Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/ceph/ceph_debug.h>
3
4#include <linux/crc32c.h>
5#include <linux/ctype.h>
6#include <linux/highmem.h>
7#include <linux/inet.h>
8#include <linux/kthread.h>
9#include <linux/net.h>
10#include <linux/nsproxy.h>
11#include <linux/sched/mm.h>
12#include <linux/slab.h>
13#include <linux/socket.h>
14#include <linux/string.h>
15#ifdef CONFIG_BLOCK
16#include <linux/bio.h>
17#endif /* CONFIG_BLOCK */
18#include <linux/dns_resolver.h>
19#include <net/tcp.h>
20
21#include <linux/ceph/ceph_features.h>
22#include <linux/ceph/libceph.h>
23#include <linux/ceph/messenger.h>
24#include <linux/ceph/decode.h>
25#include <linux/ceph/pagelist.h>
26#include <linux/export.h>
27
28/*
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
34 * the sender.
35 */
36
37/*
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
41 * unexpected state.
42 *
43 * --------
44 * | NEW* | transient initial state
45 * --------
46 * | con_sock_state_init()
47 * v
48 * ----------
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
51 * ^ \
52 * | \ con_sock_state_connecting()
53 * | ----------------------
54 * | \
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
57 * | \ \ \
58 * | ----------- \ \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
61 * | ^ \ |
62 * | | \ |
63 * | + con_sock_state_closing() \ |
64 * | / \ | |
65 * | / --------------- | |
66 * | / \ v v
67 * | / --------------
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
71 * | | v
72 * -------------
73 * | CONNECTED | TCP connection established
74 * -------------
75 *
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77 */
78
79#define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80#define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81#define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82#define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83#define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
84
85static bool con_flag_valid(unsigned long con_flag)
86{
87 switch (con_flag) {
88 case CEPH_CON_F_LOSSYTX:
89 case CEPH_CON_F_KEEPALIVE_PENDING:
90 case CEPH_CON_F_WRITE_PENDING:
91 case CEPH_CON_F_SOCK_CLOSED:
92 case CEPH_CON_F_BACKOFF:
93 return true;
94 default:
95 return false;
96 }
97}
98
99void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
100{
101 BUG_ON(!con_flag_valid(con_flag));
102
103 clear_bit(con_flag, &con->flags);
104}
105
106void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag)
107{
108 BUG_ON(!con_flag_valid(con_flag));
109
110 set_bit(con_flag, &con->flags);
111}
112
113bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag)
114{
115 BUG_ON(!con_flag_valid(con_flag));
116
117 return test_bit(con_flag, &con->flags);
118}
119
120bool ceph_con_flag_test_and_clear(struct ceph_connection *con,
121 unsigned long con_flag)
122{
123 BUG_ON(!con_flag_valid(con_flag));
124
125 return test_and_clear_bit(con_flag, &con->flags);
126}
127
128bool ceph_con_flag_test_and_set(struct ceph_connection *con,
129 unsigned long con_flag)
130{
131 BUG_ON(!con_flag_valid(con_flag));
132
133 return test_and_set_bit(con_flag, &con->flags);
134}
135
136/* Slab caches for frequently-allocated structures */
137
138static struct kmem_cache *ceph_msg_cache;
139
140#ifdef CONFIG_LOCKDEP
141static struct lock_class_key socket_class;
142#endif
143
144static void queue_con(struct ceph_connection *con);
145static void cancel_con(struct ceph_connection *con);
146static void ceph_con_workfn(struct work_struct *);
147static void con_fault(struct ceph_connection *con);
148
149/*
150 * Nicely render a sockaddr as a string. An array of formatted
151 * strings is used, to approximate reentrancy.
152 */
153#define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
154#define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
155#define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
156#define MAX_ADDR_STR_LEN 64 /* 54 is enough */
157
158static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
159static atomic_t addr_str_seq = ATOMIC_INIT(0);
160
161struct page *ceph_zero_page; /* used in certain error cases */
162
163const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
164{
165 int i;
166 char *s;
167 struct sockaddr_storage ss = addr->in_addr; /* align */
168 struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
169 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
170
171 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
172 s = addr_str[i];
173
174 switch (ss.ss_family) {
175 case AF_INET:
176 snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
177 le32_to_cpu(addr->type), &in4->sin_addr,
178 ntohs(in4->sin_port));
179 break;
180
181 case AF_INET6:
182 snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
183 le32_to_cpu(addr->type), &in6->sin6_addr,
184 ntohs(in6->sin6_port));
185 break;
186
187 default:
188 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
189 ss.ss_family);
190 }
191
192 return s;
193}
194EXPORT_SYMBOL(ceph_pr_addr);
195
196void ceph_encode_my_addr(struct ceph_messenger *msgr)
197{
198 if (!ceph_msgr2(from_msgr(msgr))) {
199 memcpy(&msgr->my_enc_addr, &msgr->inst.addr,
200 sizeof(msgr->my_enc_addr));
201 ceph_encode_banner_addr(&msgr->my_enc_addr);
202 }
203}
204
205/*
206 * work queue for all reading and writing to/from the socket.
207 */
208static struct workqueue_struct *ceph_msgr_wq;
209
210static int ceph_msgr_slab_init(void)
211{
212 BUG_ON(ceph_msg_cache);
213 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
214 if (!ceph_msg_cache)
215 return -ENOMEM;
216
217 return 0;
218}
219
220static void ceph_msgr_slab_exit(void)
221{
222 BUG_ON(!ceph_msg_cache);
223 kmem_cache_destroy(ceph_msg_cache);
224 ceph_msg_cache = NULL;
225}
226
227static void _ceph_msgr_exit(void)
228{
229 if (ceph_msgr_wq) {
230 destroy_workqueue(ceph_msgr_wq);
231 ceph_msgr_wq = NULL;
232 }
233
234 BUG_ON(!ceph_zero_page);
235 put_page(ceph_zero_page);
236 ceph_zero_page = NULL;
237
238 ceph_msgr_slab_exit();
239}
240
241int __init ceph_msgr_init(void)
242{
243 if (ceph_msgr_slab_init())
244 return -ENOMEM;
245
246 BUG_ON(ceph_zero_page);
247 ceph_zero_page = ZERO_PAGE(0);
248 get_page(ceph_zero_page);
249
250 /*
251 * The number of active work items is limited by the number of
252 * connections, so leave @max_active at default.
253 */
254 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
255 if (ceph_msgr_wq)
256 return 0;
257
258 pr_err("msgr_init failed to create workqueue\n");
259 _ceph_msgr_exit();
260
261 return -ENOMEM;
262}
263
264void ceph_msgr_exit(void)
265{
266 BUG_ON(ceph_msgr_wq == NULL);
267
268 _ceph_msgr_exit();
269}
270
271void ceph_msgr_flush(void)
272{
273 flush_workqueue(ceph_msgr_wq);
274}
275EXPORT_SYMBOL(ceph_msgr_flush);
276
277/* Connection socket state transition functions */
278
279static void con_sock_state_init(struct ceph_connection *con)
280{
281 int old_state;
282
283 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
284 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
285 printk("%s: unexpected old state %d\n", __func__, old_state);
286 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
287 CON_SOCK_STATE_CLOSED);
288}
289
290static void con_sock_state_connecting(struct ceph_connection *con)
291{
292 int old_state;
293
294 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
295 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
296 printk("%s: unexpected old state %d\n", __func__, old_state);
297 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
298 CON_SOCK_STATE_CONNECTING);
299}
300
301static void con_sock_state_connected(struct ceph_connection *con)
302{
303 int old_state;
304
305 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
306 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
307 printk("%s: unexpected old state %d\n", __func__, old_state);
308 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
309 CON_SOCK_STATE_CONNECTED);
310}
311
312static void con_sock_state_closing(struct ceph_connection *con)
313{
314 int old_state;
315
316 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
317 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
318 old_state != CON_SOCK_STATE_CONNECTED &&
319 old_state != CON_SOCK_STATE_CLOSING))
320 printk("%s: unexpected old state %d\n", __func__, old_state);
321 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
322 CON_SOCK_STATE_CLOSING);
323}
324
325static void con_sock_state_closed(struct ceph_connection *con)
326{
327 int old_state;
328
329 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
330 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
331 old_state != CON_SOCK_STATE_CLOSING &&
332 old_state != CON_SOCK_STATE_CONNECTING &&
333 old_state != CON_SOCK_STATE_CLOSED))
334 printk("%s: unexpected old state %d\n", __func__, old_state);
335 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
336 CON_SOCK_STATE_CLOSED);
337}
338
339/*
340 * socket callback functions
341 */
342
343/* data available on socket, or listen socket received a connect */
344static void ceph_sock_data_ready(struct sock *sk)
345{
346 struct ceph_connection *con = sk->sk_user_data;
347 if (atomic_read(&con->msgr->stopping)) {
348 return;
349 }
350
351 if (sk->sk_state != TCP_CLOSE_WAIT) {
352 dout("%s %p state = %d, queueing work\n", __func__,
353 con, con->state);
354 queue_con(con);
355 }
356}
357
358/* socket has buffer space for writing */
359static void ceph_sock_write_space(struct sock *sk)
360{
361 struct ceph_connection *con = sk->sk_user_data;
362
363 /* only queue to workqueue if there is data we want to write,
364 * and there is sufficient space in the socket buffer to accept
365 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
366 * doesn't get called again until try_write() fills the socket
367 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
368 * and net/core/stream.c:sk_stream_write_space().
369 */
370 if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) {
371 if (sk_stream_is_writeable(sk)) {
372 dout("%s %p queueing write work\n", __func__, con);
373 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
374 queue_con(con);
375 }
376 } else {
377 dout("%s %p nothing to write\n", __func__, con);
378 }
379}
380
381/* socket's state has changed */
382static void ceph_sock_state_change(struct sock *sk)
383{
384 struct ceph_connection *con = sk->sk_user_data;
385
386 dout("%s %p state = %d sk_state = %u\n", __func__,
387 con, con->state, sk->sk_state);
388
389 switch (sk->sk_state) {
390 case TCP_CLOSE:
391 dout("%s TCP_CLOSE\n", __func__);
392 fallthrough;
393 case TCP_CLOSE_WAIT:
394 dout("%s TCP_CLOSE_WAIT\n", __func__);
395 con_sock_state_closing(con);
396 ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED);
397 queue_con(con);
398 break;
399 case TCP_ESTABLISHED:
400 dout("%s TCP_ESTABLISHED\n", __func__);
401 con_sock_state_connected(con);
402 queue_con(con);
403 break;
404 default: /* Everything else is uninteresting */
405 break;
406 }
407}
408
409/*
410 * set up socket callbacks
411 */
412static void set_sock_callbacks(struct socket *sock,
413 struct ceph_connection *con)
414{
415 struct sock *sk = sock->sk;
416 sk->sk_user_data = con;
417 sk->sk_data_ready = ceph_sock_data_ready;
418 sk->sk_write_space = ceph_sock_write_space;
419 sk->sk_state_change = ceph_sock_state_change;
420}
421
422
423/*
424 * socket helpers
425 */
426
427/*
428 * initiate connection to a remote socket.
429 */
430int ceph_tcp_connect(struct ceph_connection *con)
431{
432 struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
433 struct socket *sock;
434 unsigned int noio_flag;
435 int ret;
436
437 dout("%s con %p peer_addr %s\n", __func__, con,
438 ceph_pr_addr(&con->peer_addr));
439 BUG_ON(con->sock);
440
441 /* sock_create_kern() allocates with GFP_KERNEL */
442 noio_flag = memalloc_noio_save();
443 ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
444 SOCK_STREAM, IPPROTO_TCP, &sock);
445 memalloc_noio_restore(noio_flag);
446 if (ret)
447 return ret;
448 sock->sk->sk_allocation = GFP_NOFS;
449 sock->sk->sk_use_task_frag = false;
450
451#ifdef CONFIG_LOCKDEP
452 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
453#endif
454
455 set_sock_callbacks(sock, con);
456
457 con_sock_state_connecting(con);
458 ret = sock->ops->connect(sock, (struct sockaddr *)&ss, sizeof(ss),
459 O_NONBLOCK);
460 if (ret == -EINPROGRESS) {
461 dout("connect %s EINPROGRESS sk_state = %u\n",
462 ceph_pr_addr(&con->peer_addr),
463 sock->sk->sk_state);
464 } else if (ret < 0) {
465 pr_err("connect %s error %d\n",
466 ceph_pr_addr(&con->peer_addr), ret);
467 sock_release(sock);
468 return ret;
469 }
470
471 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
472 tcp_sock_set_nodelay(sock->sk);
473
474 con->sock = sock;
475 return 0;
476}
477
478/*
479 * Shutdown/close the socket for the given connection.
480 */
481int ceph_con_close_socket(struct ceph_connection *con)
482{
483 int rc = 0;
484
485 dout("%s con %p sock %p\n", __func__, con, con->sock);
486 if (con->sock) {
487 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
488 sock_release(con->sock);
489 con->sock = NULL;
490 }
491
492 /*
493 * Forcibly clear the SOCK_CLOSED flag. It gets set
494 * independent of the connection mutex, and we could have
495 * received a socket close event before we had the chance to
496 * shut the socket down.
497 */
498 ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED);
499
500 con_sock_state_closed(con);
501 return rc;
502}
503
504static void ceph_con_reset_protocol(struct ceph_connection *con)
505{
506 dout("%s con %p\n", __func__, con);
507
508 ceph_con_close_socket(con);
509 if (con->in_msg) {
510 WARN_ON(con->in_msg->con != con);
511 ceph_msg_put(con->in_msg);
512 con->in_msg = NULL;
513 }
514 if (con->out_msg) {
515 WARN_ON(con->out_msg->con != con);
516 ceph_msg_put(con->out_msg);
517 con->out_msg = NULL;
518 }
519 if (con->bounce_page) {
520 __free_page(con->bounce_page);
521 con->bounce_page = NULL;
522 }
523
524 if (ceph_msgr2(from_msgr(con->msgr)))
525 ceph_con_v2_reset_protocol(con);
526 else
527 ceph_con_v1_reset_protocol(con);
528}
529
530/*
531 * Reset a connection. Discard all incoming and outgoing messages
532 * and clear *_seq state.
533 */
534static void ceph_msg_remove(struct ceph_msg *msg)
535{
536 list_del_init(&msg->list_head);
537
538 ceph_msg_put(msg);
539}
540
541static void ceph_msg_remove_list(struct list_head *head)
542{
543 while (!list_empty(head)) {
544 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
545 list_head);
546 ceph_msg_remove(msg);
547 }
548}
549
550void ceph_con_reset_session(struct ceph_connection *con)
551{
552 dout("%s con %p\n", __func__, con);
553
554 WARN_ON(con->in_msg);
555 WARN_ON(con->out_msg);
556 ceph_msg_remove_list(&con->out_queue);
557 ceph_msg_remove_list(&con->out_sent);
558 con->out_seq = 0;
559 con->in_seq = 0;
560 con->in_seq_acked = 0;
561
562 if (ceph_msgr2(from_msgr(con->msgr)))
563 ceph_con_v2_reset_session(con);
564 else
565 ceph_con_v1_reset_session(con);
566}
567
568/*
569 * mark a peer down. drop any open connections.
570 */
571void ceph_con_close(struct ceph_connection *con)
572{
573 mutex_lock(&con->mutex);
574 dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
575 con->state = CEPH_CON_S_CLOSED;
576
577 ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX); /* so we retry next
578 connect */
579 ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING);
580 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
581 ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF);
582
583 ceph_con_reset_protocol(con);
584 ceph_con_reset_session(con);
585 cancel_con(con);
586 mutex_unlock(&con->mutex);
587}
588EXPORT_SYMBOL(ceph_con_close);
589
590/*
591 * Reopen a closed connection, with a new peer address.
592 */
593void ceph_con_open(struct ceph_connection *con,
594 __u8 entity_type, __u64 entity_num,
595 struct ceph_entity_addr *addr)
596{
597 mutex_lock(&con->mutex);
598 dout("con_open %p %s\n", con, ceph_pr_addr(addr));
599
600 WARN_ON(con->state != CEPH_CON_S_CLOSED);
601 con->state = CEPH_CON_S_PREOPEN;
602
603 con->peer_name.type = (__u8) entity_type;
604 con->peer_name.num = cpu_to_le64(entity_num);
605
606 memcpy(&con->peer_addr, addr, sizeof(*addr));
607 con->delay = 0; /* reset backoff memory */
608 mutex_unlock(&con->mutex);
609 queue_con(con);
610}
611EXPORT_SYMBOL(ceph_con_open);
612
613/*
614 * return true if this connection ever successfully opened
615 */
616bool ceph_con_opened(struct ceph_connection *con)
617{
618 if (ceph_msgr2(from_msgr(con->msgr)))
619 return ceph_con_v2_opened(con);
620
621 return ceph_con_v1_opened(con);
622}
623
624/*
625 * initialize a new connection.
626 */
627void ceph_con_init(struct ceph_connection *con, void *private,
628 const struct ceph_connection_operations *ops,
629 struct ceph_messenger *msgr)
630{
631 dout("con_init %p\n", con);
632 memset(con, 0, sizeof(*con));
633 con->private = private;
634 con->ops = ops;
635 con->msgr = msgr;
636
637 con_sock_state_init(con);
638
639 mutex_init(&con->mutex);
640 INIT_LIST_HEAD(&con->out_queue);
641 INIT_LIST_HEAD(&con->out_sent);
642 INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
643
644 con->state = CEPH_CON_S_CLOSED;
645}
646EXPORT_SYMBOL(ceph_con_init);
647
648/*
649 * We maintain a global counter to order connection attempts. Get
650 * a unique seq greater than @gt.
651 */
652u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt)
653{
654 u32 ret;
655
656 spin_lock(&msgr->global_seq_lock);
657 if (msgr->global_seq < gt)
658 msgr->global_seq = gt;
659 ret = ++msgr->global_seq;
660 spin_unlock(&msgr->global_seq_lock);
661 return ret;
662}
663
664/*
665 * Discard messages that have been acked by the server.
666 */
667void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq)
668{
669 struct ceph_msg *msg;
670 u64 seq;
671
672 dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq);
673 while (!list_empty(&con->out_sent)) {
674 msg = list_first_entry(&con->out_sent, struct ceph_msg,
675 list_head);
676 WARN_ON(msg->needs_out_seq);
677 seq = le64_to_cpu(msg->hdr.seq);
678 if (seq > ack_seq)
679 break;
680
681 dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
682 msg, seq);
683 ceph_msg_remove(msg);
684 }
685}
686
687/*
688 * Discard messages that have been requeued in con_fault(), up to
689 * reconnect_seq. This avoids gratuitously resending messages that
690 * the server had received and handled prior to reconnect.
691 */
692void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq)
693{
694 struct ceph_msg *msg;
695 u64 seq;
696
697 dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq);
698 while (!list_empty(&con->out_queue)) {
699 msg = list_first_entry(&con->out_queue, struct ceph_msg,
700 list_head);
701 if (msg->needs_out_seq)
702 break;
703 seq = le64_to_cpu(msg->hdr.seq);
704 if (seq > reconnect_seq)
705 break;
706
707 dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
708 msg, seq);
709 ceph_msg_remove(msg);
710 }
711}
712
713#ifdef CONFIG_BLOCK
714
715/*
716 * For a bio data item, a piece is whatever remains of the next
717 * entry in the current bio iovec, or the first entry in the next
718 * bio in the list.
719 */
720static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
721 size_t length)
722{
723 struct ceph_msg_data *data = cursor->data;
724 struct ceph_bio_iter *it = &cursor->bio_iter;
725
726 cursor->resid = min_t(size_t, length, data->bio_length);
727 *it = data->bio_pos;
728 if (cursor->resid < it->iter.bi_size)
729 it->iter.bi_size = cursor->resid;
730
731 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
732}
733
734static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
735 size_t *page_offset,
736 size_t *length)
737{
738 struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
739 cursor->bio_iter.iter);
740
741 *page_offset = bv.bv_offset;
742 *length = bv.bv_len;
743 return bv.bv_page;
744}
745
746static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
747 size_t bytes)
748{
749 struct ceph_bio_iter *it = &cursor->bio_iter;
750 struct page *page = bio_iter_page(it->bio, it->iter);
751
752 BUG_ON(bytes > cursor->resid);
753 BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
754 cursor->resid -= bytes;
755 bio_advance_iter(it->bio, &it->iter, bytes);
756
757 if (!cursor->resid)
758 return false; /* no more data */
759
760 if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
761 page == bio_iter_page(it->bio, it->iter)))
762 return false; /* more bytes to process in this segment */
763
764 if (!it->iter.bi_size) {
765 it->bio = it->bio->bi_next;
766 it->iter = it->bio->bi_iter;
767 if (cursor->resid < it->iter.bi_size)
768 it->iter.bi_size = cursor->resid;
769 }
770
771 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
772 return true;
773}
774#endif /* CONFIG_BLOCK */
775
776static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
777 size_t length)
778{
779 struct ceph_msg_data *data = cursor->data;
780 struct bio_vec *bvecs = data->bvec_pos.bvecs;
781
782 cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
783 cursor->bvec_iter = data->bvec_pos.iter;
784 cursor->bvec_iter.bi_size = cursor->resid;
785
786 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
787}
788
789static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
790 size_t *page_offset,
791 size_t *length)
792{
793 struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
794 cursor->bvec_iter);
795
796 *page_offset = bv.bv_offset;
797 *length = bv.bv_len;
798 return bv.bv_page;
799}
800
801static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
802 size_t bytes)
803{
804 struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
805 struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
806
807 BUG_ON(bytes > cursor->resid);
808 BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
809 cursor->resid -= bytes;
810 bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
811
812 if (!cursor->resid)
813 return false; /* no more data */
814
815 if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
816 page == bvec_iter_page(bvecs, cursor->bvec_iter)))
817 return false; /* more bytes to process in this segment */
818
819 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
820 return true;
821}
822
823/*
824 * For a page array, a piece comes from the first page in the array
825 * that has not already been fully consumed.
826 */
827static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
828 size_t length)
829{
830 struct ceph_msg_data *data = cursor->data;
831 int page_count;
832
833 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
834
835 BUG_ON(!data->pages);
836 BUG_ON(!data->length);
837
838 cursor->resid = min(length, data->length);
839 page_count = calc_pages_for(data->alignment, (u64)data->length);
840 cursor->page_offset = data->alignment & ~PAGE_MASK;
841 cursor->page_index = 0;
842 BUG_ON(page_count > (int)USHRT_MAX);
843 cursor->page_count = (unsigned short)page_count;
844 BUG_ON(length > SIZE_MAX - cursor->page_offset);
845}
846
847static struct page *
848ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
849 size_t *page_offset, size_t *length)
850{
851 struct ceph_msg_data *data = cursor->data;
852
853 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
854
855 BUG_ON(cursor->page_index >= cursor->page_count);
856 BUG_ON(cursor->page_offset >= PAGE_SIZE);
857
858 *page_offset = cursor->page_offset;
859 *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
860 return data->pages[cursor->page_index];
861}
862
863static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
864 size_t bytes)
865{
866 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
867
868 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
869
870 /* Advance the cursor page offset */
871
872 cursor->resid -= bytes;
873 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
874 if (!bytes || cursor->page_offset)
875 return false; /* more bytes to process in the current page */
876
877 if (!cursor->resid)
878 return false; /* no more data */
879
880 /* Move on to the next page; offset is already at 0 */
881
882 BUG_ON(cursor->page_index >= cursor->page_count);
883 cursor->page_index++;
884 return true;
885}
886
887/*
888 * For a pagelist, a piece is whatever remains to be consumed in the
889 * first page in the list, or the front of the next page.
890 */
891static void
892ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
893 size_t length)
894{
895 struct ceph_msg_data *data = cursor->data;
896 struct ceph_pagelist *pagelist;
897 struct page *page;
898
899 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
900
901 pagelist = data->pagelist;
902 BUG_ON(!pagelist);
903
904 if (!length)
905 return; /* pagelist can be assigned but empty */
906
907 BUG_ON(list_empty(&pagelist->head));
908 page = list_first_entry(&pagelist->head, struct page, lru);
909
910 cursor->resid = min(length, pagelist->length);
911 cursor->page = page;
912 cursor->offset = 0;
913}
914
915static struct page *
916ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
917 size_t *page_offset, size_t *length)
918{
919 struct ceph_msg_data *data = cursor->data;
920 struct ceph_pagelist *pagelist;
921
922 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
923
924 pagelist = data->pagelist;
925 BUG_ON(!pagelist);
926
927 BUG_ON(!cursor->page);
928 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
929
930 /* offset of first page in pagelist is always 0 */
931 *page_offset = cursor->offset & ~PAGE_MASK;
932 *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
933 return cursor->page;
934}
935
936static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
937 size_t bytes)
938{
939 struct ceph_msg_data *data = cursor->data;
940 struct ceph_pagelist *pagelist;
941
942 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
943
944 pagelist = data->pagelist;
945 BUG_ON(!pagelist);
946
947 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
948 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
949
950 /* Advance the cursor offset */
951
952 cursor->resid -= bytes;
953 cursor->offset += bytes;
954 /* offset of first page in pagelist is always 0 */
955 if (!bytes || cursor->offset & ~PAGE_MASK)
956 return false; /* more bytes to process in the current page */
957
958 if (!cursor->resid)
959 return false; /* no more data */
960
961 /* Move on to the next page */
962
963 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
964 cursor->page = list_next_entry(cursor->page, lru);
965 return true;
966}
967
968/*
969 * Message data is handled (sent or received) in pieces, where each
970 * piece resides on a single page. The network layer might not
971 * consume an entire piece at once. A data item's cursor keeps
972 * track of which piece is next to process and how much remains to
973 * be processed in that piece. It also tracks whether the current
974 * piece is the last one in the data item.
975 */
976static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
977{
978 size_t length = cursor->total_resid;
979
980 switch (cursor->data->type) {
981 case CEPH_MSG_DATA_PAGELIST:
982 ceph_msg_data_pagelist_cursor_init(cursor, length);
983 break;
984 case CEPH_MSG_DATA_PAGES:
985 ceph_msg_data_pages_cursor_init(cursor, length);
986 break;
987#ifdef CONFIG_BLOCK
988 case CEPH_MSG_DATA_BIO:
989 ceph_msg_data_bio_cursor_init(cursor, length);
990 break;
991#endif /* CONFIG_BLOCK */
992 case CEPH_MSG_DATA_BVECS:
993 ceph_msg_data_bvecs_cursor_init(cursor, length);
994 break;
995 case CEPH_MSG_DATA_NONE:
996 default:
997 /* BUG(); */
998 break;
999 }
1000 cursor->need_crc = true;
1001}
1002
1003void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor,
1004 struct ceph_msg *msg, size_t length)
1005{
1006 BUG_ON(!length);
1007 BUG_ON(length > msg->data_length);
1008 BUG_ON(!msg->num_data_items);
1009
1010 cursor->total_resid = length;
1011 cursor->data = msg->data;
1012
1013 __ceph_msg_data_cursor_init(cursor);
1014}
1015
1016/*
1017 * Return the page containing the next piece to process for a given
1018 * data item, and supply the page offset and length of that piece.
1019 * Indicate whether this is the last piece in this data item.
1020 */
1021struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1022 size_t *page_offset, size_t *length)
1023{
1024 struct page *page;
1025
1026 switch (cursor->data->type) {
1027 case CEPH_MSG_DATA_PAGELIST:
1028 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1029 break;
1030 case CEPH_MSG_DATA_PAGES:
1031 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1032 break;
1033#ifdef CONFIG_BLOCK
1034 case CEPH_MSG_DATA_BIO:
1035 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1036 break;
1037#endif /* CONFIG_BLOCK */
1038 case CEPH_MSG_DATA_BVECS:
1039 page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1040 break;
1041 case CEPH_MSG_DATA_NONE:
1042 default:
1043 page = NULL;
1044 break;
1045 }
1046
1047 BUG_ON(!page);
1048 BUG_ON(*page_offset + *length > PAGE_SIZE);
1049 BUG_ON(!*length);
1050 BUG_ON(*length > cursor->resid);
1051
1052 return page;
1053}
1054
1055/*
1056 * Returns true if the result moves the cursor on to the next piece
1057 * of the data item.
1058 */
1059void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes)
1060{
1061 bool new_piece;
1062
1063 BUG_ON(bytes > cursor->resid);
1064 switch (cursor->data->type) {
1065 case CEPH_MSG_DATA_PAGELIST:
1066 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1067 break;
1068 case CEPH_MSG_DATA_PAGES:
1069 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1070 break;
1071#ifdef CONFIG_BLOCK
1072 case CEPH_MSG_DATA_BIO:
1073 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1074 break;
1075#endif /* CONFIG_BLOCK */
1076 case CEPH_MSG_DATA_BVECS:
1077 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1078 break;
1079 case CEPH_MSG_DATA_NONE:
1080 default:
1081 BUG();
1082 break;
1083 }
1084 cursor->total_resid -= bytes;
1085
1086 if (!cursor->resid && cursor->total_resid) {
1087 cursor->data++;
1088 __ceph_msg_data_cursor_init(cursor);
1089 new_piece = true;
1090 }
1091 cursor->need_crc = new_piece;
1092}
1093
1094u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset,
1095 unsigned int length)
1096{
1097 char *kaddr;
1098
1099 kaddr = kmap(page);
1100 BUG_ON(kaddr == NULL);
1101 crc = crc32c(crc, kaddr + page_offset, length);
1102 kunmap(page);
1103
1104 return crc;
1105}
1106
1107bool ceph_addr_is_blank(const struct ceph_entity_addr *addr)
1108{
1109 struct sockaddr_storage ss = addr->in_addr; /* align */
1110 struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1111 struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
1112
1113 switch (ss.ss_family) {
1114 case AF_INET:
1115 return addr4->s_addr == htonl(INADDR_ANY);
1116 case AF_INET6:
1117 return ipv6_addr_any(addr6);
1118 default:
1119 return true;
1120 }
1121}
1122
1123int ceph_addr_port(const struct ceph_entity_addr *addr)
1124{
1125 switch (get_unaligned(&addr->in_addr.ss_family)) {
1126 case AF_INET:
1127 return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1128 case AF_INET6:
1129 return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1130 }
1131 return 0;
1132}
1133
1134void ceph_addr_set_port(struct ceph_entity_addr *addr, int p)
1135{
1136 switch (get_unaligned(&addr->in_addr.ss_family)) {
1137 case AF_INET:
1138 put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1139 break;
1140 case AF_INET6:
1141 put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1142 break;
1143 }
1144}
1145
1146/*
1147 * Unlike other *_pton function semantics, zero indicates success.
1148 */
1149static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1150 char delim, const char **ipend)
1151{
1152 memset(&addr->in_addr, 0, sizeof(addr->in_addr));
1153
1154 if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1155 put_unaligned(AF_INET, &addr->in_addr.ss_family);
1156 return 0;
1157 }
1158
1159 if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1160 put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1161 return 0;
1162 }
1163
1164 return -EINVAL;
1165}
1166
1167/*
1168 * Extract hostname string and resolve using kernel DNS facility.
1169 */
1170#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1171static int ceph_dns_resolve_name(const char *name, size_t namelen,
1172 struct ceph_entity_addr *addr, char delim, const char **ipend)
1173{
1174 const char *end, *delim_p;
1175 char *colon_p, *ip_addr = NULL;
1176 int ip_len, ret;
1177
1178 /*
1179 * The end of the hostname occurs immediately preceding the delimiter or
1180 * the port marker (':') where the delimiter takes precedence.
1181 */
1182 delim_p = memchr(name, delim, namelen);
1183 colon_p = memchr(name, ':', namelen);
1184
1185 if (delim_p && colon_p)
1186 end = delim_p < colon_p ? delim_p : colon_p;
1187 else if (!delim_p && colon_p)
1188 end = colon_p;
1189 else {
1190 end = delim_p;
1191 if (!end) /* case: hostname:/ */
1192 end = name + namelen;
1193 }
1194
1195 if (end <= name)
1196 return -EINVAL;
1197
1198 /* do dns_resolve upcall */
1199 ip_len = dns_query(current->nsproxy->net_ns,
1200 NULL, name, end - name, NULL, &ip_addr, NULL, false);
1201 if (ip_len > 0)
1202 ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1203 else
1204 ret = -ESRCH;
1205
1206 kfree(ip_addr);
1207
1208 *ipend = end;
1209
1210 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1211 ret, ret ? "failed" : ceph_pr_addr(addr));
1212
1213 return ret;
1214}
1215#else
1216static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1217 struct ceph_entity_addr *addr, char delim, const char **ipend)
1218{
1219 return -EINVAL;
1220}
1221#endif
1222
1223/*
1224 * Parse a server name (IP or hostname). If a valid IP address is not found
1225 * then try to extract a hostname to resolve using userspace DNS upcall.
1226 */
1227static int ceph_parse_server_name(const char *name, size_t namelen,
1228 struct ceph_entity_addr *addr, char delim, const char **ipend)
1229{
1230 int ret;
1231
1232 ret = ceph_pton(name, namelen, addr, delim, ipend);
1233 if (ret)
1234 ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1235
1236 return ret;
1237}
1238
1239/*
1240 * Parse an ip[:port] list into an addr array. Use the default
1241 * monitor port if a port isn't specified.
1242 */
1243int ceph_parse_ips(const char *c, const char *end,
1244 struct ceph_entity_addr *addr,
1245 int max_count, int *count, char delim)
1246{
1247 int i, ret = -EINVAL;
1248 const char *p = c;
1249
1250 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1251 for (i = 0; i < max_count; i++) {
1252 char cur_delim = delim;
1253 const char *ipend;
1254 int port;
1255
1256 if (*p == '[') {
1257 cur_delim = ']';
1258 p++;
1259 }
1260
1261 ret = ceph_parse_server_name(p, end - p, &addr[i], cur_delim,
1262 &ipend);
1263 if (ret)
1264 goto bad;
1265 ret = -EINVAL;
1266
1267 p = ipend;
1268
1269 if (cur_delim == ']') {
1270 if (*p != ']') {
1271 dout("missing matching ']'\n");
1272 goto bad;
1273 }
1274 p++;
1275 }
1276
1277 /* port? */
1278 if (p < end && *p == ':') {
1279 port = 0;
1280 p++;
1281 while (p < end && *p >= '0' && *p <= '9') {
1282 port = (port * 10) + (*p - '0');
1283 p++;
1284 }
1285 if (port == 0)
1286 port = CEPH_MON_PORT;
1287 else if (port > 65535)
1288 goto bad;
1289 } else {
1290 port = CEPH_MON_PORT;
1291 }
1292
1293 ceph_addr_set_port(&addr[i], port);
1294 /*
1295 * We want the type to be set according to ms_mode
1296 * option, but options are normally parsed after mon
1297 * addresses. Rather than complicating parsing, set
1298 * to LEGACY and override in build_initial_monmap()
1299 * for mon addresses and ceph_messenger_init() for
1300 * ip option.
1301 */
1302 addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
1303 addr[i].nonce = 0;
1304
1305 dout("%s got %s\n", __func__, ceph_pr_addr(&addr[i]));
1306
1307 if (p == end)
1308 break;
1309 if (*p != delim)
1310 goto bad;
1311 p++;
1312 }
1313
1314 if (p != end)
1315 goto bad;
1316
1317 if (count)
1318 *count = i + 1;
1319 return 0;
1320
1321bad:
1322 return ret;
1323}
1324
1325/*
1326 * Process message. This happens in the worker thread. The callback should
1327 * be careful not to do anything that waits on other incoming messages or it
1328 * may deadlock.
1329 */
1330void ceph_con_process_message(struct ceph_connection *con)
1331{
1332 struct ceph_msg *msg = con->in_msg;
1333
1334 BUG_ON(con->in_msg->con != con);
1335 con->in_msg = NULL;
1336
1337 /* if first message, set peer_name */
1338 if (con->peer_name.type == 0)
1339 con->peer_name = msg->hdr.src;
1340
1341 con->in_seq++;
1342 mutex_unlock(&con->mutex);
1343
1344 dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n",
1345 msg, le64_to_cpu(msg->hdr.seq),
1346 ENTITY_NAME(msg->hdr.src),
1347 le16_to_cpu(msg->hdr.type),
1348 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1349 le32_to_cpu(msg->hdr.front_len),
1350 le32_to_cpu(msg->hdr.middle_len),
1351 le32_to_cpu(msg->hdr.data_len),
1352 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1353 con->ops->dispatch(con, msg);
1354
1355 mutex_lock(&con->mutex);
1356}
1357
1358/*
1359 * Atomically queue work on a connection after the specified delay.
1360 * Bump @con reference to avoid races with connection teardown.
1361 * Returns 0 if work was queued, or an error code otherwise.
1362 */
1363static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
1364{
1365 if (!con->ops->get(con)) {
1366 dout("%s %p ref count 0\n", __func__, con);
1367 return -ENOENT;
1368 }
1369
1370 if (delay >= HZ)
1371 delay = round_jiffies_relative(delay);
1372
1373 dout("%s %p %lu\n", __func__, con, delay);
1374 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
1375 dout("%s %p - already queued\n", __func__, con);
1376 con->ops->put(con);
1377 return -EBUSY;
1378 }
1379
1380 return 0;
1381}
1382
1383static void queue_con(struct ceph_connection *con)
1384{
1385 (void) queue_con_delay(con, 0);
1386}
1387
1388static void cancel_con(struct ceph_connection *con)
1389{
1390 if (cancel_delayed_work(&con->work)) {
1391 dout("%s %p\n", __func__, con);
1392 con->ops->put(con);
1393 }
1394}
1395
1396static bool con_sock_closed(struct ceph_connection *con)
1397{
1398 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED))
1399 return false;
1400
1401#define CASE(x) \
1402 case CEPH_CON_S_ ## x: \
1403 con->error_msg = "socket closed (con state " #x ")"; \
1404 break;
1405
1406 switch (con->state) {
1407 CASE(CLOSED);
1408 CASE(PREOPEN);
1409 CASE(V1_BANNER);
1410 CASE(V1_CONNECT_MSG);
1411 CASE(V2_BANNER_PREFIX);
1412 CASE(V2_BANNER_PAYLOAD);
1413 CASE(V2_HELLO);
1414 CASE(V2_AUTH);
1415 CASE(V2_AUTH_SIGNATURE);
1416 CASE(V2_SESSION_CONNECT);
1417 CASE(V2_SESSION_RECONNECT);
1418 CASE(OPEN);
1419 CASE(STANDBY);
1420 default:
1421 BUG();
1422 }
1423#undef CASE
1424
1425 return true;
1426}
1427
1428static bool con_backoff(struct ceph_connection *con)
1429{
1430 int ret;
1431
1432 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF))
1433 return false;
1434
1435 ret = queue_con_delay(con, con->delay);
1436 if (ret) {
1437 dout("%s: con %p FAILED to back off %lu\n", __func__,
1438 con, con->delay);
1439 BUG_ON(ret == -ENOENT);
1440 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1441 }
1442
1443 return true;
1444}
1445
1446/* Finish fault handling; con->mutex must *not* be held here */
1447
1448static void con_fault_finish(struct ceph_connection *con)
1449{
1450 dout("%s %p\n", __func__, con);
1451
1452 /*
1453 * in case we faulted due to authentication, invalidate our
1454 * current tickets so that we can get new ones.
1455 */
1456 if (con->v1.auth_retry) {
1457 dout("auth_retry %d, invalidating\n", con->v1.auth_retry);
1458 if (con->ops->invalidate_authorizer)
1459 con->ops->invalidate_authorizer(con);
1460 con->v1.auth_retry = 0;
1461 }
1462
1463 if (con->ops->fault)
1464 con->ops->fault(con);
1465}
1466
1467/*
1468 * Do some work on a connection. Drop a connection ref when we're done.
1469 */
1470static void ceph_con_workfn(struct work_struct *work)
1471{
1472 struct ceph_connection *con = container_of(work, struct ceph_connection,
1473 work.work);
1474 bool fault;
1475
1476 mutex_lock(&con->mutex);
1477 while (true) {
1478 int ret;
1479
1480 if ((fault = con_sock_closed(con))) {
1481 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
1482 break;
1483 }
1484 if (con_backoff(con)) {
1485 dout("%s: con %p BACKOFF\n", __func__, con);
1486 break;
1487 }
1488 if (con->state == CEPH_CON_S_STANDBY) {
1489 dout("%s: con %p STANDBY\n", __func__, con);
1490 break;
1491 }
1492 if (con->state == CEPH_CON_S_CLOSED) {
1493 dout("%s: con %p CLOSED\n", __func__, con);
1494 BUG_ON(con->sock);
1495 break;
1496 }
1497 if (con->state == CEPH_CON_S_PREOPEN) {
1498 dout("%s: con %p PREOPEN\n", __func__, con);
1499 BUG_ON(con->sock);
1500 }
1501
1502 if (ceph_msgr2(from_msgr(con->msgr)))
1503 ret = ceph_con_v2_try_read(con);
1504 else
1505 ret = ceph_con_v1_try_read(con);
1506 if (ret < 0) {
1507 if (ret == -EAGAIN)
1508 continue;
1509 if (!con->error_msg)
1510 con->error_msg = "socket error on read";
1511 fault = true;
1512 break;
1513 }
1514
1515 if (ceph_msgr2(from_msgr(con->msgr)))
1516 ret = ceph_con_v2_try_write(con);
1517 else
1518 ret = ceph_con_v1_try_write(con);
1519 if (ret < 0) {
1520 if (ret == -EAGAIN)
1521 continue;
1522 if (!con->error_msg)
1523 con->error_msg = "socket error on write";
1524 fault = true;
1525 }
1526
1527 break; /* If we make it to here, we're done */
1528 }
1529 if (fault)
1530 con_fault(con);
1531 mutex_unlock(&con->mutex);
1532
1533 if (fault)
1534 con_fault_finish(con);
1535
1536 con->ops->put(con);
1537}
1538
1539/*
1540 * Generic error/fault handler. A retry mechanism is used with
1541 * exponential backoff
1542 */
1543static void con_fault(struct ceph_connection *con)
1544{
1545 dout("fault %p state %d to peer %s\n",
1546 con, con->state, ceph_pr_addr(&con->peer_addr));
1547
1548 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1549 ceph_pr_addr(&con->peer_addr), con->error_msg);
1550 con->error_msg = NULL;
1551
1552 WARN_ON(con->state == CEPH_CON_S_STANDBY ||
1553 con->state == CEPH_CON_S_CLOSED);
1554
1555 ceph_con_reset_protocol(con);
1556
1557 if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) {
1558 dout("fault on LOSSYTX channel, marking CLOSED\n");
1559 con->state = CEPH_CON_S_CLOSED;
1560 return;
1561 }
1562
1563 /* Requeue anything that hasn't been acked */
1564 list_splice_init(&con->out_sent, &con->out_queue);
1565
1566 /* If there are no messages queued or keepalive pending, place
1567 * the connection in a STANDBY state */
1568 if (list_empty(&con->out_queue) &&
1569 !ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
1570 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
1571 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
1572 con->state = CEPH_CON_S_STANDBY;
1573 } else {
1574 /* retry after a delay. */
1575 con->state = CEPH_CON_S_PREOPEN;
1576 if (!con->delay) {
1577 con->delay = BASE_DELAY_INTERVAL;
1578 } else if (con->delay < MAX_DELAY_INTERVAL) {
1579 con->delay *= 2;
1580 if (con->delay > MAX_DELAY_INTERVAL)
1581 con->delay = MAX_DELAY_INTERVAL;
1582 }
1583 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1584 queue_con(con);
1585 }
1586}
1587
1588void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
1589{
1590 u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
1591 msgr->inst.addr.nonce = cpu_to_le32(nonce);
1592 ceph_encode_my_addr(msgr);
1593}
1594
1595/*
1596 * initialize a new messenger instance
1597 */
1598void ceph_messenger_init(struct ceph_messenger *msgr,
1599 struct ceph_entity_addr *myaddr)
1600{
1601 spin_lock_init(&msgr->global_seq_lock);
1602
1603 if (myaddr) {
1604 memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr,
1605 sizeof(msgr->inst.addr.in_addr));
1606 ceph_addr_set_port(&msgr->inst.addr, 0);
1607 }
1608
1609 /*
1610 * Since nautilus, clients are identified using type ANY.
1611 * For msgr1, ceph_encode_banner_addr() munges it to NONE.
1612 */
1613 msgr->inst.addr.type = CEPH_ENTITY_ADDR_TYPE_ANY;
1614
1615 /* generate a random non-zero nonce */
1616 do {
1617 get_random_bytes(&msgr->inst.addr.nonce,
1618 sizeof(msgr->inst.addr.nonce));
1619 } while (!msgr->inst.addr.nonce);
1620 ceph_encode_my_addr(msgr);
1621
1622 atomic_set(&msgr->stopping, 0);
1623 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
1624
1625 dout("%s %p\n", __func__, msgr);
1626}
1627
1628void ceph_messenger_fini(struct ceph_messenger *msgr)
1629{
1630 put_net(read_pnet(&msgr->net));
1631}
1632
1633static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
1634{
1635 if (msg->con)
1636 msg->con->ops->put(msg->con);
1637
1638 msg->con = con ? con->ops->get(con) : NULL;
1639 BUG_ON(msg->con != con);
1640}
1641
1642static void clear_standby(struct ceph_connection *con)
1643{
1644 /* come back from STANDBY? */
1645 if (con->state == CEPH_CON_S_STANDBY) {
1646 dout("clear_standby %p and ++connect_seq\n", con);
1647 con->state = CEPH_CON_S_PREOPEN;
1648 con->v1.connect_seq++;
1649 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING));
1650 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING));
1651 }
1652}
1653
1654/*
1655 * Queue up an outgoing message on the given connection.
1656 *
1657 * Consumes a ref on @msg.
1658 */
1659void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1660{
1661 /* set src+dst */
1662 msg->hdr.src = con->msgr->inst.name;
1663 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1664 msg->needs_out_seq = true;
1665
1666 mutex_lock(&con->mutex);
1667
1668 if (con->state == CEPH_CON_S_CLOSED) {
1669 dout("con_send %p closed, dropping %p\n", con, msg);
1670 ceph_msg_put(msg);
1671 mutex_unlock(&con->mutex);
1672 return;
1673 }
1674
1675 msg_con_set(msg, con);
1676
1677 BUG_ON(!list_empty(&msg->list_head));
1678 list_add_tail(&msg->list_head, &con->out_queue);
1679 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1680 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1681 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1682 le32_to_cpu(msg->hdr.front_len),
1683 le32_to_cpu(msg->hdr.middle_len),
1684 le32_to_cpu(msg->hdr.data_len));
1685
1686 clear_standby(con);
1687 mutex_unlock(&con->mutex);
1688
1689 /* if there wasn't anything waiting to send before, queue
1690 * new work */
1691 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1692 queue_con(con);
1693}
1694EXPORT_SYMBOL(ceph_con_send);
1695
1696/*
1697 * Revoke a message that was previously queued for send
1698 */
1699void ceph_msg_revoke(struct ceph_msg *msg)
1700{
1701 struct ceph_connection *con = msg->con;
1702
1703 if (!con) {
1704 dout("%s msg %p null con\n", __func__, msg);
1705 return; /* Message not in our possession */
1706 }
1707
1708 mutex_lock(&con->mutex);
1709 if (list_empty(&msg->list_head)) {
1710 WARN_ON(con->out_msg == msg);
1711 dout("%s con %p msg %p not linked\n", __func__, con, msg);
1712 mutex_unlock(&con->mutex);
1713 return;
1714 }
1715
1716 dout("%s con %p msg %p was linked\n", __func__, con, msg);
1717 msg->hdr.seq = 0;
1718 ceph_msg_remove(msg);
1719
1720 if (con->out_msg == msg) {
1721 WARN_ON(con->state != CEPH_CON_S_OPEN);
1722 dout("%s con %p msg %p was sending\n", __func__, con, msg);
1723 if (ceph_msgr2(from_msgr(con->msgr)))
1724 ceph_con_v2_revoke(con);
1725 else
1726 ceph_con_v1_revoke(con);
1727 ceph_msg_put(con->out_msg);
1728 con->out_msg = NULL;
1729 } else {
1730 dout("%s con %p msg %p not current, out_msg %p\n", __func__,
1731 con, msg, con->out_msg);
1732 }
1733 mutex_unlock(&con->mutex);
1734}
1735
1736/*
1737 * Revoke a message that we may be reading data into
1738 */
1739void ceph_msg_revoke_incoming(struct ceph_msg *msg)
1740{
1741 struct ceph_connection *con = msg->con;
1742
1743 if (!con) {
1744 dout("%s msg %p null con\n", __func__, msg);
1745 return; /* Message not in our possession */
1746 }
1747
1748 mutex_lock(&con->mutex);
1749 if (con->in_msg == msg) {
1750 WARN_ON(con->state != CEPH_CON_S_OPEN);
1751 dout("%s con %p msg %p was recving\n", __func__, con, msg);
1752 if (ceph_msgr2(from_msgr(con->msgr)))
1753 ceph_con_v2_revoke_incoming(con);
1754 else
1755 ceph_con_v1_revoke_incoming(con);
1756 ceph_msg_put(con->in_msg);
1757 con->in_msg = NULL;
1758 } else {
1759 dout("%s con %p msg %p not current, in_msg %p\n", __func__,
1760 con, msg, con->in_msg);
1761 }
1762 mutex_unlock(&con->mutex);
1763}
1764
1765/*
1766 * Queue a keepalive byte to ensure the tcp connection is alive.
1767 */
1768void ceph_con_keepalive(struct ceph_connection *con)
1769{
1770 dout("con_keepalive %p\n", con);
1771 mutex_lock(&con->mutex);
1772 clear_standby(con);
1773 ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING);
1774 mutex_unlock(&con->mutex);
1775
1776 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1777 queue_con(con);
1778}
1779EXPORT_SYMBOL(ceph_con_keepalive);
1780
1781bool ceph_con_keepalive_expired(struct ceph_connection *con,
1782 unsigned long interval)
1783{
1784 if (interval > 0 &&
1785 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
1786 struct timespec64 now;
1787 struct timespec64 ts;
1788 ktime_get_real_ts64(&now);
1789 jiffies_to_timespec64(interval, &ts);
1790 ts = timespec64_add(con->last_keepalive_ack, ts);
1791 return timespec64_compare(&now, &ts) >= 0;
1792 }
1793 return false;
1794}
1795
1796static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
1797{
1798 BUG_ON(msg->num_data_items >= msg->max_data_items);
1799 return &msg->data[msg->num_data_items++];
1800}
1801
1802static void ceph_msg_data_destroy(struct ceph_msg_data *data)
1803{
1804 if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
1805 int num_pages = calc_pages_for(data->alignment, data->length);
1806 ceph_release_page_vector(data->pages, num_pages);
1807 } else if (data->type == CEPH_MSG_DATA_PAGELIST) {
1808 ceph_pagelist_release(data->pagelist);
1809 }
1810}
1811
1812void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
1813 size_t length, size_t alignment, bool own_pages)
1814{
1815 struct ceph_msg_data *data;
1816
1817 BUG_ON(!pages);
1818 BUG_ON(!length);
1819
1820 data = ceph_msg_data_add(msg);
1821 data->type = CEPH_MSG_DATA_PAGES;
1822 data->pages = pages;
1823 data->length = length;
1824 data->alignment = alignment & ~PAGE_MASK;
1825 data->own_pages = own_pages;
1826
1827 msg->data_length += length;
1828}
1829EXPORT_SYMBOL(ceph_msg_data_add_pages);
1830
1831void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
1832 struct ceph_pagelist *pagelist)
1833{
1834 struct ceph_msg_data *data;
1835
1836 BUG_ON(!pagelist);
1837 BUG_ON(!pagelist->length);
1838
1839 data = ceph_msg_data_add(msg);
1840 data->type = CEPH_MSG_DATA_PAGELIST;
1841 refcount_inc(&pagelist->refcnt);
1842 data->pagelist = pagelist;
1843
1844 msg->data_length += pagelist->length;
1845}
1846EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
1847
1848#ifdef CONFIG_BLOCK
1849void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
1850 u32 length)
1851{
1852 struct ceph_msg_data *data;
1853
1854 data = ceph_msg_data_add(msg);
1855 data->type = CEPH_MSG_DATA_BIO;
1856 data->bio_pos = *bio_pos;
1857 data->bio_length = length;
1858
1859 msg->data_length += length;
1860}
1861EXPORT_SYMBOL(ceph_msg_data_add_bio);
1862#endif /* CONFIG_BLOCK */
1863
1864void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
1865 struct ceph_bvec_iter *bvec_pos)
1866{
1867 struct ceph_msg_data *data;
1868
1869 data = ceph_msg_data_add(msg);
1870 data->type = CEPH_MSG_DATA_BVECS;
1871 data->bvec_pos = *bvec_pos;
1872
1873 msg->data_length += bvec_pos->iter.bi_size;
1874}
1875EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
1876
1877/*
1878 * construct a new message with given type, size
1879 * the new msg has a ref count of 1.
1880 */
1881struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
1882 gfp_t flags, bool can_fail)
1883{
1884 struct ceph_msg *m;
1885
1886 m = kmem_cache_zalloc(ceph_msg_cache, flags);
1887 if (m == NULL)
1888 goto out;
1889
1890 m->hdr.type = cpu_to_le16(type);
1891 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
1892 m->hdr.front_len = cpu_to_le32(front_len);
1893
1894 INIT_LIST_HEAD(&m->list_head);
1895 kref_init(&m->kref);
1896
1897 /* front */
1898 if (front_len) {
1899 m->front.iov_base = kvmalloc(front_len, flags);
1900 if (m->front.iov_base == NULL) {
1901 dout("ceph_msg_new can't allocate %d bytes\n",
1902 front_len);
1903 goto out2;
1904 }
1905 } else {
1906 m->front.iov_base = NULL;
1907 }
1908 m->front_alloc_len = m->front.iov_len = front_len;
1909
1910 if (max_data_items) {
1911 m->data = kmalloc_array(max_data_items, sizeof(*m->data),
1912 flags);
1913 if (!m->data)
1914 goto out2;
1915
1916 m->max_data_items = max_data_items;
1917 }
1918
1919 dout("ceph_msg_new %p front %d\n", m, front_len);
1920 return m;
1921
1922out2:
1923 ceph_msg_put(m);
1924out:
1925 if (!can_fail) {
1926 pr_err("msg_new can't create type %d front %d\n", type,
1927 front_len);
1928 WARN_ON(1);
1929 } else {
1930 dout("msg_new can't create type %d front %d\n", type,
1931 front_len);
1932 }
1933 return NULL;
1934}
1935EXPORT_SYMBOL(ceph_msg_new2);
1936
1937struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
1938 bool can_fail)
1939{
1940 return ceph_msg_new2(type, front_len, 0, flags, can_fail);
1941}
1942EXPORT_SYMBOL(ceph_msg_new);
1943
1944/*
1945 * Allocate "middle" portion of a message, if it is needed and wasn't
1946 * allocated by alloc_msg. This allows us to read a small fixed-size
1947 * per-type header in the front and then gracefully fail (i.e.,
1948 * propagate the error to the caller based on info in the front) when
1949 * the middle is too large.
1950 */
1951static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
1952{
1953 int type = le16_to_cpu(msg->hdr.type);
1954 int middle_len = le32_to_cpu(msg->hdr.middle_len);
1955
1956 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
1957 ceph_msg_type_name(type), middle_len);
1958 BUG_ON(!middle_len);
1959 BUG_ON(msg->middle);
1960
1961 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
1962 if (!msg->middle)
1963 return -ENOMEM;
1964 return 0;
1965}
1966
1967/*
1968 * Allocate a message for receiving an incoming message on a
1969 * connection, and save the result in con->in_msg. Uses the
1970 * connection's private alloc_msg op if available.
1971 *
1972 * Returns 0 on success, or a negative error code.
1973 *
1974 * On success, if we set *skip = 1:
1975 * - the next message should be skipped and ignored.
1976 * - con->in_msg == NULL
1977 * or if we set *skip = 0:
1978 * - con->in_msg is non-null.
1979 * On error (ENOMEM, EAGAIN, ...),
1980 * - con->in_msg == NULL
1981 */
1982int ceph_con_in_msg_alloc(struct ceph_connection *con,
1983 struct ceph_msg_header *hdr, int *skip)
1984{
1985 int middle_len = le32_to_cpu(hdr->middle_len);
1986 struct ceph_msg *msg;
1987 int ret = 0;
1988
1989 BUG_ON(con->in_msg != NULL);
1990 BUG_ON(!con->ops->alloc_msg);
1991
1992 mutex_unlock(&con->mutex);
1993 msg = con->ops->alloc_msg(con, hdr, skip);
1994 mutex_lock(&con->mutex);
1995 if (con->state != CEPH_CON_S_OPEN) {
1996 if (msg)
1997 ceph_msg_put(msg);
1998 return -EAGAIN;
1999 }
2000 if (msg) {
2001 BUG_ON(*skip);
2002 msg_con_set(msg, con);
2003 con->in_msg = msg;
2004 } else {
2005 /*
2006 * Null message pointer means either we should skip
2007 * this message or we couldn't allocate memory. The
2008 * former is not an error.
2009 */
2010 if (*skip)
2011 return 0;
2012
2013 con->error_msg = "error allocating memory for incoming message";
2014 return -ENOMEM;
2015 }
2016 memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr));
2017
2018 if (middle_len && !con->in_msg->middle) {
2019 ret = ceph_alloc_middle(con, con->in_msg);
2020 if (ret < 0) {
2021 ceph_msg_put(con->in_msg);
2022 con->in_msg = NULL;
2023 }
2024 }
2025
2026 return ret;
2027}
2028
2029void ceph_con_get_out_msg(struct ceph_connection *con)
2030{
2031 struct ceph_msg *msg;
2032
2033 BUG_ON(list_empty(&con->out_queue));
2034 msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
2035 WARN_ON(msg->con != con);
2036
2037 /*
2038 * Put the message on "sent" list using a ref from ceph_con_send().
2039 * It is put when the message is acked or revoked.
2040 */
2041 list_move_tail(&msg->list_head, &con->out_sent);
2042
2043 /*
2044 * Only assign outgoing seq # if we haven't sent this message
2045 * yet. If it is requeued, resend with it's original seq.
2046 */
2047 if (msg->needs_out_seq) {
2048 msg->hdr.seq = cpu_to_le64(++con->out_seq);
2049 msg->needs_out_seq = false;
2050
2051 if (con->ops->reencode_message)
2052 con->ops->reencode_message(msg);
2053 }
2054
2055 /*
2056 * Get a ref for out_msg. It is put when we are done sending the
2057 * message or in case of a fault.
2058 */
2059 WARN_ON(con->out_msg);
2060 con->out_msg = ceph_msg_get(msg);
2061}
2062
2063/*
2064 * Free a generically kmalloc'd message.
2065 */
2066static void ceph_msg_free(struct ceph_msg *m)
2067{
2068 dout("%s %p\n", __func__, m);
2069 kvfree(m->front.iov_base);
2070 kfree(m->data);
2071 kmem_cache_free(ceph_msg_cache, m);
2072}
2073
2074static void ceph_msg_release(struct kref *kref)
2075{
2076 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2077 int i;
2078
2079 dout("%s %p\n", __func__, m);
2080 WARN_ON(!list_empty(&m->list_head));
2081
2082 msg_con_set(m, NULL);
2083
2084 /* drop middle, data, if any */
2085 if (m->middle) {
2086 ceph_buffer_put(m->middle);
2087 m->middle = NULL;
2088 }
2089
2090 for (i = 0; i < m->num_data_items; i++)
2091 ceph_msg_data_destroy(&m->data[i]);
2092
2093 if (m->pool)
2094 ceph_msgpool_put(m->pool, m);
2095 else
2096 ceph_msg_free(m);
2097}
2098
2099struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
2100{
2101 dout("%s %p (was %d)\n", __func__, msg,
2102 kref_read(&msg->kref));
2103 kref_get(&msg->kref);
2104 return msg;
2105}
2106EXPORT_SYMBOL(ceph_msg_get);
2107
2108void ceph_msg_put(struct ceph_msg *msg)
2109{
2110 dout("%s %p (was %d)\n", __func__, msg,
2111 kref_read(&msg->kref));
2112 kref_put(&msg->kref, ceph_msg_release);
2113}
2114EXPORT_SYMBOL(ceph_msg_put);
2115
2116void ceph_msg_dump(struct ceph_msg *msg)
2117{
2118 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
2119 msg->front_alloc_len, msg->data_length);
2120 print_hex_dump(KERN_DEBUG, "header: ",
2121 DUMP_PREFIX_OFFSET, 16, 1,
2122 &msg->hdr, sizeof(msg->hdr), true);
2123 print_hex_dump(KERN_DEBUG, " front: ",
2124 DUMP_PREFIX_OFFSET, 16, 1,
2125 msg->front.iov_base, msg->front.iov_len, true);
2126 if (msg->middle)
2127 print_hex_dump(KERN_DEBUG, "middle: ",
2128 DUMP_PREFIX_OFFSET, 16, 1,
2129 msg->middle->vec.iov_base,
2130 msg->middle->vec.iov_len, true);
2131 print_hex_dump(KERN_DEBUG, "footer: ",
2132 DUMP_PREFIX_OFFSET, 16, 1,
2133 &msg->footer, sizeof(msg->footer), true);
2134}
2135EXPORT_SYMBOL(ceph_msg_dump);
1#include <linux/ceph/ceph_debug.h>
2
3#include <linux/crc32c.h>
4#include <linux/ctype.h>
5#include <linux/highmem.h>
6#include <linux/inet.h>
7#include <linux/kthread.h>
8#include <linux/net.h>
9#include <linux/slab.h>
10#include <linux/socket.h>
11#include <linux/string.h>
12#include <linux/bio.h>
13#include <linux/blkdev.h>
14#include <linux/dns_resolver.h>
15#include <net/tcp.h>
16
17#include <linux/ceph/libceph.h>
18#include <linux/ceph/messenger.h>
19#include <linux/ceph/decode.h>
20#include <linux/ceph/pagelist.h>
21#include <linux/export.h>
22
23/*
24 * Ceph uses the messenger to exchange ceph_msg messages with other
25 * hosts in the system. The messenger provides ordered and reliable
26 * delivery. We tolerate TCP disconnects by reconnecting (with
27 * exponential backoff) in the case of a fault (disconnection, bad
28 * crc, protocol error). Acks allow sent messages to be discarded by
29 * the sender.
30 */
31
32/* static tag bytes (protocol control messages) */
33static char tag_msg = CEPH_MSGR_TAG_MSG;
34static char tag_ack = CEPH_MSGR_TAG_ACK;
35static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
36
37#ifdef CONFIG_LOCKDEP
38static struct lock_class_key socket_class;
39#endif
40
41/*
42 * When skipping (ignoring) a block of input we read it into a "skip
43 * buffer," which is this many bytes in size.
44 */
45#define SKIP_BUF_SIZE 1024
46
47static void queue_con(struct ceph_connection *con);
48static void con_work(struct work_struct *);
49static void ceph_fault(struct ceph_connection *con);
50
51/*
52 * Nicely render a sockaddr as a string. An array of formatted
53 * strings is used, to approximate reentrancy.
54 */
55#define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
56#define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
57#define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
58#define MAX_ADDR_STR_LEN 64 /* 54 is enough */
59
60static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
61static atomic_t addr_str_seq = ATOMIC_INIT(0);
62
63static struct page *zero_page; /* used in certain error cases */
64
65const char *ceph_pr_addr(const struct sockaddr_storage *ss)
66{
67 int i;
68 char *s;
69 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
70 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
71
72 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
73 s = addr_str[i];
74
75 switch (ss->ss_family) {
76 case AF_INET:
77 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
78 ntohs(in4->sin_port));
79 break;
80
81 case AF_INET6:
82 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
83 ntohs(in6->sin6_port));
84 break;
85
86 default:
87 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
88 ss->ss_family);
89 }
90
91 return s;
92}
93EXPORT_SYMBOL(ceph_pr_addr);
94
95static void encode_my_addr(struct ceph_messenger *msgr)
96{
97 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
98 ceph_encode_addr(&msgr->my_enc_addr);
99}
100
101/*
102 * work queue for all reading and writing to/from the socket.
103 */
104static struct workqueue_struct *ceph_msgr_wq;
105
106void _ceph_msgr_exit(void)
107{
108 if (ceph_msgr_wq) {
109 destroy_workqueue(ceph_msgr_wq);
110 ceph_msgr_wq = NULL;
111 }
112
113 BUG_ON(zero_page == NULL);
114 kunmap(zero_page);
115 page_cache_release(zero_page);
116 zero_page = NULL;
117}
118
119int ceph_msgr_init(void)
120{
121 BUG_ON(zero_page != NULL);
122 zero_page = ZERO_PAGE(0);
123 page_cache_get(zero_page);
124
125 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
126 if (ceph_msgr_wq)
127 return 0;
128
129 pr_err("msgr_init failed to create workqueue\n");
130 _ceph_msgr_exit();
131
132 return -ENOMEM;
133}
134EXPORT_SYMBOL(ceph_msgr_init);
135
136void ceph_msgr_exit(void)
137{
138 BUG_ON(ceph_msgr_wq == NULL);
139
140 _ceph_msgr_exit();
141}
142EXPORT_SYMBOL(ceph_msgr_exit);
143
144void ceph_msgr_flush(void)
145{
146 flush_workqueue(ceph_msgr_wq);
147}
148EXPORT_SYMBOL(ceph_msgr_flush);
149
150
151/*
152 * socket callback functions
153 */
154
155/* data available on socket, or listen socket received a connect */
156static void ceph_data_ready(struct sock *sk, int count_unused)
157{
158 struct ceph_connection *con = sk->sk_user_data;
159
160 if (sk->sk_state != TCP_CLOSE_WAIT) {
161 dout("ceph_data_ready on %p state = %lu, queueing work\n",
162 con, con->state);
163 queue_con(con);
164 }
165}
166
167/* socket has buffer space for writing */
168static void ceph_write_space(struct sock *sk)
169{
170 struct ceph_connection *con = sk->sk_user_data;
171
172 /* only queue to workqueue if there is data we want to write,
173 * and there is sufficient space in the socket buffer to accept
174 * more data. clear SOCK_NOSPACE so that ceph_write_space()
175 * doesn't get called again until try_write() fills the socket
176 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
177 * and net/core/stream.c:sk_stream_write_space().
178 */
179 if (test_bit(WRITE_PENDING, &con->state)) {
180 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
181 dout("ceph_write_space %p queueing write work\n", con);
182 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
183 queue_con(con);
184 }
185 } else {
186 dout("ceph_write_space %p nothing to write\n", con);
187 }
188}
189
190/* socket's state has changed */
191static void ceph_state_change(struct sock *sk)
192{
193 struct ceph_connection *con = sk->sk_user_data;
194
195 dout("ceph_state_change %p state = %lu sk_state = %u\n",
196 con, con->state, sk->sk_state);
197
198 if (test_bit(CLOSED, &con->state))
199 return;
200
201 switch (sk->sk_state) {
202 case TCP_CLOSE:
203 dout("ceph_state_change TCP_CLOSE\n");
204 case TCP_CLOSE_WAIT:
205 dout("ceph_state_change TCP_CLOSE_WAIT\n");
206 if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
207 if (test_bit(CONNECTING, &con->state))
208 con->error_msg = "connection failed";
209 else
210 con->error_msg = "socket closed";
211 queue_con(con);
212 }
213 break;
214 case TCP_ESTABLISHED:
215 dout("ceph_state_change TCP_ESTABLISHED\n");
216 queue_con(con);
217 break;
218 default: /* Everything else is uninteresting */
219 break;
220 }
221}
222
223/*
224 * set up socket callbacks
225 */
226static void set_sock_callbacks(struct socket *sock,
227 struct ceph_connection *con)
228{
229 struct sock *sk = sock->sk;
230 sk->sk_user_data = con;
231 sk->sk_data_ready = ceph_data_ready;
232 sk->sk_write_space = ceph_write_space;
233 sk->sk_state_change = ceph_state_change;
234}
235
236
237/*
238 * socket helpers
239 */
240
241/*
242 * initiate connection to a remote socket.
243 */
244static int ceph_tcp_connect(struct ceph_connection *con)
245{
246 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
247 struct socket *sock;
248 int ret;
249
250 BUG_ON(con->sock);
251 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
252 IPPROTO_TCP, &sock);
253 if (ret)
254 return ret;
255 sock->sk->sk_allocation = GFP_NOFS;
256
257#ifdef CONFIG_LOCKDEP
258 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
259#endif
260
261 set_sock_callbacks(sock, con);
262
263 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
264
265 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
266 O_NONBLOCK);
267 if (ret == -EINPROGRESS) {
268 dout("connect %s EINPROGRESS sk_state = %u\n",
269 ceph_pr_addr(&con->peer_addr.in_addr),
270 sock->sk->sk_state);
271 } else if (ret < 0) {
272 pr_err("connect %s error %d\n",
273 ceph_pr_addr(&con->peer_addr.in_addr), ret);
274 sock_release(sock);
275 con->error_msg = "connect error";
276
277 return ret;
278 }
279 con->sock = sock;
280
281 return 0;
282}
283
284static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
285{
286 struct kvec iov = {buf, len};
287 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
288 int r;
289
290 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
291 if (r == -EAGAIN)
292 r = 0;
293 return r;
294}
295
296/*
297 * write something. @more is true if caller will be sending more data
298 * shortly.
299 */
300static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
301 size_t kvlen, size_t len, int more)
302{
303 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
304 int r;
305
306 if (more)
307 msg.msg_flags |= MSG_MORE;
308 else
309 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
310
311 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
312 if (r == -EAGAIN)
313 r = 0;
314 return r;
315}
316
317static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
318 int offset, size_t size, int more)
319{
320 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
321 int ret;
322
323 ret = kernel_sendpage(sock, page, offset, size, flags);
324 if (ret == -EAGAIN)
325 ret = 0;
326
327 return ret;
328}
329
330
331/*
332 * Shutdown/close the socket for the given connection.
333 */
334static int con_close_socket(struct ceph_connection *con)
335{
336 int rc;
337
338 dout("con_close_socket on %p sock %p\n", con, con->sock);
339 if (!con->sock)
340 return 0;
341 set_bit(SOCK_CLOSED, &con->state);
342 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
343 sock_release(con->sock);
344 con->sock = NULL;
345 clear_bit(SOCK_CLOSED, &con->state);
346 return rc;
347}
348
349/*
350 * Reset a connection. Discard all incoming and outgoing messages
351 * and clear *_seq state.
352 */
353static void ceph_msg_remove(struct ceph_msg *msg)
354{
355 list_del_init(&msg->list_head);
356 ceph_msg_put(msg);
357}
358static void ceph_msg_remove_list(struct list_head *head)
359{
360 while (!list_empty(head)) {
361 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
362 list_head);
363 ceph_msg_remove(msg);
364 }
365}
366
367static void reset_connection(struct ceph_connection *con)
368{
369 /* reset connection, out_queue, msg_ and connect_seq */
370 /* discard existing out_queue and msg_seq */
371 ceph_msg_remove_list(&con->out_queue);
372 ceph_msg_remove_list(&con->out_sent);
373
374 if (con->in_msg) {
375 ceph_msg_put(con->in_msg);
376 con->in_msg = NULL;
377 }
378
379 con->connect_seq = 0;
380 con->out_seq = 0;
381 if (con->out_msg) {
382 ceph_msg_put(con->out_msg);
383 con->out_msg = NULL;
384 }
385 con->in_seq = 0;
386 con->in_seq_acked = 0;
387}
388
389/*
390 * mark a peer down. drop any open connections.
391 */
392void ceph_con_close(struct ceph_connection *con)
393{
394 dout("con_close %p peer %s\n", con,
395 ceph_pr_addr(&con->peer_addr.in_addr));
396 set_bit(CLOSED, &con->state); /* in case there's queued work */
397 clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
398 clear_bit(LOSSYTX, &con->state); /* so we retry next connect */
399 clear_bit(KEEPALIVE_PENDING, &con->state);
400 clear_bit(WRITE_PENDING, &con->state);
401 mutex_lock(&con->mutex);
402 reset_connection(con);
403 con->peer_global_seq = 0;
404 cancel_delayed_work(&con->work);
405 mutex_unlock(&con->mutex);
406 queue_con(con);
407}
408EXPORT_SYMBOL(ceph_con_close);
409
410/*
411 * Reopen a closed connection, with a new peer address.
412 */
413void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
414{
415 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
416 set_bit(OPENING, &con->state);
417 clear_bit(CLOSED, &con->state);
418 memcpy(&con->peer_addr, addr, sizeof(*addr));
419 con->delay = 0; /* reset backoff memory */
420 queue_con(con);
421}
422EXPORT_SYMBOL(ceph_con_open);
423
424/*
425 * return true if this connection ever successfully opened
426 */
427bool ceph_con_opened(struct ceph_connection *con)
428{
429 return con->connect_seq > 0;
430}
431
432/*
433 * generic get/put
434 */
435struct ceph_connection *ceph_con_get(struct ceph_connection *con)
436{
437 int nref = __atomic_add_unless(&con->nref, 1, 0);
438
439 dout("con_get %p nref = %d -> %d\n", con, nref, nref + 1);
440
441 return nref ? con : NULL;
442}
443
444void ceph_con_put(struct ceph_connection *con)
445{
446 int nref = atomic_dec_return(&con->nref);
447
448 BUG_ON(nref < 0);
449 if (nref == 0) {
450 BUG_ON(con->sock);
451 kfree(con);
452 }
453 dout("con_put %p nref = %d -> %d\n", con, nref + 1, nref);
454}
455
456/*
457 * initialize a new connection.
458 */
459void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
460{
461 dout("con_init %p\n", con);
462 memset(con, 0, sizeof(*con));
463 atomic_set(&con->nref, 1);
464 con->msgr = msgr;
465 mutex_init(&con->mutex);
466 INIT_LIST_HEAD(&con->out_queue);
467 INIT_LIST_HEAD(&con->out_sent);
468 INIT_DELAYED_WORK(&con->work, con_work);
469}
470EXPORT_SYMBOL(ceph_con_init);
471
472
473/*
474 * We maintain a global counter to order connection attempts. Get
475 * a unique seq greater than @gt.
476 */
477static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
478{
479 u32 ret;
480
481 spin_lock(&msgr->global_seq_lock);
482 if (msgr->global_seq < gt)
483 msgr->global_seq = gt;
484 ret = ++msgr->global_seq;
485 spin_unlock(&msgr->global_seq_lock);
486 return ret;
487}
488
489static void ceph_con_out_kvec_reset(struct ceph_connection *con)
490{
491 con->out_kvec_left = 0;
492 con->out_kvec_bytes = 0;
493 con->out_kvec_cur = &con->out_kvec[0];
494}
495
496static void ceph_con_out_kvec_add(struct ceph_connection *con,
497 size_t size, void *data)
498{
499 int index;
500
501 index = con->out_kvec_left;
502 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
503
504 con->out_kvec[index].iov_len = size;
505 con->out_kvec[index].iov_base = data;
506 con->out_kvec_left++;
507 con->out_kvec_bytes += size;
508}
509
510/*
511 * Prepare footer for currently outgoing message, and finish things
512 * off. Assumes out_kvec* are already valid.. we just add on to the end.
513 */
514static void prepare_write_message_footer(struct ceph_connection *con)
515{
516 struct ceph_msg *m = con->out_msg;
517 int v = con->out_kvec_left;
518
519 dout("prepare_write_message_footer %p\n", con);
520 con->out_kvec_is_msg = true;
521 con->out_kvec[v].iov_base = &m->footer;
522 con->out_kvec[v].iov_len = sizeof(m->footer);
523 con->out_kvec_bytes += sizeof(m->footer);
524 con->out_kvec_left++;
525 con->out_more = m->more_to_follow;
526 con->out_msg_done = true;
527}
528
529/*
530 * Prepare headers for the next outgoing message.
531 */
532static void prepare_write_message(struct ceph_connection *con)
533{
534 struct ceph_msg *m;
535 u32 crc;
536
537 ceph_con_out_kvec_reset(con);
538 con->out_kvec_is_msg = true;
539 con->out_msg_done = false;
540
541 /* Sneak an ack in there first? If we can get it into the same
542 * TCP packet that's a good thing. */
543 if (con->in_seq > con->in_seq_acked) {
544 con->in_seq_acked = con->in_seq;
545 ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
546 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
547 ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
548 &con->out_temp_ack);
549 }
550
551 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
552 con->out_msg = m;
553
554 /* put message on sent list */
555 ceph_msg_get(m);
556 list_move_tail(&m->list_head, &con->out_sent);
557
558 /*
559 * only assign outgoing seq # if we haven't sent this message
560 * yet. if it is requeued, resend with it's original seq.
561 */
562 if (m->needs_out_seq) {
563 m->hdr.seq = cpu_to_le64(++con->out_seq);
564 m->needs_out_seq = false;
565 }
566#ifdef CONFIG_BLOCK
567 else
568 m->bio_iter = NULL;
569#endif
570
571 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
572 m, con->out_seq, le16_to_cpu(m->hdr.type),
573 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
574 le32_to_cpu(m->hdr.data_len),
575 m->nr_pages);
576 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
577
578 /* tag + hdr + front + middle */
579 ceph_con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
580 ceph_con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
581 ceph_con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
582
583 if (m->middle)
584 ceph_con_out_kvec_add(con, m->middle->vec.iov_len,
585 m->middle->vec.iov_base);
586
587 /* fill in crc (except data pages), footer */
588 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
589 con->out_msg->hdr.crc = cpu_to_le32(crc);
590 con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
591
592 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
593 con->out_msg->footer.front_crc = cpu_to_le32(crc);
594 if (m->middle) {
595 crc = crc32c(0, m->middle->vec.iov_base,
596 m->middle->vec.iov_len);
597 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
598 } else
599 con->out_msg->footer.middle_crc = 0;
600 con->out_msg->footer.data_crc = 0;
601 dout("prepare_write_message front_crc %u data_crc %u\n",
602 le32_to_cpu(con->out_msg->footer.front_crc),
603 le32_to_cpu(con->out_msg->footer.middle_crc));
604
605 /* is there a data payload? */
606 if (le32_to_cpu(m->hdr.data_len) > 0) {
607 /* initialize page iterator */
608 con->out_msg_pos.page = 0;
609 if (m->pages)
610 con->out_msg_pos.page_pos = m->page_alignment;
611 else
612 con->out_msg_pos.page_pos = 0;
613 con->out_msg_pos.data_pos = 0;
614 con->out_msg_pos.did_page_crc = false;
615 con->out_more = 1; /* data + footer will follow */
616 } else {
617 /* no, queue up footer too and be done */
618 prepare_write_message_footer(con);
619 }
620
621 set_bit(WRITE_PENDING, &con->state);
622}
623
624/*
625 * Prepare an ack.
626 */
627static void prepare_write_ack(struct ceph_connection *con)
628{
629 dout("prepare_write_ack %p %llu -> %llu\n", con,
630 con->in_seq_acked, con->in_seq);
631 con->in_seq_acked = con->in_seq;
632
633 ceph_con_out_kvec_reset(con);
634
635 ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
636
637 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
638 ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
639 &con->out_temp_ack);
640
641 con->out_more = 1; /* more will follow.. eventually.. */
642 set_bit(WRITE_PENDING, &con->state);
643}
644
645/*
646 * Prepare to write keepalive byte.
647 */
648static void prepare_write_keepalive(struct ceph_connection *con)
649{
650 dout("prepare_write_keepalive %p\n", con);
651 ceph_con_out_kvec_reset(con);
652 ceph_con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
653 set_bit(WRITE_PENDING, &con->state);
654}
655
656/*
657 * Connection negotiation.
658 */
659
660static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
661 int *auth_proto)
662{
663 struct ceph_auth_handshake *auth;
664
665 if (!con->ops->get_authorizer) {
666 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
667 con->out_connect.authorizer_len = 0;
668
669 return NULL;
670 }
671
672 /* Can't hold the mutex while getting authorizer */
673
674 mutex_unlock(&con->mutex);
675
676 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
677
678 mutex_lock(&con->mutex);
679
680 if (IS_ERR(auth))
681 return auth;
682 if (test_bit(CLOSED, &con->state) || test_bit(OPENING, &con->state))
683 return ERR_PTR(-EAGAIN);
684
685 con->auth_reply_buf = auth->authorizer_reply_buf;
686 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
687
688
689 return auth;
690}
691
692/*
693 * We connected to a peer and are saying hello.
694 */
695static void prepare_write_banner(struct ceph_connection *con)
696{
697 ceph_con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
698 ceph_con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
699 &con->msgr->my_enc_addr);
700
701 con->out_more = 0;
702 set_bit(WRITE_PENDING, &con->state);
703}
704
705static int prepare_write_connect(struct ceph_connection *con)
706{
707 unsigned int global_seq = get_global_seq(con->msgr, 0);
708 int proto;
709 int auth_proto;
710 struct ceph_auth_handshake *auth;
711
712 switch (con->peer_name.type) {
713 case CEPH_ENTITY_TYPE_MON:
714 proto = CEPH_MONC_PROTOCOL;
715 break;
716 case CEPH_ENTITY_TYPE_OSD:
717 proto = CEPH_OSDC_PROTOCOL;
718 break;
719 case CEPH_ENTITY_TYPE_MDS:
720 proto = CEPH_MDSC_PROTOCOL;
721 break;
722 default:
723 BUG();
724 }
725
726 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
727 con->connect_seq, global_seq, proto);
728
729 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
730 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
731 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
732 con->out_connect.global_seq = cpu_to_le32(global_seq);
733 con->out_connect.protocol_version = cpu_to_le32(proto);
734 con->out_connect.flags = 0;
735
736 auth_proto = CEPH_AUTH_UNKNOWN;
737 auth = get_connect_authorizer(con, &auth_proto);
738 if (IS_ERR(auth))
739 return PTR_ERR(auth);
740
741 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
742 con->out_connect.authorizer_len = auth ?
743 cpu_to_le32(auth->authorizer_buf_len) : 0;
744
745 ceph_con_out_kvec_add(con, sizeof (con->out_connect),
746 &con->out_connect);
747 if (auth && auth->authorizer_buf_len)
748 ceph_con_out_kvec_add(con, auth->authorizer_buf_len,
749 auth->authorizer_buf);
750
751 con->out_more = 0;
752 set_bit(WRITE_PENDING, &con->state);
753
754 return 0;
755}
756
757/*
758 * write as much of pending kvecs to the socket as we can.
759 * 1 -> done
760 * 0 -> socket full, but more to do
761 * <0 -> error
762 */
763static int write_partial_kvec(struct ceph_connection *con)
764{
765 int ret;
766
767 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
768 while (con->out_kvec_bytes > 0) {
769 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
770 con->out_kvec_left, con->out_kvec_bytes,
771 con->out_more);
772 if (ret <= 0)
773 goto out;
774 con->out_kvec_bytes -= ret;
775 if (con->out_kvec_bytes == 0)
776 break; /* done */
777
778 /* account for full iov entries consumed */
779 while (ret >= con->out_kvec_cur->iov_len) {
780 BUG_ON(!con->out_kvec_left);
781 ret -= con->out_kvec_cur->iov_len;
782 con->out_kvec_cur++;
783 con->out_kvec_left--;
784 }
785 /* and for a partially-consumed entry */
786 if (ret) {
787 con->out_kvec_cur->iov_len -= ret;
788 con->out_kvec_cur->iov_base += ret;
789 }
790 }
791 con->out_kvec_left = 0;
792 con->out_kvec_is_msg = false;
793 ret = 1;
794out:
795 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
796 con->out_kvec_bytes, con->out_kvec_left, ret);
797 return ret; /* done! */
798}
799
800#ifdef CONFIG_BLOCK
801static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
802{
803 if (!bio) {
804 *iter = NULL;
805 *seg = 0;
806 return;
807 }
808 *iter = bio;
809 *seg = bio->bi_idx;
810}
811
812static void iter_bio_next(struct bio **bio_iter, int *seg)
813{
814 if (*bio_iter == NULL)
815 return;
816
817 BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
818
819 (*seg)++;
820 if (*seg == (*bio_iter)->bi_vcnt)
821 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
822}
823#endif
824
825/*
826 * Write as much message data payload as we can. If we finish, queue
827 * up the footer.
828 * 1 -> done, footer is now queued in out_kvec[].
829 * 0 -> socket full, but more to do
830 * <0 -> error
831 */
832static int write_partial_msg_pages(struct ceph_connection *con)
833{
834 struct ceph_msg *msg = con->out_msg;
835 unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
836 size_t len;
837 bool do_datacrc = !con->msgr->nocrc;
838 int ret;
839 int total_max_write;
840 int in_trail = 0;
841 size_t trail_len = (msg->trail ? msg->trail->length : 0);
842
843 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
844 con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
845 con->out_msg_pos.page_pos);
846
847#ifdef CONFIG_BLOCK
848 if (msg->bio && !msg->bio_iter)
849 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
850#endif
851
852 while (data_len > con->out_msg_pos.data_pos) {
853 struct page *page = NULL;
854 int max_write = PAGE_SIZE;
855 int bio_offset = 0;
856
857 total_max_write = data_len - trail_len -
858 con->out_msg_pos.data_pos;
859
860 /*
861 * if we are calculating the data crc (the default), we need
862 * to map the page. if our pages[] has been revoked, use the
863 * zero page.
864 */
865
866 /* have we reached the trail part of the data? */
867 if (con->out_msg_pos.data_pos >= data_len - trail_len) {
868 in_trail = 1;
869
870 total_max_write = data_len - con->out_msg_pos.data_pos;
871
872 page = list_first_entry(&msg->trail->head,
873 struct page, lru);
874 max_write = PAGE_SIZE;
875 } else if (msg->pages) {
876 page = msg->pages[con->out_msg_pos.page];
877 } else if (msg->pagelist) {
878 page = list_first_entry(&msg->pagelist->head,
879 struct page, lru);
880#ifdef CONFIG_BLOCK
881 } else if (msg->bio) {
882 struct bio_vec *bv;
883
884 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
885 page = bv->bv_page;
886 bio_offset = bv->bv_offset;
887 max_write = bv->bv_len;
888#endif
889 } else {
890 page = zero_page;
891 }
892 len = min_t(int, max_write - con->out_msg_pos.page_pos,
893 total_max_write);
894
895 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
896 void *base;
897 u32 crc;
898 u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
899 char *kaddr;
900
901 kaddr = kmap(page);
902 BUG_ON(kaddr == NULL);
903 base = kaddr + con->out_msg_pos.page_pos + bio_offset;
904 crc = crc32c(tmpcrc, base, len);
905 con->out_msg->footer.data_crc = cpu_to_le32(crc);
906 con->out_msg_pos.did_page_crc = true;
907 }
908 ret = ceph_tcp_sendpage(con->sock, page,
909 con->out_msg_pos.page_pos + bio_offset,
910 len, 1);
911
912 if (do_datacrc)
913 kunmap(page);
914
915 if (ret <= 0)
916 goto out;
917
918 con->out_msg_pos.data_pos += ret;
919 con->out_msg_pos.page_pos += ret;
920 if (ret == len) {
921 con->out_msg_pos.page_pos = 0;
922 con->out_msg_pos.page++;
923 con->out_msg_pos.did_page_crc = false;
924 if (in_trail)
925 list_move_tail(&page->lru,
926 &msg->trail->head);
927 else if (msg->pagelist)
928 list_move_tail(&page->lru,
929 &msg->pagelist->head);
930#ifdef CONFIG_BLOCK
931 else if (msg->bio)
932 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
933#endif
934 }
935 }
936
937 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
938
939 /* prepare and queue up footer, too */
940 if (!do_datacrc)
941 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
942 ceph_con_out_kvec_reset(con);
943 prepare_write_message_footer(con);
944 ret = 1;
945out:
946 return ret;
947}
948
949/*
950 * write some zeros
951 */
952static int write_partial_skip(struct ceph_connection *con)
953{
954 int ret;
955
956 while (con->out_skip > 0) {
957 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
958
959 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
960 if (ret <= 0)
961 goto out;
962 con->out_skip -= ret;
963 }
964 ret = 1;
965out:
966 return ret;
967}
968
969/*
970 * Prepare to read connection handshake, or an ack.
971 */
972static void prepare_read_banner(struct ceph_connection *con)
973{
974 dout("prepare_read_banner %p\n", con);
975 con->in_base_pos = 0;
976}
977
978static void prepare_read_connect(struct ceph_connection *con)
979{
980 dout("prepare_read_connect %p\n", con);
981 con->in_base_pos = 0;
982}
983
984static void prepare_read_ack(struct ceph_connection *con)
985{
986 dout("prepare_read_ack %p\n", con);
987 con->in_base_pos = 0;
988}
989
990static void prepare_read_tag(struct ceph_connection *con)
991{
992 dout("prepare_read_tag %p\n", con);
993 con->in_base_pos = 0;
994 con->in_tag = CEPH_MSGR_TAG_READY;
995}
996
997/*
998 * Prepare to read a message.
999 */
1000static int prepare_read_message(struct ceph_connection *con)
1001{
1002 dout("prepare_read_message %p\n", con);
1003 BUG_ON(con->in_msg != NULL);
1004 con->in_base_pos = 0;
1005 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1006 return 0;
1007}
1008
1009
1010static int read_partial(struct ceph_connection *con,
1011 int end, int size, void *object)
1012{
1013 while (con->in_base_pos < end) {
1014 int left = end - con->in_base_pos;
1015 int have = size - left;
1016 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1017 if (ret <= 0)
1018 return ret;
1019 con->in_base_pos += ret;
1020 }
1021 return 1;
1022}
1023
1024
1025/*
1026 * Read all or part of the connect-side handshake on a new connection
1027 */
1028static int read_partial_banner(struct ceph_connection *con)
1029{
1030 int size;
1031 int end;
1032 int ret;
1033
1034 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1035
1036 /* peer's banner */
1037 size = strlen(CEPH_BANNER);
1038 end = size;
1039 ret = read_partial(con, end, size, con->in_banner);
1040 if (ret <= 0)
1041 goto out;
1042
1043 size = sizeof (con->actual_peer_addr);
1044 end += size;
1045 ret = read_partial(con, end, size, &con->actual_peer_addr);
1046 if (ret <= 0)
1047 goto out;
1048
1049 size = sizeof (con->peer_addr_for_me);
1050 end += size;
1051 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1052 if (ret <= 0)
1053 goto out;
1054
1055out:
1056 return ret;
1057}
1058
1059static int read_partial_connect(struct ceph_connection *con)
1060{
1061 int size;
1062 int end;
1063 int ret;
1064
1065 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1066
1067 size = sizeof (con->in_reply);
1068 end = size;
1069 ret = read_partial(con, end, size, &con->in_reply);
1070 if (ret <= 0)
1071 goto out;
1072
1073 size = le32_to_cpu(con->in_reply.authorizer_len);
1074 end += size;
1075 ret = read_partial(con, end, size, con->auth_reply_buf);
1076 if (ret <= 0)
1077 goto out;
1078
1079 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1080 con, (int)con->in_reply.tag,
1081 le32_to_cpu(con->in_reply.connect_seq),
1082 le32_to_cpu(con->in_reply.global_seq));
1083out:
1084 return ret;
1085
1086}
1087
1088/*
1089 * Verify the hello banner looks okay.
1090 */
1091static int verify_hello(struct ceph_connection *con)
1092{
1093 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1094 pr_err("connect to %s got bad banner\n",
1095 ceph_pr_addr(&con->peer_addr.in_addr));
1096 con->error_msg = "protocol error, bad banner";
1097 return -1;
1098 }
1099 return 0;
1100}
1101
1102static bool addr_is_blank(struct sockaddr_storage *ss)
1103{
1104 switch (ss->ss_family) {
1105 case AF_INET:
1106 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1107 case AF_INET6:
1108 return
1109 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1110 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1111 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1112 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1113 }
1114 return false;
1115}
1116
1117static int addr_port(struct sockaddr_storage *ss)
1118{
1119 switch (ss->ss_family) {
1120 case AF_INET:
1121 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1122 case AF_INET6:
1123 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1124 }
1125 return 0;
1126}
1127
1128static void addr_set_port(struct sockaddr_storage *ss, int p)
1129{
1130 switch (ss->ss_family) {
1131 case AF_INET:
1132 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1133 break;
1134 case AF_INET6:
1135 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1136 break;
1137 }
1138}
1139
1140/*
1141 * Unlike other *_pton function semantics, zero indicates success.
1142 */
1143static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1144 char delim, const char **ipend)
1145{
1146 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1147 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1148
1149 memset(ss, 0, sizeof(*ss));
1150
1151 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1152 ss->ss_family = AF_INET;
1153 return 0;
1154 }
1155
1156 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1157 ss->ss_family = AF_INET6;
1158 return 0;
1159 }
1160
1161 return -EINVAL;
1162}
1163
1164/*
1165 * Extract hostname string and resolve using kernel DNS facility.
1166 */
1167#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1168static int ceph_dns_resolve_name(const char *name, size_t namelen,
1169 struct sockaddr_storage *ss, char delim, const char **ipend)
1170{
1171 const char *end, *delim_p;
1172 char *colon_p, *ip_addr = NULL;
1173 int ip_len, ret;
1174
1175 /*
1176 * The end of the hostname occurs immediately preceding the delimiter or
1177 * the port marker (':') where the delimiter takes precedence.
1178 */
1179 delim_p = memchr(name, delim, namelen);
1180 colon_p = memchr(name, ':', namelen);
1181
1182 if (delim_p && colon_p)
1183 end = delim_p < colon_p ? delim_p : colon_p;
1184 else if (!delim_p && colon_p)
1185 end = colon_p;
1186 else {
1187 end = delim_p;
1188 if (!end) /* case: hostname:/ */
1189 end = name + namelen;
1190 }
1191
1192 if (end <= name)
1193 return -EINVAL;
1194
1195 /* do dns_resolve upcall */
1196 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1197 if (ip_len > 0)
1198 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1199 else
1200 ret = -ESRCH;
1201
1202 kfree(ip_addr);
1203
1204 *ipend = end;
1205
1206 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1207 ret, ret ? "failed" : ceph_pr_addr(ss));
1208
1209 return ret;
1210}
1211#else
1212static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1213 struct sockaddr_storage *ss, char delim, const char **ipend)
1214{
1215 return -EINVAL;
1216}
1217#endif
1218
1219/*
1220 * Parse a server name (IP or hostname). If a valid IP address is not found
1221 * then try to extract a hostname to resolve using userspace DNS upcall.
1222 */
1223static int ceph_parse_server_name(const char *name, size_t namelen,
1224 struct sockaddr_storage *ss, char delim, const char **ipend)
1225{
1226 int ret;
1227
1228 ret = ceph_pton(name, namelen, ss, delim, ipend);
1229 if (ret)
1230 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1231
1232 return ret;
1233}
1234
1235/*
1236 * Parse an ip[:port] list into an addr array. Use the default
1237 * monitor port if a port isn't specified.
1238 */
1239int ceph_parse_ips(const char *c, const char *end,
1240 struct ceph_entity_addr *addr,
1241 int max_count, int *count)
1242{
1243 int i, ret = -EINVAL;
1244 const char *p = c;
1245
1246 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1247 for (i = 0; i < max_count; i++) {
1248 const char *ipend;
1249 struct sockaddr_storage *ss = &addr[i].in_addr;
1250 int port;
1251 char delim = ',';
1252
1253 if (*p == '[') {
1254 delim = ']';
1255 p++;
1256 }
1257
1258 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1259 if (ret)
1260 goto bad;
1261 ret = -EINVAL;
1262
1263 p = ipend;
1264
1265 if (delim == ']') {
1266 if (*p != ']') {
1267 dout("missing matching ']'\n");
1268 goto bad;
1269 }
1270 p++;
1271 }
1272
1273 /* port? */
1274 if (p < end && *p == ':') {
1275 port = 0;
1276 p++;
1277 while (p < end && *p >= '0' && *p <= '9') {
1278 port = (port * 10) + (*p - '0');
1279 p++;
1280 }
1281 if (port > 65535 || port == 0)
1282 goto bad;
1283 } else {
1284 port = CEPH_MON_PORT;
1285 }
1286
1287 addr_set_port(ss, port);
1288
1289 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1290
1291 if (p == end)
1292 break;
1293 if (*p != ',')
1294 goto bad;
1295 p++;
1296 }
1297
1298 if (p != end)
1299 goto bad;
1300
1301 if (count)
1302 *count = i + 1;
1303 return 0;
1304
1305bad:
1306 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1307 return ret;
1308}
1309EXPORT_SYMBOL(ceph_parse_ips);
1310
1311static int process_banner(struct ceph_connection *con)
1312{
1313 dout("process_banner on %p\n", con);
1314
1315 if (verify_hello(con) < 0)
1316 return -1;
1317
1318 ceph_decode_addr(&con->actual_peer_addr);
1319 ceph_decode_addr(&con->peer_addr_for_me);
1320
1321 /*
1322 * Make sure the other end is who we wanted. note that the other
1323 * end may not yet know their ip address, so if it's 0.0.0.0, give
1324 * them the benefit of the doubt.
1325 */
1326 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1327 sizeof(con->peer_addr)) != 0 &&
1328 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1329 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1330 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1331 ceph_pr_addr(&con->peer_addr.in_addr),
1332 (int)le32_to_cpu(con->peer_addr.nonce),
1333 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1334 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1335 con->error_msg = "wrong peer at address";
1336 return -1;
1337 }
1338
1339 /*
1340 * did we learn our address?
1341 */
1342 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1343 int port = addr_port(&con->msgr->inst.addr.in_addr);
1344
1345 memcpy(&con->msgr->inst.addr.in_addr,
1346 &con->peer_addr_for_me.in_addr,
1347 sizeof(con->peer_addr_for_me.in_addr));
1348 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1349 encode_my_addr(con->msgr);
1350 dout("process_banner learned my addr is %s\n",
1351 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1352 }
1353
1354 set_bit(NEGOTIATING, &con->state);
1355 prepare_read_connect(con);
1356 return 0;
1357}
1358
1359static void fail_protocol(struct ceph_connection *con)
1360{
1361 reset_connection(con);
1362 set_bit(CLOSED, &con->state); /* in case there's queued work */
1363
1364 mutex_unlock(&con->mutex);
1365 if (con->ops->bad_proto)
1366 con->ops->bad_proto(con);
1367 mutex_lock(&con->mutex);
1368}
1369
1370static int process_connect(struct ceph_connection *con)
1371{
1372 u64 sup_feat = con->msgr->supported_features;
1373 u64 req_feat = con->msgr->required_features;
1374 u64 server_feat = le64_to_cpu(con->in_reply.features);
1375 int ret;
1376
1377 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1378
1379 switch (con->in_reply.tag) {
1380 case CEPH_MSGR_TAG_FEATURES:
1381 pr_err("%s%lld %s feature set mismatch,"
1382 " my %llx < server's %llx, missing %llx\n",
1383 ENTITY_NAME(con->peer_name),
1384 ceph_pr_addr(&con->peer_addr.in_addr),
1385 sup_feat, server_feat, server_feat & ~sup_feat);
1386 con->error_msg = "missing required protocol features";
1387 fail_protocol(con);
1388 return -1;
1389
1390 case CEPH_MSGR_TAG_BADPROTOVER:
1391 pr_err("%s%lld %s protocol version mismatch,"
1392 " my %d != server's %d\n",
1393 ENTITY_NAME(con->peer_name),
1394 ceph_pr_addr(&con->peer_addr.in_addr),
1395 le32_to_cpu(con->out_connect.protocol_version),
1396 le32_to_cpu(con->in_reply.protocol_version));
1397 con->error_msg = "protocol version mismatch";
1398 fail_protocol(con);
1399 return -1;
1400
1401 case CEPH_MSGR_TAG_BADAUTHORIZER:
1402 con->auth_retry++;
1403 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1404 con->auth_retry);
1405 if (con->auth_retry == 2) {
1406 con->error_msg = "connect authorization failure";
1407 return -1;
1408 }
1409 con->auth_retry = 1;
1410 ceph_con_out_kvec_reset(con);
1411 ret = prepare_write_connect(con);
1412 if (ret < 0)
1413 return ret;
1414 prepare_read_connect(con);
1415 break;
1416
1417 case CEPH_MSGR_TAG_RESETSESSION:
1418 /*
1419 * If we connected with a large connect_seq but the peer
1420 * has no record of a session with us (no connection, or
1421 * connect_seq == 0), they will send RESETSESION to indicate
1422 * that they must have reset their session, and may have
1423 * dropped messages.
1424 */
1425 dout("process_connect got RESET peer seq %u\n",
1426 le32_to_cpu(con->in_reply.connect_seq));
1427 pr_err("%s%lld %s connection reset\n",
1428 ENTITY_NAME(con->peer_name),
1429 ceph_pr_addr(&con->peer_addr.in_addr));
1430 reset_connection(con);
1431 ceph_con_out_kvec_reset(con);
1432 ret = prepare_write_connect(con);
1433 if (ret < 0)
1434 return ret;
1435 prepare_read_connect(con);
1436
1437 /* Tell ceph about it. */
1438 mutex_unlock(&con->mutex);
1439 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1440 if (con->ops->peer_reset)
1441 con->ops->peer_reset(con);
1442 mutex_lock(&con->mutex);
1443 if (test_bit(CLOSED, &con->state) ||
1444 test_bit(OPENING, &con->state))
1445 return -EAGAIN;
1446 break;
1447
1448 case CEPH_MSGR_TAG_RETRY_SESSION:
1449 /*
1450 * If we sent a smaller connect_seq than the peer has, try
1451 * again with a larger value.
1452 */
1453 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1454 le32_to_cpu(con->out_connect.connect_seq),
1455 le32_to_cpu(con->in_reply.connect_seq));
1456 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1457 ceph_con_out_kvec_reset(con);
1458 ret = prepare_write_connect(con);
1459 if (ret < 0)
1460 return ret;
1461 prepare_read_connect(con);
1462 break;
1463
1464 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1465 /*
1466 * If we sent a smaller global_seq than the peer has, try
1467 * again with a larger value.
1468 */
1469 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1470 con->peer_global_seq,
1471 le32_to_cpu(con->in_reply.global_seq));
1472 get_global_seq(con->msgr,
1473 le32_to_cpu(con->in_reply.global_seq));
1474 ceph_con_out_kvec_reset(con);
1475 ret = prepare_write_connect(con);
1476 if (ret < 0)
1477 return ret;
1478 prepare_read_connect(con);
1479 break;
1480
1481 case CEPH_MSGR_TAG_READY:
1482 if (req_feat & ~server_feat) {
1483 pr_err("%s%lld %s protocol feature mismatch,"
1484 " my required %llx > server's %llx, need %llx\n",
1485 ENTITY_NAME(con->peer_name),
1486 ceph_pr_addr(&con->peer_addr.in_addr),
1487 req_feat, server_feat, req_feat & ~server_feat);
1488 con->error_msg = "missing required protocol features";
1489 fail_protocol(con);
1490 return -1;
1491 }
1492 clear_bit(CONNECTING, &con->state);
1493 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1494 con->connect_seq++;
1495 con->peer_features = server_feat;
1496 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1497 con->peer_global_seq,
1498 le32_to_cpu(con->in_reply.connect_seq),
1499 con->connect_seq);
1500 WARN_ON(con->connect_seq !=
1501 le32_to_cpu(con->in_reply.connect_seq));
1502
1503 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1504 set_bit(LOSSYTX, &con->state);
1505
1506 prepare_read_tag(con);
1507 break;
1508
1509 case CEPH_MSGR_TAG_WAIT:
1510 /*
1511 * If there is a connection race (we are opening
1512 * connections to each other), one of us may just have
1513 * to WAIT. This shouldn't happen if we are the
1514 * client.
1515 */
1516 pr_err("process_connect got WAIT as client\n");
1517 con->error_msg = "protocol error, got WAIT as client";
1518 return -1;
1519
1520 default:
1521 pr_err("connect protocol error, will retry\n");
1522 con->error_msg = "protocol error, garbage tag during connect";
1523 return -1;
1524 }
1525 return 0;
1526}
1527
1528
1529/*
1530 * read (part of) an ack
1531 */
1532static int read_partial_ack(struct ceph_connection *con)
1533{
1534 int size = sizeof (con->in_temp_ack);
1535 int end = size;
1536
1537 return read_partial(con, end, size, &con->in_temp_ack);
1538}
1539
1540
1541/*
1542 * We can finally discard anything that's been acked.
1543 */
1544static void process_ack(struct ceph_connection *con)
1545{
1546 struct ceph_msg *m;
1547 u64 ack = le64_to_cpu(con->in_temp_ack);
1548 u64 seq;
1549
1550 while (!list_empty(&con->out_sent)) {
1551 m = list_first_entry(&con->out_sent, struct ceph_msg,
1552 list_head);
1553 seq = le64_to_cpu(m->hdr.seq);
1554 if (seq > ack)
1555 break;
1556 dout("got ack for seq %llu type %d at %p\n", seq,
1557 le16_to_cpu(m->hdr.type), m);
1558 m->ack_stamp = jiffies;
1559 ceph_msg_remove(m);
1560 }
1561 prepare_read_tag(con);
1562}
1563
1564
1565
1566
1567static int read_partial_message_section(struct ceph_connection *con,
1568 struct kvec *section,
1569 unsigned int sec_len, u32 *crc)
1570{
1571 int ret, left;
1572
1573 BUG_ON(!section);
1574
1575 while (section->iov_len < sec_len) {
1576 BUG_ON(section->iov_base == NULL);
1577 left = sec_len - section->iov_len;
1578 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1579 section->iov_len, left);
1580 if (ret <= 0)
1581 return ret;
1582 section->iov_len += ret;
1583 }
1584 if (section->iov_len == sec_len)
1585 *crc = crc32c(0, section->iov_base, section->iov_len);
1586
1587 return 1;
1588}
1589
1590static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1591 struct ceph_msg_header *hdr,
1592 int *skip);
1593
1594
1595static int read_partial_message_pages(struct ceph_connection *con,
1596 struct page **pages,
1597 unsigned int data_len, bool do_datacrc)
1598{
1599 void *p;
1600 int ret;
1601 int left;
1602
1603 left = min((int)(data_len - con->in_msg_pos.data_pos),
1604 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1605 /* (page) data */
1606 BUG_ON(pages == NULL);
1607 p = kmap(pages[con->in_msg_pos.page]);
1608 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1609 left);
1610 if (ret > 0 && do_datacrc)
1611 con->in_data_crc =
1612 crc32c(con->in_data_crc,
1613 p + con->in_msg_pos.page_pos, ret);
1614 kunmap(pages[con->in_msg_pos.page]);
1615 if (ret <= 0)
1616 return ret;
1617 con->in_msg_pos.data_pos += ret;
1618 con->in_msg_pos.page_pos += ret;
1619 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1620 con->in_msg_pos.page_pos = 0;
1621 con->in_msg_pos.page++;
1622 }
1623
1624 return ret;
1625}
1626
1627#ifdef CONFIG_BLOCK
1628static int read_partial_message_bio(struct ceph_connection *con,
1629 struct bio **bio_iter, int *bio_seg,
1630 unsigned int data_len, bool do_datacrc)
1631{
1632 struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1633 void *p;
1634 int ret, left;
1635
1636 if (IS_ERR(bv))
1637 return PTR_ERR(bv);
1638
1639 left = min((int)(data_len - con->in_msg_pos.data_pos),
1640 (int)(bv->bv_len - con->in_msg_pos.page_pos));
1641
1642 p = kmap(bv->bv_page) + bv->bv_offset;
1643
1644 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1645 left);
1646 if (ret > 0 && do_datacrc)
1647 con->in_data_crc =
1648 crc32c(con->in_data_crc,
1649 p + con->in_msg_pos.page_pos, ret);
1650 kunmap(bv->bv_page);
1651 if (ret <= 0)
1652 return ret;
1653 con->in_msg_pos.data_pos += ret;
1654 con->in_msg_pos.page_pos += ret;
1655 if (con->in_msg_pos.page_pos == bv->bv_len) {
1656 con->in_msg_pos.page_pos = 0;
1657 iter_bio_next(bio_iter, bio_seg);
1658 }
1659
1660 return ret;
1661}
1662#endif
1663
1664/*
1665 * read (part of) a message.
1666 */
1667static int read_partial_message(struct ceph_connection *con)
1668{
1669 struct ceph_msg *m = con->in_msg;
1670 int size;
1671 int end;
1672 int ret;
1673 unsigned int front_len, middle_len, data_len;
1674 bool do_datacrc = !con->msgr->nocrc;
1675 int skip;
1676 u64 seq;
1677 u32 crc;
1678
1679 dout("read_partial_message con %p msg %p\n", con, m);
1680
1681 /* header */
1682 size = sizeof (con->in_hdr);
1683 end = size;
1684 ret = read_partial(con, end, size, &con->in_hdr);
1685 if (ret <= 0)
1686 return ret;
1687
1688 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1689 if (cpu_to_le32(crc) != con->in_hdr.crc) {
1690 pr_err("read_partial_message bad hdr "
1691 " crc %u != expected %u\n",
1692 crc, con->in_hdr.crc);
1693 return -EBADMSG;
1694 }
1695
1696 front_len = le32_to_cpu(con->in_hdr.front_len);
1697 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1698 return -EIO;
1699 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1700 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1701 return -EIO;
1702 data_len = le32_to_cpu(con->in_hdr.data_len);
1703 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1704 return -EIO;
1705
1706 /* verify seq# */
1707 seq = le64_to_cpu(con->in_hdr.seq);
1708 if ((s64)seq - (s64)con->in_seq < 1) {
1709 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1710 ENTITY_NAME(con->peer_name),
1711 ceph_pr_addr(&con->peer_addr.in_addr),
1712 seq, con->in_seq + 1);
1713 con->in_base_pos = -front_len - middle_len - data_len -
1714 sizeof(m->footer);
1715 con->in_tag = CEPH_MSGR_TAG_READY;
1716 return 0;
1717 } else if ((s64)seq - (s64)con->in_seq > 1) {
1718 pr_err("read_partial_message bad seq %lld expected %lld\n",
1719 seq, con->in_seq + 1);
1720 con->error_msg = "bad message sequence # for incoming message";
1721 return -EBADMSG;
1722 }
1723
1724 /* allocate message? */
1725 if (!con->in_msg) {
1726 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1727 con->in_hdr.front_len, con->in_hdr.data_len);
1728 skip = 0;
1729 con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1730 if (skip) {
1731 /* skip this message */
1732 dout("alloc_msg said skip message\n");
1733 BUG_ON(con->in_msg);
1734 con->in_base_pos = -front_len - middle_len - data_len -
1735 sizeof(m->footer);
1736 con->in_tag = CEPH_MSGR_TAG_READY;
1737 con->in_seq++;
1738 return 0;
1739 }
1740 if (!con->in_msg) {
1741 con->error_msg =
1742 "error allocating memory for incoming message";
1743 return -ENOMEM;
1744 }
1745 m = con->in_msg;
1746 m->front.iov_len = 0; /* haven't read it yet */
1747 if (m->middle)
1748 m->middle->vec.iov_len = 0;
1749
1750 con->in_msg_pos.page = 0;
1751 if (m->pages)
1752 con->in_msg_pos.page_pos = m->page_alignment;
1753 else
1754 con->in_msg_pos.page_pos = 0;
1755 con->in_msg_pos.data_pos = 0;
1756 }
1757
1758 /* front */
1759 ret = read_partial_message_section(con, &m->front, front_len,
1760 &con->in_front_crc);
1761 if (ret <= 0)
1762 return ret;
1763
1764 /* middle */
1765 if (m->middle) {
1766 ret = read_partial_message_section(con, &m->middle->vec,
1767 middle_len,
1768 &con->in_middle_crc);
1769 if (ret <= 0)
1770 return ret;
1771 }
1772#ifdef CONFIG_BLOCK
1773 if (m->bio && !m->bio_iter)
1774 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1775#endif
1776
1777 /* (page) data */
1778 while (con->in_msg_pos.data_pos < data_len) {
1779 if (m->pages) {
1780 ret = read_partial_message_pages(con, m->pages,
1781 data_len, do_datacrc);
1782 if (ret <= 0)
1783 return ret;
1784#ifdef CONFIG_BLOCK
1785 } else if (m->bio) {
1786
1787 ret = read_partial_message_bio(con,
1788 &m->bio_iter, &m->bio_seg,
1789 data_len, do_datacrc);
1790 if (ret <= 0)
1791 return ret;
1792#endif
1793 } else {
1794 BUG_ON(1);
1795 }
1796 }
1797
1798 /* footer */
1799 size = sizeof (m->footer);
1800 end += size;
1801 ret = read_partial(con, end, size, &m->footer);
1802 if (ret <= 0)
1803 return ret;
1804
1805 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1806 m, front_len, m->footer.front_crc, middle_len,
1807 m->footer.middle_crc, data_len, m->footer.data_crc);
1808
1809 /* crc ok? */
1810 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1811 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1812 m, con->in_front_crc, m->footer.front_crc);
1813 return -EBADMSG;
1814 }
1815 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1816 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1817 m, con->in_middle_crc, m->footer.middle_crc);
1818 return -EBADMSG;
1819 }
1820 if (do_datacrc &&
1821 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1822 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1823 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1824 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1825 return -EBADMSG;
1826 }
1827
1828 return 1; /* done! */
1829}
1830
1831/*
1832 * Process message. This happens in the worker thread. The callback should
1833 * be careful not to do anything that waits on other incoming messages or it
1834 * may deadlock.
1835 */
1836static void process_message(struct ceph_connection *con)
1837{
1838 struct ceph_msg *msg;
1839
1840 msg = con->in_msg;
1841 con->in_msg = NULL;
1842
1843 /* if first message, set peer_name */
1844 if (con->peer_name.type == 0)
1845 con->peer_name = msg->hdr.src;
1846
1847 con->in_seq++;
1848 mutex_unlock(&con->mutex);
1849
1850 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1851 msg, le64_to_cpu(msg->hdr.seq),
1852 ENTITY_NAME(msg->hdr.src),
1853 le16_to_cpu(msg->hdr.type),
1854 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1855 le32_to_cpu(msg->hdr.front_len),
1856 le32_to_cpu(msg->hdr.data_len),
1857 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1858 con->ops->dispatch(con, msg);
1859
1860 mutex_lock(&con->mutex);
1861 prepare_read_tag(con);
1862}
1863
1864
1865/*
1866 * Write something to the socket. Called in a worker thread when the
1867 * socket appears to be writeable and we have something ready to send.
1868 */
1869static int try_write(struct ceph_connection *con)
1870{
1871 int ret = 1;
1872
1873 dout("try_write start %p state %lu nref %d\n", con, con->state,
1874 atomic_read(&con->nref));
1875
1876more:
1877 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1878
1879 /* open the socket first? */
1880 if (con->sock == NULL) {
1881 ceph_con_out_kvec_reset(con);
1882 prepare_write_banner(con);
1883 ret = prepare_write_connect(con);
1884 if (ret < 0)
1885 goto out;
1886 prepare_read_banner(con);
1887 set_bit(CONNECTING, &con->state);
1888 clear_bit(NEGOTIATING, &con->state);
1889
1890 BUG_ON(con->in_msg);
1891 con->in_tag = CEPH_MSGR_TAG_READY;
1892 dout("try_write initiating connect on %p new state %lu\n",
1893 con, con->state);
1894 ret = ceph_tcp_connect(con);
1895 if (ret < 0) {
1896 con->error_msg = "connect error";
1897 goto out;
1898 }
1899 }
1900
1901more_kvec:
1902 /* kvec data queued? */
1903 if (con->out_skip) {
1904 ret = write_partial_skip(con);
1905 if (ret <= 0)
1906 goto out;
1907 }
1908 if (con->out_kvec_left) {
1909 ret = write_partial_kvec(con);
1910 if (ret <= 0)
1911 goto out;
1912 }
1913
1914 /* msg pages? */
1915 if (con->out_msg) {
1916 if (con->out_msg_done) {
1917 ceph_msg_put(con->out_msg);
1918 con->out_msg = NULL; /* we're done with this one */
1919 goto do_next;
1920 }
1921
1922 ret = write_partial_msg_pages(con);
1923 if (ret == 1)
1924 goto more_kvec; /* we need to send the footer, too! */
1925 if (ret == 0)
1926 goto out;
1927 if (ret < 0) {
1928 dout("try_write write_partial_msg_pages err %d\n",
1929 ret);
1930 goto out;
1931 }
1932 }
1933
1934do_next:
1935 if (!test_bit(CONNECTING, &con->state)) {
1936 /* is anything else pending? */
1937 if (!list_empty(&con->out_queue)) {
1938 prepare_write_message(con);
1939 goto more;
1940 }
1941 if (con->in_seq > con->in_seq_acked) {
1942 prepare_write_ack(con);
1943 goto more;
1944 }
1945 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1946 prepare_write_keepalive(con);
1947 goto more;
1948 }
1949 }
1950
1951 /* Nothing to do! */
1952 clear_bit(WRITE_PENDING, &con->state);
1953 dout("try_write nothing else to write.\n");
1954 ret = 0;
1955out:
1956 dout("try_write done on %p ret %d\n", con, ret);
1957 return ret;
1958}
1959
1960
1961
1962/*
1963 * Read what we can from the socket.
1964 */
1965static int try_read(struct ceph_connection *con)
1966{
1967 int ret = -1;
1968
1969 if (!con->sock)
1970 return 0;
1971
1972 if (test_bit(STANDBY, &con->state))
1973 return 0;
1974
1975 dout("try_read start on %p\n", con);
1976
1977more:
1978 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1979 con->in_base_pos);
1980
1981 /*
1982 * process_connect and process_message drop and re-take
1983 * con->mutex. make sure we handle a racing close or reopen.
1984 */
1985 if (test_bit(CLOSED, &con->state) ||
1986 test_bit(OPENING, &con->state)) {
1987 ret = -EAGAIN;
1988 goto out;
1989 }
1990
1991 if (test_bit(CONNECTING, &con->state)) {
1992 if (!test_bit(NEGOTIATING, &con->state)) {
1993 dout("try_read connecting\n");
1994 ret = read_partial_banner(con);
1995 if (ret <= 0)
1996 goto out;
1997 ret = process_banner(con);
1998 if (ret < 0)
1999 goto out;
2000 }
2001 ret = read_partial_connect(con);
2002 if (ret <= 0)
2003 goto out;
2004 ret = process_connect(con);
2005 if (ret < 0)
2006 goto out;
2007 goto more;
2008 }
2009
2010 if (con->in_base_pos < 0) {
2011 /*
2012 * skipping + discarding content.
2013 *
2014 * FIXME: there must be a better way to do this!
2015 */
2016 static char buf[SKIP_BUF_SIZE];
2017 int skip = min((int) sizeof (buf), -con->in_base_pos);
2018
2019 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2020 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2021 if (ret <= 0)
2022 goto out;
2023 con->in_base_pos += ret;
2024 if (con->in_base_pos)
2025 goto more;
2026 }
2027 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2028 /*
2029 * what's next?
2030 */
2031 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2032 if (ret <= 0)
2033 goto out;
2034 dout("try_read got tag %d\n", (int)con->in_tag);
2035 switch (con->in_tag) {
2036 case CEPH_MSGR_TAG_MSG:
2037 prepare_read_message(con);
2038 break;
2039 case CEPH_MSGR_TAG_ACK:
2040 prepare_read_ack(con);
2041 break;
2042 case CEPH_MSGR_TAG_CLOSE:
2043 set_bit(CLOSED, &con->state); /* fixme */
2044 goto out;
2045 default:
2046 goto bad_tag;
2047 }
2048 }
2049 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2050 ret = read_partial_message(con);
2051 if (ret <= 0) {
2052 switch (ret) {
2053 case -EBADMSG:
2054 con->error_msg = "bad crc";
2055 ret = -EIO;
2056 break;
2057 case -EIO:
2058 con->error_msg = "io error";
2059 break;
2060 }
2061 goto out;
2062 }
2063 if (con->in_tag == CEPH_MSGR_TAG_READY)
2064 goto more;
2065 process_message(con);
2066 goto more;
2067 }
2068 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2069 ret = read_partial_ack(con);
2070 if (ret <= 0)
2071 goto out;
2072 process_ack(con);
2073 goto more;
2074 }
2075
2076out:
2077 dout("try_read done on %p ret %d\n", con, ret);
2078 return ret;
2079
2080bad_tag:
2081 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2082 con->error_msg = "protocol error, garbage tag";
2083 ret = -1;
2084 goto out;
2085}
2086
2087
2088/*
2089 * Atomically queue work on a connection. Bump @con reference to
2090 * avoid races with connection teardown.
2091 */
2092static void queue_con(struct ceph_connection *con)
2093{
2094 if (test_bit(DEAD, &con->state)) {
2095 dout("queue_con %p ignoring: DEAD\n",
2096 con);
2097 return;
2098 }
2099
2100 if (!con->ops->get(con)) {
2101 dout("queue_con %p ref count 0\n", con);
2102 return;
2103 }
2104
2105 if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2106 dout("queue_con %p - already queued\n", con);
2107 con->ops->put(con);
2108 } else {
2109 dout("queue_con %p\n", con);
2110 }
2111}
2112
2113/*
2114 * Do some work on a connection. Drop a connection ref when we're done.
2115 */
2116static void con_work(struct work_struct *work)
2117{
2118 struct ceph_connection *con = container_of(work, struct ceph_connection,
2119 work.work);
2120 int ret;
2121
2122 mutex_lock(&con->mutex);
2123restart:
2124 if (test_and_clear_bit(BACKOFF, &con->state)) {
2125 dout("con_work %p backing off\n", con);
2126 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2127 round_jiffies_relative(con->delay))) {
2128 dout("con_work %p backoff %lu\n", con, con->delay);
2129 mutex_unlock(&con->mutex);
2130 return;
2131 } else {
2132 con->ops->put(con);
2133 dout("con_work %p FAILED to back off %lu\n", con,
2134 con->delay);
2135 }
2136 }
2137
2138 if (test_bit(STANDBY, &con->state)) {
2139 dout("con_work %p STANDBY\n", con);
2140 goto done;
2141 }
2142 if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2143 dout("con_work CLOSED\n");
2144 con_close_socket(con);
2145 goto done;
2146 }
2147 if (test_and_clear_bit(OPENING, &con->state)) {
2148 /* reopen w/ new peer */
2149 dout("con_work OPENING\n");
2150 con_close_socket(con);
2151 }
2152
2153 if (test_and_clear_bit(SOCK_CLOSED, &con->state))
2154 goto fault;
2155
2156 ret = try_read(con);
2157 if (ret == -EAGAIN)
2158 goto restart;
2159 if (ret < 0)
2160 goto fault;
2161
2162 ret = try_write(con);
2163 if (ret == -EAGAIN)
2164 goto restart;
2165 if (ret < 0)
2166 goto fault;
2167
2168done:
2169 mutex_unlock(&con->mutex);
2170done_unlocked:
2171 con->ops->put(con);
2172 return;
2173
2174fault:
2175 mutex_unlock(&con->mutex);
2176 ceph_fault(con); /* error/fault path */
2177 goto done_unlocked;
2178}
2179
2180
2181/*
2182 * Generic error/fault handler. A retry mechanism is used with
2183 * exponential backoff
2184 */
2185static void ceph_fault(struct ceph_connection *con)
2186{
2187 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2188 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2189 dout("fault %p state %lu to peer %s\n",
2190 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2191
2192 if (test_bit(LOSSYTX, &con->state)) {
2193 dout("fault on LOSSYTX channel\n");
2194 goto out;
2195 }
2196
2197 mutex_lock(&con->mutex);
2198 if (test_bit(CLOSED, &con->state))
2199 goto out_unlock;
2200
2201 con_close_socket(con);
2202
2203 if (con->in_msg) {
2204 ceph_msg_put(con->in_msg);
2205 con->in_msg = NULL;
2206 }
2207
2208 /* Requeue anything that hasn't been acked */
2209 list_splice_init(&con->out_sent, &con->out_queue);
2210
2211 /* If there are no messages queued or keepalive pending, place
2212 * the connection in a STANDBY state */
2213 if (list_empty(&con->out_queue) &&
2214 !test_bit(KEEPALIVE_PENDING, &con->state)) {
2215 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2216 clear_bit(WRITE_PENDING, &con->state);
2217 set_bit(STANDBY, &con->state);
2218 } else {
2219 /* retry after a delay. */
2220 if (con->delay == 0)
2221 con->delay = BASE_DELAY_INTERVAL;
2222 else if (con->delay < MAX_DELAY_INTERVAL)
2223 con->delay *= 2;
2224 con->ops->get(con);
2225 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2226 round_jiffies_relative(con->delay))) {
2227 dout("fault queued %p delay %lu\n", con, con->delay);
2228 } else {
2229 con->ops->put(con);
2230 dout("fault failed to queue %p delay %lu, backoff\n",
2231 con, con->delay);
2232 /*
2233 * In many cases we see a socket state change
2234 * while con_work is running and end up
2235 * queuing (non-delayed) work, such that we
2236 * can't backoff with a delay. Set a flag so
2237 * that when con_work restarts we schedule the
2238 * delay then.
2239 */
2240 set_bit(BACKOFF, &con->state);
2241 }
2242 }
2243
2244out_unlock:
2245 mutex_unlock(&con->mutex);
2246out:
2247 /*
2248 * in case we faulted due to authentication, invalidate our
2249 * current tickets so that we can get new ones.
2250 */
2251 if (con->auth_retry && con->ops->invalidate_authorizer) {
2252 dout("calling invalidate_authorizer()\n");
2253 con->ops->invalidate_authorizer(con);
2254 }
2255
2256 if (con->ops->fault)
2257 con->ops->fault(con);
2258}
2259
2260
2261
2262/*
2263 * create a new messenger instance
2264 */
2265struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
2266 u32 supported_features,
2267 u32 required_features)
2268{
2269 struct ceph_messenger *msgr;
2270
2271 msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
2272 if (msgr == NULL)
2273 return ERR_PTR(-ENOMEM);
2274
2275 msgr->supported_features = supported_features;
2276 msgr->required_features = required_features;
2277
2278 spin_lock_init(&msgr->global_seq_lock);
2279
2280 if (myaddr)
2281 msgr->inst.addr = *myaddr;
2282
2283 /* select a random nonce */
2284 msgr->inst.addr.type = 0;
2285 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2286 encode_my_addr(msgr);
2287
2288 dout("messenger_create %p\n", msgr);
2289 return msgr;
2290}
2291EXPORT_SYMBOL(ceph_messenger_create);
2292
2293void ceph_messenger_destroy(struct ceph_messenger *msgr)
2294{
2295 dout("destroy %p\n", msgr);
2296 kfree(msgr);
2297 dout("destroyed messenger %p\n", msgr);
2298}
2299EXPORT_SYMBOL(ceph_messenger_destroy);
2300
2301static void clear_standby(struct ceph_connection *con)
2302{
2303 /* come back from STANDBY? */
2304 if (test_and_clear_bit(STANDBY, &con->state)) {
2305 mutex_lock(&con->mutex);
2306 dout("clear_standby %p and ++connect_seq\n", con);
2307 con->connect_seq++;
2308 WARN_ON(test_bit(WRITE_PENDING, &con->state));
2309 WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
2310 mutex_unlock(&con->mutex);
2311 }
2312}
2313
2314/*
2315 * Queue up an outgoing message on the given connection.
2316 */
2317void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2318{
2319 if (test_bit(CLOSED, &con->state)) {
2320 dout("con_send %p closed, dropping %p\n", con, msg);
2321 ceph_msg_put(msg);
2322 return;
2323 }
2324
2325 /* set src+dst */
2326 msg->hdr.src = con->msgr->inst.name;
2327
2328 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2329
2330 msg->needs_out_seq = true;
2331
2332 /* queue */
2333 mutex_lock(&con->mutex);
2334 BUG_ON(!list_empty(&msg->list_head));
2335 list_add_tail(&msg->list_head, &con->out_queue);
2336 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2337 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2338 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2339 le32_to_cpu(msg->hdr.front_len),
2340 le32_to_cpu(msg->hdr.middle_len),
2341 le32_to_cpu(msg->hdr.data_len));
2342 mutex_unlock(&con->mutex);
2343
2344 /* if there wasn't anything waiting to send before, queue
2345 * new work */
2346 clear_standby(con);
2347 if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2348 queue_con(con);
2349}
2350EXPORT_SYMBOL(ceph_con_send);
2351
2352/*
2353 * Revoke a message that was previously queued for send
2354 */
2355void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2356{
2357 mutex_lock(&con->mutex);
2358 if (!list_empty(&msg->list_head)) {
2359 dout("con_revoke %p msg %p - was on queue\n", con, msg);
2360 list_del_init(&msg->list_head);
2361 ceph_msg_put(msg);
2362 msg->hdr.seq = 0;
2363 }
2364 if (con->out_msg == msg) {
2365 dout("con_revoke %p msg %p - was sending\n", con, msg);
2366 con->out_msg = NULL;
2367 if (con->out_kvec_is_msg) {
2368 con->out_skip = con->out_kvec_bytes;
2369 con->out_kvec_is_msg = false;
2370 }
2371 ceph_msg_put(msg);
2372 msg->hdr.seq = 0;
2373 }
2374 mutex_unlock(&con->mutex);
2375}
2376
2377/*
2378 * Revoke a message that we may be reading data into
2379 */
2380void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2381{
2382 mutex_lock(&con->mutex);
2383 if (con->in_msg && con->in_msg == msg) {
2384 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2385 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2386 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2387
2388 /* skip rest of message */
2389 dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2390 con->in_base_pos = con->in_base_pos -
2391 sizeof(struct ceph_msg_header) -
2392 front_len -
2393 middle_len -
2394 data_len -
2395 sizeof(struct ceph_msg_footer);
2396 ceph_msg_put(con->in_msg);
2397 con->in_msg = NULL;
2398 con->in_tag = CEPH_MSGR_TAG_READY;
2399 con->in_seq++;
2400 } else {
2401 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2402 con, con->in_msg, msg);
2403 }
2404 mutex_unlock(&con->mutex);
2405}
2406
2407/*
2408 * Queue a keepalive byte to ensure the tcp connection is alive.
2409 */
2410void ceph_con_keepalive(struct ceph_connection *con)
2411{
2412 dout("con_keepalive %p\n", con);
2413 clear_standby(con);
2414 if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2415 test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2416 queue_con(con);
2417}
2418EXPORT_SYMBOL(ceph_con_keepalive);
2419
2420
2421/*
2422 * construct a new message with given type, size
2423 * the new msg has a ref count of 1.
2424 */
2425struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2426 bool can_fail)
2427{
2428 struct ceph_msg *m;
2429
2430 m = kmalloc(sizeof(*m), flags);
2431 if (m == NULL)
2432 goto out;
2433 kref_init(&m->kref);
2434 INIT_LIST_HEAD(&m->list_head);
2435
2436 m->hdr.tid = 0;
2437 m->hdr.type = cpu_to_le16(type);
2438 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2439 m->hdr.version = 0;
2440 m->hdr.front_len = cpu_to_le32(front_len);
2441 m->hdr.middle_len = 0;
2442 m->hdr.data_len = 0;
2443 m->hdr.data_off = 0;
2444 m->hdr.reserved = 0;
2445 m->footer.front_crc = 0;
2446 m->footer.middle_crc = 0;
2447 m->footer.data_crc = 0;
2448 m->footer.flags = 0;
2449 m->front_max = front_len;
2450 m->front_is_vmalloc = false;
2451 m->more_to_follow = false;
2452 m->ack_stamp = 0;
2453 m->pool = NULL;
2454
2455 /* middle */
2456 m->middle = NULL;
2457
2458 /* data */
2459 m->nr_pages = 0;
2460 m->page_alignment = 0;
2461 m->pages = NULL;
2462 m->pagelist = NULL;
2463 m->bio = NULL;
2464 m->bio_iter = NULL;
2465 m->bio_seg = 0;
2466 m->trail = NULL;
2467
2468 /* front */
2469 if (front_len) {
2470 if (front_len > PAGE_CACHE_SIZE) {
2471 m->front.iov_base = __vmalloc(front_len, flags,
2472 PAGE_KERNEL);
2473 m->front_is_vmalloc = true;
2474 } else {
2475 m->front.iov_base = kmalloc(front_len, flags);
2476 }
2477 if (m->front.iov_base == NULL) {
2478 dout("ceph_msg_new can't allocate %d bytes\n",
2479 front_len);
2480 goto out2;
2481 }
2482 } else {
2483 m->front.iov_base = NULL;
2484 }
2485 m->front.iov_len = front_len;
2486
2487 dout("ceph_msg_new %p front %d\n", m, front_len);
2488 return m;
2489
2490out2:
2491 ceph_msg_put(m);
2492out:
2493 if (!can_fail) {
2494 pr_err("msg_new can't create type %d front %d\n", type,
2495 front_len);
2496 WARN_ON(1);
2497 } else {
2498 dout("msg_new can't create type %d front %d\n", type,
2499 front_len);
2500 }
2501 return NULL;
2502}
2503EXPORT_SYMBOL(ceph_msg_new);
2504
2505/*
2506 * Allocate "middle" portion of a message, if it is needed and wasn't
2507 * allocated by alloc_msg. This allows us to read a small fixed-size
2508 * per-type header in the front and then gracefully fail (i.e.,
2509 * propagate the error to the caller based on info in the front) when
2510 * the middle is too large.
2511 */
2512static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2513{
2514 int type = le16_to_cpu(msg->hdr.type);
2515 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2516
2517 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2518 ceph_msg_type_name(type), middle_len);
2519 BUG_ON(!middle_len);
2520 BUG_ON(msg->middle);
2521
2522 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2523 if (!msg->middle)
2524 return -ENOMEM;
2525 return 0;
2526}
2527
2528/*
2529 * Generic message allocator, for incoming messages.
2530 */
2531static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2532 struct ceph_msg_header *hdr,
2533 int *skip)
2534{
2535 int type = le16_to_cpu(hdr->type);
2536 int front_len = le32_to_cpu(hdr->front_len);
2537 int middle_len = le32_to_cpu(hdr->middle_len);
2538 struct ceph_msg *msg = NULL;
2539 int ret;
2540
2541 if (con->ops->alloc_msg) {
2542 mutex_unlock(&con->mutex);
2543 msg = con->ops->alloc_msg(con, hdr, skip);
2544 mutex_lock(&con->mutex);
2545 if (!msg || *skip)
2546 return NULL;
2547 }
2548 if (!msg) {
2549 *skip = 0;
2550 msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2551 if (!msg) {
2552 pr_err("unable to allocate msg type %d len %d\n",
2553 type, front_len);
2554 return NULL;
2555 }
2556 msg->page_alignment = le16_to_cpu(hdr->data_off);
2557 }
2558 memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2559
2560 if (middle_len && !msg->middle) {
2561 ret = ceph_alloc_middle(con, msg);
2562 if (ret < 0) {
2563 ceph_msg_put(msg);
2564 return NULL;
2565 }
2566 }
2567
2568 return msg;
2569}
2570
2571
2572/*
2573 * Free a generically kmalloc'd message.
2574 */
2575void ceph_msg_kfree(struct ceph_msg *m)
2576{
2577 dout("msg_kfree %p\n", m);
2578 if (m->front_is_vmalloc)
2579 vfree(m->front.iov_base);
2580 else
2581 kfree(m->front.iov_base);
2582 kfree(m);
2583}
2584
2585/*
2586 * Drop a msg ref. Destroy as needed.
2587 */
2588void ceph_msg_last_put(struct kref *kref)
2589{
2590 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2591
2592 dout("ceph_msg_put last one on %p\n", m);
2593 WARN_ON(!list_empty(&m->list_head));
2594
2595 /* drop middle, data, if any */
2596 if (m->middle) {
2597 ceph_buffer_put(m->middle);
2598 m->middle = NULL;
2599 }
2600 m->nr_pages = 0;
2601 m->pages = NULL;
2602
2603 if (m->pagelist) {
2604 ceph_pagelist_release(m->pagelist);
2605 kfree(m->pagelist);
2606 m->pagelist = NULL;
2607 }
2608
2609 m->trail = NULL;
2610
2611 if (m->pool)
2612 ceph_msgpool_put(m->pool, m);
2613 else
2614 ceph_msg_kfree(m);
2615}
2616EXPORT_SYMBOL(ceph_msg_last_put);
2617
2618void ceph_msg_dump(struct ceph_msg *msg)
2619{
2620 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2621 msg->front_max, msg->nr_pages);
2622 print_hex_dump(KERN_DEBUG, "header: ",
2623 DUMP_PREFIX_OFFSET, 16, 1,
2624 &msg->hdr, sizeof(msg->hdr), true);
2625 print_hex_dump(KERN_DEBUG, " front: ",
2626 DUMP_PREFIX_OFFSET, 16, 1,
2627 msg->front.iov_base, msg->front.iov_len, true);
2628 if (msg->middle)
2629 print_hex_dump(KERN_DEBUG, "middle: ",
2630 DUMP_PREFIX_OFFSET, 16, 1,
2631 msg->middle->vec.iov_base,
2632 msg->middle->vec.iov_len, true);
2633 print_hex_dump(KERN_DEBUG, "footer: ",
2634 DUMP_PREFIX_OFFSET, 16, 1,
2635 &msg->footer, sizeof(msg->footer), true);
2636}
2637EXPORT_SYMBOL(ceph_msg_dump);