_hyper(ptr, val);
 672	if (user_ptr)
 673		__xen_set_pgd_hyper(user_ptr, val);
 674
 675	xen_mc_issue(PARAVIRT_LAZY_MMU);
 676}
 677#endif	/* PAGETABLE_LEVELS == 4 */
 678
 679/*
 680 * (Yet another) pagetable walker.  This one is intended for pinning a
 681 * pagetable.  This means that it walks a pagetable and calls the
 682 * callback function on each page it finds making up the page table,
 683 * at every level.  It walks the entire pagetable, but it only bothers
 684 * pinning pte pages which are below limit.  In the normal case this
 685 * will be STACK_TOP_MAX, but at boot we need to pin up to
 686 * FIXADDR_TOP.
 687 *
 688 * For 32-bit the important bit is that we don't pin beyond there,
 689 * because then we start getting into Xen's ptes.
 690 *
 691 * For 64-bit, we must skip the Xen hole in the middle of the address
 692 * space, just after the big x86-64 virtual hole.
 693 */
 694static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
 695			  int (*func)(struct mm_struct *mm, struct page *,
 696				      enum pt_level),
 697			  unsigned long limit)
 698{
 699	int flush = 0;
 700	unsigned hole_low, hole_high;
 701	unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
 702	unsigned pgdidx, pudidx, pmdidx;
 703
 704	/* The limit is the last byte to be touched */
 705	limit--;
 706	BUG_ON(limit >= FIXADDR_TOP);
 707
 708	if (xen_feature(XENFEAT_auto_translated_physmap))
 709		return 0;
 710
 711	/*
 712	 * 64-bit has a great big hole in the middle of the address
 713	 * space, which contains the Xen mappings.  On 32-bit these
 714	 * will end up making a zero-sized hole and so is a no-op.
 715	 */
 716	hole_low = pgd_index(USER_LIMIT);
 717	hole_high = pgd_index(PAGE_OFFSET);
 718
 719	pgdidx_limit = pgd_index(limit);
 720#if PTRS_PER_PUD > 1
 721	pudidx_limit = pud_index(limit);
 722#else
 723	pudidx_limit = 0;
 724#endif
 725#if PTRS_PER_PMD > 1
 726	pmdidx_limit = pmd_index(limit);
 727#else
 728	pmdidx_limit = 0;
 729#endif
 730
 731	for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
 732		pud_t *pud;
 733
 734		if (pgdidx >= hole_low && pgdidx < hole_high)
 735			continue;
 736
 737		if (!pgd_val(pgd[pgdidx]))
 738			continue;
 739
 740		pud = pud_offset(&pgd[pgdidx], 0);
 741
 742		if (PTRS_PER_PUD > 1) /* not folded */
 743			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
 744
 745		for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
 746			pmd_t *pmd;
 747
 748			if (pgdidx == pgdidx_limit &&
 749			    pudidx > pudidx_limit)
 750				goto out;
 751
 752			if (pud_none(pud[pudidx]))
 753				continue;
 754
 755			pmd = pmd_offset(&pud[pudidx], 0);
 756
 757			if (PTRS_PER_PMD > 1) /* not folded */
 758				flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
 759
 760			for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
 761				struct page *pte;
 762
 763				if (pgdidx == pgdidx_limit &&
 764				    pudidx == pudidx_limit &&
 765				    pmdidx > pmdidx_limit)
 766					goto out;
 767
 768				if (pmd_none(pmd[pmdidx]))
 769					continue;
 770
 771				pte = pmd_page(pmd[pmdidx]);
 772				flush |= (*func)(mm, pte, PT_PTE);
 773			}
 774		}
 775	}
 776
 777out:
 778	/* Do the top level last, so that the callbacks can use it as
 779	   a cue to do final things like tlb flushes. */
 780	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
 781
 782	return flush;
 783}
 784
 785static int xen_pgd_walk(struct mm_struct *mm,
 786			int (*func)(struct mm_struct *mm, struct page *,
 787				    enum pt_level),
 788			unsigned long limit)
 789{
 790	return __xen_pgd_walk(mm, mm->pgd, func, limit);
 791}
 792
 793/* If we're using split pte locks, then take the page's lock and
 794   return a pointer to it.  Otherwise return NULL. */
 795static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
 796{
 797	spinlock_t *ptl = NULL;
 798
 799#if USE_SPLIT_PTE_PTLOCKS
 800	ptl = ptlock_ptr(page);
 801	spin_lock_nest_lock(ptl, &mm->page_table_lock);
 802#endif
 803
 804	return ptl;
 805}
 806
 807static void xen_pte_unlock(void *v)
 808{
 809	spinlock_t *ptl = v;
 810	spin_unlock(ptl);
 811}
 812
 813static void xen_do_pin(unsigned level, unsigned long pfn)
 814{
 815	struct mmuext_op op;
 816
 817	op.cmd = level;
 818	op.arg1.mfn = pfn_to_mfn(pfn);
 819
 820	xen_extend_mmuext_op(&op);
 821}
 822
 823static int xen_pin_page(struct mm_struct *mm, struct page *page,
 824			enum pt_level level)
 825{
 826	unsigned pgfl = TestSetPagePinned(page);
 827	int flush;
 828
 829	if (pgfl)
 830		flush = 0;		/* already pinned */
 831	else if (PageHighMem(page))
 832		/* kmaps need flushing if we found an unpinned
 833		   highpage */
 834		flush = 1;
 835	else {
 836		void *pt = lowmem_page_address(page);
 837		unsigned long pfn = page_to_pfn(page);
 838		struct multicall_space mcs = __xen_mc_entry(0);
 839		spinlock_t *ptl;
 840
 841		flush = 0;
 842
 843		/*
 844		 * We need to hold the pagetable lock between the time
 845		 * we make the pagetable RO and when we actually pin
 846		 * it.  If we don't, then other users may come in and
 847		 * attempt to update the pagetable by writing it,
 848		 * which will fail because the memory is RO but not
 849		 * pinned, so Xen won't do the trap'n'emulate.
 850		 *
 851		 * If we're using split pte locks, we can't hold the
 852		 * entire pagetable's worth of locks during the
 853		 * traverse, because we may wrap the preempt count (8
 854		 * bits).  The solution is to mark RO and pin each PTE
 855		 * page while holding the lock.  This means the number
 856		 * of locks we end up holding is never more than a
 857		 * batch size (~32 entries, at present).
 858		 *
 859		 * If we're not using split pte locks, we needn't pin
 860		 * the PTE pages independently, because we're
 861		 * protected by the overall pagetable lock.
 862		 */
 863		ptl = NULL;
 864		if (level == PT_PTE)
 865			ptl = xen_pte_lock(page, mm);
 866
 867		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
 868					pfn_pte(pfn, PAGE_KERNEL_RO),
 869					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
 870
 871		if (ptl) {
 872			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
 873
 874			/* Queue a deferred unlock for when this batch
 875			   is completed. */
 876			xen_mc_callback(xen_pte_unlock, ptl);
 877		}
 878	}
 879
 880	return flush;
 881}
 882
 883/* This is called just after a mm has been created, but it has not
 884   been used yet.  We need to make sure that its pagetable is all
 885   read-only, and can be pinned. */
 886static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
 887{
 888	trace_xen_mmu_pgd_pin(mm, pgd);
 889
 890	xen_mc_batch();
 891
 892	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
 893		/* re-enable interrupts for flushing */
 894		xen_mc_issue(0);
 895
 896		kmap_flush_unused();
 897
 898		xen_mc_batch();
 899	}
 900
 901#ifdef CONFIG_X86_64
 902	{
 903		pgd_t *user_pgd = xen_get_user_pgd(pgd);
 904
 905		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
 906
 907		if (user_pgd) {
 908			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
 909			xen_do_pin(MMUEXT_PIN_L4_TABLE,
 910				   PFN_DOWN(__pa(user_pgd)));
 911		}
 912	}
 913#else /* CONFIG_X86_32 */
 914#ifdef CONFIG_X86_PAE
 915	/* Need to make sure unshared kernel PMD is pinnable */
 916	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
 917		     PT_PMD);
 918#endif
 919	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
 920#endif /* CONFIG_X86_64 */
 921	xen_mc_issue(0);
 922}
 923
 924static void xen_pgd_pin(struct mm_struct *mm)
 925{
 926	__xen_pgd_pin(mm, mm->pgd);
 927}
 928
 929/*
 930 * On save, we need to pin all pagetables to make sure they get their
 931 * mfns turned into pfns.  Search the list for any unpinned pgds and pin
 932 * them (unpinned pgds are not currently in use, probably because the
 933 * process is under construction or destruction).
 934 *
 935 * Expected to be called in stop_machine() ("equivalent to taking
 936 * every spinlock in the system"), so the locking doesn't really
 937 * matter all that much.
 938 */
 939void xen_mm_pin_all(void)
 940{
 941	struct page *page;
 942
 943	spin_lock(&pgd_lock);
 944
 945	list_for_each_entry(page, &pgd_list, lru) {
 946		if (!PagePinned(page)) {
 947			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
 948			SetPageSavePinned(page);
 949		}
 950	}
 951
 952	spin_unlock(&pgd_lock);
 953}
 954
 955/*
 956 * The init_mm pagetable is really pinned as soon as its created, but
 957 * that's before we have page structures to store the bits.  So do all
 958 * the book-keeping now.
 959 */
 960static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
 961				  enum pt_level level)
 962{
 963	SetPagePinned(page);
 964	return 0;
 965}
 966
 967static void __init xen_mark_init_mm_pinned(void)
 968{
 969	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
 970}
 971
 972static int xen_unpin_page(struct mm_struct *mm, struct page *page,
 973			  enum pt_level level)
 974{
 975	unsigned pgfl = TestClearPagePinned(page);
 976
 977	if (pgfl && !PageHighMem(page)) {
 978		void *pt = lowmem_page_address(page);
 979		unsigned long pfn = page_to_pfn(page);
 980		spinlock_t *ptl = NULL;
 981		struct multicall_space mcs;
 982
 983		/*
 984		 * Do the converse to pin_page.  If we're using split
 985		 * pte locks, we must be holding the lock for while
 986		 * the pte page is unpinned but still RO to prevent
 987		 * concurrent updates from seeing it in this
 988		 * partially-pinned state.
 989		 */
 990		if (level == PT_PTE) {
 991			ptl = xen_pte_lock(page, mm);
 992
 993			if (ptl)
 994				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
 995		}
 996
 997		mcs = __xen_mc_entry(0);
 998
 999		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1000					pfn_pte(pfn, PAGE_KERNEL),
1001					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1002
1003		if (ptl) {
1004			/* unlock when batch completed */
1005			xen_mc_callback(xen_pte_unlock, ptl);
1006		}
1007	}
1008
1009	return 0;		/* never need to flush on unpin */
1010}
1011
1012/* Release a pagetables pages back as normal RW */
1013static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1014{
1015	trace_xen_mmu_pgd_unpin(mm, pgd);
1016
1017	xen_mc_batch();
1018
1019	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1020
1021#ifdef CONFIG_X86_64
1022	{
1023		pgd_t *user_pgd = xen_get_user_pgd(pgd);
1024
1025		if (user_pgd) {
1026			xen_do_pin(MMUEXT_UNPIN_TABLE,
1027				   PFN_DOWN(__pa(user_pgd)));
1028			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1029		}
1030	}
1031#endif
1032
1033#ifdef CONFIG_X86_PAE
1034	/* Need to make sure unshared kernel PMD is unpinned */
1035	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1036		       PT_PMD);
1037#endif
1038
1039	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1040
1041	xen_mc_issue(0);
1042}
1043
1044static void xen_pgd_unpin(struct mm_struct *mm)
1045{
1046	__xen_pgd_unpin(mm, mm->pgd);
1047}
1048
1049/*
1050 * On resume, undo any pinning done at save, so that the rest of the
1051 * kernel doesn't see any unexpected pinned pagetables.
1052 */
1053void xen_mm_unpin_all(void)
1054{
1055	struct page *page;
1056
1057	spin_lock(&pgd_lock);
1058
1059	list_for_each_entry(page, &pgd_list, lru) {
1060		if (PageSavePinned(page)) {
1061			BUG_ON(!PagePinned(page));
1062			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1063			ClearPageSavePinned(page);
1064		}
1065	}
1066
1067	spin_unlock(&pgd_lock);
1068}
1069
1070static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1071{
1072	spin_lock(&next->page_table_lock);
1073	xen_pgd_pin(next);
1074	spin_unlock(&next->page_table_lock);
1075}
1076
1077static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1078{
1079	spin_lock(&mm->page_table_lock);
1080	xen_pgd_pin(mm);
1081	spin_unlock(&mm->page_table_lock);
1082}
1083
1084
1085#ifdef CONFIG_SMP
1086/* Another cpu may still have their %cr3 pointing at the pagetable, so
1087   we need to repoint it somewhere else before we can unpin it. */
1088static void drop_other_mm_ref(void *info)
1089{
1090	struct mm_struct *mm = info;
1091	struct mm_struct *active_mm;
1092
1093	active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1094
1095	if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1096		leave_mm(smp_processor_id());
1097
1098	/* If this cpu still has a stale cr3 reference, then make sure
1099	   it has been flushed. */
1100	if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1101		load_cr3(swapper_pg_dir);
1102}
1103
1104static void xen_drop_mm_ref(struct mm_struct *mm)
1105{
1106	cpumask_var_t mask;
1107	unsigned cpu;
1108
1109	if (current->active_mm == mm) {
1110		if (current->mm == mm)
1111			load_cr3(swapper_pg_dir);
1112		else
1113			leave_mm(smp_processor_id());
1114	}
1115
1116	/* Get the "official" set of cpus referring to our pagetable. */
1117	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1118		for_each_online_cpu(cpu) {
1119			if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1120			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1121				continue;
1122			smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1123		}
1124		return;
1125	}
1126	cpumask_copy(mask, mm_cpumask(mm));
1127
1128	/* It's possible that a vcpu may have a stale reference to our
1129	   cr3, because its in lazy mode, and it hasn't yet flushed
1130	   its set of pending hypercalls yet.  In this case, we can
1131	   look at its actual current cr3 value, and force it to flush
1132	   if needed. */
1133	for_each_online_cpu(cpu) {
1134		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1135			cpumask_set_cpu(cpu, mask);
1136	}
1137
1138	if (!cpumask_empty(mask))
1139		smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1140	free_cpumask_var(mask);
1141}
1142#else
1143static void xen_drop_mm_ref(struct mm_struct *mm)
1144{
1145	if (current->active_mm == mm)
1146		load_cr3(swapper_pg_dir);
1147}
1148#endif
1149
1150/*
1151 * While a process runs, Xen pins its pagetables, which means that the
1152 * hypervisor forces it to be read-only, and it controls all updates
1153 * to it.  This means that all pagetable updates have to go via the
1154 * hypervisor, which is moderately expensive.
1155 *
1156 * Since we're pulling the pagetable down, we switch to use init_mm,
1157 * unpin old process pagetable and mark it all read-write, which
1158 * allows further operations on it to be simple memory accesses.
1159 *
1160 * The only subtle point is that another CPU may be still using the
1161 * pagetable because of lazy tlb flushing.  This means we need need to
1162 * switch all CPUs off this pagetable before we can unpin it.
1163 */
1164static void xen_exit_mmap(struct mm_struct *mm)
1165{
1166	get_cpu();		/* make sure we don't move around */
1167	xen_drop_mm_ref(mm);
1168	put_cpu();
1169
1170	spin_lock(&mm->page_table_lock);
1171
1172	/* pgd may not be pinned in the error exit path of execve */
1173	if (xen_page_pinned(mm->pgd))
1174		xen_pgd_unpin(mm);
1175
1176	spin_unlock(&mm->page_table_lock);
1177}
1178
1179static void xen_post_allocator_init(void);
1180
1181#ifdef CONFIG_X86_64
1182static void __init xen_cleanhighmap(unsigned long vaddr,
1183				    unsigned long vaddr_end)
1184{
1185	unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1186	pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1187
1188	/* NOTE: The loop is more greedy than the cleanup_highmap variant.
1189	 * We include the PMD passed in on _both_ boundaries. */
1190	for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PAGE_SIZE));
1191			pmd++, vaddr += PMD_SIZE) {
1192		if (pmd_none(*pmd))
1193			continue;
1194		if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1195			set_pmd(pmd, __pmd(0));
1196	}
1197	/* In case we did something silly, we should crash in this function
1198	 * instead of somewhere later and be confusing. */
1199	xen_mc_flush();
1200}
1201static void __init xen_pagetable_p2m_copy(void)
1202{
1203	unsigned long size;
1204	unsigned long addr;
1205	unsigned long new_mfn_list;
1206
1207	if (xen_feature(XENFEAT_auto_translated_physmap))
1208		return;
1209
1210	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1211
1212	new_mfn_list = xen_revector_p2m_tree();
1213	/* No memory or already called. */
1214	if (!new_mfn_list || new_mfn_list == xen_start_info->mfn_list)
1215		return;
1216
1217	/* using __ka address and sticking INVALID_P2M_ENTRY! */
1218	memset((void *)xen_start_info->mfn_list, 0xff, size);
1219
1220	/* We should be in __ka space. */
1221	BUG_ON(xen_start_info->mfn_list < __START_KERNEL_map);
1222	addr = xen_start_info->mfn_list;
1223	/* We roundup to the PMD, which means that if anybody at this stage is
1224	 * using the __ka address of xen_start_info or xen_start_info->shared_info
1225	 * they are in going to crash. Fortunatly we have already revectored
1226	 * in xen_setup_kernel_pagetable and in xen_setup_shared_info. */
1227	size = roundup(size, PMD_SIZE);
1228	xen_cleanhighmap(addr, addr + size);
1229
1230	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1231	memblock_free(__pa(xen_start_info->mfn_list), size);
1232	/* And revector! Bye bye old array */
1233	xen_start_info->mfn_list = new_mfn_list;
1234
1235	/* At this stage, cleanup_highmap has already cleaned __ka space
1236	 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1237	 * the ramdisk). We continue on, erasing PMD entries that point to page
1238	 * tables - do note that they are accessible at this stage via __va.
1239	 * For good measure we also round up to the PMD - which means that if
1240	 * anybody is using __ka address to the initial boot-stack - and try
1241	 * to use it - they are going to crash. The xen_start_info has been
1242	 * taken care of already in xen_setup_kernel_pagetable. */
1243	addr = xen_start_info->pt_base;
1244	size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1245
1246	xen_cleanhighmap(addr, addr + size);
1247	xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1248#ifdef DEBUG
1249	/* This is superflous and is not neccessary, but you know what
1250	 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1251	 * anything at this stage. */
1252	xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1253#endif
1254}
1255#endif
1256
1257static void __init xen_pagetable_init(void)
1258{
1259	paging_init();
1260	xen_setup_shared_info();
1261#ifdef CONFIG_X86_64
1262	xen_pagetable_p2m_copy();
1263#endif
1264	xen_post_allocator_init();
1265}
1266static void xen_write_cr2(unsigned long cr2)
1267{
1268	this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1269}
1270
1271static unsigned long xen_read_cr2(void)
1272{
1273	return this_cpu_read(xen_vcpu)->arch.cr2;
1274}
1275
1276unsigned long xen_read_cr2_direct(void)
1277{
1278	return this_cpu_read(xen_vcpu_info.arch.cr2);
1279}
1280
1281void xen_flush_tlb_all(void)
1282{
1283	struct mmuext_op *op;
1284	struct multicall_space mcs;
1285
1286	trace_xen_mmu_flush_tlb_all(0);
1287
1288	preempt_disable();
1289
1290	mcs = xen_mc_entry(sizeof(*op));
1291
1292	op = mcs.args;
1293	op->cmd = MMUEXT_TLB_FLUSH_ALL;
1294	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1295
1296	xen_mc_issue(PARAVIRT_LAZY_MMU);
1297
1298	preempt_enable();
1299}
1300static void xen_flush_tlb(void)
1301{
1302	struct mmuext_op *op;
1303	struct multicall_space mcs;
1304
1305	trace_xen_mmu_flush_tlb(0);
1306
1307	preempt_disable();
1308
1309	mcs = xen_mc_entry(sizeof(*op));
1310
1311	op = mcs.args;
1312	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1313	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1314
1315	xen_mc_issue(PARAVIRT_LAZY_MMU);
1316
1317	preempt_enable();
1318}
1319
1320static void xen_flush_tlb_single(unsigned long addr)
1321{
1322	struct mmuext_op *op;
1323	struct multicall_space mcs;
1324
1325	trace_xen_mmu_flush_tlb_single(addr);
1326
1327	preempt_disable();
1328
1329	mcs = xen_mc_entry(sizeof(*op));
1330	op = mcs.args;
1331	op->cmd = MMUEXT_INVLPG_LOCAL;
1332	op->arg1.linear_addr = addr & PAGE_MASK;
1333	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1334
1335	xen_mc_issue(PARAVIRT_LAZY_MMU);
1336
1337	preempt_enable();
1338}
1339
1340static void xen_flush_tlb_others(const struct cpumask *cpus,
1341				 struct mm_struct *mm, unsigned long start,
1342				 unsigned long end)
1343{
1344	struct {
1345		struct mmuext_op op;
1346#ifdef CONFIG_SMP
1347		DECLARE_BITMAP(mask, num_processors);
1348#else
1349		DECLARE_BITMAP(mask, NR_CPUS);
1350#endif
1351	} *args;
1352	struct multicall_space mcs;
1353
1354	trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1355
1356	if (cpumask_empty(cpus))
1357		return;		/* nothing to do */
1358
1359	mcs = xen_mc_entry(sizeof(*args));
1360	args = mcs.args;
1361	args->op.arg2.vcpumask = to_cpumask(args->mask);
1362
1363	/* Remove us, and any offline CPUS. */
1364	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1365	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1366
1367	args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1368	if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1369		args->op.cmd = MMUEXT_INVLPG_MULTI;
1370		args->op.arg1.linear_addr = start;
1371	}
1372
1373	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1374
1375	xen_mc_issue(PARAVIRT_LAZY_MMU);
1376}
1377
1378static unsigned long xen_read_cr3(void)
1379{
1380	return this_cpu_read(xen_cr3);
1381}
1382
1383static void set_current_cr3(void *v)
1384{
1385	this_cpu_write(xen_current_cr3, (unsigned long)v);
1386}
1387
1388static void __xen_write_cr3(bool kernel, unsigned long cr3)
1389{
1390	struct mmuext_op op;
1391	unsigned long mfn;
1392
1393	trace_xen_mmu_write_cr3(kernel, cr3);
1394
1395	if (cr3)
1396		mfn = pfn_to_mfn(PFN_DOWN(cr3));
1397	else
1398		mfn = 0;
1399
1400	WARN_ON(mfn == 0 && kernel);
1401
1402	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1403	op.arg1.mfn = mfn;
1404
1405	xen_extend_mmuext_op(&op);
1406
1407	if (kernel) {
1408		this_cpu_write(xen_cr3, cr3);
1409
1410		/* Update xen_current_cr3 once the batch has actually
1411		   been submitted. */
1412		xen_mc_callback(set_current_cr3, (void *)cr3);
1413	}
1414}
1415static void xen_write_cr3(unsigned long cr3)
1416{
1417	BUG_ON(preemptible());
1418
1419	xen_mc_batch();  /* disables interrupts */
1420
1421	/* Update while interrupts are disabled, so its atomic with
1422	   respect to ipis */
1423	this_cpu_write(xen_cr3, cr3);
1424
1425	__xen_write_cr3(true, cr3);
1426
1427#ifdef CONFIG_X86_64
1428	{
1429		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1430		if (user_pgd)
1431			__xen_write_cr3(false, __pa(user_pgd));
1432		else
1433			__xen_write_cr3(false, 0);
1434	}
1435#endif
1436
1437	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1438}
1439
1440#ifdef CONFIG_X86_64
1441/*
1442 * At the start of the day - when Xen launches a guest, it has already
1443 * built pagetables for the guest. We diligently look over them
1444 * in xen_setup_kernel_pagetable and graft as appropiate them in the
1445 * init_level4_pgt and its friends. Then when we are happy we load
1446 * the new init_level4_pgt - and continue on.
1447 *
1448 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1449 * up the rest of the pagetables. When it has completed it loads the cr3.
1450 * N.B. that baremetal would start at 'start_kernel' (and the early
1451 * #PF handler would create bootstrap pagetables) - so we are running
1452 * with the same assumptions as what to do when write_cr3 is executed
1453 * at this point.
1454 *
1455 * Since there are no user-page tables at all, we have two variants
1456 * of xen_write_cr3 - the early bootup (this one), and the late one
1457 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1458 * the Linux kernel and user-space are both in ring 3 while the
1459 * hypervisor is in ring 0.
1460 */
1461static void __init xen_write_cr3_init(unsigned long cr3)
1462{
1463	BUG_ON(preemptible());
1464
1465	xen_mc_batch();  /* disables interrupts */
1466
1467	/* Update while interrupts are disabled, so its atomic with
1468	   respect to ipis */
1469	this_cpu_write(xen_cr3, cr3);
1470
1471	__xen_write_cr3(true, cr3);
1472
1473	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1474}
1475#endif
1476
1477static int xen_pgd_alloc(struct mm_struct *mm)
1478{
1479	pgd_t *pgd = mm->pgd;
1480	int ret = 0;
1481
1482	BUG_ON(PagePinned(virt_to_page(pgd)));
1483
1484#ifdef CONFIG_X86_64
1485	{
1486		struct page *page = virt_to_page(pgd);
1487		pgd_t *user_pgd;
1488
1489		BUG_ON(page->private != 0);
1490
1491		ret = -ENOMEM;
1492
1493		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1494		page->private = (unsigned long)user_pgd;
1495
1496		if (user_pgd != NULL) {
1497			user_pgd[pgd_index(VSYSCALL_START)] =
1498				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1499			ret = 0;
1500		}
1501
1502		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1503	}
1504#endif
1505
1506	return ret;
1507}
1508
1509static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1510{
1511#ifdef CONFIG_X86_64
1512	pgd_t *user_pgd = xen_get_user_pgd(pgd);
1513
1514	if (user_pgd)
1515		free_page((unsigned long)user_pgd);
1516#endif
1517}
1518
1519#ifdef CONFIG_X86_32
1520static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1521{
1522	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
1523	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1524		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1525			       pte_val_ma(pte));
1526
1527	return pte;
1528}
1529#else /* CONFIG_X86_64 */
1530static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1531{
1532	return pte;
1533}
1534#endif /* CONFIG_X86_64 */
1535
1536/*
1537 * Init-time set_pte while constructing initial pagetables, which
1538 * doesn't allow RO page table pages to be remapped RW.
1539 *
1540 * If there is no MFN for this PFN then this page is initially
1541 * ballooned out so clear the PTE (as in decrease_reservation() in
1542 * drivers/xen/balloon.c).
1543 *
1544 * Many of these PTE updates are done on unpinned and writable pages
1545 * and doing a hypercall for these is unnecessary and expensive.  At
1546 * this point it is not possible to tell if a page is pinned or not,
1547 * so always write the PTE directly and rely on Xen trapping and
1548 * emulating any updates as necessary.
1549 */
1550static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1551{
1552	if (pte_mfn(pte) != INVALID_P2M_ENTRY)
1553		pte = mask_rw_pte(ptep, pte);
1554	else
1555		pte = __pte_ma(0);
1556
1557	native_set_pte(ptep, pte);
1558}
1559
1560static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1561{
1562	struct mmuext_op op;
1563	op.cmd = cmd;
1564	op.arg1.mfn = pfn_to_mfn(pfn);
1565	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1566		BUG();
1567}
1568
1569/* Early in boot, while setting up the initial pagetable, assume
1570   everything is pinned. */
1571static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1572{
1573#ifdef CONFIG_FLATMEM
1574	BUG_ON(mem_map);	/* should only be used early */
1575#endif
1576	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1577	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1578}
1579
1580/* Used for pmd and pud */
1581static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1582{
1583#ifdef CONFIG_FLATMEM
1584	BUG_ON(mem_map);	/* should only be used early */
1585#endif
1586	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1587}
1588
1589/* Early release_pte assumes that all pts are pinned, since there's
1590   only init_mm and anything attached to that is pinned. */
1591static void __init xen_release_pte_init(unsigned long pfn)
1592{
1593	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1594	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1595}
1596
1597static void __init xen_release_pmd_init(unsigned long pfn)
1598{
1599	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1600}
1601
1602static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1603{
1604	struct multicall_space mcs;
1605	struct mmuext_op *op;
1606
1607	mcs = __xen_mc_entry(sizeof(*op));
1608	op = mcs.args;
1609	op->cmd = cmd;
1610	op->arg1.mfn = pfn_to_mfn(pfn);
1611
1612	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1613}
1614
1615static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1616{
1617	struct multicall_space mcs;
1618	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1619
1620	mcs = __xen_mc_entry(0);
1621	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1622				pfn_pte(pfn, prot), 0);
1623}
1624
1625/* This needs to make sure the new pte page is pinned iff its being
1626   attached to a pinned pagetable. */
1627static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1628				    unsigned level)
1629{
1630	bool pinned = PagePinned(virt_to_page(mm->pgd));
1631
1632	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1633
1634	if (pinned) {
1635		struct page *page = pfn_to_page(pfn);
1636
1637		SetPagePinned(page);
1638
1639		if (!PageHighMem(page)) {
1640			xen_mc_batch();
1641
1642			__set_pfn_prot(pfn, PAGE_KERNEL_RO);
1643
1644			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1645				__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1646
1647			xen_mc_issue(PARAVIRT_LAZY_MMU);
1648		} else {
1649			/* make sure there are no stray mappings of
1650			   this page */
1651			kmap_flush_unused();
1652		}
1653	}
1654}
1655
1656static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1657{
1658	xen_alloc_ptpage(mm, pfn, PT_PTE);
1659}
1660
1661static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1662{
1663	xen_alloc_ptpage(mm, pfn, PT_PMD);
1664}
1665
1666/* This should never happen until we're OK to use struct page */
1667static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1668{
1669	struct page *page = pfn_to_page(pfn);
1670	bool pinned = PagePinned(page);
1671
1672	trace_xen_mmu_release_ptpage(pfn, level, pinned);
1673
1674	if (pinned) {
1675		if (!PageHighMem(page)) {
1676			xen_mc_batch();
1677
1678			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1679				__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1680
1681			__set_pfn_prot(pfn, PAGE_KERNEL);
1682
1683			xen_mc_issue(PARAVIRT_LAZY_MMU);
1684		}
1685		ClearPagePinned(page);
1686	}
1687}
1688
1689static void xen_release_pte(unsigned long pfn)
1690{
1691	xen_release_ptpage(pfn, PT_PTE);
1692}
1693
1694static void xen_release_pmd(unsigned long pfn)
1695{
1696	xen_release_ptpage(pfn, PT_PMD);
1697}
1698
1699#if PAGETABLE_LEVELS == 4
1700static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1701{
1702	xen_alloc_ptpage(mm, pfn, PT_PUD);
1703}
1704
1705static void xen_release_pud(unsigned long pfn)
1706{
1707	xen_release_ptpage(pfn, PT_PUD);
1708}
1709#endif
1710
1711void __init xen_reserve_top(void)
1712{
1713#ifdef CONFIG_X86_32
1714	unsigned long top = HYPERVISOR_VIRT_START;
1715	struct xen_platform_parameters pp;
1716
1717	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1718		top = pp.virt_start;
1719
1720	reserve_top_address(-top);
1721#endif	/* CONFIG_X86_32 */
1722}
1723
1724/*
1725 * Like __va(), but returns address in the kernel mapping (which is
1726 * all we have until the physical memory mapping has been set up.
1727 */
1728static void *__ka(phys_addr_t paddr)
1729{
1730#ifdef CONFIG_X86_64
1731	return (void *)(paddr + __START_KERNEL_map);
1732#else
1733	return __va(paddr);
1734#endif
1735}
1736
1737/* Convert a machine address to physical address */
1738static unsigned long m2p(phys_addr_t maddr)
1739{
1740	phys_addr_t paddr;
1741
1742	maddr &= PTE_PFN_MASK;
1743	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1744
1745	return paddr;
1746}
1747
1748/* Convert a machine address to kernel virtual */
1749static void *m2v(phys_addr_t maddr)
1750{
1751	return __ka(m2p(maddr));
1752}
1753
1754/* Set the page permissions on an identity-mapped pages */
1755static void set_page_prot_flags(void *addr, pgprot_t prot, unsigned long flags)
1756{
1757	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1758	pte_t pte = pfn_pte(pfn, prot);
1759
1760	/* For PVH no need to set R/O or R/W to pin them or unpin them. */
1761	if (xen_feature(XENFEAT_auto_translated_physmap))
1762		return;
1763
1764	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1765		BUG();
1766}
1767static void set_page_prot(void *addr, pgprot_t prot)
1768{
1769	return set_page_prot_flags(addr, prot, UVMF_NONE);
1770}
1771#ifdef CONFIG_X86_32
1772static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1773{
1774	unsigned pmdidx, pteidx;
1775	unsigned ident_pte;
1776	unsigned long pfn;
1777
1778	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1779				      PAGE_SIZE);
1780
1781	ident_pte = 0;
1782	pfn = 0;
1783	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1784		pte_t *pte_page;
1785
1786		/* Reuse or allocate a page of ptes */
1787		if (pmd_present(pmd[pmdidx]))
1788			pte_page = m2v(pmd[pmdidx].pmd);
1789		else {
1790			/* Check for free pte pages */
1791			if (ident_pte == LEVEL1_IDENT_ENTRIES)
1792				break;
1793
1794			pte_page = &level1_ident_pgt[ident_pte];
1795			ident_pte += PTRS_PER_PTE;
1796
1797			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1798		}
1799
1800		/* Install mappings */
1801		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1802			pte_t pte;
1803
1804#ifdef CONFIG_X86_32
1805			if (pfn > max_pfn_mapped)
1806				max_pfn_mapped = pfn;
1807#endif
1808
1809			if (!pte_none(pte_page[pteidx]))
1810				continue;
1811
1812			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1813			pte_page[pteidx] = pte;
1814		}
1815	}
1816
1817	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1818		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1819
1820	set_page_prot(pmd, PAGE_KERNEL_RO);
1821}
1822#endif
1823void __init xen_setup_machphys_mapping(void)
1824{
1825	struct xen_machphys_mapping mapping;
1826
1827	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1828		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1829		machine_to_phys_nr = mapping.max_mfn + 1;
1830	} else {
1831		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1832	}
1833#ifdef CONFIG_X86_32
1834	WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1835		< machine_to_phys_mapping);
1836#endif
1837}
1838
1839#ifdef CONFIG_X86_64
1840static void convert_pfn_mfn(void *v)
1841{
1842	pte_t *pte = v;
1843	int i;
1844
1845	/* All levels are converted the same way, so just treat them
1846	   as ptes. */
1847	for (i = 0; i < PTRS_PER_PTE; i++)
1848		pte[i] = xen_make_pte(pte[i].pte);
1849}
1850static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1851				 unsigned long addr)
1852{
1853	if (*pt_base == PFN_DOWN(__pa(addr))) {
1854		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1855		clear_page((void *)addr);
1856		(*pt_base)++;
1857	}
1858	if (*pt_end == PFN_DOWN(__pa(addr))) {
1859		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1860		clear_page((void *)addr);
1861		(*pt_end)--;
1862	}
1863}
1864/*
1865 * Set up the initial kernel pagetable.
1866 *
1867 * We can construct this by grafting the Xen provided pagetable into
1868 * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1869 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
1870 * means that only the kernel has a physical mapping to start with -
1871 * but that's enough to get __va working.  We need to fill in the rest
1872 * of the physical mapping once some sort of allocator has been set
1873 * up.
1874 * NOTE: for PVH, the page tables are native.
1875 */
1876void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1877{
1878	pud_t *l3;
1879	pmd_t *l2;
1880	unsigned long addr[3];
1881	unsigned long pt_base, pt_end;
1882	unsigned i;
1883
1884	/* max_pfn_mapped is the last pfn mapped in the initial memory
1885	 * mappings. Considering that on Xen after the kernel mappings we
1886	 * have the mappings of some pages that don't exist in pfn space, we
1887	 * set max_pfn_mapped to the last real pfn mapped. */
1888	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1889
1890	pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1891	pt_end = pt_base + xen_start_info->nr_pt_frames;
1892
1893	/* Zap identity mapping */
1894	init_level4_pgt[0] = __pgd(0);
1895
1896	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1897		/* Pre-constructed entries are in pfn, so convert to mfn */
1898		/* L4[272] -> level3_ident_pgt
1899		 * L4[511] -> level3_kernel_pgt */
1900		convert_pfn_mfn(init_level4_pgt);
1901
1902		/* L3_i[0] -> level2_ident_pgt */
1903		convert_pfn_mfn(level3_ident_pgt);
1904		/* L3_k[510] -> level2_kernel_pgt
1905		 * L3_i[511] -> level2_fixmap_pgt */
1906		convert_pfn_mfn(level3_kernel_pgt);
1907	}
1908	/* We get [511][511] and have Xen's version of level2_kernel_pgt */
1909	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1910	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1911
1912	addr[0] = (unsigned long)pgd;
1913	addr[1] = (unsigned long)l3;
1914	addr[2] = (unsigned long)l2;
1915	/* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1916	 * Both L4[272][0] and L4[511][511] have entries that point to the same
1917	 * L2 (PMD) tables. Meaning that if you modify it in __va space
1918	 * it will be also modified in the __ka space! (But if you just
1919	 * modify the PMD table to point to other PTE's or none, then you
1920	 * are OK - which is what cleanup_highmap does) */
1921	copy_page(level2_ident_pgt, l2);
1922	/* Graft it onto L4[511][511] */
1923	copy_page(level2_kernel_pgt, l2);
1924
1925	/* Get [511][510] and graft that in level2_fixmap_pgt */
1926	l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1927	l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1928	copy_page(level2_fixmap_pgt, l2);
1929	/* Note that we don't do anything with level1_fixmap_pgt which
1930	 * we don't need. */
1931	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1932		/* Make pagetable pieces RO */
1933		set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1934		set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1935		set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1936		set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1937		set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1938		set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1939		set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1940
1941		/* Pin down new L4 */
1942		pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1943				  PFN_DOWN(__pa_symbol(init_level4_pgt)));
1944
1945		/* Unpin Xen-provided one */
1946		pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1947
1948		/*
1949		 * At this stage there can be no user pgd, and no page
1950		 * structure to attach it to, so make sure we just set kernel
1951		 * pgd.
1952		 */
1953		xen_mc_batch();
1954		__xen_write_cr3(true, __pa(init_level4_pgt));
1955		xen_mc_issue(PARAVIRT_LAZY_CPU);
1956	} else
1957		native_write_cr3(__pa(init_level4_pgt));
1958
1959	/* We can't that easily rip out L3 and L2, as the Xen pagetables are
1960	 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
1961	 * the initial domain. For guests using the toolstack, they are in:
1962	 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1963	 * rip out the [L4] (pgd), but for guests we shave off three pages.
1964	 */
1965	for (i = 0; i < ARRAY_SIZE(addr); i++)
1966		check_pt_base(&pt_base, &pt_end, addr[i]);
1967
1968	/* Our (by three pages) smaller Xen pagetable that we are using */
1969	memblock_reserve(PFN_PHYS(pt_base), (pt_end - pt_base) * PAGE_SIZE);
1970	/* Revector the xen_start_info */
1971	xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1972}
1973#else	/* !CONFIG_X86_64 */
1974static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1975static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1976
1977static void __init xen_write_cr3_init(unsigned long cr3)
1978{
1979	unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1980
1981	BUG_ON(read_cr3() != __pa(initial_page_table));
1982	BUG_ON(cr3 != __pa(swapper_pg_dir));
1983
1984	/*
1985	 * We are switching to swapper_pg_dir for the first time (from
1986	 * initial_page_table) and therefore need to mark that page
1987	 * read-only and then pin it.
1988	 *
1989	 * Xen disallows sharing of kernel PMDs for PAE
1990	 * guests. Therefore we must copy the kernel PMD from
1991	 * initial_page_table into a new kernel PMD to be used in
1992	 * swapper_pg_dir.
1993	 */
1994	swapper_kernel_pmd =
1995		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1996	copy_page(swapper_kernel_pmd, initial_kernel_pmd);
1997	swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1998		__pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1999	set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
2000
2001	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
2002	xen_write_cr3(cr3);
2003	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
2004
2005	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
2006			  PFN_DOWN(__pa(initial_page_table)));
2007	set_page_prot(initial_page_table, PAGE_KERNEL);
2008	set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
2009
2010	pv_mmu_ops.write_cr3 = &xen_write_cr3;
2011}
2012
2013void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
2014{
2015	pmd_t *kernel_pmd;
2016
2017	initial_kernel_pmd =
2018		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2019
2020	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
2021				  xen_start_info->nr_pt_frames * PAGE_SIZE +
2022				  512*1024);
2023
2024	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2025	copy_page(initial_kernel_pmd, kernel_pmd);
2026
2027	xen_map_identity_early(initial_kernel_pmd, max_pfn);
2028
2029	copy_page(initial_page_table, pgd);
2030	initial_page_table[KERNEL_PGD_BOUNDARY] =
2031		__pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2032
2033	set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2034	set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2035	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2036
2037	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2038
2039	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2040			  PFN_DOWN(__pa(initial_page_table)));
2041	xen_write_cr3(__pa(initial_page_table));
2042
2043	memblock_reserve(__pa(xen_start_info->pt_base),
2044			 xen_start_info->nr_pt_frames * PAGE_SIZE);
2045}
2046#endif	/* CONFIG_X86_64 */
2047
2048static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2049
2050static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2051{
2052	pte_t pte;
2053
2054	phys >>= PAGE_SHIFT;
2055
2056	switch (idx) {
2057	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2058	case FIX_RO_IDT:
2059#ifdef CONFIG_X86_32
2060	case FIX_WP_TEST:
2061# ifdef CONFIG_HIGHMEM
2062	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2063# endif
2064#else
2065	case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
2066	case VVAR_PAGE:
2067#endif
2068	case FIX_TEXT_POKE0:
2069	case FIX_TEXT_POKE1:
2070		/* All local page mappings */
2071		pte = pfn_pte(phys, prot);
2072		break;
2073
2074#ifdef CONFIG_X86_LOCAL_APIC
2075	case FIX_APIC_BASE:	/* maps dummy local APIC */
2076		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2077		break;
2078#endif
2079
2080#ifdef CONFIG_X86_IO_APIC
2081	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2082		/*
2083		 * We just don't map the IO APIC - all access is via
2084		 * hypercalls.  Keep the address in the pte for reference.
2085		 */
2086		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2087		break;
2088#endif
2089
2090	case FIX_PARAVIRT_BOOTMAP:
2091		/* This is an MFN, but it isn't an IO mapping from the
2092		   IO domain */
2093		pte = mfn_pte(phys, prot);
2094		break;
2095
2096	default:
2097		/* By default, set_fixmap is used for hardware mappings */
2098		pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
2099		break;
2100	}
2101
2102	__native_set_fixmap(idx, pte);
2103
2104#ifdef CONFIG_X86_64
2105	/* Replicate changes to map the vsyscall page into the user
2106	   pagetable vsyscall mapping. */
2107	if ((idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) ||
2108	    idx == VVAR_PAGE) {
2109		unsigned long vaddr = __fix_to_virt(idx);
2110		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2111	}
2112#endif
2113}
2114
2115static void __init xen_post_allocator_init(void)
2116{
2117	if (xen_feature(XENFEAT_auto_translated_physmap))
2118		return;
2119
2120	pv_mmu_ops.set_pte = xen_set_pte;
2121	pv_mmu_ops.set_pmd = xen_set_pmd;
2122	pv_mmu_ops.set_pud = xen_set_pud;
2123#if PAGETABLE_LEVELS == 4
2124	pv_mmu_ops.set_pgd = xen_set_pgd;
2125#endif
2126
2127	/* This will work as long as patching hasn't happened yet
2128	   (which it hasn't) */
2129	pv_mmu_ops.alloc_pte = xen_alloc_pte;
2130	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2131	pv_mmu_ops.release_pte = xen_release_pte;
2132	pv_mmu_ops.release_pmd = xen_release_pmd;
2133#if PAGETABLE_LEVELS == 4
2134	pv_mmu_ops.alloc_pud = xen_alloc_pud;
2135	pv_mmu_ops.release_pud = xen_release_pud;
2136#endif
2137
2138#ifdef CONFIG_X86_64
2139	pv_mmu_ops.write_cr3 = &xen_write_cr3;
2140	SetPagePinned(virt_to_page(level3_user_vsyscall));
2141#endif
2142	xen_mark_init_mm_pinned();
2143}
2144
2145static void xen_leave_lazy_mmu(void)
2146{
2147	preempt_disable();
2148	xen_mc_flush();
2149	paravirt_leave_lazy_mmu();
2150	preempt_enable();
2151}
2152
2153static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2154	.read_cr2 = xen_read_cr2,
2155	.write_cr2 = xen_write_cr2,
2156
2157	.read_cr3 = xen_read_cr3,
2158	.write_cr3 = xen_write_cr3_init,
2159
2160	.flush_tlb_user = xen_flush_tlb,
2161	.flush_tlb_kernel = xen_flush_tlb,
2162	.flush_tlb_single = xen_flush_tlb_single,
2163	.flush_tlb_others = xen_flush_tlb_others,
2164
2165	.pte_update = paravirt_nop,
2166	.pte_update_defer = paravirt_nop,
2167
2168	.pgd_alloc = xen_pgd_alloc,
2169	.pgd_free = xen_pgd_free,
2170
2171	.alloc_pte = xen_alloc_pte_init,
2172	.release_pte = xen_release_pte_init,
2173	.alloc_pmd = xen_alloc_pmd_init,
2174	.release_pmd = xen_release_pmd_init,
2175
2176	.set_pte = xen_set_pte_init,
2177	.set_pte_at = xen_set_pte_at,
2178	.set_pmd = xen_set_pmd_hyper,
2179
2180	.ptep_modify_prot_start = __ptep_modify_prot_start,
2181	.ptep_modify_prot_commit = __ptep_modify_prot_commit,
2182
2183	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
2184	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2185
2186	.make_pte = PV_CALLEE_SAVE(xen_make_pte),
2187	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2188
2189#ifdef CONFIG_X86_PAE
2190	.set_pte_atomic = xen_set_pte_atomic,
2191	.pte_clear = xen_pte_clear,
2192	.pmd_clear = xen_pmd_clear,
2193#endif	/* CONFIG_X86_PAE */
2194	.set_pud = xen_set_pud_hyper,
2195
2196	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2197	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2198
2199#if PAGETABLE_LEVELS == 4
2200	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
2201	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2202	.set_pgd = xen_set_pgd_hyper,
2203
2204	.alloc_pud = xen_alloc_pmd_init,
2205	.release_pud = xen_release_pmd_init,
2206#endif	/* PAGETABLE_LEVELS == 4 */
2207
2208	.activate_mm = xen_activate_mm,
2209	.dup_mmap = xen_dup_mmap,
2210	.exit_mmap = xen_exit_mmap,
2211
2212	.lazy_mode = {
2213		.enter = paravirt_enter_lazy_mmu,
2214		.leave = xen_leave_lazy_mmu,
2215		.flush = paravirt_flush_lazy_mmu,
2216	},
2217
2218	.set_fixmap = xen_set_fixmap,
2219};
2220
2221void __init xen_init_mmu_ops(void)
2222{
2223	x86_init.paging.pagetable_init = xen_pagetable_init;
2224
2225	/* Optimization - we can use the HVM one but it has no idea which
2226	 * VCPUs are descheduled - which means that it will needlessly IPI
2227	 * them. Xen knows so let it do the job.
2228	 */
2229	if (xen_feature(XENFEAT_auto_translated_physmap)) {
2230		pv_mmu_ops.flush_tlb_others = xen_flush_tlb_others;
2231		return;
2232	}
2233	pv_mmu_ops = xen_mmu_ops;
2234
2235	memset(dummy_mapping, 0xff, PAGE_SIZE);
2236}
2237
2238/* Protected by xen_reservation_lock. */
2239#define MAX_CONTIG_ORDER 9 /* 2MB */
2240static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2241
2242#define VOID_PTE (mfn_pte(0, __pgprot(0)))
2243static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2244				unsigned long *in_frames,
2245				unsigned long *out_frames)
2246{
2247	int i;
2248	struct multicall_space mcs;
2249
2250	xen_mc_batch();
2251	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2252		mcs = __xen_mc_entry(0);
2253
2254		if (in_frames)
2255			in_frames[i] = virt_to_mfn(vaddr);
2256
2257		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2258		__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2259
2260		if (out_frames)
2261			out_frames[i] = virt_to_pfn(vaddr);
2262	}
2263	xen_mc_issue(0);
2264}
2265
2266/*
2267 * Update the pfn-to-mfn mappings for a virtual address range, either to
2268 * point to an array of mfns, or contiguously from a single starting
2269 * mfn.
2270 */
2271static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2272				     unsigned long *mfns,
2273				     unsigned long first_mfn)
2274{
2275	unsigned i, limit;
2276	unsigned long mfn;
2277
2278	xen_mc_batch();
2279
2280	limit = 1u << order;
2281	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2282		struct multicall_space mcs;
2283		unsigned flags;
2284
2285		mcs = __xen_mc_entry(0);
2286		if (mfns)
2287			mfn = mfns[i];
2288		else
2289			mfn = first_mfn + i;
2290
2291		if (i < (limit - 1))
2292			flags = 0;
2293		else {
2294			if (order == 0)
2295				flags = UVMF_INVLPG | UVMF_ALL;
2296			else
2297				flags = UVMF_TLB_FLUSH | UVMF_ALL;
2298		}
2299
2300		MULTI_update_va_mapping(mcs.mc, vaddr,
2301				mfn_pte(mfn, PAGE_KERNEL), flags);
2302
2303		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2304	}
2305
2306	xen_mc_issue(0);
2307}
2308
2309/*
2310 * Perform the hypercall to exchange a region of our pfns to point to
2311 * memory with the required contiguous alignment.  Takes the pfns as
2312 * input, and populates mfns as output.
2313 *
2314 * Returns a success code indicating whether the hypervisor was able to
2315 * satisfy the request or not.
2316 */
2317static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2318			       unsigned long *pfns_in,
2319			       unsigned long extents_out,
2320			       unsigned int order_out,
2321			       unsigned long *mfns_out,
2322			       unsigned int address_bits)
2323{
2324	long rc;
2325	int success;
2326
2327	struct xen_memory_exchange exchange = {
2328		.in = {
2329			.nr_extents   = extents_in,
2330			.extent_order = order_in,
2331			.extent_start = pfns_in,
2332			.domid        = DOMID_SELF
2333		},
2334		.out = {
2335			.nr_extents   = extents_out,
2336			.extent_order = order_out,
2337			.extent_start = mfns_out,
2338			.address_bits = address_bits,
2339			.domid        = DOMID_SELF
2340		}
2341	};
2342
2343	BUG_ON(extents_in << order_in != extents_out << order_out);
2344
2345	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2346	success = (exchange.nr_exchanged == extents_in);
2347
2348	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2349	BUG_ON(success && (rc != 0));
2350
2351	return success;
2352}
2353
2354int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2355				 unsigned int address_bits,
2356				 dma_addr_t *dma_handle)
2357{
2358	unsigned long *in_frames = discontig_frames, out_frame;
2359	unsigned long  flags;
2360	int            success;
2361	unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2362
2363	/*
2364	 * Currently an auto-translated guest will not perform I/O, nor will
2365	 * it require PAE page directories below 4GB. Therefore any calls to
2366	 * this function are redundant and can be ignored.
2367	 */
2368
2369	if (xen_feature(XENFEAT_auto_translated_physmap))
2370		return 0;
2371
2372	if (unlikely(order > MAX_CONTIG_ORDER))
2373		return -ENOMEM;
2374
2375	memset((void *) vstart, 0, PAGE_SIZE << order);
2376
2377	spin_lock_irqsave(&xen_reservation_lock, flags);
2378
2379	/* 1. Zap current PTEs, remembering MFNs. */
2380	xen_zap_pfn_range(vstart, order, in_frames, NULL);
2381
2382	/* 2. Get a new contiguous memory extent. */
2383	out_frame = virt_to_pfn(vstart);
2384	success = xen_exchange_memory(1UL << order, 0, in_frames,
2385				      1, order, &out_frame,
2386				      address_bits);
2387
2388	/* 3. Map the new extent in place of old pages. */
2389	if (success)
2390		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2391	else
2392		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2393
2394	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2395
2396	*dma_handle = virt_to_machine(vstart).maddr;
2397	return success ? 0 : -ENOMEM;
2398}
2399EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2400
2401void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2402{
2403	unsigned long *out_frames = discontig_frames, in_frame;
2404	unsigned long  flags;
2405	int success;
2406	unsigned long vstart;
2407
2408	if (xen_feature(XENFEAT_auto_translated_physmap))
2409		return;
2410
2411	if (unlikely(order > MAX_CONTIG_ORDER))
2412		return;
2413
2414	vstart = (unsigned long)phys_to_virt(pstart);
2415	memset((void *) vstart, 0, PAGE_SIZE << order);
2416
2417	spin_lock_irqsave(&xen_reservation_lock, flags);
2418
2419	/* 1. Find start MFN of contiguous extent. */
2420	in_frame = virt_to_mfn(vstart);
2421
2422	/* 2. Zap current PTEs. */
2423	xen_zap_pfn_range(vstart, order, NULL, out_frames);
2424
2425	/* 3. Do the exchange for non-contiguous MFNs. */
2426	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2427					0, out_frames, 0);
2428
2429	/* 4. Map new pages in place of old pages. */
2430	if (success)
2431		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2432	else
2433		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2434
2435	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2436}
2437EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2438
2439#ifdef CONFIG_XEN_PVHVM
2440#ifdef CONFIG_PROC_VMCORE
2441/*
2442 * This function is used in two contexts:
2443 * - the kdump kernel has to check whether a pfn of the crashed kernel
2444 *   was a ballooned page. vmcore is using this function to decide
2445 *   whether to access a pfn of the crashed kernel.
2446 * - the kexec kernel has to check whether a pfn was ballooned by the
2447 *   previous kernel. If the pfn is ballooned, handle it properly.
2448 * Returns 0 if the pfn is not backed by a RAM page, the caller may
2449 * handle the pfn special in this case.
2450 */
2451static int xen_oldmem_pfn_is_ram(unsigned long pfn)
2452{
2453	struct xen_hvm_get_mem_type a = {
2454		.domid = DOMID_SELF,
2455		.pfn = pfn,
2456	};
2457	int ram;
2458
2459	if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a))
2460		return -ENXIO;
2461
2462	switch (a.mem_type) {
2463		case HVMMEM_mmio_dm:
2464			ram = 0;
2465			break;
2466		case HVMMEM_ram_rw:
2467		case HVMMEM_ram_ro:
2468		default:
2469			ram = 1;
2470			break;
2471	}
2472
2473	return ram;
2474}
2475#endif
2476
2477static void xen_hvm_exit_mmap(struct mm_struct *mm)
2478{
2479	struct xen_hvm_pagetable_dying a;
2480	int rc;
2481
2482	a.domid = DOMID_SELF;
2483	a.gpa = __pa(mm->pgd);
2484	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2485	WARN_ON_ONCE(rc < 0);
2486}
2487
2488static int is_pagetable_dying_supported(void)
2489{
2490	struct xen_hvm_pagetable_dying a;
2491	int rc = 0;
2492
2493	a.domid = DOMID_SELF;
2494	a.gpa = 0x00;
2495	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2496	if (rc < 0) {
2497		printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2498		return 0;
2499	}
2500	return 1;
2501}
2502
2503void __init xen_hvm_init_mmu_ops(void)
2504{
2505	if (is_pagetable_dying_supported())
2506		pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2507#ifdef CONFIG_PROC_VMCORE
2508	register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram);
2509#endif
2510}
2511#endif
2512
2513#define REMAP_BATCH_SIZE 16
2514
2515struct remap_data {
2516	unsigned long mfn;
2517	pgprot_t prot;
2518	struct mmu_update *mmu_update;
2519};
2520
2521static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2522				 unsigned long addr, void *data)
2523{
2524	struct remap_data *rmd = data;
2525	pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2526
2527	rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2528	rmd->mmu_update->val = pte_val_ma(pte);
2529	rmd->mmu_update++;
2530
2531	return 0;
2532}
2533
2534int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2535			       unsigned long addr,
2536			       xen_pfn_t mfn, int nr,
2537			       pgprot_t prot, unsigned domid,
2538			       struct page **pages)
2539
2540{
2541	struct remap_data rmd;
2542	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2543	int batch;
2544	unsigned long range;
2545	int err = 0;
2546
2547	if (xen_feature(XENFEAT_auto_translated_physmap))
2548		return -EINVAL;
2549
2550	prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2551
2552	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2553
2554	rmd.mfn = mfn;
2555	rmd.prot = prot;
2556
2557	while (nr) {
2558		batch = min(REMAP_BATCH_SIZE, nr);
2559		range = (unsigned long)batch << PAGE_SHIFT;
2560
2561		rmd.mmu_update = mmu_update;
2562		err = apply_to_page_range(vma->vm_mm, addr, range,
2563					  remap_area_mfn_pte_fn, &rmd);
2564		if (err)
2565			goto out;
2566
2567		err = HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid);
2568		if (err < 0)
2569			goto out;
2570
2571		nr -= batch;
2572		addr += range;
2573	}
2574
2575	err = 0;
2576out:
2577
2578	xen_flush_tlb_all();
2579
2580	return err;
2581}
2582EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2583
2584/* Returns: 0 success */
2585int xen_unmap_domain_mfn_range(struct vm_area_struct *vma,
2586			       int numpgs, struct page **pages)
2587{
2588	if (!pages || !xen_feature(XENFEAT_auto_translated_physmap))
2589		return 0;
2590
2591	return -EINVAL;
2592}
2593EXPORT_SYMBOL_GPL(xen_unmap_domain_mfn_range);