Linux Audio

Check our new training course

Loading...
  1/*
  2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
  3 *
  4 *   This program is free software; you can redistribute it and/or
  5 *   modify it under the terms of the GNU General Public License
  6 *   as published by the Free Software Foundation, version 2.
  7 *
  8 *   This program is distributed in the hope that it will be useful, but
  9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 11 *   NON INFRINGEMENT.  See the GNU General Public License for
 12 *   more details.
 13 *
 14 * From i386 code copyright (C) 1995  Linus Torvalds
 15 */
 16
 17#include <linux/signal.h>
 18#include <linux/sched.h>
 19#include <linux/kernel.h>
 20#include <linux/errno.h>
 21#include <linux/string.h>
 22#include <linux/types.h>
 23#include <linux/ptrace.h>
 24#include <linux/mman.h>
 25#include <linux/mm.h>
 26#include <linux/smp.h>
 27#include <linux/interrupt.h>
 28#include <linux/init.h>
 29#include <linux/tty.h>
 30#include <linux/vt_kern.h>		/* For unblank_screen() */
 31#include <linux/highmem.h>
 32#include <linux/module.h>
 33#include <linux/kprobes.h>
 34#include <linux/hugetlb.h>
 35#include <linux/syscalls.h>
 36#include <linux/uaccess.h>
 37
 38#include <asm/pgalloc.h>
 39#include <asm/sections.h>
 40#include <asm/traps.h>
 41#include <asm/syscalls.h>
 42
 43#include <arch/interrupts.h>
 44
 45static noinline void force_sig_info_fault(const char *type, int si_signo,
 46					  int si_code, unsigned long address,
 47					  int fault_num,
 48					  struct task_struct *tsk,
 49					  struct pt_regs *regs)
 50{
 51	siginfo_t info;
 52
 53	if (unlikely(tsk->pid < 2)) {
 54		panic("Signal %d (code %d) at %#lx sent to %s!",
 55		      si_signo, si_code & 0xffff, address,
 56		      is_idle_task(tsk) ? "the idle task" : "init");
 57	}
 58
 59	info.si_signo = si_signo;
 60	info.si_errno = 0;
 61	info.si_code = si_code;
 62	info.si_addr = (void __user *)address;
 63	info.si_trapno = fault_num;
 64	trace_unhandled_signal(type, regs, address, si_signo);
 65	force_sig_info(si_signo, &info, tsk);
 66}
 67
 68#ifndef __tilegx__
 69/*
 70 * Synthesize the fault a PL0 process would get by doing a word-load of
 71 * an unaligned address or a high kernel address.
 72 */
 73SYSCALL_DEFINE2(cmpxchg_badaddr, unsigned long, address,
 74		struct pt_regs *, regs)
 75{
 76	if (address >= PAGE_OFFSET)
 77		force_sig_info_fault("atomic segfault", SIGSEGV, SEGV_MAPERR,
 78				     address, INT_DTLB_MISS, current, regs);
 79	else
 80		force_sig_info_fault("atomic alignment fault", SIGBUS,
 81				     BUS_ADRALN, address,
 82				     INT_UNALIGN_DATA, current, regs);
 83
 84	/*
 85	 * Adjust pc to point at the actual instruction, which is unusual
 86	 * for syscalls normally, but is appropriate when we are claiming
 87	 * that a syscall swint1 caused a page fault or bus error.
 88	 */
 89	regs->pc -= 8;
 90
 91	/*
 92	 * Mark this as a caller-save interrupt, like a normal page fault,
 93	 * so that when we go through the signal handler path we will
 94	 * properly restore r0, r1, and r2 for the signal handler arguments.
 95	 */
 96	regs->flags |= PT_FLAGS_CALLER_SAVES;
 97
 98	return 0;
 99}
100#endif
101
102static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
103{
104	unsigned index = pgd_index(address);
105	pgd_t *pgd_k;
106	pud_t *pud, *pud_k;
107	pmd_t *pmd, *pmd_k;
108
109	pgd += index;
110	pgd_k = init_mm.pgd + index;
111
112	if (!pgd_present(*pgd_k))
113		return NULL;
114
115	pud = pud_offset(pgd, address);
116	pud_k = pud_offset(pgd_k, address);
117	if (!pud_present(*pud_k))
118		return NULL;
119
120	pmd = pmd_offset(pud, address);
121	pmd_k = pmd_offset(pud_k, address);
122	if (!pmd_present(*pmd_k))
123		return NULL;
124	if (!pmd_present(*pmd)) {
125		set_pmd(pmd, *pmd_k);
126		arch_flush_lazy_mmu_mode();
127	} else
128		BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k));
129	return pmd_k;
130}
131
132/*
133 * Handle a fault on the vmalloc area.
134 */
135static inline int vmalloc_fault(pgd_t *pgd, unsigned long address)
136{
137	pmd_t *pmd_k;
138	pte_t *pte_k;
139
140	/* Make sure we are in vmalloc area */
141	if (!(address >= VMALLOC_START && address < VMALLOC_END))
142		return -1;
143
144	/*
145	 * Synchronize this task's top level page-table
146	 * with the 'reference' page table.
147	 */
148	pmd_k = vmalloc_sync_one(pgd, address);
149	if (!pmd_k)
150		return -1;
151	if (pmd_huge(*pmd_k))
152		return 0;   /* support TILE huge_vmap() API */
153	pte_k = pte_offset_kernel(pmd_k, address);
154	if (!pte_present(*pte_k))
155		return -1;
156	return 0;
157}
158
159/* Wait until this PTE has completed migration. */
160static void wait_for_migration(pte_t *pte)
161{
162	if (pte_migrating(*pte)) {
163		/*
164		 * Wait until the migrater fixes up this pte.
165		 * We scale the loop count by the clock rate so we'll wait for
166		 * a few seconds here.
167		 */
168		int retries = 0;
169		int bound = get_clock_rate();
170		while (pte_migrating(*pte)) {
171			barrier();
172			if (++retries > bound)
173				panic("Hit migrating PTE (%#llx) and"
174				      " page PFN %#lx still migrating",
175				      pte->val, pte_pfn(*pte));
176		}
177	}
178}
179
180/*
181 * It's not generally safe to use "current" to get the page table pointer,
182 * since we might be running an oprofile interrupt in the middle of a
183 * task switch.
184 */
185static pgd_t *get_current_pgd(void)
186{
187	HV_Context ctx = hv_inquire_context();
188	unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT;
189	struct page *pgd_page = pfn_to_page(pgd_pfn);
190	BUG_ON(PageHighMem(pgd_page));
191	return (pgd_t *) __va(ctx.page_table);
192}
193
194/*
195 * We can receive a page fault from a migrating PTE at any time.
196 * Handle it by just waiting until the fault resolves.
197 *
198 * It's also possible to get a migrating kernel PTE that resolves
199 * itself during the downcall from hypervisor to Linux.  We just check
200 * here to see if the PTE seems valid, and if so we retry it.
201 *
202 * NOTE! We MUST NOT take any locks for this case.  We may be in an
203 * interrupt or a critical region, and must do as little as possible.
204 * Similarly, we can't use atomic ops here, since we may be handling a
205 * fault caused by an atomic op access.
206 *
207 * If we find a migrating PTE while we're in an NMI context, and we're
208 * at a PC that has a registered exception handler, we don't wait,
209 * since this thread may (e.g.) have been interrupted while migrating
210 * its own stack, which would then cause us to self-deadlock.
211 */
212static int handle_migrating_pte(pgd_t *pgd, int fault_num,
213				unsigned long address, unsigned long pc,
214				int is_kernel_mode, int write)
215{
216	pud_t *pud;
217	pmd_t *pmd;
218	pte_t *pte;
219	pte_t pteval;
220
221	if (pgd_addr_invalid(address))
222		return 0;
223
224	pgd += pgd_index(address);
225	pud = pud_offset(pgd, address);
226	if (!pud || !pud_present(*pud))
227		return 0;
228	pmd = pmd_offset(pud, address);
229	if (!pmd || !pmd_present(*pmd))
230		return 0;
231	pte = pmd_huge_page(*pmd) ? ((pte_t *)pmd) :
232		pte_offset_kernel(pmd, address);
233	pteval = *pte;
234	if (pte_migrating(pteval)) {
235		if (in_nmi() && search_exception_tables(pc))
236			return 0;
237		wait_for_migration(pte);
238		return 1;
239	}
240
241	if (!is_kernel_mode || !pte_present(pteval))
242		return 0;
243	if (fault_num == INT_ITLB_MISS) {
244		if (pte_exec(pteval))
245			return 1;
246	} else if (write) {
247		if (pte_write(pteval))
248			return 1;
249	} else {
250		if (pte_read(pteval))
251			return 1;
252	}
253
254	return 0;
255}
256
257/*
258 * This routine is responsible for faulting in user pages.
259 * It passes the work off to one of the appropriate routines.
260 * It returns true if the fault was successfully handled.
261 */
262static int handle_page_fault(struct pt_regs *regs,
263			     int fault_num,
264			     int is_page_fault,
265			     unsigned long address,
266			     int write)
267{
268	struct task_struct *tsk;
269	struct mm_struct *mm;
270	struct vm_area_struct *vma;
271	unsigned long stack_offset;
272	int fault;
273	int si_code;
274	int is_kernel_mode;
275	pgd_t *pgd;
276	unsigned int flags;
277
278	/* on TILE, protection faults are always writes */
279	if (!is_page_fault)
280		write = 1;
281
282	flags = (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
283		 (write ? FAULT_FLAG_WRITE : 0));
284
285	is_kernel_mode = (EX1_PL(regs->ex1) != USER_PL);
286
287	tsk = validate_current();
288
289	/*
290	 * Check to see if we might be overwriting the stack, and bail
291	 * out if so.  The page fault code is a relatively likely
292	 * place to get trapped in an infinite regress, and once we
293	 * overwrite the whole stack, it becomes very hard to recover.
294	 */
295	stack_offset = stack_pointer & (THREAD_SIZE-1);
296	if (stack_offset < THREAD_SIZE / 8) {
297		pr_alert("Potential stack overrun: sp %#lx\n",
298		       stack_pointer);
299		show_regs(regs);
300		pr_alert("Killing current process %d/%s\n",
301		       tsk->pid, tsk->comm);
302		do_group_exit(SIGKILL);
303	}
304
305	/*
306	 * Early on, we need to check for migrating PTE entries;
307	 * see homecache.c.  If we find a migrating PTE, we wait until
308	 * the backing page claims to be done migrating, then we proceed.
309	 * For kernel PTEs, we rewrite the PTE and return and retry.
310	 * Otherwise, we treat the fault like a normal "no PTE" fault,
311	 * rather than trying to patch up the existing PTE.
312	 */
313	pgd = get_current_pgd();
314	if (handle_migrating_pte(pgd, fault_num, address, regs->pc,
315				 is_kernel_mode, write))
316		return 1;
317
318	si_code = SEGV_MAPERR;
319
320	/*
321	 * We fault-in kernel-space virtual memory on-demand. The
322	 * 'reference' page table is init_mm.pgd.
323	 *
324	 * NOTE! We MUST NOT take any locks for this case. We may
325	 * be in an interrupt or a critical region, and should
326	 * only copy the information from the master page table,
327	 * nothing more.
328	 *
329	 * This verifies that the fault happens in kernel space
330	 * and that the fault was not a protection fault.
331	 */
332	if (unlikely(address >= TASK_SIZE &&
333		     !is_arch_mappable_range(address, 0))) {
334		if (is_kernel_mode && is_page_fault &&
335		    vmalloc_fault(pgd, address) >= 0)
336			return 1;
337		/*
338		 * Don't take the mm semaphore here. If we fixup a prefetch
339		 * fault we could otherwise deadlock.
340		 */
341		mm = NULL;  /* happy compiler */
342		vma = NULL;
343		goto bad_area_nosemaphore;
344	}
345
346	/*
347	 * If we're trying to touch user-space addresses, we must
348	 * be either at PL0, or else with interrupts enabled in the
349	 * kernel, so either way we can re-enable interrupts here
350	 * unless we are doing atomic access to user space with
351	 * interrupts disabled.
352	 */
353	if (!(regs->flags & PT_FLAGS_DISABLE_IRQ))
354		local_irq_enable();
355
356	mm = tsk->mm;
357
358	/*
359	 * If we're in an interrupt, have no user context or are running in an
360	 * atomic region then we must not take the fault.
361	 */
362	if (in_atomic() || !mm) {
363		vma = NULL;  /* happy compiler */
364		goto bad_area_nosemaphore;
365	}
366
367	/*
368	 * When running in the kernel we expect faults to occur only to
369	 * addresses in user space.  All other faults represent errors in the
370	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
371	 * erroneous fault occurring in a code path which already holds mmap_sem
372	 * we will deadlock attempting to validate the fault against the
373	 * address space.  Luckily the kernel only validly references user
374	 * space from well defined areas of code, which are listed in the
375	 * exceptions table.
376	 *
377	 * As the vast majority of faults will be valid we will only perform
378	 * the source reference check when there is a possibility of a deadlock.
379	 * Attempt to lock the address space, if we cannot we then validate the
380	 * source.  If this is invalid we can skip the address space check,
381	 * thus avoiding the deadlock.
382	 */
383	if (!down_read_trylock(&mm->mmap_sem)) {
384		if (is_kernel_mode &&
385		    !search_exception_tables(regs->pc)) {
386			vma = NULL;  /* happy compiler */
387			goto bad_area_nosemaphore;
388		}
389
390retry:
391		down_read(&mm->mmap_sem);
392	}
393
394	vma = find_vma(mm, address);
395	if (!vma)
396		goto bad_area;
397	if (vma->vm_start <= address)
398		goto good_area;
399	if (!(vma->vm_flags & VM_GROWSDOWN))
400		goto bad_area;
401	if (regs->sp < PAGE_OFFSET) {
402		/*
403		 * accessing the stack below sp is always a bug.
404		 */
405		if (address < regs->sp)
406			goto bad_area;
407	}
408	if (expand_stack(vma, address))
409		goto bad_area;
410
411/*
412 * Ok, we have a good vm_area for this memory access, so
413 * we can handle it..
414 */
415good_area:
416	si_code = SEGV_ACCERR;
417	if (fault_num == INT_ITLB_MISS) {
418		if (!(vma->vm_flags & VM_EXEC))
419			goto bad_area;
420	} else if (write) {
421#ifdef TEST_VERIFY_AREA
422		if (!is_page_fault && regs->cs == KERNEL_CS)
423			pr_err("WP fault at "REGFMT"\n", regs->eip);
424#endif
425		if (!(vma->vm_flags & VM_WRITE))
426			goto bad_area;
427	} else {
428		if (!is_page_fault || !(vma->vm_flags & VM_READ))
429			goto bad_area;
430	}
431
432 survive:
433	/*
434	 * If for any reason at all we couldn't handle the fault,
435	 * make sure we exit gracefully rather than endlessly redo
436	 * the fault.
437	 */
438	fault = handle_mm_fault(mm, vma, address, flags);
439
440	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
441		return 0;
442
443	if (unlikely(fault & VM_FAULT_ERROR)) {
444		if (fault & VM_FAULT_OOM)
445			goto out_of_memory;
446		else if (fault & VM_FAULT_SIGBUS)
447			goto do_sigbus;
448		BUG();
449	}
450	if (flags & FAULT_FLAG_ALLOW_RETRY) {
451		if (fault & VM_FAULT_MAJOR)
452			tsk->maj_flt++;
453		else
454			tsk->min_flt++;
455		if (fault & VM_FAULT_RETRY) {
456			flags &= ~FAULT_FLAG_ALLOW_RETRY;
457
458			 /*
459			  * No need to up_read(&mm->mmap_sem) as we would
460			  * have already released it in __lock_page_or_retry
461			  * in mm/filemap.c.
462			  */
463			goto retry;
464		}
465	}
466
467#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
468	/*
469	 * If this was an asynchronous fault,
470	 * restart the appropriate engine.
471	 */
472	switch (fault_num) {
473#if CHIP_HAS_TILE_DMA()
474	case INT_DMATLB_MISS:
475	case INT_DMATLB_MISS_DWNCL:
476	case INT_DMATLB_ACCESS:
477	case INT_DMATLB_ACCESS_DWNCL:
478		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
479		break;
480#endif
481#if CHIP_HAS_SN_PROC()
482	case INT_SNITLB_MISS:
483	case INT_SNITLB_MISS_DWNCL:
484		__insn_mtspr(SPR_SNCTL,
485			     __insn_mfspr(SPR_SNCTL) &
486			     ~SPR_SNCTL__FRZPROC_MASK);
487		break;
488#endif
489	}
490#endif
491
492	up_read(&mm->mmap_sem);
493	return 1;
494
495/*
496 * Something tried to access memory that isn't in our memory map..
497 * Fix it, but check if it's kernel or user first..
498 */
499bad_area:
500	up_read(&mm->mmap_sem);
501
502bad_area_nosemaphore:
503	/* User mode accesses just cause a SIGSEGV */
504	if (!is_kernel_mode) {
505		/*
506		 * It's possible to have interrupts off here.
507		 */
508		local_irq_enable();
509
510		force_sig_info_fault("segfault", SIGSEGV, si_code, address,
511				     fault_num, tsk, regs);
512		return 0;
513	}
514
515no_context:
516	/* Are we prepared to handle this kernel fault?  */
517	if (fixup_exception(regs))
518		return 0;
519
520/*
521 * Oops. The kernel tried to access some bad page. We'll have to
522 * terminate things with extreme prejudice.
523 */
524
525	bust_spinlocks(1);
526
527	/* FIXME: no lookup_address() yet */
528#ifdef SUPPORT_LOOKUP_ADDRESS
529	if (fault_num == INT_ITLB_MISS) {
530		pte_t *pte = lookup_address(address);
531
532		if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
533			pr_crit("kernel tried to execute"
534			       " non-executable page - exploit attempt?"
535			       " (uid: %d)\n", current->uid);
536	}
537#endif
538	if (address < PAGE_SIZE)
539		pr_alert("Unable to handle kernel NULL pointer dereference\n");
540	else
541		pr_alert("Unable to handle kernel paging request\n");
542	pr_alert(" at virtual address "REGFMT", pc "REGFMT"\n",
543		 address, regs->pc);
544
545	show_regs(regs);
546
547	if (unlikely(tsk->pid < 2)) {
548		panic("Kernel page fault running %s!",
549		      is_idle_task(tsk) ? "the idle task" : "init");
550	}
551
552	/*
553	 * More FIXME: we should probably copy the i386 here and
554	 * implement a generic die() routine.  Not today.
555	 */
556#ifdef SUPPORT_DIE
557	die("Oops", regs);
558#endif
559	bust_spinlocks(1);
560
561	do_group_exit(SIGKILL);
562
563/*
564 * We ran out of memory, or some other thing happened to us that made
565 * us unable to handle the page fault gracefully.
566 */
567out_of_memory:
568	up_read(&mm->mmap_sem);
569	if (is_global_init(tsk)) {
570		yield();
571		down_read(&mm->mmap_sem);
572		goto survive;
573	}
574	pr_alert("VM: killing process %s\n", tsk->comm);
575	if (!is_kernel_mode)
576		do_group_exit(SIGKILL);
577	goto no_context;
578
579do_sigbus:
580	up_read(&mm->mmap_sem);
581
582	/* Kernel mode? Handle exceptions or die */
583	if (is_kernel_mode)
584		goto no_context;
585
586	force_sig_info_fault("bus error", SIGBUS, BUS_ADRERR, address,
587			     fault_num, tsk, regs);
588	return 0;
589}
590
591#ifndef __tilegx__
592
593/* We must release ICS before panicking or we won't get anywhere. */
594#define ics_panic(fmt, ...) do { \
595	__insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0); \
596	panic(fmt, __VA_ARGS__); \
597} while (0)
598
599/*
600 * When we take an ITLB or DTLB fault or access violation in the
601 * supervisor while the critical section bit is set, the hypervisor is
602 * reluctant to write new values into the EX_CONTEXT_K_x registers,
603 * since that might indicate we have not yet squirreled the SPR
604 * contents away and can thus safely take a recursive interrupt.
605 * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_K_2.
606 *
607 * Note that this routine is called before homecache_tlb_defer_enter(),
608 * which means that we can properly unlock any atomics that might
609 * be used there (good), but also means we must be very sensitive
610 * to not touch any data structures that might be located in memory
611 * that could migrate, as we could be entering the kernel on a dataplane
612 * cpu that has been deferring kernel TLB updates.  This means, for
613 * example, that we can't migrate init_mm or its pgd.
614 */
615struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num,
616				      unsigned long address,
617				      unsigned long info)
618{
619	unsigned long pc = info & ~1;
620	int write = info & 1;
621	pgd_t *pgd = get_current_pgd();
622
623	/* Retval is 1 at first since we will handle the fault fully. */
624	struct intvec_state state = {
625		do_page_fault, fault_num, address, write, 1
626	};
627
628	/* Validate that we are plausibly in the right routine. */
629	if ((pc & 0x7) != 0 || pc < PAGE_OFFSET ||
630	    (fault_num != INT_DTLB_MISS &&
631	     fault_num != INT_DTLB_ACCESS)) {
632		unsigned long old_pc = regs->pc;
633		regs->pc = pc;
634		ics_panic("Bad ICS page fault args:"
635			  " old PC %#lx, fault %d/%d at %#lx\n",
636			  old_pc, fault_num, write, address);
637	}
638
639	/* We might be faulting on a vmalloc page, so check that first. */
640	if (fault_num != INT_DTLB_ACCESS && vmalloc_fault(pgd, address) >= 0)
641		return state;
642
643	/*
644	 * If we faulted with ICS set in sys_cmpxchg, we are providing
645	 * a user syscall service that should generate a signal on
646	 * fault.  We didn't set up a kernel stack on initial entry to
647	 * sys_cmpxchg, but instead had one set up by the fault, which
648	 * (because sys_cmpxchg never releases ICS) came to us via the
649	 * SYSTEM_SAVE_K_2 mechanism, and thus EX_CONTEXT_K_[01] are
650	 * still referencing the original user code.  We release the
651	 * atomic lock and rewrite pt_regs so that it appears that we
652	 * came from user-space directly, and after we finish the
653	 * fault we'll go back to user space and re-issue the swint.
654	 * This way the backtrace information is correct if we need to
655	 * emit a stack dump at any point while handling this.
656	 *
657	 * Must match register use in sys_cmpxchg().
658	 */
659	if (pc >= (unsigned long) sys_cmpxchg &&
660	    pc < (unsigned long) __sys_cmpxchg_end) {
661#ifdef CONFIG_SMP
662		/* Don't unlock before we could have locked. */
663		if (pc >= (unsigned long)__sys_cmpxchg_grab_lock) {
664			int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
665			__atomic_fault_unlock(lock_ptr);
666		}
667#endif
668		regs->sp = regs->regs[27];
669	}
670
671	/*
672	 * We can also fault in the atomic assembly, in which
673	 * case we use the exception table to do the first-level fixup.
674	 * We may re-fixup again in the real fault handler if it
675	 * turns out the faulting address is just bad, and not,
676	 * for example, migrating.
677	 */
678	else if (pc >= (unsigned long) __start_atomic_asm_code &&
679		   pc < (unsigned long) __end_atomic_asm_code) {
680		const struct exception_table_entry *fixup;
681#ifdef CONFIG_SMP
682		/* Unlock the atomic lock. */
683		int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
684		__atomic_fault_unlock(lock_ptr);
685#endif
686		fixup = search_exception_tables(pc);
687		if (!fixup)
688			ics_panic("ICS atomic fault not in table:"
689				  " PC %#lx, fault %d", pc, fault_num);
690		regs->pc = fixup->fixup;
691		regs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
692	}
693
694	/*
695	 * Now that we have released the atomic lock (if necessary),
696	 * it's safe to spin if the PTE that caused the fault was migrating.
697	 */
698	if (fault_num == INT_DTLB_ACCESS)
699		write = 1;
700	if (handle_migrating_pte(pgd, fault_num, address, pc, 1, write))
701		return state;
702
703	/* Return zero so that we continue on with normal fault handling. */
704	state.retval = 0;
705	return state;
706}
707
708#endif /* !__tilegx__ */
709
710/*
711 * This routine handles page faults.  It determines the address, and the
712 * problem, and then passes it handle_page_fault() for normal DTLB and
713 * ITLB issues, and for DMA or SN processor faults when we are in user
714 * space.  For the latter, if we're in kernel mode, we just save the
715 * interrupt away appropriately and return immediately.  We can't do
716 * page faults for user code while in kernel mode.
717 */
718void do_page_fault(struct pt_regs *regs, int fault_num,
719		   unsigned long address, unsigned long write)
720{
721	int is_page_fault;
722
723	/* This case should have been handled by do_page_fault_ics(). */
724	BUG_ON(write & ~1);
725
726#if CHIP_HAS_TILE_DMA()
727	/*
728	 * If it's a DMA fault, suspend the transfer while we're
729	 * handling the miss; we'll restart after it's handled.  If we
730	 * don't suspend, it's possible that this process could swap
731	 * out and back in, and restart the engine since the DMA is
732	 * still 'running'.
733	 */
734	if (fault_num == INT_DMATLB_MISS ||
735	    fault_num == INT_DMATLB_ACCESS ||
736	    fault_num == INT_DMATLB_MISS_DWNCL ||
737	    fault_num == INT_DMATLB_ACCESS_DWNCL) {
738		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
739		while (__insn_mfspr(SPR_DMA_USER_STATUS) &
740		       SPR_DMA_STATUS__BUSY_MASK)
741			;
742	}
743#endif
744
745	/* Validate fault num and decide if this is a first-time page fault. */
746	switch (fault_num) {
747	case INT_ITLB_MISS:
748	case INT_DTLB_MISS:
749#if CHIP_HAS_TILE_DMA()
750	case INT_DMATLB_MISS:
751	case INT_DMATLB_MISS_DWNCL:
752#endif
753#if CHIP_HAS_SN_PROC()
754	case INT_SNITLB_MISS:
755	case INT_SNITLB_MISS_DWNCL:
756#endif
757		is_page_fault = 1;
758		break;
759
760	case INT_DTLB_ACCESS:
761#if CHIP_HAS_TILE_DMA()
762	case INT_DMATLB_ACCESS:
763	case INT_DMATLB_ACCESS_DWNCL:
764#endif
765		is_page_fault = 0;
766		break;
767
768	default:
769		panic("Bad fault number %d in do_page_fault", fault_num);
770	}
771
772#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
773	if (EX1_PL(regs->ex1) != USER_PL) {
774		struct async_tlb *async;
775		switch (fault_num) {
776#if CHIP_HAS_TILE_DMA()
777		case INT_DMATLB_MISS:
778		case INT_DMATLB_ACCESS:
779		case INT_DMATLB_MISS_DWNCL:
780		case INT_DMATLB_ACCESS_DWNCL:
781			async = &current->thread.dma_async_tlb;
782			break;
783#endif
784#if CHIP_HAS_SN_PROC()
785		case INT_SNITLB_MISS:
786		case INT_SNITLB_MISS_DWNCL:
787			async = &current->thread.sn_async_tlb;
788			break;
789#endif
790		default:
791			async = NULL;
792		}
793		if (async) {
794
795			/*
796			 * No vmalloc check required, so we can allow
797			 * interrupts immediately at this point.
798			 */
799			local_irq_enable();
800
801			set_thread_flag(TIF_ASYNC_TLB);
802			if (async->fault_num != 0) {
803				panic("Second async fault %d;"
804				      " old fault was %d (%#lx/%ld)",
805				      fault_num, async->fault_num,
806				      address, write);
807			}
808			BUG_ON(fault_num == 0);
809			async->fault_num = fault_num;
810			async->is_fault = is_page_fault;
811			async->is_write = write;
812			async->address = address;
813			return;
814		}
815	}
816#endif
817
818	handle_page_fault(regs, fault_num, is_page_fault, address, write);
819}
820
821
822#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
823/*
824 * Check an async_tlb structure to see if a deferred fault is waiting,
825 * and if so pass it to the page-fault code.
826 */
827static void handle_async_page_fault(struct pt_regs *regs,
828				    struct async_tlb *async)
829{
830	if (async->fault_num) {
831		/*
832		 * Clear async->fault_num before calling the page-fault
833		 * handler so that if we re-interrupt before returning
834		 * from the function we have somewhere to put the
835		 * information from the new interrupt.
836		 */
837		int fault_num = async->fault_num;
838		async->fault_num = 0;
839		handle_page_fault(regs, fault_num, async->is_fault,
840				  async->address, async->is_write);
841	}
842}
843
844/*
845 * This routine effectively re-issues asynchronous page faults
846 * when we are returning to user space.
847 */
848void do_async_page_fault(struct pt_regs *regs)
849{
850	/*
851	 * Clear thread flag early.  If we re-interrupt while processing
852	 * code here, we will reset it and recall this routine before
853	 * returning to user space.
854	 */
855	clear_thread_flag(TIF_ASYNC_TLB);
856
857#if CHIP_HAS_TILE_DMA()
858	handle_async_page_fault(regs, &current->thread.dma_async_tlb);
859#endif
860#if CHIP_HAS_SN_PROC()
861	handle_async_page_fault(regs, &current->thread.sn_async_tlb);
862#endif
863}
864#endif /* CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() */
865
866
867void vmalloc_sync_all(void)
868{
869#ifdef __tilegx__
870	/* Currently all L1 kernel pmd's are static and shared. */
871	BUG_ON(pgd_index(VMALLOC_END) != pgd_index(VMALLOC_START));
872#else
873	/*
874	 * Note that races in the updates of insync and start aren't
875	 * problematic: insync can only get set bits added, and updates to
876	 * start are only improving performance (without affecting correctness
877	 * if undone).
878	 */
879	static DECLARE_BITMAP(insync, PTRS_PER_PGD);
880	static unsigned long start = PAGE_OFFSET;
881	unsigned long address;
882
883	BUILD_BUG_ON(PAGE_OFFSET & ~PGDIR_MASK);
884	for (address = start; address >= PAGE_OFFSET; address += PGDIR_SIZE) {
885		if (!test_bit(pgd_index(address), insync)) {
886			unsigned long flags;
887			struct list_head *pos;
888
889			spin_lock_irqsave(&pgd_lock, flags);
890			list_for_each(pos, &pgd_list)
891				if (!vmalloc_sync_one(list_to_pgd(pos),
892								address)) {
893					/* Must be at first entry in list. */
894					BUG_ON(pos != pgd_list.next);
895					break;
896				}
897			spin_unlock_irqrestore(&pgd_lock, flags);
898			if (pos != pgd_list.next)
899				set_bit(pgd_index(address), insync);
900		}
901		if (address == start && test_bit(pgd_index(address), insync))
902			start = address + PGDIR_SIZE;
903	}
904#endif
905}