Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * AMD CPU Microcode Update Driver for Linux
4 *
5 * This driver allows to upgrade microcode on F10h AMD
6 * CPUs and later.
7 *
8 * Copyright (C) 2008-2011 Advanced Micro Devices Inc.
9 * 2013-2018 Borislav Petkov <bp@alien8.de>
10 *
11 * Author: Peter Oruba <peter.oruba@amd.com>
12 *
13 * Based on work by:
14 * Tigran Aivazian <aivazian.tigran@gmail.com>
15 *
16 * early loader:
17 * Copyright (C) 2013 Advanced Micro Devices, Inc.
18 *
19 * Author: Jacob Shin <jacob.shin@amd.com>
20 * Fixes: Borislav Petkov <bp@suse.de>
21 */
22#define pr_fmt(fmt) "microcode: " fmt
23
24#include <linux/earlycpio.h>
25#include <linux/firmware.h>
26#include <linux/uaccess.h>
27#include <linux/vmalloc.h>
28#include <linux/initrd.h>
29#include <linux/kernel.h>
30#include <linux/pci.h>
31
32#include <asm/microcode_amd.h>
33#include <asm/microcode.h>
34#include <asm/processor.h>
35#include <asm/setup.h>
36#include <asm/cpu.h>
37#include <asm/msr.h>
38
39static struct equiv_cpu_table {
40 unsigned int num_entries;
41 struct equiv_cpu_entry *entry;
42} equiv_table;
43
44/*
45 * This points to the current valid container of microcode patches which we will
46 * save from the initrd/builtin before jettisoning its contents. @mc is the
47 * microcode patch we found to match.
48 */
49struct cont_desc {
50 struct microcode_amd *mc;
51 u32 cpuid_1_eax;
52 u32 psize;
53 u8 *data;
54 size_t size;
55};
56
57static u32 ucode_new_rev;
58static u8 amd_ucode_patch[PATCH_MAX_SIZE];
59
60/*
61 * Microcode patch container file is prepended to the initrd in cpio
62 * format. See Documentation/x86/microcode.rst
63 */
64static const char
65ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
66
67static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
68{
69 unsigned int i;
70
71 if (!et || !et->num_entries)
72 return 0;
73
74 for (i = 0; i < et->num_entries; i++) {
75 struct equiv_cpu_entry *e = &et->entry[i];
76
77 if (sig == e->installed_cpu)
78 return e->equiv_cpu;
79
80 e++;
81 }
82 return 0;
83}
84
85/*
86 * Check whether there is a valid microcode container file at the beginning
87 * of @buf of size @buf_size. Set @early to use this function in the early path.
88 */
89static bool verify_container(const u8 *buf, size_t buf_size, bool early)
90{
91 u32 cont_magic;
92
93 if (buf_size <= CONTAINER_HDR_SZ) {
94 if (!early)
95 pr_debug("Truncated microcode container header.\n");
96
97 return false;
98 }
99
100 cont_magic = *(const u32 *)buf;
101 if (cont_magic != UCODE_MAGIC) {
102 if (!early)
103 pr_debug("Invalid magic value (0x%08x).\n", cont_magic);
104
105 return false;
106 }
107
108 return true;
109}
110
111/*
112 * Check whether there is a valid, non-truncated CPU equivalence table at the
113 * beginning of @buf of size @buf_size. Set @early to use this function in the
114 * early path.
115 */
116static bool verify_equivalence_table(const u8 *buf, size_t buf_size, bool early)
117{
118 const u32 *hdr = (const u32 *)buf;
119 u32 cont_type, equiv_tbl_len;
120
121 if (!verify_container(buf, buf_size, early))
122 return false;
123
124 cont_type = hdr[1];
125 if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
126 if (!early)
127 pr_debug("Wrong microcode container equivalence table type: %u.\n",
128 cont_type);
129
130 return false;
131 }
132
133 buf_size -= CONTAINER_HDR_SZ;
134
135 equiv_tbl_len = hdr[2];
136 if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
137 buf_size < equiv_tbl_len) {
138 if (!early)
139 pr_debug("Truncated equivalence table.\n");
140
141 return false;
142 }
143
144 return true;
145}
146
147/*
148 * Check whether there is a valid, non-truncated microcode patch section at the
149 * beginning of @buf of size @buf_size. Set @early to use this function in the
150 * early path.
151 *
152 * On success, @sh_psize returns the patch size according to the section header,
153 * to the caller.
154 */
155static bool
156__verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize, bool early)
157{
158 u32 p_type, p_size;
159 const u32 *hdr;
160
161 if (buf_size < SECTION_HDR_SIZE) {
162 if (!early)
163 pr_debug("Truncated patch section.\n");
164
165 return false;
166 }
167
168 hdr = (const u32 *)buf;
169 p_type = hdr[0];
170 p_size = hdr[1];
171
172 if (p_type != UCODE_UCODE_TYPE) {
173 if (!early)
174 pr_debug("Invalid type field (0x%x) in container file section header.\n",
175 p_type);
176
177 return false;
178 }
179
180 if (p_size < sizeof(struct microcode_header_amd)) {
181 if (!early)
182 pr_debug("Patch of size %u too short.\n", p_size);
183
184 return false;
185 }
186
187 *sh_psize = p_size;
188
189 return true;
190}
191
192/*
193 * Check whether the passed remaining file @buf_size is large enough to contain
194 * a patch of the indicated @sh_psize (and also whether this size does not
195 * exceed the per-family maximum). @sh_psize is the size read from the section
196 * header.
197 */
198static unsigned int __verify_patch_size(u8 family, u32 sh_psize, size_t buf_size)
199{
200 u32 max_size;
201
202 if (family >= 0x15)
203 return min_t(u32, sh_psize, buf_size);
204
205#define F1XH_MPB_MAX_SIZE 2048
206#define F14H_MPB_MAX_SIZE 1824
207
208 switch (family) {
209 case 0x10 ... 0x12:
210 max_size = F1XH_MPB_MAX_SIZE;
211 break;
212 case 0x14:
213 max_size = F14H_MPB_MAX_SIZE;
214 break;
215 default:
216 WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
217 return 0;
218 }
219
220 if (sh_psize > min_t(u32, buf_size, max_size))
221 return 0;
222
223 return sh_psize;
224}
225
226/*
227 * Verify the patch in @buf.
228 *
229 * Returns:
230 * negative: on error
231 * positive: patch is not for this family, skip it
232 * 0: success
233 */
234static int
235verify_patch(u8 family, const u8 *buf, size_t buf_size, u32 *patch_size, bool early)
236{
237 struct microcode_header_amd *mc_hdr;
238 unsigned int ret;
239 u32 sh_psize;
240 u16 proc_id;
241 u8 patch_fam;
242
243 if (!__verify_patch_section(buf, buf_size, &sh_psize, early))
244 return -1;
245
246 /*
247 * The section header length is not included in this indicated size
248 * but is present in the leftover file length so we need to subtract
249 * it before passing this value to the function below.
250 */
251 buf_size -= SECTION_HDR_SIZE;
252
253 /*
254 * Check if the remaining buffer is big enough to contain a patch of
255 * size sh_psize, as the section claims.
256 */
257 if (buf_size < sh_psize) {
258 if (!early)
259 pr_debug("Patch of size %u truncated.\n", sh_psize);
260
261 return -1;
262 }
263
264 ret = __verify_patch_size(family, sh_psize, buf_size);
265 if (!ret) {
266 if (!early)
267 pr_debug("Per-family patch size mismatch.\n");
268 return -1;
269 }
270
271 *patch_size = sh_psize;
272
273 mc_hdr = (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
274 if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
275 if (!early)
276 pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
277 return -1;
278 }
279
280 proc_id = mc_hdr->processor_rev_id;
281 patch_fam = 0xf + (proc_id >> 12);
282 if (patch_fam != family)
283 return 1;
284
285 return 0;
286}
287
288/*
289 * This scans the ucode blob for the proper container as we can have multiple
290 * containers glued together. Returns the equivalence ID from the equivalence
291 * table or 0 if none found.
292 * Returns the amount of bytes consumed while scanning. @desc contains all the
293 * data we're going to use in later stages of the application.
294 */
295static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
296{
297 struct equiv_cpu_table table;
298 size_t orig_size = size;
299 u32 *hdr = (u32 *)ucode;
300 u16 eq_id;
301 u8 *buf;
302
303 if (!verify_equivalence_table(ucode, size, true))
304 return 0;
305
306 buf = ucode;
307
308 table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
309 table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
310
311 /*
312 * Find the equivalence ID of our CPU in this table. Even if this table
313 * doesn't contain a patch for the CPU, scan through the whole container
314 * so that it can be skipped in case there are other containers appended.
315 */
316 eq_id = find_equiv_id(&table, desc->cpuid_1_eax);
317
318 buf += hdr[2] + CONTAINER_HDR_SZ;
319 size -= hdr[2] + CONTAINER_HDR_SZ;
320
321 /*
322 * Scan through the rest of the container to find where it ends. We do
323 * some basic sanity-checking too.
324 */
325 while (size > 0) {
326 struct microcode_amd *mc;
327 u32 patch_size;
328 int ret;
329
330 ret = verify_patch(x86_family(desc->cpuid_1_eax), buf, size, &patch_size, true);
331 if (ret < 0) {
332 /*
333 * Patch verification failed, skip to the next
334 * container, if there's one:
335 */
336 goto out;
337 } else if (ret > 0) {
338 goto skip;
339 }
340
341 mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
342 if (eq_id == mc->hdr.processor_rev_id) {
343 desc->psize = patch_size;
344 desc->mc = mc;
345 }
346
347skip:
348 /* Skip patch section header too: */
349 buf += patch_size + SECTION_HDR_SIZE;
350 size -= patch_size + SECTION_HDR_SIZE;
351 }
352
353 /*
354 * If we have found a patch (desc->mc), it means we're looking at the
355 * container which has a patch for this CPU so return 0 to mean, @ucode
356 * already points to the proper container. Otherwise, we return the size
357 * we scanned so that we can advance to the next container in the
358 * buffer.
359 */
360 if (desc->mc) {
361 desc->data = ucode;
362 desc->size = orig_size - size;
363
364 return 0;
365 }
366
367out:
368 return orig_size - size;
369}
370
371/*
372 * Scan the ucode blob for the proper container as we can have multiple
373 * containers glued together.
374 */
375static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
376{
377 while (size) {
378 size_t s = parse_container(ucode, size, desc);
379 if (!s)
380 return;
381
382 /* catch wraparound */
383 if (size >= s) {
384 ucode += s;
385 size -= s;
386 } else {
387 return;
388 }
389 }
390}
391
392static int __apply_microcode_amd(struct microcode_amd *mc)
393{
394 u32 rev, dummy;
395
396 native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc->hdr.data_code);
397
398 /* verify patch application was successful */
399 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
400 if (rev != mc->hdr.patch_id)
401 return -1;
402
403 return 0;
404}
405
406/*
407 * Early load occurs before we can vmalloc(). So we look for the microcode
408 * patch container file in initrd, traverse equivalent cpu table, look for a
409 * matching microcode patch, and update, all in initrd memory in place.
410 * When vmalloc() is available for use later -- on 64-bit during first AP load,
411 * and on 32-bit during save_microcode_in_initrd_amd() -- we can call
412 * load_microcode_amd() to save equivalent cpu table and microcode patches in
413 * kernel heap memory.
414 *
415 * Returns true if container found (sets @desc), false otherwise.
416 */
417static bool
418apply_microcode_early_amd(u32 cpuid_1_eax, void *ucode, size_t size, bool save_patch)
419{
420 struct cont_desc desc = { 0 };
421 u8 (*patch)[PATCH_MAX_SIZE];
422 struct microcode_amd *mc;
423 u32 rev, dummy, *new_rev;
424 bool ret = false;
425
426#ifdef CONFIG_X86_32
427 new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
428 patch = (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch);
429#else
430 new_rev = &ucode_new_rev;
431 patch = &amd_ucode_patch;
432#endif
433
434 desc.cpuid_1_eax = cpuid_1_eax;
435
436 scan_containers(ucode, size, &desc);
437
438 mc = desc.mc;
439 if (!mc)
440 return ret;
441
442 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
443
444 /*
445 * Allow application of the same revision to pick up SMT-specific
446 * changes even if the revision of the other SMT thread is already
447 * up-to-date.
448 */
449 if (rev > mc->hdr.patch_id)
450 return ret;
451
452 if (!__apply_microcode_amd(mc)) {
453 *new_rev = mc->hdr.patch_id;
454 ret = true;
455
456 if (save_patch)
457 memcpy(patch, mc, min_t(u32, desc.psize, PATCH_MAX_SIZE));
458 }
459
460 return ret;
461}
462
463static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family)
464{
465 char fw_name[36] = "amd-ucode/microcode_amd.bin";
466 struct firmware fw;
467
468 if (IS_ENABLED(CONFIG_X86_32))
469 return false;
470
471 if (family >= 0x15)
472 snprintf(fw_name, sizeof(fw_name),
473 "amd-ucode/microcode_amd_fam%.2xh.bin", family);
474
475 if (firmware_request_builtin(&fw, fw_name)) {
476 cp->size = fw.size;
477 cp->data = (void *)fw.data;
478 return true;
479 }
480
481 return false;
482}
483
484static void __load_ucode_amd(unsigned int cpuid_1_eax, struct cpio_data *ret)
485{
486 struct ucode_cpu_info *uci;
487 struct cpio_data cp;
488 const char *path;
489 bool use_pa;
490
491 if (IS_ENABLED(CONFIG_X86_32)) {
492 uci = (struct ucode_cpu_info *)__pa_nodebug(ucode_cpu_info);
493 path = (const char *)__pa_nodebug(ucode_path);
494 use_pa = true;
495 } else {
496 uci = ucode_cpu_info;
497 path = ucode_path;
498 use_pa = false;
499 }
500
501 if (!get_builtin_microcode(&cp, x86_family(cpuid_1_eax)))
502 cp = find_microcode_in_initrd(path, use_pa);
503
504 /* Needed in load_microcode_amd() */
505 uci->cpu_sig.sig = cpuid_1_eax;
506
507 *ret = cp;
508}
509
510void __init load_ucode_amd_bsp(unsigned int cpuid_1_eax)
511{
512 struct cpio_data cp = { };
513
514 __load_ucode_amd(cpuid_1_eax, &cp);
515 if (!(cp.data && cp.size))
516 return;
517
518 apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, true);
519}
520
521void load_ucode_amd_ap(unsigned int cpuid_1_eax)
522{
523 struct microcode_amd *mc;
524 struct cpio_data cp;
525 u32 *new_rev, rev, dummy;
526
527 if (IS_ENABLED(CONFIG_X86_32)) {
528 mc = (struct microcode_amd *)__pa_nodebug(amd_ucode_patch);
529 new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
530 } else {
531 mc = (struct microcode_amd *)amd_ucode_patch;
532 new_rev = &ucode_new_rev;
533 }
534
535 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
536
537 /*
538 * Check whether a new patch has been saved already. Also, allow application of
539 * the same revision in order to pick up SMT-thread-specific configuration even
540 * if the sibling SMT thread already has an up-to-date revision.
541 */
542 if (*new_rev && rev <= mc->hdr.patch_id) {
543 if (!__apply_microcode_amd(mc)) {
544 *new_rev = mc->hdr.patch_id;
545 return;
546 }
547 }
548
549 __load_ucode_amd(cpuid_1_eax, &cp);
550 if (!(cp.data && cp.size))
551 return;
552
553 apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, false);
554}
555
556static enum ucode_state
557load_microcode_amd(bool save, u8 family, const u8 *data, size_t size);
558
559int __init save_microcode_in_initrd_amd(unsigned int cpuid_1_eax)
560{
561 struct cont_desc desc = { 0 };
562 enum ucode_state ret;
563 struct cpio_data cp;
564
565 cp = find_microcode_in_initrd(ucode_path, false);
566 if (!(cp.data && cp.size))
567 return -EINVAL;
568
569 desc.cpuid_1_eax = cpuid_1_eax;
570
571 scan_containers(cp.data, cp.size, &desc);
572 if (!desc.mc)
573 return -EINVAL;
574
575 ret = load_microcode_amd(true, x86_family(cpuid_1_eax), desc.data, desc.size);
576 if (ret > UCODE_UPDATED)
577 return -EINVAL;
578
579 return 0;
580}
581
582void reload_ucode_amd(void)
583{
584 struct microcode_amd *mc;
585 u32 rev, dummy __always_unused;
586
587 mc = (struct microcode_amd *)amd_ucode_patch;
588
589 rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
590
591 if (rev < mc->hdr.patch_id) {
592 if (!__apply_microcode_amd(mc)) {
593 ucode_new_rev = mc->hdr.patch_id;
594 pr_info("reload patch_level=0x%08x\n", ucode_new_rev);
595 }
596 }
597}
598static u16 __find_equiv_id(unsigned int cpu)
599{
600 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
601 return find_equiv_id(&equiv_table, uci->cpu_sig.sig);
602}
603
604/*
605 * a small, trivial cache of per-family ucode patches
606 */
607static struct ucode_patch *cache_find_patch(u16 equiv_cpu)
608{
609 struct ucode_patch *p;
610
611 list_for_each_entry(p, µcode_cache, plist)
612 if (p->equiv_cpu == equiv_cpu)
613 return p;
614 return NULL;
615}
616
617static void update_cache(struct ucode_patch *new_patch)
618{
619 struct ucode_patch *p;
620
621 list_for_each_entry(p, µcode_cache, plist) {
622 if (p->equiv_cpu == new_patch->equiv_cpu) {
623 if (p->patch_id >= new_patch->patch_id) {
624 /* we already have the latest patch */
625 kfree(new_patch->data);
626 kfree(new_patch);
627 return;
628 }
629
630 list_replace(&p->plist, &new_patch->plist);
631 kfree(p->data);
632 kfree(p);
633 return;
634 }
635 }
636 /* no patch found, add it */
637 list_add_tail(&new_patch->plist, µcode_cache);
638}
639
640static void free_cache(void)
641{
642 struct ucode_patch *p, *tmp;
643
644 list_for_each_entry_safe(p, tmp, µcode_cache, plist) {
645 __list_del(p->plist.prev, p->plist.next);
646 kfree(p->data);
647 kfree(p);
648 }
649}
650
651static struct ucode_patch *find_patch(unsigned int cpu)
652{
653 u16 equiv_id;
654
655 equiv_id = __find_equiv_id(cpu);
656 if (!equiv_id)
657 return NULL;
658
659 return cache_find_patch(equiv_id);
660}
661
662static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
663{
664 struct cpuinfo_x86 *c = &cpu_data(cpu);
665 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
666 struct ucode_patch *p;
667
668 csig->sig = cpuid_eax(0x00000001);
669 csig->rev = c->microcode;
670
671 /*
672 * a patch could have been loaded early, set uci->mc so that
673 * mc_bp_resume() can call apply_microcode()
674 */
675 p = find_patch(cpu);
676 if (p && (p->patch_id == csig->rev))
677 uci->mc = p->data;
678
679 pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev);
680
681 return 0;
682}
683
684static enum ucode_state apply_microcode_amd(int cpu)
685{
686 struct cpuinfo_x86 *c = &cpu_data(cpu);
687 struct microcode_amd *mc_amd;
688 struct ucode_cpu_info *uci;
689 struct ucode_patch *p;
690 enum ucode_state ret;
691 u32 rev, dummy __always_unused;
692
693 BUG_ON(raw_smp_processor_id() != cpu);
694
695 uci = ucode_cpu_info + cpu;
696
697 p = find_patch(cpu);
698 if (!p)
699 return UCODE_NFOUND;
700
701 mc_amd = p->data;
702 uci->mc = p->data;
703
704 rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
705
706 /* need to apply patch? */
707 if (rev >= mc_amd->hdr.patch_id) {
708 ret = UCODE_OK;
709 goto out;
710 }
711
712 if (__apply_microcode_amd(mc_amd)) {
713 pr_err("CPU%d: update failed for patch_level=0x%08x\n",
714 cpu, mc_amd->hdr.patch_id);
715 return UCODE_ERROR;
716 }
717
718 rev = mc_amd->hdr.patch_id;
719 ret = UCODE_UPDATED;
720
721 pr_info("CPU%d: new patch_level=0x%08x\n", cpu, rev);
722
723out:
724 uci->cpu_sig.rev = rev;
725 c->microcode = rev;
726
727 /* Update boot_cpu_data's revision too, if we're on the BSP: */
728 if (c->cpu_index == boot_cpu_data.cpu_index)
729 boot_cpu_data.microcode = rev;
730
731 return ret;
732}
733
734static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
735{
736 u32 equiv_tbl_len;
737 const u32 *hdr;
738
739 if (!verify_equivalence_table(buf, buf_size, false))
740 return 0;
741
742 hdr = (const u32 *)buf;
743 equiv_tbl_len = hdr[2];
744
745 equiv_table.entry = vmalloc(equiv_tbl_len);
746 if (!equiv_table.entry) {
747 pr_err("failed to allocate equivalent CPU table\n");
748 return 0;
749 }
750
751 memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
752 equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
753
754 /* add header length */
755 return equiv_tbl_len + CONTAINER_HDR_SZ;
756}
757
758static void free_equiv_cpu_table(void)
759{
760 vfree(equiv_table.entry);
761 memset(&equiv_table, 0, sizeof(equiv_table));
762}
763
764static void cleanup(void)
765{
766 free_equiv_cpu_table();
767 free_cache();
768}
769
770/*
771 * Return a non-negative value even if some of the checks failed so that
772 * we can skip over the next patch. If we return a negative value, we
773 * signal a grave error like a memory allocation has failed and the
774 * driver cannot continue functioning normally. In such cases, we tear
775 * down everything we've used up so far and exit.
776 */
777static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
778 unsigned int *patch_size)
779{
780 struct microcode_header_amd *mc_hdr;
781 struct ucode_patch *patch;
782 u16 proc_id;
783 int ret;
784
785 ret = verify_patch(family, fw, leftover, patch_size, false);
786 if (ret)
787 return ret;
788
789 patch = kzalloc(sizeof(*patch), GFP_KERNEL);
790 if (!patch) {
791 pr_err("Patch allocation failure.\n");
792 return -EINVAL;
793 }
794
795 patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
796 if (!patch->data) {
797 pr_err("Patch data allocation failure.\n");
798 kfree(patch);
799 return -EINVAL;
800 }
801 patch->size = *patch_size;
802
803 mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
804 proc_id = mc_hdr->processor_rev_id;
805
806 INIT_LIST_HEAD(&patch->plist);
807 patch->patch_id = mc_hdr->patch_id;
808 patch->equiv_cpu = proc_id;
809
810 pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n",
811 __func__, patch->patch_id, proc_id);
812
813 /* ... and add to cache. */
814 update_cache(patch);
815
816 return 0;
817}
818
819static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
820 size_t size)
821{
822 u8 *fw = (u8 *)data;
823 size_t offset;
824
825 offset = install_equiv_cpu_table(data, size);
826 if (!offset)
827 return UCODE_ERROR;
828
829 fw += offset;
830 size -= offset;
831
832 if (*(u32 *)fw != UCODE_UCODE_TYPE) {
833 pr_err("invalid type field in container file section header\n");
834 free_equiv_cpu_table();
835 return UCODE_ERROR;
836 }
837
838 while (size > 0) {
839 unsigned int crnt_size = 0;
840 int ret;
841
842 ret = verify_and_add_patch(family, fw, size, &crnt_size);
843 if (ret < 0)
844 return UCODE_ERROR;
845
846 fw += crnt_size + SECTION_HDR_SIZE;
847 size -= (crnt_size + SECTION_HDR_SIZE);
848 }
849
850 return UCODE_OK;
851}
852
853static enum ucode_state
854load_microcode_amd(bool save, u8 family, const u8 *data, size_t size)
855{
856 struct ucode_patch *p;
857 enum ucode_state ret;
858
859 /* free old equiv table */
860 free_equiv_cpu_table();
861
862 ret = __load_microcode_amd(family, data, size);
863 if (ret != UCODE_OK) {
864 cleanup();
865 return ret;
866 }
867
868 p = find_patch(0);
869 if (!p) {
870 return ret;
871 } else {
872 if (boot_cpu_data.microcode >= p->patch_id)
873 return ret;
874
875 ret = UCODE_NEW;
876 }
877
878 /* save BSP's matching patch for early load */
879 if (!save)
880 return ret;
881
882 memset(amd_ucode_patch, 0, PATCH_MAX_SIZE);
883 memcpy(amd_ucode_patch, p->data, min_t(u32, p->size, PATCH_MAX_SIZE));
884
885 return ret;
886}
887
888/*
889 * AMD microcode firmware naming convention, up to family 15h they are in
890 * the legacy file:
891 *
892 * amd-ucode/microcode_amd.bin
893 *
894 * This legacy file is always smaller than 2K in size.
895 *
896 * Beginning with family 15h, they are in family-specific firmware files:
897 *
898 * amd-ucode/microcode_amd_fam15h.bin
899 * amd-ucode/microcode_amd_fam16h.bin
900 * ...
901 *
902 * These might be larger than 2K.
903 */
904static enum ucode_state request_microcode_amd(int cpu, struct device *device)
905{
906 char fw_name[36] = "amd-ucode/microcode_amd.bin";
907 struct cpuinfo_x86 *c = &cpu_data(cpu);
908 bool bsp = c->cpu_index == boot_cpu_data.cpu_index;
909 enum ucode_state ret = UCODE_NFOUND;
910 const struct firmware *fw;
911
912 /* reload ucode container only on the boot cpu */
913 if (!bsp)
914 return UCODE_OK;
915
916 if (c->x86 >= 0x15)
917 snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
918
919 if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
920 pr_debug("failed to load file %s\n", fw_name);
921 goto out;
922 }
923
924 ret = UCODE_ERROR;
925 if (!verify_container(fw->data, fw->size, false))
926 goto fw_release;
927
928 ret = load_microcode_amd(bsp, c->x86, fw->data, fw->size);
929
930 fw_release:
931 release_firmware(fw);
932
933 out:
934 return ret;
935}
936
937static void microcode_fini_cpu_amd(int cpu)
938{
939 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
940
941 uci->mc = NULL;
942}
943
944static struct microcode_ops microcode_amd_ops = {
945 .request_microcode_fw = request_microcode_amd,
946 .collect_cpu_info = collect_cpu_info_amd,
947 .apply_microcode = apply_microcode_amd,
948 .microcode_fini_cpu = microcode_fini_cpu_amd,
949};
950
951struct microcode_ops * __init init_amd_microcode(void)
952{
953 struct cpuinfo_x86 *c = &boot_cpu_data;
954
955 if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
956 pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
957 return NULL;
958 }
959
960 if (ucode_new_rev)
961 pr_info_once("microcode updated early to new patch_level=0x%08x\n",
962 ucode_new_rev);
963
964 return µcode_amd_ops;
965}
966
967void __exit exit_amd_microcode(void)
968{
969 cleanup();
970}
1/*
2 * AMD CPU Microcode Update Driver for Linux
3 *
4 * This driver allows to upgrade microcode on F10h AMD
5 * CPUs and later.
6 *
7 * Copyright (C) 2008-2011 Advanced Micro Devices Inc.
8 * 2013-2016 Borislav Petkov <bp@alien8.de>
9 *
10 * Author: Peter Oruba <peter.oruba@amd.com>
11 *
12 * Based on work by:
13 * Tigran Aivazian <tigran@aivazian.fsnet.co.uk>
14 *
15 * early loader:
16 * Copyright (C) 2013 Advanced Micro Devices, Inc.
17 *
18 * Author: Jacob Shin <jacob.shin@amd.com>
19 * Fixes: Borislav Petkov <bp@suse.de>
20 *
21 * Licensed under the terms of the GNU General Public
22 * License version 2. See file COPYING for details.
23 */
24#define pr_fmt(fmt) "microcode: " fmt
25
26#include <linux/earlycpio.h>
27#include <linux/firmware.h>
28#include <linux/uaccess.h>
29#include <linux/vmalloc.h>
30#include <linux/initrd.h>
31#include <linux/kernel.h>
32#include <linux/pci.h>
33
34#include <asm/microcode_amd.h>
35#include <asm/microcode.h>
36#include <asm/processor.h>
37#include <asm/setup.h>
38#include <asm/cpu.h>
39#include <asm/msr.h>
40
41static struct equiv_cpu_entry *equiv_cpu_table;
42
43/*
44 * This points to the current valid container of microcode patches which we will
45 * save from the initrd/builtin before jettisoning its contents.
46 */
47struct container {
48 u8 *data;
49 size_t size;
50} cont;
51
52static u32 ucode_new_rev;
53static u8 amd_ucode_patch[PATCH_MAX_SIZE];
54static u16 this_equiv_id;
55
56/*
57 * Microcode patch container file is prepended to the initrd in cpio
58 * format. See Documentation/x86/early-microcode.txt
59 */
60static const char
61ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
62
63static size_t compute_container_size(u8 *data, u32 total_size)
64{
65 size_t size = 0;
66 u32 *header = (u32 *)data;
67
68 if (header[0] != UCODE_MAGIC ||
69 header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */
70 header[2] == 0) /* size */
71 return size;
72
73 size = header[2] + CONTAINER_HDR_SZ;
74 total_size -= size;
75 data += size;
76
77 while (total_size) {
78 u16 patch_size;
79
80 header = (u32 *)data;
81
82 if (header[0] != UCODE_UCODE_TYPE)
83 break;
84
85 /*
86 * Sanity-check patch size.
87 */
88 patch_size = header[1];
89 if (patch_size > PATCH_MAX_SIZE)
90 break;
91
92 size += patch_size + SECTION_HDR_SIZE;
93 data += patch_size + SECTION_HDR_SIZE;
94 total_size -= patch_size + SECTION_HDR_SIZE;
95 }
96
97 return size;
98}
99
100static inline u16 find_equiv_id(struct equiv_cpu_entry *equiv_cpu_table,
101 unsigned int sig)
102{
103 int i = 0;
104
105 if (!equiv_cpu_table)
106 return 0;
107
108 while (equiv_cpu_table[i].installed_cpu != 0) {
109 if (sig == equiv_cpu_table[i].installed_cpu)
110 return equiv_cpu_table[i].equiv_cpu;
111
112 i++;
113 }
114 return 0;
115}
116
117/*
118 * This scans the ucode blob for the proper container as we can have multiple
119 * containers glued together. Returns the equivalence ID from the equivalence
120 * table or 0 if none found.
121 */
122static u16
123find_proper_container(u8 *ucode, size_t size, struct container *ret_cont)
124{
125 struct container ret = { NULL, 0 };
126 u32 eax, ebx, ecx, edx;
127 struct equiv_cpu_entry *eq;
128 int offset, left;
129 u16 eq_id = 0;
130 u32 *header;
131 u8 *data;
132
133 data = ucode;
134 left = size;
135 header = (u32 *)data;
136
137
138 /* find equiv cpu table */
139 if (header[0] != UCODE_MAGIC ||
140 header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */
141 header[2] == 0) /* size */
142 return eq_id;
143
144 eax = 0x00000001;
145 ecx = 0;
146 native_cpuid(&eax, &ebx, &ecx, &edx);
147
148 while (left > 0) {
149 eq = (struct equiv_cpu_entry *)(data + CONTAINER_HDR_SZ);
150
151 ret.data = data;
152
153 /* Advance past the container header */
154 offset = header[2] + CONTAINER_HDR_SZ;
155 data += offset;
156 left -= offset;
157
158 eq_id = find_equiv_id(eq, eax);
159 if (eq_id) {
160 ret.size = compute_container_size(ret.data, left + offset);
161
162 /*
163 * truncate how much we need to iterate over in the
164 * ucode update loop below
165 */
166 left = ret.size - offset;
167
168 *ret_cont = ret;
169 return eq_id;
170 }
171
172 /*
173 * support multiple container files appended together. if this
174 * one does not have a matching equivalent cpu entry, we fast
175 * forward to the next container file.
176 */
177 while (left > 0) {
178 header = (u32 *)data;
179
180 if (header[0] == UCODE_MAGIC &&
181 header[1] == UCODE_EQUIV_CPU_TABLE_TYPE)
182 break;
183
184 offset = header[1] + SECTION_HDR_SIZE;
185 data += offset;
186 left -= offset;
187 }
188
189 /* mark where the next microcode container file starts */
190 offset = data - (u8 *)ucode;
191 ucode = data;
192 }
193
194 return eq_id;
195}
196
197static int __apply_microcode_amd(struct microcode_amd *mc_amd)
198{
199 u32 rev, dummy;
200
201 native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc_amd->hdr.data_code);
202
203 /* verify patch application was successful */
204 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
205 if (rev != mc_amd->hdr.patch_id)
206 return -1;
207
208 return 0;
209}
210
211/*
212 * Early load occurs before we can vmalloc(). So we look for the microcode
213 * patch container file in initrd, traverse equivalent cpu table, look for a
214 * matching microcode patch, and update, all in initrd memory in place.
215 * When vmalloc() is available for use later -- on 64-bit during first AP load,
216 * and on 32-bit during save_microcode_in_initrd_amd() -- we can call
217 * load_microcode_amd() to save equivalent cpu table and microcode patches in
218 * kernel heap memory.
219 *
220 * Returns true if container found (sets @ret_cont), false otherwise.
221 */
222static bool apply_microcode_early_amd(void *ucode, size_t size, bool save_patch,
223 struct container *ret_cont)
224{
225 u8 (*patch)[PATCH_MAX_SIZE];
226 u32 rev, *header, *new_rev;
227 struct container ret;
228 int offset, left;
229 u16 eq_id = 0;
230 u8 *data;
231
232#ifdef CONFIG_X86_32
233 new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
234 patch = (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch);
235#else
236 new_rev = &ucode_new_rev;
237 patch = &amd_ucode_patch;
238#endif
239
240 if (check_current_patch_level(&rev, true))
241 return false;
242
243 eq_id = find_proper_container(ucode, size, &ret);
244 if (!eq_id)
245 return false;
246
247 this_equiv_id = eq_id;
248 header = (u32 *)ret.data;
249
250 /* We're pointing to an equiv table, skip over it. */
251 data = ret.data + header[2] + CONTAINER_HDR_SZ;
252 left = ret.size - (header[2] + CONTAINER_HDR_SZ);
253
254 while (left > 0) {
255 struct microcode_amd *mc;
256
257 header = (u32 *)data;
258 if (header[0] != UCODE_UCODE_TYPE || /* type */
259 header[1] == 0) /* size */
260 break;
261
262 mc = (struct microcode_amd *)(data + SECTION_HDR_SIZE);
263
264 if (eq_id == mc->hdr.processor_rev_id && rev < mc->hdr.patch_id) {
265
266 if (!__apply_microcode_amd(mc)) {
267 rev = mc->hdr.patch_id;
268 *new_rev = rev;
269
270 if (save_patch)
271 memcpy(patch, mc, min_t(u32, header[1], PATCH_MAX_SIZE));
272 }
273 }
274
275 offset = header[1] + SECTION_HDR_SIZE;
276 data += offset;
277 left -= offset;
278 }
279
280 if (ret_cont)
281 *ret_cont = ret;
282
283 return true;
284}
285
286static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family)
287{
288#ifdef CONFIG_X86_64
289 char fw_name[36] = "amd-ucode/microcode_amd.bin";
290
291 if (family >= 0x15)
292 snprintf(fw_name, sizeof(fw_name),
293 "amd-ucode/microcode_amd_fam%.2xh.bin", family);
294
295 return get_builtin_firmware(cp, fw_name);
296#else
297 return false;
298#endif
299}
300
301void __init load_ucode_amd_bsp(unsigned int family)
302{
303 struct ucode_cpu_info *uci;
304 u32 eax, ebx, ecx, edx;
305 struct cpio_data cp;
306 const char *path;
307 bool use_pa;
308
309 if (IS_ENABLED(CONFIG_X86_32)) {
310 uci = (struct ucode_cpu_info *)__pa_nodebug(ucode_cpu_info);
311 path = (const char *)__pa_nodebug(ucode_path);
312 use_pa = true;
313 } else {
314 uci = ucode_cpu_info;
315 path = ucode_path;
316 use_pa = false;
317 }
318
319 if (!get_builtin_microcode(&cp, family))
320 cp = find_microcode_in_initrd(path, use_pa);
321
322 if (!(cp.data && cp.size))
323 return;
324
325 /* Get BSP's CPUID.EAX(1), needed in load_microcode_amd() */
326 eax = 1;
327 ecx = 0;
328 native_cpuid(&eax, &ebx, &ecx, &edx);
329 uci->cpu_sig.sig = eax;
330
331 apply_microcode_early_amd(cp.data, cp.size, true, NULL);
332}
333
334#ifdef CONFIG_X86_32
335/*
336 * On 32-bit, since AP's early load occurs before paging is turned on, we
337 * cannot traverse cpu_equiv_table and microcode_cache in kernel heap memory.
338 * So during cold boot, AP will apply_ucode_in_initrd() just like the BSP.
339 * In save_microcode_in_initrd_amd() BSP's patch is copied to amd_ucode_patch,
340 * which is used upon resume from suspend.
341 */
342void load_ucode_amd_ap(unsigned int family)
343{
344 struct microcode_amd *mc;
345 struct cpio_data cp;
346
347 mc = (struct microcode_amd *)__pa_nodebug(amd_ucode_patch);
348 if (mc->hdr.patch_id && mc->hdr.processor_rev_id) {
349 __apply_microcode_amd(mc);
350 return;
351 }
352
353 if (!get_builtin_microcode(&cp, family))
354 cp = find_microcode_in_initrd((const char *)__pa_nodebug(ucode_path), true);
355
356 if (!(cp.data && cp.size))
357 return;
358
359 /*
360 * This would set amd_ucode_patch above so that the following APs can
361 * use it directly instead of going down this path again.
362 */
363 apply_microcode_early_amd(cp.data, cp.size, true, NULL);
364}
365#else
366void load_ucode_amd_ap(unsigned int family)
367{
368 struct equiv_cpu_entry *eq;
369 struct microcode_amd *mc;
370 u32 rev, eax;
371 u16 eq_id;
372
373 /* 64-bit runs with paging enabled, thus early==false. */
374 if (check_current_patch_level(&rev, false))
375 return;
376
377 /* First AP hasn't cached it yet, go through the blob. */
378 if (!cont.data) {
379 struct cpio_data cp = { NULL, 0, "" };
380
381 if (cont.size == -1)
382 return;
383
384reget:
385 if (!get_builtin_microcode(&cp, family)) {
386#ifdef CONFIG_BLK_DEV_INITRD
387 if (!initrd_gone)
388 cp = find_cpio_data(ucode_path, (void *)initrd_start,
389 initrd_end - initrd_start, NULL);
390#endif
391 if (!(cp.data && cp.size)) {
392 /*
393 * Mark it so that other APs do not scan again
394 * for no real reason and slow down boot
395 * needlessly.
396 */
397 cont.size = -1;
398 return;
399 }
400 }
401
402 if (!apply_microcode_early_amd(cp.data, cp.size, false, &cont)) {
403 cont.size = -1;
404 return;
405 }
406 }
407
408 eax = cpuid_eax(0x00000001);
409 eq = (struct equiv_cpu_entry *)(cont.data + CONTAINER_HDR_SZ);
410
411 eq_id = find_equiv_id(eq, eax);
412 if (!eq_id)
413 return;
414
415 if (eq_id == this_equiv_id) {
416 mc = (struct microcode_amd *)amd_ucode_patch;
417
418 if (mc && rev < mc->hdr.patch_id) {
419 if (!__apply_microcode_amd(mc))
420 ucode_new_rev = mc->hdr.patch_id;
421 }
422
423 } else {
424
425 /*
426 * AP has a different equivalence ID than BSP, looks like
427 * mixed-steppings silicon so go through the ucode blob anew.
428 */
429 goto reget;
430 }
431}
432#endif /* CONFIG_X86_32 */
433
434static enum ucode_state
435load_microcode_amd(int cpu, u8 family, const u8 *data, size_t size);
436
437int __init save_microcode_in_initrd_amd(unsigned int fam)
438{
439 enum ucode_state ret;
440 int retval = 0;
441 u16 eq_id;
442
443 if (!cont.data) {
444 if (IS_ENABLED(CONFIG_X86_32) && (cont.size != -1)) {
445 struct cpio_data cp = { NULL, 0, "" };
446
447#ifdef CONFIG_BLK_DEV_INITRD
448 cp = find_cpio_data(ucode_path, (void *)initrd_start,
449 initrd_end - initrd_start, NULL);
450#endif
451
452 if (!(cp.data && cp.size)) {
453 cont.size = -1;
454 return -EINVAL;
455 }
456
457 eq_id = find_proper_container(cp.data, cp.size, &cont);
458 if (!eq_id) {
459 cont.size = -1;
460 return -EINVAL;
461 }
462
463 } else
464 return -EINVAL;
465 }
466
467 ret = load_microcode_amd(smp_processor_id(), fam, cont.data, cont.size);
468 if (ret != UCODE_OK)
469 retval = -EINVAL;
470
471 /*
472 * This will be freed any msec now, stash patches for the current
473 * family and switch to patch cache for cpu hotplug, etc later.
474 */
475 cont.data = NULL;
476 cont.size = 0;
477
478 return retval;
479}
480
481void reload_ucode_amd(void)
482{
483 struct microcode_amd *mc;
484 u32 rev;
485
486 /*
487 * early==false because this is a syscore ->resume path and by
488 * that time paging is long enabled.
489 */
490 if (check_current_patch_level(&rev, false))
491 return;
492
493 mc = (struct microcode_amd *)amd_ucode_patch;
494 if (!mc)
495 return;
496
497 if (rev < mc->hdr.patch_id) {
498 if (!__apply_microcode_amd(mc)) {
499 ucode_new_rev = mc->hdr.patch_id;
500 pr_info("reload patch_level=0x%08x\n", ucode_new_rev);
501 }
502 }
503}
504static u16 __find_equiv_id(unsigned int cpu)
505{
506 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
507 return find_equiv_id(equiv_cpu_table, uci->cpu_sig.sig);
508}
509
510static u32 find_cpu_family_by_equiv_cpu(u16 equiv_cpu)
511{
512 int i = 0;
513
514 BUG_ON(!equiv_cpu_table);
515
516 while (equiv_cpu_table[i].equiv_cpu != 0) {
517 if (equiv_cpu == equiv_cpu_table[i].equiv_cpu)
518 return equiv_cpu_table[i].installed_cpu;
519 i++;
520 }
521 return 0;
522}
523
524/*
525 * a small, trivial cache of per-family ucode patches
526 */
527static struct ucode_patch *cache_find_patch(u16 equiv_cpu)
528{
529 struct ucode_patch *p;
530
531 list_for_each_entry(p, µcode_cache, plist)
532 if (p->equiv_cpu == equiv_cpu)
533 return p;
534 return NULL;
535}
536
537static void update_cache(struct ucode_patch *new_patch)
538{
539 struct ucode_patch *p;
540
541 list_for_each_entry(p, µcode_cache, plist) {
542 if (p->equiv_cpu == new_patch->equiv_cpu) {
543 if (p->patch_id >= new_patch->patch_id)
544 /* we already have the latest patch */
545 return;
546
547 list_replace(&p->plist, &new_patch->plist);
548 kfree(p->data);
549 kfree(p);
550 return;
551 }
552 }
553 /* no patch found, add it */
554 list_add_tail(&new_patch->plist, µcode_cache);
555}
556
557static void free_cache(void)
558{
559 struct ucode_patch *p, *tmp;
560
561 list_for_each_entry_safe(p, tmp, µcode_cache, plist) {
562 __list_del(p->plist.prev, p->plist.next);
563 kfree(p->data);
564 kfree(p);
565 }
566}
567
568static struct ucode_patch *find_patch(unsigned int cpu)
569{
570 u16 equiv_id;
571
572 equiv_id = __find_equiv_id(cpu);
573 if (!equiv_id)
574 return NULL;
575
576 return cache_find_patch(equiv_id);
577}
578
579static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
580{
581 struct cpuinfo_x86 *c = &cpu_data(cpu);
582 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
583 struct ucode_patch *p;
584
585 csig->sig = cpuid_eax(0x00000001);
586 csig->rev = c->microcode;
587
588 /*
589 * a patch could have been loaded early, set uci->mc so that
590 * mc_bp_resume() can call apply_microcode()
591 */
592 p = find_patch(cpu);
593 if (p && (p->patch_id == csig->rev))
594 uci->mc = p->data;
595
596 pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev);
597
598 return 0;
599}
600
601static unsigned int verify_patch_size(u8 family, u32 patch_size,
602 unsigned int size)
603{
604 u32 max_size;
605
606#define F1XH_MPB_MAX_SIZE 2048
607#define F14H_MPB_MAX_SIZE 1824
608#define F15H_MPB_MAX_SIZE 4096
609#define F16H_MPB_MAX_SIZE 3458
610
611 switch (family) {
612 case 0x14:
613 max_size = F14H_MPB_MAX_SIZE;
614 break;
615 case 0x15:
616 max_size = F15H_MPB_MAX_SIZE;
617 break;
618 case 0x16:
619 max_size = F16H_MPB_MAX_SIZE;
620 break;
621 default:
622 max_size = F1XH_MPB_MAX_SIZE;
623 break;
624 }
625
626 if (patch_size > min_t(u32, size, max_size)) {
627 pr_err("patch size mismatch\n");
628 return 0;
629 }
630
631 return patch_size;
632}
633
634/*
635 * Those patch levels cannot be updated to newer ones and thus should be final.
636 */
637static u32 final_levels[] = {
638 0x01000098,
639 0x0100009f,
640 0x010000af,
641 0, /* T-101 terminator */
642};
643
644/*
645 * Check the current patch level on this CPU.
646 *
647 * @rev: Use it to return the patch level. It is set to 0 in the case of
648 * error.
649 *
650 * Returns:
651 * - true: if update should stop
652 * - false: otherwise
653 */
654bool check_current_patch_level(u32 *rev, bool early)
655{
656 u32 lvl, dummy, i;
657 bool ret = false;
658 u32 *levels;
659
660 native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy);
661
662 if (IS_ENABLED(CONFIG_X86_32) && early)
663 levels = (u32 *)__pa_nodebug(&final_levels);
664 else
665 levels = final_levels;
666
667 for (i = 0; levels[i]; i++) {
668 if (lvl == levels[i]) {
669 lvl = 0;
670 ret = true;
671 break;
672 }
673 }
674
675 if (rev)
676 *rev = lvl;
677
678 return ret;
679}
680
681static int apply_microcode_amd(int cpu)
682{
683 struct cpuinfo_x86 *c = &cpu_data(cpu);
684 struct microcode_amd *mc_amd;
685 struct ucode_cpu_info *uci;
686 struct ucode_patch *p;
687 u32 rev;
688
689 BUG_ON(raw_smp_processor_id() != cpu);
690
691 uci = ucode_cpu_info + cpu;
692
693 p = find_patch(cpu);
694 if (!p)
695 return 0;
696
697 mc_amd = p->data;
698 uci->mc = p->data;
699
700 if (check_current_patch_level(&rev, false))
701 return -1;
702
703 /* need to apply patch? */
704 if (rev >= mc_amd->hdr.patch_id) {
705 c->microcode = rev;
706 uci->cpu_sig.rev = rev;
707 return 0;
708 }
709
710 if (__apply_microcode_amd(mc_amd)) {
711 pr_err("CPU%d: update failed for patch_level=0x%08x\n",
712 cpu, mc_amd->hdr.patch_id);
713 return -1;
714 }
715 pr_info("CPU%d: new patch_level=0x%08x\n", cpu,
716 mc_amd->hdr.patch_id);
717
718 uci->cpu_sig.rev = mc_amd->hdr.patch_id;
719 c->microcode = mc_amd->hdr.patch_id;
720
721 return 0;
722}
723
724static int install_equiv_cpu_table(const u8 *buf)
725{
726 unsigned int *ibuf = (unsigned int *)buf;
727 unsigned int type = ibuf[1];
728 unsigned int size = ibuf[2];
729
730 if (type != UCODE_EQUIV_CPU_TABLE_TYPE || !size) {
731 pr_err("empty section/"
732 "invalid type field in container file section header\n");
733 return -EINVAL;
734 }
735
736 equiv_cpu_table = vmalloc(size);
737 if (!equiv_cpu_table) {
738 pr_err("failed to allocate equivalent CPU table\n");
739 return -ENOMEM;
740 }
741
742 memcpy(equiv_cpu_table, buf + CONTAINER_HDR_SZ, size);
743
744 /* add header length */
745 return size + CONTAINER_HDR_SZ;
746}
747
748static void free_equiv_cpu_table(void)
749{
750 vfree(equiv_cpu_table);
751 equiv_cpu_table = NULL;
752}
753
754static void cleanup(void)
755{
756 free_equiv_cpu_table();
757 free_cache();
758}
759
760/*
761 * We return the current size even if some of the checks failed so that
762 * we can skip over the next patch. If we return a negative value, we
763 * signal a grave error like a memory allocation has failed and the
764 * driver cannot continue functioning normally. In such cases, we tear
765 * down everything we've used up so far and exit.
766 */
767static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover)
768{
769 struct microcode_header_amd *mc_hdr;
770 struct ucode_patch *patch;
771 unsigned int patch_size, crnt_size, ret;
772 u32 proc_fam;
773 u16 proc_id;
774
775 patch_size = *(u32 *)(fw + 4);
776 crnt_size = patch_size + SECTION_HDR_SIZE;
777 mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
778 proc_id = mc_hdr->processor_rev_id;
779
780 proc_fam = find_cpu_family_by_equiv_cpu(proc_id);
781 if (!proc_fam) {
782 pr_err("No patch family for equiv ID: 0x%04x\n", proc_id);
783 return crnt_size;
784 }
785
786 /* check if patch is for the current family */
787 proc_fam = ((proc_fam >> 8) & 0xf) + ((proc_fam >> 20) & 0xff);
788 if (proc_fam != family)
789 return crnt_size;
790
791 if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
792 pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n",
793 mc_hdr->patch_id);
794 return crnt_size;
795 }
796
797 ret = verify_patch_size(family, patch_size, leftover);
798 if (!ret) {
799 pr_err("Patch-ID 0x%08x: size mismatch.\n", mc_hdr->patch_id);
800 return crnt_size;
801 }
802
803 patch = kzalloc(sizeof(*patch), GFP_KERNEL);
804 if (!patch) {
805 pr_err("Patch allocation failure.\n");
806 return -EINVAL;
807 }
808
809 patch->data = kmemdup(fw + SECTION_HDR_SIZE, patch_size, GFP_KERNEL);
810 if (!patch->data) {
811 pr_err("Patch data allocation failure.\n");
812 kfree(patch);
813 return -EINVAL;
814 }
815
816 INIT_LIST_HEAD(&patch->plist);
817 patch->patch_id = mc_hdr->patch_id;
818 patch->equiv_cpu = proc_id;
819
820 pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n",
821 __func__, patch->patch_id, proc_id);
822
823 /* ... and add to cache. */
824 update_cache(patch);
825
826 return crnt_size;
827}
828
829static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
830 size_t size)
831{
832 enum ucode_state ret = UCODE_ERROR;
833 unsigned int leftover;
834 u8 *fw = (u8 *)data;
835 int crnt_size = 0;
836 int offset;
837
838 offset = install_equiv_cpu_table(data);
839 if (offset < 0) {
840 pr_err("failed to create equivalent cpu table\n");
841 return ret;
842 }
843 fw += offset;
844 leftover = size - offset;
845
846 if (*(u32 *)fw != UCODE_UCODE_TYPE) {
847 pr_err("invalid type field in container file section header\n");
848 free_equiv_cpu_table();
849 return ret;
850 }
851
852 while (leftover) {
853 crnt_size = verify_and_add_patch(family, fw, leftover);
854 if (crnt_size < 0)
855 return ret;
856
857 fw += crnt_size;
858 leftover -= crnt_size;
859 }
860
861 return UCODE_OK;
862}
863
864static enum ucode_state
865load_microcode_amd(int cpu, u8 family, const u8 *data, size_t size)
866{
867 enum ucode_state ret;
868
869 /* free old equiv table */
870 free_equiv_cpu_table();
871
872 ret = __load_microcode_amd(family, data, size);
873
874 if (ret != UCODE_OK)
875 cleanup();
876
877#ifdef CONFIG_X86_32
878 /* save BSP's matching patch for early load */
879 if (cpu_data(cpu).cpu_index == boot_cpu_data.cpu_index) {
880 struct ucode_patch *p = find_patch(cpu);
881 if (p) {
882 memset(amd_ucode_patch, 0, PATCH_MAX_SIZE);
883 memcpy(amd_ucode_patch, p->data, min_t(u32, ksize(p->data),
884 PATCH_MAX_SIZE));
885 }
886 }
887#endif
888 return ret;
889}
890
891/*
892 * AMD microcode firmware naming convention, up to family 15h they are in
893 * the legacy file:
894 *
895 * amd-ucode/microcode_amd.bin
896 *
897 * This legacy file is always smaller than 2K in size.
898 *
899 * Beginning with family 15h, they are in family-specific firmware files:
900 *
901 * amd-ucode/microcode_amd_fam15h.bin
902 * amd-ucode/microcode_amd_fam16h.bin
903 * ...
904 *
905 * These might be larger than 2K.
906 */
907static enum ucode_state request_microcode_amd(int cpu, struct device *device,
908 bool refresh_fw)
909{
910 char fw_name[36] = "amd-ucode/microcode_amd.bin";
911 struct cpuinfo_x86 *c = &cpu_data(cpu);
912 enum ucode_state ret = UCODE_NFOUND;
913 const struct firmware *fw;
914
915 /* reload ucode container only on the boot cpu */
916 if (!refresh_fw || c->cpu_index != boot_cpu_data.cpu_index)
917 return UCODE_OK;
918
919 if (c->x86 >= 0x15)
920 snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
921
922 if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
923 pr_debug("failed to load file %s\n", fw_name);
924 goto out;
925 }
926
927 ret = UCODE_ERROR;
928 if (*(u32 *)fw->data != UCODE_MAGIC) {
929 pr_err("invalid magic value (0x%08x)\n", *(u32 *)fw->data);
930 goto fw_release;
931 }
932
933 ret = load_microcode_amd(cpu, c->x86, fw->data, fw->size);
934
935 fw_release:
936 release_firmware(fw);
937
938 out:
939 return ret;
940}
941
942static enum ucode_state
943request_microcode_user(int cpu, const void __user *buf, size_t size)
944{
945 return UCODE_ERROR;
946}
947
948static void microcode_fini_cpu_amd(int cpu)
949{
950 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
951
952 uci->mc = NULL;
953}
954
955static struct microcode_ops microcode_amd_ops = {
956 .request_microcode_user = request_microcode_user,
957 .request_microcode_fw = request_microcode_amd,
958 .collect_cpu_info = collect_cpu_info_amd,
959 .apply_microcode = apply_microcode_amd,
960 .microcode_fini_cpu = microcode_fini_cpu_amd,
961};
962
963struct microcode_ops * __init init_amd_microcode(void)
964{
965 struct cpuinfo_x86 *c = &boot_cpu_data;
966
967 if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
968 pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
969 return NULL;
970 }
971
972 if (ucode_new_rev)
973 pr_info_once("microcode updated early to new patch_level=0x%08x\n",
974 ucode_new_rev);
975
976 return µcode_amd_ops;
977}
978
979void __exit exit_amd_microcode(void)
980{
981 cleanup();
982}