Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.2.
  1/*
  2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
  3 *
  4 *   This program is free software; you can redistribute it and/or
  5 *   modify it under the terms of the GNU General Public License
  6 *   as published by the Free Software Foundation, version 2.
  7 *
  8 *   This program is distributed in the hope that it will be useful, but
  9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 11 *   NON INFRINGEMENT.  See the GNU General Public License for
 12 *   more details.
 13 *
 14 * From i386 code copyright (C) 1995  Linus Torvalds
 15 */
 16
 17#include <linux/signal.h>
 18#include <linux/sched.h>
 19#include <linux/kernel.h>
 20#include <linux/errno.h>
 21#include <linux/string.h>
 22#include <linux/types.h>
 23#include <linux/ptrace.h>
 24#include <linux/mman.h>
 25#include <linux/mm.h>
 26#include <linux/smp.h>
 27#include <linux/interrupt.h>
 28#include <linux/init.h>
 29#include <linux/tty.h>
 30#include <linux/vt_kern.h>		/* For unblank_screen() */
 31#include <linux/highmem.h>
 32#include <linux/extable.h>
 33#include <linux/kprobes.h>
 34#include <linux/hugetlb.h>
 35#include <linux/syscalls.h>
 36#include <linux/uaccess.h>
 37#include <linux/kdebug.h>
 38
 39#include <asm/pgalloc.h>
 40#include <asm/sections.h>
 41#include <asm/traps.h>
 42#include <asm/syscalls.h>
 43
 44#include <arch/interrupts.h>
 45
 46static noinline void force_sig_info_fault(const char *type, int si_signo,
 47					  int si_code, unsigned long address,
 48					  int fault_num,
 49					  struct task_struct *tsk,
 50					  struct pt_regs *regs)
 51{
 52	siginfo_t info;
 53
 54	if (unlikely(tsk->pid < 2)) {
 55		panic("Signal %d (code %d) at %#lx sent to %s!",
 56		      si_signo, si_code & 0xffff, address,
 57		      is_idle_task(tsk) ? "the idle task" : "init");
 58	}
 59
 60	info.si_signo = si_signo;
 61	info.si_errno = 0;
 62	info.si_code = si_code;
 63	info.si_addr = (void __user *)address;
 64	info.si_trapno = fault_num;
 65	trace_unhandled_signal(type, regs, address, si_signo);
 66	force_sig_info(si_signo, &info, tsk);
 67}
 68
 69#ifndef __tilegx__
 70/*
 71 * Synthesize the fault a PL0 process would get by doing a word-load of
 72 * an unaligned address or a high kernel address.
 73 */
 74SYSCALL_DEFINE1(cmpxchg_badaddr, unsigned long, address)
 75{
 76	struct pt_regs *regs = current_pt_regs();
 77
 78	if (address >= PAGE_OFFSET)
 79		force_sig_info_fault("atomic segfault", SIGSEGV, SEGV_MAPERR,
 80				     address, INT_DTLB_MISS, current, regs);
 81	else
 82		force_sig_info_fault("atomic alignment fault", SIGBUS,
 83				     BUS_ADRALN, address,
 84				     INT_UNALIGN_DATA, current, regs);
 85
 86	/*
 87	 * Adjust pc to point at the actual instruction, which is unusual
 88	 * for syscalls normally, but is appropriate when we are claiming
 89	 * that a syscall swint1 caused a page fault or bus error.
 90	 */
 91	regs->pc -= 8;
 92
 93	/*
 94	 * Mark this as a caller-save interrupt, like a normal page fault,
 95	 * so that when we go through the signal handler path we will
 96	 * properly restore r0, r1, and r2 for the signal handler arguments.
 97	 */
 98	regs->flags |= PT_FLAGS_CALLER_SAVES;
 99
100	return 0;
101}
102#endif
103
104static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
105{
106	unsigned index = pgd_index(address);
107	pgd_t *pgd_k;
108	pud_t *pud, *pud_k;
109	pmd_t *pmd, *pmd_k;
110
111	pgd += index;
112	pgd_k = init_mm.pgd + index;
113
114	if (!pgd_present(*pgd_k))
115		return NULL;
116
117	pud = pud_offset(pgd, address);
118	pud_k = pud_offset(pgd_k, address);
119	if (!pud_present(*pud_k))
120		return NULL;
121
122	pmd = pmd_offset(pud, address);
123	pmd_k = pmd_offset(pud_k, address);
124	if (!pmd_present(*pmd_k))
125		return NULL;
126	if (!pmd_present(*pmd))
127		set_pmd(pmd, *pmd_k);
128	else
129		BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k));
130	return pmd_k;
131}
132
133/*
134 * Handle a fault on the vmalloc area.
135 */
136static inline int vmalloc_fault(pgd_t *pgd, unsigned long address)
137{
138	pmd_t *pmd_k;
139	pte_t *pte_k;
140
141	/* Make sure we are in vmalloc area */
142	if (!(address >= VMALLOC_START && address < VMALLOC_END))
143		return -1;
144
145	/*
146	 * Synchronize this task's top level page-table
147	 * with the 'reference' page table.
148	 */
149	pmd_k = vmalloc_sync_one(pgd, address);
150	if (!pmd_k)
151		return -1;
152	pte_k = pte_offset_kernel(pmd_k, address);
153	if (!pte_present(*pte_k))
154		return -1;
155	return 0;
156}
157
158/* Wait until this PTE has completed migration. */
159static void wait_for_migration(pte_t *pte)
160{
161	if (pte_migrating(*pte)) {
162		/*
163		 * Wait until the migrater fixes up this pte.
164		 * We scale the loop count by the clock rate so we'll wait for
165		 * a few seconds here.
166		 */
167		int retries = 0;
168		int bound = get_clock_rate();
169		while (pte_migrating(*pte)) {
170			barrier();
171			if (++retries > bound)
172				panic("Hit migrating PTE (%#llx) and page PFN %#lx still migrating",
173				      pte->val, pte_pfn(*pte));
174		}
175	}
176}
177
178/*
179 * It's not generally safe to use "current" to get the page table pointer,
180 * since we might be running an oprofile interrupt in the middle of a
181 * task switch.
182 */
183static pgd_t *get_current_pgd(void)
184{
185	HV_Context ctx = hv_inquire_context();
186	unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT;
187	struct page *pgd_page = pfn_to_page(pgd_pfn);
188	BUG_ON(PageHighMem(pgd_page));
189	return (pgd_t *) __va(ctx.page_table);
190}
191
192/*
193 * We can receive a page fault from a migrating PTE at any time.
194 * Handle it by just waiting until the fault resolves.
195 *
196 * It's also possible to get a migrating kernel PTE that resolves
197 * itself during the downcall from hypervisor to Linux.  We just check
198 * here to see if the PTE seems valid, and if so we retry it.
199 *
200 * NOTE! We MUST NOT take any locks for this case.  We may be in an
201 * interrupt or a critical region, and must do as little as possible.
202 * Similarly, we can't use atomic ops here, since we may be handling a
203 * fault caused by an atomic op access.
204 *
205 * If we find a migrating PTE while we're in an NMI context, and we're
206 * at a PC that has a registered exception handler, we don't wait,
207 * since this thread may (e.g.) have been interrupted while migrating
208 * its own stack, which would then cause us to self-deadlock.
209 */
210static int handle_migrating_pte(pgd_t *pgd, int fault_num,
211				unsigned long address, unsigned long pc,
212				int is_kernel_mode, int write)
213{
214	pud_t *pud;
215	pmd_t *pmd;
216	pte_t *pte;
217	pte_t pteval;
218
219	if (pgd_addr_invalid(address))
220		return 0;
221
222	pgd += pgd_index(address);
223	pud = pud_offset(pgd, address);
224	if (!pud || !pud_present(*pud))
225		return 0;
226	pmd = pmd_offset(pud, address);
227	if (!pmd || !pmd_present(*pmd))
228		return 0;
229	pte = pmd_huge_page(*pmd) ? ((pte_t *)pmd) :
230		pte_offset_kernel(pmd, address);
231	pteval = *pte;
232	if (pte_migrating(pteval)) {
233		if (in_nmi() && search_exception_tables(pc))
234			return 0;
235		wait_for_migration(pte);
236		return 1;
237	}
238
239	if (!is_kernel_mode || !pte_present(pteval))
240		return 0;
241	if (fault_num == INT_ITLB_MISS) {
242		if (pte_exec(pteval))
243			return 1;
244	} else if (write) {
245		if (pte_write(pteval))
246			return 1;
247	} else {
248		if (pte_read(pteval))
249			return 1;
250	}
251
252	return 0;
253}
254
255/*
256 * This routine is responsible for faulting in user pages.
257 * It passes the work off to one of the appropriate routines.
258 * It returns true if the fault was successfully handled.
259 */
260static int handle_page_fault(struct pt_regs *regs,
261			     int fault_num,
262			     int is_page_fault,
263			     unsigned long address,
264			     int write)
265{
266	struct task_struct *tsk;
267	struct mm_struct *mm;
268	struct vm_area_struct *vma;
269	unsigned long stack_offset;
270	int fault;
271	int si_code;
272	int is_kernel_mode;
273	pgd_t *pgd;
274	unsigned int flags;
275
276	/* on TILE, protection faults are always writes */
277	if (!is_page_fault)
278		write = 1;
279
280	flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
281
282	is_kernel_mode = !user_mode(regs);
283
284	tsk = validate_current();
285
286	/*
287	 * Check to see if we might be overwriting the stack, and bail
288	 * out if so.  The page fault code is a relatively likely
289	 * place to get trapped in an infinite regress, and once we
290	 * overwrite the whole stack, it becomes very hard to recover.
291	 */
292	stack_offset = stack_pointer & (THREAD_SIZE-1);
293	if (stack_offset < THREAD_SIZE / 8) {
294		pr_alert("Potential stack overrun: sp %#lx\n", stack_pointer);
295		show_regs(regs);
296		pr_alert("Killing current process %d/%s\n",
297			 tsk->pid, tsk->comm);
298		do_group_exit(SIGKILL);
299	}
300
301	/*
302	 * Early on, we need to check for migrating PTE entries;
303	 * see homecache.c.  If we find a migrating PTE, we wait until
304	 * the backing page claims to be done migrating, then we proceed.
305	 * For kernel PTEs, we rewrite the PTE and return and retry.
306	 * Otherwise, we treat the fault like a normal "no PTE" fault,
307	 * rather than trying to patch up the existing PTE.
308	 */
309	pgd = get_current_pgd();
310	if (handle_migrating_pte(pgd, fault_num, address, regs->pc,
311				 is_kernel_mode, write))
312		return 1;
313
314	si_code = SEGV_MAPERR;
315
316	/*
317	 * We fault-in kernel-space virtual memory on-demand. The
318	 * 'reference' page table is init_mm.pgd.
319	 *
320	 * NOTE! We MUST NOT take any locks for this case. We may
321	 * be in an interrupt or a critical region, and should
322	 * only copy the information from the master page table,
323	 * nothing more.
324	 *
325	 * This verifies that the fault happens in kernel space
326	 * and that the fault was not a protection fault.
327	 */
328	if (unlikely(address >= TASK_SIZE &&
329		     !is_arch_mappable_range(address, 0))) {
330		if (is_kernel_mode && is_page_fault &&
331		    vmalloc_fault(pgd, address) >= 0)
332			return 1;
333		/*
334		 * Don't take the mm semaphore here. If we fixup a prefetch
335		 * fault we could otherwise deadlock.
336		 */
337		mm = NULL;  /* happy compiler */
338		vma = NULL;
339		goto bad_area_nosemaphore;
340	}
341
342	/*
343	 * If we're trying to touch user-space addresses, we must
344	 * be either at PL0, or else with interrupts enabled in the
345	 * kernel, so either way we can re-enable interrupts here
346	 * unless we are doing atomic access to user space with
347	 * interrupts disabled.
348	 */
349	if (!(regs->flags & PT_FLAGS_DISABLE_IRQ))
350		local_irq_enable();
351
352	mm = tsk->mm;
353
354	/*
355	 * If we're in an interrupt, have no user context or are running in an
356	 * region with pagefaults disabled then we must not take the fault.
357	 */
358	if (pagefault_disabled() || !mm) {
359		vma = NULL;  /* happy compiler */
360		goto bad_area_nosemaphore;
361	}
362
363	if (!is_kernel_mode)
364		flags |= FAULT_FLAG_USER;
365
366	/*
367	 * When running in the kernel we expect faults to occur only to
368	 * addresses in user space.  All other faults represent errors in the
369	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
370	 * erroneous fault occurring in a code path which already holds mmap_sem
371	 * we will deadlock attempting to validate the fault against the
372	 * address space.  Luckily the kernel only validly references user
373	 * space from well defined areas of code, which are listed in the
374	 * exceptions table.
375	 *
376	 * As the vast majority of faults will be valid we will only perform
377	 * the source reference check when there is a possibility of a deadlock.
378	 * Attempt to lock the address space, if we cannot we then validate the
379	 * source.  If this is invalid we can skip the address space check,
380	 * thus avoiding the deadlock.
381	 */
382	if (!down_read_trylock(&mm->mmap_sem)) {
383		if (is_kernel_mode &&
384		    !search_exception_tables(regs->pc)) {
385			vma = NULL;  /* happy compiler */
386			goto bad_area_nosemaphore;
387		}
388
389retry:
390		down_read(&mm->mmap_sem);
391	}
392
393	vma = find_vma(mm, address);
394	if (!vma)
395		goto bad_area;
396	if (vma->vm_start <= address)
397		goto good_area;
398	if (!(vma->vm_flags & VM_GROWSDOWN))
399		goto bad_area;
400	if (regs->sp < PAGE_OFFSET) {
401		/*
402		 * accessing the stack below sp is always a bug.
403		 */
404		if (address < regs->sp)
405			goto bad_area;
406	}
407	if (expand_stack(vma, address))
408		goto bad_area;
409
410/*
411 * Ok, we have a good vm_area for this memory access, so
412 * we can handle it..
413 */
414good_area:
415	si_code = SEGV_ACCERR;
416	if (fault_num == INT_ITLB_MISS) {
417		if (!(vma->vm_flags & VM_EXEC))
418			goto bad_area;
419	} else if (write) {
420#ifdef TEST_VERIFY_AREA
421		if (!is_page_fault && regs->cs == KERNEL_CS)
422			pr_err("WP fault at " REGFMT "\n", regs->eip);
423#endif
424		if (!(vma->vm_flags & VM_WRITE))
425			goto bad_area;
426		flags |= FAULT_FLAG_WRITE;
427	} else {
428		if (!is_page_fault || !(vma->vm_flags & VM_READ))
429			goto bad_area;
430	}
431
432	/*
433	 * If for any reason at all we couldn't handle the fault,
434	 * make sure we exit gracefully rather than endlessly redo
435	 * the fault.
436	 */
437	fault = handle_mm_fault(vma, address, flags);
438
439	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
440		return 0;
441
442	if (unlikely(fault & VM_FAULT_ERROR)) {
443		if (fault & VM_FAULT_OOM)
444			goto out_of_memory;
445		else if (fault & VM_FAULT_SIGSEGV)
446			goto bad_area;
447		else if (fault & VM_FAULT_SIGBUS)
448			goto do_sigbus;
449		BUG();
450	}
451	if (flags & FAULT_FLAG_ALLOW_RETRY) {
452		if (fault & VM_FAULT_MAJOR)
453			tsk->maj_flt++;
454		else
455			tsk->min_flt++;
456		if (fault & VM_FAULT_RETRY) {
457			flags &= ~FAULT_FLAG_ALLOW_RETRY;
458			flags |= FAULT_FLAG_TRIED;
459
460			 /*
461			  * No need to up_read(&mm->mmap_sem) as we would
462			  * have already released it in __lock_page_or_retry
463			  * in mm/filemap.c.
464			  */
465			goto retry;
466		}
467	}
468
469#if CHIP_HAS_TILE_DMA()
470	/* If this was a DMA TLB fault, restart the DMA engine. */
471	switch (fault_num) {
472	case INT_DMATLB_MISS:
473	case INT_DMATLB_MISS_DWNCL:
474	case INT_DMATLB_ACCESS:
475	case INT_DMATLB_ACCESS_DWNCL:
476		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
477		break;
478	}
479#endif
480
481	up_read(&mm->mmap_sem);
482	return 1;
483
484/*
485 * Something tried to access memory that isn't in our memory map..
486 * Fix it, but check if it's kernel or user first..
487 */
488bad_area:
489	up_read(&mm->mmap_sem);
490
491bad_area_nosemaphore:
492	/* User mode accesses just cause a SIGSEGV */
493	if (!is_kernel_mode) {
494		/*
495		 * It's possible to have interrupts off here.
496		 */
497		local_irq_enable();
498
499		force_sig_info_fault("segfault", SIGSEGV, si_code, address,
500				     fault_num, tsk, regs);
501		return 0;
502	}
503
504no_context:
505	/* Are we prepared to handle this kernel fault?  */
506	if (fixup_exception(regs))
507		return 0;
508
509/*
510 * Oops. The kernel tried to access some bad page. We'll have to
511 * terminate things with extreme prejudice.
512 */
513
514	bust_spinlocks(1);
515
516	/* FIXME: no lookup_address() yet */
517#ifdef SUPPORT_LOOKUP_ADDRESS
518	if (fault_num == INT_ITLB_MISS) {
519		pte_t *pte = lookup_address(address);
520
521		if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
522			pr_crit("kernel tried to execute non-executable page - exploit attempt? (uid: %d)\n",
523				current->uid);
524	}
525#endif
526	if (address < PAGE_SIZE)
527		pr_alert("Unable to handle kernel NULL pointer dereference\n");
528	else
529		pr_alert("Unable to handle kernel paging request\n");
530	pr_alert(" at virtual address " REGFMT ", pc " REGFMT "\n",
531		 address, regs->pc);
532
533	show_regs(regs);
534
535	if (unlikely(tsk->pid < 2)) {
536		panic("Kernel page fault running %s!",
537		      is_idle_task(tsk) ? "the idle task" : "init");
538	}
539
540	/*
541	 * More FIXME: we should probably copy the i386 here and
542	 * implement a generic die() routine.  Not today.
543	 */
544#ifdef SUPPORT_DIE
545	die("Oops", regs);
546#endif
547	bust_spinlocks(1);
548
549	do_group_exit(SIGKILL);
550
551/*
552 * We ran out of memory, or some other thing happened to us that made
553 * us unable to handle the page fault gracefully.
554 */
555out_of_memory:
556	up_read(&mm->mmap_sem);
557	if (is_kernel_mode)
558		goto no_context;
559	pagefault_out_of_memory();
560	return 0;
561
562do_sigbus:
563	up_read(&mm->mmap_sem);
564
565	/* Kernel mode? Handle exceptions or die */
566	if (is_kernel_mode)
567		goto no_context;
568
569	force_sig_info_fault("bus error", SIGBUS, BUS_ADRERR, address,
570			     fault_num, tsk, regs);
571	return 0;
572}
573
574#ifndef __tilegx__
575
576/* We must release ICS before panicking or we won't get anywhere. */
577#define ics_panic(fmt, ...)					\
578do {								\
579	__insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0);	\
580	panic(fmt, ##__VA_ARGS__);				\
581} while (0)
582
583/*
584 * When we take an ITLB or DTLB fault or access violation in the
585 * supervisor while the critical section bit is set, the hypervisor is
586 * reluctant to write new values into the EX_CONTEXT_K_x registers,
587 * since that might indicate we have not yet squirreled the SPR
588 * contents away and can thus safely take a recursive interrupt.
589 * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_K_2.
590 *
591 * Note that this routine is called before homecache_tlb_defer_enter(),
592 * which means that we can properly unlock any atomics that might
593 * be used there (good), but also means we must be very sensitive
594 * to not touch any data structures that might be located in memory
595 * that could migrate, as we could be entering the kernel on a dataplane
596 * cpu that has been deferring kernel TLB updates.  This means, for
597 * example, that we can't migrate init_mm or its pgd.
598 */
599struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num,
600				      unsigned long address,
601				      unsigned long info)
602{
603	unsigned long pc = info & ~1;
604	int write = info & 1;
605	pgd_t *pgd = get_current_pgd();
606
607	/* Retval is 1 at first since we will handle the fault fully. */
608	struct intvec_state state = {
609		do_page_fault, fault_num, address, write, 1
610	};
611
612	/* Validate that we are plausibly in the right routine. */
613	if ((pc & 0x7) != 0 || pc < PAGE_OFFSET ||
614	    (fault_num != INT_DTLB_MISS &&
615	     fault_num != INT_DTLB_ACCESS)) {
616		unsigned long old_pc = regs->pc;
617		regs->pc = pc;
618		ics_panic("Bad ICS page fault args: old PC %#lx, fault %d/%d at %#lx",
619			  old_pc, fault_num, write, address);
620	}
621
622	/* We might be faulting on a vmalloc page, so check that first. */
623	if (fault_num != INT_DTLB_ACCESS && vmalloc_fault(pgd, address) >= 0)
624		return state;
625
626	/*
627	 * If we faulted with ICS set in sys_cmpxchg, we are providing
628	 * a user syscall service that should generate a signal on
629	 * fault.  We didn't set up a kernel stack on initial entry to
630	 * sys_cmpxchg, but instead had one set up by the fault, which
631	 * (because sys_cmpxchg never releases ICS) came to us via the
632	 * SYSTEM_SAVE_K_2 mechanism, and thus EX_CONTEXT_K_[01] are
633	 * still referencing the original user code.  We release the
634	 * atomic lock and rewrite pt_regs so that it appears that we
635	 * came from user-space directly, and after we finish the
636	 * fault we'll go back to user space and re-issue the swint.
637	 * This way the backtrace information is correct if we need to
638	 * emit a stack dump at any point while handling this.
639	 *
640	 * Must match register use in sys_cmpxchg().
641	 */
642	if (pc >= (unsigned long) sys_cmpxchg &&
643	    pc < (unsigned long) __sys_cmpxchg_end) {
644#ifdef CONFIG_SMP
645		/* Don't unlock before we could have locked. */
646		if (pc >= (unsigned long)__sys_cmpxchg_grab_lock) {
647			int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
648			__atomic_fault_unlock(lock_ptr);
649		}
650#endif
651		regs->sp = regs->regs[27];
652	}
653
654	/*
655	 * We can also fault in the atomic assembly, in which
656	 * case we use the exception table to do the first-level fixup.
657	 * We may re-fixup again in the real fault handler if it
658	 * turns out the faulting address is just bad, and not,
659	 * for example, migrating.
660	 */
661	else if (pc >= (unsigned long) __start_atomic_asm_code &&
662		   pc < (unsigned long) __end_atomic_asm_code) {
663		const struct exception_table_entry *fixup;
664#ifdef CONFIG_SMP
665		/* Unlock the atomic lock. */
666		int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
667		__atomic_fault_unlock(lock_ptr);
668#endif
669		fixup = search_exception_tables(pc);
670		if (!fixup)
671			ics_panic("ICS atomic fault not in table: PC %#lx, fault %d",
672				  pc, fault_num);
673		regs->pc = fixup->fixup;
674		regs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
675	}
676
677	/*
678	 * Now that we have released the atomic lock (if necessary),
679	 * it's safe to spin if the PTE that caused the fault was migrating.
680	 */
681	if (fault_num == INT_DTLB_ACCESS)
682		write = 1;
683	if (handle_migrating_pte(pgd, fault_num, address, pc, 1, write))
684		return state;
685
686	/* Return zero so that we continue on with normal fault handling. */
687	state.retval = 0;
688	return state;
689}
690
691#endif /* !__tilegx__ */
692
693/*
694 * This routine handles page faults.  It determines the address, and the
695 * problem, and then passes it handle_page_fault() for normal DTLB and
696 * ITLB issues, and for DMA or SN processor faults when we are in user
697 * space.  For the latter, if we're in kernel mode, we just save the
698 * interrupt away appropriately and return immediately.  We can't do
699 * page faults for user code while in kernel mode.
700 */
701static inline void __do_page_fault(struct pt_regs *regs, int fault_num,
702				   unsigned long address, unsigned long write)
703{
704	int is_page_fault;
705
706#ifdef CONFIG_KPROBES
707	/*
708	 * This is to notify the fault handler of the kprobes.  The
709	 * exception code is redundant as it is also carried in REGS,
710	 * but we pass it anyhow.
711	 */
712	if (notify_die(DIE_PAGE_FAULT, "page fault", regs, -1,
713		       regs->faultnum, SIGSEGV) == NOTIFY_STOP)
714		return;
715#endif
716
717#ifdef __tilegx__
718	/*
719	 * We don't need early do_page_fault_ics() support, since unlike
720	 * Pro we don't need to worry about unlocking the atomic locks.
721	 * There is only one current case in GX where we touch any memory
722	 * under ICS other than our own kernel stack, and we handle that
723	 * here.  (If we crash due to trying to touch our own stack,
724	 * we're in too much trouble for C code to help out anyway.)
725	 */
726	if (write & ~1) {
727		unsigned long pc = write & ~1;
728		if (pc >= (unsigned long) __start_unalign_asm_code &&
729		    pc < (unsigned long) __end_unalign_asm_code) {
730			struct thread_info *ti = current_thread_info();
731			/*
732			 * Our EX_CONTEXT is still what it was from the
733			 * initial unalign exception, but now we've faulted
734			 * on the JIT page.  We would like to complete the
735			 * page fault however is appropriate, and then retry
736			 * the instruction that caused the unalign exception.
737			 * Our state has been "corrupted" by setting the low
738			 * bit in "sp", and stashing r0..r3 in the
739			 * thread_info area, so we revert all of that, then
740			 * continue as if this were a normal page fault.
741			 */
742			regs->sp &= ~1UL;
743			regs->regs[0] = ti->unalign_jit_tmp[0];
744			regs->regs[1] = ti->unalign_jit_tmp[1];
745			regs->regs[2] = ti->unalign_jit_tmp[2];
746			regs->regs[3] = ti->unalign_jit_tmp[3];
747			write &= 1;
748		} else {
749			pr_alert("%s/%d: ICS set at page fault at %#lx: %#lx\n",
750				 current->comm, current->pid, pc, address);
751			show_regs(regs);
752			do_group_exit(SIGKILL);
753		}
754	}
755#else
756	/* This case should have been handled by do_page_fault_ics(). */
757	BUG_ON(write & ~1);
758#endif
759
760#if CHIP_HAS_TILE_DMA()
761	/*
762	 * If it's a DMA fault, suspend the transfer while we're
763	 * handling the miss; we'll restart after it's handled.  If we
764	 * don't suspend, it's possible that this process could swap
765	 * out and back in, and restart the engine since the DMA is
766	 * still 'running'.
767	 */
768	if (fault_num == INT_DMATLB_MISS ||
769	    fault_num == INT_DMATLB_ACCESS ||
770	    fault_num == INT_DMATLB_MISS_DWNCL ||
771	    fault_num == INT_DMATLB_ACCESS_DWNCL) {
772		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
773		while (__insn_mfspr(SPR_DMA_USER_STATUS) &
774		       SPR_DMA_STATUS__BUSY_MASK)
775			;
776	}
777#endif
778
779	/* Validate fault num and decide if this is a first-time page fault. */
780	switch (fault_num) {
781	case INT_ITLB_MISS:
782	case INT_DTLB_MISS:
783#if CHIP_HAS_TILE_DMA()
784	case INT_DMATLB_MISS:
785	case INT_DMATLB_MISS_DWNCL:
786#endif
787		is_page_fault = 1;
788		break;
789
790	case INT_DTLB_ACCESS:
791#if CHIP_HAS_TILE_DMA()
792	case INT_DMATLB_ACCESS:
793	case INT_DMATLB_ACCESS_DWNCL:
794#endif
795		is_page_fault = 0;
796		break;
797
798	default:
799		panic("Bad fault number %d in do_page_fault", fault_num);
800	}
801
802#if CHIP_HAS_TILE_DMA()
803	if (!user_mode(regs)) {
804		struct async_tlb *async;
805		switch (fault_num) {
806#if CHIP_HAS_TILE_DMA()
807		case INT_DMATLB_MISS:
808		case INT_DMATLB_ACCESS:
809		case INT_DMATLB_MISS_DWNCL:
810		case INT_DMATLB_ACCESS_DWNCL:
811			async = &current->thread.dma_async_tlb;
812			break;
813#endif
814		default:
815			async = NULL;
816		}
817		if (async) {
818
819			/*
820			 * No vmalloc check required, so we can allow
821			 * interrupts immediately at this point.
822			 */
823			local_irq_enable();
824
825			set_thread_flag(TIF_ASYNC_TLB);
826			if (async->fault_num != 0) {
827				panic("Second async fault %d; old fault was %d (%#lx/%ld)",
828				      fault_num, async->fault_num,
829				      address, write);
830			}
831			BUG_ON(fault_num == 0);
832			async->fault_num = fault_num;
833			async->is_fault = is_page_fault;
834			async->is_write = write;
835			async->address = address;
836			return;
837		}
838	}
839#endif
840
841	handle_page_fault(regs, fault_num, is_page_fault, address, write);
842}
843
844void do_page_fault(struct pt_regs *regs, int fault_num,
845		   unsigned long address, unsigned long write)
846{
847	__do_page_fault(regs, fault_num, address, write);
848}
849
850#if CHIP_HAS_TILE_DMA()
851/*
852 * This routine effectively re-issues asynchronous page faults
853 * when we are returning to user space.
854 */
855void do_async_page_fault(struct pt_regs *regs)
856{
857	struct async_tlb *async = &current->thread.dma_async_tlb;
858
859	/*
860	 * Clear thread flag early.  If we re-interrupt while processing
861	 * code here, we will reset it and recall this routine before
862	 * returning to user space.
863	 */
864	clear_thread_flag(TIF_ASYNC_TLB);
865
866	if (async->fault_num) {
867		/*
868		 * Clear async->fault_num before calling the page-fault
869		 * handler so that if we re-interrupt before returning
870		 * from the function we have somewhere to put the
871		 * information from the new interrupt.
872		 */
873		int fault_num = async->fault_num;
874		async->fault_num = 0;
875		handle_page_fault(regs, fault_num, async->is_fault,
876				  async->address, async->is_write);
877	}
878}
879#endif /* CHIP_HAS_TILE_DMA() */
880
881
882void vmalloc_sync_all(void)
883{
884#ifdef __tilegx__
885	/* Currently all L1 kernel pmd's are static and shared. */
886	BUILD_BUG_ON(pgd_index(VMALLOC_END - PAGE_SIZE) !=
887		     pgd_index(VMALLOC_START));
888#else
889	/*
890	 * Note that races in the updates of insync and start aren't
891	 * problematic: insync can only get set bits added, and updates to
892	 * start are only improving performance (without affecting correctness
893	 * if undone).
894	 */
895	static DECLARE_BITMAP(insync, PTRS_PER_PGD);
896	static unsigned long start = PAGE_OFFSET;
897	unsigned long address;
898
899	BUILD_BUG_ON(PAGE_OFFSET & ~PGDIR_MASK);
900	for (address = start; address >= PAGE_OFFSET; address += PGDIR_SIZE) {
901		if (!test_bit(pgd_index(address), insync)) {
902			unsigned long flags;
903			struct list_head *pos;
904
905			spin_lock_irqsave(&pgd_lock, flags);
906			list_for_each(pos, &pgd_list)
907				if (!vmalloc_sync_one(list_to_pgd(pos),
908								address)) {
909					/* Must be at first entry in list. */
910					BUG_ON(pos != pgd_list.next);
911					break;
912				}
913			spin_unlock_irqrestore(&pgd_lock, flags);
914			if (pos != pgd_list.next)
915				set_bit(pgd_index(address), insync);
916		}
917		if (address == start && test_bit(pgd_index(address), insync))
918			start = address + PGDIR_SIZE;
919	}
920#endif
921}