Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SLUB: A slab allocator that limits cache line use instead of queuing
   4 * objects in per cpu and per node lists.
   5 *
   6 * The allocator synchronizes using per slab locks or atomic operations
   7 * and only uses a centralized lock to manage a pool of partial slabs.
   8 *
   9 * (C) 2007 SGI, Christoph Lameter
  10 * (C) 2011 Linux Foundation, Christoph Lameter
  11 */
  12
  13#include <linux/mm.h>
  14#include <linux/swap.h> /* struct reclaim_state */
  15#include <linux/module.h>
  16#include <linux/bit_spinlock.h>
  17#include <linux/interrupt.h>
  18#include <linux/swab.h>
  19#include <linux/bitops.h>
  20#include <linux/slab.h>
  21#include "slab.h"
  22#include <linux/proc_fs.h>
 
  23#include <linux/seq_file.h>
  24#include <linux/kasan.h>
  25#include <linux/kmsan.h>
  26#include <linux/cpu.h>
  27#include <linux/cpuset.h>
  28#include <linux/mempolicy.h>
  29#include <linux/ctype.h>
  30#include <linux/stackdepot.h>
  31#include <linux/debugobjects.h>
  32#include <linux/kallsyms.h>
  33#include <linux/kfence.h>
  34#include <linux/memory.h>
  35#include <linux/math64.h>
  36#include <linux/fault-inject.h>
  37#include <linux/stacktrace.h>
  38#include <linux/prefetch.h>
  39#include <linux/memcontrol.h>
  40#include <linux/random.h>
  41#include <kunit/test.h>
  42#include <kunit/test-bug.h>
  43#include <linux/sort.h>
  44
  45#include <linux/debugfs.h>
  46#include <trace/events/kmem.h>
  47
  48#include "internal.h"
  49
  50/*
  51 * Lock order:
  52 *   1. slab_mutex (Global Mutex)
  53 *   2. node->list_lock (Spinlock)
  54 *   3. kmem_cache->cpu_slab->lock (Local lock)
  55 *   4. slab_lock(slab) (Only on some arches)
  56 *   5. object_map_lock (Only for debugging)
  57 *
  58 *   slab_mutex
  59 *
  60 *   The role of the slab_mutex is to protect the list of all the slabs
  61 *   and to synchronize major metadata changes to slab cache structures.
  62 *   Also synchronizes memory hotplug callbacks.
  63 *
  64 *   slab_lock
  65 *
  66 *   The slab_lock is a wrapper around the page lock, thus it is a bit
  67 *   spinlock.
  68 *
  69 *   The slab_lock is only used on arches that do not have the ability
  70 *   to do a cmpxchg_double. It only protects:
  71 *
  72 *	A. slab->freelist	-> List of free objects in a slab
  73 *	B. slab->inuse		-> Number of objects in use
  74 *	C. slab->objects	-> Number of objects in slab
  75 *	D. slab->frozen		-> frozen state
  76 *
  77 *   Frozen slabs
  78 *
  79 *   If a slab is frozen then it is exempt from list management. It is not
  80 *   on any list except per cpu partial list. The processor that froze the
  81 *   slab is the one who can perform list operations on the slab. Other
  82 *   processors may put objects onto the freelist but the processor that
  83 *   froze the slab is the only one that can retrieve the objects from the
  84 *   slab's freelist.
  85 *
  86 *   list_lock
  87 *
  88 *   The list_lock protects the partial and full list on each node and
  89 *   the partial slab counter. If taken then no new slabs may be added or
  90 *   removed from the lists nor make the number of partial slabs be modified.
  91 *   (Note that the total number of slabs is an atomic value that may be
  92 *   modified without taking the list lock).
  93 *
  94 *   The list_lock is a centralized lock and thus we avoid taking it as
  95 *   much as possible. As long as SLUB does not have to handle partial
  96 *   slabs, operations can continue without any centralized lock. F.e.
  97 *   allocating a long series of objects that fill up slabs does not require
  98 *   the list lock.
  99 *
 100 *   For debug caches, all allocations are forced to go through a list_lock
 101 *   protected region to serialize against concurrent validation.
 102 *
 103 *   cpu_slab->lock local lock
 104 *
 105 *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
 106 *   except the stat counters. This is a percpu structure manipulated only by
 107 *   the local cpu, so the lock protects against being preempted or interrupted
 108 *   by an irq. Fast path operations rely on lockless operations instead.
 109 *
 110 *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
 111 *   which means the lockless fastpath cannot be used as it might interfere with
 112 *   an in-progress slow path operations. In this case the local lock is always
 113 *   taken but it still utilizes the freelist for the common operations.
 114 *
 115 *   lockless fastpaths
 116 *
 117 *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
 118 *   are fully lockless when satisfied from the percpu slab (and when
 119 *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
 120 *   They also don't disable preemption or migration or irqs. They rely on
 121 *   the transaction id (tid) field to detect being preempted or moved to
 122 *   another cpu.
 123 *
 124 *   irq, preemption, migration considerations
 125 *
 126 *   Interrupts are disabled as part of list_lock or local_lock operations, or
 127 *   around the slab_lock operation, in order to make the slab allocator safe
 128 *   to use in the context of an irq.
 129 *
 130 *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
 131 *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
 132 *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
 133 *   doesn't have to be revalidated in each section protected by the local lock.
 134 *
 135 * SLUB assigns one slab for allocation to each processor.
 136 * Allocations only occur from these slabs called cpu slabs.
 137 *
 138 * Slabs with free elements are kept on a partial list and during regular
 139 * operations no list for full slabs is used. If an object in a full slab is
 140 * freed then the slab will show up again on the partial lists.
 141 * We track full slabs for debugging purposes though because otherwise we
 142 * cannot scan all objects.
 143 *
 144 * Slabs are freed when they become empty. Teardown and setup is
 145 * minimal so we rely on the page allocators per cpu caches for
 146 * fast frees and allocs.
 147 *
 148 * slab->frozen		The slab is frozen and exempt from list processing.
 
 
 149 * 			This means that the slab is dedicated to a purpose
 150 * 			such as satisfying allocations for a specific
 151 * 			processor. Objects may be freed in the slab while
 152 * 			it is frozen but slab_free will then skip the usual
 153 * 			list operations. It is up to the processor holding
 154 * 			the slab to integrate the slab into the slab lists
 155 * 			when the slab is no longer needed.
 156 *
 157 * 			One use of this flag is to mark slabs that are
 158 * 			used for allocations. Then such a slab becomes a cpu
 159 * 			slab. The cpu slab may be equipped with an additional
 160 * 			freelist that allows lockless access to
 161 * 			free objects in addition to the regular freelist
 162 * 			that requires the slab lock.
 163 *
 164 * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
 165 * 			options set. This moves	slab handling out of
 166 * 			the fast path and disables lockless freelists.
 167 */
 168
 169/*
 170 * We could simply use migrate_disable()/enable() but as long as it's a
 171 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
 172 */
 173#ifndef CONFIG_PREEMPT_RT
 174#define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
 175#define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
 176#define USE_LOCKLESS_FAST_PATH()	(true)
 177#else
 178#define slub_get_cpu_ptr(var)		\
 179({					\
 180	migrate_disable();		\
 181	this_cpu_ptr(var);		\
 182})
 183#define slub_put_cpu_ptr(var)		\
 184do {					\
 185	(void)(var);			\
 186	migrate_enable();		\
 187} while (0)
 188#define USE_LOCKLESS_FAST_PATH()	(false)
 189#endif
 190
 191#ifndef CONFIG_SLUB_TINY
 192#define __fastpath_inline __always_inline
 193#else
 194#define __fastpath_inline
 195#endif
 196
 197#ifdef CONFIG_SLUB_DEBUG
 198#ifdef CONFIG_SLUB_DEBUG_ON
 199DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
 200#else
 201DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
 202#endif
 203#endif		/* CONFIG_SLUB_DEBUG */
 204
 205/* Structure holding parameters for get_partial() call chain */
 206struct partial_context {
 207	struct slab **slab;
 208	gfp_t flags;
 209	unsigned int orig_size;
 210};
 211
 212static inline bool kmem_cache_debug(struct kmem_cache *s)
 213{
 214	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
 215}
 216
 217static inline bool slub_debug_orig_size(struct kmem_cache *s)
 218{
 219	return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
 220			(s->flags & SLAB_KMALLOC));
 221}
 222
 223void *fixup_red_left(struct kmem_cache *s, void *p)
 224{
 225	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
 226		p += s->red_left_pad;
 227
 228	return p;
 229}
 230
 231static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
 232{
 233#ifdef CONFIG_SLUB_CPU_PARTIAL
 234	return !kmem_cache_debug(s);
 235#else
 236	return false;
 237#endif
 238}
 239
 240/*
 241 * Issues still to be resolved:
 242 *
 243 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 244 *
 245 * - Variable sizing of the per node arrays
 246 */
 247
 
 
 
 248/* Enable to log cmpxchg failures */
 249#undef SLUB_DEBUG_CMPXCHG
 250
 251#ifndef CONFIG_SLUB_TINY
 252/*
 253 * Minimum number of partial slabs. These will be left on the partial
 254 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 255 */
 256#define MIN_PARTIAL 5
 257
 258/*
 259 * Maximum number of desirable partial slabs.
 260 * The existence of more partial slabs makes kmem_cache_shrink
 261 * sort the partial list by the number of objects in use.
 262 */
 263#define MAX_PARTIAL 10
 264#else
 265#define MIN_PARTIAL 0
 266#define MAX_PARTIAL 0
 267#endif
 268
 269#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
 270				SLAB_POISON | SLAB_STORE_USER)
 271
 272/*
 273 * These debug flags cannot use CMPXCHG because there might be consistency
 274 * issues when checking or reading debug information
 275 */
 276#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
 277				SLAB_TRACE)
 278
 279
 280/*
 281 * Debugging flags that require metadata to be stored in the slab.  These get
 282 * disabled when slub_debug=O is used and a cache's min order increases with
 283 * metadata.
 284 */
 285#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
 286
 
 
 
 
 
 
 
 
 
 
 287#define OO_SHIFT	16
 288#define OO_MASK		((1 << OO_SHIFT) - 1)
 289#define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
 290
 291/* Internal SLUB flags */
 292/* Poison object */
 293#define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
 294/* Use cmpxchg_double */
 295#define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
 
 
 296
 297/*
 298 * Tracking user of a slab.
 299 */
 300#define TRACK_ADDRS_COUNT 16
 301struct track {
 302	unsigned long addr;	/* Called from address */
 303#ifdef CONFIG_STACKDEPOT
 304	depot_stack_handle_t handle;
 305#endif
 306	int cpu;		/* Was running on cpu */
 307	int pid;		/* Pid context */
 308	unsigned long when;	/* When did the operation occur */
 309};
 310
 311enum track_item { TRACK_ALLOC, TRACK_FREE };
 312
 313#ifdef SLAB_SUPPORTS_SYSFS
 314static int sysfs_slab_add(struct kmem_cache *);
 315static int sysfs_slab_alias(struct kmem_cache *, const char *);
 
 316#else
 317static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
 318static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
 319							{ return 0; }
 320#endif
 321
 322#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
 323static void debugfs_slab_add(struct kmem_cache *);
 324#else
 325static inline void debugfs_slab_add(struct kmem_cache *s) { }
 326#endif
 327
 328static inline void stat(const struct kmem_cache *s, enum stat_item si)
 329{
 330#ifdef CONFIG_SLUB_STATS
 331	/*
 332	 * The rmw is racy on a preemptible kernel but this is acceptable, so
 333	 * avoid this_cpu_add()'s irq-disable overhead.
 334	 */
 335	raw_cpu_inc(s->cpu_slab->stat[si]);
 336#endif
 337}
 338
 339/*
 340 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
 341 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
 342 * differ during memory hotplug/hotremove operations.
 343 * Protected by slab_mutex.
 344 */
 345static nodemask_t slab_nodes;
 346
 347#ifndef CONFIG_SLUB_TINY
 348/*
 349 * Workqueue used for flush_cpu_slab().
 350 */
 351static struct workqueue_struct *flushwq;
 352#endif
 353
 354/********************************************************************
 355 * 			Core slab cache functions
 356 *******************************************************************/
 357
 358/*
 359 * Returns freelist pointer (ptr). With hardening, this is obfuscated
 360 * with an XOR of the address where the pointer is held and a per-cache
 361 * random number.
 362 */
 363static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
 364				 unsigned long ptr_addr)
 365{
 366#ifdef CONFIG_SLAB_FREELIST_HARDENED
 367	/*
 368	 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
 369	 * Normally, this doesn't cause any issues, as both set_freepointer()
 370	 * and get_freepointer() are called with a pointer with the same tag.
 371	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
 372	 * example, when __free_slub() iterates over objects in a cache, it
 373	 * passes untagged pointers to check_object(). check_object() in turns
 374	 * calls get_freepointer() with an untagged pointer, which causes the
 375	 * freepointer to be restored incorrectly.
 376	 */
 377	return (void *)((unsigned long)ptr ^ s->random ^
 378			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
 379#else
 380	return ptr;
 381#endif
 382}
 383
 384/* Returns the freelist pointer recorded at location ptr_addr. */
 385static inline void *freelist_dereference(const struct kmem_cache *s,
 386					 void *ptr_addr)
 387{
 388	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
 389			    (unsigned long)ptr_addr);
 
 
 
 
 
 
 
 
 
 
 390}
 391
 392static inline void *get_freepointer(struct kmem_cache *s, void *object)
 393{
 394	object = kasan_reset_tag(object);
 395	return freelist_dereference(s, object + s->offset);
 396}
 397
 398#ifndef CONFIG_SLUB_TINY
 399static void prefetch_freepointer(const struct kmem_cache *s, void *object)
 400{
 401	prefetchw(object + s->offset);
 402}
 403#endif
 404
 405/*
 406 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
 407 * pointer value in the case the current thread loses the race for the next
 408 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
 409 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
 410 * KMSAN will still check all arguments of cmpxchg because of imperfect
 411 * handling of inline assembly.
 412 * To work around this problem, we apply __no_kmsan_checks to ensure that
 413 * get_freepointer_safe() returns initialized memory.
 414 */
 415__no_kmsan_checks
 416static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
 417{
 418	unsigned long freepointer_addr;
 419	void *p;
 420
 421	if (!debug_pagealloc_enabled_static())
 422		return get_freepointer(s, object);
 423
 424	object = kasan_reset_tag(object);
 425	freepointer_addr = (unsigned long)object + s->offset;
 426	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
 427	return freelist_ptr(s, p, freepointer_addr);
 428}
 429
 430static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
 431{
 432	unsigned long freeptr_addr = (unsigned long)object + s->offset;
 433
 434#ifdef CONFIG_SLAB_FREELIST_HARDENED
 435	BUG_ON(object == fp); /* naive detection of double free or corruption */
 436#endif
 437
 438	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
 439	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
 440}
 441
 442/* Loop over all objects in a slab */
 443#define for_each_object(__p, __s, __addr, __objects) \
 444	for (__p = fixup_red_left(__s, __addr); \
 445		__p < (__addr) + (__objects) * (__s)->size; \
 446		__p += (__s)->size)
 447
 448static inline unsigned int order_objects(unsigned int order, unsigned int size)
 
 449{
 450	return ((unsigned int)PAGE_SIZE << order) / size;
 451}
 452
 453static inline struct kmem_cache_order_objects oo_make(unsigned int order,
 454		unsigned int size)
 455{
 456	struct kmem_cache_order_objects x = {
 457		(order << OO_SHIFT) + order_objects(order, size)
 458	};
 
 
 
 
 459
 460	return x;
 
 
 
 
 
 
 
 
 
 
 
 461}
 462
 463static inline unsigned int oo_order(struct kmem_cache_order_objects x)
 464{
 465	return x.x >> OO_SHIFT;
 466}
 467
 468static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
 
 469{
 470	return x.x & OO_MASK;
 
 
 
 
 471}
 472
 473#ifdef CONFIG_SLUB_CPU_PARTIAL
 474static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
 475{
 476	unsigned int nr_slabs;
 477
 478	s->cpu_partial = nr_objects;
 479
 480	/*
 481	 * We take the number of objects but actually limit the number of
 482	 * slabs on the per cpu partial list, in order to limit excessive
 483	 * growth of the list. For simplicity we assume that the slabs will
 484	 * be half-full.
 485	 */
 486	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
 487	s->cpu_partial_slabs = nr_slabs;
 488}
 489#else
 490static inline void
 491slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
 492{
 
 493}
 494#endif /* CONFIG_SLUB_CPU_PARTIAL */
 495
 496/*
 497 * Per slab locking using the pagelock
 498 */
 499static __always_inline void slab_lock(struct slab *slab)
 500{
 501	struct page *page = slab_page(slab);
 502
 503	VM_BUG_ON_PAGE(PageTail(page), page);
 504	bit_spin_lock(PG_locked, &page->flags);
 505}
 506
 507static __always_inline void slab_unlock(struct slab *slab)
 508{
 509	struct page *page = slab_page(slab);
 510
 511	VM_BUG_ON_PAGE(PageTail(page), page);
 512	__bit_spin_unlock(PG_locked, &page->flags);
 513}
 514
 515/*
 516 * Interrupts must be disabled (for the fallback code to work right), typically
 517 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
 518 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
 519 * allocation/ free operation in hardirq context. Therefore nothing can
 520 * interrupt the operation.
 521 */
 522static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
 
 
 
 
 
 
 
 
 
 523		void *freelist_old, unsigned long counters_old,
 524		void *freelist_new, unsigned long counters_new,
 525		const char *n)
 526{
 527	if (USE_LOCKLESS_FAST_PATH())
 528		lockdep_assert_irqs_disabled();
 529#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 530    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 531	if (s->flags & __CMPXCHG_DOUBLE) {
 532		if (cmpxchg_double(&slab->freelist, &slab->counters,
 533				   freelist_old, counters_old,
 534				   freelist_new, counters_new))
 535			return true;
 536	} else
 537#endif
 538	{
 539		slab_lock(slab);
 540		if (slab->freelist == freelist_old &&
 541					slab->counters == counters_old) {
 542			slab->freelist = freelist_new;
 543			slab->counters = counters_new;
 544			slab_unlock(slab);
 545			return true;
 546		}
 547		slab_unlock(slab);
 548	}
 549
 550	cpu_relax();
 551	stat(s, CMPXCHG_DOUBLE_FAIL);
 552
 553#ifdef SLUB_DEBUG_CMPXCHG
 554	pr_info("%s %s: cmpxchg double redo ", n, s->name);
 555#endif
 556
 557	return false;
 558}
 559
 560static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
 561		void *freelist_old, unsigned long counters_old,
 562		void *freelist_new, unsigned long counters_new,
 563		const char *n)
 564{
 565#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 566    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 567	if (s->flags & __CMPXCHG_DOUBLE) {
 568		if (cmpxchg_double(&slab->freelist, &slab->counters,
 569				   freelist_old, counters_old,
 570				   freelist_new, counters_new))
 571			return true;
 572	} else
 573#endif
 574	{
 575		unsigned long flags;
 576
 577		local_irq_save(flags);
 578		slab_lock(slab);
 579		if (slab->freelist == freelist_old &&
 580					slab->counters == counters_old) {
 581			slab->freelist = freelist_new;
 582			slab->counters = counters_new;
 583			slab_unlock(slab);
 584			local_irq_restore(flags);
 585			return true;
 586		}
 587		slab_unlock(slab);
 588		local_irq_restore(flags);
 589	}
 590
 591	cpu_relax();
 592	stat(s, CMPXCHG_DOUBLE_FAIL);
 593
 594#ifdef SLUB_DEBUG_CMPXCHG
 595	pr_info("%s %s: cmpxchg double redo ", n, s->name);
 596#endif
 597
 598	return false;
 599}
 600
 601#ifdef CONFIG_SLUB_DEBUG
 602static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
 603static DEFINE_SPINLOCK(object_map_lock);
 604
 605static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
 606		       struct slab *slab)
 
 
 607{
 608	void *addr = slab_address(slab);
 609	void *p;
 
 610
 611	bitmap_zero(obj_map, slab->objects);
 612
 613	for (p = slab->freelist; p; p = get_freepointer(s, p))
 614		set_bit(__obj_to_index(s, addr, p), obj_map);
 615}
 616
 617#if IS_ENABLED(CONFIG_KUNIT)
 618static bool slab_add_kunit_errors(void)
 619{
 620	struct kunit_resource *resource;
 621
 622	if (!kunit_get_current_test())
 623		return false;
 624
 625	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
 626	if (!resource)
 627		return false;
 628
 629	(*(int *)resource->data)++;
 630	kunit_put_resource(resource);
 631	return true;
 632}
 633#else
 634static inline bool slab_add_kunit_errors(void) { return false; }
 635#endif
 636
 637static inline unsigned int size_from_object(struct kmem_cache *s)
 638{
 639	if (s->flags & SLAB_RED_ZONE)
 640		return s->size - s->red_left_pad;
 641
 642	return s->size;
 643}
 644
 645static inline void *restore_red_left(struct kmem_cache *s, void *p)
 646{
 647	if (s->flags & SLAB_RED_ZONE)
 648		p -= s->red_left_pad;
 649
 650	return p;
 651}
 652
 653/*
 654 * Debug settings:
 655 */
 656#if defined(CONFIG_SLUB_DEBUG_ON)
 657static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
 658#else
 659static slab_flags_t slub_debug;
 660#endif
 661
 662static char *slub_debug_string;
 663static int disable_higher_order_debug;
 664
 665/*
 666 * slub is about to manipulate internal object metadata.  This memory lies
 667 * outside the range of the allocated object, so accessing it would normally
 668 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 669 * to tell kasan that these accesses are OK.
 670 */
 671static inline void metadata_access_enable(void)
 672{
 673	kasan_disable_current();
 674}
 675
 676static inline void metadata_access_disable(void)
 677{
 678	kasan_enable_current();
 679}
 680
 681/*
 682 * Object debugging
 683 */
 684
 685/* Verify that a pointer has an address that is valid within a slab page */
 686static inline int check_valid_pointer(struct kmem_cache *s,
 687				struct slab *slab, void *object)
 688{
 689	void *base;
 690
 691	if (!object)
 692		return 1;
 693
 694	base = slab_address(slab);
 695	object = kasan_reset_tag(object);
 696	object = restore_red_left(s, object);
 697	if (object < base || object >= base + slab->objects * s->size ||
 698		(object - base) % s->size) {
 699		return 0;
 700	}
 701
 702	return 1;
 703}
 704
 705static void print_section(char *level, char *text, u8 *addr,
 706			  unsigned int length)
 707{
 708	metadata_access_enable();
 709	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
 710			16, 1, kasan_reset_tag((void *)addr), length, 1);
 711	metadata_access_disable();
 712}
 713
 714/*
 715 * See comment in calculate_sizes().
 716 */
 717static inline bool freeptr_outside_object(struct kmem_cache *s)
 718{
 719	return s->offset >= s->inuse;
 720}
 721
 722/*
 723 * Return offset of the end of info block which is inuse + free pointer if
 724 * not overlapping with object.
 725 */
 726static inline unsigned int get_info_end(struct kmem_cache *s)
 727{
 728	if (freeptr_outside_object(s))
 729		return s->inuse + sizeof(void *);
 730	else
 731		return s->inuse;
 732}
 733
 734static struct track *get_track(struct kmem_cache *s, void *object,
 735	enum track_item alloc)
 736{
 737	struct track *p;
 738
 739	p = object + get_info_end(s);
 740
 741	return kasan_reset_tag(p + alloc);
 742}
 743
 744#ifdef CONFIG_STACKDEPOT
 745static noinline depot_stack_handle_t set_track_prepare(void)
 746{
 747	depot_stack_handle_t handle;
 748	unsigned long entries[TRACK_ADDRS_COUNT];
 749	unsigned int nr_entries;
 750
 751	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
 752	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
 753
 754	return handle;
 755}
 756#else
 757static inline depot_stack_handle_t set_track_prepare(void)
 758{
 759	return 0;
 760}
 761#endif
 762
 763static void set_track_update(struct kmem_cache *s, void *object,
 764			     enum track_item alloc, unsigned long addr,
 765			     depot_stack_handle_t handle)
 766{
 767	struct track *p = get_track(s, object, alloc);
 768
 769#ifdef CONFIG_STACKDEPOT
 770	p->handle = handle;
 771#endif
 772	p->addr = addr;
 773	p->cpu = smp_processor_id();
 774	p->pid = current->pid;
 775	p->when = jiffies;
 776}
 777
 778static __always_inline void set_track(struct kmem_cache *s, void *object,
 779				      enum track_item alloc, unsigned long addr)
 780{
 781	depot_stack_handle_t handle = set_track_prepare();
 782
 783	set_track_update(s, object, alloc, addr, handle);
 
 
 
 
 
 
 
 
 
 
 784}
 785
 786static void init_tracking(struct kmem_cache *s, void *object)
 787{
 788	struct track *p;
 789
 790	if (!(s->flags & SLAB_STORE_USER))
 791		return;
 792
 793	p = get_track(s, object, TRACK_ALLOC);
 794	memset(p, 0, 2*sizeof(struct track));
 795}
 796
 797static void print_track(const char *s, struct track *t, unsigned long pr_time)
 798{
 799	depot_stack_handle_t handle __maybe_unused;
 800
 801	if (!t->addr)
 802		return;
 803
 804	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
 805	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
 806#ifdef CONFIG_STACKDEPOT
 807	handle = READ_ONCE(t->handle);
 808	if (handle)
 809		stack_depot_print(handle);
 810	else
 811		pr_err("object allocation/free stack trace missing\n");
 
 
 
 812#endif
 813}
 814
 815void print_tracking(struct kmem_cache *s, void *object)
 816{
 817	unsigned long pr_time = jiffies;
 818	if (!(s->flags & SLAB_STORE_USER))
 819		return;
 820
 821	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
 822	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
 823}
 824
 825static void print_slab_info(const struct slab *slab)
 826{
 827	struct folio *folio = (struct folio *)slab_folio(slab);
 
 
 828
 829	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
 830	       slab, slab->objects, slab->inuse, slab->freelist,
 831	       folio_flags(folio, 0));
 832}
 833
 834/*
 835 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
 836 * family will round up the real request size to these fixed ones, so
 837 * there could be an extra area than what is requested. Save the original
 838 * request size in the meta data area, for better debug and sanity check.
 839 */
 840static inline void set_orig_size(struct kmem_cache *s,
 841				void *object, unsigned int orig_size)
 842{
 843	void *p = kasan_reset_tag(object);
 844
 845	if (!slub_debug_orig_size(s))
 846		return;
 847
 848#ifdef CONFIG_KASAN_GENERIC
 849	/*
 850	 * KASAN could save its free meta data in object's data area at
 851	 * offset 0, if the size is larger than 'orig_size', it will
 852	 * overlap the data redzone in [orig_size+1, object_size], and
 853	 * the check should be skipped.
 854	 */
 855	if (kasan_metadata_size(s, true) > orig_size)
 856		orig_size = s->object_size;
 857#endif
 858
 859	p += get_info_end(s);
 860	p += sizeof(struct track) * 2;
 861
 862	*(unsigned int *)p = orig_size;
 863}
 864
 865static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
 866{
 867	void *p = kasan_reset_tag(object);
 868
 869	if (!slub_debug_orig_size(s))
 870		return s->object_size;
 871
 872	p += get_info_end(s);
 873	p += sizeof(struct track) * 2;
 874
 875	return *(unsigned int *)p;
 876}
 877
 878void skip_orig_size_check(struct kmem_cache *s, const void *object)
 879{
 880	set_orig_size(s, (void *)object, s->object_size);
 881}
 882
 883static void slab_bug(struct kmem_cache *s, char *fmt, ...)
 884{
 885	struct va_format vaf;
 886	va_list args;
 
 887
 888	va_start(args, fmt);
 889	vaf.fmt = fmt;
 890	vaf.va = &args;
 891	pr_err("=============================================================================\n");
 892	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
 893	pr_err("-----------------------------------------------------------------------------\n\n");
 894	va_end(args);
 
 
 
 
 
 
 
 895}
 896
 897__printf(2, 3)
 898static void slab_fix(struct kmem_cache *s, char *fmt, ...)
 899{
 900	struct va_format vaf;
 901	va_list args;
 902
 903	if (slab_add_kunit_errors())
 904		return;
 905
 906	va_start(args, fmt);
 907	vaf.fmt = fmt;
 908	vaf.va = &args;
 909	pr_err("FIX %s: %pV\n", s->name, &vaf);
 910	va_end(args);
 
 911}
 912
 913static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
 914{
 915	unsigned int off;	/* Offset of last byte */
 916	u8 *addr = slab_address(slab);
 917
 918	print_tracking(s, p);
 919
 920	print_slab_info(slab);
 921
 922	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
 923	       p, p - addr, get_freepointer(s, p));
 924
 925	if (s->flags & SLAB_RED_ZONE)
 926		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
 927			      s->red_left_pad);
 928	else if (p > addr + 16)
 929		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
 930
 931	print_section(KERN_ERR,         "Object   ", p,
 932		      min_t(unsigned int, s->object_size, PAGE_SIZE));
 933	if (s->flags & SLAB_RED_ZONE)
 934		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
 935			s->inuse - s->object_size);
 936
 937	off = get_info_end(s);
 
 
 
 938
 939	if (s->flags & SLAB_STORE_USER)
 940		off += 2 * sizeof(struct track);
 941
 942	if (slub_debug_orig_size(s))
 943		off += sizeof(unsigned int);
 944
 945	off += kasan_metadata_size(s, false);
 946
 947	if (off != size_from_object(s))
 948		/* Beginning of the filler is the free pointer */
 949		print_section(KERN_ERR, "Padding  ", p + off,
 950			      size_from_object(s) - off);
 951
 952	dump_stack();
 953}
 954
 955static void object_err(struct kmem_cache *s, struct slab *slab,
 956			u8 *object, char *reason)
 957{
 958	if (slab_add_kunit_errors())
 959		return;
 960
 961	slab_bug(s, "%s", reason);
 962	print_trailer(s, slab, object);
 963	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 964}
 965
 966static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
 967			       void **freelist, void *nextfree)
 968{
 969	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
 970	    !check_valid_pointer(s, slab, nextfree) && freelist) {
 971		object_err(s, slab, *freelist, "Freechain corrupt");
 972		*freelist = NULL;
 973		slab_fix(s, "Isolate corrupted freechain");
 974		return true;
 975	}
 976
 977	return false;
 978}
 979
 980static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
 981			const char *fmt, ...)
 982{
 983	va_list args;
 984	char buf[100];
 985
 986	if (slab_add_kunit_errors())
 987		return;
 988
 989	va_start(args, fmt);
 990	vsnprintf(buf, sizeof(buf), fmt, args);
 991	va_end(args);
 992	slab_bug(s, "%s", buf);
 993	print_slab_info(slab);
 994	dump_stack();
 995	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 996}
 997
 998static void init_object(struct kmem_cache *s, void *object, u8 val)
 999{
1000	u8 *p = kasan_reset_tag(object);
1001	unsigned int poison_size = s->object_size;
1002
1003	if (s->flags & SLAB_RED_ZONE) {
1004		memset(p - s->red_left_pad, val, s->red_left_pad);
1005
1006		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1007			/*
1008			 * Redzone the extra allocated space by kmalloc than
1009			 * requested, and the poison size will be limited to
1010			 * the original request size accordingly.
1011			 */
1012			poison_size = get_orig_size(s, object);
1013		}
1014	}
1015
1016	if (s->flags & __OBJECT_POISON) {
1017		memset(p, POISON_FREE, poison_size - 1);
1018		p[poison_size - 1] = POISON_END;
1019	}
1020
1021	if (s->flags & SLAB_RED_ZONE)
1022		memset(p + poison_size, val, s->inuse - poison_size);
1023}
1024
1025static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1026						void *from, void *to)
1027{
1028	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1029	memset(from, data, to - from);
1030}
1031
1032static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1033			u8 *object, char *what,
1034			u8 *start, unsigned int value, unsigned int bytes)
1035{
1036	u8 *fault;
1037	u8 *end;
1038	u8 *addr = slab_address(slab);
1039
1040	metadata_access_enable();
1041	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1042	metadata_access_disable();
1043	if (!fault)
1044		return 1;
1045
1046	end = start + bytes;
1047	while (end > fault && end[-1] == value)
1048		end--;
1049
1050	if (slab_add_kunit_errors())
1051		goto skip_bug_print;
1052
1053	slab_bug(s, "%s overwritten", what);
1054	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1055					fault, end - 1, fault - addr,
1056					fault[0], value);
1057	print_trailer(s, slab, object);
1058	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1059
1060skip_bug_print:
1061	restore_bytes(s, what, value, fault, end);
1062	return 0;
1063}
1064
1065/*
1066 * Object layout:
1067 *
1068 * object address
1069 * 	Bytes of the object to be managed.
1070 * 	If the freepointer may overlay the object then the free
1071 *	pointer is at the middle of the object.
1072 *
1073 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1074 * 	0xa5 (POISON_END)
1075 *
1076 * object + s->object_size
1077 * 	Padding to reach word boundary. This is also used for Redzoning.
1078 * 	Padding is extended by another word if Redzoning is enabled and
1079 * 	object_size == inuse.
1080 *
1081 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1082 * 	0xcc (RED_ACTIVE) for objects in use.
1083 *
1084 * object + s->inuse
1085 * 	Meta data starts here.
1086 *
1087 * 	A. Free pointer (if we cannot overwrite object on free)
1088 * 	B. Tracking data for SLAB_STORE_USER
1089 *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1090 *	D. Padding to reach required alignment boundary or at minimum
1091 * 		one word if debugging is on to be able to detect writes
1092 * 		before the word boundary.
1093 *
1094 *	Padding is done using 0x5a (POISON_INUSE)
1095 *
1096 * object + s->size
1097 * 	Nothing is used beyond s->size.
1098 *
1099 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1100 * ignored. And therefore no slab options that rely on these boundaries
1101 * may be used with merged slabcaches.
1102 */
1103
1104static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1105{
1106	unsigned long off = get_info_end(s);	/* The end of info */
1107
1108	if (s->flags & SLAB_STORE_USER) {
 
 
 
 
1109		/* We also have user information there */
1110		off += 2 * sizeof(struct track);
1111
1112		if (s->flags & SLAB_KMALLOC)
1113			off += sizeof(unsigned int);
1114	}
1115
1116	off += kasan_metadata_size(s, false);
1117
1118	if (size_from_object(s) == off)
1119		return 1;
1120
1121	return check_bytes_and_report(s, slab, p, "Object padding",
1122			p + off, POISON_INUSE, size_from_object(s) - off);
1123}
1124
1125/* Check the pad bytes at the end of a slab page */
1126static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1127{
1128	u8 *start;
1129	u8 *fault;
1130	u8 *end;
1131	u8 *pad;
1132	int length;
1133	int remainder;
1134
1135	if (!(s->flags & SLAB_POISON))
1136		return;
1137
1138	start = slab_address(slab);
1139	length = slab_size(slab);
1140	end = start + length;
1141	remainder = length % s->size;
1142	if (!remainder)
1143		return;
1144
1145	pad = end - remainder;
1146	metadata_access_enable();
1147	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1148	metadata_access_disable();
1149	if (!fault)
1150		return;
1151	while (end > fault && end[-1] == POISON_INUSE)
1152		end--;
1153
1154	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1155			fault, end - 1, fault - start);
1156	print_section(KERN_ERR, "Padding ", pad, remainder);
1157
1158	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
 
1159}
1160
1161static int check_object(struct kmem_cache *s, struct slab *slab,
1162					void *object, u8 val)
1163{
1164	u8 *p = object;
1165	u8 *endobject = object + s->object_size;
1166	unsigned int orig_size;
1167
1168	if (s->flags & SLAB_RED_ZONE) {
1169		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1170			object - s->red_left_pad, val, s->red_left_pad))
1171			return 0;
1172
1173		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1174			endobject, val, s->inuse - s->object_size))
1175			return 0;
1176
1177		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1178			orig_size = get_orig_size(s, object);
1179
1180			if (s->object_size > orig_size  &&
1181				!check_bytes_and_report(s, slab, object,
1182					"kmalloc Redzone", p + orig_size,
1183					val, s->object_size - orig_size)) {
1184				return 0;
1185			}
1186		}
1187	} else {
1188		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1189			check_bytes_and_report(s, slab, p, "Alignment padding",
1190				endobject, POISON_INUSE,
1191				s->inuse - s->object_size);
1192		}
1193	}
1194
1195	if (s->flags & SLAB_POISON) {
1196		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1197			(!check_bytes_and_report(s, slab, p, "Poison", p,
1198					POISON_FREE, s->object_size - 1) ||
1199			 !check_bytes_and_report(s, slab, p, "End Poison",
1200				p + s->object_size - 1, POISON_END, 1)))
1201			return 0;
1202		/*
1203		 * check_pad_bytes cleans up on its own.
1204		 */
1205		check_pad_bytes(s, slab, p);
1206	}
1207
1208	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1209		/*
1210		 * Object and freepointer overlap. Cannot check
1211		 * freepointer while object is allocated.
1212		 */
1213		return 1;
1214
1215	/* Check free pointer validity */
1216	if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1217		object_err(s, slab, p, "Freepointer corrupt");
1218		/*
1219		 * No choice but to zap it and thus lose the remainder
1220		 * of the free objects in this slab. May cause
1221		 * another error because the object count is now wrong.
1222		 */
1223		set_freepointer(s, p, NULL);
1224		return 0;
1225	}
1226	return 1;
1227}
1228
1229static int check_slab(struct kmem_cache *s, struct slab *slab)
1230{
1231	int maxobj;
1232
1233	if (!folio_test_slab(slab_folio(slab))) {
1234		slab_err(s, slab, "Not a valid slab page");
 
 
1235		return 0;
1236	}
1237
1238	maxobj = order_objects(slab_order(slab), s->size);
1239	if (slab->objects > maxobj) {
1240		slab_err(s, slab, "objects %u > max %u",
1241			slab->objects, maxobj);
1242		return 0;
1243	}
1244	if (slab->inuse > slab->objects) {
1245		slab_err(s, slab, "inuse %u > max %u",
1246			slab->inuse, slab->objects);
1247		return 0;
1248	}
1249	/* Slab_pad_check fixes things up after itself */
1250	slab_pad_check(s, slab);
1251	return 1;
1252}
1253
1254/*
1255 * Determine if a certain object in a slab is on the freelist. Must hold the
1256 * slab lock to guarantee that the chains are in a consistent state.
1257 */
1258static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1259{
1260	int nr = 0;
1261	void *fp;
1262	void *object = NULL;
1263	int max_objects;
1264
1265	fp = slab->freelist;
1266	while (fp && nr <= slab->objects) {
1267		if (fp == search)
1268			return 1;
1269		if (!check_valid_pointer(s, slab, fp)) {
1270			if (object) {
1271				object_err(s, slab, object,
1272					"Freechain corrupt");
1273				set_freepointer(s, object, NULL);
1274			} else {
1275				slab_err(s, slab, "Freepointer corrupt");
1276				slab->freelist = NULL;
1277				slab->inuse = slab->objects;
1278				slab_fix(s, "Freelist cleared");
1279				return 0;
1280			}
1281			break;
1282		}
1283		object = fp;
1284		fp = get_freepointer(s, object);
1285		nr++;
1286	}
1287
1288	max_objects = order_objects(slab_order(slab), s->size);
1289	if (max_objects > MAX_OBJS_PER_PAGE)
1290		max_objects = MAX_OBJS_PER_PAGE;
1291
1292	if (slab->objects != max_objects) {
1293		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1294			 slab->objects, max_objects);
1295		slab->objects = max_objects;
1296		slab_fix(s, "Number of objects adjusted");
1297	}
1298	if (slab->inuse != slab->objects - nr) {
1299		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1300			 slab->inuse, slab->objects - nr);
1301		slab->inuse = slab->objects - nr;
1302		slab_fix(s, "Object count adjusted");
1303	}
1304	return search == NULL;
1305}
1306
1307static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1308								int alloc)
1309{
1310	if (s->flags & SLAB_TRACE) {
1311		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1312			s->name,
1313			alloc ? "alloc" : "free",
1314			object, slab->inuse,
1315			slab->freelist);
1316
1317		if (!alloc)
1318			print_section(KERN_INFO, "Object ", (void *)object,
1319					s->object_size);
1320
1321		dump_stack();
1322	}
1323}
1324
1325/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1326 * Tracking of fully allocated slabs for debugging purposes.
1327 */
1328static void add_full(struct kmem_cache *s,
1329	struct kmem_cache_node *n, struct slab *slab)
1330{
1331	if (!(s->flags & SLAB_STORE_USER))
1332		return;
1333
1334	lockdep_assert_held(&n->list_lock);
1335	list_add(&slab->slab_list, &n->full);
1336}
1337
1338static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1339{
1340	if (!(s->flags & SLAB_STORE_USER))
1341		return;
1342
1343	lockdep_assert_held(&n->list_lock);
1344	list_del(&slab->slab_list);
1345}
1346
1347/* Tracking of the number of slabs for debugging purposes */
1348static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1349{
1350	struct kmem_cache_node *n = get_node(s, node);
1351
1352	return atomic_long_read(&n->nr_slabs);
1353}
1354
1355static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1356{
1357	return atomic_long_read(&n->nr_slabs);
1358}
1359
1360static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1361{
1362	struct kmem_cache_node *n = get_node(s, node);
1363
1364	/*
1365	 * May be called early in order to allocate a slab for the
1366	 * kmem_cache_node structure. Solve the chicken-egg
1367	 * dilemma by deferring the increment of the count during
1368	 * bootstrap (see early_kmem_cache_node_alloc).
1369	 */
1370	if (likely(n)) {
1371		atomic_long_inc(&n->nr_slabs);
1372		atomic_long_add(objects, &n->total_objects);
1373	}
1374}
1375static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1376{
1377	struct kmem_cache_node *n = get_node(s, node);
1378
1379	atomic_long_dec(&n->nr_slabs);
1380	atomic_long_sub(objects, &n->total_objects);
1381}
1382
1383/* Object debug checks for alloc/free paths */
1384static void setup_object_debug(struct kmem_cache *s, void *object)
 
1385{
1386	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1387		return;
1388
1389	init_object(s, object, SLUB_RED_INACTIVE);
1390	init_tracking(s, object);
1391}
1392
1393static
1394void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
 
1395{
1396	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1397		return;
1398
1399	metadata_access_enable();
1400	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1401	metadata_access_disable();
1402}
1403
1404static inline int alloc_consistency_checks(struct kmem_cache *s,
1405					struct slab *slab, void *object)
1406{
1407	if (!check_slab(s, slab))
1408		return 0;
1409
1410	if (!check_valid_pointer(s, slab, object)) {
1411		object_err(s, slab, object, "Freelist Pointer check fails");
1412		return 0;
1413	}
1414
1415	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1416		return 0;
1417
1418	return 1;
1419}
1420
1421static noinline bool alloc_debug_processing(struct kmem_cache *s,
1422			struct slab *slab, void *object, int orig_size)
1423{
1424	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1425		if (!alloc_consistency_checks(s, slab, object))
1426			goto bad;
1427	}
1428
1429	/* Success. Perform special debug activities for allocs */
1430	trace(s, slab, object, 1);
1431	set_orig_size(s, object, orig_size);
 
1432	init_object(s, object, SLUB_RED_ACTIVE);
1433	return true;
1434
1435bad:
1436	if (folio_test_slab(slab_folio(slab))) {
1437		/*
1438		 * If this is a slab page then lets do the best we can
1439		 * to avoid issues in the future. Marking all objects
1440		 * as used avoids touching the remaining objects.
1441		 */
1442		slab_fix(s, "Marking all objects used");
1443		slab->inuse = slab->objects;
1444		slab->freelist = NULL;
1445	}
1446	return false;
1447}
1448
1449static inline int free_consistency_checks(struct kmem_cache *s,
1450		struct slab *slab, void *object, unsigned long addr)
 
1451{
1452	if (!check_valid_pointer(s, slab, object)) {
1453		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1454		return 0;
 
 
 
 
 
 
 
 
1455	}
1456
1457	if (on_freelist(s, slab, object)) {
1458		object_err(s, slab, object, "Object already free");
1459		return 0;
1460	}
1461
1462	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1463		return 0;
1464
1465	if (unlikely(s != slab->slab_cache)) {
1466		if (!folio_test_slab(slab_folio(slab))) {
1467			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1468				 object);
1469		} else if (!slab->slab_cache) {
1470			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1471			       object);
 
1472			dump_stack();
1473		} else
1474			object_err(s, slab, object,
1475					"page slab pointer corrupt.");
1476		return 0;
1477	}
1478	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1479}
1480
1481/*
1482 * Parse a block of slub_debug options. Blocks are delimited by ';'
1483 *
1484 * @str:    start of block
1485 * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1486 * @slabs:  return start of list of slabs, or NULL when there's no list
1487 * @init:   assume this is initial parsing and not per-kmem-create parsing
1488 *
1489 * returns the start of next block if there's any, or NULL
1490 */
1491static char *
1492parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1493{
1494	bool higher_order_disable = false;
1495
1496	/* Skip any completely empty blocks */
1497	while (*str && *str == ';')
1498		str++;
 
1499
1500	if (*str == ',') {
1501		/*
1502		 * No options but restriction on slabs. This means full
1503		 * debugging for slabs matching a pattern.
1504		 */
1505		*flags = DEBUG_DEFAULT_FLAGS;
1506		goto check_slabs;
 
 
 
 
 
 
 
 
1507	}
1508	*flags = 0;
1509
1510	/* Determine which debug features should be switched on */
1511	for (; *str && *str != ',' && *str != ';'; str++) {
 
 
 
 
 
 
 
 
 
1512		switch (tolower(*str)) {
1513		case '-':
1514			*flags = 0;
1515			break;
1516		case 'f':
1517			*flags |= SLAB_CONSISTENCY_CHECKS;
1518			break;
1519		case 'z':
1520			*flags |= SLAB_RED_ZONE;
1521			break;
1522		case 'p':
1523			*flags |= SLAB_POISON;
1524			break;
1525		case 'u':
1526			*flags |= SLAB_STORE_USER;
1527			break;
1528		case 't':
1529			*flags |= SLAB_TRACE;
1530			break;
1531		case 'a':
1532			*flags |= SLAB_FAILSLAB;
1533			break;
1534		case 'o':
1535			/*
1536			 * Avoid enabling debugging on caches if its minimum
1537			 * order would increase as a result.
1538			 */
1539			higher_order_disable = true;
1540			break;
1541		default:
1542			if (init)
1543				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1544		}
1545	}
 
1546check_slabs:
1547	if (*str == ',')
1548		*slabs = ++str;
1549	else
1550		*slabs = NULL;
1551
1552	/* Skip over the slab list */
1553	while (*str && *str != ';')
1554		str++;
1555
1556	/* Skip any completely empty blocks */
1557	while (*str && *str == ';')
1558		str++;
1559
1560	if (init && higher_order_disable)
1561		disable_higher_order_debug = 1;
1562
1563	if (*str)
1564		return str;
1565	else
1566		return NULL;
1567}
1568
1569static int __init setup_slub_debug(char *str)
1570{
1571	slab_flags_t flags;
1572	slab_flags_t global_flags;
1573	char *saved_str;
1574	char *slab_list;
1575	bool global_slub_debug_changed = false;
1576	bool slab_list_specified = false;
1577
1578	global_flags = DEBUG_DEFAULT_FLAGS;
1579	if (*str++ != '=' || !*str)
1580		/*
1581		 * No options specified. Switch on full debugging.
1582		 */
1583		goto out;
1584
1585	saved_str = str;
1586	while (str) {
1587		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1588
1589		if (!slab_list) {
1590			global_flags = flags;
1591			global_slub_debug_changed = true;
1592		} else {
1593			slab_list_specified = true;
1594			if (flags & SLAB_STORE_USER)
1595				stack_depot_want_early_init();
1596		}
1597	}
1598
1599	/*
1600	 * For backwards compatibility, a single list of flags with list of
1601	 * slabs means debugging is only changed for those slabs, so the global
1602	 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1603	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1604	 * long as there is no option specifying flags without a slab list.
1605	 */
1606	if (slab_list_specified) {
1607		if (!global_slub_debug_changed)
1608			global_flags = slub_debug;
1609		slub_debug_string = saved_str;
1610	}
1611out:
1612	slub_debug = global_flags;
1613	if (slub_debug & SLAB_STORE_USER)
1614		stack_depot_want_early_init();
1615	if (slub_debug != 0 || slub_debug_string)
1616		static_branch_enable(&slub_debug_enabled);
1617	else
1618		static_branch_disable(&slub_debug_enabled);
1619	if ((static_branch_unlikely(&init_on_alloc) ||
1620	     static_branch_unlikely(&init_on_free)) &&
1621	    (slub_debug & SLAB_POISON))
1622		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1623	return 1;
1624}
1625
1626__setup("slub_debug", setup_slub_debug);
1627
1628/*
1629 * kmem_cache_flags - apply debugging options to the cache
1630 * @object_size:	the size of an object without meta data
1631 * @flags:		flags to set
1632 * @name:		name of the cache
1633 *
1634 * Debug option(s) are applied to @flags. In addition to the debug
1635 * option(s), if a slab name (or multiple) is specified i.e.
1636 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1637 * then only the select slabs will receive the debug option(s).
1638 */
1639slab_flags_t kmem_cache_flags(unsigned int object_size,
1640	slab_flags_t flags, const char *name)
1641{
1642	char *iter;
1643	size_t len;
1644	char *next_block;
1645	slab_flags_t block_flags;
1646	slab_flags_t slub_debug_local = slub_debug;
1647
1648	if (flags & SLAB_NO_USER_FLAGS)
1649		return flags;
1650
1651	/*
1652	 * If the slab cache is for debugging (e.g. kmemleak) then
1653	 * don't store user (stack trace) information by default,
1654	 * but let the user enable it via the command line below.
1655	 */
1656	if (flags & SLAB_NOLEAKTRACE)
1657		slub_debug_local &= ~SLAB_STORE_USER;
1658
1659	len = strlen(name);
1660	next_block = slub_debug_string;
1661	/* Go through all blocks of debug options, see if any matches our slab's name */
1662	while (next_block) {
1663		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1664		if (!iter)
1665			continue;
1666		/* Found a block that has a slab list, search it */
1667		while (*iter) {
1668			char *end, *glob;
1669			size_t cmplen;
1670
1671			end = strchrnul(iter, ',');
1672			if (next_block && next_block < end)
1673				end = next_block - 1;
1674
1675			glob = strnchr(iter, end - iter, '*');
1676			if (glob)
1677				cmplen = glob - iter;
1678			else
1679				cmplen = max_t(size_t, len, (end - iter));
1680
1681			if (!strncmp(name, iter, cmplen)) {
1682				flags |= block_flags;
1683				return flags;
1684			}
1685
1686			if (!*end || *end == ';')
1687				break;
1688			iter = end + 1;
1689		}
1690	}
1691
1692	return flags | slub_debug_local;
1693}
1694#else /* !CONFIG_SLUB_DEBUG */
1695static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1696static inline
1697void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1698
1699static inline bool alloc_debug_processing(struct kmem_cache *s,
1700	struct slab *slab, void *object, int orig_size) { return true; }
1701
1702static inline bool free_debug_processing(struct kmem_cache *s,
1703	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1704	unsigned long addr, depot_stack_handle_t handle) { return true; }
1705
1706static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1707static inline int check_object(struct kmem_cache *s, struct slab *slab,
 
 
 
 
 
1708			void *object, u8 val) { return 1; }
1709static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1710static inline void set_track(struct kmem_cache *s, void *object,
1711			     enum track_item alloc, unsigned long addr) {}
1712static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1713					struct slab *slab) {}
1714static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1715					struct slab *slab) {}
1716slab_flags_t kmem_cache_flags(unsigned int object_size,
1717	slab_flags_t flags, const char *name)
 
1718{
1719	return flags;
1720}
1721#define slub_debug 0
1722
1723#define disable_higher_order_debug 0
1724
1725static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1726							{ return 0; }
1727static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1728							{ return 0; }
1729static inline void inc_slabs_node(struct kmem_cache *s, int node,
1730							int objects) {}
1731static inline void dec_slabs_node(struct kmem_cache *s, int node,
1732							int objects) {}
1733
1734#ifndef CONFIG_SLUB_TINY
1735static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1736			       void **freelist, void *nextfree)
1737{
1738	return false;
1739}
1740#endif
1741#endif /* CONFIG_SLUB_DEBUG */
1742
1743/*
1744 * Hooks for other subsystems that check memory allocations. In a typical
1745 * production configuration these hooks all should produce no code at all.
1746 */
1747static __always_inline bool slab_free_hook(struct kmem_cache *s,
1748						void *x, bool init)
1749{
1750	kmemleak_free_recursive(x, s->flags);
1751	kmsan_slab_free(s, x);
1752
1753	debug_check_no_locks_freed(x, s->object_size);
1754
1755	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1756		debug_check_no_obj_freed(x, s->object_size);
1757
1758	/* Use KCSAN to help debug racy use-after-free. */
1759	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1760		__kcsan_check_access(x, s->object_size,
1761				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1762
1763	/*
1764	 * As memory initialization might be integrated into KASAN,
1765	 * kasan_slab_free and initialization memset's must be
1766	 * kept together to avoid discrepancies in behavior.
1767	 *
1768	 * The initialization memset's clear the object and the metadata,
1769	 * but don't touch the SLAB redzone.
1770	 */
1771	if (init) {
1772		int rsize;
1773
1774		if (!kasan_has_integrated_init())
1775			memset(kasan_reset_tag(x), 0, s->object_size);
1776		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1777		memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1778		       s->size - s->inuse - rsize);
1779	}
1780	/* KASAN might put x into memory quarantine, delaying its reuse. */
1781	return kasan_slab_free(s, x, init);
1782}
1783
1784static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1785					   void **head, void **tail,
1786					   int *cnt)
1787{
1788
1789	void *object;
1790	void *next = *head;
1791	void *old_tail = *tail ? *tail : *head;
1792
1793	if (is_kfence_address(next)) {
1794		slab_free_hook(s, next, false);
1795		return true;
1796	}
1797
1798	/* Head and tail of the reconstructed freelist */
1799	*head = NULL;
1800	*tail = NULL;
1801
1802	do {
1803		object = next;
1804		next = get_freepointer(s, object);
1805
1806		/* If object's reuse doesn't have to be delayed */
1807		if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1808			/* Move object to the new freelist */
1809			set_freepointer(s, object, *head);
1810			*head = object;
1811			if (!*tail)
1812				*tail = object;
1813		} else {
1814			/*
1815			 * Adjust the reconstructed freelist depth
1816			 * accordingly if object's reuse is delayed.
1817			 */
1818			--(*cnt);
1819		}
1820	} while (object != old_tail);
1821
1822	if (*head == *tail)
1823		*tail = NULL;
1824
1825	return *head != NULL;
 
 
 
 
1826}
1827
1828static void *setup_object(struct kmem_cache *s, void *object)
1829{
1830	setup_object_debug(s, object);
1831	object = kasan_init_slab_obj(s, object);
1832	if (unlikely(s->ctor)) {
1833		kasan_unpoison_object_data(s, object);
1834		s->ctor(object);
1835		kasan_poison_object_data(s, object);
1836	}
1837	return object;
1838}
1839
 
 
1840/*
1841 * Slab allocation and freeing
1842 */
1843static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1844		struct kmem_cache_order_objects oo)
1845{
1846	struct folio *folio;
1847	struct slab *slab;
1848	unsigned int order = oo_order(oo);
1849
1850	if (node == NUMA_NO_NODE)
1851		folio = (struct folio *)alloc_pages(flags, order);
1852	else
1853		folio = (struct folio *)__alloc_pages_node(node, flags, order);
1854
1855	if (!folio)
1856		return NULL;
1857
1858	slab = folio_slab(folio);
1859	__folio_set_slab(folio);
1860	/* Make the flag visible before any changes to folio->mapping */
1861	smp_wmb();
1862	if (page_is_pfmemalloc(folio_page(folio, 0)))
1863		slab_set_pfmemalloc(slab);
1864
1865	return slab;
1866}
1867
1868#ifdef CONFIG_SLAB_FREELIST_RANDOM
1869/* Pre-initialize the random sequence cache */
1870static int init_cache_random_seq(struct kmem_cache *s)
1871{
1872	unsigned int count = oo_objects(s->oo);
1873	int err;
1874
1875	/* Bailout if already initialised */
1876	if (s->random_seq)
1877		return 0;
1878
1879	err = cache_random_seq_create(s, count, GFP_KERNEL);
1880	if (err) {
1881		pr_err("SLUB: Unable to initialize free list for %s\n",
1882			s->name);
1883		return err;
1884	}
1885
1886	/* Transform to an offset on the set of pages */
1887	if (s->random_seq) {
1888		unsigned int i;
1889
1890		for (i = 0; i < count; i++)
1891			s->random_seq[i] *= s->size;
1892	}
1893	return 0;
1894}
1895
1896/* Initialize each random sequence freelist per cache */
1897static void __init init_freelist_randomization(void)
1898{
1899	struct kmem_cache *s;
1900
1901	mutex_lock(&slab_mutex);
1902
1903	list_for_each_entry(s, &slab_caches, list)
1904		init_cache_random_seq(s);
1905
1906	mutex_unlock(&slab_mutex);
1907}
1908
1909/* Get the next entry on the pre-computed freelist randomized */
1910static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
1911				unsigned long *pos, void *start,
1912				unsigned long page_limit,
1913				unsigned long freelist_count)
1914{
1915	unsigned int idx;
1916
1917	/*
1918	 * If the target page allocation failed, the number of objects on the
1919	 * page might be smaller than the usual size defined by the cache.
1920	 */
1921	do {
1922		idx = s->random_seq[*pos];
1923		*pos += 1;
1924		if (*pos >= freelist_count)
1925			*pos = 0;
1926	} while (unlikely(idx >= page_limit));
1927
1928	return (char *)start + idx;
1929}
1930
1931/* Shuffle the single linked freelist based on a random pre-computed sequence */
1932static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1933{
1934	void *start;
1935	void *cur;
1936	void *next;
1937	unsigned long idx, pos, page_limit, freelist_count;
1938
1939	if (slab->objects < 2 || !s->random_seq)
1940		return false;
1941
1942	freelist_count = oo_objects(s->oo);
1943	pos = get_random_u32_below(freelist_count);
1944
1945	page_limit = slab->objects * s->size;
1946	start = fixup_red_left(s, slab_address(slab));
1947
1948	/* First entry is used as the base of the freelist */
1949	cur = next_freelist_entry(s, slab, &pos, start, page_limit,
1950				freelist_count);
1951	cur = setup_object(s, cur);
1952	slab->freelist = cur;
1953
1954	for (idx = 1; idx < slab->objects; idx++) {
1955		next = next_freelist_entry(s, slab, &pos, start, page_limit,
1956			freelist_count);
1957		next = setup_object(s, next);
1958		set_freepointer(s, cur, next);
1959		cur = next;
1960	}
1961	set_freepointer(s, cur, NULL);
1962
1963	return true;
1964}
1965#else
1966static inline int init_cache_random_seq(struct kmem_cache *s)
1967{
1968	return 0;
1969}
1970static inline void init_freelist_randomization(void) { }
1971static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1972{
1973	return false;
1974}
1975#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1976
1977static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1978{
1979	struct slab *slab;
1980	struct kmem_cache_order_objects oo = s->oo;
1981	gfp_t alloc_gfp;
1982	void *start, *p, *next;
1983	int idx;
1984	bool shuffle;
1985
1986	flags &= gfp_allowed_mask;
1987
 
 
 
1988	flags |= s->allocflags;
1989
1990	/*
1991	 * Let the initial higher-order allocation fail under memory pressure
1992	 * so we fall-back to the minimum order allocation.
1993	 */
1994	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1995	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1996		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
1997
1998	slab = alloc_slab_page(alloc_gfp, node, oo);
1999	if (unlikely(!slab)) {
2000		oo = s->min;
2001		alloc_gfp = flags;
2002		/*
2003		 * Allocation may have failed due to fragmentation.
2004		 * Try a lower order alloc if possible
2005		 */
2006		slab = alloc_slab_page(alloc_gfp, node, oo);
2007		if (unlikely(!slab))
2008			return NULL;
2009		stat(s, ORDER_FALLBACK);
2010	}
2011
2012	slab->objects = oo_objects(oo);
2013	slab->inuse = 0;
2014	slab->frozen = 0;
2015
2016	account_slab(slab, oo_order(oo), s, flags);
2017
2018	slab->slab_cache = s;
 
 
2019
2020	kasan_poison_slab(slab);
2021
2022	start = slab_address(slab);
 
 
 
 
 
 
 
 
2023
2024	setup_slab_debug(s, slab, start);
 
 
 
2025
2026	shuffle = shuffle_freelist(s, slab);
 
 
 
 
2027
2028	if (!shuffle) {
2029		start = fixup_red_left(s, start);
2030		start = setup_object(s, start);
2031		slab->freelist = start;
2032		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2033			next = p + s->size;
2034			next = setup_object(s, next);
2035			set_freepointer(s, p, next);
2036			p = next;
2037		}
2038		set_freepointer(s, p, NULL);
2039	}
2040
2041	return slab;
 
 
 
 
 
2042}
2043
2044static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2045{
2046	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2047		flags = kmalloc_fix_flags(flags);
 
 
 
2048
2049	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2050
2051	return allocate_slab(s,
2052		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2053}
2054
2055static void __free_slab(struct kmem_cache *s, struct slab *slab)
2056{
2057	struct folio *folio = slab_folio(slab);
2058	int order = folio_order(folio);
2059	int pages = 1 << order;
2060
2061	__slab_clear_pfmemalloc(slab);
2062	folio->mapping = NULL;
2063	/* Make the mapping reset visible before clearing the flag */
2064	smp_wmb();
2065	__folio_clear_slab(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2066	if (current->reclaim_state)
2067		current->reclaim_state->reclaimed_slab += pages;
2068	unaccount_slab(slab, order, s);
2069	__free_pages(folio_page(folio, 0), order);
2070}
2071
 
 
 
2072static void rcu_free_slab(struct rcu_head *h)
2073{
2074	struct slab *slab = container_of(h, struct slab, rcu_head);
 
 
 
 
 
2075
2076	__free_slab(slab->slab_cache, slab);
2077}
2078
2079static void free_slab(struct kmem_cache *s, struct slab *slab)
2080{
2081	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2082		void *p;
2083
2084		slab_pad_check(s, slab);
2085		for_each_object(p, s, slab_address(slab), slab->objects)
2086			check_object(s, slab, p, SLUB_RED_INACTIVE);
2087	}
2088
2089	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2090		call_rcu(&slab->rcu_head, rcu_free_slab);
2091	else
2092		__free_slab(s, slab);
 
 
 
 
 
 
 
 
2093}
2094
2095static void discard_slab(struct kmem_cache *s, struct slab *slab)
2096{
2097	dec_slabs_node(s, slab_nid(slab), slab->objects);
2098	free_slab(s, slab);
2099}
2100
2101/*
2102 * Management of partially allocated slabs.
2103 */
2104static inline void
2105__add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2106{
2107	n->nr_partial++;
2108	if (tail == DEACTIVATE_TO_TAIL)
2109		list_add_tail(&slab->slab_list, &n->partial);
2110	else
2111		list_add(&slab->slab_list, &n->partial);
2112}
2113
2114static inline void add_partial(struct kmem_cache_node *n,
2115				struct slab *slab, int tail)
2116{
2117	lockdep_assert_held(&n->list_lock);
2118	__add_partial(n, slab, tail);
2119}
2120
2121static inline void remove_partial(struct kmem_cache_node *n,
2122					struct slab *slab)
2123{
2124	lockdep_assert_held(&n->list_lock);
2125	list_del(&slab->slab_list);
2126	n->nr_partial--;
2127}
2128
2129/*
2130 * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a
2131 * slab from the n->partial list. Remove only a single object from the slab, do
2132 * the alloc_debug_processing() checks and leave the slab on the list, or move
2133 * it to full list if it was the last free object.
2134 */
2135static void *alloc_single_from_partial(struct kmem_cache *s,
2136		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2137{
2138	void *object;
2139
2140	lockdep_assert_held(&n->list_lock);
2141
2142	object = slab->freelist;
2143	slab->freelist = get_freepointer(s, object);
2144	slab->inuse++;
2145
2146	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2147		remove_partial(n, slab);
2148		return NULL;
2149	}
2150
2151	if (slab->inuse == slab->objects) {
2152		remove_partial(n, slab);
2153		add_full(s, n, slab);
2154	}
2155
2156	return object;
2157}
2158
2159/*
2160 * Called only for kmem_cache_debug() caches to allocate from a freshly
2161 * allocated slab. Allocate a single object instead of whole freelist
2162 * and put the slab to the partial (or full) list.
2163 */
2164static void *alloc_single_from_new_slab(struct kmem_cache *s,
2165					struct slab *slab, int orig_size)
2166{
2167	int nid = slab_nid(slab);
2168	struct kmem_cache_node *n = get_node(s, nid);
2169	unsigned long flags;
2170	void *object;
2171
2172
2173	object = slab->freelist;
2174	slab->freelist = get_freepointer(s, object);
2175	slab->inuse = 1;
2176
2177	if (!alloc_debug_processing(s, slab, object, orig_size))
2178		/*
2179		 * It's not really expected that this would fail on a
2180		 * freshly allocated slab, but a concurrent memory
2181		 * corruption in theory could cause that.
2182		 */
2183		return NULL;
2184
2185	spin_lock_irqsave(&n->list_lock, flags);
2186
2187	if (slab->inuse == slab->objects)
2188		add_full(s, n, slab);
2189	else
2190		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2191
2192	inc_slabs_node(s, nid, slab->objects);
2193	spin_unlock_irqrestore(&n->list_lock, flags);
2194
2195	return object;
2196}
2197
2198/*
2199 * Remove slab from the partial list, freeze it and
2200 * return the pointer to the freelist.
2201 *
2202 * Returns a list of objects or NULL if it fails.
2203 */
2204static inline void *acquire_slab(struct kmem_cache *s,
2205		struct kmem_cache_node *n, struct slab *slab,
2206		int mode)
2207{
2208	void *freelist;
2209	unsigned long counters;
2210	struct slab new;
2211
2212	lockdep_assert_held(&n->list_lock);
2213
2214	/*
2215	 * Zap the freelist and set the frozen bit.
2216	 * The old freelist is the list of objects for the
2217	 * per cpu allocation list.
2218	 */
2219	freelist = slab->freelist;
2220	counters = slab->counters;
2221	new.counters = counters;
 
2222	if (mode) {
2223		new.inuse = slab->objects;
2224		new.freelist = NULL;
2225	} else {
2226		new.freelist = freelist;
2227	}
2228
2229	VM_BUG_ON(new.frozen);
2230	new.frozen = 1;
2231
2232	if (!__cmpxchg_double_slab(s, slab,
2233			freelist, counters,
2234			new.freelist, new.counters,
2235			"acquire_slab"))
2236		return NULL;
2237
2238	remove_partial(n, slab);
2239	WARN_ON(!freelist);
2240	return freelist;
2241}
2242
2243#ifdef CONFIG_SLUB_CPU_PARTIAL
2244static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2245#else
2246static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2247				   int drain) { }
2248#endif
2249static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2250
2251/*
2252 * Try to allocate a partial slab from a specific node.
2253 */
2254static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2255			      struct partial_context *pc)
2256{
2257	struct slab *slab, *slab2;
2258	void *object = NULL;
2259	unsigned long flags;
2260	unsigned int partial_slabs = 0;
2261
2262	/*
2263	 * Racy check. If we mistakenly see no partial slabs then we
2264	 * just allocate an empty slab. If we mistakenly try to get a
2265	 * partial slab and there is none available then get_partial()
2266	 * will return NULL.
2267	 */
2268	if (!n || !n->nr_partial)
2269		return NULL;
2270
2271	spin_lock_irqsave(&n->list_lock, flags);
2272	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2273		void *t;
2274
2275		if (!pfmemalloc_match(slab, pc->flags))
2276			continue;
2277
2278		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2279			object = alloc_single_from_partial(s, n, slab,
2280							pc->orig_size);
2281			if (object)
2282				break;
2283			continue;
2284		}
2285
2286		t = acquire_slab(s, n, slab, object == NULL);
2287		if (!t)
2288			break;
2289
 
2290		if (!object) {
2291			*pc->slab = slab;
2292			stat(s, ALLOC_FROM_PARTIAL);
2293			object = t;
2294		} else {
2295			put_cpu_partial(s, slab, 0);
2296			stat(s, CPU_PARTIAL_NODE);
2297			partial_slabs++;
2298		}
2299#ifdef CONFIG_SLUB_CPU_PARTIAL
2300		if (!kmem_cache_has_cpu_partial(s)
2301			|| partial_slabs > s->cpu_partial_slabs / 2)
2302			break;
2303#else
2304		break;
2305#endif
2306
2307	}
2308	spin_unlock_irqrestore(&n->list_lock, flags);
2309	return object;
2310}
2311
2312/*
2313 * Get a slab from somewhere. Search in increasing NUMA distances.
2314 */
2315static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc)
 
2316{
2317#ifdef CONFIG_NUMA
2318	struct zonelist *zonelist;
2319	struct zoneref *z;
2320	struct zone *zone;
2321	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2322	void *object;
2323	unsigned int cpuset_mems_cookie;
2324
2325	/*
2326	 * The defrag ratio allows a configuration of the tradeoffs between
2327	 * inter node defragmentation and node local allocations. A lower
2328	 * defrag_ratio increases the tendency to do local allocations
2329	 * instead of attempting to obtain partial slabs from other nodes.
2330	 *
2331	 * If the defrag_ratio is set to 0 then kmalloc() always
2332	 * returns node local objects. If the ratio is higher then kmalloc()
2333	 * may return off node objects because partial slabs are obtained
2334	 * from other nodes and filled up.
2335	 *
2336	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2337	 * (which makes defrag_ratio = 1000) then every (well almost)
2338	 * allocation will first attempt to defrag slab caches on other nodes.
2339	 * This means scanning over all nodes to look for partial slabs which
2340	 * may be expensive if we do it every time we are trying to find a slab
2341	 * with available objects.
2342	 */
2343	if (!s->remote_node_defrag_ratio ||
2344			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2345		return NULL;
2346
2347	do {
2348		cpuset_mems_cookie = read_mems_allowed_begin();
2349		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2350		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2351			struct kmem_cache_node *n;
2352
2353			n = get_node(s, zone_to_nid(zone));
2354
2355			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2356					n->nr_partial > s->min_partial) {
2357				object = get_partial_node(s, n, pc);
2358				if (object) {
2359					/*
2360					 * Don't check read_mems_allowed_retry()
2361					 * here - if mems_allowed was updated in
2362					 * parallel, that was a harmless race
2363					 * between allocation and the cpuset
2364					 * update
2365					 */
2366					return object;
2367				}
2368			}
2369		}
2370	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2371#endif	/* CONFIG_NUMA */
2372	return NULL;
2373}
2374
2375/*
2376 * Get a partial slab, lock it and return it.
2377 */
2378static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc)
 
2379{
2380	void *object;
2381	int searchnode = node;
2382
2383	if (node == NUMA_NO_NODE)
2384		searchnode = numa_mem_id();
2385
2386	object = get_partial_node(s, get_node(s, searchnode), pc);
2387	if (object || node != NUMA_NO_NODE)
2388		return object;
2389
2390	return get_any_partial(s, pc);
2391}
2392
2393#ifndef CONFIG_SLUB_TINY
2394
2395#ifdef CONFIG_PREEMPTION
2396/*
2397 * Calculate the next globally unique transaction for disambiguation
2398 * during cmpxchg. The transactions start with the cpu number and are then
2399 * incremented by CONFIG_NR_CPUS.
2400 */
2401#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2402#else
2403/*
2404 * No preemption supported therefore also no need to check for
2405 * different cpus.
2406 */
2407#define TID_STEP 1
2408#endif /* CONFIG_PREEMPTION */
2409
2410static inline unsigned long next_tid(unsigned long tid)
2411{
2412	return tid + TID_STEP;
2413}
2414
2415#ifdef SLUB_DEBUG_CMPXCHG
2416static inline unsigned int tid_to_cpu(unsigned long tid)
2417{
2418	return tid % TID_STEP;
2419}
2420
2421static inline unsigned long tid_to_event(unsigned long tid)
2422{
2423	return tid / TID_STEP;
2424}
2425#endif
2426
2427static inline unsigned int init_tid(int cpu)
2428{
2429	return cpu;
2430}
2431
2432static inline void note_cmpxchg_failure(const char *n,
2433		const struct kmem_cache *s, unsigned long tid)
2434{
2435#ifdef SLUB_DEBUG_CMPXCHG
2436	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2437
2438	pr_info("%s %s: cmpxchg redo ", n, s->name);
2439
2440#ifdef CONFIG_PREEMPTION
2441	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2442		pr_warn("due to cpu change %d -> %d\n",
2443			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2444	else
2445#endif
2446	if (tid_to_event(tid) != tid_to_event(actual_tid))
2447		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2448			tid_to_event(tid), tid_to_event(actual_tid));
2449	else
2450		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2451			actual_tid, tid, next_tid(tid));
2452#endif
2453	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2454}
2455
2456static void init_kmem_cache_cpus(struct kmem_cache *s)
2457{
2458	int cpu;
2459	struct kmem_cache_cpu *c;
2460
2461	for_each_possible_cpu(cpu) {
2462		c = per_cpu_ptr(s->cpu_slab, cpu);
2463		local_lock_init(&c->lock);
2464		c->tid = init_tid(cpu);
2465	}
2466}
2467
2468/*
2469 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2470 * unfreezes the slabs and puts it on the proper list.
2471 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2472 * by the caller.
2473 */
2474static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2475			    void *freelist)
2476{
2477	enum slab_modes { M_NONE, M_PARTIAL, M_FREE, M_FULL_NOLIST };
2478	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2479	int free_delta = 0;
2480	enum slab_modes mode = M_NONE;
2481	void *nextfree, *freelist_iter, *freelist_tail;
2482	int tail = DEACTIVATE_TO_HEAD;
2483	unsigned long flags = 0;
2484	struct slab new;
2485	struct slab old;
2486
2487	if (slab->freelist) {
2488		stat(s, DEACTIVATE_REMOTE_FREES);
2489		tail = DEACTIVATE_TO_TAIL;
2490	}
2491
2492	/*
2493	 * Stage one: Count the objects on cpu's freelist as free_delta and
2494	 * remember the last object in freelist_tail for later splicing.
 
 
 
 
2495	 */
2496	freelist_tail = NULL;
2497	freelist_iter = freelist;
2498	while (freelist_iter) {
2499		nextfree = get_freepointer(s, freelist_iter);
2500
2501		/*
2502		 * If 'nextfree' is invalid, it is possible that the object at
2503		 * 'freelist_iter' is already corrupted.  So isolate all objects
2504		 * starting at 'freelist_iter' by skipping them.
2505		 */
2506		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2507			break;
2508
2509		freelist_tail = freelist_iter;
2510		free_delta++;
 
 
2511
2512		freelist_iter = nextfree;
2513	}
2514
2515	/*
2516	 * Stage two: Unfreeze the slab while splicing the per-cpu
2517	 * freelist to the head of slab's freelist.
 
2518	 *
2519	 * Ensure that the slab is unfrozen while the list presence
2520	 * reflects the actual number of objects during unfreeze.
 
2521	 *
2522	 * We first perform cmpxchg holding lock and insert to list
2523	 * when it succeed. If there is mismatch then the slab is not
2524	 * unfrozen and number of objects in the slab may have changed.
2525	 * Then release lock and retry cmpxchg again.
2526	 */
2527redo:
2528
2529	old.freelist = READ_ONCE(slab->freelist);
2530	old.counters = READ_ONCE(slab->counters);
2531	VM_BUG_ON(!old.frozen);
2532
2533	/* Determine target state of the slab */
2534	new.counters = old.counters;
2535	if (freelist_tail) {
2536		new.inuse -= free_delta;
2537		set_freepointer(s, freelist_tail, old.freelist);
2538		new.freelist = freelist;
2539	} else
2540		new.freelist = old.freelist;
2541
2542	new.frozen = 0;
2543
2544	if (!new.inuse && n->nr_partial >= s->min_partial) {
2545		mode = M_FREE;
2546	} else if (new.freelist) {
2547		mode = M_PARTIAL;
2548		/*
2549		 * Taking the spinlock removes the possibility that
2550		 * acquire_slab() will see a slab that is frozen
2551		 */
2552		spin_lock_irqsave(&n->list_lock, flags);
 
 
 
 
2553	} else {
2554		mode = M_FULL_NOLIST;
 
 
 
 
 
 
 
 
 
2555	}
2556
 
 
 
 
 
 
 
 
 
 
 
2557
2558	if (!cmpxchg_double_slab(s, slab,
 
 
 
 
 
 
 
 
 
 
 
 
2559				old.freelist, old.counters,
2560				new.freelist, new.counters,
2561				"unfreezing slab")) {
2562		if (mode == M_PARTIAL)
2563			spin_unlock_irqrestore(&n->list_lock, flags);
2564		goto redo;
2565	}
2566
 
 
2567
2568	if (mode == M_PARTIAL) {
2569		add_partial(n, slab, tail);
2570		spin_unlock_irqrestore(&n->list_lock, flags);
2571		stat(s, tail);
2572	} else if (mode == M_FREE) {
2573		stat(s, DEACTIVATE_EMPTY);
2574		discard_slab(s, slab);
2575		stat(s, FREE_SLAB);
2576	} else if (mode == M_FULL_NOLIST) {
2577		stat(s, DEACTIVATE_FULL);
2578	}
2579}
2580
2581#ifdef CONFIG_SLUB_CPU_PARTIAL
2582static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
 
 
 
 
 
 
 
2583{
 
2584	struct kmem_cache_node *n = NULL, *n2 = NULL;
2585	struct slab *slab, *slab_to_discard = NULL;
2586	unsigned long flags = 0;
2587
2588	while (partial_slab) {
2589		struct slab new;
2590		struct slab old;
2591
2592		slab = partial_slab;
2593		partial_slab = slab->next;
2594
2595		n2 = get_node(s, slab_nid(slab));
2596		if (n != n2) {
2597			if (n)
2598				spin_unlock_irqrestore(&n->list_lock, flags);
2599
2600			n = n2;
2601			spin_lock_irqsave(&n->list_lock, flags);
2602		}
2603
2604		do {
2605
2606			old.freelist = slab->freelist;
2607			old.counters = slab->counters;
2608			VM_BUG_ON(!old.frozen);
2609
2610			new.counters = old.counters;
2611			new.freelist = old.freelist;
2612
2613			new.frozen = 0;
2614
2615		} while (!__cmpxchg_double_slab(s, slab,
2616				old.freelist, old.counters,
2617				new.freelist, new.counters,
2618				"unfreezing slab"));
2619
2620		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2621			slab->next = slab_to_discard;
2622			slab_to_discard = slab;
2623		} else {
2624			add_partial(n, slab, DEACTIVATE_TO_TAIL);
2625			stat(s, FREE_ADD_PARTIAL);
2626		}
2627	}
2628
2629	if (n)
2630		spin_unlock_irqrestore(&n->list_lock, flags);
2631
2632	while (slab_to_discard) {
2633		slab = slab_to_discard;
2634		slab_to_discard = slab_to_discard->next;
2635
2636		stat(s, DEACTIVATE_EMPTY);
2637		discard_slab(s, slab);
2638		stat(s, FREE_SLAB);
2639	}
 
2640}
2641
2642/*
2643 * Unfreeze all the cpu partial slabs.
2644 */
2645static void unfreeze_partials(struct kmem_cache *s)
2646{
2647	struct slab *partial_slab;
2648	unsigned long flags;
2649
2650	local_lock_irqsave(&s->cpu_slab->lock, flags);
2651	partial_slab = this_cpu_read(s->cpu_slab->partial);
2652	this_cpu_write(s->cpu_slab->partial, NULL);
2653	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2654
2655	if (partial_slab)
2656		__unfreeze_partials(s, partial_slab);
2657}
2658
2659static void unfreeze_partials_cpu(struct kmem_cache *s,
2660				  struct kmem_cache_cpu *c)
2661{
2662	struct slab *partial_slab;
2663
2664	partial_slab = slub_percpu_partial(c);
2665	c->partial = NULL;
2666
2667	if (partial_slab)
2668		__unfreeze_partials(s, partial_slab);
2669}
2670
2671/*
2672 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2673 * partial slab slot if available.
2674 *
2675 * If we did not find a slot then simply move all the partials to the
2676 * per node partial list.
2677 */
2678static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2679{
2680	struct slab *oldslab;
2681	struct slab *slab_to_unfreeze = NULL;
2682	unsigned long flags;
2683	int slabs = 0;
2684
2685	local_lock_irqsave(&s->cpu_slab->lock, flags);
2686
2687	oldslab = this_cpu_read(s->cpu_slab->partial);
2688
2689	if (oldslab) {
2690		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2691			/*
2692			 * Partial array is full. Move the existing set to the
2693			 * per node partial list. Postpone the actual unfreezing
2694			 * outside of the critical section.
2695			 */
2696			slab_to_unfreeze = oldslab;
2697			oldslab = NULL;
2698		} else {
2699			slabs = oldslab->slabs;
 
 
 
 
 
 
 
 
 
 
 
2700		}
2701	}
2702
2703	slabs++;
 
2704
2705	slab->slabs = slabs;
2706	slab->next = oldslab;
 
2707
2708	this_cpu_write(s->cpu_slab->partial, slab);
2709
2710	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2711
2712	if (slab_to_unfreeze) {
2713		__unfreeze_partials(s, slab_to_unfreeze);
2714		stat(s, CPU_PARTIAL_DRAIN);
2715	}
2716}
2717
2718#else	/* CONFIG_SLUB_CPU_PARTIAL */
2719
2720static inline void unfreeze_partials(struct kmem_cache *s) { }
2721static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2722				  struct kmem_cache_cpu *c) { }
2723
2724#endif	/* CONFIG_SLUB_CPU_PARTIAL */
2725
2726static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2727{
2728	unsigned long flags;
2729	struct slab *slab;
2730	void *freelist;
2731
2732	local_lock_irqsave(&s->cpu_slab->lock, flags);
2733
2734	slab = c->slab;
2735	freelist = c->freelist;
2736
2737	c->slab = NULL;
2738	c->freelist = NULL;
2739	c->tid = next_tid(c->tid);
2740
2741	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2742
2743	if (slab) {
2744		deactivate_slab(s, slab, freelist);
2745		stat(s, CPUSLAB_FLUSH);
2746	}
2747}
2748
2749static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2750{
2751	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2752	void *freelist = c->freelist;
2753	struct slab *slab = c->slab;
2754
2755	c->slab = NULL;
2756	c->freelist = NULL;
2757	c->tid = next_tid(c->tid);
2758
2759	if (slab) {
2760		deactivate_slab(s, slab, freelist);
2761		stat(s, CPUSLAB_FLUSH);
2762	}
2763
2764	unfreeze_partials_cpu(s, c);
2765}
2766
2767struct slub_flush_work {
2768	struct work_struct work;
2769	struct kmem_cache *s;
2770	bool skip;
2771};
2772
2773/*
2774 * Flush cpu slab.
2775 *
2776 * Called from CPU work handler with migration disabled.
2777 */
2778static void flush_cpu_slab(struct work_struct *w)
2779{
2780	struct kmem_cache *s;
2781	struct kmem_cache_cpu *c;
2782	struct slub_flush_work *sfw;
2783
2784	sfw = container_of(w, struct slub_flush_work, work);
2785
2786	s = sfw->s;
2787	c = this_cpu_ptr(s->cpu_slab);
2788
2789	if (c->slab)
2790		flush_slab(s, c);
 
2791
2792	unfreeze_partials(s);
 
2793}
2794
2795static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2796{
2797	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2798
2799	return c->slab || slub_percpu_partial(c);
2800}
2801
2802static DEFINE_MUTEX(flush_lock);
2803static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2804
2805static void flush_all_cpus_locked(struct kmem_cache *s)
2806{
2807	struct slub_flush_work *sfw;
2808	unsigned int cpu;
2809
2810	lockdep_assert_cpus_held();
2811	mutex_lock(&flush_lock);
2812
2813	for_each_online_cpu(cpu) {
2814		sfw = &per_cpu(slub_flush, cpu);
2815		if (!has_cpu_slab(cpu, s)) {
2816			sfw->skip = true;
2817			continue;
2818		}
2819		INIT_WORK(&sfw->work, flush_cpu_slab);
2820		sfw->skip = false;
2821		sfw->s = s;
2822		queue_work_on(cpu, flushwq, &sfw->work);
2823	}
2824
2825	for_each_online_cpu(cpu) {
2826		sfw = &per_cpu(slub_flush, cpu);
2827		if (sfw->skip)
2828			continue;
2829		flush_work(&sfw->work);
2830	}
2831
2832	mutex_unlock(&flush_lock);
2833}
2834
2835static void flush_all(struct kmem_cache *s)
2836{
2837	cpus_read_lock();
2838	flush_all_cpus_locked(s);
2839	cpus_read_unlock();
2840}
2841
2842/*
2843 * Use the cpu notifier to insure that the cpu slabs are flushed when
2844 * necessary.
2845 */
2846static int slub_cpu_dead(unsigned int cpu)
2847{
2848	struct kmem_cache *s;
2849
2850	mutex_lock(&slab_mutex);
2851	list_for_each_entry(s, &slab_caches, list)
2852		__flush_cpu_slab(s, cpu);
2853	mutex_unlock(&slab_mutex);
2854	return 0;
2855}
2856
2857#else /* CONFIG_SLUB_TINY */
2858static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
2859static inline void flush_all(struct kmem_cache *s) { }
2860static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
2861static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
2862#endif /* CONFIG_SLUB_TINY */
2863
2864/*
2865 * Check if the objects in a per cpu structure fit numa
2866 * locality expectations.
2867 */
2868static inline int node_match(struct slab *slab, int node)
2869{
2870#ifdef CONFIG_NUMA
2871	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
2872		return 0;
2873#endif
2874	return 1;
2875}
2876
2877#ifdef CONFIG_SLUB_DEBUG
2878static int count_free(struct slab *slab)
2879{
2880	return slab->objects - slab->inuse;
2881}
2882
2883static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2884{
2885	return atomic_long_read(&n->total_objects);
2886}
2887
2888/* Supports checking bulk free of a constructed freelist */
2889static inline bool free_debug_processing(struct kmem_cache *s,
2890	struct slab *slab, void *head, void *tail, int *bulk_cnt,
2891	unsigned long addr, depot_stack_handle_t handle)
2892{
2893	bool checks_ok = false;
2894	void *object = head;
2895	int cnt = 0;
2896
2897	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2898		if (!check_slab(s, slab))
2899			goto out;
2900	}
2901
2902	if (slab->inuse < *bulk_cnt) {
2903		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
2904			 slab->inuse, *bulk_cnt);
2905		goto out;
2906	}
2907
2908next_object:
2909
2910	if (++cnt > *bulk_cnt)
2911		goto out_cnt;
2912
2913	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2914		if (!free_consistency_checks(s, slab, object, addr))
2915			goto out;
2916	}
2917
2918	if (s->flags & SLAB_STORE_USER)
2919		set_track_update(s, object, TRACK_FREE, addr, handle);
2920	trace(s, slab, object, 0);
2921	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
2922	init_object(s, object, SLUB_RED_INACTIVE);
2923
2924	/* Reached end of constructed freelist yet? */
2925	if (object != tail) {
2926		object = get_freepointer(s, object);
2927		goto next_object;
2928	}
2929	checks_ok = true;
2930
2931out_cnt:
2932	if (cnt != *bulk_cnt) {
2933		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
2934			 *bulk_cnt, cnt);
2935		*bulk_cnt = cnt;
2936	}
2937
2938out:
2939
2940	if (!checks_ok)
2941		slab_fix(s, "Object at 0x%p not freed", object);
2942
2943	return checks_ok;
2944}
2945#endif /* CONFIG_SLUB_DEBUG */
2946
2947#if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
2948static unsigned long count_partial(struct kmem_cache_node *n,
2949					int (*get_count)(struct slab *))
2950{
2951	unsigned long flags;
2952	unsigned long x = 0;
2953	struct slab *slab;
2954
2955	spin_lock_irqsave(&n->list_lock, flags);
2956	list_for_each_entry(slab, &n->partial, slab_list)
2957		x += get_count(slab);
2958	spin_unlock_irqrestore(&n->list_lock, flags);
2959	return x;
2960}
2961#endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
2962
 
 
2963#ifdef CONFIG_SLUB_DEBUG
 
 
 
 
 
 
2964static noinline void
2965slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2966{
2967	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2968				      DEFAULT_RATELIMIT_BURST);
2969	int node;
2970	struct kmem_cache_node *n;
2971
2972	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2973		return;
2974
2975	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2976		nid, gfpflags, &gfpflags);
2977	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2978		s->name, s->object_size, s->size, oo_order(s->oo),
2979		oo_order(s->min));
 
2980
2981	if (oo_order(s->min) > get_order(s->object_size))
2982		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2983			s->name);
2984
2985	for_each_kmem_cache_node(s, node, n) {
 
2986		unsigned long nr_slabs;
2987		unsigned long nr_objs;
2988		unsigned long nr_free;
2989
 
 
 
2990		nr_free  = count_partial(n, count_free);
2991		nr_slabs = node_nr_slabs(n);
2992		nr_objs  = node_nr_objs(n);
2993
2994		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
 
2995			node, nr_slabs, nr_objs, nr_free);
2996	}
2997}
2998#else /* CONFIG_SLUB_DEBUG */
2999static inline void
3000slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3001#endif
3002
3003static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3004{
3005	if (unlikely(slab_test_pfmemalloc(slab)))
3006		return gfp_pfmemalloc_allowed(gfpflags);
3007
3008	return true;
3009}
3010
3011#ifndef CONFIG_SLUB_TINY
3012/*
3013 * Check the slab->freelist and either transfer the freelist to the
3014 * per cpu freelist or deactivate the slab.
 
 
3015 *
3016 * The slab is still frozen if the return value is not NULL.
3017 *
3018 * If this function returns NULL then the slab has been unfrozen.
3019 */
3020static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3021{
3022	struct slab new;
3023	unsigned long counters;
3024	void *freelist;
3025
3026	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3027
3028	do {
3029		freelist = slab->freelist;
3030		counters = slab->counters;
3031
3032		new.counters = counters;
3033		VM_BUG_ON(!new.frozen);
3034
3035		new.inuse = slab->objects;
3036		new.frozen = freelist != NULL;
3037
3038	} while (!__cmpxchg_double_slab(s, slab,
3039		freelist, counters,
3040		NULL, new.counters,
3041		"get_freelist"));
3042
3043	return freelist;
3044}
3045
3046/*
3047 * Slow path. The lockless freelist is empty or we need to perform
3048 * debugging duties.
3049 *
3050 * Processing is still very fast if new objects have been freed to the
3051 * regular freelist. In that case we simply take over the regular freelist
3052 * as the lockless freelist and zap the regular freelist.
3053 *
3054 * If that is not working then we fall back to the partial lists. We take the
3055 * first element of the freelist as the object to allocate now and move the
3056 * rest of the freelist to the lockless freelist.
3057 *
3058 * And if we were unable to get a new slab from the partial slab lists then
3059 * we need to allocate a new slab. This is the slowest path since it involves
3060 * a call to the page allocator and the setup of a new slab.
3061 *
3062 * Version of __slab_alloc to use when we know that preemption is
3063 * already disabled (which is the case for bulk allocation).
3064 */
3065static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3066			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3067{
3068	void *freelist;
3069	struct slab *slab;
3070	unsigned long flags;
3071	struct partial_context pc;
3072
3073	stat(s, ALLOC_SLOWPATH);
3074
3075reread_slab:
 
 
 
 
 
 
3076
3077	slab = READ_ONCE(c->slab);
3078	if (!slab) {
3079		/*
3080		 * if the node is not online or has no normal memory, just
3081		 * ignore the node constraint
3082		 */
3083		if (unlikely(node != NUMA_NO_NODE &&
3084			     !node_isset(node, slab_nodes)))
3085			node = NUMA_NO_NODE;
3086		goto new_slab;
3087	}
3088redo:
3089
3090	if (unlikely(!node_match(slab, node))) {
3091		/*
3092		 * same as above but node_match() being false already
3093		 * implies node != NUMA_NO_NODE
3094		 */
3095		if (!node_isset(node, slab_nodes)) {
3096			node = NUMA_NO_NODE;
3097		} else {
3098			stat(s, ALLOC_NODE_MISMATCH);
3099			goto deactivate_slab;
3100		}
3101	}
3102
3103	/*
3104	 * By rights, we should be searching for a slab page that was
3105	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3106	 * information when the page leaves the per-cpu allocator
3107	 */
3108	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3109		goto deactivate_slab;
3110
3111	/* must check again c->slab in case we got preempted and it changed */
3112	local_lock_irqsave(&s->cpu_slab->lock, flags);
3113	if (unlikely(slab != c->slab)) {
3114		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3115		goto reread_slab;
3116	}
 
 
3117	freelist = c->freelist;
3118	if (freelist)
3119		goto load_freelist;
3120
3121	freelist = get_freelist(s, slab);
 
 
3122
3123	if (!freelist) {
3124		c->slab = NULL;
3125		c->tid = next_tid(c->tid);
3126		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3127		stat(s, DEACTIVATE_BYPASS);
3128		goto new_slab;
3129	}
3130
3131	stat(s, ALLOC_REFILL);
3132
3133load_freelist:
3134
3135	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3136
3137	/*
3138	 * freelist is pointing to the list of objects to be used.
3139	 * slab is pointing to the slab from which the objects are obtained.
3140	 * That slab must be frozen for per cpu allocations to work.
3141	 */
3142	VM_BUG_ON(!c->slab->frozen);
3143	c->freelist = get_freepointer(s, freelist);
3144	c->tid = next_tid(c->tid);
3145	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3146	return freelist;
3147
3148deactivate_slab:
3149
3150	local_lock_irqsave(&s->cpu_slab->lock, flags);
3151	if (slab != c->slab) {
3152		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3153		goto reread_slab;
3154	}
3155	freelist = c->freelist;
3156	c->slab = NULL;
3157	c->freelist = NULL;
3158	c->tid = next_tid(c->tid);
3159	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3160	deactivate_slab(s, slab, freelist);
3161
3162new_slab:
3163
3164	if (slub_percpu_partial(c)) {
3165		local_lock_irqsave(&s->cpu_slab->lock, flags);
3166		if (unlikely(c->slab)) {
3167			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3168			goto reread_slab;
3169		}
3170		if (unlikely(!slub_percpu_partial(c))) {
3171			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3172			/* we were preempted and partial list got empty */
3173			goto new_objects;
3174		}
3175
3176		slab = c->slab = slub_percpu_partial(c);
3177		slub_set_percpu_partial(c, slab);
3178		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3179		stat(s, CPU_PARTIAL_ALLOC);
 
3180		goto redo;
3181	}
3182
3183new_objects:
3184
3185	pc.flags = gfpflags;
3186	pc.slab = &slab;
3187	pc.orig_size = orig_size;
3188	freelist = get_partial(s, node, &pc);
3189	if (freelist)
3190		goto check_new_slab;
3191
3192	slub_put_cpu_ptr(s->cpu_slab);
3193	slab = new_slab(s, gfpflags, node);
3194	c = slub_get_cpu_ptr(s->cpu_slab);
3195
3196	if (unlikely(!slab)) {
3197		slab_out_of_memory(s, gfpflags, node);
3198		return NULL;
3199	}
3200
3201	stat(s, ALLOC_SLAB);
3202
3203	if (kmem_cache_debug(s)) {
3204		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3205
3206		if (unlikely(!freelist))
3207			goto new_objects;
3208
3209		if (s->flags & SLAB_STORE_USER)
3210			set_track(s, freelist, TRACK_ALLOC, addr);
3211
3212		return freelist;
3213	}
3214
3215	/*
3216	 * No other reference to the slab yet so we can
3217	 * muck around with it freely without cmpxchg
3218	 */
3219	freelist = slab->freelist;
3220	slab->freelist = NULL;
3221	slab->inuse = slab->objects;
3222	slab->frozen = 1;
3223
3224	inc_slabs_node(s, slab_nid(slab), slab->objects);
3225
3226check_new_slab:
3227
3228	if (kmem_cache_debug(s)) {
3229		/*
3230		 * For debug caches here we had to go through
3231		 * alloc_single_from_partial() so just store the tracking info
3232		 * and return the object
3233		 */
3234		if (s->flags & SLAB_STORE_USER)
3235			set_track(s, freelist, TRACK_ALLOC, addr);
3236
3237		return freelist;
3238	}
3239
3240	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3241		/*
3242		 * For !pfmemalloc_match() case we don't load freelist so that
3243		 * we don't make further mismatched allocations easier.
3244		 */
3245		deactivate_slab(s, slab, get_freepointer(s, freelist));
3246		return freelist;
3247	}
3248
3249retry_load_slab:
3250
3251	local_lock_irqsave(&s->cpu_slab->lock, flags);
3252	if (unlikely(c->slab)) {
3253		void *flush_freelist = c->freelist;
3254		struct slab *flush_slab = c->slab;
3255
3256		c->slab = NULL;
3257		c->freelist = NULL;
3258		c->tid = next_tid(c->tid);
3259
3260		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3261
3262		deactivate_slab(s, flush_slab, flush_freelist);
3263
3264		stat(s, CPUSLAB_FLUSH);
3265
3266		goto retry_load_slab;
3267	}
3268	c->slab = slab;
 
3269
3270	goto load_freelist;
 
 
 
 
3271}
3272
3273/*
3274 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3275 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3276 * pointer.
 
 
 
 
 
3277 */
3278static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3279			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3280{
3281	void *p;
3282
3283#ifdef CONFIG_PREEMPT_COUNT
3284	/*
3285	 * We may have been preempted and rescheduled on a different
3286	 * cpu before disabling preemption. Need to reload cpu area
3287	 * pointer.
3288	 */
3289	c = slub_get_cpu_ptr(s->cpu_slab);
3290#endif
3291
3292	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3293#ifdef CONFIG_PREEMPT_COUNT
3294	slub_put_cpu_ptr(s->cpu_slab);
3295#endif
3296	return p;
3297}
3298
3299static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3300		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3301{
 
3302	struct kmem_cache_cpu *c;
3303	struct slab *slab;
3304	unsigned long tid;
3305	void *object;
3306
 
 
 
 
3307redo:
3308	/*
3309	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3310	 * enabled. We may switch back and forth between cpus while
3311	 * reading from one cpu area. That does not matter as long
3312	 * as we end up on the original cpu again when doing the cmpxchg.
3313	 *
3314	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3315	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3316	 * the tid. If we are preempted and switched to another cpu between the
3317	 * two reads, it's OK as the two are still associated with the same cpu
3318	 * and cmpxchg later will validate the cpu.
3319	 */
3320	c = raw_cpu_ptr(s->cpu_slab);
3321	tid = READ_ONCE(c->tid);
3322
3323	/*
3324	 * Irqless object alloc/free algorithm used here depends on sequence
3325	 * of fetching cpu_slab's data. tid should be fetched before anything
3326	 * on c to guarantee that object and slab associated with previous tid
3327	 * won't be used with current tid. If we fetch tid first, object and
3328	 * slab could be one associated with next tid and our alloc/free
3329	 * request will be failed. In this case, we will retry. So, no problem.
3330	 */
3331	barrier();
 
3332
3333	/*
3334	 * The transaction ids are globally unique per cpu and per operation on
3335	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3336	 * occurs on the right processor and that there was no operation on the
3337	 * linked list in between.
3338	 */
 
 
3339
3340	object = c->freelist;
3341	slab = c->slab;
 
 
3342
3343	if (!USE_LOCKLESS_FAST_PATH() ||
3344	    unlikely(!object || !slab || !node_match(slab, node))) {
3345		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3346	} else {
3347		void *next_object = get_freepointer_safe(s, object);
3348
3349		/*
3350		 * The cmpxchg will only match if there was no additional
3351		 * operation and if we are on the right processor.
3352		 *
3353		 * The cmpxchg does the following atomically (without lock
3354		 * semantics!)
3355		 * 1. Relocate first pointer to the current per cpu area.
3356		 * 2. Verify that tid and freelist have not been changed
3357		 * 3. If they were not changed replace tid and freelist
3358		 *
3359		 * Since this is without lock semantics the protection is only
3360		 * against code executing on this cpu *not* from access by
3361		 * other cpus.
3362		 */
3363		if (unlikely(!this_cpu_cmpxchg_double(
3364				s->cpu_slab->freelist, s->cpu_slab->tid,
3365				object, tid,
3366				next_object, next_tid(tid)))) {
3367
3368			note_cmpxchg_failure("slab_alloc", s, tid);
3369			goto redo;
3370		}
3371		prefetch_freepointer(s, next_object);
3372		stat(s, ALLOC_FASTPATH);
3373	}
3374
3375	return object;
3376}
3377#else /* CONFIG_SLUB_TINY */
3378static void *__slab_alloc_node(struct kmem_cache *s,
3379		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3380{
3381	struct partial_context pc;
3382	struct slab *slab;
3383	void *object;
3384
3385	pc.flags = gfpflags;
3386	pc.slab = &slab;
3387	pc.orig_size = orig_size;
3388	object = get_partial(s, node, &pc);
3389
3390	if (object)
3391		return object;
3392
3393	slab = new_slab(s, gfpflags, node);
3394	if (unlikely(!slab)) {
3395		slab_out_of_memory(s, gfpflags, node);
3396		return NULL;
3397	}
3398
3399	object = alloc_single_from_new_slab(s, slab, orig_size);
3400
3401	return object;
3402}
3403#endif /* CONFIG_SLUB_TINY */
3404
3405/*
3406 * If the object has been wiped upon free, make sure it's fully initialized by
3407 * zeroing out freelist pointer.
3408 */
3409static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3410						   void *obj)
3411{
3412	if (unlikely(slab_want_init_on_free(s)) && obj)
3413		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3414			0, sizeof(void *));
3415}
3416
3417/*
3418 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3419 * have the fastpath folded into their functions. So no function call
3420 * overhead for requests that can be satisfied on the fastpath.
3421 *
3422 * The fastpath works by first checking if the lockless freelist can be used.
3423 * If not then __slab_alloc is called for slow processing.
3424 *
3425 * Otherwise we can simply pick the next object from the lockless free list.
3426 */
3427static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3428		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3429{
3430	void *object;
3431	struct obj_cgroup *objcg = NULL;
3432	bool init = false;
3433
3434	s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3435	if (!s)
3436		return NULL;
3437
3438	object = kfence_alloc(s, orig_size, gfpflags);
3439	if (unlikely(object))
3440		goto out;
3441
3442	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3443
3444	maybe_wipe_obj_freeptr(s, object);
3445	init = slab_want_init_on_alloc(gfpflags, s);
3446
3447out:
3448	/*
3449	 * When init equals 'true', like for kzalloc() family, only
3450	 * @orig_size bytes might be zeroed instead of s->object_size
3451	 */
3452	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
3453
3454	return object;
3455}
3456
3457static __fastpath_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
3458		gfp_t gfpflags, unsigned long addr, size_t orig_size)
3459{
3460	return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
3461}
3462
3463static __fastpath_inline
3464void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3465			     gfp_t gfpflags)
3466{
3467	void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
3468
3469	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
 
3470
3471	return ret;
3472}
3473
3474void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3475{
3476	return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3477}
3478EXPORT_SYMBOL(kmem_cache_alloc);
3479
3480void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3481			   gfp_t gfpflags)
3482{
3483	return __kmem_cache_alloc_lru(s, lru, gfpflags);
3484}
3485EXPORT_SYMBOL(kmem_cache_alloc_lru);
3486
3487void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
3488			      int node, size_t orig_size,
3489			      unsigned long caller)
3490{
3491	return slab_alloc_node(s, NULL, gfpflags, node,
3492			       caller, orig_size);
3493}
 
 
3494
 
3495void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3496{
3497	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3498
3499	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
 
3500
3501	return ret;
3502}
3503EXPORT_SYMBOL(kmem_cache_alloc_node);
3504
3505static noinline void free_to_partial_list(
3506	struct kmem_cache *s, struct slab *slab,
3507	void *head, void *tail, int bulk_cnt,
3508	unsigned long addr)
3509{
3510	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3511	struct slab *slab_free = NULL;
3512	int cnt = bulk_cnt;
3513	unsigned long flags;
3514	depot_stack_handle_t handle = 0;
3515
3516	if (s->flags & SLAB_STORE_USER)
3517		handle = set_track_prepare();
3518
3519	spin_lock_irqsave(&n->list_lock, flags);
3520
3521	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
3522		void *prior = slab->freelist;
3523
3524		/* Perform the actual freeing while we still hold the locks */
3525		slab->inuse -= cnt;
3526		set_freepointer(s, tail, prior);
3527		slab->freelist = head;
3528
3529		/*
3530		 * If the slab is empty, and node's partial list is full,
3531		 * it should be discarded anyway no matter it's on full or
3532		 * partial list.
3533		 */
3534		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
3535			slab_free = slab;
3536
3537		if (!prior) {
3538			/* was on full list */
3539			remove_full(s, n, slab);
3540			if (!slab_free) {
3541				add_partial(n, slab, DEACTIVATE_TO_TAIL);
3542				stat(s, FREE_ADD_PARTIAL);
3543			}
3544		} else if (slab_free) {
3545			remove_partial(n, slab);
3546			stat(s, FREE_REMOVE_PARTIAL);
3547		}
3548	}
3549
3550	if (slab_free) {
3551		/*
3552		 * Update the counters while still holding n->list_lock to
3553		 * prevent spurious validation warnings
3554		 */
3555		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
3556	}
3557
3558	spin_unlock_irqrestore(&n->list_lock, flags);
3559
3560	if (slab_free) {
3561		stat(s, FREE_SLAB);
3562		free_slab(s, slab_free);
3563	}
3564}
 
 
 
3565
3566/*
3567 * Slow path handling. This may still be called frequently since objects
3568 * have a longer lifetime than the cpu slabs in most processing loads.
3569 *
3570 * So we still attempt to reduce cache line usage. Just take the slab
3571 * lock and free the item. If there is no additional partial slab
3572 * handling required then we can return immediately.
3573 */
3574static void __slab_free(struct kmem_cache *s, struct slab *slab,
3575			void *head, void *tail, int cnt,
3576			unsigned long addr)
3577
3578{
3579	void *prior;
 
3580	int was_frozen;
3581	struct slab new;
3582	unsigned long counters;
3583	struct kmem_cache_node *n = NULL;
3584	unsigned long flags;
3585
3586	stat(s, FREE_SLOWPATH);
3587
3588	if (kfence_free(head))
3589		return;
3590
3591	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
3592		free_to_partial_list(s, slab, head, tail, cnt, addr);
3593		return;
3594	}
3595
3596	do {
3597		if (unlikely(n)) {
3598			spin_unlock_irqrestore(&n->list_lock, flags);
3599			n = NULL;
3600		}
3601		prior = slab->freelist;
3602		counters = slab->counters;
3603		set_freepointer(s, tail, prior);
3604		new.counters = counters;
3605		was_frozen = new.frozen;
3606		new.inuse -= cnt;
3607		if ((!new.inuse || !prior) && !was_frozen) {
3608
3609			if (kmem_cache_has_cpu_partial(s) && !prior) {
3610
3611				/*
3612				 * Slab was on no list before and will be
3613				 * partially empty
3614				 * We can defer the list move and instead
3615				 * freeze it.
3616				 */
3617				new.frozen = 1;
3618
3619			} else { /* Needs to be taken off a list */
3620
3621				n = get_node(s, slab_nid(slab));
3622				/*
3623				 * Speculatively acquire the list_lock.
3624				 * If the cmpxchg does not succeed then we may
3625				 * drop the list_lock without any processing.
3626				 *
3627				 * Otherwise the list_lock will synchronize with
3628				 * other processors updating the list of slabs.
3629				 */
3630				spin_lock_irqsave(&n->list_lock, flags);
3631
3632			}
3633		}
3634
3635	} while (!cmpxchg_double_slab(s, slab,
3636		prior, counters,
3637		head, new.counters,
3638		"__slab_free"));
3639
3640	if (likely(!n)) {
3641
3642		if (likely(was_frozen)) {
3643			/*
3644			 * The list lock was not taken therefore no list
3645			 * activity can be necessary.
3646			 */
3647			stat(s, FREE_FROZEN);
3648		} else if (new.frozen) {
3649			/*
3650			 * If we just froze the slab then put it onto the
3651			 * per cpu partial list.
3652			 */
3653			put_cpu_partial(s, slab, 1);
3654			stat(s, CPU_PARTIAL_FREE);
3655		}
 
 
 
 
 
 
 
 
3656
3657		return;
3658	}
3659
3660	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3661		goto slab_empty;
3662
3663	/*
3664	 * Objects left in the slab. If it was not on the partial list before
3665	 * then add it.
3666	 */
3667	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3668		remove_full(s, n, slab);
3669		add_partial(n, slab, DEACTIVATE_TO_TAIL);
 
3670		stat(s, FREE_ADD_PARTIAL);
3671	}
3672	spin_unlock_irqrestore(&n->list_lock, flags);
3673	return;
3674
3675slab_empty:
3676	if (prior) {
3677		/*
3678		 * Slab on the partial list.
3679		 */
3680		remove_partial(n, slab);
3681		stat(s, FREE_REMOVE_PARTIAL);
3682	} else {
3683		/* Slab must be on the full list */
3684		remove_full(s, n, slab);
3685	}
3686
3687	spin_unlock_irqrestore(&n->list_lock, flags);
3688	stat(s, FREE_SLAB);
3689	discard_slab(s, slab);
3690}
3691
3692#ifndef CONFIG_SLUB_TINY
3693/*
3694 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3695 * can perform fastpath freeing without additional function calls.
3696 *
3697 * The fastpath is only possible if we are freeing to the current cpu slab
3698 * of this processor. This typically the case if we have just allocated
3699 * the item before.
3700 *
3701 * If fastpath is not possible then fall back to __slab_free where we deal
3702 * with all sorts of special processing.
3703 *
3704 * Bulk free of a freelist with several objects (all pointing to the
3705 * same slab) possible by specifying head and tail ptr, plus objects
3706 * count (cnt). Bulk free indicated by tail pointer being set.
3707 */
3708static __always_inline void do_slab_free(struct kmem_cache *s,
3709				struct slab *slab, void *head, void *tail,
3710				int cnt, unsigned long addr)
3711{
3712	void *tail_obj = tail ? : head;
3713	struct kmem_cache_cpu *c;
3714	unsigned long tid;
3715	void **freelist;
 
3716
3717redo:
3718	/*
3719	 * Determine the currently cpus per cpu slab.
3720	 * The cpu may change afterward. However that does not matter since
3721	 * data is retrieved via this pointer. If we are on the same cpu
3722	 * during the cmpxchg then the free will succeed.
3723	 */
3724	c = raw_cpu_ptr(s->cpu_slab);
3725	tid = READ_ONCE(c->tid);
3726
3727	/* Same with comment on barrier() in slab_alloc_node() */
3728	barrier();
3729
3730	if (unlikely(slab != c->slab)) {
3731		__slab_free(s, slab, head, tail_obj, cnt, addr);
3732		return;
3733	}
3734
3735	if (USE_LOCKLESS_FAST_PATH()) {
3736		freelist = READ_ONCE(c->freelist);
3737
3738		set_freepointer(s, tail_obj, freelist);
 
3739
3740		if (unlikely(!this_cpu_cmpxchg_double(
3741				s->cpu_slab->freelist, s->cpu_slab->tid,
3742				freelist, tid,
3743				head, next_tid(tid)))) {
3744
3745			note_cmpxchg_failure("slab_free", s, tid);
3746			goto redo;
3747		}
3748	} else {
3749		/* Update the free list under the local lock */
3750		local_lock(&s->cpu_slab->lock);
3751		c = this_cpu_ptr(s->cpu_slab);
3752		if (unlikely(slab != c->slab)) {
3753			local_unlock(&s->cpu_slab->lock);
3754			goto redo;
3755		}
3756		tid = c->tid;
3757		freelist = c->freelist;
3758
3759		set_freepointer(s, tail_obj, freelist);
3760		c->freelist = head;
3761		c->tid = next_tid(tid);
3762
3763		local_unlock(&s->cpu_slab->lock);
3764	}
3765	stat(s, FREE_FASTPATH);
3766}
3767#else /* CONFIG_SLUB_TINY */
3768static void do_slab_free(struct kmem_cache *s,
3769				struct slab *slab, void *head, void *tail,
3770				int cnt, unsigned long addr)
3771{
3772	void *tail_obj = tail ? : head;
3773
3774	__slab_free(s, slab, head, tail_obj, cnt, addr);
3775}
3776#endif /* CONFIG_SLUB_TINY */
3777
3778static __fastpath_inline void slab_free(struct kmem_cache *s, struct slab *slab,
3779				      void *head, void *tail, void **p, int cnt,
3780				      unsigned long addr)
3781{
3782	memcg_slab_free_hook(s, slab, p, cnt);
3783	/*
3784	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3785	 * to remove objects, whose reuse must be delayed.
3786	 */
3787	if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3788		do_slab_free(s, slab, head, tail, cnt, addr);
3789}
3790
3791#ifdef CONFIG_KASAN_GENERIC
3792void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3793{
3794	do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
3795}
3796#endif
3797
3798void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller)
3799{
3800	slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller);
3801}
3802
3803void kmem_cache_free(struct kmem_cache *s, void *x)
3804{
3805	s = cache_from_obj(s, x);
3806	if (!s)
3807		return;
3808	trace_kmem_cache_free(_RET_IP_, x, s);
3809	slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
3810}
3811EXPORT_SYMBOL(kmem_cache_free);
3812
3813struct detached_freelist {
3814	struct slab *slab;
3815	void *tail;
3816	void *freelist;
3817	int cnt;
3818	struct kmem_cache *s;
3819};
3820
3821/*
3822 * This function progressively scans the array with free objects (with
3823 * a limited look ahead) and extract objects belonging to the same
3824 * slab.  It builds a detached freelist directly within the given
3825 * slab/objects.  This can happen without any need for
3826 * synchronization, because the objects are owned by running process.
3827 * The freelist is build up as a single linked list in the objects.
3828 * The idea is, that this detached freelist can then be bulk
3829 * transferred to the real freelist(s), but only requiring a single
3830 * synchronization primitive.  Look ahead in the array is limited due
3831 * to performance reasons.
3832 */
3833static inline
3834int build_detached_freelist(struct kmem_cache *s, size_t size,
3835			    void **p, struct detached_freelist *df)
3836{
3837	int lookahead = 3;
3838	void *object;
3839	struct folio *folio;
3840	size_t same;
3841
3842	object = p[--size];
3843	folio = virt_to_folio(object);
3844	if (!s) {
3845		/* Handle kalloc'ed objects */
3846		if (unlikely(!folio_test_slab(folio))) {
3847			free_large_kmalloc(folio, object);
3848			df->slab = NULL;
3849			return size;
3850		}
3851		/* Derive kmem_cache from object */
3852		df->slab = folio_slab(folio);
3853		df->s = df->slab->slab_cache;
3854	} else {
3855		df->slab = folio_slab(folio);
3856		df->s = cache_from_obj(s, object); /* Support for memcg */
3857	}
3858
3859	/* Start new detached freelist */
3860	df->tail = object;
3861	df->freelist = object;
3862	df->cnt = 1;
3863
3864	if (is_kfence_address(object))
3865		return size;
3866
3867	set_freepointer(df->s, object, NULL);
3868
3869	same = size;
3870	while (size) {
3871		object = p[--size];
3872		/* df->slab is always set at this point */
3873		if (df->slab == virt_to_slab(object)) {
3874			/* Opportunity build freelist */
3875			set_freepointer(df->s, object, df->freelist);
3876			df->freelist = object;
3877			df->cnt++;
3878			same--;
3879			if (size != same)
3880				swap(p[size], p[same]);
3881			continue;
3882		}
3883
3884		/* Limit look ahead search */
3885		if (!--lookahead)
3886			break;
3887	}
3888
3889	return same;
3890}
3891
3892/* Note that interrupts must be enabled when calling this function. */
3893void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3894{
3895	if (!size)
3896		return;
3897
3898	do {
3899		struct detached_freelist df;
3900
3901		size = build_detached_freelist(s, size, p, &df);
3902		if (!df.slab)
3903			continue;
3904
3905		slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3906			  _RET_IP_);
3907	} while (likely(size));
3908}
3909EXPORT_SYMBOL(kmem_cache_free_bulk);
3910
3911#ifndef CONFIG_SLUB_TINY
3912static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3913			size_t size, void **p, struct obj_cgroup *objcg)
3914{
3915	struct kmem_cache_cpu *c;
3916	int i;
3917
3918	/*
3919	 * Drain objects in the per cpu slab, while disabling local
3920	 * IRQs, which protects against PREEMPT and interrupts
3921	 * handlers invoking normal fastpath.
3922	 */
3923	c = slub_get_cpu_ptr(s->cpu_slab);
3924	local_lock_irq(&s->cpu_slab->lock);
3925
3926	for (i = 0; i < size; i++) {
3927		void *object = kfence_alloc(s, s->object_size, flags);
3928
3929		if (unlikely(object)) {
3930			p[i] = object;
3931			continue;
3932		}
3933
3934		object = c->freelist;
3935		if (unlikely(!object)) {
3936			/*
3937			 * We may have removed an object from c->freelist using
3938			 * the fastpath in the previous iteration; in that case,
3939			 * c->tid has not been bumped yet.
3940			 * Since ___slab_alloc() may reenable interrupts while
3941			 * allocating memory, we should bump c->tid now.
3942			 */
3943			c->tid = next_tid(c->tid);
3944
3945			local_unlock_irq(&s->cpu_slab->lock);
3946
3947			/*
3948			 * Invoking slow path likely have side-effect
3949			 * of re-populating per CPU c->freelist
3950			 */
3951			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3952					    _RET_IP_, c, s->object_size);
3953			if (unlikely(!p[i]))
3954				goto error;
3955
3956			c = this_cpu_ptr(s->cpu_slab);
3957			maybe_wipe_obj_freeptr(s, p[i]);
3958
3959			local_lock_irq(&s->cpu_slab->lock);
3960
3961			continue; /* goto for-loop */
3962		}
3963		c->freelist = get_freepointer(s, object);
3964		p[i] = object;
3965		maybe_wipe_obj_freeptr(s, p[i]);
3966	}
3967	c->tid = next_tid(c->tid);
3968	local_unlock_irq(&s->cpu_slab->lock);
3969	slub_put_cpu_ptr(s->cpu_slab);
3970
3971	return i;
3972
3973error:
3974	slub_put_cpu_ptr(s->cpu_slab);
3975	slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
3976	kmem_cache_free_bulk(s, i, p);
3977	return 0;
3978
3979}
3980#else /* CONFIG_SLUB_TINY */
3981static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3982			size_t size, void **p, struct obj_cgroup *objcg)
3983{
3984	int i;
3985
3986	for (i = 0; i < size; i++) {
3987		void *object = kfence_alloc(s, s->object_size, flags);
3988
3989		if (unlikely(object)) {
3990			p[i] = object;
3991			continue;
3992		}
3993
3994		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
3995					 _RET_IP_, s->object_size);
3996		if (unlikely(!p[i]))
3997			goto error;
3998
3999		maybe_wipe_obj_freeptr(s, p[i]);
4000	}
4001
4002	return i;
4003
4004error:
4005	slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
4006	kmem_cache_free_bulk(s, i, p);
4007	return 0;
4008}
4009#endif /* CONFIG_SLUB_TINY */
4010
4011/* Note that interrupts must be enabled when calling this function. */
4012int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4013			  void **p)
4014{
4015	int i;
4016	struct obj_cgroup *objcg = NULL;
4017
4018	if (!size)
4019		return 0;
4020
4021	/* memcg and kmem_cache debug support */
4022	s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
4023	if (unlikely(!s))
4024		return 0;
4025
4026	i = __kmem_cache_alloc_bulk(s, flags, size, p, objcg);
4027
4028	/*
4029	 * memcg and kmem_cache debug support and memory initialization.
4030	 * Done outside of the IRQ disabled fastpath loop.
4031	 */
4032	if (i != 0)
4033		slab_post_alloc_hook(s, objcg, flags, size, p,
4034			slab_want_init_on_alloc(flags, s), s->object_size);
4035	return i;
4036}
4037EXPORT_SYMBOL(kmem_cache_alloc_bulk);
4038
4039
4040/*
4041 * Object placement in a slab is made very easy because we always start at
4042 * offset 0. If we tune the size of the object to the alignment then we can
4043 * get the required alignment by putting one properly sized object after
4044 * another.
4045 *
4046 * Notice that the allocation order determines the sizes of the per cpu
4047 * caches. Each processor has always one slab available for allocations.
4048 * Increasing the allocation order reduces the number of times that slabs
4049 * must be moved on and off the partial lists and is therefore a factor in
4050 * locking overhead.
4051 */
4052
4053/*
4054 * Minimum / Maximum order of slab pages. This influences locking overhead
4055 * and slab fragmentation. A higher order reduces the number of partial slabs
4056 * and increases the number of allocations possible without having to
4057 * take the list_lock.
4058 */
4059static unsigned int slub_min_order;
4060static unsigned int slub_max_order =
4061	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4062static unsigned int slub_min_objects;
 
 
 
 
 
4063
4064/*
4065 * Calculate the order of allocation given an slab object size.
4066 *
4067 * The order of allocation has significant impact on performance and other
4068 * system components. Generally order 0 allocations should be preferred since
4069 * order 0 does not cause fragmentation in the page allocator. Larger objects
4070 * be problematic to put into order 0 slabs because there may be too much
4071 * unused space left. We go to a higher order if more than 1/16th of the slab
4072 * would be wasted.
4073 *
4074 * In order to reach satisfactory performance we must ensure that a minimum
4075 * number of objects is in one slab. Otherwise we may generate too much
4076 * activity on the partial lists which requires taking the list_lock. This is
4077 * less a concern for large slabs though which are rarely used.
4078 *
4079 * slub_max_order specifies the order where we begin to stop considering the
4080 * number of objects in a slab as critical. If we reach slub_max_order then
4081 * we try to keep the page order as low as possible. So we accept more waste
4082 * of space in favor of a small page order.
4083 *
4084 * Higher order allocations also allow the placement of more objects in a
4085 * slab and thereby reduce object handling overhead. If the user has
4086 * requested a higher minimum order then we start with that one instead of
4087 * the smallest order which will fit the object.
4088 */
4089static inline unsigned int calc_slab_order(unsigned int size,
4090		unsigned int min_objects, unsigned int max_order,
4091		unsigned int fract_leftover)
4092{
4093	unsigned int min_order = slub_min_order;
4094	unsigned int order;
 
4095
4096	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4097		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4098
4099	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
 
4100			order <= max_order; order++) {
4101
4102		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4103		unsigned int rem;
 
 
4104
4105		rem = slab_size % size;
4106
4107		if (rem <= slab_size / fract_leftover)
4108			break;
 
4109	}
4110
4111	return order;
4112}
4113
4114static inline int calculate_order(unsigned int size)
4115{
4116	unsigned int order;
4117	unsigned int min_objects;
4118	unsigned int max_objects;
4119	unsigned int nr_cpus;
4120
4121	/*
4122	 * Attempt to find best configuration for a slab. This
4123	 * works by first attempting to generate a layout with
4124	 * the best configuration and backing off gradually.
4125	 *
4126	 * First we increase the acceptable waste in a slab. Then
4127	 * we reduce the minimum objects required in a slab.
4128	 */
4129	min_objects = slub_min_objects;
4130	if (!min_objects) {
4131		/*
4132		 * Some architectures will only update present cpus when
4133		 * onlining them, so don't trust the number if it's just 1. But
4134		 * we also don't want to use nr_cpu_ids always, as on some other
4135		 * architectures, there can be many possible cpus, but never
4136		 * onlined. Here we compromise between trying to avoid too high
4137		 * order on systems that appear larger than they are, and too
4138		 * low order on systems that appear smaller than they are.
4139		 */
4140		nr_cpus = num_present_cpus();
4141		if (nr_cpus <= 1)
4142			nr_cpus = nr_cpu_ids;
4143		min_objects = 4 * (fls(nr_cpus) + 1);
4144	}
4145	max_objects = order_objects(slub_max_order, size);
4146	min_objects = min(min_objects, max_objects);
4147
4148	while (min_objects > 1) {
4149		unsigned int fraction;
4150
4151		fraction = 16;
4152		while (fraction >= 4) {
4153			order = calc_slab_order(size, min_objects,
4154					slub_max_order, fraction);
4155			if (order <= slub_max_order)
4156				return order;
4157			fraction /= 2;
4158		}
4159		min_objects--;
4160	}
4161
4162	/*
4163	 * We were unable to place multiple objects in a slab. Now
4164	 * lets see if we can place a single object there.
4165	 */
4166	order = calc_slab_order(size, 1, slub_max_order, 1);
4167	if (order <= slub_max_order)
4168		return order;
4169
4170	/*
4171	 * Doh this slab cannot be placed using slub_max_order.
4172	 */
4173	order = calc_slab_order(size, 1, MAX_ORDER, 1);
4174	if (order < MAX_ORDER)
4175		return order;
4176	return -ENOSYS;
4177}
4178
4179static void
4180init_kmem_cache_node(struct kmem_cache_node *n)
4181{
4182	n->nr_partial = 0;
4183	spin_lock_init(&n->list_lock);
4184	INIT_LIST_HEAD(&n->partial);
4185#ifdef CONFIG_SLUB_DEBUG
4186	atomic_long_set(&n->nr_slabs, 0);
4187	atomic_long_set(&n->total_objects, 0);
4188	INIT_LIST_HEAD(&n->full);
4189#endif
4190}
4191
4192#ifndef CONFIG_SLUB_TINY
4193static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4194{
4195	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
4196			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4197			sizeof(struct kmem_cache_cpu));
4198
4199	/*
4200	 * Must align to double word boundary for the double cmpxchg
4201	 * instructions to work; see __pcpu_double_call_return_bool().
4202	 */
4203	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4204				     2 * sizeof(void *));
4205
4206	if (!s->cpu_slab)
4207		return 0;
4208
4209	init_kmem_cache_cpus(s);
4210
4211	return 1;
4212}
4213#else
4214static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4215{
4216	return 1;
4217}
4218#endif /* CONFIG_SLUB_TINY */
4219
4220static struct kmem_cache *kmem_cache_node;
4221
4222/*
4223 * No kmalloc_node yet so do it by hand. We know that this is the first
4224 * slab on the node for this slabcache. There are no concurrent accesses
4225 * possible.
4226 *
4227 * Note that this function only works on the kmem_cache_node
4228 * when allocating for the kmem_cache_node. This is used for bootstrapping
4229 * memory on a fresh node that has no slab structures yet.
4230 */
4231static void early_kmem_cache_node_alloc(int node)
4232{
4233	struct slab *slab;
4234	struct kmem_cache_node *n;
4235
4236	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
4237
4238	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
4239
4240	BUG_ON(!slab);
4241	inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects);
4242	if (slab_nid(slab) != node) {
4243		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4244		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
 
4245	}
4246
4247	n = slab->freelist;
4248	BUG_ON(!n);
 
 
 
 
4249#ifdef CONFIG_SLUB_DEBUG
4250	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
4251	init_tracking(kmem_cache_node, n);
4252#endif
4253	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
4254	slab->freelist = get_freepointer(kmem_cache_node, n);
4255	slab->inuse = 1;
4256	kmem_cache_node->node[node] = n;
4257	init_kmem_cache_node(n);
4258	inc_slabs_node(kmem_cache_node, node, slab->objects);
4259
4260	/*
4261	 * No locks need to be taken here as it has just been
4262	 * initialized and there is no concurrent access.
4263	 */
4264	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
4265}
4266
4267static void free_kmem_cache_nodes(struct kmem_cache *s)
4268{
4269	int node;
4270	struct kmem_cache_node *n;
4271
4272	for_each_kmem_cache_node(s, node, n) {
 
 
 
 
 
4273		s->node[node] = NULL;
4274		kmem_cache_free(kmem_cache_node, n);
4275	}
4276}
4277
4278void __kmem_cache_release(struct kmem_cache *s)
4279{
4280	cache_random_seq_destroy(s);
4281#ifndef CONFIG_SLUB_TINY
4282	free_percpu(s->cpu_slab);
4283#endif
4284	free_kmem_cache_nodes(s);
4285}
4286
4287static int init_kmem_cache_nodes(struct kmem_cache *s)
4288{
4289	int node;
4290
4291	for_each_node_mask(node, slab_nodes) {
4292		struct kmem_cache_node *n;
4293
4294		if (slab_state == DOWN) {
4295			early_kmem_cache_node_alloc(node);
4296			continue;
4297		}
4298		n = kmem_cache_alloc_node(kmem_cache_node,
4299						GFP_KERNEL, node);
4300
4301		if (!n) {
4302			free_kmem_cache_nodes(s);
4303			return 0;
4304		}
4305
4306		init_kmem_cache_node(n);
4307		s->node[node] = n;
 
4308	}
4309	return 1;
4310}
4311
4312static void set_cpu_partial(struct kmem_cache *s)
4313{
4314#ifdef CONFIG_SLUB_CPU_PARTIAL
4315	unsigned int nr_objects;
4316
4317	/*
4318	 * cpu_partial determined the maximum number of objects kept in the
4319	 * per cpu partial lists of a processor.
4320	 *
4321	 * Per cpu partial lists mainly contain slabs that just have one
4322	 * object freed. If they are used for allocation then they can be
4323	 * filled up again with minimal effort. The slab will never hit the
4324	 * per node partial lists and therefore no locking will be required.
4325	 *
4326	 * For backwards compatibility reasons, this is determined as number
4327	 * of objects, even though we now limit maximum number of pages, see
4328	 * slub_set_cpu_partial()
4329	 */
4330	if (!kmem_cache_has_cpu_partial(s))
4331		nr_objects = 0;
4332	else if (s->size >= PAGE_SIZE)
4333		nr_objects = 6;
4334	else if (s->size >= 1024)
4335		nr_objects = 24;
4336	else if (s->size >= 256)
4337		nr_objects = 52;
4338	else
4339		nr_objects = 120;
4340
4341	slub_set_cpu_partial(s, nr_objects);
4342#endif
4343}
4344
4345/*
4346 * calculate_sizes() determines the order and the distribution of data within
4347 * a slab object.
4348 */
4349static int calculate_sizes(struct kmem_cache *s)
4350{
4351	slab_flags_t flags = s->flags;
4352	unsigned int size = s->object_size;
4353	unsigned int order;
4354
4355	/*
4356	 * Round up object size to the next word boundary. We can only
4357	 * place the free pointer at word boundaries and this determines
4358	 * the possible location of the free pointer.
4359	 */
4360	size = ALIGN(size, sizeof(void *));
4361
4362#ifdef CONFIG_SLUB_DEBUG
4363	/*
4364	 * Determine if we can poison the object itself. If the user of
4365	 * the slab may touch the object after free or before allocation
4366	 * then we should never poison the object itself.
4367	 */
4368	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4369			!s->ctor)
4370		s->flags |= __OBJECT_POISON;
4371	else
4372		s->flags &= ~__OBJECT_POISON;
4373
4374
4375	/*
4376	 * If we are Redzoning then check if there is some space between the
4377	 * end of the object and the free pointer. If not then add an
4378	 * additional word to have some bytes to store Redzone information.
4379	 */
4380	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4381		size += sizeof(void *);
4382#endif
4383
4384	/*
4385	 * With that we have determined the number of bytes in actual use
4386	 * by the object and redzoning.
4387	 */
4388	s->inuse = size;
4389
4390	if (slub_debug_orig_size(s) ||
4391	    (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4392	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4393	    s->ctor) {
4394		/*
4395		 * Relocate free pointer after the object if it is not
4396		 * permitted to overwrite the first word of the object on
4397		 * kmem_cache_free.
4398		 *
4399		 * This is the case if we do RCU, have a constructor or
4400		 * destructor, are poisoning the objects, or are
4401		 * redzoning an object smaller than sizeof(void *).
4402		 *
4403		 * The assumption that s->offset >= s->inuse means free
4404		 * pointer is outside of the object is used in the
4405		 * freeptr_outside_object() function. If that is no
4406		 * longer true, the function needs to be modified.
4407		 */
4408		s->offset = size;
4409		size += sizeof(void *);
4410	} else {
4411		/*
4412		 * Store freelist pointer near middle of object to keep
4413		 * it away from the edges of the object to avoid small
4414		 * sized over/underflows from neighboring allocations.
4415		 */
4416		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4417	}
4418
4419#ifdef CONFIG_SLUB_DEBUG
4420	if (flags & SLAB_STORE_USER) {
4421		/*
4422		 * Need to store information about allocs and frees after
4423		 * the object.
4424		 */
4425		size += 2 * sizeof(struct track);
4426
4427		/* Save the original kmalloc request size */
4428		if (flags & SLAB_KMALLOC)
4429			size += sizeof(unsigned int);
4430	}
4431#endif
4432
4433	kasan_cache_create(s, &size, &s->flags);
4434#ifdef CONFIG_SLUB_DEBUG
4435	if (flags & SLAB_RED_ZONE) {
4436		/*
4437		 * Add some empty padding so that we can catch
4438		 * overwrites from earlier objects rather than let
4439		 * tracking information or the free pointer be
4440		 * corrupted if a user writes before the start
4441		 * of the object.
4442		 */
4443		size += sizeof(void *);
4444
4445		s->red_left_pad = sizeof(void *);
4446		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4447		size += s->red_left_pad;
4448	}
4449#endif
4450
4451	/*
4452	 * SLUB stores one object immediately after another beginning from
4453	 * offset 0. In order to align the objects we have to simply size
4454	 * each object to conform to the alignment.
4455	 */
4456	size = ALIGN(size, s->align);
4457	s->size = size;
4458	s->reciprocal_size = reciprocal_value(size);
4459	order = calculate_order(size);
 
 
4460
4461	if ((int)order < 0)
4462		return 0;
4463
4464	s->allocflags = 0;
4465	if (order)
4466		s->allocflags |= __GFP_COMP;
4467
4468	if (s->flags & SLAB_CACHE_DMA)
4469		s->allocflags |= GFP_DMA;
4470
4471	if (s->flags & SLAB_CACHE_DMA32)
4472		s->allocflags |= GFP_DMA32;
4473
4474	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4475		s->allocflags |= __GFP_RECLAIMABLE;
4476
4477	/*
4478	 * Determine the number of objects per slab
4479	 */
4480	s->oo = oo_make(order, size);
4481	s->min = oo_make(get_order(size), size);
 
 
4482
4483	return !!oo_objects(s->oo);
4484}
4485
4486static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4487{
4488	s->flags = kmem_cache_flags(s->size, flags, s->name);
4489#ifdef CONFIG_SLAB_FREELIST_HARDENED
4490	s->random = get_random_long();
4491#endif
 
4492
4493	if (!calculate_sizes(s))
4494		goto error;
4495	if (disable_higher_order_debug) {
4496		/*
4497		 * Disable debugging flags that store metadata if the min slab
4498		 * order increased.
4499		 */
4500		if (get_order(s->size) > get_order(s->object_size)) {
4501			s->flags &= ~DEBUG_METADATA_FLAGS;
4502			s->offset = 0;
4503			if (!calculate_sizes(s))
4504				goto error;
4505		}
4506	}
4507
4508#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4509    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
4510	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
4511		/* Enable fast mode */
4512		s->flags |= __CMPXCHG_DOUBLE;
4513#endif
4514
4515	/*
4516	 * The larger the object size is, the more slabs we want on the partial
4517	 * list to avoid pounding the page allocator excessively.
4518	 */
4519	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4520	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
4521
4522	set_cpu_partial(s);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4523
4524#ifdef CONFIG_NUMA
4525	s->remote_node_defrag_ratio = 1000;
4526#endif
4527
4528	/* Initialize the pre-computed randomized freelist if slab is up */
4529	if (slab_state >= UP) {
4530		if (init_cache_random_seq(s))
4531			goto error;
4532	}
4533
4534	if (!init_kmem_cache_nodes(s))
4535		goto error;
4536
4537	if (alloc_kmem_cache_cpus(s))
4538		return 0;
4539
 
4540error:
4541	__kmem_cache_release(s);
 
 
 
 
4542	return -EINVAL;
4543}
4544
4545static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
4546			      const char *text)
4547{
4548#ifdef CONFIG_SLUB_DEBUG
4549	void *addr = slab_address(slab);
4550	void *p;
 
 
 
 
 
 
4551
4552	slab_err(s, slab, text, s->name);
4553
4554	spin_lock(&object_map_lock);
4555	__fill_map(object_map, s, slab);
4556
4557	for_each_object(p, s, addr, slab->objects) {
4558
4559		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
4560			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
 
4561			print_tracking(s, p);
4562		}
4563	}
4564	spin_unlock(&object_map_lock);
 
4565#endif
4566}
4567
4568/*
4569 * Attempt to free all partial slabs on a node.
4570 * This is called from __kmem_cache_shutdown(). We must take list_lock
4571 * because sysfs file might still access partial list after the shutdowning.
4572 */
4573static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4574{
4575	LIST_HEAD(discard);
4576	struct slab *slab, *h;
4577
4578	BUG_ON(irqs_disabled());
4579	spin_lock_irq(&n->list_lock);
4580	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4581		if (!slab->inuse) {
4582			remove_partial(n, slab);
4583			list_add(&slab->slab_list, &discard);
4584		} else {
4585			list_slab_objects(s, slab,
4586			  "Objects remaining in %s on __kmem_cache_shutdown()");
4587		}
4588	}
4589	spin_unlock_irq(&n->list_lock);
4590
4591	list_for_each_entry_safe(slab, h, &discard, slab_list)
4592		discard_slab(s, slab);
4593}
4594
4595bool __kmem_cache_empty(struct kmem_cache *s)
4596{
4597	int node;
4598	struct kmem_cache_node *n;
4599
4600	for_each_kmem_cache_node(s, node, n)
4601		if (n->nr_partial || slabs_node(s, node))
4602			return false;
4603	return true;
4604}
4605
4606/*
4607 * Release all resources used by a slab cache.
4608 */
4609int __kmem_cache_shutdown(struct kmem_cache *s)
4610{
4611	int node;
4612	struct kmem_cache_node *n;
4613
4614	flush_all_cpus_locked(s);
4615	/* Attempt to free all objects */
4616	for_each_kmem_cache_node(s, node, n) {
 
 
4617		free_partial(s, n);
4618		if (n->nr_partial || slabs_node(s, node))
4619			return 1;
4620	}
 
 
4621	return 0;
4622}
4623
4624#ifdef CONFIG_PRINTK
4625void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
4626{
4627	void *base;
4628	int __maybe_unused i;
4629	unsigned int objnr;
4630	void *objp;
4631	void *objp0;
4632	struct kmem_cache *s = slab->slab_cache;
4633	struct track __maybe_unused *trackp;
4634
4635	kpp->kp_ptr = object;
4636	kpp->kp_slab = slab;
4637	kpp->kp_slab_cache = s;
4638	base = slab_address(slab);
4639	objp0 = kasan_reset_tag(object);
4640#ifdef CONFIG_SLUB_DEBUG
4641	objp = restore_red_left(s, objp0);
4642#else
4643	objp = objp0;
4644#endif
4645	objnr = obj_to_index(s, slab, objp);
4646	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4647	objp = base + s->size * objnr;
4648	kpp->kp_objp = objp;
4649	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4650			 || (objp - base) % s->size) ||
4651	    !(s->flags & SLAB_STORE_USER))
4652		return;
4653#ifdef CONFIG_SLUB_DEBUG
4654	objp = fixup_red_left(s, objp);
4655	trackp = get_track(s, objp, TRACK_ALLOC);
4656	kpp->kp_ret = (void *)trackp->addr;
4657#ifdef CONFIG_STACKDEPOT
4658	{
4659		depot_stack_handle_t handle;
4660		unsigned long *entries;
4661		unsigned int nr_entries;
4662
4663		handle = READ_ONCE(trackp->handle);
4664		if (handle) {
4665			nr_entries = stack_depot_fetch(handle, &entries);
4666			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4667				kpp->kp_stack[i] = (void *)entries[i];
4668		}
4669
4670		trackp = get_track(s, objp, TRACK_FREE);
4671		handle = READ_ONCE(trackp->handle);
4672		if (handle) {
4673			nr_entries = stack_depot_fetch(handle, &entries);
4674			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4675				kpp->kp_free_stack[i] = (void *)entries[i];
4676		}
4677	}
4678#endif
4679#endif
4680}
4681#endif
4682
4683/********************************************************************
4684 *		Kmalloc subsystem
4685 *******************************************************************/
4686
4687static int __init setup_slub_min_order(char *str)
4688{
4689	get_option(&str, (int *)&slub_min_order);
4690
4691	return 1;
4692}
4693
4694__setup("slub_min_order=", setup_slub_min_order);
4695
4696static int __init setup_slub_max_order(char *str)
4697{
4698	get_option(&str, (int *)&slub_max_order);
4699	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4700
4701	return 1;
4702}
4703
4704__setup("slub_max_order=", setup_slub_max_order);
4705
4706static int __init setup_slub_min_objects(char *str)
4707{
4708	get_option(&str, (int *)&slub_min_objects);
4709
4710	return 1;
4711}
4712
4713__setup("slub_min_objects=", setup_slub_min_objects);
4714
4715#ifdef CONFIG_HARDENED_USERCOPY
4716/*
4717 * Rejects incorrectly sized objects and objects that are to be copied
4718 * to/from userspace but do not fall entirely within the containing slab
4719 * cache's usercopy region.
4720 *
4721 * Returns NULL if check passes, otherwise const char * to name of cache
4722 * to indicate an error.
4723 */
4724void __check_heap_object(const void *ptr, unsigned long n,
4725			 const struct slab *slab, bool to_user)
4726{
4727	struct kmem_cache *s;
4728	unsigned int offset;
4729	bool is_kfence = is_kfence_address(ptr);
4730
4731	ptr = kasan_reset_tag(ptr);
 
4732
4733	/* Find object and usable object size. */
4734	s = slab->slab_cache;
4735
4736	/* Reject impossible pointers. */
4737	if (ptr < slab_address(slab))
4738		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4739			       to_user, 0, n);
4740
4741	/* Find offset within object. */
4742	if (is_kfence)
4743		offset = ptr - kfence_object_start(ptr);
4744	else
4745		offset = (ptr - slab_address(slab)) % s->size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4746
4747	/* Adjust for redzone and reject if within the redzone. */
4748	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4749		if (offset < s->red_left_pad)
4750			usercopy_abort("SLUB object in left red zone",
4751				       s->name, to_user, offset, n);
4752		offset -= s->red_left_pad;
4753	}
4754
4755	/* Allow address range falling entirely within usercopy region. */
4756	if (offset >= s->useroffset &&
4757	    offset - s->useroffset <= s->usersize &&
4758	    n <= s->useroffset - offset + s->usersize)
4759		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4760
4761	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4762}
4763#endif /* CONFIG_HARDENED_USERCOPY */
 
 
 
 
 
 
 
4764
4765#define SHRINK_PROMOTE_MAX 32
 
 
 
 
 
 
 
 
 
 
 
 
4766
4767/*
4768 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4769 * up most to the head of the partial lists. New allocations will then
4770 * fill those up and thus they can be removed from the partial lists.
 
4771 *
4772 * The slabs with the least items are placed last. This results in them
4773 * being allocated from last increasing the chance that the last objects
4774 * are freed in them.
4775 */
4776static int __kmem_cache_do_shrink(struct kmem_cache *s)
4777{
4778	int node;
4779	int i;
4780	struct kmem_cache_node *n;
4781	struct slab *slab;
4782	struct slab *t;
4783	struct list_head discard;
4784	struct list_head promote[SHRINK_PROMOTE_MAX];
 
4785	unsigned long flags;
4786	int ret = 0;
4787
4788	for_each_kmem_cache_node(s, node, n) {
4789		INIT_LIST_HEAD(&discard);
4790		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4791			INIT_LIST_HEAD(promote + i);
 
 
 
 
 
 
 
 
4792
4793		spin_lock_irqsave(&n->list_lock, flags);
4794
4795		/*
4796		 * Build lists of slabs to discard or promote.
4797		 *
4798		 * Note that concurrent frees may occur while we hold the
4799		 * list_lock. slab->inuse here is the upper limit.
4800		 */
4801		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4802			int free = slab->objects - slab->inuse;
4803
4804			/* Do not reread slab->inuse */
4805			barrier();
4806
4807			/* We do not keep full slabs on the list */
4808			BUG_ON(free <= 0);
4809
4810			if (free == slab->objects) {
4811				list_move(&slab->slab_list, &discard);
4812				n->nr_partial--;
4813				dec_slabs_node(s, node, slab->objects);
4814			} else if (free <= SHRINK_PROMOTE_MAX)
4815				list_move(&slab->slab_list, promote + free - 1);
4816		}
4817
4818		/*
4819		 * Promote the slabs filled up most to the head of the
4820		 * partial list.
4821		 */
4822		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4823			list_splice(promote + i, &n->partial);
4824
4825		spin_unlock_irqrestore(&n->list_lock, flags);
4826
4827		/* Release empty slabs */
4828		list_for_each_entry_safe(slab, t, &discard, slab_list)
4829			free_slab(s, slab);
4830
4831		if (slabs_node(s, node))
4832			ret = 1;
4833	}
4834
4835	return ret;
4836}
4837
4838int __kmem_cache_shrink(struct kmem_cache *s)
4839{
4840	flush_all(s);
4841	return __kmem_cache_do_shrink(s);
4842}
 
4843
4844static int slab_mem_going_offline_callback(void *arg)
4845{
4846	struct kmem_cache *s;
4847
4848	mutex_lock(&slab_mutex);
4849	list_for_each_entry(s, &slab_caches, list) {
4850		flush_all_cpus_locked(s);
4851		__kmem_cache_do_shrink(s);
4852	}
4853	mutex_unlock(&slab_mutex);
4854
4855	return 0;
4856}
4857
4858static void slab_mem_offline_callback(void *arg)
4859{
 
 
4860	struct memory_notify *marg = arg;
4861	int offline_node;
4862
4863	offline_node = marg->status_change_nid_normal;
4864
4865	/*
4866	 * If the node still has available memory. we need kmem_cache_node
4867	 * for it yet.
4868	 */
4869	if (offline_node < 0)
4870		return;
4871
4872	mutex_lock(&slab_mutex);
4873	node_clear(offline_node, slab_nodes);
4874	/*
4875	 * We no longer free kmem_cache_node structures here, as it would be
4876	 * racy with all get_node() users, and infeasible to protect them with
4877	 * slab_mutex.
4878	 */
 
 
 
 
 
 
 
 
 
4879	mutex_unlock(&slab_mutex);
4880}
4881
4882static int slab_mem_going_online_callback(void *arg)
4883{
4884	struct kmem_cache_node *n;
4885	struct kmem_cache *s;
4886	struct memory_notify *marg = arg;
4887	int nid = marg->status_change_nid_normal;
4888	int ret = 0;
4889
4890	/*
4891	 * If the node's memory is already available, then kmem_cache_node is
4892	 * already created. Nothing to do.
4893	 */
4894	if (nid < 0)
4895		return 0;
4896
4897	/*
4898	 * We are bringing a node online. No memory is available yet. We must
4899	 * allocate a kmem_cache_node structure in order to bring the node
4900	 * online.
4901	 */
4902	mutex_lock(&slab_mutex);
4903	list_for_each_entry(s, &slab_caches, list) {
4904		/*
4905		 * The structure may already exist if the node was previously
4906		 * onlined and offlined.
4907		 */
4908		if (get_node(s, nid))
4909			continue;
4910		/*
4911		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4912		 *      since memory is not yet available from the node that
4913		 *      is brought up.
4914		 */
4915		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4916		if (!n) {
4917			ret = -ENOMEM;
4918			goto out;
4919		}
4920		init_kmem_cache_node(n);
4921		s->node[nid] = n;
4922	}
4923	/*
4924	 * Any cache created after this point will also have kmem_cache_node
4925	 * initialized for the new node.
4926	 */
4927	node_set(nid, slab_nodes);
4928out:
4929	mutex_unlock(&slab_mutex);
4930	return ret;
4931}
4932
4933static int slab_memory_callback(struct notifier_block *self,
4934				unsigned long action, void *arg)
4935{
4936	int ret = 0;
4937
4938	switch (action) {
4939	case MEM_GOING_ONLINE:
4940		ret = slab_mem_going_online_callback(arg);
4941		break;
4942	case MEM_GOING_OFFLINE:
4943		ret = slab_mem_going_offline_callback(arg);
4944		break;
4945	case MEM_OFFLINE:
4946	case MEM_CANCEL_ONLINE:
4947		slab_mem_offline_callback(arg);
4948		break;
4949	case MEM_ONLINE:
4950	case MEM_CANCEL_OFFLINE:
4951		break;
4952	}
4953	if (ret)
4954		ret = notifier_from_errno(ret);
4955	else
4956		ret = NOTIFY_OK;
4957	return ret;
4958}
4959
 
 
 
 
 
4960/********************************************************************
4961 *			Basic setup of slabs
4962 *******************************************************************/
4963
4964/*
4965 * Used for early kmem_cache structures that were allocated using
4966 * the page allocator. Allocate them properly then fix up the pointers
4967 * that may be pointing to the wrong kmem_cache structure.
4968 */
4969
4970static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4971{
4972	int node;
4973	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4974	struct kmem_cache_node *n;
4975
4976	memcpy(s, static_cache, kmem_cache->object_size);
4977
4978	/*
4979	 * This runs very early, and only the boot processor is supposed to be
4980	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4981	 * IPIs around.
4982	 */
4983	__flush_cpu_slab(s, smp_processor_id());
4984	for_each_kmem_cache_node(s, node, n) {
4985		struct slab *p;
4986
4987		list_for_each_entry(p, &n->partial, slab_list)
4988			p->slab_cache = s;
 
 
4989
4990#ifdef CONFIG_SLUB_DEBUG
4991		list_for_each_entry(p, &n->full, slab_list)
4992			p->slab_cache = s;
4993#endif
 
4994	}
4995	list_add(&s->list, &slab_caches);
4996	return s;
4997}
4998
4999void __init kmem_cache_init(void)
5000{
5001	static __initdata struct kmem_cache boot_kmem_cache,
5002		boot_kmem_cache_node;
5003	int node;
5004
5005	if (debug_guardpage_minorder())
5006		slub_max_order = 0;
5007
5008	/* Print slub debugging pointers without hashing */
5009	if (__slub_debug_enabled())
5010		no_hash_pointers_enable(NULL);
5011
5012	kmem_cache_node = &boot_kmem_cache_node;
5013	kmem_cache = &boot_kmem_cache;
5014
5015	/*
5016	 * Initialize the nodemask for which we will allocate per node
5017	 * structures. Here we don't need taking slab_mutex yet.
5018	 */
5019	for_each_node_state(node, N_NORMAL_MEMORY)
5020		node_set(node, slab_nodes);
5021
5022	create_boot_cache(kmem_cache_node, "kmem_cache_node",
5023		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
5024
5025	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5026
5027	/* Able to allocate the per node structures */
5028	slab_state = PARTIAL;
5029
5030	create_boot_cache(kmem_cache, "kmem_cache",
5031			offsetof(struct kmem_cache, node) +
5032				nr_node_ids * sizeof(struct kmem_cache_node *),
5033		       SLAB_HWCACHE_ALIGN, 0, 0);
5034
5035	kmem_cache = bootstrap(&boot_kmem_cache);
 
 
 
 
 
 
5036	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5037
5038	/* Now we can use the kmem_cache to allocate kmalloc slabs */
5039	setup_kmalloc_cache_index_table();
5040	create_kmalloc_caches(0);
5041
5042	/* Setup random freelists for each cache */
5043	init_freelist_randomization();
5044
5045	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5046				  slub_cpu_dead);
5047
5048	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
 
 
5049		cache_line_size(),
5050		slub_min_order, slub_max_order, slub_min_objects,
5051		nr_cpu_ids, nr_node_ids);
5052}
5053
5054void __init kmem_cache_init_late(void)
5055{
5056#ifndef CONFIG_SLUB_TINY
5057	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5058	WARN_ON(!flushwq);
5059#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5060}
5061
5062struct kmem_cache *
5063__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5064		   slab_flags_t flags, void (*ctor)(void *))
5065{
5066	struct kmem_cache *s;
5067
5068	s = find_mergeable(size, align, flags, name, ctor);
5069	if (s) {
5070		if (sysfs_slab_alias(s, name))
5071			return NULL;
5072
5073		s->refcount++;
5074
5075		/*
5076		 * Adjust the object sizes so that we clear
5077		 * the complete object on kzalloc.
5078		 */
5079		s->object_size = max(s->object_size, size);
5080		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5081	}
5082
5083	return s;
5084}
5085
5086int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5087{
5088	int err;
5089
5090	err = kmem_cache_open(s, flags);
5091	if (err)
5092		return err;
5093
5094	/* Mutex is not taken during early boot */
5095	if (slab_state <= UP)
5096		return 0;
5097
 
5098	err = sysfs_slab_add(s);
5099	if (err) {
5100		__kmem_cache_release(s);
5101		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5102	}
 
 
5103
5104	if (s->flags & SLAB_STORE_USER)
5105		debugfs_slab_add(s);
 
5106
5107	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5108}
 
5109
5110#ifdef SLAB_SUPPORTS_SYSFS
5111static int count_inuse(struct slab *slab)
5112{
5113	return slab->inuse;
5114}
5115
5116static int count_total(struct slab *slab)
5117{
5118	return slab->objects;
5119}
5120#endif
5121
5122#ifdef CONFIG_SLUB_DEBUG
5123static void validate_slab(struct kmem_cache *s, struct slab *slab,
5124			  unsigned long *obj_map)
5125{
5126	void *p;
5127	void *addr = slab_address(slab);
5128
5129	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5130		return;
 
5131
5132	/* Now we know that a valid freelist exists */
5133	__fill_map(obj_map, s, slab);
5134	for_each_object(p, s, addr, slab->objects) {
5135		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5136			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5137
5138		if (!check_object(s, slab, p, val))
5139			break;
 
 
 
5140	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5141}
5142
5143static int validate_slab_node(struct kmem_cache *s,
5144		struct kmem_cache_node *n, unsigned long *obj_map)
5145{
5146	unsigned long count = 0;
5147	struct slab *slab;
5148	unsigned long flags;
5149
5150	spin_lock_irqsave(&n->list_lock, flags);
5151
5152	list_for_each_entry(slab, &n->partial, slab_list) {
5153		validate_slab(s, slab, obj_map);
5154		count++;
5155	}
5156	if (count != n->nr_partial) {
5157		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5158		       s->name, count, n->nr_partial);
5159		slab_add_kunit_errors();
5160	}
5161
5162	if (!(s->flags & SLAB_STORE_USER))
5163		goto out;
5164
5165	list_for_each_entry(slab, &n->full, slab_list) {
5166		validate_slab(s, slab, obj_map);
5167		count++;
5168	}
5169	if (count != atomic_long_read(&n->nr_slabs)) {
5170		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5171		       s->name, count, atomic_long_read(&n->nr_slabs));
5172		slab_add_kunit_errors();
5173	}
5174
5175out:
5176	spin_unlock_irqrestore(&n->list_lock, flags);
5177	return count;
5178}
5179
5180long validate_slab_cache(struct kmem_cache *s)
5181{
5182	int node;
5183	unsigned long count = 0;
5184	struct kmem_cache_node *n;
5185	unsigned long *obj_map;
5186
5187	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5188	if (!obj_map)
5189		return -ENOMEM;
5190
5191	flush_all(s);
5192	for_each_kmem_cache_node(s, node, n)
5193		count += validate_slab_node(s, n, obj_map);
5194
5195	bitmap_free(obj_map);
5196
 
 
 
5197	return count;
5198}
5199EXPORT_SYMBOL(validate_slab_cache);
5200
5201#ifdef CONFIG_DEBUG_FS
5202/*
5203 * Generate lists of code addresses where slabcache objects are allocated
5204 * and freed.
5205 */
5206
5207struct location {
5208	depot_stack_handle_t handle;
5209	unsigned long count;
5210	unsigned long addr;
5211	unsigned long waste;
5212	long long sum_time;
5213	long min_time;
5214	long max_time;
5215	long min_pid;
5216	long max_pid;
5217	DECLARE_BITMAP(cpus, NR_CPUS);
5218	nodemask_t nodes;
5219};
5220
5221struct loc_track {
5222	unsigned long max;
5223	unsigned long count;
5224	struct location *loc;
5225	loff_t idx;
5226};
5227
5228static struct dentry *slab_debugfs_root;
5229
5230static void free_loc_track(struct loc_track *t)
5231{
5232	if (t->max)
5233		free_pages((unsigned long)t->loc,
5234			get_order(sizeof(struct location) * t->max));
5235}
5236
5237static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5238{
5239	struct location *l;
5240	int order;
5241
5242	order = get_order(sizeof(struct location) * max);
5243
5244	l = (void *)__get_free_pages(flags, order);
5245	if (!l)
5246		return 0;
5247
5248	if (t->count) {
5249		memcpy(l, t->loc, sizeof(struct location) * t->count);
5250		free_loc_track(t);
5251	}
5252	t->max = max;
5253	t->loc = l;
5254	return 1;
5255}
5256
5257static int add_location(struct loc_track *t, struct kmem_cache *s,
5258				const struct track *track,
5259				unsigned int orig_size)
5260{
5261	long start, end, pos;
5262	struct location *l;
5263	unsigned long caddr, chandle, cwaste;
5264	unsigned long age = jiffies - track->when;
5265	depot_stack_handle_t handle = 0;
5266	unsigned int waste = s->object_size - orig_size;
5267
5268#ifdef CONFIG_STACKDEPOT
5269	handle = READ_ONCE(track->handle);
5270#endif
5271	start = -1;
5272	end = t->count;
5273
5274	for ( ; ; ) {
5275		pos = start + (end - start + 1) / 2;
5276
5277		/*
5278		 * There is nothing at "end". If we end up there
5279		 * we need to add something to before end.
5280		 */
5281		if (pos == end)
5282			break;
5283
5284		l = &t->loc[pos];
5285		caddr = l->addr;
5286		chandle = l->handle;
5287		cwaste = l->waste;
5288		if ((track->addr == caddr) && (handle == chandle) &&
5289			(waste == cwaste)) {
5290
 
5291			l->count++;
5292			if (track->when) {
5293				l->sum_time += age;
5294				if (age < l->min_time)
5295					l->min_time = age;
5296				if (age > l->max_time)
5297					l->max_time = age;
5298
5299				if (track->pid < l->min_pid)
5300					l->min_pid = track->pid;
5301				if (track->pid > l->max_pid)
5302					l->max_pid = track->pid;
5303
5304				cpumask_set_cpu(track->cpu,
5305						to_cpumask(l->cpus));
5306			}
5307			node_set(page_to_nid(virt_to_page(track)), l->nodes);
5308			return 1;
5309		}
5310
5311		if (track->addr < caddr)
5312			end = pos;
5313		else if (track->addr == caddr && handle < chandle)
5314			end = pos;
5315		else if (track->addr == caddr && handle == chandle &&
5316				waste < cwaste)
5317			end = pos;
5318		else
5319			start = pos;
5320	}
5321
5322	/*
5323	 * Not found. Insert new tracking element.
5324	 */
5325	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5326		return 0;
5327
5328	l = t->loc + pos;
5329	if (pos < t->count)
5330		memmove(l + 1, l,
5331			(t->count - pos) * sizeof(struct location));
5332	t->count++;
5333	l->count = 1;
5334	l->addr = track->addr;
5335	l->sum_time = age;
5336	l->min_time = age;
5337	l->max_time = age;
5338	l->min_pid = track->pid;
5339	l->max_pid = track->pid;
5340	l->handle = handle;
5341	l->waste = waste;
5342	cpumask_clear(to_cpumask(l->cpus));
5343	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5344	nodes_clear(l->nodes);
5345	node_set(page_to_nid(virt_to_page(track)), l->nodes);
5346	return 1;
5347}
5348
5349static void process_slab(struct loc_track *t, struct kmem_cache *s,
5350		struct slab *slab, enum track_item alloc,
5351		unsigned long *obj_map)
5352{
5353	void *addr = slab_address(slab);
5354	bool is_alloc = (alloc == TRACK_ALLOC);
5355	void *p;
5356
5357	__fill_map(obj_map, s, slab);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5358
5359	for_each_object(p, s, addr, slab->objects)
5360		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5361			add_location(t, s, get_track(s, p, alloc),
5362				     is_alloc ? get_orig_size(s, p) :
5363						s->object_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5364}
5365#endif  /* CONFIG_DEBUG_FS   */
5366#endif	/* CONFIG_SLUB_DEBUG */
 
 
 
5367
5368#ifdef SLAB_SUPPORTS_SYSFS
5369enum slab_stat_type {
5370	SL_ALL,			/* All slabs */
5371	SL_PARTIAL,		/* Only partially allocated slabs */
5372	SL_CPU,			/* Only slabs used for cpu caches */
5373	SL_OBJECTS,		/* Determine allocated objects not slabs */
5374	SL_TOTAL		/* Determine object capacity not slabs */
5375};
5376
5377#define SO_ALL		(1 << SL_ALL)
5378#define SO_PARTIAL	(1 << SL_PARTIAL)
5379#define SO_CPU		(1 << SL_CPU)
5380#define SO_OBJECTS	(1 << SL_OBJECTS)
5381#define SO_TOTAL	(1 << SL_TOTAL)
5382
5383static ssize_t show_slab_objects(struct kmem_cache *s,
5384				 char *buf, unsigned long flags)
5385{
5386	unsigned long total = 0;
5387	int node;
5388	int x;
5389	unsigned long *nodes;
5390	int len = 0;
5391
5392	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5393	if (!nodes)
5394		return -ENOMEM;
5395
5396	if (flags & SO_CPU) {
5397		int cpu;
5398
5399		for_each_possible_cpu(cpu) {
5400			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5401							       cpu);
5402			int node;
5403			struct slab *slab;
5404
5405			slab = READ_ONCE(c->slab);
5406			if (!slab)
5407				continue;
5408
5409			node = slab_nid(slab);
5410			if (flags & SO_TOTAL)
5411				x = slab->objects;
5412			else if (flags & SO_OBJECTS)
5413				x = slab->inuse;
5414			else
5415				x = 1;
5416
5417			total += x;
5418			nodes[node] += x;
5419
5420#ifdef CONFIG_SLUB_CPU_PARTIAL
5421			slab = slub_percpu_partial_read_once(c);
5422			if (slab) {
5423				node = slab_nid(slab);
5424				if (flags & SO_TOTAL)
5425					WARN_ON_ONCE(1);
5426				else if (flags & SO_OBJECTS)
5427					WARN_ON_ONCE(1);
5428				else
5429					x = slab->slabs;
5430				total += x;
5431				nodes[node] += x;
5432			}
5433#endif
5434		}
5435	}
5436
5437	/*
5438	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5439	 * already held which will conflict with an existing lock order:
5440	 *
5441	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5442	 *
5443	 * We don't really need mem_hotplug_lock (to hold off
5444	 * slab_mem_going_offline_callback) here because slab's memory hot
5445	 * unplug code doesn't destroy the kmem_cache->node[] data.
5446	 */
5447
5448#ifdef CONFIG_SLUB_DEBUG
5449	if (flags & SO_ALL) {
5450		struct kmem_cache_node *n;
5451
5452		for_each_kmem_cache_node(s, node, n) {
5453
5454			if (flags & SO_TOTAL)
5455				x = atomic_long_read(&n->total_objects);
5456			else if (flags & SO_OBJECTS)
5457				x = atomic_long_read(&n->total_objects) -
5458					count_partial(n, count_free);
5459			else
5460				x = atomic_long_read(&n->nr_slabs);
5461			total += x;
5462			nodes[node] += x;
5463		}
5464
5465	} else
5466#endif
5467	if (flags & SO_PARTIAL) {
5468		struct kmem_cache_node *n;
 
5469
5470		for_each_kmem_cache_node(s, node, n) {
5471			if (flags & SO_TOTAL)
5472				x = count_partial(n, count_total);
5473			else if (flags & SO_OBJECTS)
5474				x = count_partial(n, count_inuse);
5475			else
5476				x = n->nr_partial;
5477			total += x;
5478			nodes[node] += x;
5479		}
5480	}
5481
5482	len += sysfs_emit_at(buf, len, "%lu", total);
5483#ifdef CONFIG_NUMA
5484	for (node = 0; node < nr_node_ids; node++) {
5485		if (nodes[node])
5486			len += sysfs_emit_at(buf, len, " N%d=%lu",
5487					     node, nodes[node]);
5488	}
5489#endif
5490	len += sysfs_emit_at(buf, len, "\n");
5491	kfree(nodes);
 
 
5492
5493	return len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5494}
 
5495
5496#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5497#define to_slab(n) container_of(n, struct kmem_cache, kobj)
5498
5499struct slab_attribute {
5500	struct attribute attr;
5501	ssize_t (*show)(struct kmem_cache *s, char *buf);
5502	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5503};
5504
5505#define SLAB_ATTR_RO(_name) \
5506	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
 
5507
5508#define SLAB_ATTR(_name) \
5509	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
 
5510
5511static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5512{
5513	return sysfs_emit(buf, "%u\n", s->size);
5514}
5515SLAB_ATTR_RO(slab_size);
5516
5517static ssize_t align_show(struct kmem_cache *s, char *buf)
5518{
5519	return sysfs_emit(buf, "%u\n", s->align);
5520}
5521SLAB_ATTR_RO(align);
5522
5523static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5524{
5525	return sysfs_emit(buf, "%u\n", s->object_size);
5526}
5527SLAB_ATTR_RO(object_size);
5528
5529static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5530{
5531	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5532}
5533SLAB_ATTR_RO(objs_per_slab);
5534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5535static ssize_t order_show(struct kmem_cache *s, char *buf)
5536{
5537	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5538}
5539SLAB_ATTR_RO(order);
5540
5541static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5542{
5543	return sysfs_emit(buf, "%lu\n", s->min_partial);
5544}
5545
5546static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5547				 size_t length)
5548{
5549	unsigned long min;
5550	int err;
5551
5552	err = kstrtoul(buf, 10, &min);
5553	if (err)
5554		return err;
5555
5556	s->min_partial = min;
5557	return length;
5558}
5559SLAB_ATTR(min_partial);
5560
5561static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5562{
5563	unsigned int nr_partial = 0;
5564#ifdef CONFIG_SLUB_CPU_PARTIAL
5565	nr_partial = s->cpu_partial;
5566#endif
5567
5568	return sysfs_emit(buf, "%u\n", nr_partial);
5569}
5570
5571static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5572				 size_t length)
5573{
5574	unsigned int objects;
5575	int err;
5576
5577	err = kstrtouint(buf, 10, &objects);
5578	if (err)
5579		return err;
5580	if (objects && !kmem_cache_has_cpu_partial(s))
5581		return -EINVAL;
5582
5583	slub_set_cpu_partial(s, objects);
5584	flush_all(s);
5585	return length;
5586}
5587SLAB_ATTR(cpu_partial);
5588
5589static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5590{
5591	if (!s->ctor)
5592		return 0;
5593	return sysfs_emit(buf, "%pS\n", s->ctor);
5594}
5595SLAB_ATTR_RO(ctor);
5596
5597static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5598{
5599	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5600}
5601SLAB_ATTR_RO(aliases);
5602
5603static ssize_t partial_show(struct kmem_cache *s, char *buf)
5604{
5605	return show_slab_objects(s, buf, SO_PARTIAL);
5606}
5607SLAB_ATTR_RO(partial);
5608
5609static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5610{
5611	return show_slab_objects(s, buf, SO_CPU);
5612}
5613SLAB_ATTR_RO(cpu_slabs);
5614
5615static ssize_t objects_show(struct kmem_cache *s, char *buf)
5616{
5617	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5618}
5619SLAB_ATTR_RO(objects);
5620
5621static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5622{
5623	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5624}
5625SLAB_ATTR_RO(objects_partial);
5626
5627static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5628{
5629	int objects = 0;
5630	int slabs = 0;
5631	int cpu __maybe_unused;
5632	int len = 0;
5633
5634#ifdef CONFIG_SLUB_CPU_PARTIAL
5635	for_each_online_cpu(cpu) {
5636		struct slab *slab;
5637
5638		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5639
5640		if (slab)
5641			slabs += slab->slabs;
 
 
5642	}
5643#endif
5644
5645	/* Approximate half-full slabs, see slub_set_cpu_partial() */
5646	objects = (slabs * oo_objects(s->oo)) / 2;
5647	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
5648
5649#if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP)
5650	for_each_online_cpu(cpu) {
5651		struct slab *slab;
5652
5653		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5654		if (slab) {
5655			slabs = READ_ONCE(slab->slabs);
5656			objects = (slabs * oo_objects(s->oo)) / 2;
5657			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5658					     cpu, objects, slabs);
5659		}
5660	}
5661#endif
5662	len += sysfs_emit_at(buf, len, "\n");
5663
5664	return len;
5665}
5666SLAB_ATTR_RO(slabs_cpu_partial);
5667
5668static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5669{
5670	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
 
 
 
 
 
 
 
 
 
5671}
5672SLAB_ATTR_RO(reclaim_account);
5673
5674static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5675{
5676	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5677}
5678SLAB_ATTR_RO(hwcache_align);
5679
5680#ifdef CONFIG_ZONE_DMA
5681static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5682{
5683	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5684}
5685SLAB_ATTR_RO(cache_dma);
5686#endif
5687
5688#ifdef CONFIG_HARDENED_USERCOPY
5689static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5690{
5691	return sysfs_emit(buf, "%u\n", s->usersize);
5692}
5693SLAB_ATTR_RO(usersize);
5694#endif
5695
5696static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5697{
5698	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5699}
5700SLAB_ATTR_RO(destroy_by_rcu);
5701
5702#ifdef CONFIG_SLUB_DEBUG
5703static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5704{
5705	return show_slab_objects(s, buf, SO_ALL);
5706}
5707SLAB_ATTR_RO(slabs);
5708
5709static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5710{
5711	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5712}
5713SLAB_ATTR_RO(total_objects);
5714
5715static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5716{
5717	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
 
 
 
 
 
 
 
 
 
 
 
5718}
5719SLAB_ATTR_RO(sanity_checks);
5720
5721static ssize_t trace_show(struct kmem_cache *s, char *buf)
5722{
5723	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5724}
5725SLAB_ATTR_RO(trace);
 
 
 
 
 
 
 
 
 
 
 
5726
5727static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5728{
5729	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5730}
5731
5732SLAB_ATTR_RO(red_zone);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5733
5734static ssize_t poison_show(struct kmem_cache *s, char *buf)
5735{
5736	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5737}
5738
5739SLAB_ATTR_RO(poison);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5740
5741static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5742{
5743	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5744}
5745
5746SLAB_ATTR_RO(store_user);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5747
5748static ssize_t validate_show(struct kmem_cache *s, char *buf)
5749{
5750	return 0;
5751}
5752
5753static ssize_t validate_store(struct kmem_cache *s,
5754			const char *buf, size_t length)
5755{
5756	int ret = -EINVAL;
5757
5758	if (buf[0] == '1' && kmem_cache_debug(s)) {
5759		ret = validate_slab_cache(s);
5760		if (ret >= 0)
5761			ret = length;
5762	}
5763	return ret;
5764}
5765SLAB_ATTR(validate);
5766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5767#endif /* CONFIG_SLUB_DEBUG */
5768
5769#ifdef CONFIG_FAILSLAB
5770static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5771{
5772	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5773}
5774
5775static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5776				size_t length)
5777{
5778	if (s->refcount > 1)
5779		return -EINVAL;
5780
5781	if (buf[0] == '1')
5782		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
5783	else
5784		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
5785
5786	return length;
5787}
5788SLAB_ATTR(failslab);
5789#endif
5790
5791static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5792{
5793	return 0;
5794}
5795
5796static ssize_t shrink_store(struct kmem_cache *s,
5797			const char *buf, size_t length)
5798{
5799	if (buf[0] == '1')
5800		kmem_cache_shrink(s);
5801	else
 
 
 
5802		return -EINVAL;
5803	return length;
5804}
5805SLAB_ATTR(shrink);
5806
5807#ifdef CONFIG_NUMA
5808static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5809{
5810	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5811}
5812
5813static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5814				const char *buf, size_t length)
5815{
5816	unsigned int ratio;
5817	int err;
5818
5819	err = kstrtouint(buf, 10, &ratio);
5820	if (err)
5821		return err;
5822	if (ratio > 100)
5823		return -ERANGE;
5824
5825	s->remote_node_defrag_ratio = ratio * 10;
 
5826
5827	return length;
5828}
5829SLAB_ATTR(remote_node_defrag_ratio);
5830#endif
5831
5832#ifdef CONFIG_SLUB_STATS
5833static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5834{
5835	unsigned long sum  = 0;
5836	int cpu;
5837	int len = 0;
5838	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5839
5840	if (!data)
5841		return -ENOMEM;
5842
5843	for_each_online_cpu(cpu) {
5844		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5845
5846		data[cpu] = x;
5847		sum += x;
5848	}
5849
5850	len += sysfs_emit_at(buf, len, "%lu", sum);
5851
5852#ifdef CONFIG_SMP
5853	for_each_online_cpu(cpu) {
5854		if (data[cpu])
5855			len += sysfs_emit_at(buf, len, " C%d=%u",
5856					     cpu, data[cpu]);
5857	}
5858#endif
5859	kfree(data);
5860	len += sysfs_emit_at(buf, len, "\n");
5861
5862	return len;
5863}
5864
5865static void clear_stat(struct kmem_cache *s, enum stat_item si)
5866{
5867	int cpu;
5868
5869	for_each_online_cpu(cpu)
5870		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5871}
5872
5873#define STAT_ATTR(si, text) 					\
5874static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5875{								\
5876	return show_stat(s, buf, si);				\
5877}								\
5878static ssize_t text##_store(struct kmem_cache *s,		\
5879				const char *buf, size_t length)	\
5880{								\
5881	if (buf[0] != '0')					\
5882		return -EINVAL;					\
5883	clear_stat(s, si);					\
5884	return length;						\
5885}								\
5886SLAB_ATTR(text);						\
5887
5888STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5889STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5890STAT_ATTR(FREE_FASTPATH, free_fastpath);
5891STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5892STAT_ATTR(FREE_FROZEN, free_frozen);
5893STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5894STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5895STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5896STAT_ATTR(ALLOC_SLAB, alloc_slab);
5897STAT_ATTR(ALLOC_REFILL, alloc_refill);
5898STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5899STAT_ATTR(FREE_SLAB, free_slab);
5900STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5901STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5902STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5903STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5904STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5905STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5906STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5907STAT_ATTR(ORDER_FALLBACK, order_fallback);
5908STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5909STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5910STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5911STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5912STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5913STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5914#endif	/* CONFIG_SLUB_STATS */
5915
5916#ifdef CONFIG_KFENCE
5917static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
5918{
5919	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
5920}
5921
5922static ssize_t skip_kfence_store(struct kmem_cache *s,
5923			const char *buf, size_t length)
5924{
5925	int ret = length;
5926
5927	if (buf[0] == '0')
5928		s->flags &= ~SLAB_SKIP_KFENCE;
5929	else if (buf[0] == '1')
5930		s->flags |= SLAB_SKIP_KFENCE;
5931	else
5932		ret = -EINVAL;
5933
5934	return ret;
5935}
5936SLAB_ATTR(skip_kfence);
5937#endif
5938
5939static struct attribute *slab_attrs[] = {
5940	&slab_size_attr.attr,
5941	&object_size_attr.attr,
5942	&objs_per_slab_attr.attr,
5943	&order_attr.attr,
5944	&min_partial_attr.attr,
5945	&cpu_partial_attr.attr,
5946	&objects_attr.attr,
5947	&objects_partial_attr.attr,
5948	&partial_attr.attr,
5949	&cpu_slabs_attr.attr,
5950	&ctor_attr.attr,
5951	&aliases_attr.attr,
5952	&align_attr.attr,
5953	&hwcache_align_attr.attr,
5954	&reclaim_account_attr.attr,
5955	&destroy_by_rcu_attr.attr,
5956	&shrink_attr.attr,
 
5957	&slabs_cpu_partial_attr.attr,
5958#ifdef CONFIG_SLUB_DEBUG
5959	&total_objects_attr.attr,
5960	&slabs_attr.attr,
5961	&sanity_checks_attr.attr,
5962	&trace_attr.attr,
5963	&red_zone_attr.attr,
5964	&poison_attr.attr,
5965	&store_user_attr.attr,
5966	&validate_attr.attr,
 
 
5967#endif
5968#ifdef CONFIG_ZONE_DMA
5969	&cache_dma_attr.attr,
5970#endif
5971#ifdef CONFIG_NUMA
5972	&remote_node_defrag_ratio_attr.attr,
5973#endif
5974#ifdef CONFIG_SLUB_STATS
5975	&alloc_fastpath_attr.attr,
5976	&alloc_slowpath_attr.attr,
5977	&free_fastpath_attr.attr,
5978	&free_slowpath_attr.attr,
5979	&free_frozen_attr.attr,
5980	&free_add_partial_attr.attr,
5981	&free_remove_partial_attr.attr,
5982	&alloc_from_partial_attr.attr,
5983	&alloc_slab_attr.attr,
5984	&alloc_refill_attr.attr,
5985	&alloc_node_mismatch_attr.attr,
5986	&free_slab_attr.attr,
5987	&cpuslab_flush_attr.attr,
5988	&deactivate_full_attr.attr,
5989	&deactivate_empty_attr.attr,
5990	&deactivate_to_head_attr.attr,
5991	&deactivate_to_tail_attr.attr,
5992	&deactivate_remote_frees_attr.attr,
5993	&deactivate_bypass_attr.attr,
5994	&order_fallback_attr.attr,
5995	&cmpxchg_double_fail_attr.attr,
5996	&cmpxchg_double_cpu_fail_attr.attr,
5997	&cpu_partial_alloc_attr.attr,
5998	&cpu_partial_free_attr.attr,
5999	&cpu_partial_node_attr.attr,
6000	&cpu_partial_drain_attr.attr,
6001#endif
6002#ifdef CONFIG_FAILSLAB
6003	&failslab_attr.attr,
6004#endif
6005#ifdef CONFIG_HARDENED_USERCOPY
6006	&usersize_attr.attr,
6007#endif
6008#ifdef CONFIG_KFENCE
6009	&skip_kfence_attr.attr,
6010#endif
6011
6012	NULL
6013};
6014
6015static const struct attribute_group slab_attr_group = {
6016	.attrs = slab_attrs,
6017};
6018
6019static ssize_t slab_attr_show(struct kobject *kobj,
6020				struct attribute *attr,
6021				char *buf)
6022{
6023	struct slab_attribute *attribute;
6024	struct kmem_cache *s;
 
6025
6026	attribute = to_slab_attr(attr);
6027	s = to_slab(kobj);
6028
6029	if (!attribute->show)
6030		return -EIO;
6031
6032	return attribute->show(s, buf);
 
 
6033}
6034
6035static ssize_t slab_attr_store(struct kobject *kobj,
6036				struct attribute *attr,
6037				const char *buf, size_t len)
6038{
6039	struct slab_attribute *attribute;
6040	struct kmem_cache *s;
 
6041
6042	attribute = to_slab_attr(attr);
6043	s = to_slab(kobj);
6044
6045	if (!attribute->store)
6046		return -EIO;
6047
6048	return attribute->store(s, buf, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6049}
6050
6051static void kmem_cache_release(struct kobject *k)
6052{
6053	slab_kmem_cache_release(to_slab(k));
6054}
6055
6056static const struct sysfs_ops slab_sysfs_ops = {
6057	.show = slab_attr_show,
6058	.store = slab_attr_store,
6059};
6060
6061static struct kobj_type slab_ktype = {
6062	.sysfs_ops = &slab_sysfs_ops,
6063	.release = kmem_cache_release,
6064};
6065
 
 
 
 
 
 
 
 
 
 
 
 
 
6066static struct kset *slab_kset;
6067
6068static inline struct kset *cache_kset(struct kmem_cache *s)
6069{
 
 
 
 
6070	return slab_kset;
6071}
6072
6073#define ID_STR_LENGTH 32
6074
6075/* Create a unique string id for a slab cache:
6076 *
6077 * Format	:[flags-]size
6078 */
6079static char *create_unique_id(struct kmem_cache *s)
6080{
6081	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6082	char *p = name;
6083
6084	if (!name)
6085		return ERR_PTR(-ENOMEM);
6086
6087	*p++ = ':';
6088	/*
6089	 * First flags affecting slabcache operations. We will only
6090	 * get here for aliasable slabs so we do not need to support
6091	 * too many flags. The flags here must cover all flags that
6092	 * are matched during merging to guarantee that the id is
6093	 * unique.
6094	 */
6095	if (s->flags & SLAB_CACHE_DMA)
6096		*p++ = 'd';
6097	if (s->flags & SLAB_CACHE_DMA32)
6098		*p++ = 'D';
6099	if (s->flags & SLAB_RECLAIM_ACCOUNT)
6100		*p++ = 'a';
6101	if (s->flags & SLAB_CONSISTENCY_CHECKS)
6102		*p++ = 'F';
6103	if (s->flags & SLAB_ACCOUNT)
6104		*p++ = 'A';
6105	if (p != name + 1)
6106		*p++ = '-';
6107	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6108
6109	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6110		kfree(name);
6111		return ERR_PTR(-EINVAL);
6112	}
6113	kmsan_unpoison_memory(name, p - name);
 
 
6114	return name;
6115}
6116
6117static int sysfs_slab_add(struct kmem_cache *s)
6118{
6119	int err;
6120	const char *name;
6121	struct kset *kset = cache_kset(s);
6122	int unmergeable = slab_unmergeable(s);
6123
6124	if (!unmergeable && disable_higher_order_debug &&
6125			(slub_debug & DEBUG_METADATA_FLAGS))
6126		unmergeable = 1;
6127
6128	if (unmergeable) {
6129		/*
6130		 * Slabcache can never be merged so we can use the name proper.
6131		 * This is typically the case for debug situations. In that
6132		 * case we can catch duplicate names easily.
6133		 */
6134		sysfs_remove_link(&slab_kset->kobj, s->name);
6135		name = s->name;
6136	} else {
6137		/*
6138		 * Create a unique name for the slab as a target
6139		 * for the symlinks.
6140		 */
6141		name = create_unique_id(s);
6142		if (IS_ERR(name))
6143			return PTR_ERR(name);
6144	}
6145
6146	s->kobj.kset = kset;
6147	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6148	if (err)
6149		goto out;
6150
6151	err = sysfs_create_group(&s->kobj, &slab_attr_group);
6152	if (err)
6153		goto out_del_kobj;
6154
 
 
 
 
 
 
 
 
 
 
 
6155	if (!unmergeable) {
6156		/* Setup first alias */
6157		sysfs_slab_alias(s, s->name);
6158	}
6159out:
6160	if (!unmergeable)
6161		kfree(name);
6162	return err;
6163out_del_kobj:
6164	kobject_del(&s->kobj);
 
 
6165	goto out;
6166}
6167
6168void sysfs_slab_unlink(struct kmem_cache *s)
6169{
6170	if (slab_state >= FULL)
6171		kobject_del(&s->kobj);
6172}
 
 
 
6173
6174void sysfs_slab_release(struct kmem_cache *s)
6175{
6176	if (slab_state >= FULL)
6177		kobject_put(&s->kobj);
 
 
6178}
6179
6180/*
6181 * Need to buffer aliases during bootup until sysfs becomes
6182 * available lest we lose that information.
6183 */
6184struct saved_alias {
6185	struct kmem_cache *s;
6186	const char *name;
6187	struct saved_alias *next;
6188};
6189
6190static struct saved_alias *alias_list;
6191
6192static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6193{
6194	struct saved_alias *al;
6195
6196	if (slab_state == FULL) {
6197		/*
6198		 * If we have a leftover link then remove it.
6199		 */
6200		sysfs_remove_link(&slab_kset->kobj, name);
6201		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6202	}
6203
6204	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6205	if (!al)
6206		return -ENOMEM;
6207
6208	al->s = s;
6209	al->name = name;
6210	al->next = alias_list;
6211	alias_list = al;
6212	kmsan_unpoison_memory(al, sizeof(*al));
6213	return 0;
6214}
6215
6216static int __init slab_sysfs_init(void)
6217{
6218	struct kmem_cache *s;
6219	int err;
6220
6221	mutex_lock(&slab_mutex);
6222
6223	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6224	if (!slab_kset) {
6225		mutex_unlock(&slab_mutex);
6226		pr_err("Cannot register slab subsystem.\n");
6227		return -ENOSYS;
6228	}
6229
6230	slab_state = FULL;
6231
6232	list_for_each_entry(s, &slab_caches, list) {
6233		err = sysfs_slab_add(s);
6234		if (err)
6235			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6236			       s->name);
6237	}
6238
6239	while (alias_list) {
6240		struct saved_alias *al = alias_list;
6241
6242		alias_list = alias_list->next;
6243		err = sysfs_slab_alias(al->s, al->name);
6244		if (err)
6245			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6246			       al->name);
6247		kfree(al);
6248	}
6249
6250	mutex_unlock(&slab_mutex);
 
6251	return 0;
6252}
6253late_initcall(slab_sysfs_init);
6254#endif /* SLAB_SUPPORTS_SYSFS */
6255
6256#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6257static int slab_debugfs_show(struct seq_file *seq, void *v)
6258{
6259	struct loc_track *t = seq->private;
6260	struct location *l;
6261	unsigned long idx;
6262
6263	idx = (unsigned long) t->idx;
6264	if (idx < t->count) {
6265		l = &t->loc[idx];
6266
6267		seq_printf(seq, "%7ld ", l->count);
6268
6269		if (l->addr)
6270			seq_printf(seq, "%pS", (void *)l->addr);
6271		else
6272			seq_puts(seq, "<not-available>");
6273
6274		if (l->waste)
6275			seq_printf(seq, " waste=%lu/%lu",
6276				l->count * l->waste, l->waste);
6277
6278		if (l->sum_time != l->min_time) {
6279			seq_printf(seq, " age=%ld/%llu/%ld",
6280				l->min_time, div_u64(l->sum_time, l->count),
6281				l->max_time);
6282		} else
6283			seq_printf(seq, " age=%ld", l->min_time);
6284
6285		if (l->min_pid != l->max_pid)
6286			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6287		else
6288			seq_printf(seq, " pid=%ld",
6289				l->min_pid);
6290
6291		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6292			seq_printf(seq, " cpus=%*pbl",
6293				 cpumask_pr_args(to_cpumask(l->cpus)));
6294
6295		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6296			seq_printf(seq, " nodes=%*pbl",
6297				 nodemask_pr_args(&l->nodes));
6298
6299#ifdef CONFIG_STACKDEPOT
6300		{
6301			depot_stack_handle_t handle;
6302			unsigned long *entries;
6303			unsigned int nr_entries, j;
6304
6305			handle = READ_ONCE(l->handle);
6306			if (handle) {
6307				nr_entries = stack_depot_fetch(handle, &entries);
6308				seq_puts(seq, "\n");
6309				for (j = 0; j < nr_entries; j++)
6310					seq_printf(seq, "        %pS\n", (void *)entries[j]);
6311			}
6312		}
6313#endif
6314		seq_puts(seq, "\n");
6315	}
6316
6317	if (!idx && !t->count)
6318		seq_puts(seq, "No data\n");
6319
6320	return 0;
6321}
6322
6323static void slab_debugfs_stop(struct seq_file *seq, void *v)
6324{
6325}
6326
6327static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6328{
6329	struct loc_track *t = seq->private;
6330
6331	t->idx = ++(*ppos);
6332	if (*ppos <= t->count)
6333		return ppos;
6334
6335	return NULL;
6336}
6337
6338static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6339{
6340	struct location *loc1 = (struct location *)a;
6341	struct location *loc2 = (struct location *)b;
6342
6343	if (loc1->count > loc2->count)
6344		return -1;
6345	else
6346		return 1;
6347}
6348
6349static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6350{
6351	struct loc_track *t = seq->private;
6352
6353	t->idx = *ppos;
6354	return ppos;
6355}
6356
6357static const struct seq_operations slab_debugfs_sops = {
6358	.start  = slab_debugfs_start,
6359	.next   = slab_debugfs_next,
6360	.stop   = slab_debugfs_stop,
6361	.show   = slab_debugfs_show,
6362};
6363
6364static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6365{
6366
6367	struct kmem_cache_node *n;
6368	enum track_item alloc;
6369	int node;
6370	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6371						sizeof(struct loc_track));
6372	struct kmem_cache *s = file_inode(filep)->i_private;
6373	unsigned long *obj_map;
6374
6375	if (!t)
6376		return -ENOMEM;
6377
6378	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6379	if (!obj_map) {
6380		seq_release_private(inode, filep);
6381		return -ENOMEM;
6382	}
6383
6384	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6385		alloc = TRACK_ALLOC;
6386	else
6387		alloc = TRACK_FREE;
6388
6389	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6390		bitmap_free(obj_map);
6391		seq_release_private(inode, filep);
6392		return -ENOMEM;
6393	}
6394
6395	for_each_kmem_cache_node(s, node, n) {
6396		unsigned long flags;
6397		struct slab *slab;
6398
6399		if (!atomic_long_read(&n->nr_slabs))
6400			continue;
6401
6402		spin_lock_irqsave(&n->list_lock, flags);
6403		list_for_each_entry(slab, &n->partial, slab_list)
6404			process_slab(t, s, slab, alloc, obj_map);
6405		list_for_each_entry(slab, &n->full, slab_list)
6406			process_slab(t, s, slab, alloc, obj_map);
6407		spin_unlock_irqrestore(&n->list_lock, flags);
6408	}
6409
6410	/* Sort locations by count */
6411	sort_r(t->loc, t->count, sizeof(struct location),
6412		cmp_loc_by_count, NULL, NULL);
6413
6414	bitmap_free(obj_map);
6415	return 0;
6416}
6417
6418static int slab_debug_trace_release(struct inode *inode, struct file *file)
6419{
6420	struct seq_file *seq = file->private_data;
6421	struct loc_track *t = seq->private;
6422
6423	free_loc_track(t);
6424	return seq_release_private(inode, file);
6425}
6426
6427static const struct file_operations slab_debugfs_fops = {
6428	.open    = slab_debug_trace_open,
6429	.read    = seq_read,
6430	.llseek  = seq_lseek,
6431	.release = slab_debug_trace_release,
6432};
6433
6434static void debugfs_slab_add(struct kmem_cache *s)
6435{
6436	struct dentry *slab_cache_dir;
6437
6438	if (unlikely(!slab_debugfs_root))
6439		return;
6440
6441	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6442
6443	debugfs_create_file("alloc_traces", 0400,
6444		slab_cache_dir, s, &slab_debugfs_fops);
6445
6446	debugfs_create_file("free_traces", 0400,
6447		slab_cache_dir, s, &slab_debugfs_fops);
6448}
6449
6450void debugfs_slab_release(struct kmem_cache *s)
6451{
6452	debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
6453}
6454
6455static int __init slab_debugfs_init(void)
6456{
6457	struct kmem_cache *s;
6458
6459	slab_debugfs_root = debugfs_create_dir("slab", NULL);
6460
6461	list_for_each_entry(s, &slab_caches, list)
6462		if (s->flags & SLAB_STORE_USER)
6463			debugfs_slab_add(s);
6464
6465	return 0;
6466
6467}
6468__initcall(slab_debugfs_init);
6469#endif
6470/*
6471 * The /proc/slabinfo ABI
6472 */
6473#ifdef CONFIG_SLUB_DEBUG
6474void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6475{
6476	unsigned long nr_slabs = 0;
6477	unsigned long nr_objs = 0;
6478	unsigned long nr_free = 0;
6479	int node;
6480	struct kmem_cache_node *n;
6481
6482	for_each_kmem_cache_node(s, node, n) {
 
 
 
 
 
6483		nr_slabs += node_nr_slabs(n);
6484		nr_objs += node_nr_objs(n);
6485		nr_free += count_partial(n, count_free);
6486	}
6487
6488	sinfo->active_objs = nr_objs - nr_free;
6489	sinfo->num_objs = nr_objs;
6490	sinfo->active_slabs = nr_slabs;
6491	sinfo->num_slabs = nr_slabs;
6492	sinfo->objects_per_slab = oo_objects(s->oo);
6493	sinfo->cache_order = oo_order(s->oo);
6494}
6495
6496void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6497{
6498}
6499
6500ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6501		       size_t count, loff_t *ppos)
6502{
6503	return -EIO;
6504}
6505#endif /* CONFIG_SLUB_DEBUG */
v3.15
 
   1/*
   2 * SLUB: A slab allocator that limits cache line use instead of queuing
   3 * objects in per cpu and per node lists.
   4 *
   5 * The allocator synchronizes using per slab locks or atomic operatios
   6 * and only uses a centralized lock to manage a pool of partial slabs.
   7 *
   8 * (C) 2007 SGI, Christoph Lameter
   9 * (C) 2011 Linux Foundation, Christoph Lameter
  10 */
  11
  12#include <linux/mm.h>
  13#include <linux/swap.h> /* struct reclaim_state */
  14#include <linux/module.h>
  15#include <linux/bit_spinlock.h>
  16#include <linux/interrupt.h>
 
  17#include <linux/bitops.h>
  18#include <linux/slab.h>
  19#include "slab.h"
  20#include <linux/proc_fs.h>
  21#include <linux/notifier.h>
  22#include <linux/seq_file.h>
  23#include <linux/kmemcheck.h>
 
  24#include <linux/cpu.h>
  25#include <linux/cpuset.h>
  26#include <linux/mempolicy.h>
  27#include <linux/ctype.h>
 
  28#include <linux/debugobjects.h>
  29#include <linux/kallsyms.h>
 
  30#include <linux/memory.h>
  31#include <linux/math64.h>
  32#include <linux/fault-inject.h>
  33#include <linux/stacktrace.h>
  34#include <linux/prefetch.h>
  35#include <linux/memcontrol.h>
 
 
 
 
  36
 
  37#include <trace/events/kmem.h>
  38
  39#include "internal.h"
  40
  41/*
  42 * Lock order:
  43 *   1. slab_mutex (Global Mutex)
  44 *   2. node->list_lock
  45 *   3. slab_lock(page) (Only on some arches and for debugging)
 
 
  46 *
  47 *   slab_mutex
  48 *
  49 *   The role of the slab_mutex is to protect the list of all the slabs
  50 *   and to synchronize major metadata changes to slab cache structures.
 
  51 *
  52 *   The slab_lock is only used for debugging and on arches that do not
  53 *   have the ability to do a cmpxchg_double. It only protects the second
  54 *   double word in the page struct. Meaning
  55 *	A. page->freelist	-> List of object free in a page
  56 *	B. page->counters	-> Counters of objects
  57 *	C. page->frozen		-> frozen state
 
 
 
 
 
 
 
 
  58 *
  59 *   If a slab is frozen then it is exempt from list management. It is not
  60 *   on any list. The processor that froze the slab is the one who can
  61 *   perform list operations on the page. Other processors may put objects
  62 *   onto the freelist but the processor that froze the slab is the only
  63 *   one that can retrieve the objects from the page's freelist.
 
 
 
  64 *
  65 *   The list_lock protects the partial and full list on each node and
  66 *   the partial slab counter. If taken then no new slabs may be added or
  67 *   removed from the lists nor make the number of partial slabs be modified.
  68 *   (Note that the total number of slabs is an atomic value that may be
  69 *   modified without taking the list lock).
  70 *
  71 *   The list_lock is a centralized lock and thus we avoid taking it as
  72 *   much as possible. As long as SLUB does not have to handle partial
  73 *   slabs, operations can continue without any centralized lock. F.e.
  74 *   allocating a long series of objects that fill up slabs does not require
  75 *   the list lock.
  76 *   Interrupts are disabled during allocation and deallocation in order to
  77 *   make the slab allocator safe to use in the context of an irq. In addition
  78 *   interrupts are disabled to ensure that the processor does not change
  79 *   while handling per_cpu slabs, due to kernel preemption.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80 *
  81 * SLUB assigns one slab for allocation to each processor.
  82 * Allocations only occur from these slabs called cpu slabs.
  83 *
  84 * Slabs with free elements are kept on a partial list and during regular
  85 * operations no list for full slabs is used. If an object in a full slab is
  86 * freed then the slab will show up again on the partial lists.
  87 * We track full slabs for debugging purposes though because otherwise we
  88 * cannot scan all objects.
  89 *
  90 * Slabs are freed when they become empty. Teardown and setup is
  91 * minimal so we rely on the page allocators per cpu caches for
  92 * fast frees and allocs.
  93 *
  94 * Overloading of page flags that are otherwise used for LRU management.
  95 *
  96 * PageActive 		The slab is frozen and exempt from list processing.
  97 * 			This means that the slab is dedicated to a purpose
  98 * 			such as satisfying allocations for a specific
  99 * 			processor. Objects may be freed in the slab while
 100 * 			it is frozen but slab_free will then skip the usual
 101 * 			list operations. It is up to the processor holding
 102 * 			the slab to integrate the slab into the slab lists
 103 * 			when the slab is no longer needed.
 104 *
 105 * 			One use of this flag is to mark slabs that are
 106 * 			used for allocations. Then such a slab becomes a cpu
 107 * 			slab. The cpu slab may be equipped with an additional
 108 * 			freelist that allows lockless access to
 109 * 			free objects in addition to the regular freelist
 110 * 			that requires the slab lock.
 111 *
 112 * PageError		Slab requires special handling due to debug
 113 * 			options set. This moves	slab handling out of
 114 * 			the fast path and disables lockless freelists.
 115 */
 116
 117static inline int kmem_cache_debug(struct kmem_cache *s)
 118{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 119#ifdef CONFIG_SLUB_DEBUG
 120	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
 
 121#else
 122	return 0;
 123#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 124}
 125
 126static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
 127{
 128#ifdef CONFIG_SLUB_CPU_PARTIAL
 129	return !kmem_cache_debug(s);
 130#else
 131	return false;
 132#endif
 133}
 134
 135/*
 136 * Issues still to be resolved:
 137 *
 138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 139 *
 140 * - Variable sizing of the per node arrays
 141 */
 142
 143/* Enable to test recovery from slab corruption on boot */
 144#undef SLUB_RESILIENCY_TEST
 145
 146/* Enable to log cmpxchg failures */
 147#undef SLUB_DEBUG_CMPXCHG
 148
 
 149/*
 150 * Mininum number of partial slabs. These will be left on the partial
 151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 152 */
 153#define MIN_PARTIAL 5
 154
 155/*
 156 * Maximum number of desirable partial slabs.
 157 * The existence of more partial slabs makes kmem_cache_shrink
 158 * sort the partial list by the number of objects in use.
 159 */
 160#define MAX_PARTIAL 10
 
 
 
 
 161
 162#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
 163				SLAB_POISON | SLAB_STORE_USER)
 164
 165/*
 
 
 
 
 
 
 
 
 166 * Debugging flags that require metadata to be stored in the slab.  These get
 167 * disabled when slub_debug=O is used and a cache's min order increases with
 168 * metadata.
 169 */
 170#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
 171
 172/*
 173 * Set of flags that will prevent slab merging
 174 */
 175#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
 176		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
 177		SLAB_FAILSLAB)
 178
 179#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
 180		SLAB_CACHE_DMA | SLAB_NOTRACK)
 181
 182#define OO_SHIFT	16
 183#define OO_MASK		((1 << OO_SHIFT) - 1)
 184#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
 185
 186/* Internal SLUB flags */
 187#define __OBJECT_POISON		0x80000000UL /* Poison object */
 188#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
 189
 190#ifdef CONFIG_SMP
 191static struct notifier_block slab_notifier;
 192#endif
 193
 194/*
 195 * Tracking user of a slab.
 196 */
 197#define TRACK_ADDRS_COUNT 16
 198struct track {
 199	unsigned long addr;	/* Called from address */
 200#ifdef CONFIG_STACKTRACE
 201	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
 202#endif
 203	int cpu;		/* Was running on cpu */
 204	int pid;		/* Pid context */
 205	unsigned long when;	/* When did the operation occur */
 206};
 207
 208enum track_item { TRACK_ALLOC, TRACK_FREE };
 209
 210#ifdef CONFIG_SYSFS
 211static int sysfs_slab_add(struct kmem_cache *);
 212static int sysfs_slab_alias(struct kmem_cache *, const char *);
 213static void memcg_propagate_slab_attrs(struct kmem_cache *s);
 214#else
 215static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
 216static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
 217							{ return 0; }
 218static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
 
 
 
 
 
 219#endif
 220
 221static inline void stat(const struct kmem_cache *s, enum stat_item si)
 222{
 223#ifdef CONFIG_SLUB_STATS
 224	/*
 225	 * The rmw is racy on a preemptible kernel but this is acceptable, so
 226	 * avoid this_cpu_add()'s irq-disable overhead.
 227	 */
 228	raw_cpu_inc(s->cpu_slab->stat[si]);
 229#endif
 230}
 231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 232/********************************************************************
 233 * 			Core slab cache functions
 234 *******************************************************************/
 235
 236static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
 237{
 238	return s->node[node];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 239}
 240
 241/* Verify that a pointer has an address that is valid within a slab page */
 242static inline int check_valid_pointer(struct kmem_cache *s,
 243				struct page *page, const void *object)
 244{
 245	void *base;
 246
 247	if (!object)
 248		return 1;
 249
 250	base = page_address(page);
 251	if (object < base || object >= base + page->objects * s->size ||
 252		(object - base) % s->size) {
 253		return 0;
 254	}
 255
 256	return 1;
 257}
 258
 259static inline void *get_freepointer(struct kmem_cache *s, void *object)
 260{
 261	return *(void **)(object + s->offset);
 
 262}
 263
 
 264static void prefetch_freepointer(const struct kmem_cache *s, void *object)
 265{
 266	prefetch(object + s->offset);
 267}
 
 268
 
 
 
 
 
 
 
 
 
 
 
 269static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
 270{
 
 271	void *p;
 272
 273#ifdef CONFIG_DEBUG_PAGEALLOC
 274	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
 275#else
 276	p = get_freepointer(s, object);
 277#endif
 278	return p;
 
 279}
 280
 281static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
 282{
 283	*(void **)(object + s->offset) = fp;
 
 
 
 
 
 
 
 284}
 285
 286/* Loop over all objects in a slab */
 287#define for_each_object(__p, __s, __addr, __objects) \
 288	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
 289			__p += (__s)->size)
 
 290
 291/* Determine object index from a given position */
 292static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
 293{
 294	return (p - addr) / s->size;
 295}
 296
 297static inline size_t slab_ksize(const struct kmem_cache *s)
 
 298{
 299#ifdef CONFIG_SLUB_DEBUG
 300	/*
 301	 * Debugging requires use of the padding between object
 302	 * and whatever may come after it.
 303	 */
 304	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
 305		return s->object_size;
 306
 307#endif
 308	/*
 309	 * If we have the need to store the freelist pointer
 310	 * back there or track user information then we can
 311	 * only use the space before that information.
 312	 */
 313	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
 314		return s->inuse;
 315	/*
 316	 * Else we can use all the padding etc for the allocation
 317	 */
 318	return s->size;
 319}
 320
 321static inline int order_objects(int order, unsigned long size, int reserved)
 322{
 323	return ((PAGE_SIZE << order) - reserved) / size;
 324}
 325
 326static inline struct kmem_cache_order_objects oo_make(int order,
 327		unsigned long size, int reserved)
 328{
 329	struct kmem_cache_order_objects x = {
 330		(order << OO_SHIFT) + order_objects(order, size, reserved)
 331	};
 332
 333	return x;
 334}
 335
 336static inline int oo_order(struct kmem_cache_order_objects x)
 
 337{
 338	return x.x >> OO_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 339}
 340
 341static inline int oo_objects(struct kmem_cache_order_objects x)
 
 342{
 343	return x.x & OO_MASK;
 344}
 
 345
 346/*
 347 * Per slab locking using the pagelock
 348 */
 349static __always_inline void slab_lock(struct page *page)
 350{
 
 
 
 351	bit_spin_lock(PG_locked, &page->flags);
 352}
 353
 354static __always_inline void slab_unlock(struct page *page)
 355{
 
 
 
 356	__bit_spin_unlock(PG_locked, &page->flags);
 357}
 358
 359static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
 360{
 361	struct page tmp;
 362	tmp.counters = counters_new;
 363	/*
 364	 * page->counters can cover frozen/inuse/objects as well
 365	 * as page->_count.  If we assign to ->counters directly
 366	 * we run the risk of losing updates to page->_count, so
 367	 * be careful and only assign to the fields we need.
 368	 */
 369	page->frozen  = tmp.frozen;
 370	page->inuse   = tmp.inuse;
 371	page->objects = tmp.objects;
 372}
 373
 374/* Interrupts must be disabled (for the fallback code to work right) */
 375static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 376		void *freelist_old, unsigned long counters_old,
 377		void *freelist_new, unsigned long counters_new,
 378		const char *n)
 379{
 380	VM_BUG_ON(!irqs_disabled());
 
 381#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 382    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 383	if (s->flags & __CMPXCHG_DOUBLE) {
 384		if (cmpxchg_double(&page->freelist, &page->counters,
 385			freelist_old, counters_old,
 386			freelist_new, counters_new))
 387		return 1;
 388	} else
 389#endif
 390	{
 391		slab_lock(page);
 392		if (page->freelist == freelist_old &&
 393					page->counters == counters_old) {
 394			page->freelist = freelist_new;
 395			set_page_slub_counters(page, counters_new);
 396			slab_unlock(page);
 397			return 1;
 398		}
 399		slab_unlock(page);
 400	}
 401
 402	cpu_relax();
 403	stat(s, CMPXCHG_DOUBLE_FAIL);
 404
 405#ifdef SLUB_DEBUG_CMPXCHG
 406	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
 407#endif
 408
 409	return 0;
 410}
 411
 412static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 413		void *freelist_old, unsigned long counters_old,
 414		void *freelist_new, unsigned long counters_new,
 415		const char *n)
 416{
 417#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 418    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 419	if (s->flags & __CMPXCHG_DOUBLE) {
 420		if (cmpxchg_double(&page->freelist, &page->counters,
 421			freelist_old, counters_old,
 422			freelist_new, counters_new))
 423		return 1;
 424	} else
 425#endif
 426	{
 427		unsigned long flags;
 428
 429		local_irq_save(flags);
 430		slab_lock(page);
 431		if (page->freelist == freelist_old &&
 432					page->counters == counters_old) {
 433			page->freelist = freelist_new;
 434			set_page_slub_counters(page, counters_new);
 435			slab_unlock(page);
 436			local_irq_restore(flags);
 437			return 1;
 438		}
 439		slab_unlock(page);
 440		local_irq_restore(flags);
 441	}
 442
 443	cpu_relax();
 444	stat(s, CMPXCHG_DOUBLE_FAIL);
 445
 446#ifdef SLUB_DEBUG_CMPXCHG
 447	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
 448#endif
 449
 450	return 0;
 451}
 452
 453#ifdef CONFIG_SLUB_DEBUG
 454/*
 455 * Determine a map of object in use on a page.
 456 *
 457 * Node listlock must be held to guarantee that the page does
 458 * not vanish from under us.
 459 */
 460static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
 461{
 
 462	void *p;
 463	void *addr = page_address(page);
 464
 465	for (p = page->freelist; p; p = get_freepointer(s, p))
 466		set_bit(slab_index(p, s, addr), map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 467}
 468
 469/*
 470 * Debug settings:
 471 */
 472#ifdef CONFIG_SLUB_DEBUG_ON
 473static int slub_debug = DEBUG_DEFAULT_FLAGS;
 474#else
 475static int slub_debug;
 476#endif
 477
 478static char *slub_debug_slabs;
 479static int disable_higher_order_debug;
 480
 481/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 482 * Object debugging
 483 */
 484static void print_section(char *text, u8 *addr, unsigned int length)
 
 
 
 485{
 486	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
 487			length, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 488}
 489
 490static struct track *get_track(struct kmem_cache *s, void *object,
 491	enum track_item alloc)
 492{
 493	struct track *p;
 494
 495	if (s->offset)
 496		p = object + s->offset + sizeof(void *);
 497	else
 498		p = object + s->inuse;
 
 
 
 
 
 
 
 
 
 
 499
 500	return p + alloc;
 501}
 
 
 
 
 
 
 502
 503static void set_track(struct kmem_cache *s, void *object,
 504			enum track_item alloc, unsigned long addr)
 
 505{
 506	struct track *p = get_track(s, object, alloc);
 507
 508	if (addr) {
 509#ifdef CONFIG_STACKTRACE
 510		struct stack_trace trace;
 511		int i;
 512
 513		trace.nr_entries = 0;
 514		trace.max_entries = TRACK_ADDRS_COUNT;
 515		trace.entries = p->addrs;
 516		trace.skip = 3;
 517		save_stack_trace(&trace);
 518
 519		/* See rant in lockdep.c */
 520		if (trace.nr_entries != 0 &&
 521		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
 522			trace.nr_entries--;
 523
 524		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
 525			p->addrs[i] = 0;
 526#endif
 527		p->addr = addr;
 528		p->cpu = smp_processor_id();
 529		p->pid = current->pid;
 530		p->when = jiffies;
 531	} else
 532		memset(p, 0, sizeof(struct track));
 533}
 534
 535static void init_tracking(struct kmem_cache *s, void *object)
 536{
 
 
 537	if (!(s->flags & SLAB_STORE_USER))
 538		return;
 539
 540	set_track(s, object, TRACK_FREE, 0UL);
 541	set_track(s, object, TRACK_ALLOC, 0UL);
 542}
 543
 544static void print_track(const char *s, struct track *t)
 545{
 
 
 546	if (!t->addr)
 547		return;
 548
 549	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
 550		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
 551#ifdef CONFIG_STACKTRACE
 552	{
 553		int i;
 554		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
 555			if (t->addrs[i])
 556				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
 557			else
 558				break;
 559	}
 560#endif
 561}
 562
 563static void print_tracking(struct kmem_cache *s, void *object)
 564{
 
 565	if (!(s->flags & SLAB_STORE_USER))
 566		return;
 567
 568	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
 569	print_track("Freed", get_track(s, object, TRACK_FREE));
 570}
 571
 572static void print_page_info(struct page *page)
 573{
 574	printk(KERN_ERR
 575	       "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
 576	       page, page->objects, page->inuse, page->freelist, page->flags);
 577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 578}
 579
 580static void slab_bug(struct kmem_cache *s, char *fmt, ...)
 581{
 
 582	va_list args;
 583	char buf[100];
 584
 585	va_start(args, fmt);
 586	vsnprintf(buf, sizeof(buf), fmt, args);
 
 
 
 
 587	va_end(args);
 588	printk(KERN_ERR "========================================"
 589			"=====================================\n");
 590	printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
 591	printk(KERN_ERR "----------------------------------------"
 592			"-------------------------------------\n\n");
 593
 594	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 595}
 596
 
 597static void slab_fix(struct kmem_cache *s, char *fmt, ...)
 598{
 
 599	va_list args;
 600	char buf[100];
 
 
 601
 602	va_start(args, fmt);
 603	vsnprintf(buf, sizeof(buf), fmt, args);
 
 
 604	va_end(args);
 605	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
 606}
 607
 608static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
 609{
 610	unsigned int off;	/* Offset of last byte */
 611	u8 *addr = page_address(page);
 612
 613	print_tracking(s, p);
 614
 615	print_page_info(page);
 616
 617	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
 618			p, p - addr, get_freepointer(s, p));
 619
 620	if (p > addr + 16)
 621		print_section("Bytes b4 ", p - 16, 16);
 
 
 
 622
 623	print_section("Object ", p, min_t(unsigned long, s->object_size,
 624				PAGE_SIZE));
 625	if (s->flags & SLAB_RED_ZONE)
 626		print_section("Redzone ", p + s->object_size,
 627			s->inuse - s->object_size);
 628
 629	if (s->offset)
 630		off = s->offset + sizeof(void *);
 631	else
 632		off = s->inuse;
 633
 634	if (s->flags & SLAB_STORE_USER)
 635		off += 2 * sizeof(struct track);
 636
 637	if (off != s->size)
 
 
 
 
 
 638		/* Beginning of the filler is the free pointer */
 639		print_section("Padding ", p + off, s->size - off);
 
 640
 641	dump_stack();
 642}
 643
 644static void object_err(struct kmem_cache *s, struct page *page,
 645			u8 *object, char *reason)
 646{
 
 
 
 647	slab_bug(s, "%s", reason);
 648	print_trailer(s, page, object);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 649}
 650
 651static void slab_err(struct kmem_cache *s, struct page *page,
 652			const char *fmt, ...)
 653{
 654	va_list args;
 655	char buf[100];
 656
 
 
 
 657	va_start(args, fmt);
 658	vsnprintf(buf, sizeof(buf), fmt, args);
 659	va_end(args);
 660	slab_bug(s, "%s", buf);
 661	print_page_info(page);
 662	dump_stack();
 
 663}
 664
 665static void init_object(struct kmem_cache *s, void *object, u8 val)
 666{
 667	u8 *p = object;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 668
 669	if (s->flags & __OBJECT_POISON) {
 670		memset(p, POISON_FREE, s->object_size - 1);
 671		p[s->object_size - 1] = POISON_END;
 672	}
 673
 674	if (s->flags & SLAB_RED_ZONE)
 675		memset(p + s->object_size, val, s->inuse - s->object_size);
 676}
 677
 678static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
 679						void *from, void *to)
 680{
 681	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
 682	memset(from, data, to - from);
 683}
 684
 685static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
 686			u8 *object, char *what,
 687			u8 *start, unsigned int value, unsigned int bytes)
 688{
 689	u8 *fault;
 690	u8 *end;
 
 691
 692	fault = memchr_inv(start, value, bytes);
 
 
 693	if (!fault)
 694		return 1;
 695
 696	end = start + bytes;
 697	while (end > fault && end[-1] == value)
 698		end--;
 699
 
 
 
 700	slab_bug(s, "%s overwritten", what);
 701	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
 702					fault, end - 1, fault[0], value);
 703	print_trailer(s, page, object);
 
 
 704
 
 705	restore_bytes(s, what, value, fault, end);
 706	return 0;
 707}
 708
 709/*
 710 * Object layout:
 711 *
 712 * object address
 713 * 	Bytes of the object to be managed.
 714 * 	If the freepointer may overlay the object then the free
 715 * 	pointer is the first word of the object.
 716 *
 717 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 718 * 	0xa5 (POISON_END)
 719 *
 720 * object + s->object_size
 721 * 	Padding to reach word boundary. This is also used for Redzoning.
 722 * 	Padding is extended by another word if Redzoning is enabled and
 723 * 	object_size == inuse.
 724 *
 725 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 726 * 	0xcc (RED_ACTIVE) for objects in use.
 727 *
 728 * object + s->inuse
 729 * 	Meta data starts here.
 730 *
 731 * 	A. Free pointer (if we cannot overwrite object on free)
 732 * 	B. Tracking data for SLAB_STORE_USER
 733 * 	C. Padding to reach required alignment boundary or at mininum
 
 734 * 		one word if debugging is on to be able to detect writes
 735 * 		before the word boundary.
 736 *
 737 *	Padding is done using 0x5a (POISON_INUSE)
 738 *
 739 * object + s->size
 740 * 	Nothing is used beyond s->size.
 741 *
 742 * If slabcaches are merged then the object_size and inuse boundaries are mostly
 743 * ignored. And therefore no slab options that rely on these boundaries
 744 * may be used with merged slabcaches.
 745 */
 746
 747static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
 748{
 749	unsigned long off = s->inuse;	/* The end of info */
 750
 751	if (s->offset)
 752		/* Freepointer is placed after the object. */
 753		off += sizeof(void *);
 754
 755	if (s->flags & SLAB_STORE_USER)
 756		/* We also have user information there */
 757		off += 2 * sizeof(struct track);
 758
 759	if (s->size == off)
 
 
 
 
 
 
 760		return 1;
 761
 762	return check_bytes_and_report(s, page, p, "Object padding",
 763				p + off, POISON_INUSE, s->size - off);
 764}
 765
 766/* Check the pad bytes at the end of a slab page */
 767static int slab_pad_check(struct kmem_cache *s, struct page *page)
 768{
 769	u8 *start;
 770	u8 *fault;
 771	u8 *end;
 
 772	int length;
 773	int remainder;
 774
 775	if (!(s->flags & SLAB_POISON))
 776		return 1;
 777
 778	start = page_address(page);
 779	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
 780	end = start + length;
 781	remainder = length % s->size;
 782	if (!remainder)
 783		return 1;
 784
 785	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
 
 
 
 786	if (!fault)
 787		return 1;
 788	while (end > fault && end[-1] == POISON_INUSE)
 789		end--;
 790
 791	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
 792	print_section("Padding ", end - remainder, remainder);
 
 793
 794	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
 795	return 0;
 796}
 797
 798static int check_object(struct kmem_cache *s, struct page *page,
 799					void *object, u8 val)
 800{
 801	u8 *p = object;
 802	u8 *endobject = object + s->object_size;
 
 803
 804	if (s->flags & SLAB_RED_ZONE) {
 805		if (!check_bytes_and_report(s, page, object, "Redzone",
 
 
 
 
 806			endobject, val, s->inuse - s->object_size))
 807			return 0;
 
 
 
 
 
 
 
 
 
 
 
 808	} else {
 809		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
 810			check_bytes_and_report(s, page, p, "Alignment padding",
 811				endobject, POISON_INUSE,
 812				s->inuse - s->object_size);
 813		}
 814	}
 815
 816	if (s->flags & SLAB_POISON) {
 817		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
 818			(!check_bytes_and_report(s, page, p, "Poison", p,
 819					POISON_FREE, s->object_size - 1) ||
 820			 !check_bytes_and_report(s, page, p, "Poison",
 821				p + s->object_size - 1, POISON_END, 1)))
 822			return 0;
 823		/*
 824		 * check_pad_bytes cleans up on its own.
 825		 */
 826		check_pad_bytes(s, page, p);
 827	}
 828
 829	if (!s->offset && val == SLUB_RED_ACTIVE)
 830		/*
 831		 * Object and freepointer overlap. Cannot check
 832		 * freepointer while object is allocated.
 833		 */
 834		return 1;
 835
 836	/* Check free pointer validity */
 837	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
 838		object_err(s, page, p, "Freepointer corrupt");
 839		/*
 840		 * No choice but to zap it and thus lose the remainder
 841		 * of the free objects in this slab. May cause
 842		 * another error because the object count is now wrong.
 843		 */
 844		set_freepointer(s, p, NULL);
 845		return 0;
 846	}
 847	return 1;
 848}
 849
 850static int check_slab(struct kmem_cache *s, struct page *page)
 851{
 852	int maxobj;
 853
 854	VM_BUG_ON(!irqs_disabled());
 855
 856	if (!PageSlab(page)) {
 857		slab_err(s, page, "Not a valid slab page");
 858		return 0;
 859	}
 860
 861	maxobj = order_objects(compound_order(page), s->size, s->reserved);
 862	if (page->objects > maxobj) {
 863		slab_err(s, page, "objects %u > max %u",
 864			s->name, page->objects, maxobj);
 865		return 0;
 866	}
 867	if (page->inuse > page->objects) {
 868		slab_err(s, page, "inuse %u > max %u",
 869			s->name, page->inuse, page->objects);
 870		return 0;
 871	}
 872	/* Slab_pad_check fixes things up after itself */
 873	slab_pad_check(s, page);
 874	return 1;
 875}
 876
 877/*
 878 * Determine if a certain object on a page is on the freelist. Must hold the
 879 * slab lock to guarantee that the chains are in a consistent state.
 880 */
 881static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
 882{
 883	int nr = 0;
 884	void *fp;
 885	void *object = NULL;
 886	unsigned long max_objects;
 887
 888	fp = page->freelist;
 889	while (fp && nr <= page->objects) {
 890		if (fp == search)
 891			return 1;
 892		if (!check_valid_pointer(s, page, fp)) {
 893			if (object) {
 894				object_err(s, page, object,
 895					"Freechain corrupt");
 896				set_freepointer(s, object, NULL);
 897			} else {
 898				slab_err(s, page, "Freepointer corrupt");
 899				page->freelist = NULL;
 900				page->inuse = page->objects;
 901				slab_fix(s, "Freelist cleared");
 902				return 0;
 903			}
 904			break;
 905		}
 906		object = fp;
 907		fp = get_freepointer(s, object);
 908		nr++;
 909	}
 910
 911	max_objects = order_objects(compound_order(page), s->size, s->reserved);
 912	if (max_objects > MAX_OBJS_PER_PAGE)
 913		max_objects = MAX_OBJS_PER_PAGE;
 914
 915	if (page->objects != max_objects) {
 916		slab_err(s, page, "Wrong number of objects. Found %d but "
 917			"should be %d", page->objects, max_objects);
 918		page->objects = max_objects;
 919		slab_fix(s, "Number of objects adjusted.");
 920	}
 921	if (page->inuse != page->objects - nr) {
 922		slab_err(s, page, "Wrong object count. Counter is %d but "
 923			"counted were %d", page->inuse, page->objects - nr);
 924		page->inuse = page->objects - nr;
 925		slab_fix(s, "Object count adjusted.");
 926	}
 927	return search == NULL;
 928}
 929
 930static void trace(struct kmem_cache *s, struct page *page, void *object,
 931								int alloc)
 932{
 933	if (s->flags & SLAB_TRACE) {
 934		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
 935			s->name,
 936			alloc ? "alloc" : "free",
 937			object, page->inuse,
 938			page->freelist);
 939
 940		if (!alloc)
 941			print_section("Object ", (void *)object,
 942					s->object_size);
 943
 944		dump_stack();
 945	}
 946}
 947
 948/*
 949 * Hooks for other subsystems that check memory allocations. In a typical
 950 * production configuration these hooks all should produce no code at all.
 951 */
 952static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
 953{
 954	kmemleak_alloc(ptr, size, 1, flags);
 955}
 956
 957static inline void kfree_hook(const void *x)
 958{
 959	kmemleak_free(x);
 960}
 961
 962static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
 963{
 964	flags &= gfp_allowed_mask;
 965	lockdep_trace_alloc(flags);
 966	might_sleep_if(flags & __GFP_WAIT);
 967
 968	return should_failslab(s->object_size, flags, s->flags);
 969}
 970
 971static inline void slab_post_alloc_hook(struct kmem_cache *s,
 972					gfp_t flags, void *object)
 973{
 974	flags &= gfp_allowed_mask;
 975	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
 976	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
 977}
 978
 979static inline void slab_free_hook(struct kmem_cache *s, void *x)
 980{
 981	kmemleak_free_recursive(x, s->flags);
 982
 983	/*
 984	 * Trouble is that we may no longer disable interrupts in the fast path
 985	 * So in order to make the debug calls that expect irqs to be
 986	 * disabled we need to disable interrupts temporarily.
 987	 */
 988#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
 989	{
 990		unsigned long flags;
 991
 992		local_irq_save(flags);
 993		kmemcheck_slab_free(s, x, s->object_size);
 994		debug_check_no_locks_freed(x, s->object_size);
 995		local_irq_restore(flags);
 996	}
 997#endif
 998	if (!(s->flags & SLAB_DEBUG_OBJECTS))
 999		debug_check_no_obj_freed(x, s->object_size);
1000}
1001
1002/*
1003 * Tracking of fully allocated slabs for debugging purposes.
1004 */
1005static void add_full(struct kmem_cache *s,
1006	struct kmem_cache_node *n, struct page *page)
1007{
1008	if (!(s->flags & SLAB_STORE_USER))
1009		return;
1010
1011	lockdep_assert_held(&n->list_lock);
1012	list_add(&page->lru, &n->full);
1013}
1014
1015static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1016{
1017	if (!(s->flags & SLAB_STORE_USER))
1018		return;
1019
1020	lockdep_assert_held(&n->list_lock);
1021	list_del(&page->lru);
1022}
1023
1024/* Tracking of the number of slabs for debugging purposes */
1025static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1026{
1027	struct kmem_cache_node *n = get_node(s, node);
1028
1029	return atomic_long_read(&n->nr_slabs);
1030}
1031
1032static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1033{
1034	return atomic_long_read(&n->nr_slabs);
1035}
1036
1037static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1038{
1039	struct kmem_cache_node *n = get_node(s, node);
1040
1041	/*
1042	 * May be called early in order to allocate a slab for the
1043	 * kmem_cache_node structure. Solve the chicken-egg
1044	 * dilemma by deferring the increment of the count during
1045	 * bootstrap (see early_kmem_cache_node_alloc).
1046	 */
1047	if (likely(n)) {
1048		atomic_long_inc(&n->nr_slabs);
1049		atomic_long_add(objects, &n->total_objects);
1050	}
1051}
1052static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1053{
1054	struct kmem_cache_node *n = get_node(s, node);
1055
1056	atomic_long_dec(&n->nr_slabs);
1057	atomic_long_sub(objects, &n->total_objects);
1058}
1059
1060/* Object debug checks for alloc/free paths */
1061static void setup_object_debug(struct kmem_cache *s, struct page *page,
1062								void *object)
1063{
1064	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1065		return;
1066
1067	init_object(s, object, SLUB_RED_INACTIVE);
1068	init_tracking(s, object);
1069}
1070
1071static noinline int alloc_debug_processing(struct kmem_cache *s,
1072					struct page *page,
1073					void *object, unsigned long addr)
1074{
1075	if (!check_slab(s, page))
1076		goto bad;
 
 
 
 
 
1077
1078	if (!check_valid_pointer(s, page, object)) {
1079		object_err(s, page, object, "Freelist Pointer check fails");
1080		goto bad;
 
 
 
 
 
 
1081	}
1082
1083	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1084		goto bad;
 
 
 
 
 
 
 
 
 
 
 
1085
1086	/* Success perform special debug activities for allocs */
1087	if (s->flags & SLAB_STORE_USER)
1088		set_track(s, object, TRACK_ALLOC, addr);
1089	trace(s, page, object, 1);
1090	init_object(s, object, SLUB_RED_ACTIVE);
1091	return 1;
1092
1093bad:
1094	if (PageSlab(page)) {
1095		/*
1096		 * If this is a slab page then lets do the best we can
1097		 * to avoid issues in the future. Marking all objects
1098		 * as used avoids touching the remaining objects.
1099		 */
1100		slab_fix(s, "Marking all objects used");
1101		page->inuse = page->objects;
1102		page->freelist = NULL;
1103	}
1104	return 0;
1105}
1106
1107static noinline struct kmem_cache_node *free_debug_processing(
1108	struct kmem_cache *s, struct page *page, void *object,
1109	unsigned long addr, unsigned long *flags)
1110{
1111	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1112
1113	spin_lock_irqsave(&n->list_lock, *flags);
1114	slab_lock(page);
1115
1116	if (!check_slab(s, page))
1117		goto fail;
1118
1119	if (!check_valid_pointer(s, page, object)) {
1120		slab_err(s, page, "Invalid object pointer 0x%p", object);
1121		goto fail;
1122	}
1123
1124	if (on_freelist(s, page, object)) {
1125		object_err(s, page, object, "Object already free");
1126		goto fail;
1127	}
1128
1129	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1130		goto out;
1131
1132	if (unlikely(s != page->slab_cache)) {
1133		if (!PageSlab(page)) {
1134			slab_err(s, page, "Attempt to free object(0x%p) "
1135				"outside of slab", object);
1136		} else if (!page->slab_cache) {
1137			printk(KERN_ERR
1138				"SLUB <none>: no slab for object 0x%p.\n",
1139						object);
1140			dump_stack();
1141		} else
1142			object_err(s, page, object,
1143					"page slab pointer corrupt.");
1144		goto fail;
1145	}
1146
1147	if (s->flags & SLAB_STORE_USER)
1148		set_track(s, object, TRACK_FREE, addr);
1149	trace(s, page, object, 0);
1150	init_object(s, object, SLUB_RED_INACTIVE);
1151out:
1152	slab_unlock(page);
1153	/*
1154	 * Keep node_lock to preserve integrity
1155	 * until the object is actually freed
1156	 */
1157	return n;
1158
1159fail:
1160	slab_unlock(page);
1161	spin_unlock_irqrestore(&n->list_lock, *flags);
1162	slab_fix(s, "Object at 0x%p not freed", object);
1163	return NULL;
1164}
1165
1166static int __init setup_slub_debug(char *str)
 
 
 
 
 
 
 
 
 
 
 
1167{
1168	slub_debug = DEBUG_DEFAULT_FLAGS;
1169	if (*str++ != '=' || !*str)
1170		/*
1171		 * No options specified. Switch on full debugging.
1172		 */
1173		goto out;
1174
1175	if (*str == ',')
1176		/*
1177		 * No options but restriction on slabs. This means full
1178		 * debugging for slabs matching a pattern.
1179		 */
 
1180		goto check_slabs;
1181
1182	if (tolower(*str) == 'o') {
1183		/*
1184		 * Avoid enabling debugging on caches if its minimum order
1185		 * would increase as a result.
1186		 */
1187		disable_higher_order_debug = 1;
1188		goto out;
1189	}
 
1190
1191	slub_debug = 0;
1192	if (*str == '-')
1193		/*
1194		 * Switch off all debugging measures.
1195		 */
1196		goto out;
1197
1198	/*
1199	 * Determine which debug features should be switched on
1200	 */
1201	for (; *str && *str != ','; str++) {
1202		switch (tolower(*str)) {
 
 
 
1203		case 'f':
1204			slub_debug |= SLAB_DEBUG_FREE;
1205			break;
1206		case 'z':
1207			slub_debug |= SLAB_RED_ZONE;
1208			break;
1209		case 'p':
1210			slub_debug |= SLAB_POISON;
1211			break;
1212		case 'u':
1213			slub_debug |= SLAB_STORE_USER;
1214			break;
1215		case 't':
1216			slub_debug |= SLAB_TRACE;
1217			break;
1218		case 'a':
1219			slub_debug |= SLAB_FAILSLAB;
 
 
 
 
 
 
 
1220			break;
1221		default:
1222			printk(KERN_ERR "slub_debug option '%c' "
1223				"unknown. skipped\n", *str);
1224		}
1225	}
1226
1227check_slabs:
1228	if (*str == ',')
1229		slub_debug_slabs = str + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1230out:
 
 
 
 
 
 
 
 
 
 
 
1231	return 1;
1232}
1233
1234__setup("slub_debug", setup_slub_debug);
1235
1236static unsigned long kmem_cache_flags(unsigned long object_size,
1237	unsigned long flags, const char *name,
1238	void (*ctor)(void *))
1239{
1240	/*
1241	 * Enable debugging if selected on the kernel commandline.
1242	 */
1243	if (slub_debug && (!slub_debug_slabs || (name &&
1244		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1245		flags |= slub_debug;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1246
1247	return flags;
1248}
1249#else
1250static inline void setup_object_debug(struct kmem_cache *s,
1251			struct page *page, void *object) {}
 
 
 
 
1252
1253static inline int alloc_debug_processing(struct kmem_cache *s,
1254	struct page *page, void *object, unsigned long addr) { return 0; }
 
1255
1256static inline struct kmem_cache_node *free_debug_processing(
1257	struct kmem_cache *s, struct page *page, void *object,
1258	unsigned long addr, unsigned long *flags) { return NULL; }
1259
1260static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1261			{ return 1; }
1262static inline int check_object(struct kmem_cache *s, struct page *page,
1263			void *object, u8 val) { return 1; }
 
 
 
1264static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1265					struct page *page) {}
1266static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1267					struct page *page) {}
1268static inline unsigned long kmem_cache_flags(unsigned long object_size,
1269	unsigned long flags, const char *name,
1270	void (*ctor)(void *))
1271{
1272	return flags;
1273}
1274#define slub_debug 0
1275
1276#define disable_higher_order_debug 0
1277
1278static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1279							{ return 0; }
1280static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1281							{ return 0; }
1282static inline void inc_slabs_node(struct kmem_cache *s, int node,
1283							int objects) {}
1284static inline void dec_slabs_node(struct kmem_cache *s, int node,
1285							int objects) {}
1286
1287static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
 
 
1288{
1289	kmemleak_alloc(ptr, size, 1, flags);
1290}
 
 
1291
1292static inline void kfree_hook(const void *x)
 
 
 
 
 
1293{
1294	kmemleak_free(x);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1295}
1296
1297static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1298							{ return 0; }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1299
1300static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1301		void *object)
1302{
1303	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
1304		flags & gfp_allowed_mask);
1305}
1306
1307static inline void slab_free_hook(struct kmem_cache *s, void *x)
1308{
1309	kmemleak_free_recursive(x, s->flags);
 
 
 
 
 
 
 
1310}
1311
1312#endif /* CONFIG_SLUB_DEBUG */
1313
1314/*
1315 * Slab allocation and freeing
1316 */
1317static inline struct page *alloc_slab_page(gfp_t flags, int node,
1318					struct kmem_cache_order_objects oo)
1319{
1320	int order = oo_order(oo);
1321
1322	flags |= __GFP_NOTRACK;
1323
1324	if (node == NUMA_NO_NODE)
1325		return alloc_pages(flags, order);
1326	else
1327		return alloc_pages_exact_node(node, flags, order);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1328}
1329
1330static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
 
 
 
 
1331{
1332	struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1333	struct kmem_cache_order_objects oo = s->oo;
1334	gfp_t alloc_gfp;
 
 
 
1335
1336	flags &= gfp_allowed_mask;
1337
1338	if (flags & __GFP_WAIT)
1339		local_irq_enable();
1340
1341	flags |= s->allocflags;
1342
1343	/*
1344	 * Let the initial higher-order allocation fail under memory pressure
1345	 * so we fall-back to the minimum order allocation.
1346	 */
1347	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
 
 
1348
1349	page = alloc_slab_page(alloc_gfp, node, oo);
1350	if (unlikely(!page)) {
1351		oo = s->min;
1352		alloc_gfp = flags;
1353		/*
1354		 * Allocation may have failed due to fragmentation.
1355		 * Try a lower order alloc if possible
1356		 */
1357		page = alloc_slab_page(alloc_gfp, node, oo);
 
 
 
 
1358
1359		if (page)
1360			stat(s, ORDER_FALLBACK);
1361	}
 
 
1362
1363	if (kmemcheck_enabled && page
1364		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1365		int pages = 1 << oo_order(oo);
1366
1367		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1368
1369		/*
1370		 * Objects from caches that have a constructor don't get
1371		 * cleared when they're allocated, so we need to do it here.
1372		 */
1373		if (s->ctor)
1374			kmemcheck_mark_uninitialized_pages(page, pages);
1375		else
1376			kmemcheck_mark_unallocated_pages(page, pages);
1377	}
1378
1379	if (flags & __GFP_WAIT)
1380		local_irq_disable();
1381	if (!page)
1382		return NULL;
1383
1384	page->objects = oo_objects(oo);
1385	mod_zone_page_state(page_zone(page),
1386		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1387		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1388		1 << oo_order(oo));
1389
1390	return page;
1391}
 
 
 
 
 
 
 
 
 
 
1392
1393static void setup_object(struct kmem_cache *s, struct page *page,
1394				void *object)
1395{
1396	setup_object_debug(s, page, object);
1397	if (unlikely(s->ctor))
1398		s->ctor(object);
1399}
1400
1401static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1402{
1403	struct page *page;
1404	void *start;
1405	void *last;
1406	void *p;
1407	int order;
1408
1409	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1410
1411	page = allocate_slab(s,
1412		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1413	if (!page)
1414		goto out;
1415
1416	order = compound_order(page);
1417	inc_slabs_node(s, page_to_nid(page), page->objects);
1418	memcg_bind_pages(s, order);
1419	page->slab_cache = s;
1420	__SetPageSlab(page);
1421	if (page->pfmemalloc)
1422		SetPageSlabPfmemalloc(page);
1423
1424	start = page_address(page);
1425
1426	if (unlikely(s->flags & SLAB_POISON))
1427		memset(start, POISON_INUSE, PAGE_SIZE << order);
1428
1429	last = start;
1430	for_each_object(p, s, start, page->objects) {
1431		setup_object(s, page, last);
1432		set_freepointer(s, last, p);
1433		last = p;
1434	}
1435	setup_object(s, page, last);
1436	set_freepointer(s, last, NULL);
1437
1438	page->freelist = start;
1439	page->inuse = page->objects;
1440	page->frozen = 1;
1441out:
1442	return page;
1443}
1444
1445static void __free_slab(struct kmem_cache *s, struct page *page)
1446{
1447	int order = compound_order(page);
 
1448	int pages = 1 << order;
1449
1450	if (kmem_cache_debug(s)) {
1451		void *p;
1452
1453		slab_pad_check(s, page);
1454		for_each_object(p, s, page_address(page),
1455						page->objects)
1456			check_object(s, page, p, SLUB_RED_INACTIVE);
1457	}
1458
1459	kmemcheck_free_shadow(page, compound_order(page));
1460
1461	mod_zone_page_state(page_zone(page),
1462		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1463		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1464		-pages);
1465
1466	__ClearPageSlabPfmemalloc(page);
1467	__ClearPageSlab(page);
1468
1469	memcg_release_pages(s, order);
1470	page_mapcount_reset(page);
1471	if (current->reclaim_state)
1472		current->reclaim_state->reclaimed_slab += pages;
1473	__free_memcg_kmem_pages(page, order);
 
1474}
1475
1476#define need_reserve_slab_rcu						\
1477	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1478
1479static void rcu_free_slab(struct rcu_head *h)
1480{
1481	struct page *page;
1482
1483	if (need_reserve_slab_rcu)
1484		page = virt_to_head_page(h);
1485	else
1486		page = container_of((struct list_head *)h, struct page, lru);
1487
1488	__free_slab(page->slab_cache, page);
1489}
1490
1491static void free_slab(struct kmem_cache *s, struct page *page)
1492{
1493	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1494		struct rcu_head *head;
1495
1496		if (need_reserve_slab_rcu) {
1497			int order = compound_order(page);
1498			int offset = (PAGE_SIZE << order) - s->reserved;
 
1499
1500			VM_BUG_ON(s->reserved != sizeof(*head));
1501			head = page_address(page) + offset;
1502		} else {
1503			/*
1504			 * RCU free overloads the RCU head over the LRU
1505			 */
1506			head = (void *)&page->lru;
1507		}
1508
1509		call_rcu(head, rcu_free_slab);
1510	} else
1511		__free_slab(s, page);
1512}
1513
1514static void discard_slab(struct kmem_cache *s, struct page *page)
1515{
1516	dec_slabs_node(s, page_to_nid(page), page->objects);
1517	free_slab(s, page);
1518}
1519
1520/*
1521 * Management of partially allocated slabs.
1522 */
1523static inline void
1524__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1525{
1526	n->nr_partial++;
1527	if (tail == DEACTIVATE_TO_TAIL)
1528		list_add_tail(&page->lru, &n->partial);
1529	else
1530		list_add(&page->lru, &n->partial);
1531}
1532
1533static inline void add_partial(struct kmem_cache_node *n,
1534				struct page *page, int tail)
1535{
1536	lockdep_assert_held(&n->list_lock);
1537	__add_partial(n, page, tail);
1538}
1539
1540static inline void
1541__remove_partial(struct kmem_cache_node *n, struct page *page)
1542{
1543	list_del(&page->lru);
 
1544	n->nr_partial--;
1545}
1546
1547static inline void remove_partial(struct kmem_cache_node *n,
1548					struct page *page)
 
 
 
 
 
 
1549{
 
 
1550	lockdep_assert_held(&n->list_lock);
1551	__remove_partial(n, page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1552}
1553
1554/*
1555 * Remove slab from the partial list, freeze it and
1556 * return the pointer to the freelist.
1557 *
1558 * Returns a list of objects or NULL if it fails.
1559 */
1560static inline void *acquire_slab(struct kmem_cache *s,
1561		struct kmem_cache_node *n, struct page *page,
1562		int mode, int *objects)
1563{
1564	void *freelist;
1565	unsigned long counters;
1566	struct page new;
1567
1568	lockdep_assert_held(&n->list_lock);
1569
1570	/*
1571	 * Zap the freelist and set the frozen bit.
1572	 * The old freelist is the list of objects for the
1573	 * per cpu allocation list.
1574	 */
1575	freelist = page->freelist;
1576	counters = page->counters;
1577	new.counters = counters;
1578	*objects = new.objects - new.inuse;
1579	if (mode) {
1580		new.inuse = page->objects;
1581		new.freelist = NULL;
1582	} else {
1583		new.freelist = freelist;
1584	}
1585
1586	VM_BUG_ON(new.frozen);
1587	new.frozen = 1;
1588
1589	if (!__cmpxchg_double_slab(s, page,
1590			freelist, counters,
1591			new.freelist, new.counters,
1592			"acquire_slab"))
1593		return NULL;
1594
1595	remove_partial(n, page);
1596	WARN_ON(!freelist);
1597	return freelist;
1598}
1599
1600static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1601static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
 
 
 
 
 
1602
1603/*
1604 * Try to allocate a partial slab from a specific node.
1605 */
1606static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1607				struct kmem_cache_cpu *c, gfp_t flags)
1608{
1609	struct page *page, *page2;
1610	void *object = NULL;
1611	int available = 0;
1612	int objects;
1613
1614	/*
1615	 * Racy check. If we mistakenly see no partial slabs then we
1616	 * just allocate an empty slab. If we mistakenly try to get a
1617	 * partial slab and there is none available then get_partials()
1618	 * will return NULL.
1619	 */
1620	if (!n || !n->nr_partial)
1621		return NULL;
1622
1623	spin_lock(&n->list_lock);
1624	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1625		void *t;
1626
1627		if (!pfmemalloc_match(page, flags))
 
 
 
 
 
 
 
1628			continue;
 
1629
1630		t = acquire_slab(s, n, page, object == NULL, &objects);
1631		if (!t)
1632			break;
1633
1634		available += objects;
1635		if (!object) {
1636			c->page = page;
1637			stat(s, ALLOC_FROM_PARTIAL);
1638			object = t;
1639		} else {
1640			put_cpu_partial(s, page, 0);
1641			stat(s, CPU_PARTIAL_NODE);
 
1642		}
 
1643		if (!kmem_cache_has_cpu_partial(s)
1644			|| available > s->cpu_partial / 2)
1645			break;
 
 
 
1646
1647	}
1648	spin_unlock(&n->list_lock);
1649	return object;
1650}
1651
1652/*
1653 * Get a page from somewhere. Search in increasing NUMA distances.
1654 */
1655static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1656		struct kmem_cache_cpu *c)
1657{
1658#ifdef CONFIG_NUMA
1659	struct zonelist *zonelist;
1660	struct zoneref *z;
1661	struct zone *zone;
1662	enum zone_type high_zoneidx = gfp_zone(flags);
1663	void *object;
1664	unsigned int cpuset_mems_cookie;
1665
1666	/*
1667	 * The defrag ratio allows a configuration of the tradeoffs between
1668	 * inter node defragmentation and node local allocations. A lower
1669	 * defrag_ratio increases the tendency to do local allocations
1670	 * instead of attempting to obtain partial slabs from other nodes.
1671	 *
1672	 * If the defrag_ratio is set to 0 then kmalloc() always
1673	 * returns node local objects. If the ratio is higher then kmalloc()
1674	 * may return off node objects because partial slabs are obtained
1675	 * from other nodes and filled up.
1676	 *
1677	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1678	 * defrag_ratio = 1000) then every (well almost) allocation will
1679	 * first attempt to defrag slab caches on other nodes. This means
1680	 * scanning over all nodes to look for partial slabs which may be
1681	 * expensive if we do it every time we are trying to find a slab
1682	 * with available objects.
1683	 */
1684	if (!s->remote_node_defrag_ratio ||
1685			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1686		return NULL;
1687
1688	do {
1689		cpuset_mems_cookie = read_mems_allowed_begin();
1690		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1691		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1692			struct kmem_cache_node *n;
1693
1694			n = get_node(s, zone_to_nid(zone));
1695
1696			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1697					n->nr_partial > s->min_partial) {
1698				object = get_partial_node(s, n, c, flags);
1699				if (object) {
1700					/*
1701					 * Don't check read_mems_allowed_retry()
1702					 * here - if mems_allowed was updated in
1703					 * parallel, that was a harmless race
1704					 * between allocation and the cpuset
1705					 * update
1706					 */
1707					return object;
1708				}
1709			}
1710		}
1711	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1712#endif
1713	return NULL;
1714}
1715
1716/*
1717 * Get a partial page, lock it and return it.
1718 */
1719static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1720		struct kmem_cache_cpu *c)
1721{
1722	void *object;
1723	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
 
 
 
1724
1725	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1726	if (object || node != NUMA_NO_NODE)
1727		return object;
1728
1729	return get_any_partial(s, flags, c);
1730}
1731
1732#ifdef CONFIG_PREEMPT
 
 
1733/*
1734 * Calculate the next globally unique transaction for disambiguiation
1735 * during cmpxchg. The transactions start with the cpu number and are then
1736 * incremented by CONFIG_NR_CPUS.
1737 */
1738#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1739#else
1740/*
1741 * No preemption supported therefore also no need to check for
1742 * different cpus.
1743 */
1744#define TID_STEP 1
1745#endif
1746
1747static inline unsigned long next_tid(unsigned long tid)
1748{
1749	return tid + TID_STEP;
1750}
1751
 
1752static inline unsigned int tid_to_cpu(unsigned long tid)
1753{
1754	return tid % TID_STEP;
1755}
1756
1757static inline unsigned long tid_to_event(unsigned long tid)
1758{
1759	return tid / TID_STEP;
1760}
 
1761
1762static inline unsigned int init_tid(int cpu)
1763{
1764	return cpu;
1765}
1766
1767static inline void note_cmpxchg_failure(const char *n,
1768		const struct kmem_cache *s, unsigned long tid)
1769{
1770#ifdef SLUB_DEBUG_CMPXCHG
1771	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1772
1773	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1774
1775#ifdef CONFIG_PREEMPT
1776	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1777		printk("due to cpu change %d -> %d\n",
1778			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1779	else
1780#endif
1781	if (tid_to_event(tid) != tid_to_event(actual_tid))
1782		printk("due to cpu running other code. Event %ld->%ld\n",
1783			tid_to_event(tid), tid_to_event(actual_tid));
1784	else
1785		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1786			actual_tid, tid, next_tid(tid));
1787#endif
1788	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1789}
1790
1791static void init_kmem_cache_cpus(struct kmem_cache *s)
1792{
1793	int cpu;
 
1794
1795	for_each_possible_cpu(cpu)
1796		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
 
 
 
1797}
1798
1799/*
1800 * Remove the cpu slab
 
 
 
1801 */
1802static void deactivate_slab(struct kmem_cache *s, struct page *page,
1803				void *freelist)
1804{
1805	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1806	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1807	int lock = 0;
1808	enum slab_modes l = M_NONE, m = M_NONE;
1809	void *nextfree;
1810	int tail = DEACTIVATE_TO_HEAD;
1811	struct page new;
1812	struct page old;
 
1813
1814	if (page->freelist) {
1815		stat(s, DEACTIVATE_REMOTE_FREES);
1816		tail = DEACTIVATE_TO_TAIL;
1817	}
1818
1819	/*
1820	 * Stage one: Free all available per cpu objects back
1821	 * to the page freelist while it is still frozen. Leave the
1822	 * last one.
1823	 *
1824	 * There is no need to take the list->lock because the page
1825	 * is still frozen.
1826	 */
1827	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1828		void *prior;
1829		unsigned long counters;
 
1830
1831		do {
1832			prior = page->freelist;
1833			counters = page->counters;
1834			set_freepointer(s, freelist, prior);
1835			new.counters = counters;
1836			new.inuse--;
1837			VM_BUG_ON(!new.frozen);
1838
1839		} while (!__cmpxchg_double_slab(s, page,
1840			prior, counters,
1841			freelist, new.counters,
1842			"drain percpu freelist"));
1843
1844		freelist = nextfree;
1845	}
1846
1847	/*
1848	 * Stage two: Ensure that the page is unfrozen while the
1849	 * list presence reflects the actual number of objects
1850	 * during unfreeze.
1851	 *
1852	 * We setup the list membership and then perform a cmpxchg
1853	 * with the count. If there is a mismatch then the page
1854	 * is not unfrozen but the page is on the wrong list.
1855	 *
1856	 * Then we restart the process which may have to remove
1857	 * the page from the list that we just put it on again
1858	 * because the number of objects in the slab may have
1859	 * changed.
1860	 */
1861redo:
1862
1863	old.freelist = page->freelist;
1864	old.counters = page->counters;
1865	VM_BUG_ON(!old.frozen);
1866
1867	/* Determine target state of the slab */
1868	new.counters = old.counters;
1869	if (freelist) {
1870		new.inuse--;
1871		set_freepointer(s, freelist, old.freelist);
1872		new.freelist = freelist;
1873	} else
1874		new.freelist = old.freelist;
1875
1876	new.frozen = 0;
1877
1878	if (!new.inuse && n->nr_partial > s->min_partial)
1879		m = M_FREE;
1880	else if (new.freelist) {
1881		m = M_PARTIAL;
1882		if (!lock) {
1883			lock = 1;
1884			/*
1885			 * Taking the spinlock removes the possiblity
1886			 * that acquire_slab() will see a slab page that
1887			 * is frozen
1888			 */
1889			spin_lock(&n->list_lock);
1890		}
1891	} else {
1892		m = M_FULL;
1893		if (kmem_cache_debug(s) && !lock) {
1894			lock = 1;
1895			/*
1896			 * This also ensures that the scanning of full
1897			 * slabs from diagnostic functions will not see
1898			 * any frozen slabs.
1899			 */
1900			spin_lock(&n->list_lock);
1901		}
1902	}
1903
1904	if (l != m) {
1905
1906		if (l == M_PARTIAL)
1907
1908			remove_partial(n, page);
1909
1910		else if (l == M_FULL)
1911
1912			remove_full(s, n, page);
1913
1914		if (m == M_PARTIAL) {
1915
1916			add_partial(n, page, tail);
1917			stat(s, tail);
1918
1919		} else if (m == M_FULL) {
1920
1921			stat(s, DEACTIVATE_FULL);
1922			add_full(s, n, page);
1923
1924		}
1925	}
1926
1927	l = m;
1928	if (!__cmpxchg_double_slab(s, page,
1929				old.freelist, old.counters,
1930				new.freelist, new.counters,
1931				"unfreezing slab"))
 
 
1932		goto redo;
 
1933
1934	if (lock)
1935		spin_unlock(&n->list_lock);
1936
1937	if (m == M_FREE) {
 
 
 
 
1938		stat(s, DEACTIVATE_EMPTY);
1939		discard_slab(s, page);
1940		stat(s, FREE_SLAB);
 
 
1941	}
1942}
1943
1944/*
1945 * Unfreeze all the cpu partial slabs.
1946 *
1947 * This function must be called with interrupts disabled
1948 * for the cpu using c (or some other guarantee must be there
1949 * to guarantee no concurrent accesses).
1950 */
1951static void unfreeze_partials(struct kmem_cache *s,
1952		struct kmem_cache_cpu *c)
1953{
1954#ifdef CONFIG_SLUB_CPU_PARTIAL
1955	struct kmem_cache_node *n = NULL, *n2 = NULL;
1956	struct page *page, *discard_page = NULL;
 
1957
1958	while ((page = c->partial)) {
1959		struct page new;
1960		struct page old;
1961
1962		c->partial = page->next;
 
1963
1964		n2 = get_node(s, page_to_nid(page));
1965		if (n != n2) {
1966			if (n)
1967				spin_unlock(&n->list_lock);
1968
1969			n = n2;
1970			spin_lock(&n->list_lock);
1971		}
1972
1973		do {
1974
1975			old.freelist = page->freelist;
1976			old.counters = page->counters;
1977			VM_BUG_ON(!old.frozen);
1978
1979			new.counters = old.counters;
1980			new.freelist = old.freelist;
1981
1982			new.frozen = 0;
1983
1984		} while (!__cmpxchg_double_slab(s, page,
1985				old.freelist, old.counters,
1986				new.freelist, new.counters,
1987				"unfreezing slab"));
1988
1989		if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1990			page->next = discard_page;
1991			discard_page = page;
1992		} else {
1993			add_partial(n, page, DEACTIVATE_TO_TAIL);
1994			stat(s, FREE_ADD_PARTIAL);
1995		}
1996	}
1997
1998	if (n)
1999		spin_unlock(&n->list_lock);
2000
2001	while (discard_page) {
2002		page = discard_page;
2003		discard_page = discard_page->next;
2004
2005		stat(s, DEACTIVATE_EMPTY);
2006		discard_slab(s, page);
2007		stat(s, FREE_SLAB);
2008	}
2009#endif
2010}
2011
2012/*
2013 * Put a page that was just frozen (in __slab_free) into a partial page
2014 * slot if available. This is done without interrupts disabled and without
2015 * preemption disabled. The cmpxchg is racy and may put the partial page
2016 * onto a random cpus partial slot.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2017 *
2018 * If we did not find a slot then simply move all the partials to the
2019 * per node partial list.
2020 */
2021static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2022{
2023#ifdef CONFIG_SLUB_CPU_PARTIAL
2024	struct page *oldpage;
2025	int pages;
2026	int pobjects;
 
 
 
 
2027
2028	do {
2029		pages = 0;
2030		pobjects = 0;
2031		oldpage = this_cpu_read(s->cpu_slab->partial);
2032
2033		if (oldpage) {
2034			pobjects = oldpage->pobjects;
2035			pages = oldpage->pages;
2036			if (drain && pobjects > s->cpu_partial) {
2037				unsigned long flags;
2038				/*
2039				 * partial array is full. Move the existing
2040				 * set to the per node partial list.
2041				 */
2042				local_irq_save(flags);
2043				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2044				local_irq_restore(flags);
2045				oldpage = NULL;
2046				pobjects = 0;
2047				pages = 0;
2048				stat(s, CPU_PARTIAL_DRAIN);
2049			}
2050		}
 
2051
2052		pages++;
2053		pobjects += page->objects - page->inuse;
2054
2055		page->pages = pages;
2056		page->pobjects = pobjects;
2057		page->next = oldpage;
2058
2059	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2060								!= oldpage);
2061#endif
 
 
 
 
 
2062}
2063
 
 
 
 
 
 
 
 
2064static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2065{
2066	stat(s, CPUSLAB_FLUSH);
2067	deactivate_slab(s, c->page, c->freelist);
 
2068
 
 
 
 
 
 
 
2069	c->tid = next_tid(c->tid);
2070	c->page = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2071	c->freelist = NULL;
 
 
 
 
 
 
 
 
2072}
2073
 
 
 
 
 
 
2074/*
2075 * Flush cpu slab.
2076 *
2077 * Called from IPI handler with interrupts disabled.
2078 */
2079static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2080{
2081	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
 
 
 
 
 
 
 
2082
2083	if (likely(c)) {
2084		if (c->page)
2085			flush_slab(s, c);
2086
2087		unfreeze_partials(s, c);
2088	}
2089}
2090
2091static void flush_cpu_slab(void *d)
2092{
2093	struct kmem_cache *s = d;
2094
2095	__flush_cpu_slab(s, smp_processor_id());
2096}
2097
2098static bool has_cpu_slab(int cpu, void *info)
 
 
 
2099{
2100	struct kmem_cache *s = info;
2101	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2102
2103	return c->page || c->partial;
2104}
2105
2106static void flush_all(struct kmem_cache *s)
2107{
2108	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2109}
2110
 
 
 
 
 
 
 
2111/*
2112 * Check if the objects in a per cpu structure fit numa
2113 * locality expectations.
2114 */
2115static inline int node_match(struct page *page, int node)
2116{
2117#ifdef CONFIG_NUMA
2118	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2119		return 0;
2120#endif
2121	return 1;
2122}
2123
2124static int count_free(struct page *page)
 
 
 
 
 
 
2125{
2126	return page->objects - page->inuse;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2127}
 
2128
 
2129static unsigned long count_partial(struct kmem_cache_node *n,
2130					int (*get_count)(struct page *))
2131{
2132	unsigned long flags;
2133	unsigned long x = 0;
2134	struct page *page;
2135
2136	spin_lock_irqsave(&n->list_lock, flags);
2137	list_for_each_entry(page, &n->partial, lru)
2138		x += get_count(page);
2139	spin_unlock_irqrestore(&n->list_lock, flags);
2140	return x;
2141}
 
2142
2143static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2144{
2145#ifdef CONFIG_SLUB_DEBUG
2146	return atomic_long_read(&n->total_objects);
2147#else
2148	return 0;
2149#endif
2150}
2151
2152static noinline void
2153slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2154{
 
 
2155	int node;
 
 
 
 
2156
2157	printk(KERN_WARNING
2158		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2159		nid, gfpflags);
2160	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2161		"default order: %d, min order: %d\n", s->name, s->object_size,
2162		s->size, oo_order(s->oo), oo_order(s->min));
2163
2164	if (oo_order(s->min) > get_order(s->object_size))
2165		printk(KERN_WARNING "  %s debugging increased min order, use "
2166		       "slub_debug=O to disable.\n", s->name);
2167
2168	for_each_online_node(node) {
2169		struct kmem_cache_node *n = get_node(s, node);
2170		unsigned long nr_slabs;
2171		unsigned long nr_objs;
2172		unsigned long nr_free;
2173
2174		if (!n)
2175			continue;
2176
2177		nr_free  = count_partial(n, count_free);
2178		nr_slabs = node_nr_slabs(n);
2179		nr_objs  = node_nr_objs(n);
2180
2181		printk(KERN_WARNING
2182			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2183			node, nr_slabs, nr_objs, nr_free);
2184	}
2185}
 
 
 
 
2186
2187static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2188			int node, struct kmem_cache_cpu **pc)
2189{
2190	void *freelist;
2191	struct kmem_cache_cpu *c = *pc;
2192	struct page *page;
2193
2194	freelist = get_partial(s, flags, node, c);
2195
2196	if (freelist)
2197		return freelist;
2198
2199	page = new_slab(s, flags, node);
2200	if (page) {
2201		c = __this_cpu_ptr(s->cpu_slab);
2202		if (c->page)
2203			flush_slab(s, c);
2204
2205		/*
2206		 * No other reference to the page yet so we can
2207		 * muck around with it freely without cmpxchg
2208		 */
2209		freelist = page->freelist;
2210		page->freelist = NULL;
2211
2212		stat(s, ALLOC_SLAB);
2213		c->page = page;
2214		*pc = c;
2215	} else
2216		freelist = NULL;
2217
2218	return freelist;
2219}
2220
2221static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2222{
2223	if (unlikely(PageSlabPfmemalloc(page)))
2224		return gfp_pfmemalloc_allowed(gfpflags);
2225
2226	return true;
2227}
2228
 
2229/*
2230 * Check the page->freelist of a page and either transfer the freelist to the
2231 * per cpu freelist or deactivate the page.
2232 *
2233 * The page is still frozen if the return value is not NULL.
2234 *
2235 * If this function returns NULL then the page has been unfrozen.
2236 *
2237 * This function must be called with interrupt disabled.
2238 */
2239static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2240{
2241	struct page new;
2242	unsigned long counters;
2243	void *freelist;
2244
 
 
2245	do {
2246		freelist = page->freelist;
2247		counters = page->counters;
2248
2249		new.counters = counters;
2250		VM_BUG_ON(!new.frozen);
2251
2252		new.inuse = page->objects;
2253		new.frozen = freelist != NULL;
2254
2255	} while (!__cmpxchg_double_slab(s, page,
2256		freelist, counters,
2257		NULL, new.counters,
2258		"get_freelist"));
2259
2260	return freelist;
2261}
2262
2263/*
2264 * Slow path. The lockless freelist is empty or we need to perform
2265 * debugging duties.
2266 *
2267 * Processing is still very fast if new objects have been freed to the
2268 * regular freelist. In that case we simply take over the regular freelist
2269 * as the lockless freelist and zap the regular freelist.
2270 *
2271 * If that is not working then we fall back to the partial lists. We take the
2272 * first element of the freelist as the object to allocate now and move the
2273 * rest of the freelist to the lockless freelist.
2274 *
2275 * And if we were unable to get a new slab from the partial slab lists then
2276 * we need to allocate a new slab. This is the slowest path since it involves
2277 * a call to the page allocator and the setup of a new slab.
 
 
 
2278 */
2279static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2280			  unsigned long addr, struct kmem_cache_cpu *c)
2281{
2282	void *freelist;
2283	struct page *page;
2284	unsigned long flags;
 
2285
2286	local_irq_save(flags);
2287#ifdef CONFIG_PREEMPT
2288	/*
2289	 * We may have been preempted and rescheduled on a different
2290	 * cpu before disabling interrupts. Need to reload cpu area
2291	 * pointer.
2292	 */
2293	c = this_cpu_ptr(s->cpu_slab);
2294#endif
2295
2296	page = c->page;
2297	if (!page)
 
 
 
 
 
 
 
2298		goto new_slab;
 
2299redo:
2300
2301	if (unlikely(!node_match(page, node))) {
2302		stat(s, ALLOC_NODE_MISMATCH);
2303		deactivate_slab(s, page, c->freelist);
2304		c->page = NULL;
2305		c->freelist = NULL;
2306		goto new_slab;
 
 
 
 
 
2307	}
2308
2309	/*
2310	 * By rights, we should be searching for a slab page that was
2311	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2312	 * information when the page leaves the per-cpu allocator
2313	 */
2314	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2315		deactivate_slab(s, page, c->freelist);
2316		c->page = NULL;
2317		c->freelist = NULL;
2318		goto new_slab;
 
 
 
2319	}
2320
2321	/* must check again c->freelist in case of cpu migration or IRQ */
2322	freelist = c->freelist;
2323	if (freelist)
2324		goto load_freelist;
2325
2326	stat(s, ALLOC_SLOWPATH);
2327
2328	freelist = get_freelist(s, page);
2329
2330	if (!freelist) {
2331		c->page = NULL;
 
 
2332		stat(s, DEACTIVATE_BYPASS);
2333		goto new_slab;
2334	}
2335
2336	stat(s, ALLOC_REFILL);
2337
2338load_freelist:
 
 
 
2339	/*
2340	 * freelist is pointing to the list of objects to be used.
2341	 * page is pointing to the page from which the objects are obtained.
2342	 * That page must be frozen for per cpu allocations to work.
2343	 */
2344	VM_BUG_ON(!c->page->frozen);
2345	c->freelist = get_freepointer(s, freelist);
2346	c->tid = next_tid(c->tid);
2347	local_irq_restore(flags);
2348	return freelist;
2349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2350new_slab:
2351
2352	if (c->partial) {
2353		page = c->page = c->partial;
2354		c->partial = page->next;
 
 
 
 
 
 
 
 
 
 
 
 
2355		stat(s, CPU_PARTIAL_ALLOC);
2356		c->freelist = NULL;
2357		goto redo;
2358	}
2359
2360	freelist = new_slab_objects(s, gfpflags, node, &c);
 
 
 
 
 
 
 
2361
2362	if (unlikely(!freelist)) {
2363		if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2364			slab_out_of_memory(s, gfpflags, node);
2365
2366		local_irq_restore(flags);
 
2367		return NULL;
2368	}
2369
2370	page = c->page;
2371	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2372		goto load_freelist;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2373
2374	/* Only entered in the debug case */
2375	if (kmem_cache_debug(s) &&
2376			!alloc_debug_processing(s, page, freelist, addr))
2377		goto new_slab;	/* Slab failed checks. Next slab needed */
2378
2379	deactivate_slab(s, page, get_freepointer(s, freelist));
2380	c->page = NULL;
2381	c->freelist = NULL;
2382	local_irq_restore(flags);
2383	return freelist;
2384}
2385
2386/*
2387 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2388 * have the fastpath folded into their functions. So no function call
2389 * overhead for requests that can be satisfied on the fastpath.
2390 *
2391 * The fastpath works by first checking if the lockless freelist can be used.
2392 * If not then __slab_alloc is called for slow processing.
2393 *
2394 * Otherwise we can simply pick the next object from the lockless free list.
2395 */
2396static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2397		gfp_t gfpflags, int node, unsigned long addr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2398{
2399	void **object;
2400	struct kmem_cache_cpu *c;
2401	struct page *page;
2402	unsigned long tid;
 
2403
2404	if (slab_pre_alloc_hook(s, gfpflags))
2405		return NULL;
2406
2407	s = memcg_kmem_get_cache(s, gfpflags);
2408redo:
2409	/*
2410	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2411	 * enabled. We may switch back and forth between cpus while
2412	 * reading from one cpu area. That does not matter as long
2413	 * as we end up on the original cpu again when doing the cmpxchg.
2414	 *
2415	 * Preemption is disabled for the retrieval of the tid because that
2416	 * must occur from the current processor. We cannot allow rescheduling
2417	 * on a different processor between the determination of the pointer
2418	 * and the retrieval of the tid.
 
 
 
 
 
 
 
 
 
 
 
 
2419	 */
2420	preempt_disable();
2421	c = __this_cpu_ptr(s->cpu_slab);
2422
2423	/*
2424	 * The transaction ids are globally unique per cpu and per operation on
2425	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2426	 * occurs on the right processor and that there was no operation on the
2427	 * linked list in between.
2428	 */
2429	tid = c->tid;
2430	preempt_enable();
2431
2432	object = c->freelist;
2433	page = c->page;
2434	if (unlikely(!object || !node_match(page, node)))
2435		object = __slab_alloc(s, gfpflags, node, addr, c);
2436
2437	else {
 
 
 
2438		void *next_object = get_freepointer_safe(s, object);
2439
2440		/*
2441		 * The cmpxchg will only match if there was no additional
2442		 * operation and if we are on the right processor.
2443		 *
2444		 * The cmpxchg does the following atomically (without lock
2445		 * semantics!)
2446		 * 1. Relocate first pointer to the current per cpu area.
2447		 * 2. Verify that tid and freelist have not been changed
2448		 * 3. If they were not changed replace tid and freelist
2449		 *
2450		 * Since this is without lock semantics the protection is only
2451		 * against code executing on this cpu *not* from access by
2452		 * other cpus.
2453		 */
2454		if (unlikely(!this_cpu_cmpxchg_double(
2455				s->cpu_slab->freelist, s->cpu_slab->tid,
2456				object, tid,
2457				next_object, next_tid(tid)))) {
2458
2459			note_cmpxchg_failure("slab_alloc", s, tid);
2460			goto redo;
2461		}
2462		prefetch_freepointer(s, next_object);
2463		stat(s, ALLOC_FASTPATH);
2464	}
2465
2466	if (unlikely(gfpflags & __GFP_ZERO) && object)
2467		memset(object, 0, s->object_size);
 
 
 
 
 
 
 
 
 
 
 
 
2468
2469	slab_post_alloc_hook(s, gfpflags, object);
 
 
 
 
 
 
 
 
 
2470
2471	return object;
2472}
 
2473
2474static __always_inline void *slab_alloc(struct kmem_cache *s,
2475		gfp_t gfpflags, unsigned long addr)
 
 
 
 
2476{
2477	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
 
 
2478}
2479
2480void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2481{
2482	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2483
2484	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2485				s->size, gfpflags);
2486
2487	return ret;
2488}
 
 
 
 
 
2489EXPORT_SYMBOL(kmem_cache_alloc);
2490
2491#ifdef CONFIG_TRACING
2492void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2493{
2494	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2495	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2496	return ret;
 
 
 
 
 
 
 
2497}
2498EXPORT_SYMBOL(kmem_cache_alloc_trace);
2499#endif
2500
2501#ifdef CONFIG_NUMA
2502void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2503{
2504	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2505
2506	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2507				    s->object_size, s->size, gfpflags, node);
2508
2509	return ret;
2510}
2511EXPORT_SYMBOL(kmem_cache_alloc_node);
2512
2513#ifdef CONFIG_TRACING
2514void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2515				    gfp_t gfpflags,
2516				    int node, size_t size)
2517{
2518	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2519
2520	trace_kmalloc_node(_RET_IP_, ret,
2521			   size, s->size, gfpflags, node);
2522	return ret;
 
2523}
2524EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2525#endif
2526#endif
2527
2528/*
2529 * Slow patch handling. This may still be called frequently since objects
2530 * have a longer lifetime than the cpu slabs in most processing loads.
2531 *
2532 * So we still attempt to reduce cache line usage. Just take the slab
2533 * lock and free the item. If there is no additional partial page
2534 * handling required then we can return immediately.
2535 */
2536static void __slab_free(struct kmem_cache *s, struct page *page,
2537			void *x, unsigned long addr)
 
 
2538{
2539	void *prior;
2540	void **object = (void *)x;
2541	int was_frozen;
2542	struct page new;
2543	unsigned long counters;
2544	struct kmem_cache_node *n = NULL;
2545	unsigned long uninitialized_var(flags);
2546
2547	stat(s, FREE_SLOWPATH);
2548
2549	if (kmem_cache_debug(s) &&
2550		!(n = free_debug_processing(s, page, x, addr, &flags)))
 
 
 
2551		return;
 
2552
2553	do {
2554		if (unlikely(n)) {
2555			spin_unlock_irqrestore(&n->list_lock, flags);
2556			n = NULL;
2557		}
2558		prior = page->freelist;
2559		counters = page->counters;
2560		set_freepointer(s, object, prior);
2561		new.counters = counters;
2562		was_frozen = new.frozen;
2563		new.inuse--;
2564		if ((!new.inuse || !prior) && !was_frozen) {
2565
2566			if (kmem_cache_has_cpu_partial(s) && !prior) {
2567
2568				/*
2569				 * Slab was on no list before and will be
2570				 * partially empty
2571				 * We can defer the list move and instead
2572				 * freeze it.
2573				 */
2574				new.frozen = 1;
2575
2576			} else { /* Needs to be taken off a list */
2577
2578	                        n = get_node(s, page_to_nid(page));
2579				/*
2580				 * Speculatively acquire the list_lock.
2581				 * If the cmpxchg does not succeed then we may
2582				 * drop the list_lock without any processing.
2583				 *
2584				 * Otherwise the list_lock will synchronize with
2585				 * other processors updating the list of slabs.
2586				 */
2587				spin_lock_irqsave(&n->list_lock, flags);
2588
2589			}
2590		}
2591
2592	} while (!cmpxchg_double_slab(s, page,
2593		prior, counters,
2594		object, new.counters,
2595		"__slab_free"));
2596
2597	if (likely(!n)) {
2598
2599		/*
2600		 * If we just froze the page then put it onto the
2601		 * per cpu partial list.
2602		 */
2603		if (new.frozen && !was_frozen) {
2604			put_cpu_partial(s, page, 1);
 
 
 
 
 
 
2605			stat(s, CPU_PARTIAL_FREE);
2606		}
2607		/*
2608		 * The list lock was not taken therefore no list
2609		 * activity can be necessary.
2610		 */
2611                if (was_frozen)
2612                        stat(s, FREE_FROZEN);
2613                return;
2614        }
2615
2616	if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
 
 
 
2617		goto slab_empty;
2618
2619	/*
2620	 * Objects left in the slab. If it was not on the partial list before
2621	 * then add it.
2622	 */
2623	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2624		if (kmem_cache_debug(s))
2625			remove_full(s, n, page);
2626		add_partial(n, page, DEACTIVATE_TO_TAIL);
2627		stat(s, FREE_ADD_PARTIAL);
2628	}
2629	spin_unlock_irqrestore(&n->list_lock, flags);
2630	return;
2631
2632slab_empty:
2633	if (prior) {
2634		/*
2635		 * Slab on the partial list.
2636		 */
2637		remove_partial(n, page);
2638		stat(s, FREE_REMOVE_PARTIAL);
2639	} else {
2640		/* Slab must be on the full list */
2641		remove_full(s, n, page);
2642	}
2643
2644	spin_unlock_irqrestore(&n->list_lock, flags);
2645	stat(s, FREE_SLAB);
2646	discard_slab(s, page);
2647}
2648
 
2649/*
2650 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2651 * can perform fastpath freeing without additional function calls.
2652 *
2653 * The fastpath is only possible if we are freeing to the current cpu slab
2654 * of this processor. This typically the case if we have just allocated
2655 * the item before.
2656 *
2657 * If fastpath is not possible then fall back to __slab_free where we deal
2658 * with all sorts of special processing.
2659 */
2660static __always_inline void slab_free(struct kmem_cache *s,
2661			struct page *page, void *x, unsigned long addr)
 
 
 
 
 
2662{
2663	void **object = (void *)x;
2664	struct kmem_cache_cpu *c;
2665	unsigned long tid;
2666
2667	slab_free_hook(s, x);
2668
2669redo:
2670	/*
2671	 * Determine the currently cpus per cpu slab.
2672	 * The cpu may change afterward. However that does not matter since
2673	 * data is retrieved via this pointer. If we are on the same cpu
2674	 * during the cmpxchg then the free will succedd.
2675	 */
2676	preempt_disable();
2677	c = __this_cpu_ptr(s->cpu_slab);
 
 
 
 
 
 
 
 
2678
2679	tid = c->tid;
2680	preempt_enable();
2681
2682	if (likely(page == c->page)) {
2683		set_freepointer(s, object, c->freelist);
2684
2685		if (unlikely(!this_cpu_cmpxchg_double(
2686				s->cpu_slab->freelist, s->cpu_slab->tid,
2687				c->freelist, tid,
2688				object, next_tid(tid)))) {
2689
2690			note_cmpxchg_failure("slab_free", s, tid);
2691			goto redo;
2692		}
2693		stat(s, FREE_FASTPATH);
2694	} else
2695		__slab_free(s, page, x, addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2696
 
 
 
2697}
2698
2699void kmem_cache_free(struct kmem_cache *s, void *x)
2700{
2701	s = cache_from_obj(s, x);
2702	if (!s)
2703		return;
2704	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2705	trace_kmem_cache_free(_RET_IP_, x);
2706}
2707EXPORT_SYMBOL(kmem_cache_free);
2708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2709/*
2710 * Object placement in a slab is made very easy because we always start at
2711 * offset 0. If we tune the size of the object to the alignment then we can
2712 * get the required alignment by putting one properly sized object after
2713 * another.
2714 *
2715 * Notice that the allocation order determines the sizes of the per cpu
2716 * caches. Each processor has always one slab available for allocations.
2717 * Increasing the allocation order reduces the number of times that slabs
2718 * must be moved on and off the partial lists and is therefore a factor in
2719 * locking overhead.
2720 */
2721
2722/*
2723 * Mininum / Maximum order of slab pages. This influences locking overhead
2724 * and slab fragmentation. A higher order reduces the number of partial slabs
2725 * and increases the number of allocations possible without having to
2726 * take the list_lock.
2727 */
2728static int slub_min_order;
2729static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2730static int slub_min_objects;
2731
2732/*
2733 * Merge control. If this is set then no merging of slab caches will occur.
2734 * (Could be removed. This was introduced to pacify the merge skeptics.)
2735 */
2736static int slub_nomerge;
2737
2738/*
2739 * Calculate the order of allocation given an slab object size.
2740 *
2741 * The order of allocation has significant impact on performance and other
2742 * system components. Generally order 0 allocations should be preferred since
2743 * order 0 does not cause fragmentation in the page allocator. Larger objects
2744 * be problematic to put into order 0 slabs because there may be too much
2745 * unused space left. We go to a higher order if more than 1/16th of the slab
2746 * would be wasted.
2747 *
2748 * In order to reach satisfactory performance we must ensure that a minimum
2749 * number of objects is in one slab. Otherwise we may generate too much
2750 * activity on the partial lists which requires taking the list_lock. This is
2751 * less a concern for large slabs though which are rarely used.
2752 *
2753 * slub_max_order specifies the order where we begin to stop considering the
2754 * number of objects in a slab as critical. If we reach slub_max_order then
2755 * we try to keep the page order as low as possible. So we accept more waste
2756 * of space in favor of a small page order.
2757 *
2758 * Higher order allocations also allow the placement of more objects in a
2759 * slab and thereby reduce object handling overhead. If the user has
2760 * requested a higher mininum order then we start with that one instead of
2761 * the smallest order which will fit the object.
2762 */
2763static inline int slab_order(int size, int min_objects,
2764				int max_order, int fract_leftover, int reserved)
 
2765{
2766	int order;
2767	int rem;
2768	int min_order = slub_min_order;
2769
2770	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2771		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2772
2773	for (order = max(min_order,
2774				fls(min_objects * size - 1) - PAGE_SHIFT);
2775			order <= max_order; order++) {
2776
2777		unsigned long slab_size = PAGE_SIZE << order;
2778
2779		if (slab_size < min_objects * size + reserved)
2780			continue;
2781
2782		rem = (slab_size - reserved) % size;
2783
2784		if (rem <= slab_size / fract_leftover)
2785			break;
2786
2787	}
2788
2789	return order;
2790}
2791
2792static inline int calculate_order(int size, int reserved)
2793{
2794	int order;
2795	int min_objects;
2796	int fraction;
2797	int max_objects;
2798
2799	/*
2800	 * Attempt to find best configuration for a slab. This
2801	 * works by first attempting to generate a layout with
2802	 * the best configuration and backing off gradually.
2803	 *
2804	 * First we reduce the acceptable waste in a slab. Then
2805	 * we reduce the minimum objects required in a slab.
2806	 */
2807	min_objects = slub_min_objects;
2808	if (!min_objects)
2809		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2810	max_objects = order_objects(slub_max_order, size, reserved);
 
 
 
 
 
 
 
 
 
 
 
 
 
2811	min_objects = min(min_objects, max_objects);
2812
2813	while (min_objects > 1) {
 
 
2814		fraction = 16;
2815		while (fraction >= 4) {
2816			order = slab_order(size, min_objects,
2817					slub_max_order, fraction, reserved);
2818			if (order <= slub_max_order)
2819				return order;
2820			fraction /= 2;
2821		}
2822		min_objects--;
2823	}
2824
2825	/*
2826	 * We were unable to place multiple objects in a slab. Now
2827	 * lets see if we can place a single object there.
2828	 */
2829	order = slab_order(size, 1, slub_max_order, 1, reserved);
2830	if (order <= slub_max_order)
2831		return order;
2832
2833	/*
2834	 * Doh this slab cannot be placed using slub_max_order.
2835	 */
2836	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2837	if (order < MAX_ORDER)
2838		return order;
2839	return -ENOSYS;
2840}
2841
2842static void
2843init_kmem_cache_node(struct kmem_cache_node *n)
2844{
2845	n->nr_partial = 0;
2846	spin_lock_init(&n->list_lock);
2847	INIT_LIST_HEAD(&n->partial);
2848#ifdef CONFIG_SLUB_DEBUG
2849	atomic_long_set(&n->nr_slabs, 0);
2850	atomic_long_set(&n->total_objects, 0);
2851	INIT_LIST_HEAD(&n->full);
2852#endif
2853}
2854
 
2855static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2856{
2857	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2858			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
 
2859
2860	/*
2861	 * Must align to double word boundary for the double cmpxchg
2862	 * instructions to work; see __pcpu_double_call_return_bool().
2863	 */
2864	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2865				     2 * sizeof(void *));
2866
2867	if (!s->cpu_slab)
2868		return 0;
2869
2870	init_kmem_cache_cpus(s);
2871
2872	return 1;
2873}
 
 
 
 
 
 
2874
2875static struct kmem_cache *kmem_cache_node;
2876
2877/*
2878 * No kmalloc_node yet so do it by hand. We know that this is the first
2879 * slab on the node for this slabcache. There are no concurrent accesses
2880 * possible.
2881 *
2882 * Note that this function only works on the kmem_cache_node
2883 * when allocating for the kmem_cache_node. This is used for bootstrapping
2884 * memory on a fresh node that has no slab structures yet.
2885 */
2886static void early_kmem_cache_node_alloc(int node)
2887{
2888	struct page *page;
2889	struct kmem_cache_node *n;
2890
2891	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2892
2893	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2894
2895	BUG_ON(!page);
2896	if (page_to_nid(page) != node) {
2897		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2898				"node %d\n", node);
2899		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2900				"in order to be able to continue\n");
2901	}
2902
2903	n = page->freelist;
2904	BUG_ON(!n);
2905	page->freelist = get_freepointer(kmem_cache_node, n);
2906	page->inuse = 1;
2907	page->frozen = 0;
2908	kmem_cache_node->node[node] = n;
2909#ifdef CONFIG_SLUB_DEBUG
2910	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2911	init_tracking(kmem_cache_node, n);
2912#endif
 
 
 
 
2913	init_kmem_cache_node(n);
2914	inc_slabs_node(kmem_cache_node, node, page->objects);
2915
2916	/*
2917	 * No locks need to be taken here as it has just been
2918	 * initialized and there is no concurrent access.
2919	 */
2920	__add_partial(n, page, DEACTIVATE_TO_HEAD);
2921}
2922
2923static void free_kmem_cache_nodes(struct kmem_cache *s)
2924{
2925	int node;
 
2926
2927	for_each_node_state(node, N_NORMAL_MEMORY) {
2928		struct kmem_cache_node *n = s->node[node];
2929
2930		if (n)
2931			kmem_cache_free(kmem_cache_node, n);
2932
2933		s->node[node] = NULL;
 
2934	}
2935}
2936
 
 
 
 
 
 
 
 
 
2937static int init_kmem_cache_nodes(struct kmem_cache *s)
2938{
2939	int node;
2940
2941	for_each_node_state(node, N_NORMAL_MEMORY) {
2942		struct kmem_cache_node *n;
2943
2944		if (slab_state == DOWN) {
2945			early_kmem_cache_node_alloc(node);
2946			continue;
2947		}
2948		n = kmem_cache_alloc_node(kmem_cache_node,
2949						GFP_KERNEL, node);
2950
2951		if (!n) {
2952			free_kmem_cache_nodes(s);
2953			return 0;
2954		}
2955
 
2956		s->node[node] = n;
2957		init_kmem_cache_node(n);
2958	}
2959	return 1;
2960}
2961
2962static void set_min_partial(struct kmem_cache *s, unsigned long min)
2963{
2964	if (min < MIN_PARTIAL)
2965		min = MIN_PARTIAL;
2966	else if (min > MAX_PARTIAL)
2967		min = MAX_PARTIAL;
2968	s->min_partial = min;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2969}
2970
2971/*
2972 * calculate_sizes() determines the order and the distribution of data within
2973 * a slab object.
2974 */
2975static int calculate_sizes(struct kmem_cache *s, int forced_order)
2976{
2977	unsigned long flags = s->flags;
2978	unsigned long size = s->object_size;
2979	int order;
2980
2981	/*
2982	 * Round up object size to the next word boundary. We can only
2983	 * place the free pointer at word boundaries and this determines
2984	 * the possible location of the free pointer.
2985	 */
2986	size = ALIGN(size, sizeof(void *));
2987
2988#ifdef CONFIG_SLUB_DEBUG
2989	/*
2990	 * Determine if we can poison the object itself. If the user of
2991	 * the slab may touch the object after free or before allocation
2992	 * then we should never poison the object itself.
2993	 */
2994	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2995			!s->ctor)
2996		s->flags |= __OBJECT_POISON;
2997	else
2998		s->flags &= ~__OBJECT_POISON;
2999
3000
3001	/*
3002	 * If we are Redzoning then check if there is some space between the
3003	 * end of the object and the free pointer. If not then add an
3004	 * additional word to have some bytes to store Redzone information.
3005	 */
3006	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3007		size += sizeof(void *);
3008#endif
3009
3010	/*
3011	 * With that we have determined the number of bytes in actual use
3012	 * by the object. This is the potential offset to the free pointer.
3013	 */
3014	s->inuse = size;
3015
3016	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3017		s->ctor)) {
 
 
3018		/*
3019		 * Relocate free pointer after the object if it is not
3020		 * permitted to overwrite the first word of the object on
3021		 * kmem_cache_free.
3022		 *
3023		 * This is the case if we do RCU, have a constructor or
3024		 * destructor or are poisoning the objects.
 
 
 
 
 
 
3025		 */
3026		s->offset = size;
3027		size += sizeof(void *);
 
 
 
 
 
 
 
3028	}
3029
3030#ifdef CONFIG_SLUB_DEBUG
3031	if (flags & SLAB_STORE_USER)
3032		/*
3033		 * Need to store information about allocs and frees after
3034		 * the object.
3035		 */
3036		size += 2 * sizeof(struct track);
3037
3038	if (flags & SLAB_RED_ZONE)
 
 
 
 
 
 
 
 
3039		/*
3040		 * Add some empty padding so that we can catch
3041		 * overwrites from earlier objects rather than let
3042		 * tracking information or the free pointer be
3043		 * corrupted if a user writes before the start
3044		 * of the object.
3045		 */
3046		size += sizeof(void *);
 
 
 
 
 
3047#endif
3048
3049	/*
3050	 * SLUB stores one object immediately after another beginning from
3051	 * offset 0. In order to align the objects we have to simply size
3052	 * each object to conform to the alignment.
3053	 */
3054	size = ALIGN(size, s->align);
3055	s->size = size;
3056	if (forced_order >= 0)
3057		order = forced_order;
3058	else
3059		order = calculate_order(size, s->reserved);
3060
3061	if (order < 0)
3062		return 0;
3063
3064	s->allocflags = 0;
3065	if (order)
3066		s->allocflags |= __GFP_COMP;
3067
3068	if (s->flags & SLAB_CACHE_DMA)
3069		s->allocflags |= GFP_DMA;
3070
 
 
 
3071	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3072		s->allocflags |= __GFP_RECLAIMABLE;
3073
3074	/*
3075	 * Determine the number of objects per slab
3076	 */
3077	s->oo = oo_make(order, size, s->reserved);
3078	s->min = oo_make(get_order(size), size, s->reserved);
3079	if (oo_objects(s->oo) > oo_objects(s->max))
3080		s->max = s->oo;
3081
3082	return !!oo_objects(s->oo);
3083}
3084
3085static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3086{
3087	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3088	s->reserved = 0;
3089
3090	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3091		s->reserved = sizeof(struct rcu_head);
3092
3093	if (!calculate_sizes(s, -1))
3094		goto error;
3095	if (disable_higher_order_debug) {
3096		/*
3097		 * Disable debugging flags that store metadata if the min slab
3098		 * order increased.
3099		 */
3100		if (get_order(s->size) > get_order(s->object_size)) {
3101			s->flags &= ~DEBUG_METADATA_FLAGS;
3102			s->offset = 0;
3103			if (!calculate_sizes(s, -1))
3104				goto error;
3105		}
3106	}
3107
3108#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3109    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3110	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3111		/* Enable fast mode */
3112		s->flags |= __CMPXCHG_DOUBLE;
3113#endif
3114
3115	/*
3116	 * The larger the object size is, the more pages we want on the partial
3117	 * list to avoid pounding the page allocator excessively.
3118	 */
3119	set_min_partial(s, ilog2(s->size) / 2);
 
3120
3121	/*
3122	 * cpu_partial determined the maximum number of objects kept in the
3123	 * per cpu partial lists of a processor.
3124	 *
3125	 * Per cpu partial lists mainly contain slabs that just have one
3126	 * object freed. If they are used for allocation then they can be
3127	 * filled up again with minimal effort. The slab will never hit the
3128	 * per node partial lists and therefore no locking will be required.
3129	 *
3130	 * This setting also determines
3131	 *
3132	 * A) The number of objects from per cpu partial slabs dumped to the
3133	 *    per node list when we reach the limit.
3134	 * B) The number of objects in cpu partial slabs to extract from the
3135	 *    per node list when we run out of per cpu objects. We only fetch
3136	 *    50% to keep some capacity around for frees.
3137	 */
3138	if (!kmem_cache_has_cpu_partial(s))
3139		s->cpu_partial = 0;
3140	else if (s->size >= PAGE_SIZE)
3141		s->cpu_partial = 2;
3142	else if (s->size >= 1024)
3143		s->cpu_partial = 6;
3144	else if (s->size >= 256)
3145		s->cpu_partial = 13;
3146	else
3147		s->cpu_partial = 30;
3148
3149#ifdef CONFIG_NUMA
3150	s->remote_node_defrag_ratio = 1000;
3151#endif
 
 
 
 
 
 
 
3152	if (!init_kmem_cache_nodes(s))
3153		goto error;
3154
3155	if (alloc_kmem_cache_cpus(s))
3156		return 0;
3157
3158	free_kmem_cache_nodes(s);
3159error:
3160	if (flags & SLAB_PANIC)
3161		panic("Cannot create slab %s size=%lu realsize=%u "
3162			"order=%u offset=%u flags=%lx\n",
3163			s->name, (unsigned long)s->size, s->size,
3164			oo_order(s->oo), s->offset, flags);
3165	return -EINVAL;
3166}
3167
3168static void list_slab_objects(struct kmem_cache *s, struct page *page,
3169							const char *text)
3170{
3171#ifdef CONFIG_SLUB_DEBUG
3172	void *addr = page_address(page);
3173	void *p;
3174	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3175				     sizeof(long), GFP_ATOMIC);
3176	if (!map)
3177		return;
3178	slab_err(s, page, text, s->name);
3179	slab_lock(page);
3180
3181	get_map(s, page, map);
3182	for_each_object(p, s, addr, page->objects) {
 
 
 
 
3183
3184		if (!test_bit(slab_index(p, s, addr), map)) {
3185			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3186							p, p - addr);
3187			print_tracking(s, p);
3188		}
3189	}
3190	slab_unlock(page);
3191	kfree(map);
3192#endif
3193}
3194
3195/*
3196 * Attempt to free all partial slabs on a node.
3197 * This is called from kmem_cache_close(). We must be the last thread
3198 * using the cache and therefore we do not need to lock anymore.
3199 */
3200static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3201{
3202	struct page *page, *h;
 
3203
3204	list_for_each_entry_safe(page, h, &n->partial, lru) {
3205		if (!page->inuse) {
3206			__remove_partial(n, page);
3207			discard_slab(s, page);
 
 
3208		} else {
3209			list_slab_objects(s, page,
3210			"Objects remaining in %s on kmem_cache_close()");
3211		}
3212	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3213}
3214
3215/*
3216 * Release all resources used by a slab cache.
3217 */
3218static inline int kmem_cache_close(struct kmem_cache *s)
3219{
3220	int node;
 
3221
3222	flush_all(s);
3223	/* Attempt to free all objects */
3224	for_each_node_state(node, N_NORMAL_MEMORY) {
3225		struct kmem_cache_node *n = get_node(s, node);
3226
3227		free_partial(s, n);
3228		if (n->nr_partial || slabs_node(s, node))
3229			return 1;
3230	}
3231	free_percpu(s->cpu_slab);
3232	free_kmem_cache_nodes(s);
3233	return 0;
3234}
3235
3236int __kmem_cache_shutdown(struct kmem_cache *s)
 
3237{
3238	return kmem_cache_close(s);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3239}
 
3240
3241/********************************************************************
3242 *		Kmalloc subsystem
3243 *******************************************************************/
3244
3245static int __init setup_slub_min_order(char *str)
3246{
3247	get_option(&str, &slub_min_order);
3248
3249	return 1;
3250}
3251
3252__setup("slub_min_order=", setup_slub_min_order);
3253
3254static int __init setup_slub_max_order(char *str)
3255{
3256	get_option(&str, &slub_max_order);
3257	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3258
3259	return 1;
3260}
3261
3262__setup("slub_max_order=", setup_slub_max_order);
3263
3264static int __init setup_slub_min_objects(char *str)
3265{
3266	get_option(&str, &slub_min_objects);
3267
3268	return 1;
3269}
3270
3271__setup("slub_min_objects=", setup_slub_min_objects);
3272
3273static int __init setup_slub_nomerge(char *str)
3274{
3275	slub_nomerge = 1;
3276	return 1;
3277}
3278
3279__setup("slub_nomerge", setup_slub_nomerge);
3280
3281void *__kmalloc(size_t size, gfp_t flags)
 
 
3282{
3283	struct kmem_cache *s;
3284	void *ret;
 
3285
3286	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3287		return kmalloc_large(size, flags);
3288
3289	s = kmalloc_slab(size, flags);
 
3290
3291	if (unlikely(ZERO_OR_NULL_PTR(s)))
3292		return s;
3293
3294	ret = slab_alloc(s, flags, _RET_IP_);
3295
3296	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3297
3298	return ret;
3299}
3300EXPORT_SYMBOL(__kmalloc);
3301
3302#ifdef CONFIG_NUMA
3303static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3304{
3305	struct page *page;
3306	void *ptr = NULL;
3307
3308	flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3309	page = alloc_pages_node(node, flags, get_order(size));
3310	if (page)
3311		ptr = page_address(page);
3312
3313	kmalloc_large_node_hook(ptr, size, flags);
3314	return ptr;
3315}
3316
3317void *__kmalloc_node(size_t size, gfp_t flags, int node)
3318{
3319	struct kmem_cache *s;
3320	void *ret;
3321
3322	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3323		ret = kmalloc_large_node(size, flags, node);
3324
3325		trace_kmalloc_node(_RET_IP_, ret,
3326				   size, PAGE_SIZE << get_order(size),
3327				   flags, node);
3328
3329		return ret;
 
 
 
 
 
3330	}
3331
3332	s = kmalloc_slab(size, flags);
3333
3334	if (unlikely(ZERO_OR_NULL_PTR(s)))
3335		return s;
3336
3337	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3338
3339	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3340
3341	return ret;
3342}
3343EXPORT_SYMBOL(__kmalloc_node);
3344#endif
3345
3346size_t ksize(const void *object)
3347{
3348	struct page *page;
3349
3350	if (unlikely(object == ZERO_SIZE_PTR))
3351		return 0;
3352
3353	page = virt_to_head_page(object);
3354
3355	if (unlikely(!PageSlab(page))) {
3356		WARN_ON(!PageCompound(page));
3357		return PAGE_SIZE << compound_order(page);
3358	}
3359
3360	return slab_ksize(page->slab_cache);
3361}
3362EXPORT_SYMBOL(ksize);
3363
3364void kfree(const void *x)
3365{
3366	struct page *page;
3367	void *object = (void *)x;
3368
3369	trace_kfree(_RET_IP_, x);
3370
3371	if (unlikely(ZERO_OR_NULL_PTR(x)))
3372		return;
3373
3374	page = virt_to_head_page(x);
3375	if (unlikely(!PageSlab(page))) {
3376		BUG_ON(!PageCompound(page));
3377		kfree_hook(x);
3378		__free_memcg_kmem_pages(page, compound_order(page));
3379		return;
3380	}
3381	slab_free(page->slab_cache, page, object, _RET_IP_);
3382}
3383EXPORT_SYMBOL(kfree);
3384
3385/*
3386 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3387 * the remaining slabs by the number of items in use. The slabs with the
3388 * most items in use come first. New allocations will then fill those up
3389 * and thus they can be removed from the partial lists.
3390 *
3391 * The slabs with the least items are placed last. This results in them
3392 * being allocated from last increasing the chance that the last objects
3393 * are freed in them.
3394 */
3395int kmem_cache_shrink(struct kmem_cache *s)
3396{
3397	int node;
3398	int i;
3399	struct kmem_cache_node *n;
3400	struct page *page;
3401	struct page *t;
3402	int objects = oo_objects(s->max);
3403	struct list_head *slabs_by_inuse =
3404		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3405	unsigned long flags;
 
3406
3407	if (!slabs_by_inuse)
3408		return -ENOMEM;
3409
3410	flush_all(s);
3411	for_each_node_state(node, N_NORMAL_MEMORY) {
3412		n = get_node(s, node);
3413
3414		if (!n->nr_partial)
3415			continue;
3416
3417		for (i = 0; i < objects; i++)
3418			INIT_LIST_HEAD(slabs_by_inuse + i);
3419
3420		spin_lock_irqsave(&n->list_lock, flags);
3421
3422		/*
3423		 * Build lists indexed by the items in use in each slab.
3424		 *
3425		 * Note that concurrent frees may occur while we hold the
3426		 * list_lock. page->inuse here is the upper limit.
3427		 */
3428		list_for_each_entry_safe(page, t, &n->partial, lru) {
3429			list_move(&page->lru, slabs_by_inuse + page->inuse);
3430			if (!page->inuse)
 
 
 
 
 
 
 
 
3431				n->nr_partial--;
 
 
 
3432		}
3433
3434		/*
3435		 * Rebuild the partial list with the slabs filled up most
3436		 * first and the least used slabs at the end.
3437		 */
3438		for (i = objects - 1; i > 0; i--)
3439			list_splice(slabs_by_inuse + i, n->partial.prev);
3440
3441		spin_unlock_irqrestore(&n->list_lock, flags);
3442
3443		/* Release empty slabs */
3444		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3445			discard_slab(s, page);
 
 
 
3446	}
3447
3448	kfree(slabs_by_inuse);
3449	return 0;
 
 
 
 
 
3450}
3451EXPORT_SYMBOL(kmem_cache_shrink);
3452
3453static int slab_mem_going_offline_callback(void *arg)
3454{
3455	struct kmem_cache *s;
3456
3457	mutex_lock(&slab_mutex);
3458	list_for_each_entry(s, &slab_caches, list)
3459		kmem_cache_shrink(s);
 
 
3460	mutex_unlock(&slab_mutex);
3461
3462	return 0;
3463}
3464
3465static void slab_mem_offline_callback(void *arg)
3466{
3467	struct kmem_cache_node *n;
3468	struct kmem_cache *s;
3469	struct memory_notify *marg = arg;
3470	int offline_node;
3471
3472	offline_node = marg->status_change_nid_normal;
3473
3474	/*
3475	 * If the node still has available memory. we need kmem_cache_node
3476	 * for it yet.
3477	 */
3478	if (offline_node < 0)
3479		return;
3480
3481	mutex_lock(&slab_mutex);
3482	list_for_each_entry(s, &slab_caches, list) {
3483		n = get_node(s, offline_node);
3484		if (n) {
3485			/*
3486			 * if n->nr_slabs > 0, slabs still exist on the node
3487			 * that is going down. We were unable to free them,
3488			 * and offline_pages() function shouldn't call this
3489			 * callback. So, we must fail.
3490			 */
3491			BUG_ON(slabs_node(s, offline_node));
3492
3493			s->node[offline_node] = NULL;
3494			kmem_cache_free(kmem_cache_node, n);
3495		}
3496	}
3497	mutex_unlock(&slab_mutex);
3498}
3499
3500static int slab_mem_going_online_callback(void *arg)
3501{
3502	struct kmem_cache_node *n;
3503	struct kmem_cache *s;
3504	struct memory_notify *marg = arg;
3505	int nid = marg->status_change_nid_normal;
3506	int ret = 0;
3507
3508	/*
3509	 * If the node's memory is already available, then kmem_cache_node is
3510	 * already created. Nothing to do.
3511	 */
3512	if (nid < 0)
3513		return 0;
3514
3515	/*
3516	 * We are bringing a node online. No memory is available yet. We must
3517	 * allocate a kmem_cache_node structure in order to bring the node
3518	 * online.
3519	 */
3520	mutex_lock(&slab_mutex);
3521	list_for_each_entry(s, &slab_caches, list) {
3522		/*
 
 
 
 
 
 
3523		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3524		 *      since memory is not yet available from the node that
3525		 *      is brought up.
3526		 */
3527		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3528		if (!n) {
3529			ret = -ENOMEM;
3530			goto out;
3531		}
3532		init_kmem_cache_node(n);
3533		s->node[nid] = n;
3534	}
 
 
 
 
 
3535out:
3536	mutex_unlock(&slab_mutex);
3537	return ret;
3538}
3539
3540static int slab_memory_callback(struct notifier_block *self,
3541				unsigned long action, void *arg)
3542{
3543	int ret = 0;
3544
3545	switch (action) {
3546	case MEM_GOING_ONLINE:
3547		ret = slab_mem_going_online_callback(arg);
3548		break;
3549	case MEM_GOING_OFFLINE:
3550		ret = slab_mem_going_offline_callback(arg);
3551		break;
3552	case MEM_OFFLINE:
3553	case MEM_CANCEL_ONLINE:
3554		slab_mem_offline_callback(arg);
3555		break;
3556	case MEM_ONLINE:
3557	case MEM_CANCEL_OFFLINE:
3558		break;
3559	}
3560	if (ret)
3561		ret = notifier_from_errno(ret);
3562	else
3563		ret = NOTIFY_OK;
3564	return ret;
3565}
3566
3567static struct notifier_block slab_memory_callback_nb = {
3568	.notifier_call = slab_memory_callback,
3569	.priority = SLAB_CALLBACK_PRI,
3570};
3571
3572/********************************************************************
3573 *			Basic setup of slabs
3574 *******************************************************************/
3575
3576/*
3577 * Used for early kmem_cache structures that were allocated using
3578 * the page allocator. Allocate them properly then fix up the pointers
3579 * that may be pointing to the wrong kmem_cache structure.
3580 */
3581
3582static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3583{
3584	int node;
3585	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
 
3586
3587	memcpy(s, static_cache, kmem_cache->object_size);
3588
3589	/*
3590	 * This runs very early, and only the boot processor is supposed to be
3591	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
3592	 * IPIs around.
3593	 */
3594	__flush_cpu_slab(s, smp_processor_id());
3595	for_each_node_state(node, N_NORMAL_MEMORY) {
3596		struct kmem_cache_node *n = get_node(s, node);
3597		struct page *p;
3598
3599		if (n) {
3600			list_for_each_entry(p, &n->partial, lru)
3601				p->slab_cache = s;
3602
3603#ifdef CONFIG_SLUB_DEBUG
3604			list_for_each_entry(p, &n->full, lru)
3605				p->slab_cache = s;
3606#endif
3607		}
3608	}
3609	list_add(&s->list, &slab_caches);
3610	return s;
3611}
3612
3613void __init kmem_cache_init(void)
3614{
3615	static __initdata struct kmem_cache boot_kmem_cache,
3616		boot_kmem_cache_node;
 
3617
3618	if (debug_guardpage_minorder())
3619		slub_max_order = 0;
3620
 
 
 
 
3621	kmem_cache_node = &boot_kmem_cache_node;
3622	kmem_cache = &boot_kmem_cache;
3623
 
 
 
 
 
 
 
3624	create_boot_cache(kmem_cache_node, "kmem_cache_node",
3625		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3626
3627	register_hotmemory_notifier(&slab_memory_callback_nb);
3628
3629	/* Able to allocate the per node structures */
3630	slab_state = PARTIAL;
3631
3632	create_boot_cache(kmem_cache, "kmem_cache",
3633			offsetof(struct kmem_cache, node) +
3634				nr_node_ids * sizeof(struct kmem_cache_node *),
3635		       SLAB_HWCACHE_ALIGN);
3636
3637	kmem_cache = bootstrap(&boot_kmem_cache);
3638
3639	/*
3640	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3641	 * kmem_cache_node is separately allocated so no need to
3642	 * update any list pointers.
3643	 */
3644	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3645
3646	/* Now we can use the kmem_cache to allocate kmalloc slabs */
 
3647	create_kmalloc_caches(0);
3648
3649#ifdef CONFIG_SMP
3650	register_cpu_notifier(&slab_notifier);
3651#endif
 
 
3652
3653	printk(KERN_INFO
3654		"SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3655		" CPUs=%d, Nodes=%d\n",
3656		cache_line_size(),
3657		slub_min_order, slub_max_order, slub_min_objects,
3658		nr_cpu_ids, nr_node_ids);
3659}
3660
3661void __init kmem_cache_init_late(void)
3662{
3663}
3664
3665/*
3666 * Find a mergeable slab cache
3667 */
3668static int slab_unmergeable(struct kmem_cache *s)
3669{
3670	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3671		return 1;
3672
3673	if (!is_root_cache(s))
3674		return 1;
3675
3676	if (s->ctor)
3677		return 1;
3678
3679	/*
3680	 * We may have set a slab to be unmergeable during bootstrap.
3681	 */
3682	if (s->refcount < 0)
3683		return 1;
3684
3685	return 0;
3686}
3687
3688static struct kmem_cache *find_mergeable(size_t size, size_t align,
3689		unsigned long flags, const char *name, void (*ctor)(void *))
3690{
3691	struct kmem_cache *s;
3692
3693	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3694		return NULL;
3695
3696	if (ctor)
3697		return NULL;
3698
3699	size = ALIGN(size, sizeof(void *));
3700	align = calculate_alignment(flags, align, size);
3701	size = ALIGN(size, align);
3702	flags = kmem_cache_flags(size, flags, name, NULL);
3703
3704	list_for_each_entry(s, &slab_caches, list) {
3705		if (slab_unmergeable(s))
3706			continue;
3707
3708		if (size > s->size)
3709			continue;
3710
3711		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3712			continue;
3713		/*
3714		 * Check if alignment is compatible.
3715		 * Courtesy of Adrian Drzewiecki
3716		 */
3717		if ((s->size & ~(align - 1)) != s->size)
3718			continue;
3719
3720		if (s->size - size >= sizeof(void *))
3721			continue;
3722
3723		return s;
3724	}
3725	return NULL;
3726}
3727
3728struct kmem_cache *
3729__kmem_cache_alias(const char *name, size_t size, size_t align,
3730		   unsigned long flags, void (*ctor)(void *))
3731{
3732	struct kmem_cache *s;
3733
3734	s = find_mergeable(size, align, flags, name, ctor);
3735	if (s) {
3736		int i;
3737		struct kmem_cache *c;
3738
3739		s->refcount++;
3740
3741		/*
3742		 * Adjust the object sizes so that we clear
3743		 * the complete object on kzalloc.
3744		 */
3745		s->object_size = max(s->object_size, (int)size);
3746		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3747
3748		for_each_memcg_cache_index(i) {
3749			c = cache_from_memcg_idx(s, i);
3750			if (!c)
3751				continue;
3752			c->object_size = s->object_size;
3753			c->inuse = max_t(int, c->inuse,
3754					 ALIGN(size, sizeof(void *)));
3755		}
3756
3757		if (sysfs_slab_alias(s, name)) {
3758			s->refcount--;
3759			s = NULL;
3760		}
3761	}
3762
3763	return s;
3764}
3765
3766int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3767{
3768	int err;
3769
3770	err = kmem_cache_open(s, flags);
3771	if (err)
3772		return err;
3773
3774	/* Mutex is not taken during early boot */
3775	if (slab_state <= UP)
3776		return 0;
3777
3778	memcg_propagate_slab_attrs(s);
3779	err = sysfs_slab_add(s);
3780	if (err)
3781		kmem_cache_close(s);
3782
3783	return err;
3784}
3785
3786#ifdef CONFIG_SMP
3787/*
3788 * Use the cpu notifier to insure that the cpu slabs are flushed when
3789 * necessary.
3790 */
3791static int slab_cpuup_callback(struct notifier_block *nfb,
3792		unsigned long action, void *hcpu)
3793{
3794	long cpu = (long)hcpu;
3795	struct kmem_cache *s;
3796	unsigned long flags;
3797
3798	switch (action) {
3799	case CPU_UP_CANCELED:
3800	case CPU_UP_CANCELED_FROZEN:
3801	case CPU_DEAD:
3802	case CPU_DEAD_FROZEN:
3803		mutex_lock(&slab_mutex);
3804		list_for_each_entry(s, &slab_caches, list) {
3805			local_irq_save(flags);
3806			__flush_cpu_slab(s, cpu);
3807			local_irq_restore(flags);
3808		}
3809		mutex_unlock(&slab_mutex);
3810		break;
3811	default:
3812		break;
3813	}
3814	return NOTIFY_OK;
3815}
3816
3817static struct notifier_block slab_notifier = {
3818	.notifier_call = slab_cpuup_callback
3819};
3820
3821#endif
3822
3823void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3824{
3825	struct kmem_cache *s;
3826	void *ret;
3827
3828	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3829		return kmalloc_large(size, gfpflags);
3830
3831	s = kmalloc_slab(size, gfpflags);
3832
3833	if (unlikely(ZERO_OR_NULL_PTR(s)))
3834		return s;
3835
3836	ret = slab_alloc(s, gfpflags, caller);
3837
3838	/* Honor the call site pointer we received. */
3839	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3840
3841	return ret;
3842}
3843
3844#ifdef CONFIG_NUMA
3845void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3846					int node, unsigned long caller)
3847{
3848	struct kmem_cache *s;
3849	void *ret;
3850
3851	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3852		ret = kmalloc_large_node(size, gfpflags, node);
3853
3854		trace_kmalloc_node(caller, ret,
3855				   size, PAGE_SIZE << get_order(size),
3856				   gfpflags, node);
3857
3858		return ret;
3859	}
3860
3861	s = kmalloc_slab(size, gfpflags);
3862
3863	if (unlikely(ZERO_OR_NULL_PTR(s)))
3864		return s;
3865
3866	ret = slab_alloc_node(s, gfpflags, node, caller);
3867
3868	/* Honor the call site pointer we received. */
3869	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3870
3871	return ret;
3872}
3873#endif
3874
3875#ifdef CONFIG_SYSFS
3876static int count_inuse(struct page *page)
3877{
3878	return page->inuse;
3879}
3880
3881static int count_total(struct page *page)
3882{
3883	return page->objects;
3884}
3885#endif
3886
3887#ifdef CONFIG_SLUB_DEBUG
3888static int validate_slab(struct kmem_cache *s, struct page *page,
3889						unsigned long *map)
3890{
3891	void *p;
3892	void *addr = page_address(page);
3893
3894	if (!check_slab(s, page) ||
3895			!on_freelist(s, page, NULL))
3896		return 0;
3897
3898	/* Now we know that a valid freelist exists */
3899	bitmap_zero(map, page->objects);
 
 
 
3900
3901	get_map(s, page, map);
3902	for_each_object(p, s, addr, page->objects) {
3903		if (test_bit(slab_index(p, s, addr), map))
3904			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3905				return 0;
3906	}
3907
3908	for_each_object(p, s, addr, page->objects)
3909		if (!test_bit(slab_index(p, s, addr), map))
3910			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3911				return 0;
3912	return 1;
3913}
3914
3915static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3916						unsigned long *map)
3917{
3918	slab_lock(page);
3919	validate_slab(s, page, map);
3920	slab_unlock(page);
3921}
3922
3923static int validate_slab_node(struct kmem_cache *s,
3924		struct kmem_cache_node *n, unsigned long *map)
3925{
3926	unsigned long count = 0;
3927	struct page *page;
3928	unsigned long flags;
3929
3930	spin_lock_irqsave(&n->list_lock, flags);
3931
3932	list_for_each_entry(page, &n->partial, lru) {
3933		validate_slab_slab(s, page, map);
3934		count++;
3935	}
3936	if (count != n->nr_partial)
3937		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3938			"counter=%ld\n", s->name, count, n->nr_partial);
 
 
3939
3940	if (!(s->flags & SLAB_STORE_USER))
3941		goto out;
3942
3943	list_for_each_entry(page, &n->full, lru) {
3944		validate_slab_slab(s, page, map);
3945		count++;
3946	}
3947	if (count != atomic_long_read(&n->nr_slabs))
3948		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3949			"counter=%ld\n", s->name, count,
3950			atomic_long_read(&n->nr_slabs));
 
3951
3952out:
3953	spin_unlock_irqrestore(&n->list_lock, flags);
3954	return count;
3955}
3956
3957static long validate_slab_cache(struct kmem_cache *s)
3958{
3959	int node;
3960	unsigned long count = 0;
3961	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3962				sizeof(unsigned long), GFP_KERNEL);
3963
3964	if (!map)
 
3965		return -ENOMEM;
3966
3967	flush_all(s);
3968	for_each_node_state(node, N_NORMAL_MEMORY) {
3969		struct kmem_cache_node *n = get_node(s, node);
 
 
3970
3971		count += validate_slab_node(s, n, map);
3972	}
3973	kfree(map);
3974	return count;
3975}
 
 
 
3976/*
3977 * Generate lists of code addresses where slabcache objects are allocated
3978 * and freed.
3979 */
3980
3981struct location {
 
3982	unsigned long count;
3983	unsigned long addr;
 
3984	long long sum_time;
3985	long min_time;
3986	long max_time;
3987	long min_pid;
3988	long max_pid;
3989	DECLARE_BITMAP(cpus, NR_CPUS);
3990	nodemask_t nodes;
3991};
3992
3993struct loc_track {
3994	unsigned long max;
3995	unsigned long count;
3996	struct location *loc;
 
3997};
3998
 
 
3999static void free_loc_track(struct loc_track *t)
4000{
4001	if (t->max)
4002		free_pages((unsigned long)t->loc,
4003			get_order(sizeof(struct location) * t->max));
4004}
4005
4006static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4007{
4008	struct location *l;
4009	int order;
4010
4011	order = get_order(sizeof(struct location) * max);
4012
4013	l = (void *)__get_free_pages(flags, order);
4014	if (!l)
4015		return 0;
4016
4017	if (t->count) {
4018		memcpy(l, t->loc, sizeof(struct location) * t->count);
4019		free_loc_track(t);
4020	}
4021	t->max = max;
4022	t->loc = l;
4023	return 1;
4024}
4025
4026static int add_location(struct loc_track *t, struct kmem_cache *s,
4027				const struct track *track)
 
4028{
4029	long start, end, pos;
4030	struct location *l;
4031	unsigned long caddr;
4032	unsigned long age = jiffies - track->when;
 
 
4033
 
 
 
4034	start = -1;
4035	end = t->count;
4036
4037	for ( ; ; ) {
4038		pos = start + (end - start + 1) / 2;
4039
4040		/*
4041		 * There is nothing at "end". If we end up there
4042		 * we need to add something to before end.
4043		 */
4044		if (pos == end)
4045			break;
4046
4047		caddr = t->loc[pos].addr;
4048		if (track->addr == caddr) {
 
 
 
 
4049
4050			l = &t->loc[pos];
4051			l->count++;
4052			if (track->when) {
4053				l->sum_time += age;
4054				if (age < l->min_time)
4055					l->min_time = age;
4056				if (age > l->max_time)
4057					l->max_time = age;
4058
4059				if (track->pid < l->min_pid)
4060					l->min_pid = track->pid;
4061				if (track->pid > l->max_pid)
4062					l->max_pid = track->pid;
4063
4064				cpumask_set_cpu(track->cpu,
4065						to_cpumask(l->cpus));
4066			}
4067			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4068			return 1;
4069		}
4070
4071		if (track->addr < caddr)
4072			end = pos;
 
 
 
 
 
4073		else
4074			start = pos;
4075	}
4076
4077	/*
4078	 * Not found. Insert new tracking element.
4079	 */
4080	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4081		return 0;
4082
4083	l = t->loc + pos;
4084	if (pos < t->count)
4085		memmove(l + 1, l,
4086			(t->count - pos) * sizeof(struct location));
4087	t->count++;
4088	l->count = 1;
4089	l->addr = track->addr;
4090	l->sum_time = age;
4091	l->min_time = age;
4092	l->max_time = age;
4093	l->min_pid = track->pid;
4094	l->max_pid = track->pid;
 
 
4095	cpumask_clear(to_cpumask(l->cpus));
4096	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4097	nodes_clear(l->nodes);
4098	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4099	return 1;
4100}
4101
4102static void process_slab(struct loc_track *t, struct kmem_cache *s,
4103		struct page *page, enum track_item alloc,
4104		unsigned long *map)
4105{
4106	void *addr = page_address(page);
 
4107	void *p;
4108
4109	bitmap_zero(map, page->objects);
4110	get_map(s, page, map);
4111
4112	for_each_object(p, s, addr, page->objects)
4113		if (!test_bit(slab_index(p, s, addr), map))
4114			add_location(t, s, get_track(s, p, alloc));
4115}
4116
4117static int list_locations(struct kmem_cache *s, char *buf,
4118					enum track_item alloc)
4119{
4120	int len = 0;
4121	unsigned long i;
4122	struct loc_track t = { 0, 0, NULL };
4123	int node;
4124	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4125				     sizeof(unsigned long), GFP_KERNEL);
4126
4127	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4128				     GFP_TEMPORARY)) {
4129		kfree(map);
4130		return sprintf(buf, "Out of memory\n");
4131	}
4132	/* Push back cpu slabs */
4133	flush_all(s);
4134
4135	for_each_node_state(node, N_NORMAL_MEMORY) {
4136		struct kmem_cache_node *n = get_node(s, node);
4137		unsigned long flags;
4138		struct page *page;
4139
4140		if (!atomic_long_read(&n->nr_slabs))
4141			continue;
4142
4143		spin_lock_irqsave(&n->list_lock, flags);
4144		list_for_each_entry(page, &n->partial, lru)
4145			process_slab(&t, s, page, alloc, map);
4146		list_for_each_entry(page, &n->full, lru)
4147			process_slab(&t, s, page, alloc, map);
4148		spin_unlock_irqrestore(&n->list_lock, flags);
4149	}
4150
4151	for (i = 0; i < t.count; i++) {
4152		struct location *l = &t.loc[i];
4153
4154		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4155			break;
4156		len += sprintf(buf + len, "%7ld ", l->count);
4157
4158		if (l->addr)
4159			len += sprintf(buf + len, "%pS", (void *)l->addr);
4160		else
4161			len += sprintf(buf + len, "<not-available>");
4162
4163		if (l->sum_time != l->min_time) {
4164			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4165				l->min_time,
4166				(long)div_u64(l->sum_time, l->count),
4167				l->max_time);
4168		} else
4169			len += sprintf(buf + len, " age=%ld",
4170				l->min_time);
4171
4172		if (l->min_pid != l->max_pid)
4173			len += sprintf(buf + len, " pid=%ld-%ld",
4174				l->min_pid, l->max_pid);
4175		else
4176			len += sprintf(buf + len, " pid=%ld",
4177				l->min_pid);
4178
4179		if (num_online_cpus() > 1 &&
4180				!cpumask_empty(to_cpumask(l->cpus)) &&
4181				len < PAGE_SIZE - 60) {
4182			len += sprintf(buf + len, " cpus=");
4183			len += cpulist_scnprintf(buf + len,
4184						 PAGE_SIZE - len - 50,
4185						 to_cpumask(l->cpus));
4186		}
4187
4188		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4189				len < PAGE_SIZE - 60) {
4190			len += sprintf(buf + len, " nodes=");
4191			len += nodelist_scnprintf(buf + len,
4192						  PAGE_SIZE - len - 50,
4193						  l->nodes);
4194		}
4195
4196		len += sprintf(buf + len, "\n");
4197	}
4198
4199	free_loc_track(&t);
4200	kfree(map);
4201	if (!t.count)
4202		len += sprintf(buf, "No data\n");
4203	return len;
4204}
4205#endif
4206
4207#ifdef SLUB_RESILIENCY_TEST
4208static void resiliency_test(void)
4209{
4210	u8 *p;
4211
4212	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4213
4214	printk(KERN_ERR "SLUB resiliency testing\n");
4215	printk(KERN_ERR "-----------------------\n");
4216	printk(KERN_ERR "A. Corruption after allocation\n");
4217
4218	p = kzalloc(16, GFP_KERNEL);
4219	p[16] = 0x12;
4220	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4221			" 0x12->0x%p\n\n", p + 16);
4222
4223	validate_slab_cache(kmalloc_caches[4]);
4224
4225	/* Hmmm... The next two are dangerous */
4226	p = kzalloc(32, GFP_KERNEL);
4227	p[32 + sizeof(void *)] = 0x34;
4228	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4229			" 0x34 -> -0x%p\n", p);
4230	printk(KERN_ERR
4231		"If allocated object is overwritten then not detectable\n\n");
4232
4233	validate_slab_cache(kmalloc_caches[5]);
4234	p = kzalloc(64, GFP_KERNEL);
4235	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4236	*p = 0x56;
4237	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4238									p);
4239	printk(KERN_ERR
4240		"If allocated object is overwritten then not detectable\n\n");
4241	validate_slab_cache(kmalloc_caches[6]);
4242
4243	printk(KERN_ERR "\nB. Corruption after free\n");
4244	p = kzalloc(128, GFP_KERNEL);
4245	kfree(p);
4246	*p = 0x78;
4247	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4248	validate_slab_cache(kmalloc_caches[7]);
4249
4250	p = kzalloc(256, GFP_KERNEL);
4251	kfree(p);
4252	p[50] = 0x9a;
4253	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4254			p);
4255	validate_slab_cache(kmalloc_caches[8]);
4256
4257	p = kzalloc(512, GFP_KERNEL);
4258	kfree(p);
4259	p[512] = 0xab;
4260	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4261	validate_slab_cache(kmalloc_caches[9]);
4262}
4263#else
4264#ifdef CONFIG_SYSFS
4265static void resiliency_test(void) {};
4266#endif
4267#endif
4268
4269#ifdef CONFIG_SYSFS
4270enum slab_stat_type {
4271	SL_ALL,			/* All slabs */
4272	SL_PARTIAL,		/* Only partially allocated slabs */
4273	SL_CPU,			/* Only slabs used for cpu caches */
4274	SL_OBJECTS,		/* Determine allocated objects not slabs */
4275	SL_TOTAL		/* Determine object capacity not slabs */
4276};
4277
4278#define SO_ALL		(1 << SL_ALL)
4279#define SO_PARTIAL	(1 << SL_PARTIAL)
4280#define SO_CPU		(1 << SL_CPU)
4281#define SO_OBJECTS	(1 << SL_OBJECTS)
4282#define SO_TOTAL	(1 << SL_TOTAL)
4283
4284static ssize_t show_slab_objects(struct kmem_cache *s,
4285			    char *buf, unsigned long flags)
4286{
4287	unsigned long total = 0;
4288	int node;
4289	int x;
4290	unsigned long *nodes;
 
4291
4292	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4293	if (!nodes)
4294		return -ENOMEM;
4295
4296	if (flags & SO_CPU) {
4297		int cpu;
4298
4299		for_each_possible_cpu(cpu) {
4300			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4301							       cpu);
4302			int node;
4303			struct page *page;
4304
4305			page = ACCESS_ONCE(c->page);
4306			if (!page)
4307				continue;
4308
4309			node = page_to_nid(page);
4310			if (flags & SO_TOTAL)
4311				x = page->objects;
4312			else if (flags & SO_OBJECTS)
4313				x = page->inuse;
4314			else
4315				x = 1;
4316
4317			total += x;
4318			nodes[node] += x;
4319
4320			page = ACCESS_ONCE(c->partial);
4321			if (page) {
4322				node = page_to_nid(page);
 
4323				if (flags & SO_TOTAL)
4324					WARN_ON_ONCE(1);
4325				else if (flags & SO_OBJECTS)
4326					WARN_ON_ONCE(1);
4327				else
4328					x = page->pages;
4329				total += x;
4330				nodes[node] += x;
4331			}
 
4332		}
4333	}
4334
4335	lock_memory_hotplug();
 
 
 
 
 
 
 
 
 
 
4336#ifdef CONFIG_SLUB_DEBUG
4337	if (flags & SO_ALL) {
4338		for_each_node_state(node, N_NORMAL_MEMORY) {
4339			struct kmem_cache_node *n = get_node(s, node);
 
4340
4341			if (flags & SO_TOTAL)
4342				x = atomic_long_read(&n->total_objects);
4343			else if (flags & SO_OBJECTS)
4344				x = atomic_long_read(&n->total_objects) -
4345					count_partial(n, count_free);
4346			else
4347				x = atomic_long_read(&n->nr_slabs);
4348			total += x;
4349			nodes[node] += x;
4350		}
4351
4352	} else
4353#endif
4354	if (flags & SO_PARTIAL) {
4355		for_each_node_state(node, N_NORMAL_MEMORY) {
4356			struct kmem_cache_node *n = get_node(s, node);
4357
 
4358			if (flags & SO_TOTAL)
4359				x = count_partial(n, count_total);
4360			else if (flags & SO_OBJECTS)
4361				x = count_partial(n, count_inuse);
4362			else
4363				x = n->nr_partial;
4364			total += x;
4365			nodes[node] += x;
4366		}
4367	}
4368	x = sprintf(buf, "%lu", total);
 
4369#ifdef CONFIG_NUMA
4370	for_each_node_state(node, N_NORMAL_MEMORY)
4371		if (nodes[node])
4372			x += sprintf(buf + x, " N%d=%lu",
4373					node, nodes[node]);
 
4374#endif
4375	unlock_memory_hotplug();
4376	kfree(nodes);
4377	return x + sprintf(buf + x, "\n");
4378}
4379
4380#ifdef CONFIG_SLUB_DEBUG
4381static int any_slab_objects(struct kmem_cache *s)
4382{
4383	int node;
4384
4385	for_each_online_node(node) {
4386		struct kmem_cache_node *n = get_node(s, node);
4387
4388		if (!n)
4389			continue;
4390
4391		if (atomic_long_read(&n->total_objects))
4392			return 1;
4393	}
4394	return 0;
4395}
4396#endif
4397
4398#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4399#define to_slab(n) container_of(n, struct kmem_cache, kobj)
4400
4401struct slab_attribute {
4402	struct attribute attr;
4403	ssize_t (*show)(struct kmem_cache *s, char *buf);
4404	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4405};
4406
4407#define SLAB_ATTR_RO(_name) \
4408	static struct slab_attribute _name##_attr = \
4409	__ATTR(_name, 0400, _name##_show, NULL)
4410
4411#define SLAB_ATTR(_name) \
4412	static struct slab_attribute _name##_attr =  \
4413	__ATTR(_name, 0600, _name##_show, _name##_store)
4414
4415static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4416{
4417	return sprintf(buf, "%d\n", s->size);
4418}
4419SLAB_ATTR_RO(slab_size);
4420
4421static ssize_t align_show(struct kmem_cache *s, char *buf)
4422{
4423	return sprintf(buf, "%d\n", s->align);
4424}
4425SLAB_ATTR_RO(align);
4426
4427static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4428{
4429	return sprintf(buf, "%d\n", s->object_size);
4430}
4431SLAB_ATTR_RO(object_size);
4432
4433static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4434{
4435	return sprintf(buf, "%d\n", oo_objects(s->oo));
4436}
4437SLAB_ATTR_RO(objs_per_slab);
4438
4439static ssize_t order_store(struct kmem_cache *s,
4440				const char *buf, size_t length)
4441{
4442	unsigned long order;
4443	int err;
4444
4445	err = kstrtoul(buf, 10, &order);
4446	if (err)
4447		return err;
4448
4449	if (order > slub_max_order || order < slub_min_order)
4450		return -EINVAL;
4451
4452	calculate_sizes(s, order);
4453	return length;
4454}
4455
4456static ssize_t order_show(struct kmem_cache *s, char *buf)
4457{
4458	return sprintf(buf, "%d\n", oo_order(s->oo));
4459}
4460SLAB_ATTR(order);
4461
4462static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4463{
4464	return sprintf(buf, "%lu\n", s->min_partial);
4465}
4466
4467static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4468				 size_t length)
4469{
4470	unsigned long min;
4471	int err;
4472
4473	err = kstrtoul(buf, 10, &min);
4474	if (err)
4475		return err;
4476
4477	set_min_partial(s, min);
4478	return length;
4479}
4480SLAB_ATTR(min_partial);
4481
4482static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4483{
4484	return sprintf(buf, "%u\n", s->cpu_partial);
 
 
 
 
 
4485}
4486
4487static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4488				 size_t length)
4489{
4490	unsigned long objects;
4491	int err;
4492
4493	err = kstrtoul(buf, 10, &objects);
4494	if (err)
4495		return err;
4496	if (objects && !kmem_cache_has_cpu_partial(s))
4497		return -EINVAL;
4498
4499	s->cpu_partial = objects;
4500	flush_all(s);
4501	return length;
4502}
4503SLAB_ATTR(cpu_partial);
4504
4505static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4506{
4507	if (!s->ctor)
4508		return 0;
4509	return sprintf(buf, "%pS\n", s->ctor);
4510}
4511SLAB_ATTR_RO(ctor);
4512
4513static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4514{
4515	return sprintf(buf, "%d\n", s->refcount - 1);
4516}
4517SLAB_ATTR_RO(aliases);
4518
4519static ssize_t partial_show(struct kmem_cache *s, char *buf)
4520{
4521	return show_slab_objects(s, buf, SO_PARTIAL);
4522}
4523SLAB_ATTR_RO(partial);
4524
4525static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4526{
4527	return show_slab_objects(s, buf, SO_CPU);
4528}
4529SLAB_ATTR_RO(cpu_slabs);
4530
4531static ssize_t objects_show(struct kmem_cache *s, char *buf)
4532{
4533	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4534}
4535SLAB_ATTR_RO(objects);
4536
4537static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4538{
4539	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4540}
4541SLAB_ATTR_RO(objects_partial);
4542
4543static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4544{
4545	int objects = 0;
4546	int pages = 0;
4547	int cpu;
4548	int len;
4549
 
4550	for_each_online_cpu(cpu) {
4551		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
 
 
4552
4553		if (page) {
4554			pages += page->pages;
4555			objects += page->pobjects;
4556		}
4557	}
 
4558
4559	len = sprintf(buf, "%d(%d)", objects, pages);
 
 
4560
4561#ifdef CONFIG_SMP
4562	for_each_online_cpu(cpu) {
4563		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4564
4565		if (page && len < PAGE_SIZE - 20)
4566			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4567				page->pobjects, page->pages);
 
 
 
 
4568	}
4569#endif
4570	return len + sprintf(buf + len, "\n");
 
 
4571}
4572SLAB_ATTR_RO(slabs_cpu_partial);
4573
4574static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4575{
4576	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4577}
4578
4579static ssize_t reclaim_account_store(struct kmem_cache *s,
4580				const char *buf, size_t length)
4581{
4582	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4583	if (buf[0] == '1')
4584		s->flags |= SLAB_RECLAIM_ACCOUNT;
4585	return length;
4586}
4587SLAB_ATTR(reclaim_account);
4588
4589static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4590{
4591	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4592}
4593SLAB_ATTR_RO(hwcache_align);
4594
4595#ifdef CONFIG_ZONE_DMA
4596static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4597{
4598	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4599}
4600SLAB_ATTR_RO(cache_dma);
4601#endif
4602
4603static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
 
4604{
4605	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4606}
4607SLAB_ATTR_RO(destroy_by_rcu);
 
4608
4609static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4610{
4611	return sprintf(buf, "%d\n", s->reserved);
4612}
4613SLAB_ATTR_RO(reserved);
4614
4615#ifdef CONFIG_SLUB_DEBUG
4616static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4617{
4618	return show_slab_objects(s, buf, SO_ALL);
4619}
4620SLAB_ATTR_RO(slabs);
4621
4622static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4623{
4624	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4625}
4626SLAB_ATTR_RO(total_objects);
4627
4628static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4629{
4630	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4631}
4632
4633static ssize_t sanity_checks_store(struct kmem_cache *s,
4634				const char *buf, size_t length)
4635{
4636	s->flags &= ~SLAB_DEBUG_FREE;
4637	if (buf[0] == '1') {
4638		s->flags &= ~__CMPXCHG_DOUBLE;
4639		s->flags |= SLAB_DEBUG_FREE;
4640	}
4641	return length;
4642}
4643SLAB_ATTR(sanity_checks);
4644
4645static ssize_t trace_show(struct kmem_cache *s, char *buf)
4646{
4647	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4648}
4649
4650static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4651							size_t length)
4652{
4653	s->flags &= ~SLAB_TRACE;
4654	if (buf[0] == '1') {
4655		s->flags &= ~__CMPXCHG_DOUBLE;
4656		s->flags |= SLAB_TRACE;
4657	}
4658	return length;
4659}
4660SLAB_ATTR(trace);
4661
4662static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4663{
4664	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4665}
4666
4667static ssize_t red_zone_store(struct kmem_cache *s,
4668				const char *buf, size_t length)
4669{
4670	if (any_slab_objects(s))
4671		return -EBUSY;
4672
4673	s->flags &= ~SLAB_RED_ZONE;
4674	if (buf[0] == '1') {
4675		s->flags &= ~__CMPXCHG_DOUBLE;
4676		s->flags |= SLAB_RED_ZONE;
4677	}
4678	calculate_sizes(s, -1);
4679	return length;
4680}
4681SLAB_ATTR(red_zone);
4682
4683static ssize_t poison_show(struct kmem_cache *s, char *buf)
4684{
4685	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4686}
4687
4688static ssize_t poison_store(struct kmem_cache *s,
4689				const char *buf, size_t length)
4690{
4691	if (any_slab_objects(s))
4692		return -EBUSY;
4693
4694	s->flags &= ~SLAB_POISON;
4695	if (buf[0] == '1') {
4696		s->flags &= ~__CMPXCHG_DOUBLE;
4697		s->flags |= SLAB_POISON;
4698	}
4699	calculate_sizes(s, -1);
4700	return length;
4701}
4702SLAB_ATTR(poison);
4703
4704static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4705{
4706	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4707}
4708
4709static ssize_t store_user_store(struct kmem_cache *s,
4710				const char *buf, size_t length)
4711{
4712	if (any_slab_objects(s))
4713		return -EBUSY;
4714
4715	s->flags &= ~SLAB_STORE_USER;
4716	if (buf[0] == '1') {
4717		s->flags &= ~__CMPXCHG_DOUBLE;
4718		s->flags |= SLAB_STORE_USER;
4719	}
4720	calculate_sizes(s, -1);
4721	return length;
4722}
4723SLAB_ATTR(store_user);
4724
4725static ssize_t validate_show(struct kmem_cache *s, char *buf)
4726{
4727	return 0;
4728}
4729
4730static ssize_t validate_store(struct kmem_cache *s,
4731			const char *buf, size_t length)
4732{
4733	int ret = -EINVAL;
4734
4735	if (buf[0] == '1') {
4736		ret = validate_slab_cache(s);
4737		if (ret >= 0)
4738			ret = length;
4739	}
4740	return ret;
4741}
4742SLAB_ATTR(validate);
4743
4744static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4745{
4746	if (!(s->flags & SLAB_STORE_USER))
4747		return -ENOSYS;
4748	return list_locations(s, buf, TRACK_ALLOC);
4749}
4750SLAB_ATTR_RO(alloc_calls);
4751
4752static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4753{
4754	if (!(s->flags & SLAB_STORE_USER))
4755		return -ENOSYS;
4756	return list_locations(s, buf, TRACK_FREE);
4757}
4758SLAB_ATTR_RO(free_calls);
4759#endif /* CONFIG_SLUB_DEBUG */
4760
4761#ifdef CONFIG_FAILSLAB
4762static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4763{
4764	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4765}
4766
4767static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4768							size_t length)
4769{
4770	s->flags &= ~SLAB_FAILSLAB;
 
 
4771	if (buf[0] == '1')
4772		s->flags |= SLAB_FAILSLAB;
 
 
 
4773	return length;
4774}
4775SLAB_ATTR(failslab);
4776#endif
4777
4778static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4779{
4780	return 0;
4781}
4782
4783static ssize_t shrink_store(struct kmem_cache *s,
4784			const char *buf, size_t length)
4785{
4786	if (buf[0] == '1') {
4787		int rc = kmem_cache_shrink(s);
4788
4789		if (rc)
4790			return rc;
4791	} else
4792		return -EINVAL;
4793	return length;
4794}
4795SLAB_ATTR(shrink);
4796
4797#ifdef CONFIG_NUMA
4798static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4799{
4800	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4801}
4802
4803static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4804				const char *buf, size_t length)
4805{
4806	unsigned long ratio;
4807	int err;
4808
4809	err = kstrtoul(buf, 10, &ratio);
4810	if (err)
4811		return err;
 
 
4812
4813	if (ratio <= 100)
4814		s->remote_node_defrag_ratio = ratio * 10;
4815
4816	return length;
4817}
4818SLAB_ATTR(remote_node_defrag_ratio);
4819#endif
4820
4821#ifdef CONFIG_SLUB_STATS
4822static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4823{
4824	unsigned long sum  = 0;
4825	int cpu;
4826	int len;
4827	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4828
4829	if (!data)
4830		return -ENOMEM;
4831
4832	for_each_online_cpu(cpu) {
4833		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4834
4835		data[cpu] = x;
4836		sum += x;
4837	}
4838
4839	len = sprintf(buf, "%lu", sum);
4840
4841#ifdef CONFIG_SMP
4842	for_each_online_cpu(cpu) {
4843		if (data[cpu] && len < PAGE_SIZE - 20)
4844			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
 
4845	}
4846#endif
4847	kfree(data);
4848	return len + sprintf(buf + len, "\n");
 
 
4849}
4850
4851static void clear_stat(struct kmem_cache *s, enum stat_item si)
4852{
4853	int cpu;
4854
4855	for_each_online_cpu(cpu)
4856		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4857}
4858
4859#define STAT_ATTR(si, text) 					\
4860static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4861{								\
4862	return show_stat(s, buf, si);				\
4863}								\
4864static ssize_t text##_store(struct kmem_cache *s,		\
4865				const char *buf, size_t length)	\
4866{								\
4867	if (buf[0] != '0')					\
4868		return -EINVAL;					\
4869	clear_stat(s, si);					\
4870	return length;						\
4871}								\
4872SLAB_ATTR(text);						\
4873
4874STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4875STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4876STAT_ATTR(FREE_FASTPATH, free_fastpath);
4877STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4878STAT_ATTR(FREE_FROZEN, free_frozen);
4879STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4880STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4881STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4882STAT_ATTR(ALLOC_SLAB, alloc_slab);
4883STAT_ATTR(ALLOC_REFILL, alloc_refill);
4884STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4885STAT_ATTR(FREE_SLAB, free_slab);
4886STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4887STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4888STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4889STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4890STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4891STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4892STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4893STAT_ATTR(ORDER_FALLBACK, order_fallback);
4894STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4895STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4896STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4897STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4898STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4899STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4900#endif
4901
4902static struct attribute *slab_attrs[] = {
4903	&slab_size_attr.attr,
4904	&object_size_attr.attr,
4905	&objs_per_slab_attr.attr,
4906	&order_attr.attr,
4907	&min_partial_attr.attr,
4908	&cpu_partial_attr.attr,
4909	&objects_attr.attr,
4910	&objects_partial_attr.attr,
4911	&partial_attr.attr,
4912	&cpu_slabs_attr.attr,
4913	&ctor_attr.attr,
4914	&aliases_attr.attr,
4915	&align_attr.attr,
4916	&hwcache_align_attr.attr,
4917	&reclaim_account_attr.attr,
4918	&destroy_by_rcu_attr.attr,
4919	&shrink_attr.attr,
4920	&reserved_attr.attr,
4921	&slabs_cpu_partial_attr.attr,
4922#ifdef CONFIG_SLUB_DEBUG
4923	&total_objects_attr.attr,
4924	&slabs_attr.attr,
4925	&sanity_checks_attr.attr,
4926	&trace_attr.attr,
4927	&red_zone_attr.attr,
4928	&poison_attr.attr,
4929	&store_user_attr.attr,
4930	&validate_attr.attr,
4931	&alloc_calls_attr.attr,
4932	&free_calls_attr.attr,
4933#endif
4934#ifdef CONFIG_ZONE_DMA
4935	&cache_dma_attr.attr,
4936#endif
4937#ifdef CONFIG_NUMA
4938	&remote_node_defrag_ratio_attr.attr,
4939#endif
4940#ifdef CONFIG_SLUB_STATS
4941	&alloc_fastpath_attr.attr,
4942	&alloc_slowpath_attr.attr,
4943	&free_fastpath_attr.attr,
4944	&free_slowpath_attr.attr,
4945	&free_frozen_attr.attr,
4946	&free_add_partial_attr.attr,
4947	&free_remove_partial_attr.attr,
4948	&alloc_from_partial_attr.attr,
4949	&alloc_slab_attr.attr,
4950	&alloc_refill_attr.attr,
4951	&alloc_node_mismatch_attr.attr,
4952	&free_slab_attr.attr,
4953	&cpuslab_flush_attr.attr,
4954	&deactivate_full_attr.attr,
4955	&deactivate_empty_attr.attr,
4956	&deactivate_to_head_attr.attr,
4957	&deactivate_to_tail_attr.attr,
4958	&deactivate_remote_frees_attr.attr,
4959	&deactivate_bypass_attr.attr,
4960	&order_fallback_attr.attr,
4961	&cmpxchg_double_fail_attr.attr,
4962	&cmpxchg_double_cpu_fail_attr.attr,
4963	&cpu_partial_alloc_attr.attr,
4964	&cpu_partial_free_attr.attr,
4965	&cpu_partial_node_attr.attr,
4966	&cpu_partial_drain_attr.attr,
4967#endif
4968#ifdef CONFIG_FAILSLAB
4969	&failslab_attr.attr,
4970#endif
 
 
 
 
 
 
4971
4972	NULL
4973};
4974
4975static struct attribute_group slab_attr_group = {
4976	.attrs = slab_attrs,
4977};
4978
4979static ssize_t slab_attr_show(struct kobject *kobj,
4980				struct attribute *attr,
4981				char *buf)
4982{
4983	struct slab_attribute *attribute;
4984	struct kmem_cache *s;
4985	int err;
4986
4987	attribute = to_slab_attr(attr);
4988	s = to_slab(kobj);
4989
4990	if (!attribute->show)
4991		return -EIO;
4992
4993	err = attribute->show(s, buf);
4994
4995	return err;
4996}
4997
4998static ssize_t slab_attr_store(struct kobject *kobj,
4999				struct attribute *attr,
5000				const char *buf, size_t len)
5001{
5002	struct slab_attribute *attribute;
5003	struct kmem_cache *s;
5004	int err;
5005
5006	attribute = to_slab_attr(attr);
5007	s = to_slab(kobj);
5008
5009	if (!attribute->store)
5010		return -EIO;
5011
5012	err = attribute->store(s, buf, len);
5013#ifdef CONFIG_MEMCG_KMEM
5014	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5015		int i;
5016
5017		mutex_lock(&slab_mutex);
5018		if (s->max_attr_size < len)
5019			s->max_attr_size = len;
5020
5021		/*
5022		 * This is a best effort propagation, so this function's return
5023		 * value will be determined by the parent cache only. This is
5024		 * basically because not all attributes will have a well
5025		 * defined semantics for rollbacks - most of the actions will
5026		 * have permanent effects.
5027		 *
5028		 * Returning the error value of any of the children that fail
5029		 * is not 100 % defined, in the sense that users seeing the
5030		 * error code won't be able to know anything about the state of
5031		 * the cache.
5032		 *
5033		 * Only returning the error code for the parent cache at least
5034		 * has well defined semantics. The cache being written to
5035		 * directly either failed or succeeded, in which case we loop
5036		 * through the descendants with best-effort propagation.
5037		 */
5038		for_each_memcg_cache_index(i) {
5039			struct kmem_cache *c = cache_from_memcg_idx(s, i);
5040			if (c)
5041				attribute->store(c, buf, len);
5042		}
5043		mutex_unlock(&slab_mutex);
5044	}
5045#endif
5046	return err;
5047}
5048
5049static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5050{
5051#ifdef CONFIG_MEMCG_KMEM
5052	int i;
5053	char *buffer = NULL;
5054	struct kmem_cache *root_cache;
5055
5056	if (is_root_cache(s))
5057		return;
5058
5059	root_cache = s->memcg_params->root_cache;
5060
5061	/*
5062	 * This mean this cache had no attribute written. Therefore, no point
5063	 * in copying default values around
5064	 */
5065	if (!root_cache->max_attr_size)
5066		return;
5067
5068	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5069		char mbuf[64];
5070		char *buf;
5071		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5072
5073		if (!attr || !attr->store || !attr->show)
5074			continue;
5075
5076		/*
5077		 * It is really bad that we have to allocate here, so we will
5078		 * do it only as a fallback. If we actually allocate, though,
5079		 * we can just use the allocated buffer until the end.
5080		 *
5081		 * Most of the slub attributes will tend to be very small in
5082		 * size, but sysfs allows buffers up to a page, so they can
5083		 * theoretically happen.
5084		 */
5085		if (buffer)
5086			buf = buffer;
5087		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5088			buf = mbuf;
5089		else {
5090			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5091			if (WARN_ON(!buffer))
5092				continue;
5093			buf = buffer;
5094		}
5095
5096		attr->show(root_cache, buf);
5097		attr->store(s, buf, strlen(buf));
5098	}
5099
5100	if (buffer)
5101		free_page((unsigned long)buffer);
5102#endif
5103}
5104
5105static void kmem_cache_release(struct kobject *k)
5106{
5107	slab_kmem_cache_release(to_slab(k));
5108}
5109
5110static const struct sysfs_ops slab_sysfs_ops = {
5111	.show = slab_attr_show,
5112	.store = slab_attr_store,
5113};
5114
5115static struct kobj_type slab_ktype = {
5116	.sysfs_ops = &slab_sysfs_ops,
5117	.release = kmem_cache_release,
5118};
5119
5120static int uevent_filter(struct kset *kset, struct kobject *kobj)
5121{
5122	struct kobj_type *ktype = get_ktype(kobj);
5123
5124	if (ktype == &slab_ktype)
5125		return 1;
5126	return 0;
5127}
5128
5129static const struct kset_uevent_ops slab_uevent_ops = {
5130	.filter = uevent_filter,
5131};
5132
5133static struct kset *slab_kset;
5134
5135static inline struct kset *cache_kset(struct kmem_cache *s)
5136{
5137#ifdef CONFIG_MEMCG_KMEM
5138	if (!is_root_cache(s))
5139		return s->memcg_params->root_cache->memcg_kset;
5140#endif
5141	return slab_kset;
5142}
5143
5144#define ID_STR_LENGTH 64
5145
5146/* Create a unique string id for a slab cache:
5147 *
5148 * Format	:[flags-]size
5149 */
5150static char *create_unique_id(struct kmem_cache *s)
5151{
5152	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5153	char *p = name;
5154
5155	BUG_ON(!name);
 
5156
5157	*p++ = ':';
5158	/*
5159	 * First flags affecting slabcache operations. We will only
5160	 * get here for aliasable slabs so we do not need to support
5161	 * too many flags. The flags here must cover all flags that
5162	 * are matched during merging to guarantee that the id is
5163	 * unique.
5164	 */
5165	if (s->flags & SLAB_CACHE_DMA)
5166		*p++ = 'd';
 
 
5167	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5168		*p++ = 'a';
5169	if (s->flags & SLAB_DEBUG_FREE)
5170		*p++ = 'F';
5171	if (!(s->flags & SLAB_NOTRACK))
5172		*p++ = 't';
5173	if (p != name + 1)
5174		*p++ = '-';
5175	p += sprintf(p, "%07d", s->size);
5176
5177#ifdef CONFIG_MEMCG_KMEM
5178	if (!is_root_cache(s))
5179		p += sprintf(p, "-%08d",
5180				memcg_cache_id(s->memcg_params->memcg));
5181#endif
5182
5183	BUG_ON(p > name + ID_STR_LENGTH - 1);
5184	return name;
5185}
5186
5187static int sysfs_slab_add(struct kmem_cache *s)
5188{
5189	int err;
5190	const char *name;
 
5191	int unmergeable = slab_unmergeable(s);
5192
 
 
 
 
5193	if (unmergeable) {
5194		/*
5195		 * Slabcache can never be merged so we can use the name proper.
5196		 * This is typically the case for debug situations. In that
5197		 * case we can catch duplicate names easily.
5198		 */
5199		sysfs_remove_link(&slab_kset->kobj, s->name);
5200		name = s->name;
5201	} else {
5202		/*
5203		 * Create a unique name for the slab as a target
5204		 * for the symlinks.
5205		 */
5206		name = create_unique_id(s);
 
 
5207	}
5208
5209	s->kobj.kset = cache_kset(s);
5210	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5211	if (err)
5212		goto out_put_kobj;
5213
5214	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5215	if (err)
5216		goto out_del_kobj;
5217
5218#ifdef CONFIG_MEMCG_KMEM
5219	if (is_root_cache(s)) {
5220		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5221		if (!s->memcg_kset) {
5222			err = -ENOMEM;
5223			goto out_del_kobj;
5224		}
5225	}
5226#endif
5227
5228	kobject_uevent(&s->kobj, KOBJ_ADD);
5229	if (!unmergeable) {
5230		/* Setup first alias */
5231		sysfs_slab_alias(s, s->name);
5232	}
5233out:
5234	if (!unmergeable)
5235		kfree(name);
5236	return err;
5237out_del_kobj:
5238	kobject_del(&s->kobj);
5239out_put_kobj:
5240	kobject_put(&s->kobj);
5241	goto out;
5242}
5243
5244void sysfs_slab_remove(struct kmem_cache *s)
5245{
5246	if (slab_state < FULL)
5247		/*
5248		 * Sysfs has not been setup yet so no need to remove the
5249		 * cache from sysfs.
5250		 */
5251		return;
5252
5253#ifdef CONFIG_MEMCG_KMEM
5254	kset_unregister(s->memcg_kset);
5255#endif
5256	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5257	kobject_del(&s->kobj);
5258	kobject_put(&s->kobj);
5259}
5260
5261/*
5262 * Need to buffer aliases during bootup until sysfs becomes
5263 * available lest we lose that information.
5264 */
5265struct saved_alias {
5266	struct kmem_cache *s;
5267	const char *name;
5268	struct saved_alias *next;
5269};
5270
5271static struct saved_alias *alias_list;
5272
5273static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5274{
5275	struct saved_alias *al;
5276
5277	if (slab_state == FULL) {
5278		/*
5279		 * If we have a leftover link then remove it.
5280		 */
5281		sysfs_remove_link(&slab_kset->kobj, name);
5282		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5283	}
5284
5285	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5286	if (!al)
5287		return -ENOMEM;
5288
5289	al->s = s;
5290	al->name = name;
5291	al->next = alias_list;
5292	alias_list = al;
 
5293	return 0;
5294}
5295
5296static int __init slab_sysfs_init(void)
5297{
5298	struct kmem_cache *s;
5299	int err;
5300
5301	mutex_lock(&slab_mutex);
5302
5303	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5304	if (!slab_kset) {
5305		mutex_unlock(&slab_mutex);
5306		printk(KERN_ERR "Cannot register slab subsystem.\n");
5307		return -ENOSYS;
5308	}
5309
5310	slab_state = FULL;
5311
5312	list_for_each_entry(s, &slab_caches, list) {
5313		err = sysfs_slab_add(s);
5314		if (err)
5315			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5316						" to sysfs\n", s->name);
5317	}
5318
5319	while (alias_list) {
5320		struct saved_alias *al = alias_list;
5321
5322		alias_list = alias_list->next;
5323		err = sysfs_slab_alias(al->s, al->name);
5324		if (err)
5325			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5326					" %s to sysfs\n", al->name);
5327		kfree(al);
5328	}
5329
5330	mutex_unlock(&slab_mutex);
5331	resiliency_test();
5332	return 0;
5333}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5334
5335__initcall(slab_sysfs_init);
5336#endif /* CONFIG_SYSFS */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5337
 
 
 
 
 
5338/*
5339 * The /proc/slabinfo ABI
5340 */
5341#ifdef CONFIG_SLABINFO
5342void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5343{
5344	unsigned long nr_slabs = 0;
5345	unsigned long nr_objs = 0;
5346	unsigned long nr_free = 0;
5347	int node;
 
5348
5349	for_each_online_node(node) {
5350		struct kmem_cache_node *n = get_node(s, node);
5351
5352		if (!n)
5353			continue;
5354
5355		nr_slabs += node_nr_slabs(n);
5356		nr_objs += node_nr_objs(n);
5357		nr_free += count_partial(n, count_free);
5358	}
5359
5360	sinfo->active_objs = nr_objs - nr_free;
5361	sinfo->num_objs = nr_objs;
5362	sinfo->active_slabs = nr_slabs;
5363	sinfo->num_slabs = nr_slabs;
5364	sinfo->objects_per_slab = oo_objects(s->oo);
5365	sinfo->cache_order = oo_order(s->oo);
5366}
5367
5368void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5369{
5370}
5371
5372ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5373		       size_t count, loff_t *ppos)
5374{
5375	return -EIO;
5376}
5377#endif /* CONFIG_SLABINFO */