Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SLUB: A slab allocator that limits cache line use instead of queuing
   4 * objects in per cpu and per node lists.
   5 *
   6 * The allocator synchronizes using per slab locks or atomic operations
   7 * and only uses a centralized lock to manage a pool of partial slabs.
   8 *
   9 * (C) 2007 SGI, Christoph Lameter
  10 * (C) 2011 Linux Foundation, Christoph Lameter
  11 */
  12
  13#include <linux/mm.h>
  14#include <linux/swap.h> /* struct reclaim_state */
  15#include <linux/module.h>
  16#include <linux/bit_spinlock.h>
  17#include <linux/interrupt.h>
  18#include <linux/swab.h>
  19#include <linux/bitops.h>
  20#include <linux/slab.h>
  21#include "slab.h"
  22#include <linux/proc_fs.h>
  23#include <linux/seq_file.h>
  24#include <linux/kasan.h>
  25#include <linux/kmsan.h>
  26#include <linux/cpu.h>
  27#include <linux/cpuset.h>
  28#include <linux/mempolicy.h>
  29#include <linux/ctype.h>
  30#include <linux/stackdepot.h>
  31#include <linux/debugobjects.h>
  32#include <linux/kallsyms.h>
  33#include <linux/kfence.h>
  34#include <linux/memory.h>
  35#include <linux/math64.h>
  36#include <linux/fault-inject.h>
  37#include <linux/stacktrace.h>
  38#include <linux/prefetch.h>
  39#include <linux/memcontrol.h>
  40#include <linux/random.h>
  41#include <kunit/test.h>
  42#include <kunit/test-bug.h>
  43#include <linux/sort.h>
  44
  45#include <linux/debugfs.h>
  46#include <trace/events/kmem.h>
  47
  48#include "internal.h"
  49
  50/*
  51 * Lock order:
  52 *   1. slab_mutex (Global Mutex)
  53 *   2. node->list_lock (Spinlock)
  54 *   3. kmem_cache->cpu_slab->lock (Local lock)
  55 *   4. slab_lock(slab) (Only on some arches)
  56 *   5. object_map_lock (Only for debugging)
  57 *
  58 *   slab_mutex
  59 *
  60 *   The role of the slab_mutex is to protect the list of all the slabs
  61 *   and to synchronize major metadata changes to slab cache structures.
  62 *   Also synchronizes memory hotplug callbacks.
  63 *
  64 *   slab_lock
  65 *
  66 *   The slab_lock is a wrapper around the page lock, thus it is a bit
  67 *   spinlock.
  68 *
  69 *   The slab_lock is only used on arches that do not have the ability
  70 *   to do a cmpxchg_double. It only protects:
  71 *
  72 *	A. slab->freelist	-> List of free objects in a slab
  73 *	B. slab->inuse		-> Number of objects in use
  74 *	C. slab->objects	-> Number of objects in slab
  75 *	D. slab->frozen		-> frozen state
  76 *
  77 *   Frozen slabs
  78 *
  79 *   If a slab is frozen then it is exempt from list management. It is not
  80 *   on any list except per cpu partial list. The processor that froze the
  81 *   slab is the one who can perform list operations on the slab. Other
  82 *   processors may put objects onto the freelist but the processor that
  83 *   froze the slab is the only one that can retrieve the objects from the
  84 *   slab's freelist.
  85 *
  86 *   list_lock
  87 *
  88 *   The list_lock protects the partial and full list on each node and
  89 *   the partial slab counter. If taken then no new slabs may be added or
  90 *   removed from the lists nor make the number of partial slabs be modified.
  91 *   (Note that the total number of slabs is an atomic value that may be
  92 *   modified without taking the list lock).
  93 *
  94 *   The list_lock is a centralized lock and thus we avoid taking it as
  95 *   much as possible. As long as SLUB does not have to handle partial
  96 *   slabs, operations can continue without any centralized lock. F.e.
  97 *   allocating a long series of objects that fill up slabs does not require
  98 *   the list lock.
  99 *
 100 *   For debug caches, all allocations are forced to go through a list_lock
 101 *   protected region to serialize against concurrent validation.
 102 *
 103 *   cpu_slab->lock local lock
 104 *
 105 *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
 106 *   except the stat counters. This is a percpu structure manipulated only by
 107 *   the local cpu, so the lock protects against being preempted or interrupted
 108 *   by an irq. Fast path operations rely on lockless operations instead.
 109 *
 110 *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
 111 *   which means the lockless fastpath cannot be used as it might interfere with
 112 *   an in-progress slow path operations. In this case the local lock is always
 113 *   taken but it still utilizes the freelist for the common operations.
 114 *
 115 *   lockless fastpaths
 116 *
 117 *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
 118 *   are fully lockless when satisfied from the percpu slab (and when
 119 *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
 120 *   They also don't disable preemption or migration or irqs. They rely on
 121 *   the transaction id (tid) field to detect being preempted or moved to
 122 *   another cpu.
 123 *
 124 *   irq, preemption, migration considerations
 125 *
 126 *   Interrupts are disabled as part of list_lock or local_lock operations, or
 127 *   around the slab_lock operation, in order to make the slab allocator safe
 128 *   to use in the context of an irq.
 129 *
 130 *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
 131 *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
 132 *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
 133 *   doesn't have to be revalidated in each section protected by the local lock.
 134 *
 135 * SLUB assigns one slab for allocation to each processor.
 136 * Allocations only occur from these slabs called cpu slabs.
 137 *
 138 * Slabs with free elements are kept on a partial list and during regular
 139 * operations no list for full slabs is used. If an object in a full slab is
 140 * freed then the slab will show up again on the partial lists.
 141 * We track full slabs for debugging purposes though because otherwise we
 142 * cannot scan all objects.
 143 *
 144 * Slabs are freed when they become empty. Teardown and setup is
 145 * minimal so we rely on the page allocators per cpu caches for
 146 * fast frees and allocs.
 147 *
 148 * slab->frozen		The slab is frozen and exempt from list processing.
 
 
 149 * 			This means that the slab is dedicated to a purpose
 150 * 			such as satisfying allocations for a specific
 151 * 			processor. Objects may be freed in the slab while
 152 * 			it is frozen but slab_free will then skip the usual
 153 * 			list operations. It is up to the processor holding
 154 * 			the slab to integrate the slab into the slab lists
 155 * 			when the slab is no longer needed.
 156 *
 157 * 			One use of this flag is to mark slabs that are
 158 * 			used for allocations. Then such a slab becomes a cpu
 159 * 			slab. The cpu slab may be equipped with an additional
 160 * 			freelist that allows lockless access to
 161 * 			free objects in addition to the regular freelist
 162 * 			that requires the slab lock.
 163 *
 164 * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
 165 * 			options set. This moves	slab handling out of
 166 * 			the fast path and disables lockless freelists.
 167 */
 168
 169/*
 170 * We could simply use migrate_disable()/enable() but as long as it's a
 171 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
 172 */
 173#ifndef CONFIG_PREEMPT_RT
 174#define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
 175#define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
 176#define USE_LOCKLESS_FAST_PATH()	(true)
 177#else
 178#define slub_get_cpu_ptr(var)		\
 179({					\
 180	migrate_disable();		\
 181	this_cpu_ptr(var);		\
 182})
 183#define slub_put_cpu_ptr(var)		\
 184do {					\
 185	(void)(var);			\
 186	migrate_enable();		\
 187} while (0)
 188#define USE_LOCKLESS_FAST_PATH()	(false)
 189#endif
 190
 191#ifndef CONFIG_SLUB_TINY
 192#define __fastpath_inline __always_inline
 193#else
 194#define __fastpath_inline
 195#endif
 196
 197#ifdef CONFIG_SLUB_DEBUG
 198#ifdef CONFIG_SLUB_DEBUG_ON
 199DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
 200#else
 201DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
 202#endif
 203#endif		/* CONFIG_SLUB_DEBUG */
 204
 205/* Structure holding parameters for get_partial() call chain */
 206struct partial_context {
 207	struct slab **slab;
 208	gfp_t flags;
 209	unsigned int orig_size;
 210};
 211
 212static inline bool kmem_cache_debug(struct kmem_cache *s)
 213{
 214	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
 215}
 216
 217static inline bool slub_debug_orig_size(struct kmem_cache *s)
 218{
 219	return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
 220			(s->flags & SLAB_KMALLOC));
 221}
 222
 223void *fixup_red_left(struct kmem_cache *s, void *p)
 224{
 225	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
 226		p += s->red_left_pad;
 227
 228	return p;
 229}
 230
 231static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
 232{
 233#ifdef CONFIG_SLUB_CPU_PARTIAL
 234	return !kmem_cache_debug(s);
 235#else
 236	return false;
 237#endif
 238}
 239
 240/*
 241 * Issues still to be resolved:
 242 *
 243 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 244 *
 245 * - Variable sizing of the per node arrays
 246 */
 247
 
 
 
 248/* Enable to log cmpxchg failures */
 249#undef SLUB_DEBUG_CMPXCHG
 250
 251#ifndef CONFIG_SLUB_TINY
 252/*
 253 * Minimum number of partial slabs. These will be left on the partial
 254 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 255 */
 256#define MIN_PARTIAL 5
 257
 258/*
 259 * Maximum number of desirable partial slabs.
 260 * The existence of more partial slabs makes kmem_cache_shrink
 261 * sort the partial list by the number of objects in use.
 262 */
 263#define MAX_PARTIAL 10
 264#else
 265#define MIN_PARTIAL 0
 266#define MAX_PARTIAL 0
 267#endif
 268
 269#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
 270				SLAB_POISON | SLAB_STORE_USER)
 271
 272/*
 273 * These debug flags cannot use CMPXCHG because there might be consistency
 274 * issues when checking or reading debug information
 275 */
 276#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
 277				SLAB_TRACE)
 278
 279
 280/*
 281 * Debugging flags that require metadata to be stored in the slab.  These get
 282 * disabled when slub_debug=O is used and a cache's min order increases with
 283 * metadata.
 284 */
 285#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
 286
 
 
 
 
 
 
 
 
 
 
 287#define OO_SHIFT	16
 288#define OO_MASK		((1 << OO_SHIFT) - 1)
 289#define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
 290
 291/* Internal SLUB flags */
 292/* Poison object */
 293#define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
 294/* Use cmpxchg_double */
 295#define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 296
 297/*
 298 * Tracking user of a slab.
 299 */
 300#define TRACK_ADDRS_COUNT 16
 301struct track {
 302	unsigned long addr;	/* Called from address */
 303#ifdef CONFIG_STACKDEPOT
 304	depot_stack_handle_t handle;
 305#endif
 306	int cpu;		/* Was running on cpu */
 307	int pid;		/* Pid context */
 308	unsigned long when;	/* When did the operation occur */
 309};
 310
 311enum track_item { TRACK_ALLOC, TRACK_FREE };
 312
 313#ifdef SLAB_SUPPORTS_SYSFS
 314static int sysfs_slab_add(struct kmem_cache *);
 315static int sysfs_slab_alias(struct kmem_cache *, const char *);
 
 
 316#else
 317static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
 318static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
 319							{ return 0; }
 320#endif
 
 
 
 
 321
 322#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
 323static void debugfs_slab_add(struct kmem_cache *);
 324#else
 325static inline void debugfs_slab_add(struct kmem_cache *s) { }
 326#endif
 327
 328static inline void stat(const struct kmem_cache *s, enum stat_item si)
 329{
 330#ifdef CONFIG_SLUB_STATS
 331	/*
 332	 * The rmw is racy on a preemptible kernel but this is acceptable, so
 333	 * avoid this_cpu_add()'s irq-disable overhead.
 334	 */
 335	raw_cpu_inc(s->cpu_slab->stat[si]);
 336#endif
 337}
 338
 339/*
 340 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
 341 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
 342 * differ during memory hotplug/hotremove operations.
 343 * Protected by slab_mutex.
 344 */
 345static nodemask_t slab_nodes;
 346
 347#ifndef CONFIG_SLUB_TINY
 348/*
 349 * Workqueue used for flush_cpu_slab().
 350 */
 351static struct workqueue_struct *flushwq;
 352#endif
 353
 354/********************************************************************
 355 * 			Core slab cache functions
 356 *******************************************************************/
 357
 358/*
 359 * Returns freelist pointer (ptr). With hardening, this is obfuscated
 360 * with an XOR of the address where the pointer is held and a per-cache
 361 * random number.
 362 */
 363static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
 364				 unsigned long ptr_addr)
 365{
 366#ifdef CONFIG_SLAB_FREELIST_HARDENED
 367	/*
 368	 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
 369	 * Normally, this doesn't cause any issues, as both set_freepointer()
 370	 * and get_freepointer() are called with a pointer with the same tag.
 371	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
 372	 * example, when __free_slub() iterates over objects in a cache, it
 373	 * passes untagged pointers to check_object(). check_object() in turns
 374	 * calls get_freepointer() with an untagged pointer, which causes the
 375	 * freepointer to be restored incorrectly.
 376	 */
 377	return (void *)((unsigned long)ptr ^ s->random ^
 378			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
 379#else
 380	return ptr;
 381#endif
 382}
 383
 384/* Returns the freelist pointer recorded at location ptr_addr. */
 385static inline void *freelist_dereference(const struct kmem_cache *s,
 386					 void *ptr_addr)
 387{
 388	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
 389			    (unsigned long)ptr_addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 390}
 391
 392static inline void *get_freepointer(struct kmem_cache *s, void *object)
 393{
 394	object = kasan_reset_tag(object);
 395	return freelist_dereference(s, object + s->offset);
 396}
 397
 398#ifndef CONFIG_SLUB_TINY
 399static void prefetch_freepointer(const struct kmem_cache *s, void *object)
 400{
 401	prefetchw(object + s->offset);
 402}
 403#endif
 404
 405/*
 406 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
 407 * pointer value in the case the current thread loses the race for the next
 408 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
 409 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
 410 * KMSAN will still check all arguments of cmpxchg because of imperfect
 411 * handling of inline assembly.
 412 * To work around this problem, we apply __no_kmsan_checks to ensure that
 413 * get_freepointer_safe() returns initialized memory.
 414 */
 415__no_kmsan_checks
 416static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
 417{
 418	unsigned long freepointer_addr;
 419	void *p;
 420
 421	if (!debug_pagealloc_enabled_static())
 422		return get_freepointer(s, object);
 423
 424	object = kasan_reset_tag(object);
 425	freepointer_addr = (unsigned long)object + s->offset;
 426	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
 427	return freelist_ptr(s, p, freepointer_addr);
 428}
 429
 430static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
 431{
 432	unsigned long freeptr_addr = (unsigned long)object + s->offset;
 433
 434#ifdef CONFIG_SLAB_FREELIST_HARDENED
 435	BUG_ON(object == fp); /* naive detection of double free or corruption */
 436#endif
 437
 438	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
 439	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
 440}
 441
 442/* Loop over all objects in a slab */
 443#define for_each_object(__p, __s, __addr, __objects) \
 444	for (__p = fixup_red_left(__s, __addr); \
 445		__p < (__addr) + (__objects) * (__s)->size; \
 446		__p += (__s)->size)
 447
 448static inline unsigned int order_objects(unsigned int order, unsigned int size)
 
 449{
 450	return ((unsigned int)PAGE_SIZE << order) / size;
 451}
 452
 453static inline struct kmem_cache_order_objects oo_make(unsigned int order,
 454		unsigned int size)
 455{
 456	struct kmem_cache_order_objects x = {
 457		(order << OO_SHIFT) + order_objects(order, size)
 458	};
 
 
 
 
 459
 460	return x;
 
 
 
 
 
 
 
 
 
 
 
 461}
 462
 463static inline unsigned int oo_order(struct kmem_cache_order_objects x)
 464{
 465	return x.x >> OO_SHIFT;
 466}
 467
 468static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
 
 469{
 470	return x.x & OO_MASK;
 
 
 
 
 471}
 472
 473#ifdef CONFIG_SLUB_CPU_PARTIAL
 474static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
 475{
 476	unsigned int nr_slabs;
 477
 478	s->cpu_partial = nr_objects;
 479
 480	/*
 481	 * We take the number of objects but actually limit the number of
 482	 * slabs on the per cpu partial list, in order to limit excessive
 483	 * growth of the list. For simplicity we assume that the slabs will
 484	 * be half-full.
 485	 */
 486	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
 487	s->cpu_partial_slabs = nr_slabs;
 488}
 489#else
 490static inline void
 491slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
 492{
 
 493}
 494#endif /* CONFIG_SLUB_CPU_PARTIAL */
 495
 496/*
 497 * Per slab locking using the pagelock
 498 */
 499static __always_inline void slab_lock(struct slab *slab)
 500{
 501	struct page *page = slab_page(slab);
 502
 503	VM_BUG_ON_PAGE(PageTail(page), page);
 504	bit_spin_lock(PG_locked, &page->flags);
 505}
 506
 507static __always_inline void slab_unlock(struct slab *slab)
 508{
 509	struct page *page = slab_page(slab);
 510
 511	VM_BUG_ON_PAGE(PageTail(page), page);
 512	__bit_spin_unlock(PG_locked, &page->flags);
 513}
 514
 515/*
 516 * Interrupts must be disabled (for the fallback code to work right), typically
 517 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
 518 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
 519 * allocation/ free operation in hardirq context. Therefore nothing can
 520 * interrupt the operation.
 521 */
 522static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
 523		void *freelist_old, unsigned long counters_old,
 524		void *freelist_new, unsigned long counters_new,
 525		const char *n)
 526{
 527	if (USE_LOCKLESS_FAST_PATH())
 528		lockdep_assert_irqs_disabled();
 529#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 530    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 531	if (s->flags & __CMPXCHG_DOUBLE) {
 532		if (cmpxchg_double(&slab->freelist, &slab->counters,
 533				   freelist_old, counters_old,
 534				   freelist_new, counters_new))
 535			return true;
 536	} else
 537#endif
 538	{
 539		slab_lock(slab);
 540		if (slab->freelist == freelist_old &&
 541					slab->counters == counters_old) {
 542			slab->freelist = freelist_new;
 543			slab->counters = counters_new;
 544			slab_unlock(slab);
 545			return true;
 546		}
 547		slab_unlock(slab);
 548	}
 549
 550	cpu_relax();
 551	stat(s, CMPXCHG_DOUBLE_FAIL);
 552
 553#ifdef SLUB_DEBUG_CMPXCHG
 554	pr_info("%s %s: cmpxchg double redo ", n, s->name);
 555#endif
 556
 557	return false;
 558}
 559
 560static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
 561		void *freelist_old, unsigned long counters_old,
 562		void *freelist_new, unsigned long counters_new,
 563		const char *n)
 564{
 565#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 566    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 567	if (s->flags & __CMPXCHG_DOUBLE) {
 568		if (cmpxchg_double(&slab->freelist, &slab->counters,
 569				   freelist_old, counters_old,
 570				   freelist_new, counters_new))
 571			return true;
 572	} else
 573#endif
 574	{
 575		unsigned long flags;
 576
 577		local_irq_save(flags);
 578		slab_lock(slab);
 579		if (slab->freelist == freelist_old &&
 580					slab->counters == counters_old) {
 581			slab->freelist = freelist_new;
 582			slab->counters = counters_new;
 583			slab_unlock(slab);
 584			local_irq_restore(flags);
 585			return true;
 586		}
 587		slab_unlock(slab);
 588		local_irq_restore(flags);
 589	}
 590
 591	cpu_relax();
 592	stat(s, CMPXCHG_DOUBLE_FAIL);
 593
 594#ifdef SLUB_DEBUG_CMPXCHG
 595	pr_info("%s %s: cmpxchg double redo ", n, s->name);
 596#endif
 597
 598	return false;
 599}
 600
 601#ifdef CONFIG_SLUB_DEBUG
 602static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
 603static DEFINE_SPINLOCK(object_map_lock);
 604
 605static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
 606		       struct slab *slab)
 
 
 607{
 608	void *addr = slab_address(slab);
 609	void *p;
 
 610
 611	bitmap_zero(obj_map, slab->objects);
 612
 613	for (p = slab->freelist; p; p = get_freepointer(s, p))
 614		set_bit(__obj_to_index(s, addr, p), obj_map);
 615}
 616
 617#if IS_ENABLED(CONFIG_KUNIT)
 618static bool slab_add_kunit_errors(void)
 619{
 620	struct kunit_resource *resource;
 621
 622	if (!kunit_get_current_test())
 623		return false;
 624
 625	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
 626	if (!resource)
 627		return false;
 628
 629	(*(int *)resource->data)++;
 630	kunit_put_resource(resource);
 631	return true;
 632}
 633#else
 634static inline bool slab_add_kunit_errors(void) { return false; }
 635#endif
 636
 637static inline unsigned int size_from_object(struct kmem_cache *s)
 638{
 639	if (s->flags & SLAB_RED_ZONE)
 640		return s->size - s->red_left_pad;
 641
 642	return s->size;
 643}
 644
 645static inline void *restore_red_left(struct kmem_cache *s, void *p)
 646{
 647	if (s->flags & SLAB_RED_ZONE)
 648		p -= s->red_left_pad;
 649
 650	return p;
 651}
 652
 653/*
 654 * Debug settings:
 655 */
 656#if defined(CONFIG_SLUB_DEBUG_ON)
 657static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
 658#else
 659static slab_flags_t slub_debug;
 660#endif
 661
 662static char *slub_debug_string;
 663static int disable_higher_order_debug;
 664
 665/*
 666 * slub is about to manipulate internal object metadata.  This memory lies
 667 * outside the range of the allocated object, so accessing it would normally
 668 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 669 * to tell kasan that these accesses are OK.
 670 */
 671static inline void metadata_access_enable(void)
 672{
 673	kasan_disable_current();
 674}
 675
 676static inline void metadata_access_disable(void)
 677{
 678	kasan_enable_current();
 679}
 680
 681/*
 682 * Object debugging
 683 */
 684
 685/* Verify that a pointer has an address that is valid within a slab page */
 686static inline int check_valid_pointer(struct kmem_cache *s,
 687				struct slab *slab, void *object)
 688{
 689	void *base;
 690
 691	if (!object)
 692		return 1;
 693
 694	base = slab_address(slab);
 695	object = kasan_reset_tag(object);
 696	object = restore_red_left(s, object);
 697	if (object < base || object >= base + slab->objects * s->size ||
 698		(object - base) % s->size) {
 699		return 0;
 700	}
 701
 702	return 1;
 703}
 704
 705static void print_section(char *level, char *text, u8 *addr,
 706			  unsigned int length)
 707{
 708	metadata_access_enable();
 709	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
 710			16, 1, kasan_reset_tag((void *)addr), length, 1);
 711	metadata_access_disable();
 712}
 713
 714/*
 715 * See comment in calculate_sizes().
 716 */
 717static inline bool freeptr_outside_object(struct kmem_cache *s)
 718{
 719	return s->offset >= s->inuse;
 720}
 721
 722/*
 723 * Return offset of the end of info block which is inuse + free pointer if
 724 * not overlapping with object.
 725 */
 726static inline unsigned int get_info_end(struct kmem_cache *s)
 727{
 728	if (freeptr_outside_object(s))
 729		return s->inuse + sizeof(void *);
 730	else
 731		return s->inuse;
 732}
 733
 734static struct track *get_track(struct kmem_cache *s, void *object,
 735	enum track_item alloc)
 736{
 737	struct track *p;
 738
 739	p = object + get_info_end(s);
 
 
 
 740
 741	return kasan_reset_tag(p + alloc);
 742}
 743
 744#ifdef CONFIG_STACKDEPOT
 745static noinline depot_stack_handle_t set_track_prepare(void)
 746{
 747	depot_stack_handle_t handle;
 748	unsigned long entries[TRACK_ADDRS_COUNT];
 749	unsigned int nr_entries;
 750
 751	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
 752	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
 753
 754	return handle;
 755}
 756#else
 757static inline depot_stack_handle_t set_track_prepare(void)
 758{
 759	return 0;
 760}
 761#endif
 762
 763static void set_track_update(struct kmem_cache *s, void *object,
 764			     enum track_item alloc, unsigned long addr,
 765			     depot_stack_handle_t handle)
 766{
 767	struct track *p = get_track(s, object, alloc);
 768
 769#ifdef CONFIG_STACKDEPOT
 770	p->handle = handle;
 771#endif
 772	p->addr = addr;
 773	p->cpu = smp_processor_id();
 774	p->pid = current->pid;
 775	p->when = jiffies;
 776}
 777
 778static __always_inline void set_track(struct kmem_cache *s, void *object,
 779				      enum track_item alloc, unsigned long addr)
 780{
 781	depot_stack_handle_t handle = set_track_prepare();
 782
 783	set_track_update(s, object, alloc, addr, handle);
 
 
 
 
 
 
 
 
 
 
 784}
 785
 786static void init_tracking(struct kmem_cache *s, void *object)
 787{
 788	struct track *p;
 789
 790	if (!(s->flags & SLAB_STORE_USER))
 791		return;
 792
 793	p = get_track(s, object, TRACK_ALLOC);
 794	memset(p, 0, 2*sizeof(struct track));
 795}
 796
 797static void print_track(const char *s, struct track *t, unsigned long pr_time)
 798{
 799	depot_stack_handle_t handle __maybe_unused;
 800
 801	if (!t->addr)
 802		return;
 803
 804	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
 805	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
 806#ifdef CONFIG_STACKDEPOT
 807	handle = READ_ONCE(t->handle);
 808	if (handle)
 809		stack_depot_print(handle);
 810	else
 811		pr_err("object allocation/free stack trace missing\n");
 
 
 
 812#endif
 813}
 814
 815void print_tracking(struct kmem_cache *s, void *object)
 816{
 817	unsigned long pr_time = jiffies;
 818	if (!(s->flags & SLAB_STORE_USER))
 819		return;
 820
 821	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
 822	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
 823}
 824
 825static void print_slab_info(const struct slab *slab)
 826{
 827	struct folio *folio = (struct folio *)slab_folio(slab);
 828
 829	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
 830	       slab, slab->objects, slab->inuse, slab->freelist,
 831	       folio_flags(folio, 0));
 832}
 833
 834/*
 835 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
 836 * family will round up the real request size to these fixed ones, so
 837 * there could be an extra area than what is requested. Save the original
 838 * request size in the meta data area, for better debug and sanity check.
 839 */
 840static inline void set_orig_size(struct kmem_cache *s,
 841				void *object, unsigned int orig_size)
 842{
 843	void *p = kasan_reset_tag(object);
 844
 845	if (!slub_debug_orig_size(s))
 846		return;
 847
 848#ifdef CONFIG_KASAN_GENERIC
 849	/*
 850	 * KASAN could save its free meta data in object's data area at
 851	 * offset 0, if the size is larger than 'orig_size', it will
 852	 * overlap the data redzone in [orig_size+1, object_size], and
 853	 * the check should be skipped.
 854	 */
 855	if (kasan_metadata_size(s, true) > orig_size)
 856		orig_size = s->object_size;
 857#endif
 858
 859	p += get_info_end(s);
 860	p += sizeof(struct track) * 2;
 861
 862	*(unsigned int *)p = orig_size;
 863}
 864
 865static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
 866{
 867	void *p = kasan_reset_tag(object);
 868
 869	if (!slub_debug_orig_size(s))
 870		return s->object_size;
 871
 872	p += get_info_end(s);
 873	p += sizeof(struct track) * 2;
 874
 875	return *(unsigned int *)p;
 876}
 877
 878void skip_orig_size_check(struct kmem_cache *s, const void *object)
 879{
 880	set_orig_size(s, (void *)object, s->object_size);
 881}
 882
 883static void slab_bug(struct kmem_cache *s, char *fmt, ...)
 884{
 885	struct va_format vaf;
 886	va_list args;
 
 887
 888	va_start(args, fmt);
 889	vaf.fmt = fmt;
 890	vaf.va = &args;
 891	pr_err("=============================================================================\n");
 892	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
 893	pr_err("-----------------------------------------------------------------------------\n\n");
 894	va_end(args);
 
 
 
 
 
 895}
 896
 897__printf(2, 3)
 898static void slab_fix(struct kmem_cache *s, char *fmt, ...)
 899{
 900	struct va_format vaf;
 901	va_list args;
 902
 903	if (slab_add_kunit_errors())
 904		return;
 905
 906	va_start(args, fmt);
 907	vaf.fmt = fmt;
 908	vaf.va = &args;
 909	pr_err("FIX %s: %pV\n", s->name, &vaf);
 910	va_end(args);
 
 911}
 912
 913static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
 914{
 915	unsigned int off;	/* Offset of last byte */
 916	u8 *addr = slab_address(slab);
 917
 918	print_tracking(s, p);
 919
 920	print_slab_info(slab);
 921
 922	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
 923	       p, p - addr, get_freepointer(s, p));
 924
 925	if (s->flags & SLAB_RED_ZONE)
 926		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
 927			      s->red_left_pad);
 928	else if (p > addr + 16)
 929		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
 930
 931	print_section(KERN_ERR,         "Object   ", p,
 932		      min_t(unsigned int, s->object_size, PAGE_SIZE));
 933	if (s->flags & SLAB_RED_ZONE)
 934		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
 935			s->inuse - s->object_size);
 936
 937	off = get_info_end(s);
 
 
 
 938
 939	if (s->flags & SLAB_STORE_USER)
 940		off += 2 * sizeof(struct track);
 941
 942	if (slub_debug_orig_size(s))
 943		off += sizeof(unsigned int);
 944
 945	off += kasan_metadata_size(s, false);
 946
 947	if (off != size_from_object(s))
 948		/* Beginning of the filler is the free pointer */
 949		print_section(KERN_ERR, "Padding  ", p + off,
 950			      size_from_object(s) - off);
 951
 952	dump_stack();
 953}
 954
 955static void object_err(struct kmem_cache *s, struct slab *slab,
 956			u8 *object, char *reason)
 957{
 958	if (slab_add_kunit_errors())
 959		return;
 960
 961	slab_bug(s, "%s", reason);
 962	print_trailer(s, slab, object);
 963	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 964}
 965
 966static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
 967			       void **freelist, void *nextfree)
 968{
 969	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
 970	    !check_valid_pointer(s, slab, nextfree) && freelist) {
 971		object_err(s, slab, *freelist, "Freechain corrupt");
 972		*freelist = NULL;
 973		slab_fix(s, "Isolate corrupted freechain");
 974		return true;
 975	}
 976
 977	return false;
 978}
 979
 980static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
 981			const char *fmt, ...)
 982{
 983	va_list args;
 984	char buf[100];
 985
 986	if (slab_add_kunit_errors())
 987		return;
 988
 989	va_start(args, fmt);
 990	vsnprintf(buf, sizeof(buf), fmt, args);
 991	va_end(args);
 992	slab_bug(s, "%s", buf);
 993	print_slab_info(slab);
 994	dump_stack();
 995	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 996}
 997
 998static void init_object(struct kmem_cache *s, void *object, u8 val)
 999{
1000	u8 *p = kasan_reset_tag(object);
1001	unsigned int poison_size = s->object_size;
1002
1003	if (s->flags & SLAB_RED_ZONE) {
1004		memset(p - s->red_left_pad, val, s->red_left_pad);
1005
1006		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1007			/*
1008			 * Redzone the extra allocated space by kmalloc than
1009			 * requested, and the poison size will be limited to
1010			 * the original request size accordingly.
1011			 */
1012			poison_size = get_orig_size(s, object);
1013		}
1014	}
1015
1016	if (s->flags & __OBJECT_POISON) {
1017		memset(p, POISON_FREE, poison_size - 1);
1018		p[poison_size - 1] = POISON_END;
1019	}
1020
1021	if (s->flags & SLAB_RED_ZONE)
1022		memset(p + poison_size, val, s->inuse - poison_size);
1023}
1024
1025static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1026						void *from, void *to)
1027{
1028	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1029	memset(from, data, to - from);
1030}
1031
1032static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1033			u8 *object, char *what,
1034			u8 *start, unsigned int value, unsigned int bytes)
1035{
1036	u8 *fault;
1037	u8 *end;
1038	u8 *addr = slab_address(slab);
1039
1040	metadata_access_enable();
1041	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1042	metadata_access_disable();
1043	if (!fault)
1044		return 1;
1045
1046	end = start + bytes;
1047	while (end > fault && end[-1] == value)
1048		end--;
1049
1050	if (slab_add_kunit_errors())
1051		goto skip_bug_print;
1052
1053	slab_bug(s, "%s overwritten", what);
1054	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1055					fault, end - 1, fault - addr,
1056					fault[0], value);
1057	print_trailer(s, slab, object);
1058	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1059
1060skip_bug_print:
1061	restore_bytes(s, what, value, fault, end);
1062	return 0;
1063}
1064
1065/*
1066 * Object layout:
1067 *
1068 * object address
1069 * 	Bytes of the object to be managed.
1070 * 	If the freepointer may overlay the object then the free
1071 *	pointer is at the middle of the object.
1072 *
1073 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1074 * 	0xa5 (POISON_END)
1075 *
1076 * object + s->object_size
1077 * 	Padding to reach word boundary. This is also used for Redzoning.
1078 * 	Padding is extended by another word if Redzoning is enabled and
1079 * 	object_size == inuse.
1080 *
1081 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1082 * 	0xcc (RED_ACTIVE) for objects in use.
1083 *
1084 * object + s->inuse
1085 * 	Meta data starts here.
1086 *
1087 * 	A. Free pointer (if we cannot overwrite object on free)
1088 * 	B. Tracking data for SLAB_STORE_USER
1089 *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1090 *	D. Padding to reach required alignment boundary or at minimum
1091 * 		one word if debugging is on to be able to detect writes
1092 * 		before the word boundary.
1093 *
1094 *	Padding is done using 0x5a (POISON_INUSE)
1095 *
1096 * object + s->size
1097 * 	Nothing is used beyond s->size.
1098 *
1099 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1100 * ignored. And therefore no slab options that rely on these boundaries
1101 * may be used with merged slabcaches.
1102 */
1103
1104static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1105{
1106	unsigned long off = get_info_end(s);	/* The end of info */
1107
1108	if (s->flags & SLAB_STORE_USER) {
 
 
 
 
1109		/* We also have user information there */
1110		off += 2 * sizeof(struct track);
1111
1112		if (s->flags & SLAB_KMALLOC)
1113			off += sizeof(unsigned int);
1114	}
1115
1116	off += kasan_metadata_size(s, false);
1117
1118	if (size_from_object(s) == off)
1119		return 1;
1120
1121	return check_bytes_and_report(s, slab, p, "Object padding",
1122			p + off, POISON_INUSE, size_from_object(s) - off);
1123}
1124
1125/* Check the pad bytes at the end of a slab page */
1126static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1127{
1128	u8 *start;
1129	u8 *fault;
1130	u8 *end;
1131	u8 *pad;
1132	int length;
1133	int remainder;
1134
1135	if (!(s->flags & SLAB_POISON))
1136		return;
1137
1138	start = slab_address(slab);
1139	length = slab_size(slab);
1140	end = start + length;
1141	remainder = length % s->size;
1142	if (!remainder)
1143		return;
1144
1145	pad = end - remainder;
1146	metadata_access_enable();
1147	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1148	metadata_access_disable();
1149	if (!fault)
1150		return;
1151	while (end > fault && end[-1] == POISON_INUSE)
1152		end--;
1153
1154	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1155			fault, end - 1, fault - start);
1156	print_section(KERN_ERR, "Padding ", pad, remainder);
1157
1158	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
 
1159}
1160
1161static int check_object(struct kmem_cache *s, struct slab *slab,
1162					void *object, u8 val)
1163{
1164	u8 *p = object;
1165	u8 *endobject = object + s->object_size;
1166	unsigned int orig_size;
1167
1168	if (s->flags & SLAB_RED_ZONE) {
1169		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1170			object - s->red_left_pad, val, s->red_left_pad))
1171			return 0;
1172
1173		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1174			endobject, val, s->inuse - s->object_size))
1175			return 0;
1176
1177		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1178			orig_size = get_orig_size(s, object);
1179
1180			if (s->object_size > orig_size  &&
1181				!check_bytes_and_report(s, slab, object,
1182					"kmalloc Redzone", p + orig_size,
1183					val, s->object_size - orig_size)) {
1184				return 0;
1185			}
1186		}
1187	} else {
1188		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1189			check_bytes_and_report(s, slab, p, "Alignment padding",
1190				endobject, POISON_INUSE,
1191				s->inuse - s->object_size);
1192		}
1193	}
1194
1195	if (s->flags & SLAB_POISON) {
1196		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1197			(!check_bytes_and_report(s, slab, p, "Poison", p,
1198					POISON_FREE, s->object_size - 1) ||
1199			 !check_bytes_and_report(s, slab, p, "End Poison",
1200				p + s->object_size - 1, POISON_END, 1)))
1201			return 0;
1202		/*
1203		 * check_pad_bytes cleans up on its own.
1204		 */
1205		check_pad_bytes(s, slab, p);
1206	}
1207
1208	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1209		/*
1210		 * Object and freepointer overlap. Cannot check
1211		 * freepointer while object is allocated.
1212		 */
1213		return 1;
1214
1215	/* Check free pointer validity */
1216	if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1217		object_err(s, slab, p, "Freepointer corrupt");
1218		/*
1219		 * No choice but to zap it and thus lose the remainder
1220		 * of the free objects in this slab. May cause
1221		 * another error because the object count is now wrong.
1222		 */
1223		set_freepointer(s, p, NULL);
1224		return 0;
1225	}
1226	return 1;
1227}
1228
1229static int check_slab(struct kmem_cache *s, struct slab *slab)
1230{
1231	int maxobj;
1232
1233	if (!folio_test_slab(slab_folio(slab))) {
1234		slab_err(s, slab, "Not a valid slab page");
 
 
1235		return 0;
1236	}
1237
1238	maxobj = order_objects(slab_order(slab), s->size);
1239	if (slab->objects > maxobj) {
1240		slab_err(s, slab, "objects %u > max %u",
1241			slab->objects, maxobj);
1242		return 0;
1243	}
1244	if (slab->inuse > slab->objects) {
1245		slab_err(s, slab, "inuse %u > max %u",
1246			slab->inuse, slab->objects);
1247		return 0;
1248	}
1249	/* Slab_pad_check fixes things up after itself */
1250	slab_pad_check(s, slab);
1251	return 1;
1252}
1253
1254/*
1255 * Determine if a certain object in a slab is on the freelist. Must hold the
1256 * slab lock to guarantee that the chains are in a consistent state.
1257 */
1258static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1259{
1260	int nr = 0;
1261	void *fp;
1262	void *object = NULL;
1263	int max_objects;
1264
1265	fp = slab->freelist;
1266	while (fp && nr <= slab->objects) {
1267		if (fp == search)
1268			return 1;
1269		if (!check_valid_pointer(s, slab, fp)) {
1270			if (object) {
1271				object_err(s, slab, object,
1272					"Freechain corrupt");
1273				set_freepointer(s, object, NULL);
 
1274			} else {
1275				slab_err(s, slab, "Freepointer corrupt");
1276				slab->freelist = NULL;
1277				slab->inuse = slab->objects;
1278				slab_fix(s, "Freelist cleared");
1279				return 0;
1280			}
1281			break;
1282		}
1283		object = fp;
1284		fp = get_freepointer(s, object);
1285		nr++;
1286	}
1287
1288	max_objects = order_objects(slab_order(slab), s->size);
1289	if (max_objects > MAX_OBJS_PER_PAGE)
1290		max_objects = MAX_OBJS_PER_PAGE;
1291
1292	if (slab->objects != max_objects) {
1293		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1294			 slab->objects, max_objects);
1295		slab->objects = max_objects;
1296		slab_fix(s, "Number of objects adjusted");
1297	}
1298	if (slab->inuse != slab->objects - nr) {
1299		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1300			 slab->inuse, slab->objects - nr);
1301		slab->inuse = slab->objects - nr;
1302		slab_fix(s, "Object count adjusted");
1303	}
1304	return search == NULL;
1305}
1306
1307static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1308								int alloc)
1309{
1310	if (s->flags & SLAB_TRACE) {
1311		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1312			s->name,
1313			alloc ? "alloc" : "free",
1314			object, slab->inuse,
1315			slab->freelist);
1316
1317		if (!alloc)
1318			print_section(KERN_INFO, "Object ", (void *)object,
1319					s->object_size);
1320
1321		dump_stack();
1322	}
1323}
1324
1325/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1326 * Tracking of fully allocated slabs for debugging purposes.
 
 
1327 */
1328static void add_full(struct kmem_cache *s,
1329	struct kmem_cache_node *n, struct slab *slab)
1330{
1331	if (!(s->flags & SLAB_STORE_USER))
1332		return;
1333
1334	lockdep_assert_held(&n->list_lock);
1335	list_add(&slab->slab_list, &n->full);
1336}
1337
1338static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
 
 
 
1339{
1340	if (!(s->flags & SLAB_STORE_USER))
1341		return;
1342
1343	lockdep_assert_held(&n->list_lock);
1344	list_del(&slab->slab_list);
1345}
1346
1347/* Tracking of the number of slabs for debugging purposes */
1348static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1349{
1350	struct kmem_cache_node *n = get_node(s, node);
1351
1352	return atomic_long_read(&n->nr_slabs);
1353}
1354
1355static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1356{
1357	return atomic_long_read(&n->nr_slabs);
1358}
1359
1360static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1361{
1362	struct kmem_cache_node *n = get_node(s, node);
1363
1364	/*
1365	 * May be called early in order to allocate a slab for the
1366	 * kmem_cache_node structure. Solve the chicken-egg
1367	 * dilemma by deferring the increment of the count during
1368	 * bootstrap (see early_kmem_cache_node_alloc).
1369	 */
1370	if (likely(n)) {
1371		atomic_long_inc(&n->nr_slabs);
1372		atomic_long_add(objects, &n->total_objects);
1373	}
1374}
1375static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1376{
1377	struct kmem_cache_node *n = get_node(s, node);
1378
1379	atomic_long_dec(&n->nr_slabs);
1380	atomic_long_sub(objects, &n->total_objects);
1381}
1382
1383/* Object debug checks for alloc/free paths */
1384static void setup_object_debug(struct kmem_cache *s, void *object)
 
1385{
1386	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1387		return;
1388
1389	init_object(s, object, SLUB_RED_INACTIVE);
1390	init_tracking(s, object);
1391}
1392
1393static
1394void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1395{
1396	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1397		return;
1398
1399	metadata_access_enable();
1400	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1401	metadata_access_disable();
1402}
1403
1404static inline int alloc_consistency_checks(struct kmem_cache *s,
1405					struct slab *slab, void *object)
1406{
1407	if (!check_slab(s, slab))
1408		return 0;
1409
1410	if (!check_valid_pointer(s, slab, object)) {
1411		object_err(s, slab, object, "Freelist Pointer check fails");
1412		return 0;
1413	}
1414
1415	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1416		return 0;
1417
1418	return 1;
1419}
1420
1421static noinline bool alloc_debug_processing(struct kmem_cache *s,
1422			struct slab *slab, void *object, int orig_size)
1423{
1424	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1425		if (!alloc_consistency_checks(s, slab, object))
1426			goto bad;
1427	}
1428
1429	/* Success. Perform special debug activities for allocs */
1430	trace(s, slab, object, 1);
1431	set_orig_size(s, object, orig_size);
1432	init_object(s, object, SLUB_RED_ACTIVE);
1433	return true;
1434
1435bad:
1436	if (folio_test_slab(slab_folio(slab))) {
1437		/*
1438		 * If this is a slab page then lets do the best we can
1439		 * to avoid issues in the future. Marking all objects
1440		 * as used avoids touching the remaining objects.
1441		 */
1442		slab_fix(s, "Marking all objects used");
1443		slab->inuse = slab->objects;
1444		slab->freelist = NULL;
1445	}
1446	return false;
1447}
1448
1449static inline int free_consistency_checks(struct kmem_cache *s,
1450		struct slab *slab, void *object, unsigned long addr)
1451{
1452	if (!check_valid_pointer(s, slab, object)) {
1453		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1454		return 0;
 
 
 
 
 
 
 
 
 
1455	}
1456
1457	if (on_freelist(s, slab, object)) {
1458		object_err(s, slab, object, "Object already free");
1459		return 0;
1460	}
1461
1462	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1463		return 0;
1464
1465	if (unlikely(s != slab->slab_cache)) {
1466		if (!folio_test_slab(slab_folio(slab))) {
1467			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1468				 object);
1469		} else if (!slab->slab_cache) {
1470			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1471			       object);
 
1472			dump_stack();
1473		} else
1474			object_err(s, slab, object,
1475					"page slab pointer corrupt.");
1476		return 0;
1477	}
1478	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
1479}
1480
1481/*
1482 * Parse a block of slub_debug options. Blocks are delimited by ';'
1483 *
1484 * @str:    start of block
1485 * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1486 * @slabs:  return start of list of slabs, or NULL when there's no list
1487 * @init:   assume this is initial parsing and not per-kmem-create parsing
1488 *
1489 * returns the start of next block if there's any, or NULL
1490 */
1491static char *
1492parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1493{
1494	bool higher_order_disable = false;
1495
1496	/* Skip any completely empty blocks */
1497	while (*str && *str == ';')
1498		str++;
 
1499
1500	if (*str == ',') {
1501		/*
1502		 * No options but restriction on slabs. This means full
1503		 * debugging for slabs matching a pattern.
1504		 */
1505		*flags = DEBUG_DEFAULT_FLAGS;
1506		goto check_slabs;
 
 
 
 
 
 
 
 
1507	}
1508	*flags = 0;
1509
1510	/* Determine which debug features should be switched on */
1511	for (; *str && *str != ',' && *str != ';'; str++) {
 
 
 
 
 
 
 
 
 
1512		switch (tolower(*str)) {
1513		case '-':
1514			*flags = 0;
1515			break;
1516		case 'f':
1517			*flags |= SLAB_CONSISTENCY_CHECKS;
1518			break;
1519		case 'z':
1520			*flags |= SLAB_RED_ZONE;
1521			break;
1522		case 'p':
1523			*flags |= SLAB_POISON;
1524			break;
1525		case 'u':
1526			*flags |= SLAB_STORE_USER;
1527			break;
1528		case 't':
1529			*flags |= SLAB_TRACE;
1530			break;
1531		case 'a':
1532			*flags |= SLAB_FAILSLAB;
1533			break;
1534		case 'o':
1535			/*
1536			 * Avoid enabling debugging on caches if its minimum
1537			 * order would increase as a result.
1538			 */
1539			higher_order_disable = true;
1540			break;
1541		default:
1542			if (init)
1543				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1544		}
1545	}
 
1546check_slabs:
1547	if (*str == ',')
1548		*slabs = ++str;
1549	else
1550		*slabs = NULL;
1551
1552	/* Skip over the slab list */
1553	while (*str && *str != ';')
1554		str++;
1555
1556	/* Skip any completely empty blocks */
1557	while (*str && *str == ';')
1558		str++;
1559
1560	if (init && higher_order_disable)
1561		disable_higher_order_debug = 1;
1562
1563	if (*str)
1564		return str;
1565	else
1566		return NULL;
1567}
1568
1569static int __init setup_slub_debug(char *str)
1570{
1571	slab_flags_t flags;
1572	slab_flags_t global_flags;
1573	char *saved_str;
1574	char *slab_list;
1575	bool global_slub_debug_changed = false;
1576	bool slab_list_specified = false;
1577
1578	global_flags = DEBUG_DEFAULT_FLAGS;
1579	if (*str++ != '=' || !*str)
1580		/*
1581		 * No options specified. Switch on full debugging.
1582		 */
1583		goto out;
1584
1585	saved_str = str;
1586	while (str) {
1587		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1588
1589		if (!slab_list) {
1590			global_flags = flags;
1591			global_slub_debug_changed = true;
1592		} else {
1593			slab_list_specified = true;
1594			if (flags & SLAB_STORE_USER)
1595				stack_depot_want_early_init();
1596		}
1597	}
1598
1599	/*
1600	 * For backwards compatibility, a single list of flags with list of
1601	 * slabs means debugging is only changed for those slabs, so the global
1602	 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1603	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1604	 * long as there is no option specifying flags without a slab list.
1605	 */
1606	if (slab_list_specified) {
1607		if (!global_slub_debug_changed)
1608			global_flags = slub_debug;
1609		slub_debug_string = saved_str;
1610	}
1611out:
1612	slub_debug = global_flags;
1613	if (slub_debug & SLAB_STORE_USER)
1614		stack_depot_want_early_init();
1615	if (slub_debug != 0 || slub_debug_string)
1616		static_branch_enable(&slub_debug_enabled);
1617	else
1618		static_branch_disable(&slub_debug_enabled);
1619	if ((static_branch_unlikely(&init_on_alloc) ||
1620	     static_branch_unlikely(&init_on_free)) &&
1621	    (slub_debug & SLAB_POISON))
1622		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1623	return 1;
1624}
1625
1626__setup("slub_debug", setup_slub_debug);
1627
1628/*
1629 * kmem_cache_flags - apply debugging options to the cache
1630 * @object_size:	the size of an object without meta data
1631 * @flags:		flags to set
1632 * @name:		name of the cache
1633 *
1634 * Debug option(s) are applied to @flags. In addition to the debug
1635 * option(s), if a slab name (or multiple) is specified i.e.
1636 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1637 * then only the select slabs will receive the debug option(s).
1638 */
1639slab_flags_t kmem_cache_flags(unsigned int object_size,
1640	slab_flags_t flags, const char *name)
1641{
1642	char *iter;
1643	size_t len;
1644	char *next_block;
1645	slab_flags_t block_flags;
1646	slab_flags_t slub_debug_local = slub_debug;
1647
1648	if (flags & SLAB_NO_USER_FLAGS)
1649		return flags;
1650
1651	/*
1652	 * If the slab cache is for debugging (e.g. kmemleak) then
1653	 * don't store user (stack trace) information by default,
1654	 * but let the user enable it via the command line below.
1655	 */
1656	if (flags & SLAB_NOLEAKTRACE)
1657		slub_debug_local &= ~SLAB_STORE_USER;
1658
1659	len = strlen(name);
1660	next_block = slub_debug_string;
1661	/* Go through all blocks of debug options, see if any matches our slab's name */
1662	while (next_block) {
1663		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1664		if (!iter)
1665			continue;
1666		/* Found a block that has a slab list, search it */
1667		while (*iter) {
1668			char *end, *glob;
1669			size_t cmplen;
1670
1671			end = strchrnul(iter, ',');
1672			if (next_block && next_block < end)
1673				end = next_block - 1;
1674
1675			glob = strnchr(iter, end - iter, '*');
1676			if (glob)
1677				cmplen = glob - iter;
1678			else
1679				cmplen = max_t(size_t, len, (end - iter));
1680
1681			if (!strncmp(name, iter, cmplen)) {
1682				flags |= block_flags;
1683				return flags;
1684			}
1685
1686			if (!*end || *end == ';')
1687				break;
1688			iter = end + 1;
1689		}
1690	}
1691
1692	return flags | slub_debug_local;
1693}
1694#else /* !CONFIG_SLUB_DEBUG */
1695static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1696static inline
1697void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1698
1699static inline bool alloc_debug_processing(struct kmem_cache *s,
1700	struct slab *slab, void *object, int orig_size) { return true; }
1701
1702static inline bool free_debug_processing(struct kmem_cache *s,
1703	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1704	unsigned long addr, depot_stack_handle_t handle) { return true; }
1705
1706static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1707static inline int check_object(struct kmem_cache *s, struct slab *slab,
 
1708			void *object, u8 val) { return 1; }
1709static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1710static inline void set_track(struct kmem_cache *s, void *object,
1711			     enum track_item alloc, unsigned long addr) {}
1712static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1713					struct slab *slab) {}
1714static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1715					struct slab *slab) {}
1716slab_flags_t kmem_cache_flags(unsigned int object_size,
1717	slab_flags_t flags, const char *name)
1718{
1719	return flags;
1720}
1721#define slub_debug 0
1722
1723#define disable_higher_order_debug 0
1724
1725static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1726							{ return 0; }
1727static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1728							{ return 0; }
1729static inline void inc_slabs_node(struct kmem_cache *s, int node,
1730							int objects) {}
1731static inline void dec_slabs_node(struct kmem_cache *s, int node,
1732							int objects) {}
1733
1734#ifndef CONFIG_SLUB_TINY
1735static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1736			       void **freelist, void *nextfree)
1737{
1738	return false;
1739}
1740#endif
1741#endif /* CONFIG_SLUB_DEBUG */
1742
1743/*
1744 * Hooks for other subsystems that check memory allocations. In a typical
1745 * production configuration these hooks all should produce no code at all.
1746 */
1747static __always_inline bool slab_free_hook(struct kmem_cache *s,
1748						void *x, bool init)
1749{
1750	kmemleak_free_recursive(x, s->flags);
1751	kmsan_slab_free(s, x);
1752
1753	debug_check_no_locks_freed(x, s->object_size);
1754
1755	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1756		debug_check_no_obj_freed(x, s->object_size);
1757
1758	/* Use KCSAN to help debug racy use-after-free. */
1759	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1760		__kcsan_check_access(x, s->object_size,
1761				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1762
1763	/*
1764	 * As memory initialization might be integrated into KASAN,
1765	 * kasan_slab_free and initialization memset's must be
1766	 * kept together to avoid discrepancies in behavior.
1767	 *
1768	 * The initialization memset's clear the object and the metadata,
1769	 * but don't touch the SLAB redzone.
1770	 */
1771	if (init) {
1772		int rsize;
1773
1774		if (!kasan_has_integrated_init())
1775			memset(kasan_reset_tag(x), 0, s->object_size);
1776		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1777		memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1778		       s->size - s->inuse - rsize);
1779	}
1780	/* KASAN might put x into memory quarantine, delaying its reuse. */
1781	return kasan_slab_free(s, x, init);
1782}
1783
1784static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1785					   void **head, void **tail,
1786					   int *cnt)
1787{
1788
1789	void *object;
1790	void *next = *head;
1791	void *old_tail = *tail ? *tail : *head;
1792
1793	if (is_kfence_address(next)) {
1794		slab_free_hook(s, next, false);
1795		return true;
1796	}
1797
1798	/* Head and tail of the reconstructed freelist */
1799	*head = NULL;
1800	*tail = NULL;
1801
1802	do {
1803		object = next;
1804		next = get_freepointer(s, object);
1805
1806		/* If object's reuse doesn't have to be delayed */
1807		if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1808			/* Move object to the new freelist */
1809			set_freepointer(s, object, *head);
1810			*head = object;
1811			if (!*tail)
1812				*tail = object;
1813		} else {
1814			/*
1815			 * Adjust the reconstructed freelist depth
1816			 * accordingly if object's reuse is delayed.
1817			 */
1818			--(*cnt);
1819		}
1820	} while (object != old_tail);
1821
1822	if (*head == *tail)
1823		*tail = NULL;
1824
1825	return *head != NULL;
1826}
1827
1828static void *setup_object(struct kmem_cache *s, void *object)
1829{
1830	setup_object_debug(s, object);
1831	object = kasan_init_slab_obj(s, object);
1832	if (unlikely(s->ctor)) {
1833		kasan_unpoison_object_data(s, object);
1834		s->ctor(object);
1835		kasan_poison_object_data(s, object);
1836	}
1837	return object;
1838}
1839
1840/*
1841 * Slab allocation and freeing
1842 */
1843static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1844		struct kmem_cache_order_objects oo)
1845{
1846	struct folio *folio;
1847	struct slab *slab;
1848	unsigned int order = oo_order(oo);
1849
1850	if (node == NUMA_NO_NODE)
1851		folio = (struct folio *)alloc_pages(flags, order);
1852	else
1853		folio = (struct folio *)__alloc_pages_node(node, flags, order);
1854
1855	if (!folio)
1856		return NULL;
1857
1858	slab = folio_slab(folio);
1859	__folio_set_slab(folio);
1860	/* Make the flag visible before any changes to folio->mapping */
1861	smp_wmb();
1862	if (page_is_pfmemalloc(folio_page(folio, 0)))
1863		slab_set_pfmemalloc(slab);
1864
1865	return slab;
1866}
1867
1868#ifdef CONFIG_SLAB_FREELIST_RANDOM
1869/* Pre-initialize the random sequence cache */
1870static int init_cache_random_seq(struct kmem_cache *s)
1871{
1872	unsigned int count = oo_objects(s->oo);
1873	int err;
1874
1875	/* Bailout if already initialised */
1876	if (s->random_seq)
1877		return 0;
1878
1879	err = cache_random_seq_create(s, count, GFP_KERNEL);
1880	if (err) {
1881		pr_err("SLUB: Unable to initialize free list for %s\n",
1882			s->name);
1883		return err;
1884	}
1885
1886	/* Transform to an offset on the set of pages */
1887	if (s->random_seq) {
1888		unsigned int i;
1889
1890		for (i = 0; i < count; i++)
1891			s->random_seq[i] *= s->size;
1892	}
1893	return 0;
1894}
1895
1896/* Initialize each random sequence freelist per cache */
1897static void __init init_freelist_randomization(void)
1898{
1899	struct kmem_cache *s;
1900
1901	mutex_lock(&slab_mutex);
1902
1903	list_for_each_entry(s, &slab_caches, list)
1904		init_cache_random_seq(s);
1905
1906	mutex_unlock(&slab_mutex);
1907}
1908
1909/* Get the next entry on the pre-computed freelist randomized */
1910static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
1911				unsigned long *pos, void *start,
1912				unsigned long page_limit,
1913				unsigned long freelist_count)
1914{
1915	unsigned int idx;
1916
1917	/*
1918	 * If the target page allocation failed, the number of objects on the
1919	 * page might be smaller than the usual size defined by the cache.
1920	 */
1921	do {
1922		idx = s->random_seq[*pos];
1923		*pos += 1;
1924		if (*pos >= freelist_count)
1925			*pos = 0;
1926	} while (unlikely(idx >= page_limit));
1927
1928	return (char *)start + idx;
1929}
1930
1931/* Shuffle the single linked freelist based on a random pre-computed sequence */
1932static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1933{
1934	void *start;
1935	void *cur;
1936	void *next;
1937	unsigned long idx, pos, page_limit, freelist_count;
1938
1939	if (slab->objects < 2 || !s->random_seq)
1940		return false;
1941
1942	freelist_count = oo_objects(s->oo);
1943	pos = get_random_u32_below(freelist_count);
1944
1945	page_limit = slab->objects * s->size;
1946	start = fixup_red_left(s, slab_address(slab));
1947
1948	/* First entry is used as the base of the freelist */
1949	cur = next_freelist_entry(s, slab, &pos, start, page_limit,
1950				freelist_count);
1951	cur = setup_object(s, cur);
1952	slab->freelist = cur;
1953
1954	for (idx = 1; idx < slab->objects; idx++) {
1955		next = next_freelist_entry(s, slab, &pos, start, page_limit,
1956			freelist_count);
1957		next = setup_object(s, next);
1958		set_freepointer(s, cur, next);
1959		cur = next;
1960	}
1961	set_freepointer(s, cur, NULL);
1962
1963	return true;
1964}
1965#else
1966static inline int init_cache_random_seq(struct kmem_cache *s)
1967{
1968	return 0;
1969}
1970static inline void init_freelist_randomization(void) { }
1971static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1972{
1973	return false;
1974}
1975#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1976
1977static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1978{
1979	struct slab *slab;
1980	struct kmem_cache_order_objects oo = s->oo;
1981	gfp_t alloc_gfp;
1982	void *start, *p, *next;
1983	int idx;
1984	bool shuffle;
1985
1986	flags &= gfp_allowed_mask;
1987
 
 
 
1988	flags |= s->allocflags;
1989
1990	/*
1991	 * Let the initial higher-order allocation fail under memory pressure
1992	 * so we fall-back to the minimum order allocation.
1993	 */
1994	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1995	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1996		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
1997
1998	slab = alloc_slab_page(alloc_gfp, node, oo);
1999	if (unlikely(!slab)) {
2000		oo = s->min;
2001		alloc_gfp = flags;
2002		/*
2003		 * Allocation may have failed due to fragmentation.
2004		 * Try a lower order alloc if possible
2005		 */
2006		slab = alloc_slab_page(alloc_gfp, node, oo);
2007		if (unlikely(!slab))
2008			return NULL;
2009		stat(s, ORDER_FALLBACK);
2010	}
2011
2012	slab->objects = oo_objects(oo);
2013	slab->inuse = 0;
2014	slab->frozen = 0;
2015
2016	account_slab(slab, oo_order(oo), s, flags);
 
2017
2018	slab->slab_cache = s;
 
2019
2020	kasan_poison_slab(slab);
 
 
2021
2022	start = slab_address(slab);
2023
2024	setup_slab_debug(s, slab, start);
 
 
 
 
 
 
 
 
2025
2026	shuffle = shuffle_freelist(s, slab);
 
 
 
 
2027
2028	if (!shuffle) {
2029		start = fixup_red_left(s, start);
2030		start = setup_object(s, start);
2031		slab->freelist = start;
2032		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2033			next = p + s->size;
2034			next = setup_object(s, next);
2035			set_freepointer(s, p, next);
2036			p = next;
2037		}
2038		set_freepointer(s, p, NULL);
2039	}
2040
2041	return slab;
 
 
 
 
 
2042}
2043
2044static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2045{
2046	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2047		flags = kmalloc_fix_flags(flags);
 
 
2048
2049	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2050
2051	return allocate_slab(s,
2052		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2053}
2054
2055static void __free_slab(struct kmem_cache *s, struct slab *slab)
2056{
2057	struct folio *folio = slab_folio(slab);
2058	int order = folio_order(folio);
2059	int pages = 1 << order;
2060
2061	__slab_clear_pfmemalloc(slab);
2062	folio->mapping = NULL;
2063	/* Make the mapping reset visible before clearing the flag */
2064	smp_wmb();
2065	__folio_clear_slab(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
2066	if (current->reclaim_state)
2067		current->reclaim_state->reclaimed_slab += pages;
2068	unaccount_slab(slab, order, s);
2069	__free_pages(folio_page(folio, 0), order);
2070}
2071
 
 
 
2072static void rcu_free_slab(struct rcu_head *h)
2073{
2074	struct slab *slab = container_of(h, struct slab, rcu_head);
 
 
 
 
 
2075
2076	__free_slab(slab->slab_cache, slab);
2077}
2078
2079static void free_slab(struct kmem_cache *s, struct slab *slab)
2080{
2081	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2082		void *p;
2083
2084		slab_pad_check(s, slab);
2085		for_each_object(p, s, slab_address(slab), slab->objects)
2086			check_object(s, slab, p, SLUB_RED_INACTIVE);
2087	}
2088
2089	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2090		call_rcu(&slab->rcu_head, rcu_free_slab);
2091	else
2092		__free_slab(s, slab);
 
 
 
 
 
 
 
 
2093}
2094
2095static void discard_slab(struct kmem_cache *s, struct slab *slab)
2096{
2097	dec_slabs_node(s, slab_nid(slab), slab->objects);
2098	free_slab(s, slab);
2099}
2100
2101/*
2102 * Management of partially allocated slabs.
 
 
2103 */
2104static inline void
2105__add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2106{
2107	n->nr_partial++;
2108	if (tail == DEACTIVATE_TO_TAIL)
2109		list_add_tail(&slab->slab_list, &n->partial);
2110	else
2111		list_add(&slab->slab_list, &n->partial);
2112}
2113
2114static inline void add_partial(struct kmem_cache_node *n,
2115				struct slab *slab, int tail)
2116{
2117	lockdep_assert_held(&n->list_lock);
2118	__add_partial(n, slab, tail);
2119}
2120
2121static inline void remove_partial(struct kmem_cache_node *n,
2122					struct slab *slab)
2123{
2124	lockdep_assert_held(&n->list_lock);
2125	list_del(&slab->slab_list);
2126	n->nr_partial--;
2127}
2128
2129/*
2130 * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a
2131 * slab from the n->partial list. Remove only a single object from the slab, do
2132 * the alloc_debug_processing() checks and leave the slab on the list, or move
2133 * it to full list if it was the last free object.
2134 */
2135static void *alloc_single_from_partial(struct kmem_cache *s,
2136		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2137{
2138	void *object;
2139
2140	lockdep_assert_held(&n->list_lock);
2141
2142	object = slab->freelist;
2143	slab->freelist = get_freepointer(s, object);
2144	slab->inuse++;
2145
2146	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2147		remove_partial(n, slab);
2148		return NULL;
2149	}
2150
2151	if (slab->inuse == slab->objects) {
2152		remove_partial(n, slab);
2153		add_full(s, n, slab);
2154	}
2155
2156	return object;
2157}
2158
2159/*
2160 * Called only for kmem_cache_debug() caches to allocate from a freshly
2161 * allocated slab. Allocate a single object instead of whole freelist
2162 * and put the slab to the partial (or full) list.
2163 */
2164static void *alloc_single_from_new_slab(struct kmem_cache *s,
2165					struct slab *slab, int orig_size)
2166{
2167	int nid = slab_nid(slab);
2168	struct kmem_cache_node *n = get_node(s, nid);
2169	unsigned long flags;
2170	void *object;
2171
2172
2173	object = slab->freelist;
2174	slab->freelist = get_freepointer(s, object);
2175	slab->inuse = 1;
2176
2177	if (!alloc_debug_processing(s, slab, object, orig_size))
2178		/*
2179		 * It's not really expected that this would fail on a
2180		 * freshly allocated slab, but a concurrent memory
2181		 * corruption in theory could cause that.
2182		 */
2183		return NULL;
2184
2185	spin_lock_irqsave(&n->list_lock, flags);
2186
2187	if (slab->inuse == slab->objects)
2188		add_full(s, n, slab);
2189	else
2190		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2191
2192	inc_slabs_node(s, nid, slab->objects);
2193	spin_unlock_irqrestore(&n->list_lock, flags);
2194
2195	return object;
2196}
2197
2198/*
2199 * Remove slab from the partial list, freeze it and
2200 * return the pointer to the freelist.
2201 *
2202 * Returns a list of objects or NULL if it fails.
 
 
2203 */
2204static inline void *acquire_slab(struct kmem_cache *s,
2205		struct kmem_cache_node *n, struct slab *slab,
2206		int mode)
2207{
2208	void *freelist;
2209	unsigned long counters;
2210	struct slab new;
2211
2212	lockdep_assert_held(&n->list_lock);
2213
2214	/*
2215	 * Zap the freelist and set the frozen bit.
2216	 * The old freelist is the list of objects for the
2217	 * per cpu allocation list.
2218	 */
2219	freelist = slab->freelist;
2220	counters = slab->counters;
2221	new.counters = counters;
2222	if (mode) {
2223		new.inuse = slab->objects;
2224		new.freelist = NULL;
2225	} else {
2226		new.freelist = freelist;
2227	}
 
2228
2229	VM_BUG_ON(new.frozen);
2230	new.frozen = 1;
2231
2232	if (!__cmpxchg_double_slab(s, slab,
2233			freelist, counters,
2234			new.freelist, new.counters,
2235			"acquire_slab"))
2236		return NULL;
2237
2238	remove_partial(n, slab);
2239	WARN_ON(!freelist);
2240	return freelist;
2241}
2242
2243#ifdef CONFIG_SLUB_CPU_PARTIAL
2244static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2245#else
2246static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2247				   int drain) { }
2248#endif
2249static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2250
2251/*
2252 * Try to allocate a partial slab from a specific node.
2253 */
2254static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2255			      struct partial_context *pc)
2256{
2257	struct slab *slab, *slab2;
2258	void *object = NULL;
2259	unsigned long flags;
2260	unsigned int partial_slabs = 0;
2261
2262	/*
2263	 * Racy check. If we mistakenly see no partial slabs then we
2264	 * just allocate an empty slab. If we mistakenly try to get a
2265	 * partial slab and there is none available then get_partial()
2266	 * will return NULL.
2267	 */
2268	if (!n || !n->nr_partial)
2269		return NULL;
2270
2271	spin_lock_irqsave(&n->list_lock, flags);
2272	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2273		void *t;
 
2274
2275		if (!pfmemalloc_match(slab, pc->flags))
2276			continue;
2277
2278		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2279			object = alloc_single_from_partial(s, n, slab,
2280							pc->orig_size);
2281			if (object)
2282				break;
2283			continue;
2284		}
2285
2286		t = acquire_slab(s, n, slab, object == NULL);
2287		if (!t)
2288			break;
2289
2290		if (!object) {
2291			*pc->slab = slab;
 
2292			stat(s, ALLOC_FROM_PARTIAL);
2293			object = t;
 
2294		} else {
2295			put_cpu_partial(s, slab, 0);
2296			stat(s, CPU_PARTIAL_NODE);
2297			partial_slabs++;
2298		}
2299#ifdef CONFIG_SLUB_CPU_PARTIAL
2300		if (!kmem_cache_has_cpu_partial(s)
2301			|| partial_slabs > s->cpu_partial_slabs / 2)
2302			break;
2303#else
2304		break;
2305#endif
2306
2307	}
2308	spin_unlock_irqrestore(&n->list_lock, flags);
2309	return object;
2310}
2311
2312/*
2313 * Get a slab from somewhere. Search in increasing NUMA distances.
2314 */
2315static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc)
 
2316{
2317#ifdef CONFIG_NUMA
2318	struct zonelist *zonelist;
2319	struct zoneref *z;
2320	struct zone *zone;
2321	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2322	void *object;
2323	unsigned int cpuset_mems_cookie;
2324
2325	/*
2326	 * The defrag ratio allows a configuration of the tradeoffs between
2327	 * inter node defragmentation and node local allocations. A lower
2328	 * defrag_ratio increases the tendency to do local allocations
2329	 * instead of attempting to obtain partial slabs from other nodes.
2330	 *
2331	 * If the defrag_ratio is set to 0 then kmalloc() always
2332	 * returns node local objects. If the ratio is higher then kmalloc()
2333	 * may return off node objects because partial slabs are obtained
2334	 * from other nodes and filled up.
2335	 *
2336	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2337	 * (which makes defrag_ratio = 1000) then every (well almost)
2338	 * allocation will first attempt to defrag slab caches on other nodes.
2339	 * This means scanning over all nodes to look for partial slabs which
2340	 * may be expensive if we do it every time we are trying to find a slab
2341	 * with available objects.
2342	 */
2343	if (!s->remote_node_defrag_ratio ||
2344			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2345		return NULL;
2346
2347	do {
2348		cpuset_mems_cookie = read_mems_allowed_begin();
2349		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2350		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2351			struct kmem_cache_node *n;
2352
2353			n = get_node(s, zone_to_nid(zone));
2354
2355			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2356					n->nr_partial > s->min_partial) {
2357				object = get_partial_node(s, n, pc);
2358				if (object) {
2359					/*
2360					 * Don't check read_mems_allowed_retry()
2361					 * here - if mems_allowed was updated in
2362					 * parallel, that was a harmless race
2363					 * between allocation and the cpuset
2364					 * update
 
2365					 */
 
2366					return object;
2367				}
2368			}
2369		}
2370	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2371#endif	/* CONFIG_NUMA */
2372	return NULL;
2373}
2374
2375/*
2376 * Get a partial slab, lock it and return it.
2377 */
2378static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc)
 
2379{
2380	void *object;
2381	int searchnode = node;
2382
2383	if (node == NUMA_NO_NODE)
2384		searchnode = numa_mem_id();
2385
2386	object = get_partial_node(s, get_node(s, searchnode), pc);
2387	if (object || node != NUMA_NO_NODE)
2388		return object;
2389
2390	return get_any_partial(s, pc);
2391}
2392
2393#ifndef CONFIG_SLUB_TINY
2394
2395#ifdef CONFIG_PREEMPTION
2396/*
2397 * Calculate the next globally unique transaction for disambiguation
2398 * during cmpxchg. The transactions start with the cpu number and are then
2399 * incremented by CONFIG_NR_CPUS.
2400 */
2401#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2402#else
2403/*
2404 * No preemption supported therefore also no need to check for
2405 * different cpus.
2406 */
2407#define TID_STEP 1
2408#endif /* CONFIG_PREEMPTION */
2409
2410static inline unsigned long next_tid(unsigned long tid)
2411{
2412	return tid + TID_STEP;
2413}
2414
2415#ifdef SLUB_DEBUG_CMPXCHG
2416static inline unsigned int tid_to_cpu(unsigned long tid)
2417{
2418	return tid % TID_STEP;
2419}
2420
2421static inline unsigned long tid_to_event(unsigned long tid)
2422{
2423	return tid / TID_STEP;
2424}
2425#endif
2426
2427static inline unsigned int init_tid(int cpu)
2428{
2429	return cpu;
2430}
2431
2432static inline void note_cmpxchg_failure(const char *n,
2433		const struct kmem_cache *s, unsigned long tid)
2434{
2435#ifdef SLUB_DEBUG_CMPXCHG
2436	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2437
2438	pr_info("%s %s: cmpxchg redo ", n, s->name);
2439
2440#ifdef CONFIG_PREEMPTION
2441	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2442		pr_warn("due to cpu change %d -> %d\n",
2443			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2444	else
2445#endif
2446	if (tid_to_event(tid) != tid_to_event(actual_tid))
2447		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2448			tid_to_event(tid), tid_to_event(actual_tid));
2449	else
2450		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2451			actual_tid, tid, next_tid(tid));
2452#endif
2453	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2454}
2455
2456static void init_kmem_cache_cpus(struct kmem_cache *s)
2457{
2458	int cpu;
2459	struct kmem_cache_cpu *c;
2460
2461	for_each_possible_cpu(cpu) {
2462		c = per_cpu_ptr(s->cpu_slab, cpu);
2463		local_lock_init(&c->lock);
2464		c->tid = init_tid(cpu);
2465	}
2466}
2467
2468/*
2469 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2470 * unfreezes the slabs and puts it on the proper list.
2471 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2472 * by the caller.
2473 */
2474static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2475			    void *freelist)
2476{
2477	enum slab_modes { M_NONE, M_PARTIAL, M_FREE, M_FULL_NOLIST };
2478	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2479	int free_delta = 0;
2480	enum slab_modes mode = M_NONE;
2481	void *nextfree, *freelist_iter, *freelist_tail;
 
 
2482	int tail = DEACTIVATE_TO_HEAD;
2483	unsigned long flags = 0;
2484	struct slab new;
2485	struct slab old;
2486
2487	if (slab->freelist) {
2488		stat(s, DEACTIVATE_REMOTE_FREES);
2489		tail = DEACTIVATE_TO_TAIL;
2490	}
2491
 
 
 
 
 
2492	/*
2493	 * Stage one: Count the objects on cpu's freelist as free_delta and
2494	 * remember the last object in freelist_tail for later splicing.
 
 
 
 
2495	 */
2496	freelist_tail = NULL;
2497	freelist_iter = freelist;
2498	while (freelist_iter) {
2499		nextfree = get_freepointer(s, freelist_iter);
2500
2501		/*
2502		 * If 'nextfree' is invalid, it is possible that the object at
2503		 * 'freelist_iter' is already corrupted.  So isolate all objects
2504		 * starting at 'freelist_iter' by skipping them.
2505		 */
2506		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2507			break;
2508
2509		freelist_tail = freelist_iter;
2510		free_delta++;
 
 
2511
2512		freelist_iter = nextfree;
2513	}
2514
2515	/*
2516	 * Stage two: Unfreeze the slab while splicing the per-cpu
2517	 * freelist to the head of slab's freelist.
 
2518	 *
2519	 * Ensure that the slab is unfrozen while the list presence
2520	 * reflects the actual number of objects during unfreeze.
 
2521	 *
2522	 * We first perform cmpxchg holding lock and insert to list
2523	 * when it succeed. If there is mismatch then the slab is not
2524	 * unfrozen and number of objects in the slab may have changed.
2525	 * Then release lock and retry cmpxchg again.
2526	 */
2527redo:
2528
2529	old.freelist = READ_ONCE(slab->freelist);
2530	old.counters = READ_ONCE(slab->counters);
2531	VM_BUG_ON(!old.frozen);
2532
2533	/* Determine target state of the slab */
2534	new.counters = old.counters;
2535	if (freelist_tail) {
2536		new.inuse -= free_delta;
2537		set_freepointer(s, freelist_tail, old.freelist);
2538		new.freelist = freelist;
2539	} else
2540		new.freelist = old.freelist;
2541
2542	new.frozen = 0;
2543
2544	if (!new.inuse && n->nr_partial >= s->min_partial) {
2545		mode = M_FREE;
2546	} else if (new.freelist) {
2547		mode = M_PARTIAL;
2548		/*
2549		 * Taking the spinlock removes the possibility that
2550		 * acquire_slab() will see a slab that is frozen
2551		 */
2552		spin_lock_irqsave(&n->list_lock, flags);
 
 
 
 
2553	} else {
2554		mode = M_FULL_NOLIST;
 
 
 
 
 
 
 
 
 
2555	}
2556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2557
2558	if (!cmpxchg_double_slab(s, slab,
 
 
 
 
2559				old.freelist, old.counters,
2560				new.freelist, new.counters,
2561				"unfreezing slab")) {
2562		if (mode == M_PARTIAL)
2563			spin_unlock_irqrestore(&n->list_lock, flags);
2564		goto redo;
2565	}
2566
 
 
2567
2568	if (mode == M_PARTIAL) {
2569		add_partial(n, slab, tail);
2570		spin_unlock_irqrestore(&n->list_lock, flags);
2571		stat(s, tail);
2572	} else if (mode == M_FREE) {
2573		stat(s, DEACTIVATE_EMPTY);
2574		discard_slab(s, slab);
2575		stat(s, FREE_SLAB);
2576	} else if (mode == M_FULL_NOLIST) {
2577		stat(s, DEACTIVATE_FULL);
2578	}
2579}
2580
2581#ifdef CONFIG_SLUB_CPU_PARTIAL
2582static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
2583{
2584	struct kmem_cache_node *n = NULL, *n2 = NULL;
2585	struct slab *slab, *slab_to_discard = NULL;
2586	unsigned long flags = 0;
2587
2588	while (partial_slab) {
2589		struct slab new;
2590		struct slab old;
2591
2592		slab = partial_slab;
2593		partial_slab = slab->next;
2594
2595		n2 = get_node(s, slab_nid(slab));
2596		if (n != n2) {
2597			if (n)
2598				spin_unlock_irqrestore(&n->list_lock, flags);
 
2599
2600			n = n2;
2601			spin_lock_irqsave(&n->list_lock, flags);
2602		}
2603
2604		do {
2605
2606			old.freelist = slab->freelist;
2607			old.counters = slab->counters;
2608			VM_BUG_ON(!old.frozen);
2609
2610			new.counters = old.counters;
2611			new.freelist = old.freelist;
2612
2613			new.frozen = 0;
2614
2615		} while (!__cmpxchg_double_slab(s, slab,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2616				old.freelist, old.counters,
2617				new.freelist, new.counters,
2618				"unfreezing slab"));
2619
2620		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2621			slab->next = slab_to_discard;
2622			slab_to_discard = slab;
2623		} else {
2624			add_partial(n, slab, DEACTIVATE_TO_TAIL);
2625			stat(s, FREE_ADD_PARTIAL);
2626		}
2627	}
2628
2629	if (n)
2630		spin_unlock_irqrestore(&n->list_lock, flags);
2631
2632	while (slab_to_discard) {
2633		slab = slab_to_discard;
2634		slab_to_discard = slab_to_discard->next;
2635
2636		stat(s, DEACTIVATE_EMPTY);
2637		discard_slab(s, slab);
2638		stat(s, FREE_SLAB);
2639	}
2640}
2641
2642/*
2643 * Unfreeze all the cpu partial slabs.
2644 */
2645static void unfreeze_partials(struct kmem_cache *s)
2646{
2647	struct slab *partial_slab;
2648	unsigned long flags;
2649
2650	local_lock_irqsave(&s->cpu_slab->lock, flags);
2651	partial_slab = this_cpu_read(s->cpu_slab->partial);
2652	this_cpu_write(s->cpu_slab->partial, NULL);
2653	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2654
2655	if (partial_slab)
2656		__unfreeze_partials(s, partial_slab);
2657}
2658
2659static void unfreeze_partials_cpu(struct kmem_cache *s,
2660				  struct kmem_cache_cpu *c)
2661{
2662	struct slab *partial_slab;
2663
2664	partial_slab = slub_percpu_partial(c);
2665	c->partial = NULL;
2666
2667	if (partial_slab)
2668		__unfreeze_partials(s, partial_slab);
2669}
2670
2671/*
2672 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2673 * partial slab slot if available.
2674 *
2675 * If we did not find a slot then simply move all the partials to the
2676 * per node partial list.
2677 */
2678static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2679{
2680	struct slab *oldslab;
2681	struct slab *slab_to_unfreeze = NULL;
2682	unsigned long flags;
2683	int slabs = 0;
2684
2685	local_lock_irqsave(&s->cpu_slab->lock, flags);
2686
2687	oldslab = this_cpu_read(s->cpu_slab->partial);
2688
2689	if (oldslab) {
2690		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2691			/*
2692			 * Partial array is full. Move the existing set to the
2693			 * per node partial list. Postpone the actual unfreezing
2694			 * outside of the critical section.
2695			 */
2696			slab_to_unfreeze = oldslab;
2697			oldslab = NULL;
2698		} else {
2699			slabs = oldslab->slabs;
 
 
 
 
 
 
 
 
 
 
2700		}
2701	}
2702
2703	slabs++;
2704
2705	slab->slabs = slabs;
2706	slab->next = oldslab;
2707
2708	this_cpu_write(s->cpu_slab->partial, slab);
 
 
2709
2710	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2711
2712	if (slab_to_unfreeze) {
2713		__unfreeze_partials(s, slab_to_unfreeze);
2714		stat(s, CPU_PARTIAL_DRAIN);
2715	}
2716}
2717
2718#else	/* CONFIG_SLUB_CPU_PARTIAL */
2719
2720static inline void unfreeze_partials(struct kmem_cache *s) { }
2721static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2722				  struct kmem_cache_cpu *c) { }
2723
2724#endif	/* CONFIG_SLUB_CPU_PARTIAL */
2725
2726static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2727{
2728	unsigned long flags;
2729	struct slab *slab;
2730	void *freelist;
2731
2732	local_lock_irqsave(&s->cpu_slab->lock, flags);
2733
2734	slab = c->slab;
2735	freelist = c->freelist;
2736
2737	c->slab = NULL;
2738	c->freelist = NULL;
2739	c->tid = next_tid(c->tid);
2740
2741	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2742
2743	if (slab) {
2744		deactivate_slab(s, slab, freelist);
2745		stat(s, CPUSLAB_FLUSH);
2746	}
2747}
2748
2749static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2750{
2751	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2752	void *freelist = c->freelist;
2753	struct slab *slab = c->slab;
2754
2755	c->slab = NULL;
2756	c->freelist = NULL;
2757	c->tid = next_tid(c->tid);
2758
2759	if (slab) {
2760		deactivate_slab(s, slab, freelist);
2761		stat(s, CPUSLAB_FLUSH);
2762	}
2763
2764	unfreeze_partials_cpu(s, c);
2765}
2766
2767struct slub_flush_work {
2768	struct work_struct work;
2769	struct kmem_cache *s;
2770	bool skip;
2771};
2772
2773/*
2774 * Flush cpu slab.
2775 *
2776 * Called from CPU work handler with migration disabled.
2777 */
2778static void flush_cpu_slab(struct work_struct *w)
2779{
2780	struct kmem_cache *s;
2781	struct kmem_cache_cpu *c;
2782	struct slub_flush_work *sfw;
2783
2784	sfw = container_of(w, struct slub_flush_work, work);
2785
2786	s = sfw->s;
2787	c = this_cpu_ptr(s->cpu_slab);
2788
2789	if (c->slab)
2790		flush_slab(s, c);
 
2791
2792	unfreeze_partials(s);
 
2793}
2794
2795static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2796{
2797	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2798
2799	return c->slab || slub_percpu_partial(c);
2800}
2801
2802static DEFINE_MUTEX(flush_lock);
2803static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2804
2805static void flush_all_cpus_locked(struct kmem_cache *s)
2806{
2807	struct slub_flush_work *sfw;
2808	unsigned int cpu;
2809
2810	lockdep_assert_cpus_held();
2811	mutex_lock(&flush_lock);
2812
2813	for_each_online_cpu(cpu) {
2814		sfw = &per_cpu(slub_flush, cpu);
2815		if (!has_cpu_slab(cpu, s)) {
2816			sfw->skip = true;
2817			continue;
2818		}
2819		INIT_WORK(&sfw->work, flush_cpu_slab);
2820		sfw->skip = false;
2821		sfw->s = s;
2822		queue_work_on(cpu, flushwq, &sfw->work);
2823	}
2824
2825	for_each_online_cpu(cpu) {
2826		sfw = &per_cpu(slub_flush, cpu);
2827		if (sfw->skip)
2828			continue;
2829		flush_work(&sfw->work);
2830	}
2831
2832	mutex_unlock(&flush_lock);
2833}
2834
2835static void flush_all(struct kmem_cache *s)
2836{
2837	cpus_read_lock();
2838	flush_all_cpus_locked(s);
2839	cpus_read_unlock();
2840}
2841
2842/*
2843 * Use the cpu notifier to insure that the cpu slabs are flushed when
2844 * necessary.
2845 */
2846static int slub_cpu_dead(unsigned int cpu)
2847{
2848	struct kmem_cache *s;
2849
2850	mutex_lock(&slab_mutex);
2851	list_for_each_entry(s, &slab_caches, list)
2852		__flush_cpu_slab(s, cpu);
2853	mutex_unlock(&slab_mutex);
2854	return 0;
2855}
2856
2857#else /* CONFIG_SLUB_TINY */
2858static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
2859static inline void flush_all(struct kmem_cache *s) { }
2860static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
2861static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
2862#endif /* CONFIG_SLUB_TINY */
2863
2864/*
2865 * Check if the objects in a per cpu structure fit numa
2866 * locality expectations.
2867 */
2868static inline int node_match(struct slab *slab, int node)
2869{
2870#ifdef CONFIG_NUMA
2871	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
2872		return 0;
2873#endif
2874	return 1;
2875}
2876
2877#ifdef CONFIG_SLUB_DEBUG
2878static int count_free(struct slab *slab)
2879{
2880	return slab->objects - slab->inuse;
2881}
2882
2883static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2884{
2885	return atomic_long_read(&n->total_objects);
2886}
2887
2888/* Supports checking bulk free of a constructed freelist */
2889static inline bool free_debug_processing(struct kmem_cache *s,
2890	struct slab *slab, void *head, void *tail, int *bulk_cnt,
2891	unsigned long addr, depot_stack_handle_t handle)
2892{
2893	bool checks_ok = false;
2894	void *object = head;
2895	int cnt = 0;
2896
2897	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2898		if (!check_slab(s, slab))
2899			goto out;
2900	}
2901
2902	if (slab->inuse < *bulk_cnt) {
2903		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
2904			 slab->inuse, *bulk_cnt);
2905		goto out;
2906	}
2907
2908next_object:
2909
2910	if (++cnt > *bulk_cnt)
2911		goto out_cnt;
2912
2913	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2914		if (!free_consistency_checks(s, slab, object, addr))
2915			goto out;
2916	}
2917
2918	if (s->flags & SLAB_STORE_USER)
2919		set_track_update(s, object, TRACK_FREE, addr, handle);
2920	trace(s, slab, object, 0);
2921	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
2922	init_object(s, object, SLUB_RED_INACTIVE);
2923
2924	/* Reached end of constructed freelist yet? */
2925	if (object != tail) {
2926		object = get_freepointer(s, object);
2927		goto next_object;
2928	}
2929	checks_ok = true;
2930
2931out_cnt:
2932	if (cnt != *bulk_cnt) {
2933		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
2934			 *bulk_cnt, cnt);
2935		*bulk_cnt = cnt;
2936	}
2937
2938out:
2939
2940	if (!checks_ok)
2941		slab_fix(s, "Object at 0x%p not freed", object);
2942
2943	return checks_ok;
2944}
2945#endif /* CONFIG_SLUB_DEBUG */
2946
2947#if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
2948static unsigned long count_partial(struct kmem_cache_node *n,
2949					int (*get_count)(struct slab *))
2950{
2951	unsigned long flags;
2952	unsigned long x = 0;
2953	struct slab *slab;
2954
2955	spin_lock_irqsave(&n->list_lock, flags);
2956	list_for_each_entry(slab, &n->partial, slab_list)
2957		x += get_count(slab);
2958	spin_unlock_irqrestore(&n->list_lock, flags);
2959	return x;
2960}
2961#endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
2962
 
 
2963#ifdef CONFIG_SLUB_DEBUG
 
 
 
 
 
 
2964static noinline void
2965slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2966{
2967	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2968				      DEFAULT_RATELIMIT_BURST);
2969	int node;
2970	struct kmem_cache_node *n;
2971
2972	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2973		return;
2974
2975	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2976		nid, gfpflags, &gfpflags);
2977	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2978		s->name, s->object_size, s->size, oo_order(s->oo),
2979		oo_order(s->min));
2980
2981	if (oo_order(s->min) > get_order(s->object_size))
2982		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2983			s->name);
 
2984
2985	for_each_kmem_cache_node(s, node, n) {
 
2986		unsigned long nr_slabs;
2987		unsigned long nr_objs;
2988		unsigned long nr_free;
2989
 
 
 
2990		nr_free  = count_partial(n, count_free);
2991		nr_slabs = node_nr_slabs(n);
2992		nr_objs  = node_nr_objs(n);
2993
2994		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
 
2995			node, nr_slabs, nr_objs, nr_free);
2996	}
2997}
2998#else /* CONFIG_SLUB_DEBUG */
2999static inline void
3000slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3001#endif
3002
3003static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
 
3004{
3005	if (unlikely(slab_test_pfmemalloc(slab)))
3006		return gfp_pfmemalloc_allowed(gfpflags);
 
 
 
 
 
 
3007
3008	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3009}
3010
3011#ifndef CONFIG_SLUB_TINY
3012/*
3013 * Check the slab->freelist and either transfer the freelist to the
3014 * per cpu freelist or deactivate the slab.
3015 *
3016 * The slab is still frozen if the return value is not NULL.
3017 *
3018 * If this function returns NULL then the slab has been unfrozen.
3019 */
3020static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3021{
3022	struct slab new;
3023	unsigned long counters;
3024	void *freelist;
3025
3026	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3027
3028	do {
3029		freelist = slab->freelist;
3030		counters = slab->counters;
3031
3032		new.counters = counters;
3033		VM_BUG_ON(!new.frozen);
3034
3035		new.inuse = slab->objects;
3036		new.frozen = freelist != NULL;
3037
3038	} while (!__cmpxchg_double_slab(s, slab,
3039		freelist, counters,
3040		NULL, new.counters,
3041		"get_freelist"));
3042
3043	return freelist;
3044}
3045
3046/*
3047 * Slow path. The lockless freelist is empty or we need to perform
3048 * debugging duties.
3049 *
3050 * Processing is still very fast if new objects have been freed to the
3051 * regular freelist. In that case we simply take over the regular freelist
3052 * as the lockless freelist and zap the regular freelist.
3053 *
3054 * If that is not working then we fall back to the partial lists. We take the
3055 * first element of the freelist as the object to allocate now and move the
3056 * rest of the freelist to the lockless freelist.
3057 *
3058 * And if we were unable to get a new slab from the partial slab lists then
3059 * we need to allocate a new slab. This is the slowest path since it involves
3060 * a call to the page allocator and the setup of a new slab.
3061 *
3062 * Version of __slab_alloc to use when we know that preemption is
3063 * already disabled (which is the case for bulk allocation).
3064 */
3065static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3066			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3067{
3068	void *freelist;
3069	struct slab *slab;
3070	unsigned long flags;
3071	struct partial_context pc;
3072
3073	stat(s, ALLOC_SLOWPATH);
3074
3075reread_slab:
 
 
 
 
 
 
 
 
3076
3077	slab = READ_ONCE(c->slab);
3078	if (!slab) {
3079		/*
3080		 * if the node is not online or has no normal memory, just
3081		 * ignore the node constraint
3082		 */
3083		if (unlikely(node != NUMA_NO_NODE &&
3084			     !node_isset(node, slab_nodes)))
3085			node = NUMA_NO_NODE;
3086		goto new_slab;
3087	}
3088redo:
3089
3090	if (unlikely(!node_match(slab, node))) {
3091		/*
3092		 * same as above but node_match() being false already
3093		 * implies node != NUMA_NO_NODE
3094		 */
3095		if (!node_isset(node, slab_nodes)) {
3096			node = NUMA_NO_NODE;
3097		} else {
3098			stat(s, ALLOC_NODE_MISMATCH);
3099			goto deactivate_slab;
3100		}
3101	}
3102
3103	/*
3104	 * By rights, we should be searching for a slab page that was
3105	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3106	 * information when the page leaves the per-cpu allocator
3107	 */
3108	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3109		goto deactivate_slab;
3110
3111	/* must check again c->slab in case we got preempted and it changed */
3112	local_lock_irqsave(&s->cpu_slab->lock, flags);
3113	if (unlikely(slab != c->slab)) {
3114		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3115		goto reread_slab;
3116	}
3117	freelist = c->freelist;
3118	if (freelist)
3119		goto load_freelist;
3120
3121	freelist = get_freelist(s, slab);
 
 
3122
3123	if (!freelist) {
3124		c->slab = NULL;
3125		c->tid = next_tid(c->tid);
3126		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3127		stat(s, DEACTIVATE_BYPASS);
3128		goto new_slab;
3129	}
3130
3131	stat(s, ALLOC_REFILL);
3132
3133load_freelist:
3134
3135	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3136
3137	/*
3138	 * freelist is pointing to the list of objects to be used.
3139	 * slab is pointing to the slab from which the objects are obtained.
3140	 * That slab must be frozen for per cpu allocations to work.
3141	 */
3142	VM_BUG_ON(!c->slab->frozen);
3143	c->freelist = get_freepointer(s, freelist);
3144	c->tid = next_tid(c->tid);
3145	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3146	return freelist;
3147
3148deactivate_slab:
3149
3150	local_lock_irqsave(&s->cpu_slab->lock, flags);
3151	if (slab != c->slab) {
3152		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3153		goto reread_slab;
3154	}
3155	freelist = c->freelist;
3156	c->slab = NULL;
3157	c->freelist = NULL;
3158	c->tid = next_tid(c->tid);
3159	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3160	deactivate_slab(s, slab, freelist);
3161
3162new_slab:
3163
3164	if (slub_percpu_partial(c)) {
3165		local_lock_irqsave(&s->cpu_slab->lock, flags);
3166		if (unlikely(c->slab)) {
3167			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3168			goto reread_slab;
3169		}
3170		if (unlikely(!slub_percpu_partial(c))) {
3171			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3172			/* we were preempted and partial list got empty */
3173			goto new_objects;
3174		}
3175
3176		slab = c->slab = slub_percpu_partial(c);
3177		slub_set_percpu_partial(c, slab);
3178		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3179		stat(s, CPU_PARTIAL_ALLOC);
 
3180		goto redo;
3181	}
3182
3183new_objects:
 
3184
3185	pc.flags = gfpflags;
3186	pc.slab = &slab;
3187	pc.orig_size = orig_size;
3188	freelist = get_partial(s, node, &pc);
3189	if (freelist)
3190		goto check_new_slab;
3191
3192	slub_put_cpu_ptr(s->cpu_slab);
3193	slab = new_slab(s, gfpflags, node);
3194	c = slub_get_cpu_ptr(s->cpu_slab);
3195
3196	if (unlikely(!slab)) {
3197		slab_out_of_memory(s, gfpflags, node);
3198		return NULL;
3199	}
3200
3201	stat(s, ALLOC_SLAB);
3202
3203	if (kmem_cache_debug(s)) {
3204		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3205
3206		if (unlikely(!freelist))
3207			goto new_objects;
3208
3209		if (s->flags & SLAB_STORE_USER)
3210			set_track(s, freelist, TRACK_ALLOC, addr);
3211
3212		return freelist;
3213	}
3214
3215	/*
3216	 * No other reference to the slab yet so we can
3217	 * muck around with it freely without cmpxchg
3218	 */
3219	freelist = slab->freelist;
3220	slab->freelist = NULL;
3221	slab->inuse = slab->objects;
3222	slab->frozen = 1;
3223
3224	inc_slabs_node(s, slab_nid(slab), slab->objects);
3225
3226check_new_slab:
3227
3228	if (kmem_cache_debug(s)) {
3229		/*
3230		 * For debug caches here we had to go through
3231		 * alloc_single_from_partial() so just store the tracking info
3232		 * and return the object
3233		 */
3234		if (s->flags & SLAB_STORE_USER)
3235			set_track(s, freelist, TRACK_ALLOC, addr);
3236
3237		return freelist;
3238	}
3239
3240	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3241		/*
3242		 * For !pfmemalloc_match() case we don't load freelist so that
3243		 * we don't make further mismatched allocations easier.
3244		 */
3245		deactivate_slab(s, slab, get_freepointer(s, freelist));
3246		return freelist;
3247	}
3248
3249retry_load_slab:
3250
3251	local_lock_irqsave(&s->cpu_slab->lock, flags);
3252	if (unlikely(c->slab)) {
3253		void *flush_freelist = c->freelist;
3254		struct slab *flush_slab = c->slab;
3255
3256		c->slab = NULL;
3257		c->freelist = NULL;
3258		c->tid = next_tid(c->tid);
3259
3260		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3261
3262		deactivate_slab(s, flush_slab, flush_freelist);
3263
3264		stat(s, CPUSLAB_FLUSH);
3265
3266		goto retry_load_slab;
3267	}
3268	c->slab = slab;
3269
3270	goto load_freelist;
 
 
 
 
 
 
 
 
3271}
3272
3273/*
3274 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3275 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3276 * pointer.
 
 
 
 
 
3277 */
3278static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3279			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3280{
3281	void *p;
3282
3283#ifdef CONFIG_PREEMPT_COUNT
3284	/*
3285	 * We may have been preempted and rescheduled on a different
3286	 * cpu before disabling preemption. Need to reload cpu area
3287	 * pointer.
3288	 */
3289	c = slub_get_cpu_ptr(s->cpu_slab);
3290#endif
3291
3292	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3293#ifdef CONFIG_PREEMPT_COUNT
3294	slub_put_cpu_ptr(s->cpu_slab);
3295#endif
3296	return p;
3297}
3298
3299static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3300		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3301{
 
3302	struct kmem_cache_cpu *c;
3303	struct slab *slab;
3304	unsigned long tid;
3305	void *object;
 
 
3306
3307redo:
 
3308	/*
3309	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3310	 * enabled. We may switch back and forth between cpus while
3311	 * reading from one cpu area. That does not matter as long
3312	 * as we end up on the original cpu again when doing the cmpxchg.
3313	 *
3314	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3315	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3316	 * the tid. If we are preempted and switched to another cpu between the
3317	 * two reads, it's OK as the two are still associated with the same cpu
3318	 * and cmpxchg later will validate the cpu.
3319	 */
3320	c = raw_cpu_ptr(s->cpu_slab);
3321	tid = READ_ONCE(c->tid);
3322
3323	/*
3324	 * Irqless object alloc/free algorithm used here depends on sequence
3325	 * of fetching cpu_slab's data. tid should be fetched before anything
3326	 * on c to guarantee that object and slab associated with previous tid
3327	 * won't be used with current tid. If we fetch tid first, object and
3328	 * slab could be one associated with next tid and our alloc/free
3329	 * request will be failed. In this case, we will retry. So, no problem.
3330	 */
3331	barrier();
3332
3333	/*
3334	 * The transaction ids are globally unique per cpu and per operation on
3335	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3336	 * occurs on the right processor and that there was no operation on the
3337	 * linked list in between.
3338	 */
 
 
3339
3340	object = c->freelist;
3341	slab = c->slab;
3342
3343	if (!USE_LOCKLESS_FAST_PATH() ||
3344	    unlikely(!object || !slab || !node_match(slab, node))) {
3345		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3346	} else {
3347		void *next_object = get_freepointer_safe(s, object);
3348
3349		/*
3350		 * The cmpxchg will only match if there was no additional
3351		 * operation and if we are on the right processor.
3352		 *
3353		 * The cmpxchg does the following atomically (without lock
3354		 * semantics!)
3355		 * 1. Relocate first pointer to the current per cpu area.
3356		 * 2. Verify that tid and freelist have not been changed
3357		 * 3. If they were not changed replace tid and freelist
3358		 *
3359		 * Since this is without lock semantics the protection is only
3360		 * against code executing on this cpu *not* from access by
3361		 * other cpus.
3362		 */
3363		if (unlikely(!this_cpu_cmpxchg_double(
3364				s->cpu_slab->freelist, s->cpu_slab->tid,
3365				object, tid,
3366				next_object, next_tid(tid)))) {
3367
3368			note_cmpxchg_failure("slab_alloc", s, tid);
3369			goto redo;
3370		}
3371		prefetch_freepointer(s, next_object);
3372		stat(s, ALLOC_FASTPATH);
3373	}
3374
3375	return object;
3376}
3377#else /* CONFIG_SLUB_TINY */
3378static void *__slab_alloc_node(struct kmem_cache *s,
3379		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3380{
3381	struct partial_context pc;
3382	struct slab *slab;
3383	void *object;
3384
3385	pc.flags = gfpflags;
3386	pc.slab = &slab;
3387	pc.orig_size = orig_size;
3388	object = get_partial(s, node, &pc);
3389
3390	if (object)
3391		return object;
3392
3393	slab = new_slab(s, gfpflags, node);
3394	if (unlikely(!slab)) {
3395		slab_out_of_memory(s, gfpflags, node);
3396		return NULL;
3397	}
3398
3399	object = alloc_single_from_new_slab(s, slab, orig_size);
3400
3401	return object;
3402}
3403#endif /* CONFIG_SLUB_TINY */
3404
3405/*
3406 * If the object has been wiped upon free, make sure it's fully initialized by
3407 * zeroing out freelist pointer.
3408 */
3409static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3410						   void *obj)
3411{
3412	if (unlikely(slab_want_init_on_free(s)) && obj)
3413		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3414			0, sizeof(void *));
3415}
3416
3417/*
3418 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3419 * have the fastpath folded into their functions. So no function call
3420 * overhead for requests that can be satisfied on the fastpath.
3421 *
3422 * The fastpath works by first checking if the lockless freelist can be used.
3423 * If not then __slab_alloc is called for slow processing.
3424 *
3425 * Otherwise we can simply pick the next object from the lockless free list.
3426 */
3427static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3428		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3429{
3430	void *object;
3431	struct obj_cgroup *objcg = NULL;
3432	bool init = false;
3433
3434	s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3435	if (!s)
3436		return NULL;
3437
3438	object = kfence_alloc(s, orig_size, gfpflags);
3439	if (unlikely(object))
3440		goto out;
3441
3442	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3443
3444	maybe_wipe_obj_freeptr(s, object);
3445	init = slab_want_init_on_alloc(gfpflags, s);
3446
3447out:
3448	/*
3449	 * When init equals 'true', like for kzalloc() family, only
3450	 * @orig_size bytes might be zeroed instead of s->object_size
3451	 */
3452	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
3453
3454	return object;
3455}
3456
3457static __fastpath_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
3458		gfp_t gfpflags, unsigned long addr, size_t orig_size)
3459{
3460	return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
3461}
3462
3463static __fastpath_inline
3464void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3465			     gfp_t gfpflags)
3466{
3467	void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
3468
3469	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3470
3471	return ret;
3472}
3473
3474void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3475{
3476	return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3477}
3478EXPORT_SYMBOL(kmem_cache_alloc);
3479
3480void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3481			   gfp_t gfpflags)
3482{
3483	return __kmem_cache_alloc_lru(s, lru, gfpflags);
 
 
3484}
3485EXPORT_SYMBOL(kmem_cache_alloc_lru);
3486
3487void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
3488			      int node, size_t orig_size,
3489			      unsigned long caller)
3490{
3491	return slab_alloc_node(s, NULL, gfpflags, node,
3492			       caller, orig_size);
 
3493}
 
 
3494
 
3495void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3496{
3497	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3498
3499	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
 
3500
3501	return ret;
3502}
3503EXPORT_SYMBOL(kmem_cache_alloc_node);
3504
3505static noinline void free_to_partial_list(
3506	struct kmem_cache *s, struct slab *slab,
3507	void *head, void *tail, int bulk_cnt,
3508	unsigned long addr)
3509{
3510	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3511	struct slab *slab_free = NULL;
3512	int cnt = bulk_cnt;
3513	unsigned long flags;
3514	depot_stack_handle_t handle = 0;
3515
3516	if (s->flags & SLAB_STORE_USER)
3517		handle = set_track_prepare();
3518
3519	spin_lock_irqsave(&n->list_lock, flags);
3520
3521	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
3522		void *prior = slab->freelist;
3523
3524		/* Perform the actual freeing while we still hold the locks */
3525		slab->inuse -= cnt;
3526		set_freepointer(s, tail, prior);
3527		slab->freelist = head;
3528
3529		/*
3530		 * If the slab is empty, and node's partial list is full,
3531		 * it should be discarded anyway no matter it's on full or
3532		 * partial list.
3533		 */
3534		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
3535			slab_free = slab;
3536
3537		if (!prior) {
3538			/* was on full list */
3539			remove_full(s, n, slab);
3540			if (!slab_free) {
3541				add_partial(n, slab, DEACTIVATE_TO_TAIL);
3542				stat(s, FREE_ADD_PARTIAL);
3543			}
3544		} else if (slab_free) {
3545			remove_partial(n, slab);
3546			stat(s, FREE_REMOVE_PARTIAL);
3547		}
3548	}
3549
3550	if (slab_free) {
3551		/*
3552		 * Update the counters while still holding n->list_lock to
3553		 * prevent spurious validation warnings
3554		 */
3555		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
3556	}
3557
3558	spin_unlock_irqrestore(&n->list_lock, flags);
3559
3560	if (slab_free) {
3561		stat(s, FREE_SLAB);
3562		free_slab(s, slab_free);
3563	}
3564}
 
 
 
3565
3566/*
3567 * Slow path handling. This may still be called frequently since objects
3568 * have a longer lifetime than the cpu slabs in most processing loads.
3569 *
3570 * So we still attempt to reduce cache line usage. Just take the slab
3571 * lock and free the item. If there is no additional partial slab
3572 * handling required then we can return immediately.
3573 */
3574static void __slab_free(struct kmem_cache *s, struct slab *slab,
3575			void *head, void *tail, int cnt,
3576			unsigned long addr)
3577
3578{
3579	void *prior;
 
3580	int was_frozen;
3581	struct slab new;
 
3582	unsigned long counters;
3583	struct kmem_cache_node *n = NULL;
3584	unsigned long flags;
3585
3586	stat(s, FREE_SLOWPATH);
3587
3588	if (kfence_free(head))
3589		return;
3590
3591	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
3592		free_to_partial_list(s, slab, head, tail, cnt, addr);
3593		return;
3594	}
3595
3596	do {
3597		if (unlikely(n)) {
3598			spin_unlock_irqrestore(&n->list_lock, flags);
3599			n = NULL;
3600		}
3601		prior = slab->freelist;
3602		counters = slab->counters;
3603		set_freepointer(s, tail, prior);
3604		new.counters = counters;
3605		was_frozen = new.frozen;
3606		new.inuse -= cnt;
3607		if ((!new.inuse || !prior) && !was_frozen) {
3608
3609			if (kmem_cache_has_cpu_partial(s) && !prior) {
3610
3611				/*
3612				 * Slab was on no list before and will be
3613				 * partially empty
3614				 * We can defer the list move and instead
3615				 * freeze it.
3616				 */
3617				new.frozen = 1;
3618
3619			} else { /* Needs to be taken off a list */
3620
3621				n = get_node(s, slab_nid(slab));
3622				/*
3623				 * Speculatively acquire the list_lock.
3624				 * If the cmpxchg does not succeed then we may
3625				 * drop the list_lock without any processing.
3626				 *
3627				 * Otherwise the list_lock will synchronize with
3628				 * other processors updating the list of slabs.
3629				 */
3630				spin_lock_irqsave(&n->list_lock, flags);
3631
3632			}
3633		}
 
3634
3635	} while (!cmpxchg_double_slab(s, slab,
3636		prior, counters,
3637		head, new.counters,
3638		"__slab_free"));
3639
3640	if (likely(!n)) {
3641
3642		if (likely(was_frozen)) {
3643			/*
3644			 * The list lock was not taken therefore no list
3645			 * activity can be necessary.
3646			 */
3647			stat(s, FREE_FROZEN);
3648		} else if (new.frozen) {
3649			/*
3650			 * If we just froze the slab then put it onto the
3651			 * per cpu partial list.
3652			 */
3653			put_cpu_partial(s, slab, 1);
3654			stat(s, CPU_PARTIAL_FREE);
3655		}
3656
3657		return;
3658	}
3659
3660	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3661		goto slab_empty;
 
 
3662
3663	/*
3664	 * Objects left in the slab. If it was not on the partial list before
3665	 * then add it.
3666	 */
3667	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3668		remove_full(s, n, slab);
3669		add_partial(n, slab, DEACTIVATE_TO_TAIL);
3670		stat(s, FREE_ADD_PARTIAL);
 
 
 
 
 
 
 
 
 
 
 
3671	}
3672	spin_unlock_irqrestore(&n->list_lock, flags);
3673	return;
3674
3675slab_empty:
3676	if (prior) {
3677		/*
3678		 * Slab on the partial list.
3679		 */
3680		remove_partial(n, slab);
3681		stat(s, FREE_REMOVE_PARTIAL);
3682	} else {
3683		/* Slab must be on the full list */
3684		remove_full(s, n, slab);
3685	}
3686
3687	spin_unlock_irqrestore(&n->list_lock, flags);
3688	stat(s, FREE_SLAB);
3689	discard_slab(s, slab);
3690}
3691
3692#ifndef CONFIG_SLUB_TINY
3693/*
3694 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3695 * can perform fastpath freeing without additional function calls.
3696 *
3697 * The fastpath is only possible if we are freeing to the current cpu slab
3698 * of this processor. This typically the case if we have just allocated
3699 * the item before.
3700 *
3701 * If fastpath is not possible then fall back to __slab_free where we deal
3702 * with all sorts of special processing.
3703 *
3704 * Bulk free of a freelist with several objects (all pointing to the
3705 * same slab) possible by specifying head and tail ptr, plus objects
3706 * count (cnt). Bulk free indicated by tail pointer being set.
3707 */
3708static __always_inline void do_slab_free(struct kmem_cache *s,
3709				struct slab *slab, void *head, void *tail,
3710				int cnt, unsigned long addr)
3711{
3712	void *tail_obj = tail ? : head;
3713	struct kmem_cache_cpu *c;
3714	unsigned long tid;
3715	void **freelist;
 
3716
3717redo:
3718	/*
3719	 * Determine the currently cpus per cpu slab.
3720	 * The cpu may change afterward. However that does not matter since
3721	 * data is retrieved via this pointer. If we are on the same cpu
3722	 * during the cmpxchg then the free will succeed.
3723	 */
3724	c = raw_cpu_ptr(s->cpu_slab);
3725	tid = READ_ONCE(c->tid);
3726
3727	/* Same with comment on barrier() in slab_alloc_node() */
3728	barrier();
3729
3730	if (unlikely(slab != c->slab)) {
3731		__slab_free(s, slab, head, tail_obj, cnt, addr);
3732		return;
3733	}
3734
3735	if (USE_LOCKLESS_FAST_PATH()) {
3736		freelist = READ_ONCE(c->freelist);
3737
3738		set_freepointer(s, tail_obj, freelist);
3739
3740		if (unlikely(!this_cpu_cmpxchg_double(
3741				s->cpu_slab->freelist, s->cpu_slab->tid,
3742				freelist, tid,
3743				head, next_tid(tid)))) {
3744
3745			note_cmpxchg_failure("slab_free", s, tid);
3746			goto redo;
3747		}
3748	} else {
3749		/* Update the free list under the local lock */
3750		local_lock(&s->cpu_slab->lock);
3751		c = this_cpu_ptr(s->cpu_slab);
3752		if (unlikely(slab != c->slab)) {
3753			local_unlock(&s->cpu_slab->lock);
3754			goto redo;
3755		}
3756		tid = c->tid;
3757		freelist = c->freelist;
3758
3759		set_freepointer(s, tail_obj, freelist);
3760		c->freelist = head;
3761		c->tid = next_tid(tid);
3762
3763		local_unlock(&s->cpu_slab->lock);
3764	}
3765	stat(s, FREE_FASTPATH);
3766}
3767#else /* CONFIG_SLUB_TINY */
3768static void do_slab_free(struct kmem_cache *s,
3769				struct slab *slab, void *head, void *tail,
3770				int cnt, unsigned long addr)
3771{
3772	void *tail_obj = tail ? : head;
3773
3774	__slab_free(s, slab, head, tail_obj, cnt, addr);
3775}
3776#endif /* CONFIG_SLUB_TINY */
3777
3778static __fastpath_inline void slab_free(struct kmem_cache *s, struct slab *slab,
3779				      void *head, void *tail, void **p, int cnt,
3780				      unsigned long addr)
3781{
3782	memcg_slab_free_hook(s, slab, p, cnt);
3783	/*
3784	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3785	 * to remove objects, whose reuse must be delayed.
3786	 */
3787	if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3788		do_slab_free(s, slab, head, tail, cnt, addr);
3789}
3790
3791#ifdef CONFIG_KASAN_GENERIC
3792void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3793{
3794	do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
3795}
3796#endif
3797
3798void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller)
3799{
3800	slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller);
3801}
3802
3803void kmem_cache_free(struct kmem_cache *s, void *x)
3804{
3805	s = cache_from_obj(s, x);
3806	if (!s)
3807		return;
3808	trace_kmem_cache_free(_RET_IP_, x, s);
3809	slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
3810}
3811EXPORT_SYMBOL(kmem_cache_free);
3812
3813struct detached_freelist {
3814	struct slab *slab;
3815	void *tail;
3816	void *freelist;
3817	int cnt;
3818	struct kmem_cache *s;
3819};
3820
3821/*
3822 * This function progressively scans the array with free objects (with
3823 * a limited look ahead) and extract objects belonging to the same
3824 * slab.  It builds a detached freelist directly within the given
3825 * slab/objects.  This can happen without any need for
3826 * synchronization, because the objects are owned by running process.
3827 * The freelist is build up as a single linked list in the objects.
3828 * The idea is, that this detached freelist can then be bulk
3829 * transferred to the real freelist(s), but only requiring a single
3830 * synchronization primitive.  Look ahead in the array is limited due
3831 * to performance reasons.
3832 */
3833static inline
3834int build_detached_freelist(struct kmem_cache *s, size_t size,
3835			    void **p, struct detached_freelist *df)
3836{
3837	int lookahead = 3;
3838	void *object;
3839	struct folio *folio;
3840	size_t same;
3841
3842	object = p[--size];
3843	folio = virt_to_folio(object);
3844	if (!s) {
3845		/* Handle kalloc'ed objects */
3846		if (unlikely(!folio_test_slab(folio))) {
3847			free_large_kmalloc(folio, object);
3848			df->slab = NULL;
3849			return size;
3850		}
3851		/* Derive kmem_cache from object */
3852		df->slab = folio_slab(folio);
3853		df->s = df->slab->slab_cache;
3854	} else {
3855		df->slab = folio_slab(folio);
3856		df->s = cache_from_obj(s, object); /* Support for memcg */
3857	}
3858
3859	/* Start new detached freelist */
3860	df->tail = object;
3861	df->freelist = object;
3862	df->cnt = 1;
3863
3864	if (is_kfence_address(object))
3865		return size;
3866
3867	set_freepointer(df->s, object, NULL);
3868
3869	same = size;
3870	while (size) {
3871		object = p[--size];
3872		/* df->slab is always set at this point */
3873		if (df->slab == virt_to_slab(object)) {
3874			/* Opportunity build freelist */
3875			set_freepointer(df->s, object, df->freelist);
3876			df->freelist = object;
3877			df->cnt++;
3878			same--;
3879			if (size != same)
3880				swap(p[size], p[same]);
3881			continue;
3882		}
3883
3884		/* Limit look ahead search */
3885		if (!--lookahead)
3886			break;
3887	}
3888
3889	return same;
3890}
3891
3892/* Note that interrupts must be enabled when calling this function. */
3893void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3894{
3895	if (!size)
3896		return;
3897
3898	do {
3899		struct detached_freelist df;
3900
3901		size = build_detached_freelist(s, size, p, &df);
3902		if (!df.slab)
3903			continue;
3904
3905		slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3906			  _RET_IP_);
3907	} while (likely(size));
3908}
3909EXPORT_SYMBOL(kmem_cache_free_bulk);
3910
3911#ifndef CONFIG_SLUB_TINY
3912static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3913			size_t size, void **p, struct obj_cgroup *objcg)
3914{
3915	struct kmem_cache_cpu *c;
3916	int i;
3917
3918	/*
3919	 * Drain objects in the per cpu slab, while disabling local
3920	 * IRQs, which protects against PREEMPT and interrupts
3921	 * handlers invoking normal fastpath.
3922	 */
3923	c = slub_get_cpu_ptr(s->cpu_slab);
3924	local_lock_irq(&s->cpu_slab->lock);
3925
3926	for (i = 0; i < size; i++) {
3927		void *object = kfence_alloc(s, s->object_size, flags);
3928
3929		if (unlikely(object)) {
3930			p[i] = object;
3931			continue;
3932		}
3933
3934		object = c->freelist;
3935		if (unlikely(!object)) {
3936			/*
3937			 * We may have removed an object from c->freelist using
3938			 * the fastpath in the previous iteration; in that case,
3939			 * c->tid has not been bumped yet.
3940			 * Since ___slab_alloc() may reenable interrupts while
3941			 * allocating memory, we should bump c->tid now.
3942			 */
3943			c->tid = next_tid(c->tid);
3944
3945			local_unlock_irq(&s->cpu_slab->lock);
3946
3947			/*
3948			 * Invoking slow path likely have side-effect
3949			 * of re-populating per CPU c->freelist
3950			 */
3951			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3952					    _RET_IP_, c, s->object_size);
3953			if (unlikely(!p[i]))
3954				goto error;
3955
3956			c = this_cpu_ptr(s->cpu_slab);
3957			maybe_wipe_obj_freeptr(s, p[i]);
3958
3959			local_lock_irq(&s->cpu_slab->lock);
3960
3961			continue; /* goto for-loop */
3962		}
3963		c->freelist = get_freepointer(s, object);
3964		p[i] = object;
3965		maybe_wipe_obj_freeptr(s, p[i]);
3966	}
3967	c->tid = next_tid(c->tid);
3968	local_unlock_irq(&s->cpu_slab->lock);
3969	slub_put_cpu_ptr(s->cpu_slab);
3970
3971	return i;
3972
3973error:
3974	slub_put_cpu_ptr(s->cpu_slab);
3975	slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
3976	kmem_cache_free_bulk(s, i, p);
3977	return 0;
3978
3979}
3980#else /* CONFIG_SLUB_TINY */
3981static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3982			size_t size, void **p, struct obj_cgroup *objcg)
3983{
3984	int i;
3985
3986	for (i = 0; i < size; i++) {
3987		void *object = kfence_alloc(s, s->object_size, flags);
3988
3989		if (unlikely(object)) {
3990			p[i] = object;
3991			continue;
3992		}
3993
3994		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
3995					 _RET_IP_, s->object_size);
3996		if (unlikely(!p[i]))
3997			goto error;
3998
3999		maybe_wipe_obj_freeptr(s, p[i]);
4000	}
4001
4002	return i;
4003
4004error:
4005	slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
4006	kmem_cache_free_bulk(s, i, p);
4007	return 0;
4008}
4009#endif /* CONFIG_SLUB_TINY */
4010
4011/* Note that interrupts must be enabled when calling this function. */
4012int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4013			  void **p)
4014{
4015	int i;
4016	struct obj_cgroup *objcg = NULL;
4017
4018	if (!size)
4019		return 0;
4020
4021	/* memcg and kmem_cache debug support */
4022	s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
4023	if (unlikely(!s))
4024		return 0;
4025
4026	i = __kmem_cache_alloc_bulk(s, flags, size, p, objcg);
4027
4028	/*
4029	 * memcg and kmem_cache debug support and memory initialization.
4030	 * Done outside of the IRQ disabled fastpath loop.
4031	 */
4032	if (i != 0)
4033		slab_post_alloc_hook(s, objcg, flags, size, p,
4034			slab_want_init_on_alloc(flags, s), s->object_size);
4035	return i;
4036}
4037EXPORT_SYMBOL(kmem_cache_alloc_bulk);
4038
4039
4040/*
4041 * Object placement in a slab is made very easy because we always start at
4042 * offset 0. If we tune the size of the object to the alignment then we can
4043 * get the required alignment by putting one properly sized object after
4044 * another.
4045 *
4046 * Notice that the allocation order determines the sizes of the per cpu
4047 * caches. Each processor has always one slab available for allocations.
4048 * Increasing the allocation order reduces the number of times that slabs
4049 * must be moved on and off the partial lists and is therefore a factor in
4050 * locking overhead.
4051 */
4052
4053/*
4054 * Minimum / Maximum order of slab pages. This influences locking overhead
4055 * and slab fragmentation. A higher order reduces the number of partial slabs
4056 * and increases the number of allocations possible without having to
4057 * take the list_lock.
4058 */
4059static unsigned int slub_min_order;
4060static unsigned int slub_max_order =
4061	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4062static unsigned int slub_min_objects;
 
 
 
 
 
4063
4064/*
4065 * Calculate the order of allocation given an slab object size.
4066 *
4067 * The order of allocation has significant impact on performance and other
4068 * system components. Generally order 0 allocations should be preferred since
4069 * order 0 does not cause fragmentation in the page allocator. Larger objects
4070 * be problematic to put into order 0 slabs because there may be too much
4071 * unused space left. We go to a higher order if more than 1/16th of the slab
4072 * would be wasted.
4073 *
4074 * In order to reach satisfactory performance we must ensure that a minimum
4075 * number of objects is in one slab. Otherwise we may generate too much
4076 * activity on the partial lists which requires taking the list_lock. This is
4077 * less a concern for large slabs though which are rarely used.
4078 *
4079 * slub_max_order specifies the order where we begin to stop considering the
4080 * number of objects in a slab as critical. If we reach slub_max_order then
4081 * we try to keep the page order as low as possible. So we accept more waste
4082 * of space in favor of a small page order.
4083 *
4084 * Higher order allocations also allow the placement of more objects in a
4085 * slab and thereby reduce object handling overhead. If the user has
4086 * requested a higher minimum order then we start with that one instead of
4087 * the smallest order which will fit the object.
4088 */
4089static inline unsigned int calc_slab_order(unsigned int size,
4090		unsigned int min_objects, unsigned int max_order,
4091		unsigned int fract_leftover)
4092{
4093	unsigned int min_order = slub_min_order;
4094	unsigned int order;
 
4095
4096	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4097		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4098
4099	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
 
4100			order <= max_order; order++) {
4101
4102		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4103		unsigned int rem;
 
 
4104
4105		rem = slab_size % size;
4106
4107		if (rem <= slab_size / fract_leftover)
4108			break;
 
4109	}
4110
4111	return order;
4112}
4113
4114static inline int calculate_order(unsigned int size)
4115{
4116	unsigned int order;
4117	unsigned int min_objects;
4118	unsigned int max_objects;
4119	unsigned int nr_cpus;
4120
4121	/*
4122	 * Attempt to find best configuration for a slab. This
4123	 * works by first attempting to generate a layout with
4124	 * the best configuration and backing off gradually.
4125	 *
4126	 * First we increase the acceptable waste in a slab. Then
4127	 * we reduce the minimum objects required in a slab.
4128	 */
4129	min_objects = slub_min_objects;
4130	if (!min_objects) {
4131		/*
4132		 * Some architectures will only update present cpus when
4133		 * onlining them, so don't trust the number if it's just 1. But
4134		 * we also don't want to use nr_cpu_ids always, as on some other
4135		 * architectures, there can be many possible cpus, but never
4136		 * onlined. Here we compromise between trying to avoid too high
4137		 * order on systems that appear larger than they are, and too
4138		 * low order on systems that appear smaller than they are.
4139		 */
4140		nr_cpus = num_present_cpus();
4141		if (nr_cpus <= 1)
4142			nr_cpus = nr_cpu_ids;
4143		min_objects = 4 * (fls(nr_cpus) + 1);
4144	}
4145	max_objects = order_objects(slub_max_order, size);
4146	min_objects = min(min_objects, max_objects);
4147
4148	while (min_objects > 1) {
4149		unsigned int fraction;
4150
4151		fraction = 16;
4152		while (fraction >= 4) {
4153			order = calc_slab_order(size, min_objects,
4154					slub_max_order, fraction);
4155			if (order <= slub_max_order)
4156				return order;
4157			fraction /= 2;
4158		}
4159		min_objects--;
4160	}
4161
4162	/*
4163	 * We were unable to place multiple objects in a slab. Now
4164	 * lets see if we can place a single object there.
4165	 */
4166	order = calc_slab_order(size, 1, slub_max_order, 1);
4167	if (order <= slub_max_order)
4168		return order;
4169
4170	/*
4171	 * Doh this slab cannot be placed using slub_max_order.
4172	 */
4173	order = calc_slab_order(size, 1, MAX_ORDER, 1);
4174	if (order < MAX_ORDER)
4175		return order;
4176	return -ENOSYS;
4177}
4178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4179static void
4180init_kmem_cache_node(struct kmem_cache_node *n)
4181{
4182	n->nr_partial = 0;
4183	spin_lock_init(&n->list_lock);
4184	INIT_LIST_HEAD(&n->partial);
4185#ifdef CONFIG_SLUB_DEBUG
4186	atomic_long_set(&n->nr_slabs, 0);
4187	atomic_long_set(&n->total_objects, 0);
4188	INIT_LIST_HEAD(&n->full);
4189#endif
4190}
4191
4192#ifndef CONFIG_SLUB_TINY
4193static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4194{
4195	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
4196			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4197			sizeof(struct kmem_cache_cpu));
4198
4199	/*
4200	 * Must align to double word boundary for the double cmpxchg
4201	 * instructions to work; see __pcpu_double_call_return_bool().
4202	 */
4203	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4204				     2 * sizeof(void *));
4205
4206	if (!s->cpu_slab)
4207		return 0;
4208
4209	init_kmem_cache_cpus(s);
4210
4211	return 1;
4212}
4213#else
4214static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4215{
4216	return 1;
4217}
4218#endif /* CONFIG_SLUB_TINY */
4219
4220static struct kmem_cache *kmem_cache_node;
4221
4222/*
4223 * No kmalloc_node yet so do it by hand. We know that this is the first
4224 * slab on the node for this slabcache. There are no concurrent accesses
4225 * possible.
4226 *
4227 * Note that this function only works on the kmem_cache_node
4228 * when allocating for the kmem_cache_node. This is used for bootstrapping
4229 * memory on a fresh node that has no slab structures yet.
4230 */
4231static void early_kmem_cache_node_alloc(int node)
4232{
4233	struct slab *slab;
4234	struct kmem_cache_node *n;
4235
4236	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
4237
4238	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
4239
4240	BUG_ON(!slab);
4241	inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects);
4242	if (slab_nid(slab) != node) {
4243		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4244		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
 
4245	}
4246
4247	n = slab->freelist;
4248	BUG_ON(!n);
 
 
 
 
4249#ifdef CONFIG_SLUB_DEBUG
4250	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
4251	init_tracking(kmem_cache_node, n);
4252#endif
4253	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
4254	slab->freelist = get_freepointer(kmem_cache_node, n);
4255	slab->inuse = 1;
4256	kmem_cache_node->node[node] = n;
4257	init_kmem_cache_node(n);
4258	inc_slabs_node(kmem_cache_node, node, slab->objects);
4259
4260	/*
4261	 * No locks need to be taken here as it has just been
4262	 * initialized and there is no concurrent access.
4263	 */
4264	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
4265}
4266
4267static void free_kmem_cache_nodes(struct kmem_cache *s)
4268{
4269	int node;
4270	struct kmem_cache_node *n;
4271
4272	for_each_kmem_cache_node(s, node, n) {
 
 
 
 
 
4273		s->node[node] = NULL;
4274		kmem_cache_free(kmem_cache_node, n);
4275	}
4276}
4277
4278void __kmem_cache_release(struct kmem_cache *s)
4279{
4280	cache_random_seq_destroy(s);
4281#ifndef CONFIG_SLUB_TINY
4282	free_percpu(s->cpu_slab);
4283#endif
4284	free_kmem_cache_nodes(s);
4285}
4286
4287static int init_kmem_cache_nodes(struct kmem_cache *s)
4288{
4289	int node;
4290
4291	for_each_node_mask(node, slab_nodes) {
4292		struct kmem_cache_node *n;
4293
4294		if (slab_state == DOWN) {
4295			early_kmem_cache_node_alloc(node);
4296			continue;
4297		}
4298		n = kmem_cache_alloc_node(kmem_cache_node,
4299						GFP_KERNEL, node);
4300
4301		if (!n) {
4302			free_kmem_cache_nodes(s);
4303			return 0;
4304		}
4305
4306		init_kmem_cache_node(n);
4307		s->node[node] = n;
 
4308	}
4309	return 1;
4310}
4311
4312static void set_cpu_partial(struct kmem_cache *s)
4313{
4314#ifdef CONFIG_SLUB_CPU_PARTIAL
4315	unsigned int nr_objects;
4316
4317	/*
4318	 * cpu_partial determined the maximum number of objects kept in the
4319	 * per cpu partial lists of a processor.
4320	 *
4321	 * Per cpu partial lists mainly contain slabs that just have one
4322	 * object freed. If they are used for allocation then they can be
4323	 * filled up again with minimal effort. The slab will never hit the
4324	 * per node partial lists and therefore no locking will be required.
4325	 *
4326	 * For backwards compatibility reasons, this is determined as number
4327	 * of objects, even though we now limit maximum number of pages, see
4328	 * slub_set_cpu_partial()
4329	 */
4330	if (!kmem_cache_has_cpu_partial(s))
4331		nr_objects = 0;
4332	else if (s->size >= PAGE_SIZE)
4333		nr_objects = 6;
4334	else if (s->size >= 1024)
4335		nr_objects = 24;
4336	else if (s->size >= 256)
4337		nr_objects = 52;
4338	else
4339		nr_objects = 120;
4340
4341	slub_set_cpu_partial(s, nr_objects);
4342#endif
4343}
4344
4345/*
4346 * calculate_sizes() determines the order and the distribution of data within
4347 * a slab object.
4348 */
4349static int calculate_sizes(struct kmem_cache *s)
4350{
4351	slab_flags_t flags = s->flags;
4352	unsigned int size = s->object_size;
4353	unsigned int order;
 
4354
4355	/*
4356	 * Round up object size to the next word boundary. We can only
4357	 * place the free pointer at word boundaries and this determines
4358	 * the possible location of the free pointer.
4359	 */
4360	size = ALIGN(size, sizeof(void *));
4361
4362#ifdef CONFIG_SLUB_DEBUG
4363	/*
4364	 * Determine if we can poison the object itself. If the user of
4365	 * the slab may touch the object after free or before allocation
4366	 * then we should never poison the object itself.
4367	 */
4368	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4369			!s->ctor)
4370		s->flags |= __OBJECT_POISON;
4371	else
4372		s->flags &= ~__OBJECT_POISON;
4373
4374
4375	/*
4376	 * If we are Redzoning then check if there is some space between the
4377	 * end of the object and the free pointer. If not then add an
4378	 * additional word to have some bytes to store Redzone information.
4379	 */
4380	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4381		size += sizeof(void *);
4382#endif
4383
4384	/*
4385	 * With that we have determined the number of bytes in actual use
4386	 * by the object and redzoning.
4387	 */
4388	s->inuse = size;
4389
4390	if (slub_debug_orig_size(s) ||
4391	    (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4392	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4393	    s->ctor) {
4394		/*
4395		 * Relocate free pointer after the object if it is not
4396		 * permitted to overwrite the first word of the object on
4397		 * kmem_cache_free.
4398		 *
4399		 * This is the case if we do RCU, have a constructor or
4400		 * destructor, are poisoning the objects, or are
4401		 * redzoning an object smaller than sizeof(void *).
4402		 *
4403		 * The assumption that s->offset >= s->inuse means free
4404		 * pointer is outside of the object is used in the
4405		 * freeptr_outside_object() function. If that is no
4406		 * longer true, the function needs to be modified.
4407		 */
4408		s->offset = size;
4409		size += sizeof(void *);
4410	} else {
4411		/*
4412		 * Store freelist pointer near middle of object to keep
4413		 * it away from the edges of the object to avoid small
4414		 * sized over/underflows from neighboring allocations.
4415		 */
4416		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4417	}
4418
4419#ifdef CONFIG_SLUB_DEBUG
4420	if (flags & SLAB_STORE_USER) {
4421		/*
4422		 * Need to store information about allocs and frees after
4423		 * the object.
4424		 */
4425		size += 2 * sizeof(struct track);
4426
4427		/* Save the original kmalloc request size */
4428		if (flags & SLAB_KMALLOC)
4429			size += sizeof(unsigned int);
4430	}
4431#endif
4432
4433	kasan_cache_create(s, &size, &s->flags);
4434#ifdef CONFIG_SLUB_DEBUG
4435	if (flags & SLAB_RED_ZONE) {
4436		/*
4437		 * Add some empty padding so that we can catch
4438		 * overwrites from earlier objects rather than let
4439		 * tracking information or the free pointer be
4440		 * corrupted if a user writes before the start
4441		 * of the object.
4442		 */
4443		size += sizeof(void *);
4444
4445		s->red_left_pad = sizeof(void *);
4446		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4447		size += s->red_left_pad;
4448	}
4449#endif
4450
4451	/*
 
 
 
 
 
 
 
 
4452	 * SLUB stores one object immediately after another beginning from
4453	 * offset 0. In order to align the objects we have to simply size
4454	 * each object to conform to the alignment.
4455	 */
4456	size = ALIGN(size, s->align);
4457	s->size = size;
4458	s->reciprocal_size = reciprocal_value(size);
4459	order = calculate_order(size);
 
 
4460
4461	if ((int)order < 0)
4462		return 0;
4463
4464	s->allocflags = 0;
4465	if (order)
4466		s->allocflags |= __GFP_COMP;
4467
4468	if (s->flags & SLAB_CACHE_DMA)
4469		s->allocflags |= GFP_DMA;
4470
4471	if (s->flags & SLAB_CACHE_DMA32)
4472		s->allocflags |= GFP_DMA32;
4473
4474	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4475		s->allocflags |= __GFP_RECLAIMABLE;
4476
4477	/*
4478	 * Determine the number of objects per slab
4479	 */
4480	s->oo = oo_make(order, size);
4481	s->min = oo_make(get_order(size), size);
 
 
4482
4483	return !!oo_objects(s->oo);
 
4484}
4485
4486static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4487{
4488	s->flags = kmem_cache_flags(s->size, flags, s->name);
4489#ifdef CONFIG_SLAB_FREELIST_HARDENED
4490	s->random = get_random_long();
4491#endif
 
 
 
 
 
 
 
 
 
4492
4493	if (!calculate_sizes(s))
4494		goto error;
4495	if (disable_higher_order_debug) {
4496		/*
4497		 * Disable debugging flags that store metadata if the min slab
4498		 * order increased.
4499		 */
4500		if (get_order(s->size) > get_order(s->object_size)) {
4501			s->flags &= ~DEBUG_METADATA_FLAGS;
4502			s->offset = 0;
4503			if (!calculate_sizes(s))
4504				goto error;
4505		}
4506	}
4507
4508#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4509    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
4510	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
4511		/* Enable fast mode */
4512		s->flags |= __CMPXCHG_DOUBLE;
4513#endif
4514
4515	/*
4516	 * The larger the object size is, the more slabs we want on the partial
4517	 * list to avoid pounding the page allocator excessively.
4518	 */
4519	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4520	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
4521
4522	set_cpu_partial(s);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4523
 
4524#ifdef CONFIG_NUMA
4525	s->remote_node_defrag_ratio = 1000;
4526#endif
4527
4528	/* Initialize the pre-computed randomized freelist if slab is up */
4529	if (slab_state >= UP) {
4530		if (init_cache_random_seq(s))
4531			goto error;
4532	}
4533
4534	if (!init_kmem_cache_nodes(s))
4535		goto error;
4536
4537	if (alloc_kmem_cache_cpus(s))
4538		return 0;
4539
 
4540error:
4541	__kmem_cache_release(s);
4542	return -EINVAL;
 
 
 
 
4543}
4544
4545static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
4546			      const char *text)
 
 
 
 
 
 
 
 
 
4547{
4548#ifdef CONFIG_SLUB_DEBUG
4549	void *addr = slab_address(slab);
4550	void *p;
 
 
 
 
 
 
4551
4552	slab_err(s, slab, text, s->name);
4553
4554	spin_lock(&object_map_lock);
4555	__fill_map(object_map, s, slab);
4556
4557	for_each_object(p, s, addr, slab->objects) {
4558
4559		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
4560			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
 
4561			print_tracking(s, p);
4562		}
4563	}
4564	spin_unlock(&object_map_lock);
 
4565#endif
4566}
4567
4568/*
4569 * Attempt to free all partial slabs on a node.
4570 * This is called from __kmem_cache_shutdown(). We must take list_lock
4571 * because sysfs file might still access partial list after the shutdowning.
4572 */
4573static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4574{
4575	LIST_HEAD(discard);
4576	struct slab *slab, *h;
4577
4578	BUG_ON(irqs_disabled());
4579	spin_lock_irq(&n->list_lock);
4580	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4581		if (!slab->inuse) {
4582			remove_partial(n, slab);
4583			list_add(&slab->slab_list, &discard);
4584		} else {
4585			list_slab_objects(s, slab,
4586			  "Objects remaining in %s on __kmem_cache_shutdown()");
4587		}
4588	}
4589	spin_unlock_irq(&n->list_lock);
4590
4591	list_for_each_entry_safe(slab, h, &discard, slab_list)
4592		discard_slab(s, slab);
4593}
4594
4595bool __kmem_cache_empty(struct kmem_cache *s)
4596{
4597	int node;
4598	struct kmem_cache_node *n;
4599
4600	for_each_kmem_cache_node(s, node, n)
4601		if (n->nr_partial || slabs_node(s, node))
4602			return false;
4603	return true;
4604}
4605
4606/*
4607 * Release all resources used by a slab cache.
4608 */
4609int __kmem_cache_shutdown(struct kmem_cache *s)
4610{
4611	int node;
4612	struct kmem_cache_node *n;
4613
4614	flush_all_cpus_locked(s);
 
4615	/* Attempt to free all objects */
4616	for_each_kmem_cache_node(s, node, n) {
 
 
4617		free_partial(s, n);
4618		if (n->nr_partial || slabs_node(s, node))
4619			return 1;
4620	}
 
4621	return 0;
4622}
4623
4624#ifdef CONFIG_PRINTK
4625void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
 
 
 
4626{
4627	void *base;
4628	int __maybe_unused i;
4629	unsigned int objnr;
4630	void *objp;
4631	void *objp0;
4632	struct kmem_cache *s = slab->slab_cache;
4633	struct track __maybe_unused *trackp;
4634
4635	kpp->kp_ptr = object;
4636	kpp->kp_slab = slab;
4637	kpp->kp_slab_cache = s;
4638	base = slab_address(slab);
4639	objp0 = kasan_reset_tag(object);
4640#ifdef CONFIG_SLUB_DEBUG
4641	objp = restore_red_left(s, objp0);
4642#else
4643	objp = objp0;
4644#endif
4645	objnr = obj_to_index(s, slab, objp);
4646	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4647	objp = base + s->size * objnr;
4648	kpp->kp_objp = objp;
4649	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4650			 || (objp - base) % s->size) ||
4651	    !(s->flags & SLAB_STORE_USER))
4652		return;
4653#ifdef CONFIG_SLUB_DEBUG
4654	objp = fixup_red_left(s, objp);
4655	trackp = get_track(s, objp, TRACK_ALLOC);
4656	kpp->kp_ret = (void *)trackp->addr;
4657#ifdef CONFIG_STACKDEPOT
4658	{
4659		depot_stack_handle_t handle;
4660		unsigned long *entries;
4661		unsigned int nr_entries;
4662
4663		handle = READ_ONCE(trackp->handle);
4664		if (handle) {
4665			nr_entries = stack_depot_fetch(handle, &entries);
4666			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4667				kpp->kp_stack[i] = (void *)entries[i];
4668		}
4669
4670		trackp = get_track(s, objp, TRACK_FREE);
4671		handle = READ_ONCE(trackp->handle);
4672		if (handle) {
4673			nr_entries = stack_depot_fetch(handle, &entries);
4674			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4675				kpp->kp_free_stack[i] = (void *)entries[i];
4676		}
4677	}
4678#endif
4679#endif
 
 
4680}
4681#endif
4682
4683/********************************************************************
4684 *		Kmalloc subsystem
4685 *******************************************************************/
4686
 
 
 
 
 
 
 
 
 
4687static int __init setup_slub_min_order(char *str)
4688{
4689	get_option(&str, (int *)&slub_min_order);
4690
4691	return 1;
4692}
4693
4694__setup("slub_min_order=", setup_slub_min_order);
4695
4696static int __init setup_slub_max_order(char *str)
4697{
4698	get_option(&str, (int *)&slub_max_order);
4699	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4700
4701	return 1;
4702}
4703
4704__setup("slub_max_order=", setup_slub_max_order);
4705
4706static int __init setup_slub_min_objects(char *str)
4707{
4708	get_option(&str, (int *)&slub_min_objects);
4709
4710	return 1;
4711}
4712
4713__setup("slub_min_objects=", setup_slub_min_objects);
4714
4715#ifdef CONFIG_HARDENED_USERCOPY
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4716/*
4717 * Rejects incorrectly sized objects and objects that are to be copied
4718 * to/from userspace but do not fall entirely within the containing slab
4719 * cache's usercopy region.
4720 *
4721 * Returns NULL if check passes, otherwise const char * to name of cache
4722 * to indicate an error.
4723 */
4724void __check_heap_object(const void *ptr, unsigned long n,
4725			 const struct slab *slab, bool to_user)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4726{
4727	struct kmem_cache *s;
4728	unsigned int offset;
4729	bool is_kfence = is_kfence_address(ptr);
4730
4731	ptr = kasan_reset_tag(ptr);
 
4732
4733	/* Find object and usable object size. */
4734	s = slab->slab_cache;
4735
4736	/* Reject impossible pointers. */
4737	if (ptr < slab_address(slab))
4738		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4739			       to_user, 0, n);
4740
4741	/* Find offset within object. */
4742	if (is_kfence)
4743		offset = ptr - kfence_object_start(ptr);
4744	else
4745		offset = (ptr - slab_address(slab)) % s->size;
4746
4747	/* Adjust for redzone and reject if within the redzone. */
4748	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4749		if (offset < s->red_left_pad)
4750			usercopy_abort("SLUB object in left red zone",
4751				       s->name, to_user, offset, n);
4752		offset -= s->red_left_pad;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4753	}
4754
4755	/* Allow address range falling entirely within usercopy region. */
4756	if (offset >= s->useroffset &&
4757	    offset - s->useroffset <= s->usersize &&
4758	    n <= s->useroffset - offset + s->usersize)
4759		return;
4760
4761	usercopy_abort("SLUB object", s->name, to_user, offset, n);
 
 
 
 
4762}
4763#endif /* CONFIG_HARDENED_USERCOPY */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4764
4765#define SHRINK_PROMOTE_MAX 32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4766
4767/*
4768 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4769 * up most to the head of the partial lists. New allocations will then
4770 * fill those up and thus they can be removed from the partial lists.
 
4771 *
4772 * The slabs with the least items are placed last. This results in them
4773 * being allocated from last increasing the chance that the last objects
4774 * are freed in them.
4775 */
4776static int __kmem_cache_do_shrink(struct kmem_cache *s)
4777{
4778	int node;
4779	int i;
4780	struct kmem_cache_node *n;
4781	struct slab *slab;
4782	struct slab *t;
4783	struct list_head discard;
4784	struct list_head promote[SHRINK_PROMOTE_MAX];
 
4785	unsigned long flags;
4786	int ret = 0;
4787
4788	for_each_kmem_cache_node(s, node, n) {
4789		INIT_LIST_HEAD(&discard);
4790		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4791			INIT_LIST_HEAD(promote + i);
 
 
 
 
 
 
 
 
4792
4793		spin_lock_irqsave(&n->list_lock, flags);
4794
4795		/*
4796		 * Build lists of slabs to discard or promote.
4797		 *
4798		 * Note that concurrent frees may occur while we hold the
4799		 * list_lock. slab->inuse here is the upper limit.
4800		 */
4801		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4802			int free = slab->objects - slab->inuse;
4803
4804			/* Do not reread slab->inuse */
4805			barrier();
4806
4807			/* We do not keep full slabs on the list */
4808			BUG_ON(free <= 0);
4809
4810			if (free == slab->objects) {
4811				list_move(&slab->slab_list, &discard);
4812				n->nr_partial--;
4813				dec_slabs_node(s, node, slab->objects);
4814			} else if (free <= SHRINK_PROMOTE_MAX)
4815				list_move(&slab->slab_list, promote + free - 1);
4816		}
4817
4818		/*
4819		 * Promote the slabs filled up most to the head of the
4820		 * partial list.
4821		 */
4822		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4823			list_splice(promote + i, &n->partial);
4824
4825		spin_unlock_irqrestore(&n->list_lock, flags);
4826
4827		/* Release empty slabs */
4828		list_for_each_entry_safe(slab, t, &discard, slab_list)
4829			free_slab(s, slab);
4830
4831		if (slabs_node(s, node))
4832			ret = 1;
4833	}
4834
4835	return ret;
4836}
4837
4838int __kmem_cache_shrink(struct kmem_cache *s)
4839{
4840	flush_all(s);
4841	return __kmem_cache_do_shrink(s);
4842}
 
4843
 
4844static int slab_mem_going_offline_callback(void *arg)
4845{
4846	struct kmem_cache *s;
4847
4848	mutex_lock(&slab_mutex);
4849	list_for_each_entry(s, &slab_caches, list) {
4850		flush_all_cpus_locked(s);
4851		__kmem_cache_do_shrink(s);
4852	}
4853	mutex_unlock(&slab_mutex);
4854
4855	return 0;
4856}
4857
4858static void slab_mem_offline_callback(void *arg)
4859{
 
 
4860	struct memory_notify *marg = arg;
4861	int offline_node;
4862
4863	offline_node = marg->status_change_nid_normal;
4864
4865	/*
4866	 * If the node still has available memory. we need kmem_cache_node
4867	 * for it yet.
4868	 */
4869	if (offline_node < 0)
4870		return;
4871
4872	mutex_lock(&slab_mutex);
4873	node_clear(offline_node, slab_nodes);
4874	/*
4875	 * We no longer free kmem_cache_node structures here, as it would be
4876	 * racy with all get_node() users, and infeasible to protect them with
4877	 * slab_mutex.
4878	 */
4879	mutex_unlock(&slab_mutex);
 
 
 
 
 
 
 
 
 
4880}
4881
4882static int slab_mem_going_online_callback(void *arg)
4883{
4884	struct kmem_cache_node *n;
4885	struct kmem_cache *s;
4886	struct memory_notify *marg = arg;
4887	int nid = marg->status_change_nid_normal;
4888	int ret = 0;
4889
4890	/*
4891	 * If the node's memory is already available, then kmem_cache_node is
4892	 * already created. Nothing to do.
4893	 */
4894	if (nid < 0)
4895		return 0;
4896
4897	/*
4898	 * We are bringing a node online. No memory is available yet. We must
4899	 * allocate a kmem_cache_node structure in order to bring the node
4900	 * online.
4901	 */
4902	mutex_lock(&slab_mutex);
4903	list_for_each_entry(s, &slab_caches, list) {
4904		/*
4905		 * The structure may already exist if the node was previously
4906		 * onlined and offlined.
4907		 */
4908		if (get_node(s, nid))
4909			continue;
4910		/*
4911		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4912		 *      since memory is not yet available from the node that
4913		 *      is brought up.
4914		 */
4915		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4916		if (!n) {
4917			ret = -ENOMEM;
4918			goto out;
4919		}
4920		init_kmem_cache_node(n);
4921		s->node[nid] = n;
4922	}
4923	/*
4924	 * Any cache created after this point will also have kmem_cache_node
4925	 * initialized for the new node.
4926	 */
4927	node_set(nid, slab_nodes);
4928out:
4929	mutex_unlock(&slab_mutex);
4930	return ret;
4931}
4932
4933static int slab_memory_callback(struct notifier_block *self,
4934				unsigned long action, void *arg)
4935{
4936	int ret = 0;
4937
4938	switch (action) {
4939	case MEM_GOING_ONLINE:
4940		ret = slab_mem_going_online_callback(arg);
4941		break;
4942	case MEM_GOING_OFFLINE:
4943		ret = slab_mem_going_offline_callback(arg);
4944		break;
4945	case MEM_OFFLINE:
4946	case MEM_CANCEL_ONLINE:
4947		slab_mem_offline_callback(arg);
4948		break;
4949	case MEM_ONLINE:
4950	case MEM_CANCEL_OFFLINE:
4951		break;
4952	}
4953	if (ret)
4954		ret = notifier_from_errno(ret);
4955	else
4956		ret = NOTIFY_OK;
4957	return ret;
4958}
4959
 
 
4960/********************************************************************
4961 *			Basic setup of slabs
4962 *******************************************************************/
4963
4964/*
4965 * Used for early kmem_cache structures that were allocated using
4966 * the page allocator. Allocate them properly then fix up the pointers
4967 * that may be pointing to the wrong kmem_cache structure.
4968 */
4969
4970static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4971{
4972	int node;
4973	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4974	struct kmem_cache_node *n;
4975
4976	memcpy(s, static_cache, kmem_cache->object_size);
4977
4978	/*
4979	 * This runs very early, and only the boot processor is supposed to be
4980	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4981	 * IPIs around.
4982	 */
4983	__flush_cpu_slab(s, smp_processor_id());
4984	for_each_kmem_cache_node(s, node, n) {
4985		struct slab *p;
4986
4987		list_for_each_entry(p, &n->partial, slab_list)
4988			p->slab_cache = s;
 
 
 
 
 
4989
4990#ifdef CONFIG_SLUB_DEBUG
4991		list_for_each_entry(p, &n->full, slab_list)
4992			p->slab_cache = s;
4993#endif
 
4994	}
4995	list_add(&s->list, &slab_caches);
4996	return s;
4997}
4998
4999void __init kmem_cache_init(void)
5000{
5001	static __initdata struct kmem_cache boot_kmem_cache,
5002		boot_kmem_cache_node;
5003	int node;
 
 
 
5004
5005	if (debug_guardpage_minorder())
5006		slub_max_order = 0;
5007
5008	/* Print slub debugging pointers without hashing */
5009	if (__slub_debug_enabled())
5010		no_hash_pointers_enable(NULL);
5011
5012	kmem_cache_node = &boot_kmem_cache_node;
5013	kmem_cache = &boot_kmem_cache;
 
 
5014
5015	/*
5016	 * Initialize the nodemask for which we will allocate per node
5017	 * structures. Here we don't need taking slab_mutex yet.
 
5018	 */
5019	for_each_node_state(node, N_NORMAL_MEMORY)
5020		node_set(node, slab_nodes);
5021
5022	create_boot_cache(kmem_cache_node, "kmem_cache_node",
5023		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
 
5024
5025	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5026
5027	/* Able to allocate the per node structures */
5028	slab_state = PARTIAL;
5029
5030	create_boot_cache(kmem_cache, "kmem_cache",
5031			offsetof(struct kmem_cache, node) +
5032				nr_node_ids * sizeof(struct kmem_cache_node *),
5033		       SLAB_HWCACHE_ALIGN, 0, 0);
 
5034
5035	kmem_cache = bootstrap(&boot_kmem_cache);
5036	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5037
5038	/* Now we can use the kmem_cache to allocate kmalloc slabs */
5039	setup_kmalloc_cache_index_table();
5040	create_kmalloc_caches(0);
5041
5042	/* Setup random freelists for each cache */
5043	init_freelist_randomization();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5044
5045	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5046				  slub_cpu_dead);
 
 
5047
5048	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5049		cache_line_size(),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5050		slub_min_order, slub_max_order, slub_min_objects,
5051		nr_cpu_ids, nr_node_ids);
5052}
5053
5054void __init kmem_cache_init_late(void)
5055{
5056#ifndef CONFIG_SLUB_TINY
5057	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5058	WARN_ON(!flushwq);
5059#endif
5060}
5061
5062struct kmem_cache *
5063__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5064		   slab_flags_t flags, void (*ctor)(void *))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5065{
5066	struct kmem_cache *s;
5067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5068	s = find_mergeable(size, align, flags, name, ctor);
5069	if (s) {
5070		if (sysfs_slab_alias(s, name))
5071			return NULL;
5072
5073		s->refcount++;
5074
5075		/*
5076		 * Adjust the object sizes so that we clear
5077		 * the complete object on kzalloc.
5078		 */
5079		s->object_size = max(s->object_size, size);
5080		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
 
 
 
 
 
 
 
5081	}
5082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5083	return s;
5084}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5085
5086int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
 
 
5087{
5088	int err;
 
5089
5090	err = kmem_cache_open(s, flags);
5091	if (err)
5092		return err;
5093
5094	/* Mutex is not taken during early boot */
5095	if (slab_state <= UP)
5096		return 0;
5097
5098	err = sysfs_slab_add(s);
5099	if (err) {
5100		__kmem_cache_release(s);
5101		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5102	}
5103
5104	if (s->flags & SLAB_STORE_USER)
5105		debugfs_slab_add(s);
5106
5107	return 0;
 
 
 
 
 
 
 
 
5108}
 
5109
5110#ifdef SLAB_SUPPORTS_SYSFS
5111static int count_inuse(struct slab *slab)
5112{
5113	return slab->inuse;
5114}
5115
5116static int count_total(struct slab *slab)
5117{
5118	return slab->objects;
5119}
5120#endif
5121
5122#ifdef CONFIG_SLUB_DEBUG
5123static void validate_slab(struct kmem_cache *s, struct slab *slab,
5124			  unsigned long *obj_map)
5125{
5126	void *p;
5127	void *addr = slab_address(slab);
5128
5129	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5130		return;
 
5131
5132	/* Now we know that a valid freelist exists */
5133	__fill_map(obj_map, s, slab);
5134	for_each_object(p, s, addr, slab->objects) {
5135		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5136			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5137
5138		if (!check_object(s, slab, p, val))
5139			break;
 
 
 
5140	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5141}
5142
5143static int validate_slab_node(struct kmem_cache *s,
5144		struct kmem_cache_node *n, unsigned long *obj_map)
5145{
5146	unsigned long count = 0;
5147	struct slab *slab;
5148	unsigned long flags;
5149
5150	spin_lock_irqsave(&n->list_lock, flags);
5151
5152	list_for_each_entry(slab, &n->partial, slab_list) {
5153		validate_slab(s, slab, obj_map);
5154		count++;
5155	}
5156	if (count != n->nr_partial) {
5157		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5158		       s->name, count, n->nr_partial);
5159		slab_add_kunit_errors();
5160	}
5161
5162	if (!(s->flags & SLAB_STORE_USER))
5163		goto out;
5164
5165	list_for_each_entry(slab, &n->full, slab_list) {
5166		validate_slab(s, slab, obj_map);
5167		count++;
5168	}
5169	if (count != atomic_long_read(&n->nr_slabs)) {
5170		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5171		       s->name, count, atomic_long_read(&n->nr_slabs));
5172		slab_add_kunit_errors();
5173	}
5174
5175out:
5176	spin_unlock_irqrestore(&n->list_lock, flags);
5177	return count;
5178}
5179
5180long validate_slab_cache(struct kmem_cache *s)
5181{
5182	int node;
5183	unsigned long count = 0;
5184	struct kmem_cache_node *n;
5185	unsigned long *obj_map;
5186
5187	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5188	if (!obj_map)
5189		return -ENOMEM;
5190
5191	flush_all(s);
5192	for_each_kmem_cache_node(s, node, n)
5193		count += validate_slab_node(s, n, obj_map);
5194
5195	bitmap_free(obj_map);
5196
 
 
 
5197	return count;
5198}
5199EXPORT_SYMBOL(validate_slab_cache);
5200
5201#ifdef CONFIG_DEBUG_FS
5202/*
5203 * Generate lists of code addresses where slabcache objects are allocated
5204 * and freed.
5205 */
5206
5207struct location {
5208	depot_stack_handle_t handle;
5209	unsigned long count;
5210	unsigned long addr;
5211	unsigned long waste;
5212	long long sum_time;
5213	long min_time;
5214	long max_time;
5215	long min_pid;
5216	long max_pid;
5217	DECLARE_BITMAP(cpus, NR_CPUS);
5218	nodemask_t nodes;
5219};
5220
5221struct loc_track {
5222	unsigned long max;
5223	unsigned long count;
5224	struct location *loc;
5225	loff_t idx;
5226};
5227
5228static struct dentry *slab_debugfs_root;
5229
5230static void free_loc_track(struct loc_track *t)
5231{
5232	if (t->max)
5233		free_pages((unsigned long)t->loc,
5234			get_order(sizeof(struct location) * t->max));
5235}
5236
5237static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5238{
5239	struct location *l;
5240	int order;
5241
5242	order = get_order(sizeof(struct location) * max);
5243
5244	l = (void *)__get_free_pages(flags, order);
5245	if (!l)
5246		return 0;
5247
5248	if (t->count) {
5249		memcpy(l, t->loc, sizeof(struct location) * t->count);
5250		free_loc_track(t);
5251	}
5252	t->max = max;
5253	t->loc = l;
5254	return 1;
5255}
5256
5257static int add_location(struct loc_track *t, struct kmem_cache *s,
5258				const struct track *track,
5259				unsigned int orig_size)
5260{
5261	long start, end, pos;
5262	struct location *l;
5263	unsigned long caddr, chandle, cwaste;
5264	unsigned long age = jiffies - track->when;
5265	depot_stack_handle_t handle = 0;
5266	unsigned int waste = s->object_size - orig_size;
5267
5268#ifdef CONFIG_STACKDEPOT
5269	handle = READ_ONCE(track->handle);
5270#endif
5271	start = -1;
5272	end = t->count;
5273
5274	for ( ; ; ) {
5275		pos = start + (end - start + 1) / 2;
5276
5277		/*
5278		 * There is nothing at "end". If we end up there
5279		 * we need to add something to before end.
5280		 */
5281		if (pos == end)
5282			break;
5283
5284		l = &t->loc[pos];
5285		caddr = l->addr;
5286		chandle = l->handle;
5287		cwaste = l->waste;
5288		if ((track->addr == caddr) && (handle == chandle) &&
5289			(waste == cwaste)) {
5290
 
5291			l->count++;
5292			if (track->when) {
5293				l->sum_time += age;
5294				if (age < l->min_time)
5295					l->min_time = age;
5296				if (age > l->max_time)
5297					l->max_time = age;
5298
5299				if (track->pid < l->min_pid)
5300					l->min_pid = track->pid;
5301				if (track->pid > l->max_pid)
5302					l->max_pid = track->pid;
5303
5304				cpumask_set_cpu(track->cpu,
5305						to_cpumask(l->cpus));
5306			}
5307			node_set(page_to_nid(virt_to_page(track)), l->nodes);
5308			return 1;
5309		}
5310
5311		if (track->addr < caddr)
5312			end = pos;
5313		else if (track->addr == caddr && handle < chandle)
5314			end = pos;
5315		else if (track->addr == caddr && handle == chandle &&
5316				waste < cwaste)
5317			end = pos;
5318		else
5319			start = pos;
5320	}
5321
5322	/*
5323	 * Not found. Insert new tracking element.
5324	 */
5325	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5326		return 0;
5327
5328	l = t->loc + pos;
5329	if (pos < t->count)
5330		memmove(l + 1, l,
5331			(t->count - pos) * sizeof(struct location));
5332	t->count++;
5333	l->count = 1;
5334	l->addr = track->addr;
5335	l->sum_time = age;
5336	l->min_time = age;
5337	l->max_time = age;
5338	l->min_pid = track->pid;
5339	l->max_pid = track->pid;
5340	l->handle = handle;
5341	l->waste = waste;
5342	cpumask_clear(to_cpumask(l->cpus));
5343	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5344	nodes_clear(l->nodes);
5345	node_set(page_to_nid(virt_to_page(track)), l->nodes);
5346	return 1;
5347}
5348
5349static void process_slab(struct loc_track *t, struct kmem_cache *s,
5350		struct slab *slab, enum track_item alloc,
5351		unsigned long *obj_map)
5352{
5353	void *addr = slab_address(slab);
5354	bool is_alloc = (alloc == TRACK_ALLOC);
5355	void *p;
5356
5357	__fill_map(obj_map, s, slab);
 
5358
5359	for_each_object(p, s, addr, slab->objects)
5360		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5361			add_location(t, s, get_track(s, p, alloc),
5362				     is_alloc ? get_orig_size(s, p) :
5363						s->object_size);
5364}
5365#endif  /* CONFIG_DEBUG_FS   */
5366#endif	/* CONFIG_SLUB_DEBUG */
5367
5368#ifdef SLAB_SUPPORTS_SYSFS
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5369enum slab_stat_type {
5370	SL_ALL,			/* All slabs */
5371	SL_PARTIAL,		/* Only partially allocated slabs */
5372	SL_CPU,			/* Only slabs used for cpu caches */
5373	SL_OBJECTS,		/* Determine allocated objects not slabs */
5374	SL_TOTAL		/* Determine object capacity not slabs */
5375};
5376
5377#define SO_ALL		(1 << SL_ALL)
5378#define SO_PARTIAL	(1 << SL_PARTIAL)
5379#define SO_CPU		(1 << SL_CPU)
5380#define SO_OBJECTS	(1 << SL_OBJECTS)
5381#define SO_TOTAL	(1 << SL_TOTAL)
5382
5383static ssize_t show_slab_objects(struct kmem_cache *s,
5384				 char *buf, unsigned long flags)
5385{
5386	unsigned long total = 0;
5387	int node;
5388	int x;
5389	unsigned long *nodes;
5390	int len = 0;
5391
5392	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5393	if (!nodes)
5394		return -ENOMEM;
 
5395
5396	if (flags & SO_CPU) {
5397		int cpu;
5398
5399		for_each_possible_cpu(cpu) {
5400			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5401							       cpu);
5402			int node;
5403			struct slab *slab;
5404
5405			slab = READ_ONCE(c->slab);
5406			if (!slab)
5407				continue;
5408
5409			node = slab_nid(slab);
5410			if (flags & SO_TOTAL)
5411				x = slab->objects;
5412			else if (flags & SO_OBJECTS)
5413				x = slab->inuse;
5414			else
5415				x = 1;
5416
5417			total += x;
5418			nodes[node] += x;
5419
5420#ifdef CONFIG_SLUB_CPU_PARTIAL
5421			slab = slub_percpu_partial_read_once(c);
5422			if (slab) {
5423				node = slab_nid(slab);
5424				if (flags & SO_TOTAL)
5425					WARN_ON_ONCE(1);
5426				else if (flags & SO_OBJECTS)
5427					WARN_ON_ONCE(1);
5428				else
5429					x = slab->slabs;
 
5430				total += x;
5431				nodes[node] += x;
5432			}
5433#endif
 
 
 
 
 
 
 
5434		}
5435	}
5436
5437	/*
5438	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5439	 * already held which will conflict with an existing lock order:
5440	 *
5441	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5442	 *
5443	 * We don't really need mem_hotplug_lock (to hold off
5444	 * slab_mem_going_offline_callback) here because slab's memory hot
5445	 * unplug code doesn't destroy the kmem_cache->node[] data.
5446	 */
5447
5448#ifdef CONFIG_SLUB_DEBUG
5449	if (flags & SO_ALL) {
5450		struct kmem_cache_node *n;
 
5451
5452		for_each_kmem_cache_node(s, node, n) {
 
 
 
 
5453
5454			if (flags & SO_TOTAL)
5455				x = atomic_long_read(&n->total_objects);
5456			else if (flags & SO_OBJECTS)
5457				x = atomic_long_read(&n->total_objects) -
5458					count_partial(n, count_free);
5459			else
5460				x = atomic_long_read(&n->nr_slabs);
5461			total += x;
5462			nodes[node] += x;
5463		}
5464
5465	} else
5466#endif
5467	if (flags & SO_PARTIAL) {
5468		struct kmem_cache_node *n;
 
5469
5470		for_each_kmem_cache_node(s, node, n) {
5471			if (flags & SO_TOTAL)
5472				x = count_partial(n, count_total);
5473			else if (flags & SO_OBJECTS)
5474				x = count_partial(n, count_inuse);
5475			else
5476				x = n->nr_partial;
5477			total += x;
5478			nodes[node] += x;
5479		}
5480	}
5481
5482	len += sysfs_emit_at(buf, len, "%lu", total);
5483#ifdef CONFIG_NUMA
5484	for (node = 0; node < nr_node_ids; node++) {
5485		if (nodes[node])
5486			len += sysfs_emit_at(buf, len, " N%d=%lu",
5487					     node, nodes[node]);
5488	}
5489#endif
5490	len += sysfs_emit_at(buf, len, "\n");
5491	kfree(nodes);
 
 
5492
5493	return len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5494}
 
5495
5496#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5497#define to_slab(n) container_of(n, struct kmem_cache, kobj)
5498
5499struct slab_attribute {
5500	struct attribute attr;
5501	ssize_t (*show)(struct kmem_cache *s, char *buf);
5502	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5503};
5504
5505#define SLAB_ATTR_RO(_name) \
5506	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
 
5507
5508#define SLAB_ATTR(_name) \
5509	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
 
5510
5511static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5512{
5513	return sysfs_emit(buf, "%u\n", s->size);
5514}
5515SLAB_ATTR_RO(slab_size);
5516
5517static ssize_t align_show(struct kmem_cache *s, char *buf)
5518{
5519	return sysfs_emit(buf, "%u\n", s->align);
5520}
5521SLAB_ATTR_RO(align);
5522
5523static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5524{
5525	return sysfs_emit(buf, "%u\n", s->object_size);
5526}
5527SLAB_ATTR_RO(object_size);
5528
5529static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5530{
5531	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5532}
5533SLAB_ATTR_RO(objs_per_slab);
5534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5535static ssize_t order_show(struct kmem_cache *s, char *buf)
5536{
5537	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5538}
5539SLAB_ATTR_RO(order);
5540
5541static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5542{
5543	return sysfs_emit(buf, "%lu\n", s->min_partial);
5544}
5545
5546static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5547				 size_t length)
5548{
5549	unsigned long min;
5550	int err;
5551
5552	err = kstrtoul(buf, 10, &min);
5553	if (err)
5554		return err;
5555
5556	s->min_partial = min;
5557	return length;
5558}
5559SLAB_ATTR(min_partial);
5560
5561static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5562{
5563	unsigned int nr_partial = 0;
5564#ifdef CONFIG_SLUB_CPU_PARTIAL
5565	nr_partial = s->cpu_partial;
5566#endif
5567
5568	return sysfs_emit(buf, "%u\n", nr_partial);
5569}
5570
5571static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5572				 size_t length)
5573{
5574	unsigned int objects;
5575	int err;
5576
5577	err = kstrtouint(buf, 10, &objects);
5578	if (err)
5579		return err;
5580	if (objects && !kmem_cache_has_cpu_partial(s))
5581		return -EINVAL;
5582
5583	slub_set_cpu_partial(s, objects);
5584	flush_all(s);
5585	return length;
5586}
5587SLAB_ATTR(cpu_partial);
5588
5589static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5590{
5591	if (!s->ctor)
5592		return 0;
5593	return sysfs_emit(buf, "%pS\n", s->ctor);
5594}
5595SLAB_ATTR_RO(ctor);
5596
5597static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5598{
5599	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5600}
5601SLAB_ATTR_RO(aliases);
5602
5603static ssize_t partial_show(struct kmem_cache *s, char *buf)
5604{
5605	return show_slab_objects(s, buf, SO_PARTIAL);
5606}
5607SLAB_ATTR_RO(partial);
5608
5609static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5610{
5611	return show_slab_objects(s, buf, SO_CPU);
5612}
5613SLAB_ATTR_RO(cpu_slabs);
5614
5615static ssize_t objects_show(struct kmem_cache *s, char *buf)
5616{
5617	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5618}
5619SLAB_ATTR_RO(objects);
5620
5621static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5622{
5623	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5624}
5625SLAB_ATTR_RO(objects_partial);
5626
5627static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5628{
5629	int objects = 0;
5630	int slabs = 0;
5631	int cpu __maybe_unused;
5632	int len = 0;
5633
5634#ifdef CONFIG_SLUB_CPU_PARTIAL
5635	for_each_online_cpu(cpu) {
5636		struct slab *slab;
5637
5638		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5639
5640		if (slab)
5641			slabs += slab->slabs;
 
 
5642	}
5643#endif
5644
5645	/* Approximate half-full slabs, see slub_set_cpu_partial() */
5646	objects = (slabs * oo_objects(s->oo)) / 2;
5647	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
5648
5649#if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP)
5650	for_each_online_cpu(cpu) {
5651		struct slab *slab;
5652
5653		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5654		if (slab) {
5655			slabs = READ_ONCE(slab->slabs);
5656			objects = (slabs * oo_objects(s->oo)) / 2;
5657			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5658					     cpu, objects, slabs);
5659		}
5660	}
5661#endif
5662	len += sysfs_emit_at(buf, len, "\n");
5663
5664	return len;
5665}
5666SLAB_ATTR_RO(slabs_cpu_partial);
5667
5668static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5669{
5670	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5671}
5672SLAB_ATTR_RO(reclaim_account);
 
 
 
 
 
 
 
 
 
5673
5674static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5675{
5676	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5677}
5678SLAB_ATTR_RO(hwcache_align);
5679
5680#ifdef CONFIG_ZONE_DMA
5681static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5682{
5683	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5684}
5685SLAB_ATTR_RO(cache_dma);
5686#endif
5687
5688#ifdef CONFIG_HARDENED_USERCOPY
5689static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5690{
5691	return sysfs_emit(buf, "%u\n", s->usersize);
5692}
5693SLAB_ATTR_RO(usersize);
5694#endif
5695
5696static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5697{
5698	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5699}
5700SLAB_ATTR_RO(destroy_by_rcu);
5701
5702#ifdef CONFIG_SLUB_DEBUG
5703static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5704{
5705	return show_slab_objects(s, buf, SO_ALL);
5706}
5707SLAB_ATTR_RO(slabs);
5708
5709static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5710{
5711	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5712}
5713SLAB_ATTR_RO(total_objects);
5714
5715static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5716{
5717	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5718}
5719SLAB_ATTR_RO(sanity_checks);
 
 
 
 
 
 
 
 
 
 
 
5720
5721static ssize_t trace_show(struct kmem_cache *s, char *buf)
5722{
5723	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
 
 
 
 
 
 
 
 
 
 
 
5724}
5725SLAB_ATTR_RO(trace);
5726
5727static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5728{
5729	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5730}
5731
5732SLAB_ATTR_RO(red_zone);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5733
5734static ssize_t poison_show(struct kmem_cache *s, char *buf)
5735{
5736	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5737}
5738
5739SLAB_ATTR_RO(poison);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5740
5741static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5742{
5743	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5744}
5745
5746SLAB_ATTR_RO(store_user);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5747
5748static ssize_t validate_show(struct kmem_cache *s, char *buf)
5749{
5750	return 0;
5751}
5752
5753static ssize_t validate_store(struct kmem_cache *s,
5754			const char *buf, size_t length)
5755{
5756	int ret = -EINVAL;
5757
5758	if (buf[0] == '1' && kmem_cache_debug(s)) {
5759		ret = validate_slab_cache(s);
5760		if (ret >= 0)
5761			ret = length;
5762	}
5763	return ret;
5764}
5765SLAB_ATTR(validate);
5766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5767#endif /* CONFIG_SLUB_DEBUG */
5768
5769#ifdef CONFIG_FAILSLAB
5770static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5771{
5772	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5773}
5774
5775static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5776				size_t length)
5777{
5778	if (s->refcount > 1)
5779		return -EINVAL;
5780
5781	if (buf[0] == '1')
5782		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
5783	else
5784		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
5785
5786	return length;
5787}
5788SLAB_ATTR(failslab);
5789#endif
5790
5791static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5792{
5793	return 0;
5794}
5795
5796static ssize_t shrink_store(struct kmem_cache *s,
5797			const char *buf, size_t length)
5798{
5799	if (buf[0] == '1')
5800		kmem_cache_shrink(s);
5801	else
 
 
 
5802		return -EINVAL;
5803	return length;
5804}
5805SLAB_ATTR(shrink);
5806
5807#ifdef CONFIG_NUMA
5808static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5809{
5810	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5811}
5812
5813static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5814				const char *buf, size_t length)
5815{
5816	unsigned int ratio;
5817	int err;
5818
5819	err = kstrtouint(buf, 10, &ratio);
5820	if (err)
5821		return err;
5822	if (ratio > 100)
5823		return -ERANGE;
5824
5825	s->remote_node_defrag_ratio = ratio * 10;
 
5826
5827	return length;
5828}
5829SLAB_ATTR(remote_node_defrag_ratio);
5830#endif
5831
5832#ifdef CONFIG_SLUB_STATS
5833static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5834{
5835	unsigned long sum  = 0;
5836	int cpu;
5837	int len = 0;
5838	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5839
5840	if (!data)
5841		return -ENOMEM;
5842
5843	for_each_online_cpu(cpu) {
5844		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5845
5846		data[cpu] = x;
5847		sum += x;
5848	}
5849
5850	len += sysfs_emit_at(buf, len, "%lu", sum);
5851
5852#ifdef CONFIG_SMP
5853	for_each_online_cpu(cpu) {
5854		if (data[cpu])
5855			len += sysfs_emit_at(buf, len, " C%d=%u",
5856					     cpu, data[cpu]);
5857	}
5858#endif
5859	kfree(data);
5860	len += sysfs_emit_at(buf, len, "\n");
5861
5862	return len;
5863}
5864
5865static void clear_stat(struct kmem_cache *s, enum stat_item si)
5866{
5867	int cpu;
5868
5869	for_each_online_cpu(cpu)
5870		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5871}
5872
5873#define STAT_ATTR(si, text) 					\
5874static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5875{								\
5876	return show_stat(s, buf, si);				\
5877}								\
5878static ssize_t text##_store(struct kmem_cache *s,		\
5879				const char *buf, size_t length)	\
5880{								\
5881	if (buf[0] != '0')					\
5882		return -EINVAL;					\
5883	clear_stat(s, si);					\
5884	return length;						\
5885}								\
5886SLAB_ATTR(text);						\
5887
5888STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5889STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5890STAT_ATTR(FREE_FASTPATH, free_fastpath);
5891STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5892STAT_ATTR(FREE_FROZEN, free_frozen);
5893STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5894STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5895STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5896STAT_ATTR(ALLOC_SLAB, alloc_slab);
5897STAT_ATTR(ALLOC_REFILL, alloc_refill);
5898STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5899STAT_ATTR(FREE_SLAB, free_slab);
5900STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5901STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5902STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5903STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5904STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5905STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5906STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5907STAT_ATTR(ORDER_FALLBACK, order_fallback);
5908STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5909STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5910STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5911STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5912STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5913STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5914#endif	/* CONFIG_SLUB_STATS */
5915
5916#ifdef CONFIG_KFENCE
5917static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
5918{
5919	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
5920}
5921
5922static ssize_t skip_kfence_store(struct kmem_cache *s,
5923			const char *buf, size_t length)
5924{
5925	int ret = length;
5926
5927	if (buf[0] == '0')
5928		s->flags &= ~SLAB_SKIP_KFENCE;
5929	else if (buf[0] == '1')
5930		s->flags |= SLAB_SKIP_KFENCE;
5931	else
5932		ret = -EINVAL;
5933
5934	return ret;
5935}
5936SLAB_ATTR(skip_kfence);
5937#endif
5938
5939static struct attribute *slab_attrs[] = {
5940	&slab_size_attr.attr,
5941	&object_size_attr.attr,
5942	&objs_per_slab_attr.attr,
5943	&order_attr.attr,
5944	&min_partial_attr.attr,
5945	&cpu_partial_attr.attr,
5946	&objects_attr.attr,
5947	&objects_partial_attr.attr,
5948	&partial_attr.attr,
5949	&cpu_slabs_attr.attr,
5950	&ctor_attr.attr,
5951	&aliases_attr.attr,
5952	&align_attr.attr,
5953	&hwcache_align_attr.attr,
5954	&reclaim_account_attr.attr,
5955	&destroy_by_rcu_attr.attr,
5956	&shrink_attr.attr,
 
5957	&slabs_cpu_partial_attr.attr,
5958#ifdef CONFIG_SLUB_DEBUG
5959	&total_objects_attr.attr,
5960	&slabs_attr.attr,
5961	&sanity_checks_attr.attr,
5962	&trace_attr.attr,
5963	&red_zone_attr.attr,
5964	&poison_attr.attr,
5965	&store_user_attr.attr,
5966	&validate_attr.attr,
 
 
5967#endif
5968#ifdef CONFIG_ZONE_DMA
5969	&cache_dma_attr.attr,
5970#endif
5971#ifdef CONFIG_NUMA
5972	&remote_node_defrag_ratio_attr.attr,
5973#endif
5974#ifdef CONFIG_SLUB_STATS
5975	&alloc_fastpath_attr.attr,
5976	&alloc_slowpath_attr.attr,
5977	&free_fastpath_attr.attr,
5978	&free_slowpath_attr.attr,
5979	&free_frozen_attr.attr,
5980	&free_add_partial_attr.attr,
5981	&free_remove_partial_attr.attr,
5982	&alloc_from_partial_attr.attr,
5983	&alloc_slab_attr.attr,
5984	&alloc_refill_attr.attr,
5985	&alloc_node_mismatch_attr.attr,
5986	&free_slab_attr.attr,
5987	&cpuslab_flush_attr.attr,
5988	&deactivate_full_attr.attr,
5989	&deactivate_empty_attr.attr,
5990	&deactivate_to_head_attr.attr,
5991	&deactivate_to_tail_attr.attr,
5992	&deactivate_remote_frees_attr.attr,
5993	&deactivate_bypass_attr.attr,
5994	&order_fallback_attr.attr,
5995	&cmpxchg_double_fail_attr.attr,
5996	&cmpxchg_double_cpu_fail_attr.attr,
5997	&cpu_partial_alloc_attr.attr,
5998	&cpu_partial_free_attr.attr,
5999	&cpu_partial_node_attr.attr,
6000	&cpu_partial_drain_attr.attr,
6001#endif
6002#ifdef CONFIG_FAILSLAB
6003	&failslab_attr.attr,
6004#endif
6005#ifdef CONFIG_HARDENED_USERCOPY
6006	&usersize_attr.attr,
6007#endif
6008#ifdef CONFIG_KFENCE
6009	&skip_kfence_attr.attr,
6010#endif
6011
6012	NULL
6013};
6014
6015static const struct attribute_group slab_attr_group = {
6016	.attrs = slab_attrs,
6017};
6018
6019static ssize_t slab_attr_show(struct kobject *kobj,
6020				struct attribute *attr,
6021				char *buf)
6022{
6023	struct slab_attribute *attribute;
6024	struct kmem_cache *s;
 
6025
6026	attribute = to_slab_attr(attr);
6027	s = to_slab(kobj);
6028
6029	if (!attribute->show)
6030		return -EIO;
6031
6032	return attribute->show(s, buf);
 
 
6033}
6034
6035static ssize_t slab_attr_store(struct kobject *kobj,
6036				struct attribute *attr,
6037				const char *buf, size_t len)
6038{
6039	struct slab_attribute *attribute;
6040	struct kmem_cache *s;
 
6041
6042	attribute = to_slab_attr(attr);
6043	s = to_slab(kobj);
6044
6045	if (!attribute->store)
6046		return -EIO;
6047
6048	return attribute->store(s, buf, len);
 
 
6049}
6050
6051static void kmem_cache_release(struct kobject *k)
6052{
6053	slab_kmem_cache_release(to_slab(k));
 
 
 
6054}
6055
6056static const struct sysfs_ops slab_sysfs_ops = {
6057	.show = slab_attr_show,
6058	.store = slab_attr_store,
6059};
6060
6061static struct kobj_type slab_ktype = {
6062	.sysfs_ops = &slab_sysfs_ops,
6063	.release = kmem_cache_release,
6064};
6065
6066static struct kset *slab_kset;
6067
6068static inline struct kset *cache_kset(struct kmem_cache *s)
6069{
6070	return slab_kset;
 
 
 
 
6071}
6072
6073#define ID_STR_LENGTH 32
 
 
 
 
 
 
6074
6075/* Create a unique string id for a slab cache:
6076 *
6077 * Format	:[flags-]size
6078 */
6079static char *create_unique_id(struct kmem_cache *s)
6080{
6081	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6082	char *p = name;
6083
6084	if (!name)
6085		return ERR_PTR(-ENOMEM);
6086
6087	*p++ = ':';
6088	/*
6089	 * First flags affecting slabcache operations. We will only
6090	 * get here for aliasable slabs so we do not need to support
6091	 * too many flags. The flags here must cover all flags that
6092	 * are matched during merging to guarantee that the id is
6093	 * unique.
6094	 */
6095	if (s->flags & SLAB_CACHE_DMA)
6096		*p++ = 'd';
6097	if (s->flags & SLAB_CACHE_DMA32)
6098		*p++ = 'D';
6099	if (s->flags & SLAB_RECLAIM_ACCOUNT)
6100		*p++ = 'a';
6101	if (s->flags & SLAB_CONSISTENCY_CHECKS)
6102		*p++ = 'F';
6103	if (s->flags & SLAB_ACCOUNT)
6104		*p++ = 'A';
6105	if (p != name + 1)
6106		*p++ = '-';
6107	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6108
6109	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6110		kfree(name);
6111		return ERR_PTR(-EINVAL);
6112	}
6113	kmsan_unpoison_memory(name, p - name);
6114	return name;
6115}
6116
6117static int sysfs_slab_add(struct kmem_cache *s)
6118{
6119	int err;
6120	const char *name;
6121	struct kset *kset = cache_kset(s);
6122	int unmergeable = slab_unmergeable(s);
6123
6124	if (!unmergeable && disable_higher_order_debug &&
6125			(slub_debug & DEBUG_METADATA_FLAGS))
6126		unmergeable = 1;
6127
 
6128	if (unmergeable) {
6129		/*
6130		 * Slabcache can never be merged so we can use the name proper.
6131		 * This is typically the case for debug situations. In that
6132		 * case we can catch duplicate names easily.
6133		 */
6134		sysfs_remove_link(&slab_kset->kobj, s->name);
6135		name = s->name;
6136	} else {
6137		/*
6138		 * Create a unique name for the slab as a target
6139		 * for the symlinks.
6140		 */
6141		name = create_unique_id(s);
6142		if (IS_ERR(name))
6143			return PTR_ERR(name);
6144	}
6145
6146	s->kobj.kset = kset;
6147	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6148	if (err)
6149		goto out;
 
 
6150
6151	err = sysfs_create_group(&s->kobj, &slab_attr_group);
6152	if (err)
6153		goto out_del_kobj;
6154
 
 
 
6155	if (!unmergeable) {
6156		/* Setup first alias */
6157		sysfs_slab_alias(s, s->name);
6158	}
6159out:
6160	if (!unmergeable)
6161		kfree(name);
6162	return err;
6163out_del_kobj:
6164	kobject_del(&s->kobj);
6165	goto out;
6166}
6167
6168void sysfs_slab_unlink(struct kmem_cache *s)
6169{
6170	if (slab_state >= FULL)
6171		kobject_del(&s->kobj);
6172}
 
 
 
6173
6174void sysfs_slab_release(struct kmem_cache *s)
6175{
6176	if (slab_state >= FULL)
6177		kobject_put(&s->kobj);
6178}
6179
6180/*
6181 * Need to buffer aliases during bootup until sysfs becomes
6182 * available lest we lose that information.
6183 */
6184struct saved_alias {
6185	struct kmem_cache *s;
6186	const char *name;
6187	struct saved_alias *next;
6188};
6189
6190static struct saved_alias *alias_list;
6191
6192static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6193{
6194	struct saved_alias *al;
6195
6196	if (slab_state == FULL) {
6197		/*
6198		 * If we have a leftover link then remove it.
6199		 */
6200		sysfs_remove_link(&slab_kset->kobj, name);
6201		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6202	}
6203
6204	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6205	if (!al)
6206		return -ENOMEM;
6207
6208	al->s = s;
6209	al->name = name;
6210	al->next = alias_list;
6211	alias_list = al;
6212	kmsan_unpoison_memory(al, sizeof(*al));
6213	return 0;
6214}
6215
6216static int __init slab_sysfs_init(void)
6217{
6218	struct kmem_cache *s;
6219	int err;
6220
6221	mutex_lock(&slab_mutex);
6222
6223	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6224	if (!slab_kset) {
6225		mutex_unlock(&slab_mutex);
6226		pr_err("Cannot register slab subsystem.\n");
6227		return -ENOSYS;
6228	}
6229
6230	slab_state = FULL;
6231
6232	list_for_each_entry(s, &slab_caches, list) {
6233		err = sysfs_slab_add(s);
6234		if (err)
6235			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6236			       s->name);
6237	}
6238
6239	while (alias_list) {
6240		struct saved_alias *al = alias_list;
6241
6242		alias_list = alias_list->next;
6243		err = sysfs_slab_alias(al->s, al->name);
6244		if (err)
6245			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6246			       al->name);
6247		kfree(al);
6248	}
6249
6250	mutex_unlock(&slab_mutex);
 
6251	return 0;
6252}
6253late_initcall(slab_sysfs_init);
6254#endif /* SLAB_SUPPORTS_SYSFS */
6255
6256#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6257static int slab_debugfs_show(struct seq_file *seq, void *v)
6258{
6259	struct loc_track *t = seq->private;
6260	struct location *l;
6261	unsigned long idx;
6262
6263	idx = (unsigned long) t->idx;
6264	if (idx < t->count) {
6265		l = &t->loc[idx];
6266
6267		seq_printf(seq, "%7ld ", l->count);
6268
6269		if (l->addr)
6270			seq_printf(seq, "%pS", (void *)l->addr);
6271		else
6272			seq_puts(seq, "<not-available>");
6273
6274		if (l->waste)
6275			seq_printf(seq, " waste=%lu/%lu",
6276				l->count * l->waste, l->waste);
6277
6278		if (l->sum_time != l->min_time) {
6279			seq_printf(seq, " age=%ld/%llu/%ld",
6280				l->min_time, div_u64(l->sum_time, l->count),
6281				l->max_time);
6282		} else
6283			seq_printf(seq, " age=%ld", l->min_time);
6284
6285		if (l->min_pid != l->max_pid)
6286			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6287		else
6288			seq_printf(seq, " pid=%ld",
6289				l->min_pid);
6290
6291		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6292			seq_printf(seq, " cpus=%*pbl",
6293				 cpumask_pr_args(to_cpumask(l->cpus)));
6294
6295		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6296			seq_printf(seq, " nodes=%*pbl",
6297				 nodemask_pr_args(&l->nodes));
6298
6299#ifdef CONFIG_STACKDEPOT
6300		{
6301			depot_stack_handle_t handle;
6302			unsigned long *entries;
6303			unsigned int nr_entries, j;
6304
6305			handle = READ_ONCE(l->handle);
6306			if (handle) {
6307				nr_entries = stack_depot_fetch(handle, &entries);
6308				seq_puts(seq, "\n");
6309				for (j = 0; j < nr_entries; j++)
6310					seq_printf(seq, "        %pS\n", (void *)entries[j]);
6311			}
6312		}
6313#endif
6314		seq_puts(seq, "\n");
6315	}
6316
6317	if (!idx && !t->count)
6318		seq_puts(seq, "No data\n");
6319
6320	return 0;
6321}
6322
6323static void slab_debugfs_stop(struct seq_file *seq, void *v)
6324{
 
 
 
 
 
 
6325}
6326
6327static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6328{
6329	struct loc_track *t = seq->private;
6330
6331	t->idx = ++(*ppos);
6332	if (*ppos <= t->count)
6333		return ppos;
6334
6335	return NULL;
6336}
6337
6338static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6339{
6340	struct location *loc1 = (struct location *)a;
6341	struct location *loc2 = (struct location *)b;
6342
6343	if (loc1->count > loc2->count)
6344		return -1;
6345	else
6346		return 1;
6347}
6348
6349static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6350{
6351	struct loc_track *t = seq->private;
6352
6353	t->idx = *ppos;
6354	return ppos;
6355}
6356
6357static const struct seq_operations slab_debugfs_sops = {
6358	.start  = slab_debugfs_start,
6359	.next   = slab_debugfs_next,
6360	.stop   = slab_debugfs_stop,
6361	.show   = slab_debugfs_show,
6362};
6363
6364static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6365{
6366
6367	struct kmem_cache_node *n;
6368	enum track_item alloc;
 
 
 
6369	int node;
6370	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6371						sizeof(struct loc_track));
6372	struct kmem_cache *s = file_inode(filep)->i_private;
6373	unsigned long *obj_map;
6374
6375	if (!t)
6376		return -ENOMEM;
6377
6378	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6379	if (!obj_map) {
6380		seq_release_private(inode, filep);
6381		return -ENOMEM;
6382	}
6383
6384	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6385		alloc = TRACK_ALLOC;
6386	else
6387		alloc = TRACK_FREE;
6388
6389	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6390		bitmap_free(obj_map);
6391		seq_release_private(inode, filep);
6392		return -ENOMEM;
6393	}
6394
6395	for_each_kmem_cache_node(s, node, n) {
6396		unsigned long flags;
6397		struct slab *slab;
6398
6399		if (!atomic_long_read(&n->nr_slabs))
6400			continue;
6401
6402		spin_lock_irqsave(&n->list_lock, flags);
6403		list_for_each_entry(slab, &n->partial, slab_list)
6404			process_slab(t, s, slab, alloc, obj_map);
6405		list_for_each_entry(slab, &n->full, slab_list)
6406			process_slab(t, s, slab, alloc, obj_map);
6407		spin_unlock_irqrestore(&n->list_lock, flags);
6408	}
6409
6410	/* Sort locations by count */
6411	sort_r(t->loc, t->count, sizeof(struct location),
6412		cmp_loc_by_count, NULL, NULL);
6413
6414	bitmap_free(obj_map);
 
 
 
 
 
 
6415	return 0;
6416}
6417
6418static int slab_debug_trace_release(struct inode *inode, struct file *file)
6419{
6420	struct seq_file *seq = file->private_data;
6421	struct loc_track *t = seq->private;
6422
6423	free_loc_track(t);
6424	return seq_release_private(inode, file);
6425}
6426
6427static const struct file_operations slab_debugfs_fops = {
6428	.open    = slab_debug_trace_open,
6429	.read    = seq_read,
6430	.llseek  = seq_lseek,
6431	.release = slab_debug_trace_release,
6432};
6433
6434static void debugfs_slab_add(struct kmem_cache *s)
6435{
6436	struct dentry *slab_cache_dir;
6437
6438	if (unlikely(!slab_debugfs_root))
6439		return;
6440
6441	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6442
6443	debugfs_create_file("alloc_traces", 0400,
6444		slab_cache_dir, s, &slab_debugfs_fops);
6445
6446	debugfs_create_file("free_traces", 0400,
6447		slab_cache_dir, s, &slab_debugfs_fops);
6448}
6449
6450void debugfs_slab_release(struct kmem_cache *s)
6451{
6452	debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
6453}
 
 
6454
6455static int __init slab_debugfs_init(void)
6456{
6457	struct kmem_cache *s;
6458
6459	slab_debugfs_root = debugfs_create_dir("slab", NULL);
6460
6461	list_for_each_entry(s, &slab_caches, list)
6462		if (s->flags & SLAB_STORE_USER)
6463			debugfs_slab_add(s);
6464
6465	return 0;
6466
6467}
6468__initcall(slab_debugfs_init);
6469#endif
6470/*
6471 * The /proc/slabinfo ABI
6472 */
6473#ifdef CONFIG_SLUB_DEBUG
6474void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6475{
6476	unsigned long nr_slabs = 0;
6477	unsigned long nr_objs = 0;
6478	unsigned long nr_free = 0;
6479	int node;
6480	struct kmem_cache_node *n;
6481
6482	for_each_kmem_cache_node(s, node, n) {
6483		nr_slabs += node_nr_slabs(n);
6484		nr_objs += node_nr_objs(n);
6485		nr_free += count_partial(n, count_free);
6486	}
6487
6488	sinfo->active_objs = nr_objs - nr_free;
6489	sinfo->num_objs = nr_objs;
6490	sinfo->active_slabs = nr_slabs;
6491	sinfo->num_slabs = nr_slabs;
6492	sinfo->objects_per_slab = oo_objects(s->oo);
6493	sinfo->cache_order = oo_order(s->oo);
6494}
6495
6496void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6497{
6498}
6499
6500ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6501		       size_t count, loff_t *ppos)
6502{
6503	return -EIO;
6504}
6505#endif /* CONFIG_SLUB_DEBUG */
v3.5.6
 
   1/*
   2 * SLUB: A slab allocator that limits cache line use instead of queuing
   3 * objects in per cpu and per node lists.
   4 *
   5 * The allocator synchronizes using per slab locks or atomic operatios
   6 * and only uses a centralized lock to manage a pool of partial slabs.
   7 *
   8 * (C) 2007 SGI, Christoph Lameter
   9 * (C) 2011 Linux Foundation, Christoph Lameter
  10 */
  11
  12#include <linux/mm.h>
  13#include <linux/swap.h> /* struct reclaim_state */
  14#include <linux/module.h>
  15#include <linux/bit_spinlock.h>
  16#include <linux/interrupt.h>
 
  17#include <linux/bitops.h>
  18#include <linux/slab.h>
 
  19#include <linux/proc_fs.h>
  20#include <linux/seq_file.h>
  21#include <linux/kmemcheck.h>
 
  22#include <linux/cpu.h>
  23#include <linux/cpuset.h>
  24#include <linux/mempolicy.h>
  25#include <linux/ctype.h>
 
  26#include <linux/debugobjects.h>
  27#include <linux/kallsyms.h>
 
  28#include <linux/memory.h>
  29#include <linux/math64.h>
  30#include <linux/fault-inject.h>
  31#include <linux/stacktrace.h>
  32#include <linux/prefetch.h>
 
 
 
 
 
  33
 
  34#include <trace/events/kmem.h>
  35
 
 
  36/*
  37 * Lock order:
  38 *   1. slub_lock (Global Semaphore)
  39 *   2. node->list_lock
  40 *   3. slab_lock(page) (Only on some arches and for debugging)
 
 
  41 *
  42 *   slub_lock
  43 *
  44 *   The role of the slub_lock is to protect the list of all the slabs
  45 *   and to synchronize major metadata changes to slab cache structures.
 
 
 
 
 
 
 
 
 
  46 *
  47 *   The slab_lock is only used for debugging and on arches that do not
  48 *   have the ability to do a cmpxchg_double. It only protects the second
  49 *   double word in the page struct. Meaning
  50 *	A. page->freelist	-> List of object free in a page
  51 *	B. page->counters	-> Counters of objects
  52 *	C. page->frozen		-> frozen state
  53 *
  54 *   If a slab is frozen then it is exempt from list management. It is not
  55 *   on any list. The processor that froze the slab is the one who can
  56 *   perform list operations on the page. Other processors may put objects
  57 *   onto the freelist but the processor that froze the slab is the only
  58 *   one that can retrieve the objects from the page's freelist.
 
 
 
  59 *
  60 *   The list_lock protects the partial and full list on each node and
  61 *   the partial slab counter. If taken then no new slabs may be added or
  62 *   removed from the lists nor make the number of partial slabs be modified.
  63 *   (Note that the total number of slabs is an atomic value that may be
  64 *   modified without taking the list lock).
  65 *
  66 *   The list_lock is a centralized lock and thus we avoid taking it as
  67 *   much as possible. As long as SLUB does not have to handle partial
  68 *   slabs, operations can continue without any centralized lock. F.e.
  69 *   allocating a long series of objects that fill up slabs does not require
  70 *   the list lock.
  71 *   Interrupts are disabled during allocation and deallocation in order to
  72 *   make the slab allocator safe to use in the context of an irq. In addition
  73 *   interrupts are disabled to ensure that the processor does not change
  74 *   while handling per_cpu slabs, due to kernel preemption.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  75 *
  76 * SLUB assigns one slab for allocation to each processor.
  77 * Allocations only occur from these slabs called cpu slabs.
  78 *
  79 * Slabs with free elements are kept on a partial list and during regular
  80 * operations no list for full slabs is used. If an object in a full slab is
  81 * freed then the slab will show up again on the partial lists.
  82 * We track full slabs for debugging purposes though because otherwise we
  83 * cannot scan all objects.
  84 *
  85 * Slabs are freed when they become empty. Teardown and setup is
  86 * minimal so we rely on the page allocators per cpu caches for
  87 * fast frees and allocs.
  88 *
  89 * Overloading of page flags that are otherwise used for LRU management.
  90 *
  91 * PageActive 		The slab is frozen and exempt from list processing.
  92 * 			This means that the slab is dedicated to a purpose
  93 * 			such as satisfying allocations for a specific
  94 * 			processor. Objects may be freed in the slab while
  95 * 			it is frozen but slab_free will then skip the usual
  96 * 			list operations. It is up to the processor holding
  97 * 			the slab to integrate the slab into the slab lists
  98 * 			when the slab is no longer needed.
  99 *
 100 * 			One use of this flag is to mark slabs that are
 101 * 			used for allocations. Then such a slab becomes a cpu
 102 * 			slab. The cpu slab may be equipped with an additional
 103 * 			freelist that allows lockless access to
 104 * 			free objects in addition to the regular freelist
 105 * 			that requires the slab lock.
 106 *
 107 * PageError		Slab requires special handling due to debug
 108 * 			options set. This moves	slab handling out of
 109 * 			the fast path and disables lockless freelists.
 110 */
 111
 112#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
 113		SLAB_TRACE | SLAB_DEBUG_FREE)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114
 115static inline int kmem_cache_debug(struct kmem_cache *s)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 116{
 117#ifdef CONFIG_SLUB_DEBUG
 118	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 119#else
 120	return 0;
 121#endif
 122}
 123
 124/*
 125 * Issues still to be resolved:
 126 *
 127 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 128 *
 129 * - Variable sizing of the per node arrays
 130 */
 131
 132/* Enable to test recovery from slab corruption on boot */
 133#undef SLUB_RESILIENCY_TEST
 134
 135/* Enable to log cmpxchg failures */
 136#undef SLUB_DEBUG_CMPXCHG
 137
 
 138/*
 139 * Mininum number of partial slabs. These will be left on the partial
 140 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 141 */
 142#define MIN_PARTIAL 5
 143
 144/*
 145 * Maximum number of desirable partial slabs.
 146 * The existence of more partial slabs makes kmem_cache_shrink
 147 * sort the partial list by the number of objects in the.
 148 */
 149#define MAX_PARTIAL 10
 
 
 
 
 150
 151#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
 152				SLAB_POISON | SLAB_STORE_USER)
 153
 154/*
 
 
 
 
 
 
 
 
 155 * Debugging flags that require metadata to be stored in the slab.  These get
 156 * disabled when slub_debug=O is used and a cache's min order increases with
 157 * metadata.
 158 */
 159#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
 160
 161/*
 162 * Set of flags that will prevent slab merging
 163 */
 164#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
 165		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
 166		SLAB_FAILSLAB)
 167
 168#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
 169		SLAB_CACHE_DMA | SLAB_NOTRACK)
 170
 171#define OO_SHIFT	16
 172#define OO_MASK		((1 << OO_SHIFT) - 1)
 173#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
 174
 175/* Internal SLUB flags */
 176#define __OBJECT_POISON		0x80000000UL /* Poison object */
 177#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
 178
 179static int kmem_size = sizeof(struct kmem_cache);
 180
 181#ifdef CONFIG_SMP
 182static struct notifier_block slab_notifier;
 183#endif
 184
 185static enum {
 186	DOWN,		/* No slab functionality available */
 187	PARTIAL,	/* Kmem_cache_node works */
 188	UP,		/* Everything works but does not show up in sysfs */
 189	SYSFS		/* Sysfs up */
 190} slab_state = DOWN;
 191
 192/* A list of all slab caches on the system */
 193static DECLARE_RWSEM(slub_lock);
 194static LIST_HEAD(slab_caches);
 195
 196/*
 197 * Tracking user of a slab.
 198 */
 199#define TRACK_ADDRS_COUNT 16
 200struct track {
 201	unsigned long addr;	/* Called from address */
 202#ifdef CONFIG_STACKTRACE
 203	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
 204#endif
 205	int cpu;		/* Was running on cpu */
 206	int pid;		/* Pid context */
 207	unsigned long when;	/* When did the operation occur */
 208};
 209
 210enum track_item { TRACK_ALLOC, TRACK_FREE };
 211
 212#ifdef CONFIG_SYSFS
 213static int sysfs_slab_add(struct kmem_cache *);
 214static int sysfs_slab_alias(struct kmem_cache *, const char *);
 215static void sysfs_slab_remove(struct kmem_cache *);
 216
 217#else
 218static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
 219static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
 220							{ return 0; }
 221static inline void sysfs_slab_remove(struct kmem_cache *s)
 222{
 223	kfree(s->name);
 224	kfree(s);
 225}
 226
 
 
 
 
 227#endif
 228
 229static inline void stat(const struct kmem_cache *s, enum stat_item si)
 230{
 231#ifdef CONFIG_SLUB_STATS
 232	__this_cpu_inc(s->cpu_slab->stat[si]);
 
 
 
 
 233#endif
 234}
 235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 236/********************************************************************
 237 * 			Core slab cache functions
 238 *******************************************************************/
 239
 240int slab_is_available(void)
 241{
 242	return slab_state >= UP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 243}
 244
 245static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
 
 
 246{
 247	return s->node[node];
 248}
 249
 250/* Verify that a pointer has an address that is valid within a slab page */
 251static inline int check_valid_pointer(struct kmem_cache *s,
 252				struct page *page, const void *object)
 253{
 254	void *base;
 255
 256	if (!object)
 257		return 1;
 258
 259	base = page_address(page);
 260	if (object < base || object >= base + page->objects * s->size ||
 261		(object - base) % s->size) {
 262		return 0;
 263	}
 264
 265	return 1;
 266}
 267
 268static inline void *get_freepointer(struct kmem_cache *s, void *object)
 269{
 270	return *(void **)(object + s->offset);
 
 271}
 272
 
 273static void prefetch_freepointer(const struct kmem_cache *s, void *object)
 274{
 275	prefetch(object + s->offset);
 276}
 
 277
 
 
 
 
 
 
 
 
 
 
 
 278static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
 279{
 
 280	void *p;
 281
 282#ifdef CONFIG_DEBUG_PAGEALLOC
 283	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
 284#else
 285	p = get_freepointer(s, object);
 286#endif
 287	return p;
 
 288}
 289
 290static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
 291{
 292	*(void **)(object + s->offset) = fp;
 
 
 
 
 
 
 
 293}
 294
 295/* Loop over all objects in a slab */
 296#define for_each_object(__p, __s, __addr, __objects) \
 297	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
 298			__p += (__s)->size)
 
 299
 300/* Determine object index from a given position */
 301static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
 302{
 303	return (p - addr) / s->size;
 304}
 305
 306static inline size_t slab_ksize(const struct kmem_cache *s)
 
 307{
 308#ifdef CONFIG_SLUB_DEBUG
 309	/*
 310	 * Debugging requires use of the padding between object
 311	 * and whatever may come after it.
 312	 */
 313	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
 314		return s->objsize;
 315
 316#endif
 317	/*
 318	 * If we have the need to store the freelist pointer
 319	 * back there or track user information then we can
 320	 * only use the space before that information.
 321	 */
 322	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
 323		return s->inuse;
 324	/*
 325	 * Else we can use all the padding etc for the allocation
 326	 */
 327	return s->size;
 328}
 329
 330static inline int order_objects(int order, unsigned long size, int reserved)
 331{
 332	return ((PAGE_SIZE << order) - reserved) / size;
 333}
 334
 335static inline struct kmem_cache_order_objects oo_make(int order,
 336		unsigned long size, int reserved)
 337{
 338	struct kmem_cache_order_objects x = {
 339		(order << OO_SHIFT) + order_objects(order, size, reserved)
 340	};
 341
 342	return x;
 343}
 344
 345static inline int oo_order(struct kmem_cache_order_objects x)
 
 346{
 347	return x.x >> OO_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 348}
 349
 350static inline int oo_objects(struct kmem_cache_order_objects x)
 
 351{
 352	return x.x & OO_MASK;
 353}
 
 354
 355/*
 356 * Per slab locking using the pagelock
 357 */
 358static __always_inline void slab_lock(struct page *page)
 359{
 
 
 
 360	bit_spin_lock(PG_locked, &page->flags);
 361}
 362
 363static __always_inline void slab_unlock(struct page *page)
 364{
 
 
 
 365	__bit_spin_unlock(PG_locked, &page->flags);
 366}
 367
 368/* Interrupts must be disabled (for the fallback code to work right) */
 369static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 
 
 
 
 
 
 370		void *freelist_old, unsigned long counters_old,
 371		void *freelist_new, unsigned long counters_new,
 372		const char *n)
 373{
 374	VM_BUG_ON(!irqs_disabled());
 
 375#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 376    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 377	if (s->flags & __CMPXCHG_DOUBLE) {
 378		if (cmpxchg_double(&page->freelist, &page->counters,
 379			freelist_old, counters_old,
 380			freelist_new, counters_new))
 381		return 1;
 382	} else
 383#endif
 384	{
 385		slab_lock(page);
 386		if (page->freelist == freelist_old && page->counters == counters_old) {
 387			page->freelist = freelist_new;
 388			page->counters = counters_new;
 389			slab_unlock(page);
 390			return 1;
 
 391		}
 392		slab_unlock(page);
 393	}
 394
 395	cpu_relax();
 396	stat(s, CMPXCHG_DOUBLE_FAIL);
 397
 398#ifdef SLUB_DEBUG_CMPXCHG
 399	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
 400#endif
 401
 402	return 0;
 403}
 404
 405static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 406		void *freelist_old, unsigned long counters_old,
 407		void *freelist_new, unsigned long counters_new,
 408		const char *n)
 409{
 410#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 411    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 412	if (s->flags & __CMPXCHG_DOUBLE) {
 413		if (cmpxchg_double(&page->freelist, &page->counters,
 414			freelist_old, counters_old,
 415			freelist_new, counters_new))
 416		return 1;
 417	} else
 418#endif
 419	{
 420		unsigned long flags;
 421
 422		local_irq_save(flags);
 423		slab_lock(page);
 424		if (page->freelist == freelist_old && page->counters == counters_old) {
 425			page->freelist = freelist_new;
 426			page->counters = counters_new;
 427			slab_unlock(page);
 
 428			local_irq_restore(flags);
 429			return 1;
 430		}
 431		slab_unlock(page);
 432		local_irq_restore(flags);
 433	}
 434
 435	cpu_relax();
 436	stat(s, CMPXCHG_DOUBLE_FAIL);
 437
 438#ifdef SLUB_DEBUG_CMPXCHG
 439	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
 440#endif
 441
 442	return 0;
 443}
 444
 445#ifdef CONFIG_SLUB_DEBUG
 446/*
 447 * Determine a map of object in use on a page.
 448 *
 449 * Node listlock must be held to guarantee that the page does
 450 * not vanish from under us.
 451 */
 452static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
 453{
 
 454	void *p;
 455	void *addr = page_address(page);
 456
 457	for (p = page->freelist; p; p = get_freepointer(s, p))
 458		set_bit(slab_index(p, s, addr), map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 459}
 460
 461/*
 462 * Debug settings:
 463 */
 464#ifdef CONFIG_SLUB_DEBUG_ON
 465static int slub_debug = DEBUG_DEFAULT_FLAGS;
 466#else
 467static int slub_debug;
 468#endif
 469
 470static char *slub_debug_slabs;
 471static int disable_higher_order_debug;
 472
 473/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 474 * Object debugging
 475 */
 476static void print_section(char *text, u8 *addr, unsigned int length)
 
 
 
 477{
 478	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
 479			length, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 480}
 481
 482static struct track *get_track(struct kmem_cache *s, void *object,
 483	enum track_item alloc)
 484{
 485	struct track *p;
 486
 487	if (s->offset)
 488		p = object + s->offset + sizeof(void *);
 489	else
 490		p = object + s->inuse;
 491
 492	return p + alloc;
 493}
 494
 495static void set_track(struct kmem_cache *s, void *object,
 496			enum track_item alloc, unsigned long addr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 497{
 498	struct track *p = get_track(s, object, alloc);
 499
 500	if (addr) {
 501#ifdef CONFIG_STACKTRACE
 502		struct stack_trace trace;
 503		int i;
 504
 505		trace.nr_entries = 0;
 506		trace.max_entries = TRACK_ADDRS_COUNT;
 507		trace.entries = p->addrs;
 508		trace.skip = 3;
 509		save_stack_trace(&trace);
 510
 511		/* See rant in lockdep.c */
 512		if (trace.nr_entries != 0 &&
 513		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
 514			trace.nr_entries--;
 515
 516		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
 517			p->addrs[i] = 0;
 518#endif
 519		p->addr = addr;
 520		p->cpu = smp_processor_id();
 521		p->pid = current->pid;
 522		p->when = jiffies;
 523	} else
 524		memset(p, 0, sizeof(struct track));
 525}
 526
 527static void init_tracking(struct kmem_cache *s, void *object)
 528{
 
 
 529	if (!(s->flags & SLAB_STORE_USER))
 530		return;
 531
 532	set_track(s, object, TRACK_FREE, 0UL);
 533	set_track(s, object, TRACK_ALLOC, 0UL);
 534}
 535
 536static void print_track(const char *s, struct track *t)
 537{
 
 
 538	if (!t->addr)
 539		return;
 540
 541	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
 542		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
 543#ifdef CONFIG_STACKTRACE
 544	{
 545		int i;
 546		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
 547			if (t->addrs[i])
 548				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
 549			else
 550				break;
 551	}
 552#endif
 553}
 554
 555static void print_tracking(struct kmem_cache *s, void *object)
 556{
 
 557	if (!(s->flags & SLAB_STORE_USER))
 558		return;
 559
 560	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
 561	print_track("Freed", get_track(s, object, TRACK_FREE));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 562}
 563
 564static void print_page_info(struct page *page)
 565{
 566	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
 567		page, page->objects, page->inuse, page->freelist, page->flags);
 
 
 
 
 
 568
 
 
 
 
 
 
 569}
 570
 571static void slab_bug(struct kmem_cache *s, char *fmt, ...)
 572{
 
 573	va_list args;
 574	char buf[100];
 575
 576	va_start(args, fmt);
 577	vsnprintf(buf, sizeof(buf), fmt, args);
 
 
 
 
 578	va_end(args);
 579	printk(KERN_ERR "========================================"
 580			"=====================================\n");
 581	printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
 582	printk(KERN_ERR "----------------------------------------"
 583			"-------------------------------------\n\n");
 584}
 585
 
 586static void slab_fix(struct kmem_cache *s, char *fmt, ...)
 587{
 
 588	va_list args;
 589	char buf[100];
 
 
 590
 591	va_start(args, fmt);
 592	vsnprintf(buf, sizeof(buf), fmt, args);
 
 
 593	va_end(args);
 594	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
 595}
 596
 597static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
 598{
 599	unsigned int off;	/* Offset of last byte */
 600	u8 *addr = page_address(page);
 601
 602	print_tracking(s, p);
 603
 604	print_page_info(page);
 605
 606	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
 607			p, p - addr, get_freepointer(s, p));
 608
 609	if (p > addr + 16)
 610		print_section("Bytes b4 ", p - 16, 16);
 
 
 
 611
 612	print_section("Object ", p, min_t(unsigned long, s->objsize,
 613				PAGE_SIZE));
 614	if (s->flags & SLAB_RED_ZONE)
 615		print_section("Redzone ", p + s->objsize,
 616			s->inuse - s->objsize);
 617
 618	if (s->offset)
 619		off = s->offset + sizeof(void *);
 620	else
 621		off = s->inuse;
 622
 623	if (s->flags & SLAB_STORE_USER)
 624		off += 2 * sizeof(struct track);
 625
 626	if (off != s->size)
 
 
 
 
 
 627		/* Beginning of the filler is the free pointer */
 628		print_section("Padding ", p + off, s->size - off);
 
 629
 630	dump_stack();
 631}
 632
 633static void object_err(struct kmem_cache *s, struct page *page,
 634			u8 *object, char *reason)
 635{
 
 
 
 636	slab_bug(s, "%s", reason);
 637	print_trailer(s, page, object);
 
 638}
 639
 640static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 641{
 642	va_list args;
 643	char buf[100];
 644
 
 
 
 645	va_start(args, fmt);
 646	vsnprintf(buf, sizeof(buf), fmt, args);
 647	va_end(args);
 648	slab_bug(s, "%s", buf);
 649	print_page_info(page);
 650	dump_stack();
 
 651}
 652
 653static void init_object(struct kmem_cache *s, void *object, u8 val)
 654{
 655	u8 *p = object;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 656
 657	if (s->flags & __OBJECT_POISON) {
 658		memset(p, POISON_FREE, s->objsize - 1);
 659		p[s->objsize - 1] = POISON_END;
 660	}
 661
 662	if (s->flags & SLAB_RED_ZONE)
 663		memset(p + s->objsize, val, s->inuse - s->objsize);
 664}
 665
 666static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
 667						void *from, void *to)
 668{
 669	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
 670	memset(from, data, to - from);
 671}
 672
 673static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
 674			u8 *object, char *what,
 675			u8 *start, unsigned int value, unsigned int bytes)
 676{
 677	u8 *fault;
 678	u8 *end;
 
 679
 680	fault = memchr_inv(start, value, bytes);
 
 
 681	if (!fault)
 682		return 1;
 683
 684	end = start + bytes;
 685	while (end > fault && end[-1] == value)
 686		end--;
 687
 
 
 
 688	slab_bug(s, "%s overwritten", what);
 689	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
 690					fault, end - 1, fault[0], value);
 691	print_trailer(s, page, object);
 
 
 692
 
 693	restore_bytes(s, what, value, fault, end);
 694	return 0;
 695}
 696
 697/*
 698 * Object layout:
 699 *
 700 * object address
 701 * 	Bytes of the object to be managed.
 702 * 	If the freepointer may overlay the object then the free
 703 * 	pointer is the first word of the object.
 704 *
 705 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 706 * 	0xa5 (POISON_END)
 707 *
 708 * object + s->objsize
 709 * 	Padding to reach word boundary. This is also used for Redzoning.
 710 * 	Padding is extended by another word if Redzoning is enabled and
 711 * 	objsize == inuse.
 712 *
 713 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 714 * 	0xcc (RED_ACTIVE) for objects in use.
 715 *
 716 * object + s->inuse
 717 * 	Meta data starts here.
 718 *
 719 * 	A. Free pointer (if we cannot overwrite object on free)
 720 * 	B. Tracking data for SLAB_STORE_USER
 721 * 	C. Padding to reach required alignment boundary or at mininum
 
 722 * 		one word if debugging is on to be able to detect writes
 723 * 		before the word boundary.
 724 *
 725 *	Padding is done using 0x5a (POISON_INUSE)
 726 *
 727 * object + s->size
 728 * 	Nothing is used beyond s->size.
 729 *
 730 * If slabcaches are merged then the objsize and inuse boundaries are mostly
 731 * ignored. And therefore no slab options that rely on these boundaries
 732 * may be used with merged slabcaches.
 733 */
 734
 735static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
 736{
 737	unsigned long off = s->inuse;	/* The end of info */
 738
 739	if (s->offset)
 740		/* Freepointer is placed after the object. */
 741		off += sizeof(void *);
 742
 743	if (s->flags & SLAB_STORE_USER)
 744		/* We also have user information there */
 745		off += 2 * sizeof(struct track);
 746
 747	if (s->size == off)
 
 
 
 
 
 
 748		return 1;
 749
 750	return check_bytes_and_report(s, page, p, "Object padding",
 751				p + off, POISON_INUSE, s->size - off);
 752}
 753
 754/* Check the pad bytes at the end of a slab page */
 755static int slab_pad_check(struct kmem_cache *s, struct page *page)
 756{
 757	u8 *start;
 758	u8 *fault;
 759	u8 *end;
 
 760	int length;
 761	int remainder;
 762
 763	if (!(s->flags & SLAB_POISON))
 764		return 1;
 765
 766	start = page_address(page);
 767	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
 768	end = start + length;
 769	remainder = length % s->size;
 770	if (!remainder)
 771		return 1;
 772
 773	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
 
 
 
 774	if (!fault)
 775		return 1;
 776	while (end > fault && end[-1] == POISON_INUSE)
 777		end--;
 778
 779	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
 780	print_section("Padding ", end - remainder, remainder);
 
 781
 782	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
 783	return 0;
 784}
 785
 786static int check_object(struct kmem_cache *s, struct page *page,
 787					void *object, u8 val)
 788{
 789	u8 *p = object;
 790	u8 *endobject = object + s->objsize;
 
 791
 792	if (s->flags & SLAB_RED_ZONE) {
 793		if (!check_bytes_and_report(s, page, object, "Redzone",
 794			endobject, val, s->inuse - s->objsize))
 795			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 796	} else {
 797		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
 798			check_bytes_and_report(s, page, p, "Alignment padding",
 799				endobject, POISON_INUSE, s->inuse - s->objsize);
 
 800		}
 801	}
 802
 803	if (s->flags & SLAB_POISON) {
 804		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
 805			(!check_bytes_and_report(s, page, p, "Poison", p,
 806					POISON_FREE, s->objsize - 1) ||
 807			 !check_bytes_and_report(s, page, p, "Poison",
 808				p + s->objsize - 1, POISON_END, 1)))
 809			return 0;
 810		/*
 811		 * check_pad_bytes cleans up on its own.
 812		 */
 813		check_pad_bytes(s, page, p);
 814	}
 815
 816	if (!s->offset && val == SLUB_RED_ACTIVE)
 817		/*
 818		 * Object and freepointer overlap. Cannot check
 819		 * freepointer while object is allocated.
 820		 */
 821		return 1;
 822
 823	/* Check free pointer validity */
 824	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
 825		object_err(s, page, p, "Freepointer corrupt");
 826		/*
 827		 * No choice but to zap it and thus lose the remainder
 828		 * of the free objects in this slab. May cause
 829		 * another error because the object count is now wrong.
 830		 */
 831		set_freepointer(s, p, NULL);
 832		return 0;
 833	}
 834	return 1;
 835}
 836
 837static int check_slab(struct kmem_cache *s, struct page *page)
 838{
 839	int maxobj;
 840
 841	VM_BUG_ON(!irqs_disabled());
 842
 843	if (!PageSlab(page)) {
 844		slab_err(s, page, "Not a valid slab page");
 845		return 0;
 846	}
 847
 848	maxobj = order_objects(compound_order(page), s->size, s->reserved);
 849	if (page->objects > maxobj) {
 850		slab_err(s, page, "objects %u > max %u",
 851			s->name, page->objects, maxobj);
 852		return 0;
 853	}
 854	if (page->inuse > page->objects) {
 855		slab_err(s, page, "inuse %u > max %u",
 856			s->name, page->inuse, page->objects);
 857		return 0;
 858	}
 859	/* Slab_pad_check fixes things up after itself */
 860	slab_pad_check(s, page);
 861	return 1;
 862}
 863
 864/*
 865 * Determine if a certain object on a page is on the freelist. Must hold the
 866 * slab lock to guarantee that the chains are in a consistent state.
 867 */
 868static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
 869{
 870	int nr = 0;
 871	void *fp;
 872	void *object = NULL;
 873	unsigned long max_objects;
 874
 875	fp = page->freelist;
 876	while (fp && nr <= page->objects) {
 877		if (fp == search)
 878			return 1;
 879		if (!check_valid_pointer(s, page, fp)) {
 880			if (object) {
 881				object_err(s, page, object,
 882					"Freechain corrupt");
 883				set_freepointer(s, object, NULL);
 884				break;
 885			} else {
 886				slab_err(s, page, "Freepointer corrupt");
 887				page->freelist = NULL;
 888				page->inuse = page->objects;
 889				slab_fix(s, "Freelist cleared");
 890				return 0;
 891			}
 892			break;
 893		}
 894		object = fp;
 895		fp = get_freepointer(s, object);
 896		nr++;
 897	}
 898
 899	max_objects = order_objects(compound_order(page), s->size, s->reserved);
 900	if (max_objects > MAX_OBJS_PER_PAGE)
 901		max_objects = MAX_OBJS_PER_PAGE;
 902
 903	if (page->objects != max_objects) {
 904		slab_err(s, page, "Wrong number of objects. Found %d but "
 905			"should be %d", page->objects, max_objects);
 906		page->objects = max_objects;
 907		slab_fix(s, "Number of objects adjusted.");
 908	}
 909	if (page->inuse != page->objects - nr) {
 910		slab_err(s, page, "Wrong object count. Counter is %d but "
 911			"counted were %d", page->inuse, page->objects - nr);
 912		page->inuse = page->objects - nr;
 913		slab_fix(s, "Object count adjusted.");
 914	}
 915	return search == NULL;
 916}
 917
 918static void trace(struct kmem_cache *s, struct page *page, void *object,
 919								int alloc)
 920{
 921	if (s->flags & SLAB_TRACE) {
 922		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
 923			s->name,
 924			alloc ? "alloc" : "free",
 925			object, page->inuse,
 926			page->freelist);
 927
 928		if (!alloc)
 929			print_section("Object ", (void *)object, s->objsize);
 
 930
 931		dump_stack();
 932	}
 933}
 934
 935/*
 936 * Hooks for other subsystems that check memory allocations. In a typical
 937 * production configuration these hooks all should produce no code at all.
 938 */
 939static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
 940{
 941	flags &= gfp_allowed_mask;
 942	lockdep_trace_alloc(flags);
 943	might_sleep_if(flags & __GFP_WAIT);
 944
 945	return should_failslab(s->objsize, flags, s->flags);
 946}
 947
 948static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
 949{
 950	flags &= gfp_allowed_mask;
 951	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
 952	kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
 953}
 954
 955static inline void slab_free_hook(struct kmem_cache *s, void *x)
 956{
 957	kmemleak_free_recursive(x, s->flags);
 958
 959	/*
 960	 * Trouble is that we may no longer disable interupts in the fast path
 961	 * So in order to make the debug calls that expect irqs to be
 962	 * disabled we need to disable interrupts temporarily.
 963	 */
 964#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
 965	{
 966		unsigned long flags;
 967
 968		local_irq_save(flags);
 969		kmemcheck_slab_free(s, x, s->objsize);
 970		debug_check_no_locks_freed(x, s->objsize);
 971		local_irq_restore(flags);
 972	}
 973#endif
 974	if (!(s->flags & SLAB_DEBUG_OBJECTS))
 975		debug_check_no_obj_freed(x, s->objsize);
 976}
 977
 978/*
 979 * Tracking of fully allocated slabs for debugging purposes.
 980 *
 981 * list_lock must be held.
 982 */
 983static void add_full(struct kmem_cache *s,
 984	struct kmem_cache_node *n, struct page *page)
 985{
 986	if (!(s->flags & SLAB_STORE_USER))
 987		return;
 988
 989	list_add(&page->lru, &n->full);
 
 990}
 991
 992/*
 993 * list_lock must be held.
 994 */
 995static void remove_full(struct kmem_cache *s, struct page *page)
 996{
 997	if (!(s->flags & SLAB_STORE_USER))
 998		return;
 999
1000	list_del(&page->lru);
 
1001}
1002
1003/* Tracking of the number of slabs for debugging purposes */
1004static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1005{
1006	struct kmem_cache_node *n = get_node(s, node);
1007
1008	return atomic_long_read(&n->nr_slabs);
1009}
1010
1011static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1012{
1013	return atomic_long_read(&n->nr_slabs);
1014}
1015
1016static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1017{
1018	struct kmem_cache_node *n = get_node(s, node);
1019
1020	/*
1021	 * May be called early in order to allocate a slab for the
1022	 * kmem_cache_node structure. Solve the chicken-egg
1023	 * dilemma by deferring the increment of the count during
1024	 * bootstrap (see early_kmem_cache_node_alloc).
1025	 */
1026	if (n) {
1027		atomic_long_inc(&n->nr_slabs);
1028		atomic_long_add(objects, &n->total_objects);
1029	}
1030}
1031static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1032{
1033	struct kmem_cache_node *n = get_node(s, node);
1034
1035	atomic_long_dec(&n->nr_slabs);
1036	atomic_long_sub(objects, &n->total_objects);
1037}
1038
1039/* Object debug checks for alloc/free paths */
1040static void setup_object_debug(struct kmem_cache *s, struct page *page,
1041								void *object)
1042{
1043	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1044		return;
1045
1046	init_object(s, object, SLUB_RED_INACTIVE);
1047	init_tracking(s, object);
1048}
1049
1050static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1051					void *object, unsigned long addr)
1052{
1053	if (!check_slab(s, page))
1054		goto bad;
 
 
 
 
 
1055
1056	if (!check_valid_pointer(s, page, object)) {
1057		object_err(s, page, object, "Freelist Pointer check fails");
1058		goto bad;
 
 
 
 
 
 
1059	}
1060
1061	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1062		goto bad;
 
 
 
1063
1064	/* Success perform special debug activities for allocs */
1065	if (s->flags & SLAB_STORE_USER)
1066		set_track(s, object, TRACK_ALLOC, addr);
1067	trace(s, page, object, 1);
 
 
 
 
 
 
 
1068	init_object(s, object, SLUB_RED_ACTIVE);
1069	return 1;
1070
1071bad:
1072	if (PageSlab(page)) {
1073		/*
1074		 * If this is a slab page then lets do the best we can
1075		 * to avoid issues in the future. Marking all objects
1076		 * as used avoids touching the remaining objects.
1077		 */
1078		slab_fix(s, "Marking all objects used");
1079		page->inuse = page->objects;
1080		page->freelist = NULL;
1081	}
1082	return 0;
1083}
1084
1085static noinline int free_debug_processing(struct kmem_cache *s,
1086		 struct page *page, void *object, unsigned long addr)
1087{
1088	unsigned long flags;
1089	int rc = 0;
1090
1091	local_irq_save(flags);
1092	slab_lock(page);
1093
1094	if (!check_slab(s, page))
1095		goto fail;
1096
1097	if (!check_valid_pointer(s, page, object)) {
1098		slab_err(s, page, "Invalid object pointer 0x%p", object);
1099		goto fail;
1100	}
1101
1102	if (on_freelist(s, page, object)) {
1103		object_err(s, page, object, "Object already free");
1104		goto fail;
1105	}
1106
1107	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1108		goto out;
1109
1110	if (unlikely(s != page->slab)) {
1111		if (!PageSlab(page)) {
1112			slab_err(s, page, "Attempt to free object(0x%p) "
1113				"outside of slab", object);
1114		} else if (!page->slab) {
1115			printk(KERN_ERR
1116				"SLUB <none>: no slab for object 0x%p.\n",
1117						object);
1118			dump_stack();
1119		} else
1120			object_err(s, page, object,
1121					"page slab pointer corrupt.");
1122		goto fail;
1123	}
1124
1125	if (s->flags & SLAB_STORE_USER)
1126		set_track(s, object, TRACK_FREE, addr);
1127	trace(s, page, object, 0);
1128	init_object(s, object, SLUB_RED_INACTIVE);
1129	rc = 1;
1130out:
1131	slab_unlock(page);
1132	local_irq_restore(flags);
1133	return rc;
1134
1135fail:
1136	slab_fix(s, "Object at 0x%p not freed", object);
1137	goto out;
1138}
1139
1140static int __init setup_slub_debug(char *str)
 
 
 
 
 
 
 
 
 
 
 
1141{
1142	slub_debug = DEBUG_DEFAULT_FLAGS;
1143	if (*str++ != '=' || !*str)
1144		/*
1145		 * No options specified. Switch on full debugging.
1146		 */
1147		goto out;
1148
1149	if (*str == ',')
1150		/*
1151		 * No options but restriction on slabs. This means full
1152		 * debugging for slabs matching a pattern.
1153		 */
 
1154		goto check_slabs;
1155
1156	if (tolower(*str) == 'o') {
1157		/*
1158		 * Avoid enabling debugging on caches if its minimum order
1159		 * would increase as a result.
1160		 */
1161		disable_higher_order_debug = 1;
1162		goto out;
1163	}
 
1164
1165	slub_debug = 0;
1166	if (*str == '-')
1167		/*
1168		 * Switch off all debugging measures.
1169		 */
1170		goto out;
1171
1172	/*
1173	 * Determine which debug features should be switched on
1174	 */
1175	for (; *str && *str != ','; str++) {
1176		switch (tolower(*str)) {
 
 
 
1177		case 'f':
1178			slub_debug |= SLAB_DEBUG_FREE;
1179			break;
1180		case 'z':
1181			slub_debug |= SLAB_RED_ZONE;
1182			break;
1183		case 'p':
1184			slub_debug |= SLAB_POISON;
1185			break;
1186		case 'u':
1187			slub_debug |= SLAB_STORE_USER;
1188			break;
1189		case 't':
1190			slub_debug |= SLAB_TRACE;
1191			break;
1192		case 'a':
1193			slub_debug |= SLAB_FAILSLAB;
 
 
 
 
 
 
 
1194			break;
1195		default:
1196			printk(KERN_ERR "slub_debug option '%c' "
1197				"unknown. skipped\n", *str);
1198		}
1199	}
1200
1201check_slabs:
1202	if (*str == ',')
1203		slub_debug_slabs = str + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1204out:
 
 
 
 
 
 
 
 
 
 
 
1205	return 1;
1206}
1207
1208__setup("slub_debug", setup_slub_debug);
1209
1210static unsigned long kmem_cache_flags(unsigned long objsize,
1211	unsigned long flags, const char *name,
1212	void (*ctor)(void *))
1213{
1214	/*
1215	 * Enable debugging if selected on the kernel commandline.
1216	 */
1217	if (slub_debug && (!slub_debug_slabs ||
1218		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1219		flags |= slub_debug;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1220
1221	return flags;
1222}
1223#else
1224static inline void setup_object_debug(struct kmem_cache *s,
1225			struct page *page, void *object) {}
 
1226
1227static inline int alloc_debug_processing(struct kmem_cache *s,
1228	struct page *page, void *object, unsigned long addr) { return 0; }
1229
1230static inline int free_debug_processing(struct kmem_cache *s,
1231	struct page *page, void *object, unsigned long addr) { return 0; }
 
1232
1233static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1234			{ return 1; }
1235static inline int check_object(struct kmem_cache *s, struct page *page,
1236			void *object, u8 val) { return 1; }
 
 
 
1237static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1238					struct page *page) {}
1239static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1240static inline unsigned long kmem_cache_flags(unsigned long objsize,
1241	unsigned long flags, const char *name,
1242	void (*ctor)(void *))
1243{
1244	return flags;
1245}
1246#define slub_debug 0
1247
1248#define disable_higher_order_debug 0
1249
1250static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1251							{ return 0; }
1252static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1253							{ return 0; }
1254static inline void inc_slabs_node(struct kmem_cache *s, int node,
1255							int objects) {}
1256static inline void dec_slabs_node(struct kmem_cache *s, int node,
1257							int objects) {}
1258
1259static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1260							{ return 0; }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1261
1262static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1263		void *object) {}
1264
1265static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
 
1266
1267#endif /* CONFIG_SLUB_DEBUG */
 
 
 
 
 
 
 
 
 
 
1268
1269/*
1270 * Slab allocation and freeing
1271 */
1272static inline struct page *alloc_slab_page(gfp_t flags, int node,
1273					struct kmem_cache_order_objects oo)
1274{
1275	int order = oo_order(oo);
1276
1277	flags |= __GFP_NOTRACK;
1278
1279	if (node == NUMA_NO_NODE)
1280		return alloc_pages(flags, order);
1281	else
1282		return alloc_pages_exact_node(node, flags, order);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1283}
1284
1285static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
 
 
 
 
1286{
1287	struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1288	struct kmem_cache_order_objects oo = s->oo;
1289	gfp_t alloc_gfp;
 
 
 
1290
1291	flags &= gfp_allowed_mask;
1292
1293	if (flags & __GFP_WAIT)
1294		local_irq_enable();
1295
1296	flags |= s->allocflags;
1297
1298	/*
1299	 * Let the initial higher-order allocation fail under memory pressure
1300	 * so we fall-back to the minimum order allocation.
1301	 */
1302	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
 
 
1303
1304	page = alloc_slab_page(alloc_gfp, node, oo);
1305	if (unlikely(!page)) {
1306		oo = s->min;
 
1307		/*
1308		 * Allocation may have failed due to fragmentation.
1309		 * Try a lower order alloc if possible
1310		 */
1311		page = alloc_slab_page(flags, node, oo);
 
 
 
 
1312
1313		if (page)
1314			stat(s, ORDER_FALLBACK);
1315	}
1316
1317	if (flags & __GFP_WAIT)
1318		local_irq_disable();
1319
1320	if (!page)
1321		return NULL;
1322
1323	if (kmemcheck_enabled
1324		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1325		int pages = 1 << oo_order(oo);
1326
1327		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1328
1329		/*
1330		 * Objects from caches that have a constructor don't get
1331		 * cleared when they're allocated, so we need to do it here.
1332		 */
1333		if (s->ctor)
1334			kmemcheck_mark_uninitialized_pages(page, pages);
1335		else
1336			kmemcheck_mark_unallocated_pages(page, pages);
1337	}
1338
1339	page->objects = oo_objects(oo);
1340	mod_zone_page_state(page_zone(page),
1341		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1342		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1343		1 << oo_order(oo));
1344
1345	return page;
1346}
 
 
 
 
 
 
 
 
 
 
1347
1348static void setup_object(struct kmem_cache *s, struct page *page,
1349				void *object)
1350{
1351	setup_object_debug(s, page, object);
1352	if (unlikely(s->ctor))
1353		s->ctor(object);
1354}
1355
1356static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1357{
1358	struct page *page;
1359	void *start;
1360	void *last;
1361	void *p;
1362
1363	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1364
1365	page = allocate_slab(s,
1366		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1367	if (!page)
1368		goto out;
1369
1370	inc_slabs_node(s, page_to_nid(page), page->objects);
1371	page->slab = s;
1372	__SetPageSlab(page);
1373
1374	start = page_address(page);
1375
1376	if (unlikely(s->flags & SLAB_POISON))
1377		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1378
1379	last = start;
1380	for_each_object(p, s, start, page->objects) {
1381		setup_object(s, page, last);
1382		set_freepointer(s, last, p);
1383		last = p;
1384	}
1385	setup_object(s, page, last);
1386	set_freepointer(s, last, NULL);
1387
1388	page->freelist = start;
1389	page->inuse = page->objects;
1390	page->frozen = 1;
1391out:
1392	return page;
1393}
1394
1395static void __free_slab(struct kmem_cache *s, struct page *page)
1396{
1397	int order = compound_order(page);
 
1398	int pages = 1 << order;
1399
1400	if (kmem_cache_debug(s)) {
1401		void *p;
1402
1403		slab_pad_check(s, page);
1404		for_each_object(p, s, page_address(page),
1405						page->objects)
1406			check_object(s, page, p, SLUB_RED_INACTIVE);
1407	}
1408
1409	kmemcheck_free_shadow(page, compound_order(page));
1410
1411	mod_zone_page_state(page_zone(page),
1412		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1413		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1414		-pages);
1415
1416	__ClearPageSlab(page);
1417	reset_page_mapcount(page);
1418	if (current->reclaim_state)
1419		current->reclaim_state->reclaimed_slab += pages;
1420	__free_pages(page, order);
 
1421}
1422
1423#define need_reserve_slab_rcu						\
1424	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1425
1426static void rcu_free_slab(struct rcu_head *h)
1427{
1428	struct page *page;
1429
1430	if (need_reserve_slab_rcu)
1431		page = virt_to_head_page(h);
1432	else
1433		page = container_of((struct list_head *)h, struct page, lru);
1434
1435	__free_slab(page->slab, page);
1436}
1437
1438static void free_slab(struct kmem_cache *s, struct page *page)
1439{
1440	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1441		struct rcu_head *head;
1442
1443		if (need_reserve_slab_rcu) {
1444			int order = compound_order(page);
1445			int offset = (PAGE_SIZE << order) - s->reserved;
 
1446
1447			VM_BUG_ON(s->reserved != sizeof(*head));
1448			head = page_address(page) + offset;
1449		} else {
1450			/*
1451			 * RCU free overloads the RCU head over the LRU
1452			 */
1453			head = (void *)&page->lru;
1454		}
1455
1456		call_rcu(head, rcu_free_slab);
1457	} else
1458		__free_slab(s, page);
1459}
1460
1461static void discard_slab(struct kmem_cache *s, struct page *page)
1462{
1463	dec_slabs_node(s, page_to_nid(page), page->objects);
1464	free_slab(s, page);
1465}
1466
1467/*
1468 * Management of partially allocated slabs.
1469 *
1470 * list_lock must be held.
1471 */
1472static inline void add_partial(struct kmem_cache_node *n,
1473				struct page *page, int tail)
1474{
1475	n->nr_partial++;
1476	if (tail == DEACTIVATE_TO_TAIL)
1477		list_add_tail(&page->lru, &n->partial);
1478	else
1479		list_add(&page->lru, &n->partial);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1480}
1481
1482/*
1483 * list_lock must be held.
 
 
 
1484 */
1485static inline void remove_partial(struct kmem_cache_node *n,
1486					struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1487{
1488	list_del(&page->lru);
1489	n->nr_partial--;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1490}
1491
1492/*
1493 * Lock slab, remove from the partial list and put the object into the
1494 * per cpu freelist.
1495 *
1496 * Returns a list of objects or NULL if it fails.
1497 *
1498 * Must hold list_lock.
1499 */
1500static inline void *acquire_slab(struct kmem_cache *s,
1501		struct kmem_cache_node *n, struct page *page,
1502		int mode)
1503{
1504	void *freelist;
1505	unsigned long counters;
1506	struct page new;
 
 
1507
1508	/*
1509	 * Zap the freelist and set the frozen bit.
1510	 * The old freelist is the list of objects for the
1511	 * per cpu allocation list.
1512	 */
1513	do {
1514		freelist = page->freelist;
1515		counters = page->counters;
1516		new.counters = counters;
1517		if (mode) {
1518			new.inuse = page->objects;
1519			new.freelist = NULL;
1520		} else {
1521			new.freelist = freelist;
1522		}
1523
1524		VM_BUG_ON(new.frozen);
1525		new.frozen = 1;
1526
1527	} while (!__cmpxchg_double_slab(s, page,
1528			freelist, counters,
1529			new.freelist, new.counters,
1530			"lock and freeze"));
 
1531
1532	remove_partial(n, page);
 
1533	return freelist;
1534}
1535
1536static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
 
 
 
 
 
 
1537
1538/*
1539 * Try to allocate a partial slab from a specific node.
1540 */
1541static void *get_partial_node(struct kmem_cache *s,
1542		struct kmem_cache_node *n, struct kmem_cache_cpu *c)
1543{
1544	struct page *page, *page2;
1545	void *object = NULL;
 
 
1546
1547	/*
1548	 * Racy check. If we mistakenly see no partial slabs then we
1549	 * just allocate an empty slab. If we mistakenly try to get a
1550	 * partial slab and there is none available then get_partials()
1551	 * will return NULL.
1552	 */
1553	if (!n || !n->nr_partial)
1554		return NULL;
1555
1556	spin_lock(&n->list_lock);
1557	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1558		void *t = acquire_slab(s, n, page, object == NULL);
1559		int available;
1560
 
 
 
 
 
 
 
 
 
 
 
 
1561		if (!t)
1562			break;
1563
1564		if (!object) {
1565			c->page = page;
1566			c->node = page_to_nid(page);
1567			stat(s, ALLOC_FROM_PARTIAL);
1568			object = t;
1569			available =  page->objects - page->inuse;
1570		} else {
1571			available = put_cpu_partial(s, page, 0);
1572			stat(s, CPU_PARTIAL_NODE);
 
1573		}
1574		if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
 
 
1575			break;
 
 
 
1576
1577	}
1578	spin_unlock(&n->list_lock);
1579	return object;
1580}
1581
1582/*
1583 * Get a page from somewhere. Search in increasing NUMA distances.
1584 */
1585static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1586		struct kmem_cache_cpu *c)
1587{
1588#ifdef CONFIG_NUMA
1589	struct zonelist *zonelist;
1590	struct zoneref *z;
1591	struct zone *zone;
1592	enum zone_type high_zoneidx = gfp_zone(flags);
1593	void *object;
1594	unsigned int cpuset_mems_cookie;
1595
1596	/*
1597	 * The defrag ratio allows a configuration of the tradeoffs between
1598	 * inter node defragmentation and node local allocations. A lower
1599	 * defrag_ratio increases the tendency to do local allocations
1600	 * instead of attempting to obtain partial slabs from other nodes.
1601	 *
1602	 * If the defrag_ratio is set to 0 then kmalloc() always
1603	 * returns node local objects. If the ratio is higher then kmalloc()
1604	 * may return off node objects because partial slabs are obtained
1605	 * from other nodes and filled up.
1606	 *
1607	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1608	 * defrag_ratio = 1000) then every (well almost) allocation will
1609	 * first attempt to defrag slab caches on other nodes. This means
1610	 * scanning over all nodes to look for partial slabs which may be
1611	 * expensive if we do it every time we are trying to find a slab
1612	 * with available objects.
1613	 */
1614	if (!s->remote_node_defrag_ratio ||
1615			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1616		return NULL;
1617
1618	do {
1619		cpuset_mems_cookie = get_mems_allowed();
1620		zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1621		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1622			struct kmem_cache_node *n;
1623
1624			n = get_node(s, zone_to_nid(zone));
1625
1626			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1627					n->nr_partial > s->min_partial) {
1628				object = get_partial_node(s, n, c);
1629				if (object) {
1630					/*
1631					 * Return the object even if
1632					 * put_mems_allowed indicated that
1633					 * the cpuset mems_allowed was
1634					 * updated in parallel. It's a
1635					 * harmless race between the alloc
1636					 * and the cpuset update.
1637					 */
1638					put_mems_allowed(cpuset_mems_cookie);
1639					return object;
1640				}
1641			}
1642		}
1643	} while (!put_mems_allowed(cpuset_mems_cookie));
1644#endif
1645	return NULL;
1646}
1647
1648/*
1649 * Get a partial page, lock it and return it.
1650 */
1651static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1652		struct kmem_cache_cpu *c)
1653{
1654	void *object;
1655	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
 
 
 
1656
1657	object = get_partial_node(s, get_node(s, searchnode), c);
1658	if (object || node != NUMA_NO_NODE)
1659		return object;
1660
1661	return get_any_partial(s, flags, c);
1662}
1663
1664#ifdef CONFIG_PREEMPT
 
 
1665/*
1666 * Calculate the next globally unique transaction for disambiguiation
1667 * during cmpxchg. The transactions start with the cpu number and are then
1668 * incremented by CONFIG_NR_CPUS.
1669 */
1670#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1671#else
1672/*
1673 * No preemption supported therefore also no need to check for
1674 * different cpus.
1675 */
1676#define TID_STEP 1
1677#endif
1678
1679static inline unsigned long next_tid(unsigned long tid)
1680{
1681	return tid + TID_STEP;
1682}
1683
 
1684static inline unsigned int tid_to_cpu(unsigned long tid)
1685{
1686	return tid % TID_STEP;
1687}
1688
1689static inline unsigned long tid_to_event(unsigned long tid)
1690{
1691	return tid / TID_STEP;
1692}
 
1693
1694static inline unsigned int init_tid(int cpu)
1695{
1696	return cpu;
1697}
1698
1699static inline void note_cmpxchg_failure(const char *n,
1700		const struct kmem_cache *s, unsigned long tid)
1701{
1702#ifdef SLUB_DEBUG_CMPXCHG
1703	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1704
1705	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1706
1707#ifdef CONFIG_PREEMPT
1708	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1709		printk("due to cpu change %d -> %d\n",
1710			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1711	else
1712#endif
1713	if (tid_to_event(tid) != tid_to_event(actual_tid))
1714		printk("due to cpu running other code. Event %ld->%ld\n",
1715			tid_to_event(tid), tid_to_event(actual_tid));
1716	else
1717		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1718			actual_tid, tid, next_tid(tid));
1719#endif
1720	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1721}
1722
1723void init_kmem_cache_cpus(struct kmem_cache *s)
1724{
1725	int cpu;
 
1726
1727	for_each_possible_cpu(cpu)
1728		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
 
 
 
1729}
1730
1731/*
1732 * Remove the cpu slab
 
 
 
1733 */
1734static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
 
1735{
1736	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1737	struct page *page = c->page;
1738	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1739	int lock = 0;
1740	enum slab_modes l = M_NONE, m = M_NONE;
1741	void *freelist;
1742	void *nextfree;
1743	int tail = DEACTIVATE_TO_HEAD;
1744	struct page new;
1745	struct page old;
 
1746
1747	if (page->freelist) {
1748		stat(s, DEACTIVATE_REMOTE_FREES);
1749		tail = DEACTIVATE_TO_TAIL;
1750	}
1751
1752	c->tid = next_tid(c->tid);
1753	c->page = NULL;
1754	freelist = c->freelist;
1755	c->freelist = NULL;
1756
1757	/*
1758	 * Stage one: Free all available per cpu objects back
1759	 * to the page freelist while it is still frozen. Leave the
1760	 * last one.
1761	 *
1762	 * There is no need to take the list->lock because the page
1763	 * is still frozen.
1764	 */
1765	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1766		void *prior;
1767		unsigned long counters;
 
1768
1769		do {
1770			prior = page->freelist;
1771			counters = page->counters;
1772			set_freepointer(s, freelist, prior);
1773			new.counters = counters;
1774			new.inuse--;
1775			VM_BUG_ON(!new.frozen);
1776
1777		} while (!__cmpxchg_double_slab(s, page,
1778			prior, counters,
1779			freelist, new.counters,
1780			"drain percpu freelist"));
1781
1782		freelist = nextfree;
1783	}
1784
1785	/*
1786	 * Stage two: Ensure that the page is unfrozen while the
1787	 * list presence reflects the actual number of objects
1788	 * during unfreeze.
1789	 *
1790	 * We setup the list membership and then perform a cmpxchg
1791	 * with the count. If there is a mismatch then the page
1792	 * is not unfrozen but the page is on the wrong list.
1793	 *
1794	 * Then we restart the process which may have to remove
1795	 * the page from the list that we just put it on again
1796	 * because the number of objects in the slab may have
1797	 * changed.
1798	 */
1799redo:
1800
1801	old.freelist = page->freelist;
1802	old.counters = page->counters;
1803	VM_BUG_ON(!old.frozen);
1804
1805	/* Determine target state of the slab */
1806	new.counters = old.counters;
1807	if (freelist) {
1808		new.inuse--;
1809		set_freepointer(s, freelist, old.freelist);
1810		new.freelist = freelist;
1811	} else
1812		new.freelist = old.freelist;
1813
1814	new.frozen = 0;
1815
1816	if (!new.inuse && n->nr_partial > s->min_partial)
1817		m = M_FREE;
1818	else if (new.freelist) {
1819		m = M_PARTIAL;
1820		if (!lock) {
1821			lock = 1;
1822			/*
1823			 * Taking the spinlock removes the possiblity
1824			 * that acquire_slab() will see a slab page that
1825			 * is frozen
1826			 */
1827			spin_lock(&n->list_lock);
1828		}
1829	} else {
1830		m = M_FULL;
1831		if (kmem_cache_debug(s) && !lock) {
1832			lock = 1;
1833			/*
1834			 * This also ensures that the scanning of full
1835			 * slabs from diagnostic functions will not see
1836			 * any frozen slabs.
1837			 */
1838			spin_lock(&n->list_lock);
1839		}
1840	}
1841
1842	if (l != m) {
1843
1844		if (l == M_PARTIAL)
1845
1846			remove_partial(n, page);
1847
1848		else if (l == M_FULL)
1849
1850			remove_full(s, page);
1851
1852		if (m == M_PARTIAL) {
1853
1854			add_partial(n, page, tail);
1855			stat(s, tail);
1856
1857		} else if (m == M_FULL) {
1858
1859			stat(s, DEACTIVATE_FULL);
1860			add_full(s, n, page);
1861
1862		}
1863	}
1864
1865	l = m;
1866	if (!__cmpxchg_double_slab(s, page,
1867				old.freelist, old.counters,
1868				new.freelist, new.counters,
1869				"unfreezing slab"))
 
 
1870		goto redo;
 
1871
1872	if (lock)
1873		spin_unlock(&n->list_lock);
1874
1875	if (m == M_FREE) {
 
 
 
 
1876		stat(s, DEACTIVATE_EMPTY);
1877		discard_slab(s, page);
1878		stat(s, FREE_SLAB);
 
 
1879	}
1880}
1881
1882/* Unfreeze all the cpu partial slabs */
1883static void unfreeze_partials(struct kmem_cache *s)
1884{
1885	struct kmem_cache_node *n = NULL;
1886	struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1887	struct page *page, *discard_page = NULL;
 
 
 
 
 
 
 
1888
1889	while ((page = c->partial)) {
1890		enum slab_modes { M_PARTIAL, M_FREE };
1891		enum slab_modes l, m;
1892		struct page new;
1893		struct page old;
1894
1895		c->partial = page->next;
1896		l = M_FREE;
 
1897
1898		do {
1899
1900			old.freelist = page->freelist;
1901			old.counters = page->counters;
1902			VM_BUG_ON(!old.frozen);
1903
1904			new.counters = old.counters;
1905			new.freelist = old.freelist;
1906
1907			new.frozen = 0;
1908
1909			if (!new.inuse && (!n || n->nr_partial > s->min_partial))
1910				m = M_FREE;
1911			else {
1912				struct kmem_cache_node *n2 = get_node(s,
1913							page_to_nid(page));
1914
1915				m = M_PARTIAL;
1916				if (n != n2) {
1917					if (n)
1918						spin_unlock(&n->list_lock);
1919
1920					n = n2;
1921					spin_lock(&n->list_lock);
1922				}
1923			}
1924
1925			if (l != m) {
1926				if (l == M_PARTIAL) {
1927					remove_partial(n, page);
1928					stat(s, FREE_REMOVE_PARTIAL);
1929				} else {
1930					add_partial(n, page,
1931						DEACTIVATE_TO_TAIL);
1932					stat(s, FREE_ADD_PARTIAL);
1933				}
1934
1935				l = m;
1936			}
1937
1938		} while (!cmpxchg_double_slab(s, page,
1939				old.freelist, old.counters,
1940				new.freelist, new.counters,
1941				"unfreezing slab"));
1942
1943		if (m == M_FREE) {
1944			page->next = discard_page;
1945			discard_page = page;
 
 
 
1946		}
1947	}
1948
1949	if (n)
1950		spin_unlock(&n->list_lock);
1951
1952	while (discard_page) {
1953		page = discard_page;
1954		discard_page = discard_page->next;
1955
1956		stat(s, DEACTIVATE_EMPTY);
1957		discard_slab(s, page);
1958		stat(s, FREE_SLAB);
1959	}
1960}
1961
1962/*
1963 * Put a page that was just frozen (in __slab_free) into a partial page
1964 * slot if available. This is done without interrupts disabled and without
1965 * preemption disabled. The cmpxchg is racy and may put the partial page
1966 * onto a random cpus partial slot.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1967 *
1968 * If we did not find a slot then simply move all the partials to the
1969 * per node partial list.
1970 */
1971int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1972{
1973	struct page *oldpage;
1974	int pages;
1975	int pobjects;
 
 
 
 
 
1976
1977	do {
1978		pages = 0;
1979		pobjects = 0;
1980		oldpage = this_cpu_read(s->cpu_slab->partial);
1981
1982		if (oldpage) {
1983			pobjects = oldpage->pobjects;
1984			pages = oldpage->pages;
1985			if (drain && pobjects > s->cpu_partial) {
1986				unsigned long flags;
1987				/*
1988				 * partial array is full. Move the existing
1989				 * set to the per node partial list.
1990				 */
1991				local_irq_save(flags);
1992				unfreeze_partials(s);
1993				local_irq_restore(flags);
1994				pobjects = 0;
1995				pages = 0;
1996				stat(s, CPU_PARTIAL_DRAIN);
1997			}
1998		}
 
 
 
1999
2000		pages++;
2001		pobjects += page->objects - page->inuse;
2002
2003		page->pages = pages;
2004		page->pobjects = pobjects;
2005		page->next = oldpage;
2006
2007	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
2008	return pobjects;
 
 
 
 
2009}
2010
 
 
 
 
 
 
 
 
2011static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2012{
2013	stat(s, CPUSLAB_FLUSH);
2014	deactivate_slab(s, c);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2015}
2016
 
 
 
 
 
 
2017/*
2018 * Flush cpu slab.
2019 *
2020 * Called from IPI handler with interrupts disabled.
2021 */
2022static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2023{
2024	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
 
 
 
 
 
 
 
2025
2026	if (likely(c)) {
2027		if (c->page)
2028			flush_slab(s, c);
2029
2030		unfreeze_partials(s);
2031	}
2032}
2033
2034static void flush_cpu_slab(void *d)
2035{
2036	struct kmem_cache *s = d;
2037
2038	__flush_cpu_slab(s, smp_processor_id());
2039}
2040
2041static bool has_cpu_slab(int cpu, void *info)
 
 
 
2042{
2043	struct kmem_cache *s = info;
2044	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2045
2046	return c->page || c->partial;
2047}
2048
2049static void flush_all(struct kmem_cache *s)
2050{
2051	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2052}
2053
 
 
 
 
 
 
 
2054/*
2055 * Check if the objects in a per cpu structure fit numa
2056 * locality expectations.
2057 */
2058static inline int node_match(struct kmem_cache_cpu *c, int node)
2059{
2060#ifdef CONFIG_NUMA
2061	if (node != NUMA_NO_NODE && c->node != node)
2062		return 0;
2063#endif
2064	return 1;
2065}
2066
2067static int count_free(struct page *page)
 
2068{
2069	return page->objects - page->inuse;
2070}
2071
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2072static unsigned long count_partial(struct kmem_cache_node *n,
2073					int (*get_count)(struct page *))
2074{
2075	unsigned long flags;
2076	unsigned long x = 0;
2077	struct page *page;
2078
2079	spin_lock_irqsave(&n->list_lock, flags);
2080	list_for_each_entry(page, &n->partial, lru)
2081		x += get_count(page);
2082	spin_unlock_irqrestore(&n->list_lock, flags);
2083	return x;
2084}
 
2085
2086static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2087{
2088#ifdef CONFIG_SLUB_DEBUG
2089	return atomic_long_read(&n->total_objects);
2090#else
2091	return 0;
2092#endif
2093}
2094
2095static noinline void
2096slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2097{
 
 
2098	int node;
 
 
 
 
2099
2100	printk(KERN_WARNING
2101		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2102		nid, gfpflags);
2103	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2104		"default order: %d, min order: %d\n", s->name, s->objsize,
2105		s->size, oo_order(s->oo), oo_order(s->min));
2106
2107	if (oo_order(s->min) > get_order(s->objsize))
2108		printk(KERN_WARNING "  %s debugging increased min order, use "
2109		       "slub_debug=O to disable.\n", s->name);
2110
2111	for_each_online_node(node) {
2112		struct kmem_cache_node *n = get_node(s, node);
2113		unsigned long nr_slabs;
2114		unsigned long nr_objs;
2115		unsigned long nr_free;
2116
2117		if (!n)
2118			continue;
2119
2120		nr_free  = count_partial(n, count_free);
2121		nr_slabs = node_nr_slabs(n);
2122		nr_objs  = node_nr_objs(n);
2123
2124		printk(KERN_WARNING
2125			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2126			node, nr_slabs, nr_objs, nr_free);
2127	}
2128}
 
 
 
 
2129
2130static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2131			int node, struct kmem_cache_cpu **pc)
2132{
2133	void *object;
2134	struct kmem_cache_cpu *c;
2135	struct page *page = new_slab(s, flags, node);
2136
2137	if (page) {
2138		c = __this_cpu_ptr(s->cpu_slab);
2139		if (c->page)
2140			flush_slab(s, c);
2141
2142		/*
2143		 * No other reference to the page yet so we can
2144		 * muck around with it freely without cmpxchg
2145		 */
2146		object = page->freelist;
2147		page->freelist = NULL;
2148
2149		stat(s, ALLOC_SLAB);
2150		c->node = page_to_nid(page);
2151		c->page = page;
2152		*pc = c;
2153	} else
2154		object = NULL;
2155
2156	return object;
2157}
2158
 
2159/*
2160 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2161 * or deactivate the page.
2162 *
2163 * The page is still frozen if the return value is not NULL.
2164 *
2165 * If this function returns NULL then the page has been unfrozen.
2166 */
2167static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2168{
2169	struct page new;
2170	unsigned long counters;
2171	void *freelist;
2172
 
 
2173	do {
2174		freelist = page->freelist;
2175		counters = page->counters;
 
2176		new.counters = counters;
2177		VM_BUG_ON(!new.frozen);
2178
2179		new.inuse = page->objects;
2180		new.frozen = freelist != NULL;
2181
2182	} while (!cmpxchg_double_slab(s, page,
2183		freelist, counters,
2184		NULL, new.counters,
2185		"get_freelist"));
2186
2187	return freelist;
2188}
2189
2190/*
2191 * Slow path. The lockless freelist is empty or we need to perform
2192 * debugging duties.
2193 *
2194 * Processing is still very fast if new objects have been freed to the
2195 * regular freelist. In that case we simply take over the regular freelist
2196 * as the lockless freelist and zap the regular freelist.
2197 *
2198 * If that is not working then we fall back to the partial lists. We take the
2199 * first element of the freelist as the object to allocate now and move the
2200 * rest of the freelist to the lockless freelist.
2201 *
2202 * And if we were unable to get a new slab from the partial slab lists then
2203 * we need to allocate a new slab. This is the slowest path since it involves
2204 * a call to the page allocator and the setup of a new slab.
 
 
 
2205 */
2206static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2207			  unsigned long addr, struct kmem_cache_cpu *c)
2208{
2209	void **object;
 
2210	unsigned long flags;
 
 
 
2211
2212	local_irq_save(flags);
2213#ifdef CONFIG_PREEMPT
2214	/*
2215	 * We may have been preempted and rescheduled on a different
2216	 * cpu before disabling interrupts. Need to reload cpu area
2217	 * pointer.
2218	 */
2219	c = this_cpu_ptr(s->cpu_slab);
2220#endif
2221
2222	if (!c->page)
 
 
 
 
 
 
 
 
2223		goto new_slab;
 
2224redo:
2225	if (unlikely(!node_match(c, node))) {
2226		stat(s, ALLOC_NODE_MISMATCH);
2227		deactivate_slab(s, c);
2228		goto new_slab;
 
 
 
 
 
 
 
 
2229	}
2230
2231	/* must check again c->freelist in case of cpu migration or IRQ */
2232	object = c->freelist;
2233	if (object)
 
 
 
 
 
 
 
 
 
 
 
 
 
2234		goto load_freelist;
2235
2236	stat(s, ALLOC_SLOWPATH);
2237
2238	object = get_freelist(s, c->page);
2239
2240	if (!object) {
2241		c->page = NULL;
 
 
2242		stat(s, DEACTIVATE_BYPASS);
2243		goto new_slab;
2244	}
2245
2246	stat(s, ALLOC_REFILL);
2247
2248load_freelist:
2249	c->freelist = get_freepointer(s, object);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2250	c->tid = next_tid(c->tid);
2251	local_irq_restore(flags);
2252	return object;
2253
2254new_slab:
2255
2256	if (c->partial) {
2257		c->page = c->partial;
2258		c->partial = c->page->next;
2259		c->node = page_to_nid(c->page);
 
 
 
 
 
 
 
 
 
 
 
2260		stat(s, CPU_PARTIAL_ALLOC);
2261		c->freelist = NULL;
2262		goto redo;
2263	}
2264
2265	/* Then do expensive stuff like retrieving pages from the partial lists */
2266	object = get_partial(s, gfpflags, node, c);
2267
2268	if (unlikely(!object)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2269
2270		object = new_slab_objects(s, gfpflags, node, &c);
2271
2272		if (unlikely(!object)) {
2273			if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2274				slab_out_of_memory(s, gfpflags, node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2275
2276			local_irq_restore(flags);
2277			return NULL;
2278		}
 
 
 
 
2279	}
2280
2281	if (likely(!kmem_cache_debug(s)))
2282		goto load_freelist;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2283
2284	/* Only entered in the debug case */
2285	if (!alloc_debug_processing(s, c->page, object, addr))
2286		goto new_slab;	/* Slab failed checks. Next slab needed */
2287
2288	c->freelist = get_freepointer(s, object);
2289	deactivate_slab(s, c);
2290	c->node = NUMA_NO_NODE;
2291	local_irq_restore(flags);
2292	return object;
2293}
2294
2295/*
2296 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2297 * have the fastpath folded into their functions. So no function call
2298 * overhead for requests that can be satisfied on the fastpath.
2299 *
2300 * The fastpath works by first checking if the lockless freelist can be used.
2301 * If not then __slab_alloc is called for slow processing.
2302 *
2303 * Otherwise we can simply pick the next object from the lockless free list.
2304 */
2305static __always_inline void *slab_alloc(struct kmem_cache *s,
2306		gfp_t gfpflags, int node, unsigned long addr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2307{
2308	void **object;
2309	struct kmem_cache_cpu *c;
 
2310	unsigned long tid;
2311
2312	if (slab_pre_alloc_hook(s, gfpflags))
2313		return NULL;
2314
2315redo:
2316
2317	/*
2318	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2319	 * enabled. We may switch back and forth between cpus while
2320	 * reading from one cpu area. That does not matter as long
2321	 * as we end up on the original cpu again when doing the cmpxchg.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2322	 */
2323	c = __this_cpu_ptr(s->cpu_slab);
2324
2325	/*
2326	 * The transaction ids are globally unique per cpu and per operation on
2327	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2328	 * occurs on the right processor and that there was no operation on the
2329	 * linked list in between.
2330	 */
2331	tid = c->tid;
2332	barrier();
2333
2334	object = c->freelist;
2335	if (unlikely(!object || !node_match(c, node)))
2336
2337		object = __slab_alloc(s, gfpflags, node, addr, c);
2338
2339	else {
 
2340		void *next_object = get_freepointer_safe(s, object);
2341
2342		/*
2343		 * The cmpxchg will only match if there was no additional
2344		 * operation and if we are on the right processor.
2345		 *
2346		 * The cmpxchg does the following atomically (without lock semantics!)
 
2347		 * 1. Relocate first pointer to the current per cpu area.
2348		 * 2. Verify that tid and freelist have not been changed
2349		 * 3. If they were not changed replace tid and freelist
2350		 *
2351		 * Since this is without lock semantics the protection is only against
2352		 * code executing on this cpu *not* from access by other cpus.
 
2353		 */
2354		if (unlikely(!this_cpu_cmpxchg_double(
2355				s->cpu_slab->freelist, s->cpu_slab->tid,
2356				object, tid,
2357				next_object, next_tid(tid)))) {
2358
2359			note_cmpxchg_failure("slab_alloc", s, tid);
2360			goto redo;
2361		}
2362		prefetch_freepointer(s, next_object);
2363		stat(s, ALLOC_FASTPATH);
2364	}
2365
2366	if (unlikely(gfpflags & __GFP_ZERO) && object)
2367		memset(object, 0, s->objsize);
 
 
 
 
 
 
 
2368
2369	slab_post_alloc_hook(s, gfpflags, object);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2370
2371	return object;
2372}
 
 
 
 
 
 
 
 
 
 
 
 
 
2373
2374void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2375{
2376	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2377
2378	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
2379
2380	return ret;
2381}
 
 
 
 
 
2382EXPORT_SYMBOL(kmem_cache_alloc);
2383
2384#ifdef CONFIG_TRACING
2385void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2386{
2387	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2388	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2389	return ret;
2390}
2391EXPORT_SYMBOL(kmem_cache_alloc_trace);
2392
2393void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
 
 
2394{
2395	void *ret = kmalloc_order(size, flags, order);
2396	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2397	return ret;
2398}
2399EXPORT_SYMBOL(kmalloc_order_trace);
2400#endif
2401
2402#ifdef CONFIG_NUMA
2403void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2404{
2405	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2406
2407	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2408				    s->objsize, s->size, gfpflags, node);
2409
2410	return ret;
2411}
2412EXPORT_SYMBOL(kmem_cache_alloc_node);
2413
2414#ifdef CONFIG_TRACING
2415void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2416				    gfp_t gfpflags,
2417				    int node, size_t size)
2418{
2419	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2420
2421	trace_kmalloc_node(_RET_IP_, ret,
2422			   size, s->size, gfpflags, node);
2423	return ret;
 
2424}
2425EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2426#endif
2427#endif
2428
2429/*
2430 * Slow patch handling. This may still be called frequently since objects
2431 * have a longer lifetime than the cpu slabs in most processing loads.
2432 *
2433 * So we still attempt to reduce cache line usage. Just take the slab
2434 * lock and free the item. If there is no additional partial page
2435 * handling required then we can return immediately.
2436 */
2437static void __slab_free(struct kmem_cache *s, struct page *page,
2438			void *x, unsigned long addr)
 
 
2439{
2440	void *prior;
2441	void **object = (void *)x;
2442	int was_frozen;
2443	int inuse;
2444	struct page new;
2445	unsigned long counters;
2446	struct kmem_cache_node *n = NULL;
2447	unsigned long uninitialized_var(flags);
2448
2449	stat(s, FREE_SLOWPATH);
2450
2451	if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
 
 
 
 
2452		return;
 
2453
2454	do {
2455		prior = page->freelist;
2456		counters = page->counters;
2457		set_freepointer(s, object, prior);
 
 
 
 
2458		new.counters = counters;
2459		was_frozen = new.frozen;
2460		new.inuse--;
2461		if ((!new.inuse || !prior) && !was_frozen && !n) {
2462
2463			if (!kmem_cache_debug(s) && !prior)
2464
2465				/*
2466				 * Slab was on no list before and will be partially empty
2467				 * We can defer the list move and instead freeze it.
 
 
2468				 */
2469				new.frozen = 1;
2470
2471			else { /* Needs to be taken off a list */
2472
2473	                        n = get_node(s, page_to_nid(page));
2474				/*
2475				 * Speculatively acquire the list_lock.
2476				 * If the cmpxchg does not succeed then we may
2477				 * drop the list_lock without any processing.
2478				 *
2479				 * Otherwise the list_lock will synchronize with
2480				 * other processors updating the list of slabs.
2481				 */
2482				spin_lock_irqsave(&n->list_lock, flags);
2483
2484			}
2485		}
2486		inuse = new.inuse;
2487
2488	} while (!cmpxchg_double_slab(s, page,
2489		prior, counters,
2490		object, new.counters,
2491		"__slab_free"));
2492
2493	if (likely(!n)) {
2494
2495		/*
2496		 * If we just froze the page then put it onto the
2497		 * per cpu partial list.
2498		 */
2499		if (new.frozen && !was_frozen) {
2500			put_cpu_partial(s, page, 1);
 
 
 
 
 
 
2501			stat(s, CPU_PARTIAL_FREE);
2502		}
2503		/*
2504		 * The list lock was not taken therefore no list
2505		 * activity can be necessary.
2506		 */
2507                if (was_frozen)
2508                        stat(s, FREE_FROZEN);
2509                return;
2510        }
2511
2512	/*
2513	 * was_frozen may have been set after we acquired the list_lock in
2514	 * an earlier loop. So we need to check it here again.
2515	 */
2516	if (was_frozen)
2517		stat(s, FREE_FROZEN);
2518	else {
2519		if (unlikely(!inuse && n->nr_partial > s->min_partial))
2520                        goto slab_empty;
2521
2522		/*
2523		 * Objects left in the slab. If it was not on the partial list before
2524		 * then add it.
2525		 */
2526		if (unlikely(!prior)) {
2527			remove_full(s, page);
2528			add_partial(n, page, DEACTIVATE_TO_TAIL);
2529			stat(s, FREE_ADD_PARTIAL);
2530		}
2531	}
2532	spin_unlock_irqrestore(&n->list_lock, flags);
2533	return;
2534
2535slab_empty:
2536	if (prior) {
2537		/*
2538		 * Slab on the partial list.
2539		 */
2540		remove_partial(n, page);
2541		stat(s, FREE_REMOVE_PARTIAL);
2542	} else
2543		/* Slab must be on the full list */
2544		remove_full(s, page);
 
2545
2546	spin_unlock_irqrestore(&n->list_lock, flags);
2547	stat(s, FREE_SLAB);
2548	discard_slab(s, page);
2549}
2550
 
2551/*
2552 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2553 * can perform fastpath freeing without additional function calls.
2554 *
2555 * The fastpath is only possible if we are freeing to the current cpu slab
2556 * of this processor. This typically the case if we have just allocated
2557 * the item before.
2558 *
2559 * If fastpath is not possible then fall back to __slab_free where we deal
2560 * with all sorts of special processing.
2561 */
2562static __always_inline void slab_free(struct kmem_cache *s,
2563			struct page *page, void *x, unsigned long addr)
 
 
 
 
 
2564{
2565	void **object = (void *)x;
2566	struct kmem_cache_cpu *c;
2567	unsigned long tid;
2568
2569	slab_free_hook(s, x);
2570
2571redo:
2572	/*
2573	 * Determine the currently cpus per cpu slab.
2574	 * The cpu may change afterward. However that does not matter since
2575	 * data is retrieved via this pointer. If we are on the same cpu
2576	 * during the cmpxchg then the free will succedd.
2577	 */
2578	c = __this_cpu_ptr(s->cpu_slab);
 
2579
2580	tid = c->tid;
2581	barrier();
2582
2583	if (likely(page == c->page)) {
2584		set_freepointer(s, object, c->freelist);
 
 
 
 
 
 
 
2585
2586		if (unlikely(!this_cpu_cmpxchg_double(
2587				s->cpu_slab->freelist, s->cpu_slab->tid,
2588				c->freelist, tid,
2589				object, next_tid(tid)))) {
2590
2591			note_cmpxchg_failure("slab_free", s, tid);
2592			goto redo;
2593		}
2594		stat(s, FREE_FASTPATH);
2595	} else
2596		__slab_free(s, page, x, addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2597
 
 
 
2598}
2599
2600void kmem_cache_free(struct kmem_cache *s, void *x)
2601{
2602	struct page *page;
 
 
 
 
 
 
2603
2604	page = virt_to_head_page(x);
 
 
 
 
 
 
2605
2606	slab_free(s, page, x, _RET_IP_);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2607
2608	trace_kmem_cache_free(_RET_IP_, x);
 
 
 
 
 
2609}
2610EXPORT_SYMBOL(kmem_cache_free);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2611
2612/*
2613 * Object placement in a slab is made very easy because we always start at
2614 * offset 0. If we tune the size of the object to the alignment then we can
2615 * get the required alignment by putting one properly sized object after
2616 * another.
2617 *
2618 * Notice that the allocation order determines the sizes of the per cpu
2619 * caches. Each processor has always one slab available for allocations.
2620 * Increasing the allocation order reduces the number of times that slabs
2621 * must be moved on and off the partial lists and is therefore a factor in
2622 * locking overhead.
2623 */
2624
2625/*
2626 * Mininum / Maximum order of slab pages. This influences locking overhead
2627 * and slab fragmentation. A higher order reduces the number of partial slabs
2628 * and increases the number of allocations possible without having to
2629 * take the list_lock.
2630 */
2631static int slub_min_order;
2632static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2633static int slub_min_objects;
2634
2635/*
2636 * Merge control. If this is set then no merging of slab caches will occur.
2637 * (Could be removed. This was introduced to pacify the merge skeptics.)
2638 */
2639static int slub_nomerge;
2640
2641/*
2642 * Calculate the order of allocation given an slab object size.
2643 *
2644 * The order of allocation has significant impact on performance and other
2645 * system components. Generally order 0 allocations should be preferred since
2646 * order 0 does not cause fragmentation in the page allocator. Larger objects
2647 * be problematic to put into order 0 slabs because there may be too much
2648 * unused space left. We go to a higher order if more than 1/16th of the slab
2649 * would be wasted.
2650 *
2651 * In order to reach satisfactory performance we must ensure that a minimum
2652 * number of objects is in one slab. Otherwise we may generate too much
2653 * activity on the partial lists which requires taking the list_lock. This is
2654 * less a concern for large slabs though which are rarely used.
2655 *
2656 * slub_max_order specifies the order where we begin to stop considering the
2657 * number of objects in a slab as critical. If we reach slub_max_order then
2658 * we try to keep the page order as low as possible. So we accept more waste
2659 * of space in favor of a small page order.
2660 *
2661 * Higher order allocations also allow the placement of more objects in a
2662 * slab and thereby reduce object handling overhead. If the user has
2663 * requested a higher mininum order then we start with that one instead of
2664 * the smallest order which will fit the object.
2665 */
2666static inline int slab_order(int size, int min_objects,
2667				int max_order, int fract_leftover, int reserved)
 
2668{
2669	int order;
2670	int rem;
2671	int min_order = slub_min_order;
2672
2673	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2674		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2675
2676	for (order = max(min_order,
2677				fls(min_objects * size - 1) - PAGE_SHIFT);
2678			order <= max_order; order++) {
2679
2680		unsigned long slab_size = PAGE_SIZE << order;
2681
2682		if (slab_size < min_objects * size + reserved)
2683			continue;
2684
2685		rem = (slab_size - reserved) % size;
2686
2687		if (rem <= slab_size / fract_leftover)
2688			break;
2689
2690	}
2691
2692	return order;
2693}
2694
2695static inline int calculate_order(int size, int reserved)
2696{
2697	int order;
2698	int min_objects;
2699	int fraction;
2700	int max_objects;
2701
2702	/*
2703	 * Attempt to find best configuration for a slab. This
2704	 * works by first attempting to generate a layout with
2705	 * the best configuration and backing off gradually.
2706	 *
2707	 * First we reduce the acceptable waste in a slab. Then
2708	 * we reduce the minimum objects required in a slab.
2709	 */
2710	min_objects = slub_min_objects;
2711	if (!min_objects)
2712		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2713	max_objects = order_objects(slub_max_order, size, reserved);
 
 
 
 
 
 
 
 
 
 
 
 
 
2714	min_objects = min(min_objects, max_objects);
2715
2716	while (min_objects > 1) {
 
 
2717		fraction = 16;
2718		while (fraction >= 4) {
2719			order = slab_order(size, min_objects,
2720					slub_max_order, fraction, reserved);
2721			if (order <= slub_max_order)
2722				return order;
2723			fraction /= 2;
2724		}
2725		min_objects--;
2726	}
2727
2728	/*
2729	 * We were unable to place multiple objects in a slab. Now
2730	 * lets see if we can place a single object there.
2731	 */
2732	order = slab_order(size, 1, slub_max_order, 1, reserved);
2733	if (order <= slub_max_order)
2734		return order;
2735
2736	/*
2737	 * Doh this slab cannot be placed using slub_max_order.
2738	 */
2739	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2740	if (order < MAX_ORDER)
2741		return order;
2742	return -ENOSYS;
2743}
2744
2745/*
2746 * Figure out what the alignment of the objects will be.
2747 */
2748static unsigned long calculate_alignment(unsigned long flags,
2749		unsigned long align, unsigned long size)
2750{
2751	/*
2752	 * If the user wants hardware cache aligned objects then follow that
2753	 * suggestion if the object is sufficiently large.
2754	 *
2755	 * The hardware cache alignment cannot override the specified
2756	 * alignment though. If that is greater then use it.
2757	 */
2758	if (flags & SLAB_HWCACHE_ALIGN) {
2759		unsigned long ralign = cache_line_size();
2760		while (size <= ralign / 2)
2761			ralign /= 2;
2762		align = max(align, ralign);
2763	}
2764
2765	if (align < ARCH_SLAB_MINALIGN)
2766		align = ARCH_SLAB_MINALIGN;
2767
2768	return ALIGN(align, sizeof(void *));
2769}
2770
2771static void
2772init_kmem_cache_node(struct kmem_cache_node *n)
2773{
2774	n->nr_partial = 0;
2775	spin_lock_init(&n->list_lock);
2776	INIT_LIST_HEAD(&n->partial);
2777#ifdef CONFIG_SLUB_DEBUG
2778	atomic_long_set(&n->nr_slabs, 0);
2779	atomic_long_set(&n->total_objects, 0);
2780	INIT_LIST_HEAD(&n->full);
2781#endif
2782}
2783
 
2784static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2785{
2786	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2787			SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
 
2788
2789	/*
2790	 * Must align to double word boundary for the double cmpxchg
2791	 * instructions to work; see __pcpu_double_call_return_bool().
2792	 */
2793	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2794				     2 * sizeof(void *));
2795
2796	if (!s->cpu_slab)
2797		return 0;
2798
2799	init_kmem_cache_cpus(s);
2800
2801	return 1;
2802}
 
 
 
 
 
 
2803
2804static struct kmem_cache *kmem_cache_node;
2805
2806/*
2807 * No kmalloc_node yet so do it by hand. We know that this is the first
2808 * slab on the node for this slabcache. There are no concurrent accesses
2809 * possible.
2810 *
2811 * Note that this function only works on the kmalloc_node_cache
2812 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2813 * memory on a fresh node that has no slab structures yet.
2814 */
2815static void early_kmem_cache_node_alloc(int node)
2816{
2817	struct page *page;
2818	struct kmem_cache_node *n;
2819
2820	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2821
2822	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2823
2824	BUG_ON(!page);
2825	if (page_to_nid(page) != node) {
2826		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2827				"node %d\n", node);
2828		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2829				"in order to be able to continue\n");
2830	}
2831
2832	n = page->freelist;
2833	BUG_ON(!n);
2834	page->freelist = get_freepointer(kmem_cache_node, n);
2835	page->inuse = 1;
2836	page->frozen = 0;
2837	kmem_cache_node->node[node] = n;
2838#ifdef CONFIG_SLUB_DEBUG
2839	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2840	init_tracking(kmem_cache_node, n);
2841#endif
 
 
 
 
2842	init_kmem_cache_node(n);
2843	inc_slabs_node(kmem_cache_node, node, page->objects);
2844
2845	add_partial(n, page, DEACTIVATE_TO_HEAD);
 
 
 
 
2846}
2847
2848static void free_kmem_cache_nodes(struct kmem_cache *s)
2849{
2850	int node;
 
2851
2852	for_each_node_state(node, N_NORMAL_MEMORY) {
2853		struct kmem_cache_node *n = s->node[node];
2854
2855		if (n)
2856			kmem_cache_free(kmem_cache_node, n);
2857
2858		s->node[node] = NULL;
 
2859	}
2860}
2861
 
 
 
 
 
 
 
 
 
2862static int init_kmem_cache_nodes(struct kmem_cache *s)
2863{
2864	int node;
2865
2866	for_each_node_state(node, N_NORMAL_MEMORY) {
2867		struct kmem_cache_node *n;
2868
2869		if (slab_state == DOWN) {
2870			early_kmem_cache_node_alloc(node);
2871			continue;
2872		}
2873		n = kmem_cache_alloc_node(kmem_cache_node,
2874						GFP_KERNEL, node);
2875
2876		if (!n) {
2877			free_kmem_cache_nodes(s);
2878			return 0;
2879		}
2880
 
2881		s->node[node] = n;
2882		init_kmem_cache_node(n);
2883	}
2884	return 1;
2885}
2886
2887static void set_min_partial(struct kmem_cache *s, unsigned long min)
2888{
2889	if (min < MIN_PARTIAL)
2890		min = MIN_PARTIAL;
2891	else if (min > MAX_PARTIAL)
2892		min = MAX_PARTIAL;
2893	s->min_partial = min;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2894}
2895
2896/*
2897 * calculate_sizes() determines the order and the distribution of data within
2898 * a slab object.
2899 */
2900static int calculate_sizes(struct kmem_cache *s, int forced_order)
2901{
2902	unsigned long flags = s->flags;
2903	unsigned long size = s->objsize;
2904	unsigned long align = s->align;
2905	int order;
2906
2907	/*
2908	 * Round up object size to the next word boundary. We can only
2909	 * place the free pointer at word boundaries and this determines
2910	 * the possible location of the free pointer.
2911	 */
2912	size = ALIGN(size, sizeof(void *));
2913
2914#ifdef CONFIG_SLUB_DEBUG
2915	/*
2916	 * Determine if we can poison the object itself. If the user of
2917	 * the slab may touch the object after free or before allocation
2918	 * then we should never poison the object itself.
2919	 */
2920	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2921			!s->ctor)
2922		s->flags |= __OBJECT_POISON;
2923	else
2924		s->flags &= ~__OBJECT_POISON;
2925
2926
2927	/*
2928	 * If we are Redzoning then check if there is some space between the
2929	 * end of the object and the free pointer. If not then add an
2930	 * additional word to have some bytes to store Redzone information.
2931	 */
2932	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2933		size += sizeof(void *);
2934#endif
2935
2936	/*
2937	 * With that we have determined the number of bytes in actual use
2938	 * by the object. This is the potential offset to the free pointer.
2939	 */
2940	s->inuse = size;
2941
2942	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2943		s->ctor)) {
 
 
2944		/*
2945		 * Relocate free pointer after the object if it is not
2946		 * permitted to overwrite the first word of the object on
2947		 * kmem_cache_free.
2948		 *
2949		 * This is the case if we do RCU, have a constructor or
2950		 * destructor or are poisoning the objects.
 
 
 
 
 
 
2951		 */
2952		s->offset = size;
2953		size += sizeof(void *);
 
 
 
 
 
 
 
2954	}
2955
2956#ifdef CONFIG_SLUB_DEBUG
2957	if (flags & SLAB_STORE_USER)
2958		/*
2959		 * Need to store information about allocs and frees after
2960		 * the object.
2961		 */
2962		size += 2 * sizeof(struct track);
2963
2964	if (flags & SLAB_RED_ZONE)
 
 
 
 
 
 
 
 
2965		/*
2966		 * Add some empty padding so that we can catch
2967		 * overwrites from earlier objects rather than let
2968		 * tracking information or the free pointer be
2969		 * corrupted if a user writes before the start
2970		 * of the object.
2971		 */
2972		size += sizeof(void *);
 
 
 
 
 
2973#endif
2974
2975	/*
2976	 * Determine the alignment based on various parameters that the
2977	 * user specified and the dynamic determination of cache line size
2978	 * on bootup.
2979	 */
2980	align = calculate_alignment(flags, align, s->objsize);
2981	s->align = align;
2982
2983	/*
2984	 * SLUB stores one object immediately after another beginning from
2985	 * offset 0. In order to align the objects we have to simply size
2986	 * each object to conform to the alignment.
2987	 */
2988	size = ALIGN(size, align);
2989	s->size = size;
2990	if (forced_order >= 0)
2991		order = forced_order;
2992	else
2993		order = calculate_order(size, s->reserved);
2994
2995	if (order < 0)
2996		return 0;
2997
2998	s->allocflags = 0;
2999	if (order)
3000		s->allocflags |= __GFP_COMP;
3001
3002	if (s->flags & SLAB_CACHE_DMA)
3003		s->allocflags |= SLUB_DMA;
 
 
 
3004
3005	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3006		s->allocflags |= __GFP_RECLAIMABLE;
3007
3008	/*
3009	 * Determine the number of objects per slab
3010	 */
3011	s->oo = oo_make(order, size, s->reserved);
3012	s->min = oo_make(get_order(size), size, s->reserved);
3013	if (oo_objects(s->oo) > oo_objects(s->max))
3014		s->max = s->oo;
3015
3016	return !!oo_objects(s->oo);
3017
3018}
3019
3020static int kmem_cache_open(struct kmem_cache *s,
3021		const char *name, size_t size,
3022		size_t align, unsigned long flags,
3023		void (*ctor)(void *))
3024{
3025	memset(s, 0, kmem_size);
3026	s->name = name;
3027	s->ctor = ctor;
3028	s->objsize = size;
3029	s->align = align;
3030	s->flags = kmem_cache_flags(size, flags, name, ctor);
3031	s->reserved = 0;
3032
3033	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3034		s->reserved = sizeof(struct rcu_head);
3035
3036	if (!calculate_sizes(s, -1))
3037		goto error;
3038	if (disable_higher_order_debug) {
3039		/*
3040		 * Disable debugging flags that store metadata if the min slab
3041		 * order increased.
3042		 */
3043		if (get_order(s->size) > get_order(s->objsize)) {
3044			s->flags &= ~DEBUG_METADATA_FLAGS;
3045			s->offset = 0;
3046			if (!calculate_sizes(s, -1))
3047				goto error;
3048		}
3049	}
3050
3051#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3052    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3053	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3054		/* Enable fast mode */
3055		s->flags |= __CMPXCHG_DOUBLE;
3056#endif
3057
3058	/*
3059	 * The larger the object size is, the more pages we want on the partial
3060	 * list to avoid pounding the page allocator excessively.
3061	 */
3062	set_min_partial(s, ilog2(s->size) / 2);
 
3063
3064	/*
3065	 * cpu_partial determined the maximum number of objects kept in the
3066	 * per cpu partial lists of a processor.
3067	 *
3068	 * Per cpu partial lists mainly contain slabs that just have one
3069	 * object freed. If they are used for allocation then they can be
3070	 * filled up again with minimal effort. The slab will never hit the
3071	 * per node partial lists and therefore no locking will be required.
3072	 *
3073	 * This setting also determines
3074	 *
3075	 * A) The number of objects from per cpu partial slabs dumped to the
3076	 *    per node list when we reach the limit.
3077	 * B) The number of objects in cpu partial slabs to extract from the
3078	 *    per node list when we run out of per cpu objects. We only fetch 50%
3079	 *    to keep some capacity around for frees.
3080	 */
3081	if (kmem_cache_debug(s))
3082		s->cpu_partial = 0;
3083	else if (s->size >= PAGE_SIZE)
3084		s->cpu_partial = 2;
3085	else if (s->size >= 1024)
3086		s->cpu_partial = 6;
3087	else if (s->size >= 256)
3088		s->cpu_partial = 13;
3089	else
3090		s->cpu_partial = 30;
3091
3092	s->refcount = 1;
3093#ifdef CONFIG_NUMA
3094	s->remote_node_defrag_ratio = 1000;
3095#endif
 
 
 
 
 
 
 
3096	if (!init_kmem_cache_nodes(s))
3097		goto error;
3098
3099	if (alloc_kmem_cache_cpus(s))
3100		return 1;
3101
3102	free_kmem_cache_nodes(s);
3103error:
3104	if (flags & SLAB_PANIC)
3105		panic("Cannot create slab %s size=%lu realsize=%u "
3106			"order=%u offset=%u flags=%lx\n",
3107			s->name, (unsigned long)size, s->size, oo_order(s->oo),
3108			s->offset, flags);
3109	return 0;
3110}
3111
3112/*
3113 * Determine the size of a slab object
3114 */
3115unsigned int kmem_cache_size(struct kmem_cache *s)
3116{
3117	return s->objsize;
3118}
3119EXPORT_SYMBOL(kmem_cache_size);
3120
3121static void list_slab_objects(struct kmem_cache *s, struct page *page,
3122							const char *text)
3123{
3124#ifdef CONFIG_SLUB_DEBUG
3125	void *addr = page_address(page);
3126	void *p;
3127	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3128				     sizeof(long), GFP_ATOMIC);
3129	if (!map)
3130		return;
3131	slab_err(s, page, "%s", text);
3132	slab_lock(page);
3133
3134	get_map(s, page, map);
3135	for_each_object(p, s, addr, page->objects) {
 
 
 
 
3136
3137		if (!test_bit(slab_index(p, s, addr), map)) {
3138			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3139							p, p - addr);
3140			print_tracking(s, p);
3141		}
3142	}
3143	slab_unlock(page);
3144	kfree(map);
3145#endif
3146}
3147
3148/*
3149 * Attempt to free all partial slabs on a node.
3150 * This is called from kmem_cache_close(). We must be the last thread
3151 * using the cache and therefore we do not need to lock anymore.
3152 */
3153static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3154{
3155	struct page *page, *h;
 
3156
3157	list_for_each_entry_safe(page, h, &n->partial, lru) {
3158		if (!page->inuse) {
3159			remove_partial(n, page);
3160			discard_slab(s, page);
 
 
3161		} else {
3162			list_slab_objects(s, page,
3163				"Objects remaining on kmem_cache_close()");
3164		}
3165	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3166}
3167
3168/*
3169 * Release all resources used by a slab cache.
3170 */
3171static inline int kmem_cache_close(struct kmem_cache *s)
3172{
3173	int node;
 
3174
3175	flush_all(s);
3176	free_percpu(s->cpu_slab);
3177	/* Attempt to free all objects */
3178	for_each_node_state(node, N_NORMAL_MEMORY) {
3179		struct kmem_cache_node *n = get_node(s, node);
3180
3181		free_partial(s, n);
3182		if (n->nr_partial || slabs_node(s, node))
3183			return 1;
3184	}
3185	free_kmem_cache_nodes(s);
3186	return 0;
3187}
3188
3189/*
3190 * Close a cache and release the kmem_cache structure
3191 * (must be used for caches created using kmem_cache_create)
3192 */
3193void kmem_cache_destroy(struct kmem_cache *s)
3194{
3195	down_write(&slub_lock);
3196	s->refcount--;
3197	if (!s->refcount) {
3198		list_del(&s->list);
3199		up_write(&slub_lock);
3200		if (kmem_cache_close(s)) {
3201			printk(KERN_ERR "SLUB %s: %s called for cache that "
3202				"still has objects.\n", s->name, __func__);
3203			dump_stack();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3204		}
3205		if (s->flags & SLAB_DESTROY_BY_RCU)
3206			rcu_barrier();
3207		sysfs_slab_remove(s);
3208	} else
3209		up_write(&slub_lock);
3210}
3211EXPORT_SYMBOL(kmem_cache_destroy);
3212
3213/********************************************************************
3214 *		Kmalloc subsystem
3215 *******************************************************************/
3216
3217struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3218EXPORT_SYMBOL(kmalloc_caches);
3219
3220static struct kmem_cache *kmem_cache;
3221
3222#ifdef CONFIG_ZONE_DMA
3223static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3224#endif
3225
3226static int __init setup_slub_min_order(char *str)
3227{
3228	get_option(&str, &slub_min_order);
3229
3230	return 1;
3231}
3232
3233__setup("slub_min_order=", setup_slub_min_order);
3234
3235static int __init setup_slub_max_order(char *str)
3236{
3237	get_option(&str, &slub_max_order);
3238	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3239
3240	return 1;
3241}
3242
3243__setup("slub_max_order=", setup_slub_max_order);
3244
3245static int __init setup_slub_min_objects(char *str)
3246{
3247	get_option(&str, &slub_min_objects);
3248
3249	return 1;
3250}
3251
3252__setup("slub_min_objects=", setup_slub_min_objects);
3253
3254static int __init setup_slub_nomerge(char *str)
3255{
3256	slub_nomerge = 1;
3257	return 1;
3258}
3259
3260__setup("slub_nomerge", setup_slub_nomerge);
3261
3262static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3263						int size, unsigned int flags)
3264{
3265	struct kmem_cache *s;
3266
3267	s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3268
3269	/*
3270	 * This function is called with IRQs disabled during early-boot on
3271	 * single CPU so there's no need to take slub_lock here.
3272	 */
3273	if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3274								flags, NULL))
3275		goto panic;
3276
3277	list_add(&s->list, &slab_caches);
3278	return s;
3279
3280panic:
3281	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3282	return NULL;
3283}
3284
3285/*
3286 * Conversion table for small slabs sizes / 8 to the index in the
3287 * kmalloc array. This is necessary for slabs < 192 since we have non power
3288 * of two cache sizes there. The size of larger slabs can be determined using
3289 * fls.
3290 */
3291static s8 size_index[24] = {
3292	3,	/* 8 */
3293	4,	/* 16 */
3294	5,	/* 24 */
3295	5,	/* 32 */
3296	6,	/* 40 */
3297	6,	/* 48 */
3298	6,	/* 56 */
3299	6,	/* 64 */
3300	1,	/* 72 */
3301	1,	/* 80 */
3302	1,	/* 88 */
3303	1,	/* 96 */
3304	7,	/* 104 */
3305	7,	/* 112 */
3306	7,	/* 120 */
3307	7,	/* 128 */
3308	2,	/* 136 */
3309	2,	/* 144 */
3310	2,	/* 152 */
3311	2,	/* 160 */
3312	2,	/* 168 */
3313	2,	/* 176 */
3314	2,	/* 184 */
3315	2	/* 192 */
3316};
3317
3318static inline int size_index_elem(size_t bytes)
3319{
3320	return (bytes - 1) / 8;
3321}
3322
3323static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3324{
3325	int index;
3326
3327	if (size <= 192) {
3328		if (!size)
3329			return ZERO_SIZE_PTR;
3330
3331		index = size_index[size_index_elem(size)];
3332	} else
3333		index = fls(size - 1);
3334
3335#ifdef CONFIG_ZONE_DMA
3336	if (unlikely((flags & SLUB_DMA)))
3337		return kmalloc_dma_caches[index];
3338
3339#endif
3340	return kmalloc_caches[index];
3341}
3342
3343void *__kmalloc(size_t size, gfp_t flags)
3344{
3345	struct kmem_cache *s;
3346	void *ret;
 
3347
3348	if (unlikely(size > SLUB_MAX_SIZE))
3349		return kmalloc_large(size, flags);
3350
3351	s = get_slab(size, flags);
 
3352
3353	if (unlikely(ZERO_OR_NULL_PTR(s)))
3354		return s;
3355
3356	ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3357
3358	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3359
3360	return ret;
3361}
3362EXPORT_SYMBOL(__kmalloc);
3363
3364#ifdef CONFIG_NUMA
3365static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3366{
3367	struct page *page;
3368	void *ptr = NULL;
3369
3370	flags |= __GFP_COMP | __GFP_NOTRACK;
3371	page = alloc_pages_node(node, flags, get_order(size));
3372	if (page)
3373		ptr = page_address(page);
3374
3375	kmemleak_alloc(ptr, size, 1, flags);
3376	return ptr;
3377}
3378
3379void *__kmalloc_node(size_t size, gfp_t flags, int node)
3380{
3381	struct kmem_cache *s;
3382	void *ret;
3383
3384	if (unlikely(size > SLUB_MAX_SIZE)) {
3385		ret = kmalloc_large_node(size, flags, node);
3386
3387		trace_kmalloc_node(_RET_IP_, ret,
3388				   size, PAGE_SIZE << get_order(size),
3389				   flags, node);
3390
3391		return ret;
3392	}
3393
3394	s = get_slab(size, flags);
3395
3396	if (unlikely(ZERO_OR_NULL_PTR(s)))
3397		return s;
 
3398
3399	ret = slab_alloc(s, flags, node, _RET_IP_);
3400
3401	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3402
3403	return ret;
3404}
3405EXPORT_SYMBOL(__kmalloc_node);
3406#endif
3407
3408size_t ksize(const void *object)
3409{
3410	struct page *page;
3411
3412	if (unlikely(object == ZERO_SIZE_PTR))
3413		return 0;
3414
3415	page = virt_to_head_page(object);
3416
3417	if (unlikely(!PageSlab(page))) {
3418		WARN_ON(!PageCompound(page));
3419		return PAGE_SIZE << compound_order(page);
3420	}
3421
3422	return slab_ksize(page->slab);
3423}
3424EXPORT_SYMBOL(ksize);
3425
3426#ifdef CONFIG_SLUB_DEBUG
3427bool verify_mem_not_deleted(const void *x)
3428{
3429	struct page *page;
3430	void *object = (void *)x;
3431	unsigned long flags;
3432	bool rv;
3433
3434	if (unlikely(ZERO_OR_NULL_PTR(x)))
3435		return false;
3436
3437	local_irq_save(flags);
3438
3439	page = virt_to_head_page(x);
3440	if (unlikely(!PageSlab(page))) {
3441		/* maybe it was from stack? */
3442		rv = true;
3443		goto out_unlock;
3444	}
3445
3446	slab_lock(page);
3447	if (on_freelist(page->slab, page, object)) {
3448		object_err(page->slab, page, object, "Object is on free-list");
3449		rv = false;
3450	} else {
3451		rv = true;
3452	}
3453	slab_unlock(page);
3454
3455out_unlock:
3456	local_irq_restore(flags);
3457	return rv;
3458}
3459EXPORT_SYMBOL(verify_mem_not_deleted);
3460#endif
3461
3462void kfree(const void *x)
3463{
3464	struct page *page;
3465	void *object = (void *)x;
3466
3467	trace_kfree(_RET_IP_, x);
3468
3469	if (unlikely(ZERO_OR_NULL_PTR(x)))
3470		return;
3471
3472	page = virt_to_head_page(x);
3473	if (unlikely(!PageSlab(page))) {
3474		BUG_ON(!PageCompound(page));
3475		kmemleak_free(x);
3476		put_page(page);
3477		return;
3478	}
3479	slab_free(page->slab, page, object, _RET_IP_);
3480}
3481EXPORT_SYMBOL(kfree);
3482
3483/*
3484 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3485 * the remaining slabs by the number of items in use. The slabs with the
3486 * most items in use come first. New allocations will then fill those up
3487 * and thus they can be removed from the partial lists.
3488 *
3489 * The slabs with the least items are placed last. This results in them
3490 * being allocated from last increasing the chance that the last objects
3491 * are freed in them.
3492 */
3493int kmem_cache_shrink(struct kmem_cache *s)
3494{
3495	int node;
3496	int i;
3497	struct kmem_cache_node *n;
3498	struct page *page;
3499	struct page *t;
3500	int objects = oo_objects(s->max);
3501	struct list_head *slabs_by_inuse =
3502		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3503	unsigned long flags;
 
3504
3505	if (!slabs_by_inuse)
3506		return -ENOMEM;
3507
3508	flush_all(s);
3509	for_each_node_state(node, N_NORMAL_MEMORY) {
3510		n = get_node(s, node);
3511
3512		if (!n->nr_partial)
3513			continue;
3514
3515		for (i = 0; i < objects; i++)
3516			INIT_LIST_HEAD(slabs_by_inuse + i);
3517
3518		spin_lock_irqsave(&n->list_lock, flags);
3519
3520		/*
3521		 * Build lists indexed by the items in use in each slab.
3522		 *
3523		 * Note that concurrent frees may occur while we hold the
3524		 * list_lock. page->inuse here is the upper limit.
3525		 */
3526		list_for_each_entry_safe(page, t, &n->partial, lru) {
3527			list_move(&page->lru, slabs_by_inuse + page->inuse);
3528			if (!page->inuse)
 
 
 
 
 
 
 
 
3529				n->nr_partial--;
 
 
 
3530		}
3531
3532		/*
3533		 * Rebuild the partial list with the slabs filled up most
3534		 * first and the least used slabs at the end.
3535		 */
3536		for (i = objects - 1; i > 0; i--)
3537			list_splice(slabs_by_inuse + i, n->partial.prev);
3538
3539		spin_unlock_irqrestore(&n->list_lock, flags);
3540
3541		/* Release empty slabs */
3542		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3543			discard_slab(s, page);
 
 
 
3544	}
3545
3546	kfree(slabs_by_inuse);
3547	return 0;
 
 
 
 
 
3548}
3549EXPORT_SYMBOL(kmem_cache_shrink);
3550
3551#if defined(CONFIG_MEMORY_HOTPLUG)
3552static int slab_mem_going_offline_callback(void *arg)
3553{
3554	struct kmem_cache *s;
3555
3556	down_read(&slub_lock);
3557	list_for_each_entry(s, &slab_caches, list)
3558		kmem_cache_shrink(s);
3559	up_read(&slub_lock);
 
 
3560
3561	return 0;
3562}
3563
3564static void slab_mem_offline_callback(void *arg)
3565{
3566	struct kmem_cache_node *n;
3567	struct kmem_cache *s;
3568	struct memory_notify *marg = arg;
3569	int offline_node;
3570
3571	offline_node = marg->status_change_nid;
3572
3573	/*
3574	 * If the node still has available memory. we need kmem_cache_node
3575	 * for it yet.
3576	 */
3577	if (offline_node < 0)
3578		return;
3579
3580	down_read(&slub_lock);
3581	list_for_each_entry(s, &slab_caches, list) {
3582		n = get_node(s, offline_node);
3583		if (n) {
3584			/*
3585			 * if n->nr_slabs > 0, slabs still exist on the node
3586			 * that is going down. We were unable to free them,
3587			 * and offline_pages() function shouldn't call this
3588			 * callback. So, we must fail.
3589			 */
3590			BUG_ON(slabs_node(s, offline_node));
3591
3592			s->node[offline_node] = NULL;
3593			kmem_cache_free(kmem_cache_node, n);
3594		}
3595	}
3596	up_read(&slub_lock);
3597}
3598
3599static int slab_mem_going_online_callback(void *arg)
3600{
3601	struct kmem_cache_node *n;
3602	struct kmem_cache *s;
3603	struct memory_notify *marg = arg;
3604	int nid = marg->status_change_nid;
3605	int ret = 0;
3606
3607	/*
3608	 * If the node's memory is already available, then kmem_cache_node is
3609	 * already created. Nothing to do.
3610	 */
3611	if (nid < 0)
3612		return 0;
3613
3614	/*
3615	 * We are bringing a node online. No memory is available yet. We must
3616	 * allocate a kmem_cache_node structure in order to bring the node
3617	 * online.
3618	 */
3619	down_read(&slub_lock);
3620	list_for_each_entry(s, &slab_caches, list) {
3621		/*
 
 
 
 
 
 
3622		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3623		 *      since memory is not yet available from the node that
3624		 *      is brought up.
3625		 */
3626		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3627		if (!n) {
3628			ret = -ENOMEM;
3629			goto out;
3630		}
3631		init_kmem_cache_node(n);
3632		s->node[nid] = n;
3633	}
 
 
 
 
 
3634out:
3635	up_read(&slub_lock);
3636	return ret;
3637}
3638
3639static int slab_memory_callback(struct notifier_block *self,
3640				unsigned long action, void *arg)
3641{
3642	int ret = 0;
3643
3644	switch (action) {
3645	case MEM_GOING_ONLINE:
3646		ret = slab_mem_going_online_callback(arg);
3647		break;
3648	case MEM_GOING_OFFLINE:
3649		ret = slab_mem_going_offline_callback(arg);
3650		break;
3651	case MEM_OFFLINE:
3652	case MEM_CANCEL_ONLINE:
3653		slab_mem_offline_callback(arg);
3654		break;
3655	case MEM_ONLINE:
3656	case MEM_CANCEL_OFFLINE:
3657		break;
3658	}
3659	if (ret)
3660		ret = notifier_from_errno(ret);
3661	else
3662		ret = NOTIFY_OK;
3663	return ret;
3664}
3665
3666#endif /* CONFIG_MEMORY_HOTPLUG */
3667
3668/********************************************************************
3669 *			Basic setup of slabs
3670 *******************************************************************/
3671
3672/*
3673 * Used for early kmem_cache structures that were allocated using
3674 * the page allocator
 
3675 */
3676
3677static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3678{
3679	int node;
 
 
 
 
3680
3681	list_add(&s->list, &slab_caches);
3682	s->refcount = -1;
 
 
 
 
 
 
3683
3684	for_each_node_state(node, N_NORMAL_MEMORY) {
3685		struct kmem_cache_node *n = get_node(s, node);
3686		struct page *p;
3687
3688		if (n) {
3689			list_for_each_entry(p, &n->partial, lru)
3690				p->slab = s;
3691
3692#ifdef CONFIG_SLUB_DEBUG
3693			list_for_each_entry(p, &n->full, lru)
3694				p->slab = s;
3695#endif
3696		}
3697	}
 
 
3698}
3699
3700void __init kmem_cache_init(void)
3701{
3702	int i;
3703	int caches = 0;
3704	struct kmem_cache *temp_kmem_cache;
3705	int order;
3706	struct kmem_cache *temp_kmem_cache_node;
3707	unsigned long kmalloc_size;
3708
3709	if (debug_guardpage_minorder())
3710		slub_max_order = 0;
3711
3712	kmem_size = offsetof(struct kmem_cache, node) +
3713				nr_node_ids * sizeof(struct kmem_cache_node *);
 
3714
3715	/* Allocate two kmem_caches from the page allocator */
3716	kmalloc_size = ALIGN(kmem_size, cache_line_size());
3717	order = get_order(2 * kmalloc_size);
3718	kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3719
3720	/*
3721	 * Must first have the slab cache available for the allocations of the
3722	 * struct kmem_cache_node's. There is special bootstrap code in
3723	 * kmem_cache_open for slab_state == DOWN.
3724	 */
3725	kmem_cache_node = (void *)kmem_cache + kmalloc_size;
 
3726
3727	kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3728		sizeof(struct kmem_cache_node),
3729		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3730
3731	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3732
3733	/* Able to allocate the per node structures */
3734	slab_state = PARTIAL;
3735
3736	temp_kmem_cache = kmem_cache;
3737	kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3738		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3739	kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3740	memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3741
3742	/*
3743	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3744	 * kmem_cache_node is separately allocated so no need to
3745	 * update any list pointers.
3746	 */
3747	temp_kmem_cache_node = kmem_cache_node;
3748
3749	kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3750	memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3751
3752	kmem_cache_bootstrap_fixup(kmem_cache_node);
3753
3754	caches++;
3755	kmem_cache_bootstrap_fixup(kmem_cache);
3756	caches++;
3757	/* Free temporary boot structure */
3758	free_pages((unsigned long)temp_kmem_cache, order);
3759
3760	/* Now we can use the kmem_cache to allocate kmalloc slabs */
 
 
3761
3762	/*
3763	 * Patch up the size_index table if we have strange large alignment
3764	 * requirements for the kmalloc array. This is only the case for
3765	 * MIPS it seems. The standard arches will not generate any code here.
3766	 *
3767	 * Largest permitted alignment is 256 bytes due to the way we
3768	 * handle the index determination for the smaller caches.
3769	 *
3770	 * Make sure that nothing crazy happens if someone starts tinkering
3771	 * around with ARCH_KMALLOC_MINALIGN
3772	 */
3773	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3774		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3775
3776	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3777		int elem = size_index_elem(i);
3778		if (elem >= ARRAY_SIZE(size_index))
3779			break;
3780		size_index[elem] = KMALLOC_SHIFT_LOW;
3781	}
3782
3783	if (KMALLOC_MIN_SIZE == 64) {
3784		/*
3785		 * The 96 byte size cache is not used if the alignment
3786		 * is 64 byte.
3787		 */
3788		for (i = 64 + 8; i <= 96; i += 8)
3789			size_index[size_index_elem(i)] = 7;
3790	} else if (KMALLOC_MIN_SIZE == 128) {
3791		/*
3792		 * The 192 byte sized cache is not used if the alignment
3793		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3794		 * instead.
3795		 */
3796		for (i = 128 + 8; i <= 192; i += 8)
3797			size_index[size_index_elem(i)] = 8;
3798	}
3799
3800	/* Caches that are not of the two-to-the-power-of size */
3801	if (KMALLOC_MIN_SIZE <= 32) {
3802		kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3803		caches++;
3804	}
3805
3806	if (KMALLOC_MIN_SIZE <= 64) {
3807		kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3808		caches++;
3809	}
3810
3811	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3812		kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3813		caches++;
3814	}
3815
3816	slab_state = UP;
3817
3818	/* Provide the correct kmalloc names now that the caches are up */
3819	if (KMALLOC_MIN_SIZE <= 32) {
3820		kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3821		BUG_ON(!kmalloc_caches[1]->name);
3822	}
3823
3824	if (KMALLOC_MIN_SIZE <= 64) {
3825		kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3826		BUG_ON(!kmalloc_caches[2]->name);
3827	}
3828
3829	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3830		char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3831
3832		BUG_ON(!s);
3833		kmalloc_caches[i]->name = s;
3834	}
3835
3836#ifdef CONFIG_SMP
3837	register_cpu_notifier(&slab_notifier);
3838#endif
3839
3840#ifdef CONFIG_ZONE_DMA
3841	for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3842		struct kmem_cache *s = kmalloc_caches[i];
3843
3844		if (s && s->size) {
3845			char *name = kasprintf(GFP_NOWAIT,
3846				 "dma-kmalloc-%d", s->objsize);
3847
3848			BUG_ON(!name);
3849			kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3850				s->objsize, SLAB_CACHE_DMA);
3851		}
3852	}
3853#endif
3854	printk(KERN_INFO
3855		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3856		" CPUs=%d, Nodes=%d\n",
3857		caches, cache_line_size(),
3858		slub_min_order, slub_max_order, slub_min_objects,
3859		nr_cpu_ids, nr_node_ids);
3860}
3861
3862void __init kmem_cache_init_late(void)
3863{
 
 
 
 
3864}
3865
3866/*
3867 * Find a mergeable slab cache
3868 */
3869static int slab_unmergeable(struct kmem_cache *s)
3870{
3871	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3872		return 1;
3873
3874	if (s->ctor)
3875		return 1;
3876
3877	/*
3878	 * We may have set a slab to be unmergeable during bootstrap.
3879	 */
3880	if (s->refcount < 0)
3881		return 1;
3882
3883	return 0;
3884}
3885
3886static struct kmem_cache *find_mergeable(size_t size,
3887		size_t align, unsigned long flags, const char *name,
3888		void (*ctor)(void *))
3889{
3890	struct kmem_cache *s;
3891
3892	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3893		return NULL;
3894
3895	if (ctor)
3896		return NULL;
3897
3898	size = ALIGN(size, sizeof(void *));
3899	align = calculate_alignment(flags, align, size);
3900	size = ALIGN(size, align);
3901	flags = kmem_cache_flags(size, flags, name, NULL);
3902
3903	list_for_each_entry(s, &slab_caches, list) {
3904		if (slab_unmergeable(s))
3905			continue;
3906
3907		if (size > s->size)
3908			continue;
3909
3910		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3911				continue;
3912		/*
3913		 * Check if alignment is compatible.
3914		 * Courtesy of Adrian Drzewiecki
3915		 */
3916		if ((s->size & ~(align - 1)) != s->size)
3917			continue;
3918
3919		if (s->size - size >= sizeof(void *))
3920			continue;
3921
3922		return s;
3923	}
3924	return NULL;
3925}
3926
3927struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3928		size_t align, unsigned long flags, void (*ctor)(void *))
3929{
3930	struct kmem_cache *s;
3931	char *n;
3932
3933	if (WARN_ON(!name))
3934		return NULL;
3935
3936	down_write(&slub_lock);
3937	s = find_mergeable(size, align, flags, name, ctor);
3938	if (s) {
 
 
 
3939		s->refcount++;
 
3940		/*
3941		 * Adjust the object sizes so that we clear
3942		 * the complete object on kzalloc.
3943		 */
3944		s->objsize = max(s->objsize, (int)size);
3945		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3946
3947		if (sysfs_slab_alias(s, name)) {
3948			s->refcount--;
3949			goto err;
3950		}
3951		up_write(&slub_lock);
3952		return s;
3953	}
3954
3955	n = kstrdup(name, GFP_KERNEL);
3956	if (!n)
3957		goto err;
3958
3959	s = kmalloc(kmem_size, GFP_KERNEL);
3960	if (s) {
3961		if (kmem_cache_open(s, n,
3962				size, align, flags, ctor)) {
3963			list_add(&s->list, &slab_caches);
3964			up_write(&slub_lock);
3965			if (sysfs_slab_add(s)) {
3966				down_write(&slub_lock);
3967				list_del(&s->list);
3968				kfree(n);
3969				kfree(s);
3970				goto err;
3971			}
3972			return s;
3973		}
3974		kfree(s);
3975	}
3976	kfree(n);
3977err:
3978	up_write(&slub_lock);
3979
3980	if (flags & SLAB_PANIC)
3981		panic("Cannot create slabcache %s\n", name);
3982	else
3983		s = NULL;
3984	return s;
3985}
3986EXPORT_SYMBOL(kmem_cache_create);
3987
3988#ifdef CONFIG_SMP
3989/*
3990 * Use the cpu notifier to insure that the cpu slabs are flushed when
3991 * necessary.
3992 */
3993static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3994		unsigned long action, void *hcpu)
3995{
3996	long cpu = (long)hcpu;
3997	struct kmem_cache *s;
3998	unsigned long flags;
3999
4000	switch (action) {
4001	case CPU_UP_CANCELED:
4002	case CPU_UP_CANCELED_FROZEN:
4003	case CPU_DEAD:
4004	case CPU_DEAD_FROZEN:
4005		down_read(&slub_lock);
4006		list_for_each_entry(s, &slab_caches, list) {
4007			local_irq_save(flags);
4008			__flush_cpu_slab(s, cpu);
4009			local_irq_restore(flags);
4010		}
4011		up_read(&slub_lock);
4012		break;
4013	default:
4014		break;
4015	}
4016	return NOTIFY_OK;
4017}
4018
4019static struct notifier_block __cpuinitdata slab_notifier = {
4020	.notifier_call = slab_cpuup_callback
4021};
4022
4023#endif
4024
4025void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4026{
4027	struct kmem_cache *s;
4028	void *ret;
4029
4030	if (unlikely(size > SLUB_MAX_SIZE))
4031		return kmalloc_large(size, gfpflags);
 
4032
4033	s = get_slab(size, gfpflags);
 
 
4034
4035	if (unlikely(ZERO_OR_NULL_PTR(s)))
4036		return s;
4037
4038	ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
4039
4040	/* Honor the call site pointer we received. */
4041	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4042
4043	return ret;
4044}
4045
4046#ifdef CONFIG_NUMA
4047void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4048					int node, unsigned long caller)
4049{
4050	struct kmem_cache *s;
4051	void *ret;
4052
4053	if (unlikely(size > SLUB_MAX_SIZE)) {
4054		ret = kmalloc_large_node(size, gfpflags, node);
4055
4056		trace_kmalloc_node(caller, ret,
4057				   size, PAGE_SIZE << get_order(size),
4058				   gfpflags, node);
4059
4060		return ret;
4061	}
4062
4063	s = get_slab(size, gfpflags);
 
4064
4065	if (unlikely(ZERO_OR_NULL_PTR(s)))
4066		return s;
4067
4068	ret = slab_alloc(s, gfpflags, node, caller);
4069
4070	/* Honor the call site pointer we received. */
4071	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4072
4073	return ret;
4074}
4075#endif
4076
4077#ifdef CONFIG_SYSFS
4078static int count_inuse(struct page *page)
4079{
4080	return page->inuse;
4081}
4082
4083static int count_total(struct page *page)
4084{
4085	return page->objects;
4086}
4087#endif
4088
4089#ifdef CONFIG_SLUB_DEBUG
4090static int validate_slab(struct kmem_cache *s, struct page *page,
4091						unsigned long *map)
4092{
4093	void *p;
4094	void *addr = page_address(page);
4095
4096	if (!check_slab(s, page) ||
4097			!on_freelist(s, page, NULL))
4098		return 0;
4099
4100	/* Now we know that a valid freelist exists */
4101	bitmap_zero(map, page->objects);
 
 
 
4102
4103	get_map(s, page, map);
4104	for_each_object(p, s, addr, page->objects) {
4105		if (test_bit(slab_index(p, s, addr), map))
4106			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4107				return 0;
4108	}
4109
4110	for_each_object(p, s, addr, page->objects)
4111		if (!test_bit(slab_index(p, s, addr), map))
4112			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4113				return 0;
4114	return 1;
4115}
4116
4117static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4118						unsigned long *map)
4119{
4120	slab_lock(page);
4121	validate_slab(s, page, map);
4122	slab_unlock(page);
4123}
4124
4125static int validate_slab_node(struct kmem_cache *s,
4126		struct kmem_cache_node *n, unsigned long *map)
4127{
4128	unsigned long count = 0;
4129	struct page *page;
4130	unsigned long flags;
4131
4132	spin_lock_irqsave(&n->list_lock, flags);
4133
4134	list_for_each_entry(page, &n->partial, lru) {
4135		validate_slab_slab(s, page, map);
4136		count++;
4137	}
4138	if (count != n->nr_partial)
4139		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4140			"counter=%ld\n", s->name, count, n->nr_partial);
 
 
4141
4142	if (!(s->flags & SLAB_STORE_USER))
4143		goto out;
4144
4145	list_for_each_entry(page, &n->full, lru) {
4146		validate_slab_slab(s, page, map);
4147		count++;
4148	}
4149	if (count != atomic_long_read(&n->nr_slabs))
4150		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4151			"counter=%ld\n", s->name, count,
4152			atomic_long_read(&n->nr_slabs));
 
4153
4154out:
4155	spin_unlock_irqrestore(&n->list_lock, flags);
4156	return count;
4157}
4158
4159static long validate_slab_cache(struct kmem_cache *s)
4160{
4161	int node;
4162	unsigned long count = 0;
4163	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4164				sizeof(unsigned long), GFP_KERNEL);
4165
4166	if (!map)
 
4167		return -ENOMEM;
4168
4169	flush_all(s);
4170	for_each_node_state(node, N_NORMAL_MEMORY) {
4171		struct kmem_cache_node *n = get_node(s, node);
 
 
4172
4173		count += validate_slab_node(s, n, map);
4174	}
4175	kfree(map);
4176	return count;
4177}
 
 
 
4178/*
4179 * Generate lists of code addresses where slabcache objects are allocated
4180 * and freed.
4181 */
4182
4183struct location {
 
4184	unsigned long count;
4185	unsigned long addr;
 
4186	long long sum_time;
4187	long min_time;
4188	long max_time;
4189	long min_pid;
4190	long max_pid;
4191	DECLARE_BITMAP(cpus, NR_CPUS);
4192	nodemask_t nodes;
4193};
4194
4195struct loc_track {
4196	unsigned long max;
4197	unsigned long count;
4198	struct location *loc;
 
4199};
4200
 
 
4201static void free_loc_track(struct loc_track *t)
4202{
4203	if (t->max)
4204		free_pages((unsigned long)t->loc,
4205			get_order(sizeof(struct location) * t->max));
4206}
4207
4208static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4209{
4210	struct location *l;
4211	int order;
4212
4213	order = get_order(sizeof(struct location) * max);
4214
4215	l = (void *)__get_free_pages(flags, order);
4216	if (!l)
4217		return 0;
4218
4219	if (t->count) {
4220		memcpy(l, t->loc, sizeof(struct location) * t->count);
4221		free_loc_track(t);
4222	}
4223	t->max = max;
4224	t->loc = l;
4225	return 1;
4226}
4227
4228static int add_location(struct loc_track *t, struct kmem_cache *s,
4229				const struct track *track)
 
4230{
4231	long start, end, pos;
4232	struct location *l;
4233	unsigned long caddr;
4234	unsigned long age = jiffies - track->when;
 
 
4235
 
 
 
4236	start = -1;
4237	end = t->count;
4238
4239	for ( ; ; ) {
4240		pos = start + (end - start + 1) / 2;
4241
4242		/*
4243		 * There is nothing at "end". If we end up there
4244		 * we need to add something to before end.
4245		 */
4246		if (pos == end)
4247			break;
4248
4249		caddr = t->loc[pos].addr;
4250		if (track->addr == caddr) {
 
 
 
 
4251
4252			l = &t->loc[pos];
4253			l->count++;
4254			if (track->when) {
4255				l->sum_time += age;
4256				if (age < l->min_time)
4257					l->min_time = age;
4258				if (age > l->max_time)
4259					l->max_time = age;
4260
4261				if (track->pid < l->min_pid)
4262					l->min_pid = track->pid;
4263				if (track->pid > l->max_pid)
4264					l->max_pid = track->pid;
4265
4266				cpumask_set_cpu(track->cpu,
4267						to_cpumask(l->cpus));
4268			}
4269			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4270			return 1;
4271		}
4272
4273		if (track->addr < caddr)
4274			end = pos;
 
 
 
 
 
4275		else
4276			start = pos;
4277	}
4278
4279	/*
4280	 * Not found. Insert new tracking element.
4281	 */
4282	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4283		return 0;
4284
4285	l = t->loc + pos;
4286	if (pos < t->count)
4287		memmove(l + 1, l,
4288			(t->count - pos) * sizeof(struct location));
4289	t->count++;
4290	l->count = 1;
4291	l->addr = track->addr;
4292	l->sum_time = age;
4293	l->min_time = age;
4294	l->max_time = age;
4295	l->min_pid = track->pid;
4296	l->max_pid = track->pid;
 
 
4297	cpumask_clear(to_cpumask(l->cpus));
4298	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4299	nodes_clear(l->nodes);
4300	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4301	return 1;
4302}
4303
4304static void process_slab(struct loc_track *t, struct kmem_cache *s,
4305		struct page *page, enum track_item alloc,
4306		unsigned long *map)
4307{
4308	void *addr = page_address(page);
 
4309	void *p;
4310
4311	bitmap_zero(map, page->objects);
4312	get_map(s, page, map);
4313
4314	for_each_object(p, s, addr, page->objects)
4315		if (!test_bit(slab_index(p, s, addr), map))
4316			add_location(t, s, get_track(s, p, alloc));
 
 
4317}
 
 
4318
4319static int list_locations(struct kmem_cache *s, char *buf,
4320					enum track_item alloc)
4321{
4322	int len = 0;
4323	unsigned long i;
4324	struct loc_track t = { 0, 0, NULL };
4325	int node;
4326	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4327				     sizeof(unsigned long), GFP_KERNEL);
4328
4329	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4330				     GFP_TEMPORARY)) {
4331		kfree(map);
4332		return sprintf(buf, "Out of memory\n");
4333	}
4334	/* Push back cpu slabs */
4335	flush_all(s);
4336
4337	for_each_node_state(node, N_NORMAL_MEMORY) {
4338		struct kmem_cache_node *n = get_node(s, node);
4339		unsigned long flags;
4340		struct page *page;
4341
4342		if (!atomic_long_read(&n->nr_slabs))
4343			continue;
4344
4345		spin_lock_irqsave(&n->list_lock, flags);
4346		list_for_each_entry(page, &n->partial, lru)
4347			process_slab(&t, s, page, alloc, map);
4348		list_for_each_entry(page, &n->full, lru)
4349			process_slab(&t, s, page, alloc, map);
4350		spin_unlock_irqrestore(&n->list_lock, flags);
4351	}
4352
4353	for (i = 0; i < t.count; i++) {
4354		struct location *l = &t.loc[i];
4355
4356		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4357			break;
4358		len += sprintf(buf + len, "%7ld ", l->count);
4359
4360		if (l->addr)
4361			len += sprintf(buf + len, "%pS", (void *)l->addr);
4362		else
4363			len += sprintf(buf + len, "<not-available>");
4364
4365		if (l->sum_time != l->min_time) {
4366			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4367				l->min_time,
4368				(long)div_u64(l->sum_time, l->count),
4369				l->max_time);
4370		} else
4371			len += sprintf(buf + len, " age=%ld",
4372				l->min_time);
4373
4374		if (l->min_pid != l->max_pid)
4375			len += sprintf(buf + len, " pid=%ld-%ld",
4376				l->min_pid, l->max_pid);
4377		else
4378			len += sprintf(buf + len, " pid=%ld",
4379				l->min_pid);
4380
4381		if (num_online_cpus() > 1 &&
4382				!cpumask_empty(to_cpumask(l->cpus)) &&
4383				len < PAGE_SIZE - 60) {
4384			len += sprintf(buf + len, " cpus=");
4385			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4386						 to_cpumask(l->cpus));
4387		}
4388
4389		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4390				len < PAGE_SIZE - 60) {
4391			len += sprintf(buf + len, " nodes=");
4392			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4393					l->nodes);
4394		}
4395
4396		len += sprintf(buf + len, "\n");
4397	}
4398
4399	free_loc_track(&t);
4400	kfree(map);
4401	if (!t.count)
4402		len += sprintf(buf, "No data\n");
4403	return len;
4404}
4405#endif
4406
4407#ifdef SLUB_RESILIENCY_TEST
4408static void resiliency_test(void)
4409{
4410	u8 *p;
4411
4412	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4413
4414	printk(KERN_ERR "SLUB resiliency testing\n");
4415	printk(KERN_ERR "-----------------------\n");
4416	printk(KERN_ERR "A. Corruption after allocation\n");
4417
4418	p = kzalloc(16, GFP_KERNEL);
4419	p[16] = 0x12;
4420	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4421			" 0x12->0x%p\n\n", p + 16);
4422
4423	validate_slab_cache(kmalloc_caches[4]);
4424
4425	/* Hmmm... The next two are dangerous */
4426	p = kzalloc(32, GFP_KERNEL);
4427	p[32 + sizeof(void *)] = 0x34;
4428	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4429			" 0x34 -> -0x%p\n", p);
4430	printk(KERN_ERR
4431		"If allocated object is overwritten then not detectable\n\n");
4432
4433	validate_slab_cache(kmalloc_caches[5]);
4434	p = kzalloc(64, GFP_KERNEL);
4435	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4436	*p = 0x56;
4437	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4438									p);
4439	printk(KERN_ERR
4440		"If allocated object is overwritten then not detectable\n\n");
4441	validate_slab_cache(kmalloc_caches[6]);
4442
4443	printk(KERN_ERR "\nB. Corruption after free\n");
4444	p = kzalloc(128, GFP_KERNEL);
4445	kfree(p);
4446	*p = 0x78;
4447	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4448	validate_slab_cache(kmalloc_caches[7]);
4449
4450	p = kzalloc(256, GFP_KERNEL);
4451	kfree(p);
4452	p[50] = 0x9a;
4453	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4454			p);
4455	validate_slab_cache(kmalloc_caches[8]);
4456
4457	p = kzalloc(512, GFP_KERNEL);
4458	kfree(p);
4459	p[512] = 0xab;
4460	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4461	validate_slab_cache(kmalloc_caches[9]);
4462}
4463#else
4464#ifdef CONFIG_SYSFS
4465static void resiliency_test(void) {};
4466#endif
4467#endif
4468
4469#ifdef CONFIG_SYSFS
4470enum slab_stat_type {
4471	SL_ALL,			/* All slabs */
4472	SL_PARTIAL,		/* Only partially allocated slabs */
4473	SL_CPU,			/* Only slabs used for cpu caches */
4474	SL_OBJECTS,		/* Determine allocated objects not slabs */
4475	SL_TOTAL		/* Determine object capacity not slabs */
4476};
4477
4478#define SO_ALL		(1 << SL_ALL)
4479#define SO_PARTIAL	(1 << SL_PARTIAL)
4480#define SO_CPU		(1 << SL_CPU)
4481#define SO_OBJECTS	(1 << SL_OBJECTS)
4482#define SO_TOTAL	(1 << SL_TOTAL)
4483
4484static ssize_t show_slab_objects(struct kmem_cache *s,
4485			    char *buf, unsigned long flags)
4486{
4487	unsigned long total = 0;
4488	int node;
4489	int x;
4490	unsigned long *nodes;
4491	unsigned long *per_cpu;
4492
4493	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4494	if (!nodes)
4495		return -ENOMEM;
4496	per_cpu = nodes + nr_node_ids;
4497
4498	if (flags & SO_CPU) {
4499		int cpu;
4500
4501		for_each_possible_cpu(cpu) {
4502			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4503			int node = ACCESS_ONCE(c->node);
4504			struct page *page;
 
4505
4506			if (node < 0)
 
4507				continue;
4508			page = ACCESS_ONCE(c->page);
4509			if (page) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4510				if (flags & SO_TOTAL)
4511					x = page->objects;
4512				else if (flags & SO_OBJECTS)
4513					x = page->inuse;
4514				else
4515					x = 1;
4516
4517				total += x;
4518				nodes[node] += x;
4519			}
4520			page = c->partial;
4521
4522			if (page) {
4523				x = page->pobjects;
4524				total += x;
4525				nodes[node] += x;
4526			}
4527			per_cpu[node]++;
4528		}
4529	}
4530
4531	lock_memory_hotplug();
 
 
 
 
 
 
 
 
 
 
4532#ifdef CONFIG_SLUB_DEBUG
4533	if (flags & SO_ALL) {
4534		for_each_node_state(node, N_NORMAL_MEMORY) {
4535			struct kmem_cache_node *n = get_node(s, node);
4536
4537		if (flags & SO_TOTAL)
4538			x = atomic_long_read(&n->total_objects);
4539		else if (flags & SO_OBJECTS)
4540			x = atomic_long_read(&n->total_objects) -
4541				count_partial(n, count_free);
4542
 
 
 
 
 
4543			else
4544				x = atomic_long_read(&n->nr_slabs);
4545			total += x;
4546			nodes[node] += x;
4547		}
4548
4549	} else
4550#endif
4551	if (flags & SO_PARTIAL) {
4552		for_each_node_state(node, N_NORMAL_MEMORY) {
4553			struct kmem_cache_node *n = get_node(s, node);
4554
 
4555			if (flags & SO_TOTAL)
4556				x = count_partial(n, count_total);
4557			else if (flags & SO_OBJECTS)
4558				x = count_partial(n, count_inuse);
4559			else
4560				x = n->nr_partial;
4561			total += x;
4562			nodes[node] += x;
4563		}
4564	}
4565	x = sprintf(buf, "%lu", total);
 
4566#ifdef CONFIG_NUMA
4567	for_each_node_state(node, N_NORMAL_MEMORY)
4568		if (nodes[node])
4569			x += sprintf(buf + x, " N%d=%lu",
4570					node, nodes[node]);
 
4571#endif
4572	unlock_memory_hotplug();
4573	kfree(nodes);
4574	return x + sprintf(buf + x, "\n");
4575}
4576
4577#ifdef CONFIG_SLUB_DEBUG
4578static int any_slab_objects(struct kmem_cache *s)
4579{
4580	int node;
4581
4582	for_each_online_node(node) {
4583		struct kmem_cache_node *n = get_node(s, node);
4584
4585		if (!n)
4586			continue;
4587
4588		if (atomic_long_read(&n->total_objects))
4589			return 1;
4590	}
4591	return 0;
4592}
4593#endif
4594
4595#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4596#define to_slab(n) container_of(n, struct kmem_cache, kobj)
4597
4598struct slab_attribute {
4599	struct attribute attr;
4600	ssize_t (*show)(struct kmem_cache *s, char *buf);
4601	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4602};
4603
4604#define SLAB_ATTR_RO(_name) \
4605	static struct slab_attribute _name##_attr = \
4606	__ATTR(_name, 0400, _name##_show, NULL)
4607
4608#define SLAB_ATTR(_name) \
4609	static struct slab_attribute _name##_attr =  \
4610	__ATTR(_name, 0600, _name##_show, _name##_store)
4611
4612static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4613{
4614	return sprintf(buf, "%d\n", s->size);
4615}
4616SLAB_ATTR_RO(slab_size);
4617
4618static ssize_t align_show(struct kmem_cache *s, char *buf)
4619{
4620	return sprintf(buf, "%d\n", s->align);
4621}
4622SLAB_ATTR_RO(align);
4623
4624static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4625{
4626	return sprintf(buf, "%d\n", s->objsize);
4627}
4628SLAB_ATTR_RO(object_size);
4629
4630static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4631{
4632	return sprintf(buf, "%d\n", oo_objects(s->oo));
4633}
4634SLAB_ATTR_RO(objs_per_slab);
4635
4636static ssize_t order_store(struct kmem_cache *s,
4637				const char *buf, size_t length)
4638{
4639	unsigned long order;
4640	int err;
4641
4642	err = strict_strtoul(buf, 10, &order);
4643	if (err)
4644		return err;
4645
4646	if (order > slub_max_order || order < slub_min_order)
4647		return -EINVAL;
4648
4649	calculate_sizes(s, order);
4650	return length;
4651}
4652
4653static ssize_t order_show(struct kmem_cache *s, char *buf)
4654{
4655	return sprintf(buf, "%d\n", oo_order(s->oo));
4656}
4657SLAB_ATTR(order);
4658
4659static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4660{
4661	return sprintf(buf, "%lu\n", s->min_partial);
4662}
4663
4664static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4665				 size_t length)
4666{
4667	unsigned long min;
4668	int err;
4669
4670	err = strict_strtoul(buf, 10, &min);
4671	if (err)
4672		return err;
4673
4674	set_min_partial(s, min);
4675	return length;
4676}
4677SLAB_ATTR(min_partial);
4678
4679static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4680{
4681	return sprintf(buf, "%u\n", s->cpu_partial);
 
 
 
 
 
4682}
4683
4684static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4685				 size_t length)
4686{
4687	unsigned long objects;
4688	int err;
4689
4690	err = strict_strtoul(buf, 10, &objects);
4691	if (err)
4692		return err;
4693	if (objects && kmem_cache_debug(s))
4694		return -EINVAL;
4695
4696	s->cpu_partial = objects;
4697	flush_all(s);
4698	return length;
4699}
4700SLAB_ATTR(cpu_partial);
4701
4702static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4703{
4704	if (!s->ctor)
4705		return 0;
4706	return sprintf(buf, "%pS\n", s->ctor);
4707}
4708SLAB_ATTR_RO(ctor);
4709
4710static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4711{
4712	return sprintf(buf, "%d\n", s->refcount - 1);
4713}
4714SLAB_ATTR_RO(aliases);
4715
4716static ssize_t partial_show(struct kmem_cache *s, char *buf)
4717{
4718	return show_slab_objects(s, buf, SO_PARTIAL);
4719}
4720SLAB_ATTR_RO(partial);
4721
4722static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4723{
4724	return show_slab_objects(s, buf, SO_CPU);
4725}
4726SLAB_ATTR_RO(cpu_slabs);
4727
4728static ssize_t objects_show(struct kmem_cache *s, char *buf)
4729{
4730	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4731}
4732SLAB_ATTR_RO(objects);
4733
4734static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4735{
4736	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4737}
4738SLAB_ATTR_RO(objects_partial);
4739
4740static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4741{
4742	int objects = 0;
4743	int pages = 0;
4744	int cpu;
4745	int len;
4746
 
4747	for_each_online_cpu(cpu) {
4748		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
 
 
4749
4750		if (page) {
4751			pages += page->pages;
4752			objects += page->pobjects;
4753		}
4754	}
 
4755
4756	len = sprintf(buf, "%d(%d)", objects, pages);
 
 
4757
4758#ifdef CONFIG_SMP
4759	for_each_online_cpu(cpu) {
4760		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4761
4762		if (page && len < PAGE_SIZE - 20)
4763			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4764				page->pobjects, page->pages);
 
 
 
 
4765	}
4766#endif
4767	return len + sprintf(buf + len, "\n");
 
 
4768}
4769SLAB_ATTR_RO(slabs_cpu_partial);
4770
4771static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4772{
4773	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4774}
4775
4776static ssize_t reclaim_account_store(struct kmem_cache *s,
4777				const char *buf, size_t length)
4778{
4779	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4780	if (buf[0] == '1')
4781		s->flags |= SLAB_RECLAIM_ACCOUNT;
4782	return length;
4783}
4784SLAB_ATTR(reclaim_account);
4785
4786static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4787{
4788	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4789}
4790SLAB_ATTR_RO(hwcache_align);
4791
4792#ifdef CONFIG_ZONE_DMA
4793static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4794{
4795	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4796}
4797SLAB_ATTR_RO(cache_dma);
4798#endif
4799
4800static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
 
4801{
4802	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4803}
4804SLAB_ATTR_RO(destroy_by_rcu);
 
4805
4806static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4807{
4808	return sprintf(buf, "%d\n", s->reserved);
4809}
4810SLAB_ATTR_RO(reserved);
4811
4812#ifdef CONFIG_SLUB_DEBUG
4813static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4814{
4815	return show_slab_objects(s, buf, SO_ALL);
4816}
4817SLAB_ATTR_RO(slabs);
4818
4819static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4820{
4821	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4822}
4823SLAB_ATTR_RO(total_objects);
4824
4825static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4826{
4827	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4828}
4829
4830static ssize_t sanity_checks_store(struct kmem_cache *s,
4831				const char *buf, size_t length)
4832{
4833	s->flags &= ~SLAB_DEBUG_FREE;
4834	if (buf[0] == '1') {
4835		s->flags &= ~__CMPXCHG_DOUBLE;
4836		s->flags |= SLAB_DEBUG_FREE;
4837	}
4838	return length;
4839}
4840SLAB_ATTR(sanity_checks);
4841
4842static ssize_t trace_show(struct kmem_cache *s, char *buf)
4843{
4844	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4845}
4846
4847static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4848							size_t length)
4849{
4850	s->flags &= ~SLAB_TRACE;
4851	if (buf[0] == '1') {
4852		s->flags &= ~__CMPXCHG_DOUBLE;
4853		s->flags |= SLAB_TRACE;
4854	}
4855	return length;
4856}
4857SLAB_ATTR(trace);
4858
4859static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4860{
4861	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4862}
4863
4864static ssize_t red_zone_store(struct kmem_cache *s,
4865				const char *buf, size_t length)
4866{
4867	if (any_slab_objects(s))
4868		return -EBUSY;
4869
4870	s->flags &= ~SLAB_RED_ZONE;
4871	if (buf[0] == '1') {
4872		s->flags &= ~__CMPXCHG_DOUBLE;
4873		s->flags |= SLAB_RED_ZONE;
4874	}
4875	calculate_sizes(s, -1);
4876	return length;
4877}
4878SLAB_ATTR(red_zone);
4879
4880static ssize_t poison_show(struct kmem_cache *s, char *buf)
4881{
4882	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4883}
4884
4885static ssize_t poison_store(struct kmem_cache *s,
4886				const char *buf, size_t length)
4887{
4888	if (any_slab_objects(s))
4889		return -EBUSY;
4890
4891	s->flags &= ~SLAB_POISON;
4892	if (buf[0] == '1') {
4893		s->flags &= ~__CMPXCHG_DOUBLE;
4894		s->flags |= SLAB_POISON;
4895	}
4896	calculate_sizes(s, -1);
4897	return length;
4898}
4899SLAB_ATTR(poison);
4900
4901static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4902{
4903	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4904}
4905
4906static ssize_t store_user_store(struct kmem_cache *s,
4907				const char *buf, size_t length)
4908{
4909	if (any_slab_objects(s))
4910		return -EBUSY;
4911
4912	s->flags &= ~SLAB_STORE_USER;
4913	if (buf[0] == '1') {
4914		s->flags &= ~__CMPXCHG_DOUBLE;
4915		s->flags |= SLAB_STORE_USER;
4916	}
4917	calculate_sizes(s, -1);
4918	return length;
4919}
4920SLAB_ATTR(store_user);
4921
4922static ssize_t validate_show(struct kmem_cache *s, char *buf)
4923{
4924	return 0;
4925}
4926
4927static ssize_t validate_store(struct kmem_cache *s,
4928			const char *buf, size_t length)
4929{
4930	int ret = -EINVAL;
4931
4932	if (buf[0] == '1') {
4933		ret = validate_slab_cache(s);
4934		if (ret >= 0)
4935			ret = length;
4936	}
4937	return ret;
4938}
4939SLAB_ATTR(validate);
4940
4941static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4942{
4943	if (!(s->flags & SLAB_STORE_USER))
4944		return -ENOSYS;
4945	return list_locations(s, buf, TRACK_ALLOC);
4946}
4947SLAB_ATTR_RO(alloc_calls);
4948
4949static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4950{
4951	if (!(s->flags & SLAB_STORE_USER))
4952		return -ENOSYS;
4953	return list_locations(s, buf, TRACK_FREE);
4954}
4955SLAB_ATTR_RO(free_calls);
4956#endif /* CONFIG_SLUB_DEBUG */
4957
4958#ifdef CONFIG_FAILSLAB
4959static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4960{
4961	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4962}
4963
4964static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4965							size_t length)
4966{
4967	s->flags &= ~SLAB_FAILSLAB;
 
 
4968	if (buf[0] == '1')
4969		s->flags |= SLAB_FAILSLAB;
 
 
 
4970	return length;
4971}
4972SLAB_ATTR(failslab);
4973#endif
4974
4975static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4976{
4977	return 0;
4978}
4979
4980static ssize_t shrink_store(struct kmem_cache *s,
4981			const char *buf, size_t length)
4982{
4983	if (buf[0] == '1') {
4984		int rc = kmem_cache_shrink(s);
4985
4986		if (rc)
4987			return rc;
4988	} else
4989		return -EINVAL;
4990	return length;
4991}
4992SLAB_ATTR(shrink);
4993
4994#ifdef CONFIG_NUMA
4995static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4996{
4997	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4998}
4999
5000static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5001				const char *buf, size_t length)
5002{
5003	unsigned long ratio;
5004	int err;
5005
5006	err = strict_strtoul(buf, 10, &ratio);
5007	if (err)
5008		return err;
 
 
5009
5010	if (ratio <= 100)
5011		s->remote_node_defrag_ratio = ratio * 10;
5012
5013	return length;
5014}
5015SLAB_ATTR(remote_node_defrag_ratio);
5016#endif
5017
5018#ifdef CONFIG_SLUB_STATS
5019static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5020{
5021	unsigned long sum  = 0;
5022	int cpu;
5023	int len;
5024	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5025
5026	if (!data)
5027		return -ENOMEM;
5028
5029	for_each_online_cpu(cpu) {
5030		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5031
5032		data[cpu] = x;
5033		sum += x;
5034	}
5035
5036	len = sprintf(buf, "%lu", sum);
5037
5038#ifdef CONFIG_SMP
5039	for_each_online_cpu(cpu) {
5040		if (data[cpu] && len < PAGE_SIZE - 20)
5041			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
 
5042	}
5043#endif
5044	kfree(data);
5045	return len + sprintf(buf + len, "\n");
 
 
5046}
5047
5048static void clear_stat(struct kmem_cache *s, enum stat_item si)
5049{
5050	int cpu;
5051
5052	for_each_online_cpu(cpu)
5053		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5054}
5055
5056#define STAT_ATTR(si, text) 					\
5057static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5058{								\
5059	return show_stat(s, buf, si);				\
5060}								\
5061static ssize_t text##_store(struct kmem_cache *s,		\
5062				const char *buf, size_t length)	\
5063{								\
5064	if (buf[0] != '0')					\
5065		return -EINVAL;					\
5066	clear_stat(s, si);					\
5067	return length;						\
5068}								\
5069SLAB_ATTR(text);						\
5070
5071STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5072STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5073STAT_ATTR(FREE_FASTPATH, free_fastpath);
5074STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5075STAT_ATTR(FREE_FROZEN, free_frozen);
5076STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5077STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5078STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5079STAT_ATTR(ALLOC_SLAB, alloc_slab);
5080STAT_ATTR(ALLOC_REFILL, alloc_refill);
5081STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5082STAT_ATTR(FREE_SLAB, free_slab);
5083STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5084STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5085STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5086STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5087STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5088STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5089STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5090STAT_ATTR(ORDER_FALLBACK, order_fallback);
5091STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5092STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5093STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5094STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5095STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5096STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5097#endif
5098
5099static struct attribute *slab_attrs[] = {
5100	&slab_size_attr.attr,
5101	&object_size_attr.attr,
5102	&objs_per_slab_attr.attr,
5103	&order_attr.attr,
5104	&min_partial_attr.attr,
5105	&cpu_partial_attr.attr,
5106	&objects_attr.attr,
5107	&objects_partial_attr.attr,
5108	&partial_attr.attr,
5109	&cpu_slabs_attr.attr,
5110	&ctor_attr.attr,
5111	&aliases_attr.attr,
5112	&align_attr.attr,
5113	&hwcache_align_attr.attr,
5114	&reclaim_account_attr.attr,
5115	&destroy_by_rcu_attr.attr,
5116	&shrink_attr.attr,
5117	&reserved_attr.attr,
5118	&slabs_cpu_partial_attr.attr,
5119#ifdef CONFIG_SLUB_DEBUG
5120	&total_objects_attr.attr,
5121	&slabs_attr.attr,
5122	&sanity_checks_attr.attr,
5123	&trace_attr.attr,
5124	&red_zone_attr.attr,
5125	&poison_attr.attr,
5126	&store_user_attr.attr,
5127	&validate_attr.attr,
5128	&alloc_calls_attr.attr,
5129	&free_calls_attr.attr,
5130#endif
5131#ifdef CONFIG_ZONE_DMA
5132	&cache_dma_attr.attr,
5133#endif
5134#ifdef CONFIG_NUMA
5135	&remote_node_defrag_ratio_attr.attr,
5136#endif
5137#ifdef CONFIG_SLUB_STATS
5138	&alloc_fastpath_attr.attr,
5139	&alloc_slowpath_attr.attr,
5140	&free_fastpath_attr.attr,
5141	&free_slowpath_attr.attr,
5142	&free_frozen_attr.attr,
5143	&free_add_partial_attr.attr,
5144	&free_remove_partial_attr.attr,
5145	&alloc_from_partial_attr.attr,
5146	&alloc_slab_attr.attr,
5147	&alloc_refill_attr.attr,
5148	&alloc_node_mismatch_attr.attr,
5149	&free_slab_attr.attr,
5150	&cpuslab_flush_attr.attr,
5151	&deactivate_full_attr.attr,
5152	&deactivate_empty_attr.attr,
5153	&deactivate_to_head_attr.attr,
5154	&deactivate_to_tail_attr.attr,
5155	&deactivate_remote_frees_attr.attr,
5156	&deactivate_bypass_attr.attr,
5157	&order_fallback_attr.attr,
5158	&cmpxchg_double_fail_attr.attr,
5159	&cmpxchg_double_cpu_fail_attr.attr,
5160	&cpu_partial_alloc_attr.attr,
5161	&cpu_partial_free_attr.attr,
5162	&cpu_partial_node_attr.attr,
5163	&cpu_partial_drain_attr.attr,
5164#endif
5165#ifdef CONFIG_FAILSLAB
5166	&failslab_attr.attr,
5167#endif
 
 
 
 
 
 
5168
5169	NULL
5170};
5171
5172static struct attribute_group slab_attr_group = {
5173	.attrs = slab_attrs,
5174};
5175
5176static ssize_t slab_attr_show(struct kobject *kobj,
5177				struct attribute *attr,
5178				char *buf)
5179{
5180	struct slab_attribute *attribute;
5181	struct kmem_cache *s;
5182	int err;
5183
5184	attribute = to_slab_attr(attr);
5185	s = to_slab(kobj);
5186
5187	if (!attribute->show)
5188		return -EIO;
5189
5190	err = attribute->show(s, buf);
5191
5192	return err;
5193}
5194
5195static ssize_t slab_attr_store(struct kobject *kobj,
5196				struct attribute *attr,
5197				const char *buf, size_t len)
5198{
5199	struct slab_attribute *attribute;
5200	struct kmem_cache *s;
5201	int err;
5202
5203	attribute = to_slab_attr(attr);
5204	s = to_slab(kobj);
5205
5206	if (!attribute->store)
5207		return -EIO;
5208
5209	err = attribute->store(s, buf, len);
5210
5211	return err;
5212}
5213
5214static void kmem_cache_release(struct kobject *kobj)
5215{
5216	struct kmem_cache *s = to_slab(kobj);
5217
5218	kfree(s->name);
5219	kfree(s);
5220}
5221
5222static const struct sysfs_ops slab_sysfs_ops = {
5223	.show = slab_attr_show,
5224	.store = slab_attr_store,
5225};
5226
5227static struct kobj_type slab_ktype = {
5228	.sysfs_ops = &slab_sysfs_ops,
5229	.release = kmem_cache_release
5230};
5231
5232static int uevent_filter(struct kset *kset, struct kobject *kobj)
 
 
5233{
5234	struct kobj_type *ktype = get_ktype(kobj);
5235
5236	if (ktype == &slab_ktype)
5237		return 1;
5238	return 0;
5239}
5240
5241static const struct kset_uevent_ops slab_uevent_ops = {
5242	.filter = uevent_filter,
5243};
5244
5245static struct kset *slab_kset;
5246
5247#define ID_STR_LENGTH 64
5248
5249/* Create a unique string id for a slab cache:
5250 *
5251 * Format	:[flags-]size
5252 */
5253static char *create_unique_id(struct kmem_cache *s)
5254{
5255	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5256	char *p = name;
5257
5258	BUG_ON(!name);
 
5259
5260	*p++ = ':';
5261	/*
5262	 * First flags affecting slabcache operations. We will only
5263	 * get here for aliasable slabs so we do not need to support
5264	 * too many flags. The flags here must cover all flags that
5265	 * are matched during merging to guarantee that the id is
5266	 * unique.
5267	 */
5268	if (s->flags & SLAB_CACHE_DMA)
5269		*p++ = 'd';
 
 
5270	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5271		*p++ = 'a';
5272	if (s->flags & SLAB_DEBUG_FREE)
5273		*p++ = 'F';
5274	if (!(s->flags & SLAB_NOTRACK))
5275		*p++ = 't';
5276	if (p != name + 1)
5277		*p++ = '-';
5278	p += sprintf(p, "%07d", s->size);
5279	BUG_ON(p > name + ID_STR_LENGTH - 1);
 
 
 
 
 
5280	return name;
5281}
5282
5283static int sysfs_slab_add(struct kmem_cache *s)
5284{
5285	int err;
5286	const char *name;
5287	int unmergeable;
 
5288
5289	if (slab_state < SYSFS)
5290		/* Defer until later */
5291		return 0;
5292
5293	unmergeable = slab_unmergeable(s);
5294	if (unmergeable) {
5295		/*
5296		 * Slabcache can never be merged so we can use the name proper.
5297		 * This is typically the case for debug situations. In that
5298		 * case we can catch duplicate names easily.
5299		 */
5300		sysfs_remove_link(&slab_kset->kobj, s->name);
5301		name = s->name;
5302	} else {
5303		/*
5304		 * Create a unique name for the slab as a target
5305		 * for the symlinks.
5306		 */
5307		name = create_unique_id(s);
 
 
5308	}
5309
5310	s->kobj.kset = slab_kset;
5311	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5312	if (err) {
5313		kobject_put(&s->kobj);
5314		return err;
5315	}
5316
5317	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5318	if (err) {
5319		kobject_del(&s->kobj);
5320		kobject_put(&s->kobj);
5321		return err;
5322	}
5323	kobject_uevent(&s->kobj, KOBJ_ADD);
5324	if (!unmergeable) {
5325		/* Setup first alias */
5326		sysfs_slab_alias(s, s->name);
 
 
 
5327		kfree(name);
5328	}
5329	return 0;
 
 
5330}
5331
5332static void sysfs_slab_remove(struct kmem_cache *s)
5333{
5334	if (slab_state < SYSFS)
5335		/*
5336		 * Sysfs has not been setup yet so no need to remove the
5337		 * cache from sysfs.
5338		 */
5339		return;
5340
5341	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5342	kobject_del(&s->kobj);
5343	kobject_put(&s->kobj);
 
5344}
5345
5346/*
5347 * Need to buffer aliases during bootup until sysfs becomes
5348 * available lest we lose that information.
5349 */
5350struct saved_alias {
5351	struct kmem_cache *s;
5352	const char *name;
5353	struct saved_alias *next;
5354};
5355
5356static struct saved_alias *alias_list;
5357
5358static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5359{
5360	struct saved_alias *al;
5361
5362	if (slab_state == SYSFS) {
5363		/*
5364		 * If we have a leftover link then remove it.
5365		 */
5366		sysfs_remove_link(&slab_kset->kobj, name);
5367		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5368	}
5369
5370	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5371	if (!al)
5372		return -ENOMEM;
5373
5374	al->s = s;
5375	al->name = name;
5376	al->next = alias_list;
5377	alias_list = al;
 
5378	return 0;
5379}
5380
5381static int __init slab_sysfs_init(void)
5382{
5383	struct kmem_cache *s;
5384	int err;
5385
5386	down_write(&slub_lock);
5387
5388	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5389	if (!slab_kset) {
5390		up_write(&slub_lock);
5391		printk(KERN_ERR "Cannot register slab subsystem.\n");
5392		return -ENOSYS;
5393	}
5394
5395	slab_state = SYSFS;
5396
5397	list_for_each_entry(s, &slab_caches, list) {
5398		err = sysfs_slab_add(s);
5399		if (err)
5400			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5401						" to sysfs\n", s->name);
5402	}
5403
5404	while (alias_list) {
5405		struct saved_alias *al = alias_list;
5406
5407		alias_list = alias_list->next;
5408		err = sysfs_slab_alias(al->s, al->name);
5409		if (err)
5410			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5411					" %s to sysfs\n", s->name);
5412		kfree(al);
5413	}
5414
5415	up_write(&slub_lock);
5416	resiliency_test();
5417	return 0;
5418}
 
 
 
 
 
 
 
 
 
5419
5420__initcall(slab_sysfs_init);
5421#endif /* CONFIG_SYSFS */
 
5422
5423/*
5424 * The /proc/slabinfo ABI
5425 */
5426#ifdef CONFIG_SLABINFO
5427static void print_slabinfo_header(struct seq_file *m)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5428{
5429	seq_puts(m, "slabinfo - version: 2.1\n");
5430	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
5431		 "<objperslab> <pagesperslab>");
5432	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5433	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5434	seq_putc(m, '\n');
5435}
5436
5437static void *s_start(struct seq_file *m, loff_t *pos)
5438{
5439	loff_t n = *pos;
5440
5441	down_read(&slub_lock);
5442	if (!n)
5443		print_slabinfo_header(m);
5444
5445	return seq_list_start(&slab_caches, *pos);
5446}
5447
5448static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5449{
5450	return seq_list_next(p, &slab_caches, pos);
 
 
 
 
 
 
5451}
5452
5453static void s_stop(struct seq_file *m, void *p)
5454{
5455	up_read(&slub_lock);
 
 
 
5456}
5457
5458static int s_show(struct seq_file *m, void *p)
 
 
 
 
 
 
 
5459{
5460	unsigned long nr_partials = 0;
5461	unsigned long nr_slabs = 0;
5462	unsigned long nr_inuse = 0;
5463	unsigned long nr_objs = 0;
5464	unsigned long nr_free = 0;
5465	struct kmem_cache *s;
5466	int node;
 
 
 
 
5467
5468	s = list_entry(p, struct kmem_cache, list);
 
5469
5470	for_each_online_node(node) {
5471		struct kmem_cache_node *n = get_node(s, node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5472
5473		if (!n)
5474			continue;
5475
5476		nr_partials += n->nr_partial;
5477		nr_slabs += atomic_long_read(&n->nr_slabs);
5478		nr_objs += atomic_long_read(&n->total_objects);
5479		nr_free += count_partial(n, count_free);
 
 
5480	}
5481
5482	nr_inuse = nr_objs - nr_free;
 
 
5483
5484	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5485		   nr_objs, s->size, oo_objects(s->oo),
5486		   (1 << oo_order(s->oo)));
5487	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5488	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5489		   0UL);
5490	seq_putc(m, '\n');
5491	return 0;
5492}
5493
5494static const struct seq_operations slabinfo_op = {
5495	.start = s_start,
5496	.next = s_next,
5497	.stop = s_stop,
5498	.show = s_show,
 
 
 
 
 
 
 
 
 
5499};
5500
5501static int slabinfo_open(struct inode *inode, struct file *file)
5502{
5503	return seq_open(file, &slabinfo_op);
 
 
 
 
 
 
 
 
 
 
 
5504}
5505
5506static const struct file_operations proc_slabinfo_operations = {
5507	.open		= slabinfo_open,
5508	.read		= seq_read,
5509	.llseek		= seq_lseek,
5510	.release	= seq_release,
5511};
5512
5513static int __init slab_proc_init(void)
5514{
5515	proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
 
 
 
 
 
 
 
5516	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5517}
5518module_init(slab_proc_init);
5519#endif /* CONFIG_SLABINFO */