Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/kernel/exit.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8#include <linux/mm.h>
9#include <linux/slab.h>
10#include <linux/sched/autogroup.h>
11#include <linux/sched/mm.h>
12#include <linux/sched/stat.h>
13#include <linux/sched/task.h>
14#include <linux/sched/task_stack.h>
15#include <linux/sched/cputime.h>
16#include <linux/interrupt.h>
17#include <linux/module.h>
18#include <linux/capability.h>
19#include <linux/completion.h>
20#include <linux/personality.h>
21#include <linux/tty.h>
22#include <linux/iocontext.h>
23#include <linux/key.h>
24#include <linux/cpu.h>
25#include <linux/acct.h>
26#include <linux/tsacct_kern.h>
27#include <linux/file.h>
28#include <linux/fdtable.h>
29#include <linux/freezer.h>
30#include <linux/binfmts.h>
31#include <linux/nsproxy.h>
32#include <linux/pid_namespace.h>
33#include <linux/ptrace.h>
34#include <linux/profile.h>
35#include <linux/mount.h>
36#include <linux/proc_fs.h>
37#include <linux/kthread.h>
38#include <linux/mempolicy.h>
39#include <linux/taskstats_kern.h>
40#include <linux/delayacct.h>
41#include <linux/cgroup.h>
42#include <linux/syscalls.h>
43#include <linux/signal.h>
44#include <linux/posix-timers.h>
45#include <linux/cn_proc.h>
46#include <linux/mutex.h>
47#include <linux/futex.h>
48#include <linux/pipe_fs_i.h>
49#include <linux/audit.h> /* for audit_free() */
50#include <linux/resource.h>
51#include <linux/task_io_accounting_ops.h>
52#include <linux/blkdev.h>
53#include <linux/task_work.h>
54#include <linux/fs_struct.h>
55#include <linux/init_task.h>
56#include <linux/perf_event.h>
57#include <trace/events/sched.h>
58#include <linux/hw_breakpoint.h>
59#include <linux/oom.h>
60#include <linux/writeback.h>
61#include <linux/shm.h>
62#include <linux/kcov.h>
63#include <linux/kmsan.h>
64#include <linux/random.h>
65#include <linux/rcuwait.h>
66#include <linux/compat.h>
67#include <linux/io_uring.h>
68#include <linux/kprobes.h>
69#include <linux/rethook.h>
70#include <linux/sysfs.h>
71
72#include <linux/uaccess.h>
73#include <asm/unistd.h>
74#include <asm/mmu_context.h>
75
76/*
77 * The default value should be high enough to not crash a system that randomly
78 * crashes its kernel from time to time, but low enough to at least not permit
79 * overflowing 32-bit refcounts or the ldsem writer count.
80 */
81static unsigned int oops_limit = 10000;
82
83#ifdef CONFIG_SYSCTL
84static struct ctl_table kern_exit_table[] = {
85 {
86 .procname = "oops_limit",
87 .data = &oops_limit,
88 .maxlen = sizeof(oops_limit),
89 .mode = 0644,
90 .proc_handler = proc_douintvec,
91 },
92 { }
93};
94
95static __init int kernel_exit_sysctls_init(void)
96{
97 register_sysctl_init("kernel", kern_exit_table);
98 return 0;
99}
100late_initcall(kernel_exit_sysctls_init);
101#endif
102
103static atomic_t oops_count = ATOMIC_INIT(0);
104
105#ifdef CONFIG_SYSFS
106static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
107 char *page)
108{
109 return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
110}
111
112static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
113
114static __init int kernel_exit_sysfs_init(void)
115{
116 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
117 return 0;
118}
119late_initcall(kernel_exit_sysfs_init);
120#endif
121
122static void __unhash_process(struct task_struct *p, bool group_dead)
123{
124 nr_threads--;
125 detach_pid(p, PIDTYPE_PID);
126 if (group_dead) {
127 detach_pid(p, PIDTYPE_TGID);
128 detach_pid(p, PIDTYPE_PGID);
129 detach_pid(p, PIDTYPE_SID);
130
131 list_del_rcu(&p->tasks);
132 list_del_init(&p->sibling);
133 __this_cpu_dec(process_counts);
134 }
135 list_del_rcu(&p->thread_group);
136 list_del_rcu(&p->thread_node);
137}
138
139/*
140 * This function expects the tasklist_lock write-locked.
141 */
142static void __exit_signal(struct task_struct *tsk)
143{
144 struct signal_struct *sig = tsk->signal;
145 bool group_dead = thread_group_leader(tsk);
146 struct sighand_struct *sighand;
147 struct tty_struct *tty;
148 u64 utime, stime;
149
150 sighand = rcu_dereference_check(tsk->sighand,
151 lockdep_tasklist_lock_is_held());
152 spin_lock(&sighand->siglock);
153
154#ifdef CONFIG_POSIX_TIMERS
155 posix_cpu_timers_exit(tsk);
156 if (group_dead)
157 posix_cpu_timers_exit_group(tsk);
158#endif
159
160 if (group_dead) {
161 tty = sig->tty;
162 sig->tty = NULL;
163 } else {
164 /*
165 * If there is any task waiting for the group exit
166 * then notify it:
167 */
168 if (sig->notify_count > 0 && !--sig->notify_count)
169 wake_up_process(sig->group_exec_task);
170
171 if (tsk == sig->curr_target)
172 sig->curr_target = next_thread(tsk);
173 }
174
175 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
176 sizeof(unsigned long long));
177
178 /*
179 * Accumulate here the counters for all threads as they die. We could
180 * skip the group leader because it is the last user of signal_struct,
181 * but we want to avoid the race with thread_group_cputime() which can
182 * see the empty ->thread_head list.
183 */
184 task_cputime(tsk, &utime, &stime);
185 write_seqlock(&sig->stats_lock);
186 sig->utime += utime;
187 sig->stime += stime;
188 sig->gtime += task_gtime(tsk);
189 sig->min_flt += tsk->min_flt;
190 sig->maj_flt += tsk->maj_flt;
191 sig->nvcsw += tsk->nvcsw;
192 sig->nivcsw += tsk->nivcsw;
193 sig->inblock += task_io_get_inblock(tsk);
194 sig->oublock += task_io_get_oublock(tsk);
195 task_io_accounting_add(&sig->ioac, &tsk->ioac);
196 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
197 sig->nr_threads--;
198 __unhash_process(tsk, group_dead);
199 write_sequnlock(&sig->stats_lock);
200
201 /*
202 * Do this under ->siglock, we can race with another thread
203 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
204 */
205 flush_sigqueue(&tsk->pending);
206 tsk->sighand = NULL;
207 spin_unlock(&sighand->siglock);
208
209 __cleanup_sighand(sighand);
210 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
211 if (group_dead) {
212 flush_sigqueue(&sig->shared_pending);
213 tty_kref_put(tty);
214 }
215}
216
217static void delayed_put_task_struct(struct rcu_head *rhp)
218{
219 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
220
221 kprobe_flush_task(tsk);
222 rethook_flush_task(tsk);
223 perf_event_delayed_put(tsk);
224 trace_sched_process_free(tsk);
225 put_task_struct(tsk);
226}
227
228void put_task_struct_rcu_user(struct task_struct *task)
229{
230 if (refcount_dec_and_test(&task->rcu_users))
231 call_rcu(&task->rcu, delayed_put_task_struct);
232}
233
234void __weak release_thread(struct task_struct *dead_task)
235{
236}
237
238void release_task(struct task_struct *p)
239{
240 struct task_struct *leader;
241 struct pid *thread_pid;
242 int zap_leader;
243repeat:
244 /* don't need to get the RCU readlock here - the process is dead and
245 * can't be modifying its own credentials. But shut RCU-lockdep up */
246 rcu_read_lock();
247 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
248 rcu_read_unlock();
249
250 cgroup_release(p);
251
252 write_lock_irq(&tasklist_lock);
253 ptrace_release_task(p);
254 thread_pid = get_pid(p->thread_pid);
255 __exit_signal(p);
256
257 /*
258 * If we are the last non-leader member of the thread
259 * group, and the leader is zombie, then notify the
260 * group leader's parent process. (if it wants notification.)
261 */
262 zap_leader = 0;
263 leader = p->group_leader;
264 if (leader != p && thread_group_empty(leader)
265 && leader->exit_state == EXIT_ZOMBIE) {
266 /*
267 * If we were the last child thread and the leader has
268 * exited already, and the leader's parent ignores SIGCHLD,
269 * then we are the one who should release the leader.
270 */
271 zap_leader = do_notify_parent(leader, leader->exit_signal);
272 if (zap_leader)
273 leader->exit_state = EXIT_DEAD;
274 }
275
276 write_unlock_irq(&tasklist_lock);
277 seccomp_filter_release(p);
278 proc_flush_pid(thread_pid);
279 put_pid(thread_pid);
280 release_thread(p);
281 put_task_struct_rcu_user(p);
282
283 p = leader;
284 if (unlikely(zap_leader))
285 goto repeat;
286}
287
288int rcuwait_wake_up(struct rcuwait *w)
289{
290 int ret = 0;
291 struct task_struct *task;
292
293 rcu_read_lock();
294
295 /*
296 * Order condition vs @task, such that everything prior to the load
297 * of @task is visible. This is the condition as to why the user called
298 * rcuwait_wake() in the first place. Pairs with set_current_state()
299 * barrier (A) in rcuwait_wait_event().
300 *
301 * WAIT WAKE
302 * [S] tsk = current [S] cond = true
303 * MB (A) MB (B)
304 * [L] cond [L] tsk
305 */
306 smp_mb(); /* (B) */
307
308 task = rcu_dereference(w->task);
309 if (task)
310 ret = wake_up_process(task);
311 rcu_read_unlock();
312
313 return ret;
314}
315EXPORT_SYMBOL_GPL(rcuwait_wake_up);
316
317/*
318 * Determine if a process group is "orphaned", according to the POSIX
319 * definition in 2.2.2.52. Orphaned process groups are not to be affected
320 * by terminal-generated stop signals. Newly orphaned process groups are
321 * to receive a SIGHUP and a SIGCONT.
322 *
323 * "I ask you, have you ever known what it is to be an orphan?"
324 */
325static int will_become_orphaned_pgrp(struct pid *pgrp,
326 struct task_struct *ignored_task)
327{
328 struct task_struct *p;
329
330 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
331 if ((p == ignored_task) ||
332 (p->exit_state && thread_group_empty(p)) ||
333 is_global_init(p->real_parent))
334 continue;
335
336 if (task_pgrp(p->real_parent) != pgrp &&
337 task_session(p->real_parent) == task_session(p))
338 return 0;
339 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
340
341 return 1;
342}
343
344int is_current_pgrp_orphaned(void)
345{
346 int retval;
347
348 read_lock(&tasklist_lock);
349 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
350 read_unlock(&tasklist_lock);
351
352 return retval;
353}
354
355static bool has_stopped_jobs(struct pid *pgrp)
356{
357 struct task_struct *p;
358
359 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
360 if (p->signal->flags & SIGNAL_STOP_STOPPED)
361 return true;
362 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
363
364 return false;
365}
366
367/*
368 * Check to see if any process groups have become orphaned as
369 * a result of our exiting, and if they have any stopped jobs,
370 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
371 */
372static void
373kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
374{
375 struct pid *pgrp = task_pgrp(tsk);
376 struct task_struct *ignored_task = tsk;
377
378 if (!parent)
379 /* exit: our father is in a different pgrp than
380 * we are and we were the only connection outside.
381 */
382 parent = tsk->real_parent;
383 else
384 /* reparent: our child is in a different pgrp than
385 * we are, and it was the only connection outside.
386 */
387 ignored_task = NULL;
388
389 if (task_pgrp(parent) != pgrp &&
390 task_session(parent) == task_session(tsk) &&
391 will_become_orphaned_pgrp(pgrp, ignored_task) &&
392 has_stopped_jobs(pgrp)) {
393 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
394 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
395 }
396}
397
398static void coredump_task_exit(struct task_struct *tsk)
399{
400 struct core_state *core_state;
401
402 /*
403 * Serialize with any possible pending coredump.
404 * We must hold siglock around checking core_state
405 * and setting PF_POSTCOREDUMP. The core-inducing thread
406 * will increment ->nr_threads for each thread in the
407 * group without PF_POSTCOREDUMP set.
408 */
409 spin_lock_irq(&tsk->sighand->siglock);
410 tsk->flags |= PF_POSTCOREDUMP;
411 core_state = tsk->signal->core_state;
412 spin_unlock_irq(&tsk->sighand->siglock);
413 if (core_state) {
414 struct core_thread self;
415
416 self.task = current;
417 if (self.task->flags & PF_SIGNALED)
418 self.next = xchg(&core_state->dumper.next, &self);
419 else
420 self.task = NULL;
421 /*
422 * Implies mb(), the result of xchg() must be visible
423 * to core_state->dumper.
424 */
425 if (atomic_dec_and_test(&core_state->nr_threads))
426 complete(&core_state->startup);
427
428 for (;;) {
429 set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
430 if (!self.task) /* see coredump_finish() */
431 break;
432 schedule();
433 }
434 __set_current_state(TASK_RUNNING);
435 }
436}
437
438#ifdef CONFIG_MEMCG
439/*
440 * A task is exiting. If it owned this mm, find a new owner for the mm.
441 */
442void mm_update_next_owner(struct mm_struct *mm)
443{
444 struct task_struct *c, *g, *p = current;
445
446retry:
447 /*
448 * If the exiting or execing task is not the owner, it's
449 * someone else's problem.
450 */
451 if (mm->owner != p)
452 return;
453 /*
454 * The current owner is exiting/execing and there are no other
455 * candidates. Do not leave the mm pointing to a possibly
456 * freed task structure.
457 */
458 if (atomic_read(&mm->mm_users) <= 1) {
459 WRITE_ONCE(mm->owner, NULL);
460 return;
461 }
462
463 read_lock(&tasklist_lock);
464 /*
465 * Search in the children
466 */
467 list_for_each_entry(c, &p->children, sibling) {
468 if (c->mm == mm)
469 goto assign_new_owner;
470 }
471
472 /*
473 * Search in the siblings
474 */
475 list_for_each_entry(c, &p->real_parent->children, sibling) {
476 if (c->mm == mm)
477 goto assign_new_owner;
478 }
479
480 /*
481 * Search through everything else, we should not get here often.
482 */
483 for_each_process(g) {
484 if (g->flags & PF_KTHREAD)
485 continue;
486 for_each_thread(g, c) {
487 if (c->mm == mm)
488 goto assign_new_owner;
489 if (c->mm)
490 break;
491 }
492 }
493 read_unlock(&tasklist_lock);
494 /*
495 * We found no owner yet mm_users > 1: this implies that we are
496 * most likely racing with swapoff (try_to_unuse()) or /proc or
497 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
498 */
499 WRITE_ONCE(mm->owner, NULL);
500 return;
501
502assign_new_owner:
503 BUG_ON(c == p);
504 get_task_struct(c);
505 /*
506 * The task_lock protects c->mm from changing.
507 * We always want mm->owner->mm == mm
508 */
509 task_lock(c);
510 /*
511 * Delay read_unlock() till we have the task_lock()
512 * to ensure that c does not slip away underneath us
513 */
514 read_unlock(&tasklist_lock);
515 if (c->mm != mm) {
516 task_unlock(c);
517 put_task_struct(c);
518 goto retry;
519 }
520 WRITE_ONCE(mm->owner, c);
521 lru_gen_migrate_mm(mm);
522 task_unlock(c);
523 put_task_struct(c);
524}
525#endif /* CONFIG_MEMCG */
526
527/*
528 * Turn us into a lazy TLB process if we
529 * aren't already..
530 */
531static void exit_mm(void)
532{
533 struct mm_struct *mm = current->mm;
534
535 exit_mm_release(current, mm);
536 if (!mm)
537 return;
538 sync_mm_rss(mm);
539 mmap_read_lock(mm);
540 mmgrab(mm);
541 BUG_ON(mm != current->active_mm);
542 /* more a memory barrier than a real lock */
543 task_lock(current);
544 /*
545 * When a thread stops operating on an address space, the loop
546 * in membarrier_private_expedited() may not observe that
547 * tsk->mm, and the loop in membarrier_global_expedited() may
548 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
549 * rq->membarrier_state, so those would not issue an IPI.
550 * Membarrier requires a memory barrier after accessing
551 * user-space memory, before clearing tsk->mm or the
552 * rq->membarrier_state.
553 */
554 smp_mb__after_spinlock();
555 local_irq_disable();
556 current->mm = NULL;
557 membarrier_update_current_mm(NULL);
558 enter_lazy_tlb(mm, current);
559 local_irq_enable();
560 task_unlock(current);
561 mmap_read_unlock(mm);
562 mm_update_next_owner(mm);
563 mmput(mm);
564 if (test_thread_flag(TIF_MEMDIE))
565 exit_oom_victim();
566}
567
568static struct task_struct *find_alive_thread(struct task_struct *p)
569{
570 struct task_struct *t;
571
572 for_each_thread(p, t) {
573 if (!(t->flags & PF_EXITING))
574 return t;
575 }
576 return NULL;
577}
578
579static struct task_struct *find_child_reaper(struct task_struct *father,
580 struct list_head *dead)
581 __releases(&tasklist_lock)
582 __acquires(&tasklist_lock)
583{
584 struct pid_namespace *pid_ns = task_active_pid_ns(father);
585 struct task_struct *reaper = pid_ns->child_reaper;
586 struct task_struct *p, *n;
587
588 if (likely(reaper != father))
589 return reaper;
590
591 reaper = find_alive_thread(father);
592 if (reaper) {
593 pid_ns->child_reaper = reaper;
594 return reaper;
595 }
596
597 write_unlock_irq(&tasklist_lock);
598
599 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
600 list_del_init(&p->ptrace_entry);
601 release_task(p);
602 }
603
604 zap_pid_ns_processes(pid_ns);
605 write_lock_irq(&tasklist_lock);
606
607 return father;
608}
609
610/*
611 * When we die, we re-parent all our children, and try to:
612 * 1. give them to another thread in our thread group, if such a member exists
613 * 2. give it to the first ancestor process which prctl'd itself as a
614 * child_subreaper for its children (like a service manager)
615 * 3. give it to the init process (PID 1) in our pid namespace
616 */
617static struct task_struct *find_new_reaper(struct task_struct *father,
618 struct task_struct *child_reaper)
619{
620 struct task_struct *thread, *reaper;
621
622 thread = find_alive_thread(father);
623 if (thread)
624 return thread;
625
626 if (father->signal->has_child_subreaper) {
627 unsigned int ns_level = task_pid(father)->level;
628 /*
629 * Find the first ->is_child_subreaper ancestor in our pid_ns.
630 * We can't check reaper != child_reaper to ensure we do not
631 * cross the namespaces, the exiting parent could be injected
632 * by setns() + fork().
633 * We check pid->level, this is slightly more efficient than
634 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
635 */
636 for (reaper = father->real_parent;
637 task_pid(reaper)->level == ns_level;
638 reaper = reaper->real_parent) {
639 if (reaper == &init_task)
640 break;
641 if (!reaper->signal->is_child_subreaper)
642 continue;
643 thread = find_alive_thread(reaper);
644 if (thread)
645 return thread;
646 }
647 }
648
649 return child_reaper;
650}
651
652/*
653* Any that need to be release_task'd are put on the @dead list.
654 */
655static void reparent_leader(struct task_struct *father, struct task_struct *p,
656 struct list_head *dead)
657{
658 if (unlikely(p->exit_state == EXIT_DEAD))
659 return;
660
661 /* We don't want people slaying init. */
662 p->exit_signal = SIGCHLD;
663
664 /* If it has exited notify the new parent about this child's death. */
665 if (!p->ptrace &&
666 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
667 if (do_notify_parent(p, p->exit_signal)) {
668 p->exit_state = EXIT_DEAD;
669 list_add(&p->ptrace_entry, dead);
670 }
671 }
672
673 kill_orphaned_pgrp(p, father);
674}
675
676/*
677 * This does two things:
678 *
679 * A. Make init inherit all the child processes
680 * B. Check to see if any process groups have become orphaned
681 * as a result of our exiting, and if they have any stopped
682 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
683 */
684static void forget_original_parent(struct task_struct *father,
685 struct list_head *dead)
686{
687 struct task_struct *p, *t, *reaper;
688
689 if (unlikely(!list_empty(&father->ptraced)))
690 exit_ptrace(father, dead);
691
692 /* Can drop and reacquire tasklist_lock */
693 reaper = find_child_reaper(father, dead);
694 if (list_empty(&father->children))
695 return;
696
697 reaper = find_new_reaper(father, reaper);
698 list_for_each_entry(p, &father->children, sibling) {
699 for_each_thread(p, t) {
700 RCU_INIT_POINTER(t->real_parent, reaper);
701 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
702 if (likely(!t->ptrace))
703 t->parent = t->real_parent;
704 if (t->pdeath_signal)
705 group_send_sig_info(t->pdeath_signal,
706 SEND_SIG_NOINFO, t,
707 PIDTYPE_TGID);
708 }
709 /*
710 * If this is a threaded reparent there is no need to
711 * notify anyone anything has happened.
712 */
713 if (!same_thread_group(reaper, father))
714 reparent_leader(father, p, dead);
715 }
716 list_splice_tail_init(&father->children, &reaper->children);
717}
718
719/*
720 * Send signals to all our closest relatives so that they know
721 * to properly mourn us..
722 */
723static void exit_notify(struct task_struct *tsk, int group_dead)
724{
725 bool autoreap;
726 struct task_struct *p, *n;
727 LIST_HEAD(dead);
728
729 write_lock_irq(&tasklist_lock);
730 forget_original_parent(tsk, &dead);
731
732 if (group_dead)
733 kill_orphaned_pgrp(tsk->group_leader, NULL);
734
735 tsk->exit_state = EXIT_ZOMBIE;
736 if (unlikely(tsk->ptrace)) {
737 int sig = thread_group_leader(tsk) &&
738 thread_group_empty(tsk) &&
739 !ptrace_reparented(tsk) ?
740 tsk->exit_signal : SIGCHLD;
741 autoreap = do_notify_parent(tsk, sig);
742 } else if (thread_group_leader(tsk)) {
743 autoreap = thread_group_empty(tsk) &&
744 do_notify_parent(tsk, tsk->exit_signal);
745 } else {
746 autoreap = true;
747 }
748
749 if (autoreap) {
750 tsk->exit_state = EXIT_DEAD;
751 list_add(&tsk->ptrace_entry, &dead);
752 }
753
754 /* mt-exec, de_thread() is waiting for group leader */
755 if (unlikely(tsk->signal->notify_count < 0))
756 wake_up_process(tsk->signal->group_exec_task);
757 write_unlock_irq(&tasklist_lock);
758
759 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
760 list_del_init(&p->ptrace_entry);
761 release_task(p);
762 }
763}
764
765#ifdef CONFIG_DEBUG_STACK_USAGE
766static void check_stack_usage(void)
767{
768 static DEFINE_SPINLOCK(low_water_lock);
769 static int lowest_to_date = THREAD_SIZE;
770 unsigned long free;
771
772 free = stack_not_used(current);
773
774 if (free >= lowest_to_date)
775 return;
776
777 spin_lock(&low_water_lock);
778 if (free < lowest_to_date) {
779 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
780 current->comm, task_pid_nr(current), free);
781 lowest_to_date = free;
782 }
783 spin_unlock(&low_water_lock);
784}
785#else
786static inline void check_stack_usage(void) {}
787#endif
788
789static void synchronize_group_exit(struct task_struct *tsk, long code)
790{
791 struct sighand_struct *sighand = tsk->sighand;
792 struct signal_struct *signal = tsk->signal;
793
794 spin_lock_irq(&sighand->siglock);
795 signal->quick_threads--;
796 if ((signal->quick_threads == 0) &&
797 !(signal->flags & SIGNAL_GROUP_EXIT)) {
798 signal->flags = SIGNAL_GROUP_EXIT;
799 signal->group_exit_code = code;
800 signal->group_stop_count = 0;
801 }
802 spin_unlock_irq(&sighand->siglock);
803}
804
805void __noreturn do_exit(long code)
806{
807 struct task_struct *tsk = current;
808 int group_dead;
809
810 synchronize_group_exit(tsk, code);
811
812 WARN_ON(tsk->plug);
813
814 kcov_task_exit(tsk);
815 kmsan_task_exit(tsk);
816
817 coredump_task_exit(tsk);
818 ptrace_event(PTRACE_EVENT_EXIT, code);
819
820 validate_creds_for_do_exit(tsk);
821
822 io_uring_files_cancel();
823 exit_signals(tsk); /* sets PF_EXITING */
824
825 /* sync mm's RSS info before statistics gathering */
826 if (tsk->mm)
827 sync_mm_rss(tsk->mm);
828 acct_update_integrals(tsk);
829 group_dead = atomic_dec_and_test(&tsk->signal->live);
830 if (group_dead) {
831 /*
832 * If the last thread of global init has exited, panic
833 * immediately to get a useable coredump.
834 */
835 if (unlikely(is_global_init(tsk)))
836 panic("Attempted to kill init! exitcode=0x%08x\n",
837 tsk->signal->group_exit_code ?: (int)code);
838
839#ifdef CONFIG_POSIX_TIMERS
840 hrtimer_cancel(&tsk->signal->real_timer);
841 exit_itimers(tsk);
842#endif
843 if (tsk->mm)
844 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
845 }
846 acct_collect(code, group_dead);
847 if (group_dead)
848 tty_audit_exit();
849 audit_free(tsk);
850
851 tsk->exit_code = code;
852 taskstats_exit(tsk, group_dead);
853
854 exit_mm();
855
856 if (group_dead)
857 acct_process();
858 trace_sched_process_exit(tsk);
859
860 exit_sem(tsk);
861 exit_shm(tsk);
862 exit_files(tsk);
863 exit_fs(tsk);
864 if (group_dead)
865 disassociate_ctty(1);
866 exit_task_namespaces(tsk);
867 exit_task_work(tsk);
868 exit_thread(tsk);
869
870 /*
871 * Flush inherited counters to the parent - before the parent
872 * gets woken up by child-exit notifications.
873 *
874 * because of cgroup mode, must be called before cgroup_exit()
875 */
876 perf_event_exit_task(tsk);
877
878 sched_autogroup_exit_task(tsk);
879 cgroup_exit(tsk);
880
881 /*
882 * FIXME: do that only when needed, using sched_exit tracepoint
883 */
884 flush_ptrace_hw_breakpoint(tsk);
885
886 exit_tasks_rcu_start();
887 exit_notify(tsk, group_dead);
888 proc_exit_connector(tsk);
889 mpol_put_task_policy(tsk);
890#ifdef CONFIG_FUTEX
891 if (unlikely(current->pi_state_cache))
892 kfree(current->pi_state_cache);
893#endif
894 /*
895 * Make sure we are holding no locks:
896 */
897 debug_check_no_locks_held();
898
899 if (tsk->io_context)
900 exit_io_context(tsk);
901
902 if (tsk->splice_pipe)
903 free_pipe_info(tsk->splice_pipe);
904
905 if (tsk->task_frag.page)
906 put_page(tsk->task_frag.page);
907
908 validate_creds_for_do_exit(tsk);
909 exit_task_stack_account(tsk);
910
911 check_stack_usage();
912 preempt_disable();
913 if (tsk->nr_dirtied)
914 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
915 exit_rcu();
916 exit_tasks_rcu_finish();
917
918 lockdep_free_task(tsk);
919 do_task_dead();
920}
921
922void __noreturn make_task_dead(int signr)
923{
924 /*
925 * Take the task off the cpu after something catastrophic has
926 * happened.
927 *
928 * We can get here from a kernel oops, sometimes with preemption off.
929 * Start by checking for critical errors.
930 * Then fix up important state like USER_DS and preemption.
931 * Then do everything else.
932 */
933 struct task_struct *tsk = current;
934 unsigned int limit;
935
936 if (unlikely(in_interrupt()))
937 panic("Aiee, killing interrupt handler!");
938 if (unlikely(!tsk->pid))
939 panic("Attempted to kill the idle task!");
940
941 if (unlikely(in_atomic())) {
942 pr_info("note: %s[%d] exited with preempt_count %d\n",
943 current->comm, task_pid_nr(current),
944 preempt_count());
945 preempt_count_set(PREEMPT_ENABLED);
946 }
947
948 /*
949 * Every time the system oopses, if the oops happens while a reference
950 * to an object was held, the reference leaks.
951 * If the oops doesn't also leak memory, repeated oopsing can cause
952 * reference counters to wrap around (if they're not using refcount_t).
953 * This means that repeated oopsing can make unexploitable-looking bugs
954 * exploitable through repeated oopsing.
955 * To make sure this can't happen, place an upper bound on how often the
956 * kernel may oops without panic().
957 */
958 limit = READ_ONCE(oops_limit);
959 if (atomic_inc_return(&oops_count) >= limit && limit)
960 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
961
962 /*
963 * We're taking recursive faults here in make_task_dead. Safest is to just
964 * leave this task alone and wait for reboot.
965 */
966 if (unlikely(tsk->flags & PF_EXITING)) {
967 pr_alert("Fixing recursive fault but reboot is needed!\n");
968 futex_exit_recursive(tsk);
969 tsk->exit_state = EXIT_DEAD;
970 refcount_inc(&tsk->rcu_users);
971 do_task_dead();
972 }
973
974 do_exit(signr);
975}
976
977SYSCALL_DEFINE1(exit, int, error_code)
978{
979 do_exit((error_code&0xff)<<8);
980}
981
982/*
983 * Take down every thread in the group. This is called by fatal signals
984 * as well as by sys_exit_group (below).
985 */
986void __noreturn
987do_group_exit(int exit_code)
988{
989 struct signal_struct *sig = current->signal;
990
991 if (sig->flags & SIGNAL_GROUP_EXIT)
992 exit_code = sig->group_exit_code;
993 else if (sig->group_exec_task)
994 exit_code = 0;
995 else {
996 struct sighand_struct *const sighand = current->sighand;
997
998 spin_lock_irq(&sighand->siglock);
999 if (sig->flags & SIGNAL_GROUP_EXIT)
1000 /* Another thread got here before we took the lock. */
1001 exit_code = sig->group_exit_code;
1002 else if (sig->group_exec_task)
1003 exit_code = 0;
1004 else {
1005 sig->group_exit_code = exit_code;
1006 sig->flags = SIGNAL_GROUP_EXIT;
1007 zap_other_threads(current);
1008 }
1009 spin_unlock_irq(&sighand->siglock);
1010 }
1011
1012 do_exit(exit_code);
1013 /* NOTREACHED */
1014}
1015
1016/*
1017 * this kills every thread in the thread group. Note that any externally
1018 * wait4()-ing process will get the correct exit code - even if this
1019 * thread is not the thread group leader.
1020 */
1021SYSCALL_DEFINE1(exit_group, int, error_code)
1022{
1023 do_group_exit((error_code & 0xff) << 8);
1024 /* NOTREACHED */
1025 return 0;
1026}
1027
1028struct waitid_info {
1029 pid_t pid;
1030 uid_t uid;
1031 int status;
1032 int cause;
1033};
1034
1035struct wait_opts {
1036 enum pid_type wo_type;
1037 int wo_flags;
1038 struct pid *wo_pid;
1039
1040 struct waitid_info *wo_info;
1041 int wo_stat;
1042 struct rusage *wo_rusage;
1043
1044 wait_queue_entry_t child_wait;
1045 int notask_error;
1046};
1047
1048static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1049{
1050 return wo->wo_type == PIDTYPE_MAX ||
1051 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1052}
1053
1054static int
1055eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1056{
1057 if (!eligible_pid(wo, p))
1058 return 0;
1059
1060 /*
1061 * Wait for all children (clone and not) if __WALL is set or
1062 * if it is traced by us.
1063 */
1064 if (ptrace || (wo->wo_flags & __WALL))
1065 return 1;
1066
1067 /*
1068 * Otherwise, wait for clone children *only* if __WCLONE is set;
1069 * otherwise, wait for non-clone children *only*.
1070 *
1071 * Note: a "clone" child here is one that reports to its parent
1072 * using a signal other than SIGCHLD, or a non-leader thread which
1073 * we can only see if it is traced by us.
1074 */
1075 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1076 return 0;
1077
1078 return 1;
1079}
1080
1081/*
1082 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1083 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1084 * the lock and this task is uninteresting. If we return nonzero, we have
1085 * released the lock and the system call should return.
1086 */
1087static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1088{
1089 int state, status;
1090 pid_t pid = task_pid_vnr(p);
1091 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1092 struct waitid_info *infop;
1093
1094 if (!likely(wo->wo_flags & WEXITED))
1095 return 0;
1096
1097 if (unlikely(wo->wo_flags & WNOWAIT)) {
1098 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1099 ? p->signal->group_exit_code : p->exit_code;
1100 get_task_struct(p);
1101 read_unlock(&tasklist_lock);
1102 sched_annotate_sleep();
1103 if (wo->wo_rusage)
1104 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1105 put_task_struct(p);
1106 goto out_info;
1107 }
1108 /*
1109 * Move the task's state to DEAD/TRACE, only one thread can do this.
1110 */
1111 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1112 EXIT_TRACE : EXIT_DEAD;
1113 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1114 return 0;
1115 /*
1116 * We own this thread, nobody else can reap it.
1117 */
1118 read_unlock(&tasklist_lock);
1119 sched_annotate_sleep();
1120
1121 /*
1122 * Check thread_group_leader() to exclude the traced sub-threads.
1123 */
1124 if (state == EXIT_DEAD && thread_group_leader(p)) {
1125 struct signal_struct *sig = p->signal;
1126 struct signal_struct *psig = current->signal;
1127 unsigned long maxrss;
1128 u64 tgutime, tgstime;
1129
1130 /*
1131 * The resource counters for the group leader are in its
1132 * own task_struct. Those for dead threads in the group
1133 * are in its signal_struct, as are those for the child
1134 * processes it has previously reaped. All these
1135 * accumulate in the parent's signal_struct c* fields.
1136 *
1137 * We don't bother to take a lock here to protect these
1138 * p->signal fields because the whole thread group is dead
1139 * and nobody can change them.
1140 *
1141 * psig->stats_lock also protects us from our sub-threads
1142 * which can reap other children at the same time. Until
1143 * we change k_getrusage()-like users to rely on this lock
1144 * we have to take ->siglock as well.
1145 *
1146 * We use thread_group_cputime_adjusted() to get times for
1147 * the thread group, which consolidates times for all threads
1148 * in the group including the group leader.
1149 */
1150 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1151 spin_lock_irq(¤t->sighand->siglock);
1152 write_seqlock(&psig->stats_lock);
1153 psig->cutime += tgutime + sig->cutime;
1154 psig->cstime += tgstime + sig->cstime;
1155 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1156 psig->cmin_flt +=
1157 p->min_flt + sig->min_flt + sig->cmin_flt;
1158 psig->cmaj_flt +=
1159 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1160 psig->cnvcsw +=
1161 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1162 psig->cnivcsw +=
1163 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1164 psig->cinblock +=
1165 task_io_get_inblock(p) +
1166 sig->inblock + sig->cinblock;
1167 psig->coublock +=
1168 task_io_get_oublock(p) +
1169 sig->oublock + sig->coublock;
1170 maxrss = max(sig->maxrss, sig->cmaxrss);
1171 if (psig->cmaxrss < maxrss)
1172 psig->cmaxrss = maxrss;
1173 task_io_accounting_add(&psig->ioac, &p->ioac);
1174 task_io_accounting_add(&psig->ioac, &sig->ioac);
1175 write_sequnlock(&psig->stats_lock);
1176 spin_unlock_irq(¤t->sighand->siglock);
1177 }
1178
1179 if (wo->wo_rusage)
1180 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1181 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1182 ? p->signal->group_exit_code : p->exit_code;
1183 wo->wo_stat = status;
1184
1185 if (state == EXIT_TRACE) {
1186 write_lock_irq(&tasklist_lock);
1187 /* We dropped tasklist, ptracer could die and untrace */
1188 ptrace_unlink(p);
1189
1190 /* If parent wants a zombie, don't release it now */
1191 state = EXIT_ZOMBIE;
1192 if (do_notify_parent(p, p->exit_signal))
1193 state = EXIT_DEAD;
1194 p->exit_state = state;
1195 write_unlock_irq(&tasklist_lock);
1196 }
1197 if (state == EXIT_DEAD)
1198 release_task(p);
1199
1200out_info:
1201 infop = wo->wo_info;
1202 if (infop) {
1203 if ((status & 0x7f) == 0) {
1204 infop->cause = CLD_EXITED;
1205 infop->status = status >> 8;
1206 } else {
1207 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1208 infop->status = status & 0x7f;
1209 }
1210 infop->pid = pid;
1211 infop->uid = uid;
1212 }
1213
1214 return pid;
1215}
1216
1217static int *task_stopped_code(struct task_struct *p, bool ptrace)
1218{
1219 if (ptrace) {
1220 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1221 return &p->exit_code;
1222 } else {
1223 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1224 return &p->signal->group_exit_code;
1225 }
1226 return NULL;
1227}
1228
1229/**
1230 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1231 * @wo: wait options
1232 * @ptrace: is the wait for ptrace
1233 * @p: task to wait for
1234 *
1235 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1236 *
1237 * CONTEXT:
1238 * read_lock(&tasklist_lock), which is released if return value is
1239 * non-zero. Also, grabs and releases @p->sighand->siglock.
1240 *
1241 * RETURNS:
1242 * 0 if wait condition didn't exist and search for other wait conditions
1243 * should continue. Non-zero return, -errno on failure and @p's pid on
1244 * success, implies that tasklist_lock is released and wait condition
1245 * search should terminate.
1246 */
1247static int wait_task_stopped(struct wait_opts *wo,
1248 int ptrace, struct task_struct *p)
1249{
1250 struct waitid_info *infop;
1251 int exit_code, *p_code, why;
1252 uid_t uid = 0; /* unneeded, required by compiler */
1253 pid_t pid;
1254
1255 /*
1256 * Traditionally we see ptrace'd stopped tasks regardless of options.
1257 */
1258 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1259 return 0;
1260
1261 if (!task_stopped_code(p, ptrace))
1262 return 0;
1263
1264 exit_code = 0;
1265 spin_lock_irq(&p->sighand->siglock);
1266
1267 p_code = task_stopped_code(p, ptrace);
1268 if (unlikely(!p_code))
1269 goto unlock_sig;
1270
1271 exit_code = *p_code;
1272 if (!exit_code)
1273 goto unlock_sig;
1274
1275 if (!unlikely(wo->wo_flags & WNOWAIT))
1276 *p_code = 0;
1277
1278 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1279unlock_sig:
1280 spin_unlock_irq(&p->sighand->siglock);
1281 if (!exit_code)
1282 return 0;
1283
1284 /*
1285 * Now we are pretty sure this task is interesting.
1286 * Make sure it doesn't get reaped out from under us while we
1287 * give up the lock and then examine it below. We don't want to
1288 * keep holding onto the tasklist_lock while we call getrusage and
1289 * possibly take page faults for user memory.
1290 */
1291 get_task_struct(p);
1292 pid = task_pid_vnr(p);
1293 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1294 read_unlock(&tasklist_lock);
1295 sched_annotate_sleep();
1296 if (wo->wo_rusage)
1297 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1298 put_task_struct(p);
1299
1300 if (likely(!(wo->wo_flags & WNOWAIT)))
1301 wo->wo_stat = (exit_code << 8) | 0x7f;
1302
1303 infop = wo->wo_info;
1304 if (infop) {
1305 infop->cause = why;
1306 infop->status = exit_code;
1307 infop->pid = pid;
1308 infop->uid = uid;
1309 }
1310 return pid;
1311}
1312
1313/*
1314 * Handle do_wait work for one task in a live, non-stopped state.
1315 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1316 * the lock and this task is uninteresting. If we return nonzero, we have
1317 * released the lock and the system call should return.
1318 */
1319static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1320{
1321 struct waitid_info *infop;
1322 pid_t pid;
1323 uid_t uid;
1324
1325 if (!unlikely(wo->wo_flags & WCONTINUED))
1326 return 0;
1327
1328 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1329 return 0;
1330
1331 spin_lock_irq(&p->sighand->siglock);
1332 /* Re-check with the lock held. */
1333 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1334 spin_unlock_irq(&p->sighand->siglock);
1335 return 0;
1336 }
1337 if (!unlikely(wo->wo_flags & WNOWAIT))
1338 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1339 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1340 spin_unlock_irq(&p->sighand->siglock);
1341
1342 pid = task_pid_vnr(p);
1343 get_task_struct(p);
1344 read_unlock(&tasklist_lock);
1345 sched_annotate_sleep();
1346 if (wo->wo_rusage)
1347 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1348 put_task_struct(p);
1349
1350 infop = wo->wo_info;
1351 if (!infop) {
1352 wo->wo_stat = 0xffff;
1353 } else {
1354 infop->cause = CLD_CONTINUED;
1355 infop->pid = pid;
1356 infop->uid = uid;
1357 infop->status = SIGCONT;
1358 }
1359 return pid;
1360}
1361
1362/*
1363 * Consider @p for a wait by @parent.
1364 *
1365 * -ECHILD should be in ->notask_error before the first call.
1366 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1367 * Returns zero if the search for a child should continue;
1368 * then ->notask_error is 0 if @p is an eligible child,
1369 * or still -ECHILD.
1370 */
1371static int wait_consider_task(struct wait_opts *wo, int ptrace,
1372 struct task_struct *p)
1373{
1374 /*
1375 * We can race with wait_task_zombie() from another thread.
1376 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1377 * can't confuse the checks below.
1378 */
1379 int exit_state = READ_ONCE(p->exit_state);
1380 int ret;
1381
1382 if (unlikely(exit_state == EXIT_DEAD))
1383 return 0;
1384
1385 ret = eligible_child(wo, ptrace, p);
1386 if (!ret)
1387 return ret;
1388
1389 if (unlikely(exit_state == EXIT_TRACE)) {
1390 /*
1391 * ptrace == 0 means we are the natural parent. In this case
1392 * we should clear notask_error, debugger will notify us.
1393 */
1394 if (likely(!ptrace))
1395 wo->notask_error = 0;
1396 return 0;
1397 }
1398
1399 if (likely(!ptrace) && unlikely(p->ptrace)) {
1400 /*
1401 * If it is traced by its real parent's group, just pretend
1402 * the caller is ptrace_do_wait() and reap this child if it
1403 * is zombie.
1404 *
1405 * This also hides group stop state from real parent; otherwise
1406 * a single stop can be reported twice as group and ptrace stop.
1407 * If a ptracer wants to distinguish these two events for its
1408 * own children it should create a separate process which takes
1409 * the role of real parent.
1410 */
1411 if (!ptrace_reparented(p))
1412 ptrace = 1;
1413 }
1414
1415 /* slay zombie? */
1416 if (exit_state == EXIT_ZOMBIE) {
1417 /* we don't reap group leaders with subthreads */
1418 if (!delay_group_leader(p)) {
1419 /*
1420 * A zombie ptracee is only visible to its ptracer.
1421 * Notification and reaping will be cascaded to the
1422 * real parent when the ptracer detaches.
1423 */
1424 if (unlikely(ptrace) || likely(!p->ptrace))
1425 return wait_task_zombie(wo, p);
1426 }
1427
1428 /*
1429 * Allow access to stopped/continued state via zombie by
1430 * falling through. Clearing of notask_error is complex.
1431 *
1432 * When !@ptrace:
1433 *
1434 * If WEXITED is set, notask_error should naturally be
1435 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1436 * so, if there are live subthreads, there are events to
1437 * wait for. If all subthreads are dead, it's still safe
1438 * to clear - this function will be called again in finite
1439 * amount time once all the subthreads are released and
1440 * will then return without clearing.
1441 *
1442 * When @ptrace:
1443 *
1444 * Stopped state is per-task and thus can't change once the
1445 * target task dies. Only continued and exited can happen.
1446 * Clear notask_error if WCONTINUED | WEXITED.
1447 */
1448 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1449 wo->notask_error = 0;
1450 } else {
1451 /*
1452 * @p is alive and it's gonna stop, continue or exit, so
1453 * there always is something to wait for.
1454 */
1455 wo->notask_error = 0;
1456 }
1457
1458 /*
1459 * Wait for stopped. Depending on @ptrace, different stopped state
1460 * is used and the two don't interact with each other.
1461 */
1462 ret = wait_task_stopped(wo, ptrace, p);
1463 if (ret)
1464 return ret;
1465
1466 /*
1467 * Wait for continued. There's only one continued state and the
1468 * ptracer can consume it which can confuse the real parent. Don't
1469 * use WCONTINUED from ptracer. You don't need or want it.
1470 */
1471 return wait_task_continued(wo, p);
1472}
1473
1474/*
1475 * Do the work of do_wait() for one thread in the group, @tsk.
1476 *
1477 * -ECHILD should be in ->notask_error before the first call.
1478 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1479 * Returns zero if the search for a child should continue; then
1480 * ->notask_error is 0 if there were any eligible children,
1481 * or still -ECHILD.
1482 */
1483static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1484{
1485 struct task_struct *p;
1486
1487 list_for_each_entry(p, &tsk->children, sibling) {
1488 int ret = wait_consider_task(wo, 0, p);
1489
1490 if (ret)
1491 return ret;
1492 }
1493
1494 return 0;
1495}
1496
1497static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1498{
1499 struct task_struct *p;
1500
1501 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1502 int ret = wait_consider_task(wo, 1, p);
1503
1504 if (ret)
1505 return ret;
1506 }
1507
1508 return 0;
1509}
1510
1511static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1512 int sync, void *key)
1513{
1514 struct wait_opts *wo = container_of(wait, struct wait_opts,
1515 child_wait);
1516 struct task_struct *p = key;
1517
1518 if (!eligible_pid(wo, p))
1519 return 0;
1520
1521 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1522 return 0;
1523
1524 return default_wake_function(wait, mode, sync, key);
1525}
1526
1527void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1528{
1529 __wake_up_sync_key(&parent->signal->wait_chldexit,
1530 TASK_INTERRUPTIBLE, p);
1531}
1532
1533static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1534 struct task_struct *target)
1535{
1536 struct task_struct *parent =
1537 !ptrace ? target->real_parent : target->parent;
1538
1539 return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1540 same_thread_group(current, parent));
1541}
1542
1543/*
1544 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1545 * and tracee lists to find the target task.
1546 */
1547static int do_wait_pid(struct wait_opts *wo)
1548{
1549 bool ptrace;
1550 struct task_struct *target;
1551 int retval;
1552
1553 ptrace = false;
1554 target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1555 if (target && is_effectively_child(wo, ptrace, target)) {
1556 retval = wait_consider_task(wo, ptrace, target);
1557 if (retval)
1558 return retval;
1559 }
1560
1561 ptrace = true;
1562 target = pid_task(wo->wo_pid, PIDTYPE_PID);
1563 if (target && target->ptrace &&
1564 is_effectively_child(wo, ptrace, target)) {
1565 retval = wait_consider_task(wo, ptrace, target);
1566 if (retval)
1567 return retval;
1568 }
1569
1570 return 0;
1571}
1572
1573static long do_wait(struct wait_opts *wo)
1574{
1575 int retval;
1576
1577 trace_sched_process_wait(wo->wo_pid);
1578
1579 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1580 wo->child_wait.private = current;
1581 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1582repeat:
1583 /*
1584 * If there is nothing that can match our criteria, just get out.
1585 * We will clear ->notask_error to zero if we see any child that
1586 * might later match our criteria, even if we are not able to reap
1587 * it yet.
1588 */
1589 wo->notask_error = -ECHILD;
1590 if ((wo->wo_type < PIDTYPE_MAX) &&
1591 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1592 goto notask;
1593
1594 set_current_state(TASK_INTERRUPTIBLE);
1595 read_lock(&tasklist_lock);
1596
1597 if (wo->wo_type == PIDTYPE_PID) {
1598 retval = do_wait_pid(wo);
1599 if (retval)
1600 goto end;
1601 } else {
1602 struct task_struct *tsk = current;
1603
1604 do {
1605 retval = do_wait_thread(wo, tsk);
1606 if (retval)
1607 goto end;
1608
1609 retval = ptrace_do_wait(wo, tsk);
1610 if (retval)
1611 goto end;
1612
1613 if (wo->wo_flags & __WNOTHREAD)
1614 break;
1615 } while_each_thread(current, tsk);
1616 }
1617 read_unlock(&tasklist_lock);
1618
1619notask:
1620 retval = wo->notask_error;
1621 if (!retval && !(wo->wo_flags & WNOHANG)) {
1622 retval = -ERESTARTSYS;
1623 if (!signal_pending(current)) {
1624 schedule();
1625 goto repeat;
1626 }
1627 }
1628end:
1629 __set_current_state(TASK_RUNNING);
1630 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1631 return retval;
1632}
1633
1634static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1635 int options, struct rusage *ru)
1636{
1637 struct wait_opts wo;
1638 struct pid *pid = NULL;
1639 enum pid_type type;
1640 long ret;
1641 unsigned int f_flags = 0;
1642
1643 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1644 __WNOTHREAD|__WCLONE|__WALL))
1645 return -EINVAL;
1646 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1647 return -EINVAL;
1648
1649 switch (which) {
1650 case P_ALL:
1651 type = PIDTYPE_MAX;
1652 break;
1653 case P_PID:
1654 type = PIDTYPE_PID;
1655 if (upid <= 0)
1656 return -EINVAL;
1657
1658 pid = find_get_pid(upid);
1659 break;
1660 case P_PGID:
1661 type = PIDTYPE_PGID;
1662 if (upid < 0)
1663 return -EINVAL;
1664
1665 if (upid)
1666 pid = find_get_pid(upid);
1667 else
1668 pid = get_task_pid(current, PIDTYPE_PGID);
1669 break;
1670 case P_PIDFD:
1671 type = PIDTYPE_PID;
1672 if (upid < 0)
1673 return -EINVAL;
1674
1675 pid = pidfd_get_pid(upid, &f_flags);
1676 if (IS_ERR(pid))
1677 return PTR_ERR(pid);
1678
1679 break;
1680 default:
1681 return -EINVAL;
1682 }
1683
1684 wo.wo_type = type;
1685 wo.wo_pid = pid;
1686 wo.wo_flags = options;
1687 wo.wo_info = infop;
1688 wo.wo_rusage = ru;
1689 if (f_flags & O_NONBLOCK)
1690 wo.wo_flags |= WNOHANG;
1691
1692 ret = do_wait(&wo);
1693 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1694 ret = -EAGAIN;
1695
1696 put_pid(pid);
1697 return ret;
1698}
1699
1700SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1701 infop, int, options, struct rusage __user *, ru)
1702{
1703 struct rusage r;
1704 struct waitid_info info = {.status = 0};
1705 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1706 int signo = 0;
1707
1708 if (err > 0) {
1709 signo = SIGCHLD;
1710 err = 0;
1711 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1712 return -EFAULT;
1713 }
1714 if (!infop)
1715 return err;
1716
1717 if (!user_write_access_begin(infop, sizeof(*infop)))
1718 return -EFAULT;
1719
1720 unsafe_put_user(signo, &infop->si_signo, Efault);
1721 unsafe_put_user(0, &infop->si_errno, Efault);
1722 unsafe_put_user(info.cause, &infop->si_code, Efault);
1723 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1724 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1725 unsafe_put_user(info.status, &infop->si_status, Efault);
1726 user_write_access_end();
1727 return err;
1728Efault:
1729 user_write_access_end();
1730 return -EFAULT;
1731}
1732
1733long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1734 struct rusage *ru)
1735{
1736 struct wait_opts wo;
1737 struct pid *pid = NULL;
1738 enum pid_type type;
1739 long ret;
1740
1741 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1742 __WNOTHREAD|__WCLONE|__WALL))
1743 return -EINVAL;
1744
1745 /* -INT_MIN is not defined */
1746 if (upid == INT_MIN)
1747 return -ESRCH;
1748
1749 if (upid == -1)
1750 type = PIDTYPE_MAX;
1751 else if (upid < 0) {
1752 type = PIDTYPE_PGID;
1753 pid = find_get_pid(-upid);
1754 } else if (upid == 0) {
1755 type = PIDTYPE_PGID;
1756 pid = get_task_pid(current, PIDTYPE_PGID);
1757 } else /* upid > 0 */ {
1758 type = PIDTYPE_PID;
1759 pid = find_get_pid(upid);
1760 }
1761
1762 wo.wo_type = type;
1763 wo.wo_pid = pid;
1764 wo.wo_flags = options | WEXITED;
1765 wo.wo_info = NULL;
1766 wo.wo_stat = 0;
1767 wo.wo_rusage = ru;
1768 ret = do_wait(&wo);
1769 put_pid(pid);
1770 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1771 ret = -EFAULT;
1772
1773 return ret;
1774}
1775
1776int kernel_wait(pid_t pid, int *stat)
1777{
1778 struct wait_opts wo = {
1779 .wo_type = PIDTYPE_PID,
1780 .wo_pid = find_get_pid(pid),
1781 .wo_flags = WEXITED,
1782 };
1783 int ret;
1784
1785 ret = do_wait(&wo);
1786 if (ret > 0 && wo.wo_stat)
1787 *stat = wo.wo_stat;
1788 put_pid(wo.wo_pid);
1789 return ret;
1790}
1791
1792SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1793 int, options, struct rusage __user *, ru)
1794{
1795 struct rusage r;
1796 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1797
1798 if (err > 0) {
1799 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1800 return -EFAULT;
1801 }
1802 return err;
1803}
1804
1805#ifdef __ARCH_WANT_SYS_WAITPID
1806
1807/*
1808 * sys_waitpid() remains for compatibility. waitpid() should be
1809 * implemented by calling sys_wait4() from libc.a.
1810 */
1811SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1812{
1813 return kernel_wait4(pid, stat_addr, options, NULL);
1814}
1815
1816#endif
1817
1818#ifdef CONFIG_COMPAT
1819COMPAT_SYSCALL_DEFINE4(wait4,
1820 compat_pid_t, pid,
1821 compat_uint_t __user *, stat_addr,
1822 int, options,
1823 struct compat_rusage __user *, ru)
1824{
1825 struct rusage r;
1826 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1827 if (err > 0) {
1828 if (ru && put_compat_rusage(&r, ru))
1829 return -EFAULT;
1830 }
1831 return err;
1832}
1833
1834COMPAT_SYSCALL_DEFINE5(waitid,
1835 int, which, compat_pid_t, pid,
1836 struct compat_siginfo __user *, infop, int, options,
1837 struct compat_rusage __user *, uru)
1838{
1839 struct rusage ru;
1840 struct waitid_info info = {.status = 0};
1841 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1842 int signo = 0;
1843 if (err > 0) {
1844 signo = SIGCHLD;
1845 err = 0;
1846 if (uru) {
1847 /* kernel_waitid() overwrites everything in ru */
1848 if (COMPAT_USE_64BIT_TIME)
1849 err = copy_to_user(uru, &ru, sizeof(ru));
1850 else
1851 err = put_compat_rusage(&ru, uru);
1852 if (err)
1853 return -EFAULT;
1854 }
1855 }
1856
1857 if (!infop)
1858 return err;
1859
1860 if (!user_write_access_begin(infop, sizeof(*infop)))
1861 return -EFAULT;
1862
1863 unsafe_put_user(signo, &infop->si_signo, Efault);
1864 unsafe_put_user(0, &infop->si_errno, Efault);
1865 unsafe_put_user(info.cause, &infop->si_code, Efault);
1866 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1867 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1868 unsafe_put_user(info.status, &infop->si_status, Efault);
1869 user_write_access_end();
1870 return err;
1871Efault:
1872 user_write_access_end();
1873 return -EFAULT;
1874}
1875#endif
1876
1877/**
1878 * thread_group_exited - check that a thread group has exited
1879 * @pid: tgid of thread group to be checked.
1880 *
1881 * Test if the thread group represented by tgid has exited (all
1882 * threads are zombies, dead or completely gone).
1883 *
1884 * Return: true if the thread group has exited. false otherwise.
1885 */
1886bool thread_group_exited(struct pid *pid)
1887{
1888 struct task_struct *task;
1889 bool exited;
1890
1891 rcu_read_lock();
1892 task = pid_task(pid, PIDTYPE_PID);
1893 exited = !task ||
1894 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1895 rcu_read_unlock();
1896
1897 return exited;
1898}
1899EXPORT_SYMBOL(thread_group_exited);
1900
1901__weak void abort(void)
1902{
1903 BUG();
1904
1905 /* if that doesn't kill us, halt */
1906 panic("Oops failed to kill thread");
1907}
1908EXPORT_SYMBOL(abort);
1/*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7#include <linux/mm.h>
8#include <linux/slab.h>
9#include <linux/interrupt.h>
10#include <linux/module.h>
11#include <linux/capability.h>
12#include <linux/completion.h>
13#include <linux/personality.h>
14#include <linux/tty.h>
15#include <linux/iocontext.h>
16#include <linux/key.h>
17#include <linux/security.h>
18#include <linux/cpu.h>
19#include <linux/acct.h>
20#include <linux/tsacct_kern.h>
21#include <linux/file.h>
22#include <linux/fdtable.h>
23#include <linux/binfmts.h>
24#include <linux/nsproxy.h>
25#include <linux/pid_namespace.h>
26#include <linux/ptrace.h>
27#include <linux/profile.h>
28#include <linux/mount.h>
29#include <linux/proc_fs.h>
30#include <linux/kthread.h>
31#include <linux/mempolicy.h>
32#include <linux/taskstats_kern.h>
33#include <linux/delayacct.h>
34#include <linux/freezer.h>
35#include <linux/cgroup.h>
36#include <linux/syscalls.h>
37#include <linux/signal.h>
38#include <linux/posix-timers.h>
39#include <linux/cn_proc.h>
40#include <linux/mutex.h>
41#include <linux/futex.h>
42#include <linux/pipe_fs_i.h>
43#include <linux/audit.h> /* for audit_free() */
44#include <linux/resource.h>
45#include <linux/blkdev.h>
46#include <linux/task_io_accounting_ops.h>
47#include <linux/tracehook.h>
48#include <linux/fs_struct.h>
49#include <linux/init_task.h>
50#include <linux/perf_event.h>
51#include <trace/events/sched.h>
52#include <linux/hw_breakpoint.h>
53#include <linux/oom.h>
54#include <linux/writeback.h>
55#include <linux/shm.h>
56
57#include <asm/uaccess.h>
58#include <asm/unistd.h>
59#include <asm/pgtable.h>
60#include <asm/mmu_context.h>
61
62static void exit_mm(struct task_struct * tsk);
63
64static void __unhash_process(struct task_struct *p, bool group_dead)
65{
66 nr_threads--;
67 detach_pid(p, PIDTYPE_PID);
68 if (group_dead) {
69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID);
71
72 list_del_rcu(&p->tasks);
73 list_del_init(&p->sibling);
74 __this_cpu_dec(process_counts);
75 /*
76 * If we are the last child process in a pid namespace to be
77 * reaped, notify the reaper sleeping zap_pid_ns_processes().
78 */
79 if (IS_ENABLED(CONFIG_PID_NS)) {
80 struct task_struct *parent = p->real_parent;
81
82 if ((task_active_pid_ns(parent)->child_reaper == parent) &&
83 list_empty(&parent->children) &&
84 (parent->flags & PF_EXITING))
85 wake_up_process(parent);
86 }
87 }
88 list_del_rcu(&p->thread_group);
89}
90
91/*
92 * This function expects the tasklist_lock write-locked.
93 */
94static void __exit_signal(struct task_struct *tsk)
95{
96 struct signal_struct *sig = tsk->signal;
97 bool group_dead = thread_group_leader(tsk);
98 struct sighand_struct *sighand;
99 struct tty_struct *uninitialized_var(tty);
100
101 sighand = rcu_dereference_check(tsk->sighand,
102 lockdep_tasklist_lock_is_held());
103 spin_lock(&sighand->siglock);
104
105 posix_cpu_timers_exit(tsk);
106 if (group_dead) {
107 posix_cpu_timers_exit_group(tsk);
108 tty = sig->tty;
109 sig->tty = NULL;
110 } else {
111 /*
112 * This can only happen if the caller is de_thread().
113 * FIXME: this is the temporary hack, we should teach
114 * posix-cpu-timers to handle this case correctly.
115 */
116 if (unlikely(has_group_leader_pid(tsk)))
117 posix_cpu_timers_exit_group(tsk);
118
119 /*
120 * If there is any task waiting for the group exit
121 * then notify it:
122 */
123 if (sig->notify_count > 0 && !--sig->notify_count)
124 wake_up_process(sig->group_exit_task);
125
126 if (tsk == sig->curr_target)
127 sig->curr_target = next_thread(tsk);
128 /*
129 * Accumulate here the counters for all threads but the
130 * group leader as they die, so they can be added into
131 * the process-wide totals when those are taken.
132 * The group leader stays around as a zombie as long
133 * as there are other threads. When it gets reaped,
134 * the exit.c code will add its counts into these totals.
135 * We won't ever get here for the group leader, since it
136 * will have been the last reference on the signal_struct.
137 */
138 sig->utime += tsk->utime;
139 sig->stime += tsk->stime;
140 sig->gtime += tsk->gtime;
141 sig->min_flt += tsk->min_flt;
142 sig->maj_flt += tsk->maj_flt;
143 sig->nvcsw += tsk->nvcsw;
144 sig->nivcsw += tsk->nivcsw;
145 sig->inblock += task_io_get_inblock(tsk);
146 sig->oublock += task_io_get_oublock(tsk);
147 task_io_accounting_add(&sig->ioac, &tsk->ioac);
148 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
149 }
150
151 sig->nr_threads--;
152 __unhash_process(tsk, group_dead);
153
154 /*
155 * Do this under ->siglock, we can race with another thread
156 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
157 */
158 flush_sigqueue(&tsk->pending);
159 tsk->sighand = NULL;
160 spin_unlock(&sighand->siglock);
161
162 __cleanup_sighand(sighand);
163 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
164 if (group_dead) {
165 flush_sigqueue(&sig->shared_pending);
166 tty_kref_put(tty);
167 }
168}
169
170static void delayed_put_task_struct(struct rcu_head *rhp)
171{
172 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
173
174 perf_event_delayed_put(tsk);
175 trace_sched_process_free(tsk);
176 put_task_struct(tsk);
177}
178
179
180void release_task(struct task_struct * p)
181{
182 struct task_struct *leader;
183 int zap_leader;
184repeat:
185 /* don't need to get the RCU readlock here - the process is dead and
186 * can't be modifying its own credentials. But shut RCU-lockdep up */
187 rcu_read_lock();
188 atomic_dec(&__task_cred(p)->user->processes);
189 rcu_read_unlock();
190
191 proc_flush_task(p);
192
193 write_lock_irq(&tasklist_lock);
194 ptrace_release_task(p);
195 __exit_signal(p);
196
197 /*
198 * If we are the last non-leader member of the thread
199 * group, and the leader is zombie, then notify the
200 * group leader's parent process. (if it wants notification.)
201 */
202 zap_leader = 0;
203 leader = p->group_leader;
204 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
205 /*
206 * If we were the last child thread and the leader has
207 * exited already, and the leader's parent ignores SIGCHLD,
208 * then we are the one who should release the leader.
209 */
210 zap_leader = do_notify_parent(leader, leader->exit_signal);
211 if (zap_leader)
212 leader->exit_state = EXIT_DEAD;
213 }
214
215 write_unlock_irq(&tasklist_lock);
216 release_thread(p);
217 call_rcu(&p->rcu, delayed_put_task_struct);
218
219 p = leader;
220 if (unlikely(zap_leader))
221 goto repeat;
222}
223
224/*
225 * This checks not only the pgrp, but falls back on the pid if no
226 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
227 * without this...
228 *
229 * The caller must hold rcu lock or the tasklist lock.
230 */
231struct pid *session_of_pgrp(struct pid *pgrp)
232{
233 struct task_struct *p;
234 struct pid *sid = NULL;
235
236 p = pid_task(pgrp, PIDTYPE_PGID);
237 if (p == NULL)
238 p = pid_task(pgrp, PIDTYPE_PID);
239 if (p != NULL)
240 sid = task_session(p);
241
242 return sid;
243}
244
245/*
246 * Determine if a process group is "orphaned", according to the POSIX
247 * definition in 2.2.2.52. Orphaned process groups are not to be affected
248 * by terminal-generated stop signals. Newly orphaned process groups are
249 * to receive a SIGHUP and a SIGCONT.
250 *
251 * "I ask you, have you ever known what it is to be an orphan?"
252 */
253static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
254{
255 struct task_struct *p;
256
257 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
258 if ((p == ignored_task) ||
259 (p->exit_state && thread_group_empty(p)) ||
260 is_global_init(p->real_parent))
261 continue;
262
263 if (task_pgrp(p->real_parent) != pgrp &&
264 task_session(p->real_parent) == task_session(p))
265 return 0;
266 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
267
268 return 1;
269}
270
271int is_current_pgrp_orphaned(void)
272{
273 int retval;
274
275 read_lock(&tasklist_lock);
276 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
277 read_unlock(&tasklist_lock);
278
279 return retval;
280}
281
282static bool has_stopped_jobs(struct pid *pgrp)
283{
284 struct task_struct *p;
285
286 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
287 if (p->signal->flags & SIGNAL_STOP_STOPPED)
288 return true;
289 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
290
291 return false;
292}
293
294/*
295 * Check to see if any process groups have become orphaned as
296 * a result of our exiting, and if they have any stopped jobs,
297 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
298 */
299static void
300kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
301{
302 struct pid *pgrp = task_pgrp(tsk);
303 struct task_struct *ignored_task = tsk;
304
305 if (!parent)
306 /* exit: our father is in a different pgrp than
307 * we are and we were the only connection outside.
308 */
309 parent = tsk->real_parent;
310 else
311 /* reparent: our child is in a different pgrp than
312 * we are, and it was the only connection outside.
313 */
314 ignored_task = NULL;
315
316 if (task_pgrp(parent) != pgrp &&
317 task_session(parent) == task_session(tsk) &&
318 will_become_orphaned_pgrp(pgrp, ignored_task) &&
319 has_stopped_jobs(pgrp)) {
320 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
321 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
322 }
323}
324
325/**
326 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
327 *
328 * If a kernel thread is launched as a result of a system call, or if
329 * it ever exits, it should generally reparent itself to kthreadd so it
330 * isn't in the way of other processes and is correctly cleaned up on exit.
331 *
332 * The various task state such as scheduling policy and priority may have
333 * been inherited from a user process, so we reset them to sane values here.
334 *
335 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
336 */
337static void reparent_to_kthreadd(void)
338{
339 write_lock_irq(&tasklist_lock);
340
341 ptrace_unlink(current);
342 /* Reparent to init */
343 current->real_parent = current->parent = kthreadd_task;
344 list_move_tail(¤t->sibling, ¤t->real_parent->children);
345
346 /* Set the exit signal to SIGCHLD so we signal init on exit */
347 current->exit_signal = SIGCHLD;
348
349 if (task_nice(current) < 0)
350 set_user_nice(current, 0);
351 /* cpus_allowed? */
352 /* rt_priority? */
353 /* signals? */
354 memcpy(current->signal->rlim, init_task.signal->rlim,
355 sizeof(current->signal->rlim));
356
357 atomic_inc(&init_cred.usage);
358 commit_creds(&init_cred);
359 write_unlock_irq(&tasklist_lock);
360}
361
362void __set_special_pids(struct pid *pid)
363{
364 struct task_struct *curr = current->group_leader;
365
366 if (task_session(curr) != pid)
367 change_pid(curr, PIDTYPE_SID, pid);
368
369 if (task_pgrp(curr) != pid)
370 change_pid(curr, PIDTYPE_PGID, pid);
371}
372
373static void set_special_pids(struct pid *pid)
374{
375 write_lock_irq(&tasklist_lock);
376 __set_special_pids(pid);
377 write_unlock_irq(&tasklist_lock);
378}
379
380/*
381 * Let kernel threads use this to say that they allow a certain signal.
382 * Must not be used if kthread was cloned with CLONE_SIGHAND.
383 */
384int allow_signal(int sig)
385{
386 if (!valid_signal(sig) || sig < 1)
387 return -EINVAL;
388
389 spin_lock_irq(¤t->sighand->siglock);
390 /* This is only needed for daemonize()'ed kthreads */
391 sigdelset(¤t->blocked, sig);
392 /*
393 * Kernel threads handle their own signals. Let the signal code
394 * know it'll be handled, so that they don't get converted to
395 * SIGKILL or just silently dropped.
396 */
397 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
398 recalc_sigpending();
399 spin_unlock_irq(¤t->sighand->siglock);
400 return 0;
401}
402
403EXPORT_SYMBOL(allow_signal);
404
405int disallow_signal(int sig)
406{
407 if (!valid_signal(sig) || sig < 1)
408 return -EINVAL;
409
410 spin_lock_irq(¤t->sighand->siglock);
411 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
412 recalc_sigpending();
413 spin_unlock_irq(¤t->sighand->siglock);
414 return 0;
415}
416
417EXPORT_SYMBOL(disallow_signal);
418
419/*
420 * Put all the gunge required to become a kernel thread without
421 * attached user resources in one place where it belongs.
422 */
423
424void daemonize(const char *name, ...)
425{
426 va_list args;
427 sigset_t blocked;
428
429 va_start(args, name);
430 vsnprintf(current->comm, sizeof(current->comm), name, args);
431 va_end(args);
432
433 /*
434 * If we were started as result of loading a module, close all of the
435 * user space pages. We don't need them, and if we didn't close them
436 * they would be locked into memory.
437 */
438 exit_mm(current);
439 /*
440 * We don't want to get frozen, in case system-wide hibernation
441 * or suspend transition begins right now.
442 */
443 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
444
445 if (current->nsproxy != &init_nsproxy) {
446 get_nsproxy(&init_nsproxy);
447 switch_task_namespaces(current, &init_nsproxy);
448 }
449 set_special_pids(&init_struct_pid);
450 proc_clear_tty(current);
451
452 /* Block and flush all signals */
453 sigfillset(&blocked);
454 sigprocmask(SIG_BLOCK, &blocked, NULL);
455 flush_signals(current);
456
457 /* Become as one with the init task */
458
459 daemonize_fs_struct();
460 exit_files(current);
461 current->files = init_task.files;
462 atomic_inc(¤t->files->count);
463
464 reparent_to_kthreadd();
465}
466
467EXPORT_SYMBOL(daemonize);
468
469static void close_files(struct files_struct * files)
470{
471 int i, j;
472 struct fdtable *fdt;
473
474 j = 0;
475
476 /*
477 * It is safe to dereference the fd table without RCU or
478 * ->file_lock because this is the last reference to the
479 * files structure. But use RCU to shut RCU-lockdep up.
480 */
481 rcu_read_lock();
482 fdt = files_fdtable(files);
483 rcu_read_unlock();
484 for (;;) {
485 unsigned long set;
486 i = j * BITS_PER_LONG;
487 if (i >= fdt->max_fds)
488 break;
489 set = fdt->open_fds[j++];
490 while (set) {
491 if (set & 1) {
492 struct file * file = xchg(&fdt->fd[i], NULL);
493 if (file) {
494 filp_close(file, files);
495 cond_resched();
496 }
497 }
498 i++;
499 set >>= 1;
500 }
501 }
502}
503
504struct files_struct *get_files_struct(struct task_struct *task)
505{
506 struct files_struct *files;
507
508 task_lock(task);
509 files = task->files;
510 if (files)
511 atomic_inc(&files->count);
512 task_unlock(task);
513
514 return files;
515}
516
517void put_files_struct(struct files_struct *files)
518{
519 struct fdtable *fdt;
520
521 if (atomic_dec_and_test(&files->count)) {
522 close_files(files);
523 /*
524 * Free the fd and fdset arrays if we expanded them.
525 * If the fdtable was embedded, pass files for freeing
526 * at the end of the RCU grace period. Otherwise,
527 * you can free files immediately.
528 */
529 rcu_read_lock();
530 fdt = files_fdtable(files);
531 if (fdt != &files->fdtab)
532 kmem_cache_free(files_cachep, files);
533 free_fdtable(fdt);
534 rcu_read_unlock();
535 }
536}
537
538void reset_files_struct(struct files_struct *files)
539{
540 struct task_struct *tsk = current;
541 struct files_struct *old;
542
543 old = tsk->files;
544 task_lock(tsk);
545 tsk->files = files;
546 task_unlock(tsk);
547 put_files_struct(old);
548}
549
550void exit_files(struct task_struct *tsk)
551{
552 struct files_struct * files = tsk->files;
553
554 if (files) {
555 task_lock(tsk);
556 tsk->files = NULL;
557 task_unlock(tsk);
558 put_files_struct(files);
559 }
560}
561
562#ifdef CONFIG_MM_OWNER
563/*
564 * A task is exiting. If it owned this mm, find a new owner for the mm.
565 */
566void mm_update_next_owner(struct mm_struct *mm)
567{
568 struct task_struct *c, *g, *p = current;
569
570retry:
571 /*
572 * If the exiting or execing task is not the owner, it's
573 * someone else's problem.
574 */
575 if (mm->owner != p)
576 return;
577 /*
578 * The current owner is exiting/execing and there are no other
579 * candidates. Do not leave the mm pointing to a possibly
580 * freed task structure.
581 */
582 if (atomic_read(&mm->mm_users) <= 1) {
583 mm->owner = NULL;
584 return;
585 }
586
587 read_lock(&tasklist_lock);
588 /*
589 * Search in the children
590 */
591 list_for_each_entry(c, &p->children, sibling) {
592 if (c->mm == mm)
593 goto assign_new_owner;
594 }
595
596 /*
597 * Search in the siblings
598 */
599 list_for_each_entry(c, &p->real_parent->children, sibling) {
600 if (c->mm == mm)
601 goto assign_new_owner;
602 }
603
604 /*
605 * Search through everything else. We should not get
606 * here often
607 */
608 do_each_thread(g, c) {
609 if (c->mm == mm)
610 goto assign_new_owner;
611 } while_each_thread(g, c);
612
613 read_unlock(&tasklist_lock);
614 /*
615 * We found no owner yet mm_users > 1: this implies that we are
616 * most likely racing with swapoff (try_to_unuse()) or /proc or
617 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
618 */
619 mm->owner = NULL;
620 return;
621
622assign_new_owner:
623 BUG_ON(c == p);
624 get_task_struct(c);
625 /*
626 * The task_lock protects c->mm from changing.
627 * We always want mm->owner->mm == mm
628 */
629 task_lock(c);
630 /*
631 * Delay read_unlock() till we have the task_lock()
632 * to ensure that c does not slip away underneath us
633 */
634 read_unlock(&tasklist_lock);
635 if (c->mm != mm) {
636 task_unlock(c);
637 put_task_struct(c);
638 goto retry;
639 }
640 mm->owner = c;
641 task_unlock(c);
642 put_task_struct(c);
643}
644#endif /* CONFIG_MM_OWNER */
645
646/*
647 * Turn us into a lazy TLB process if we
648 * aren't already..
649 */
650static void exit_mm(struct task_struct * tsk)
651{
652 struct mm_struct *mm = tsk->mm;
653 struct core_state *core_state;
654
655 mm_release(tsk, mm);
656 if (!mm)
657 return;
658 sync_mm_rss(mm);
659 /*
660 * Serialize with any possible pending coredump.
661 * We must hold mmap_sem around checking core_state
662 * and clearing tsk->mm. The core-inducing thread
663 * will increment ->nr_threads for each thread in the
664 * group with ->mm != NULL.
665 */
666 down_read(&mm->mmap_sem);
667 core_state = mm->core_state;
668 if (core_state) {
669 struct core_thread self;
670 up_read(&mm->mmap_sem);
671
672 self.task = tsk;
673 self.next = xchg(&core_state->dumper.next, &self);
674 /*
675 * Implies mb(), the result of xchg() must be visible
676 * to core_state->dumper.
677 */
678 if (atomic_dec_and_test(&core_state->nr_threads))
679 complete(&core_state->startup);
680
681 for (;;) {
682 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
683 if (!self.task) /* see coredump_finish() */
684 break;
685 schedule();
686 }
687 __set_task_state(tsk, TASK_RUNNING);
688 down_read(&mm->mmap_sem);
689 }
690 atomic_inc(&mm->mm_count);
691 BUG_ON(mm != tsk->active_mm);
692 /* more a memory barrier than a real lock */
693 task_lock(tsk);
694 tsk->mm = NULL;
695 up_read(&mm->mmap_sem);
696 enter_lazy_tlb(mm, current);
697 task_unlock(tsk);
698 mm_update_next_owner(mm);
699 mmput(mm);
700}
701
702/*
703 * When we die, we re-parent all our children, and try to:
704 * 1. give them to another thread in our thread group, if such a member exists
705 * 2. give it to the first ancestor process which prctl'd itself as a
706 * child_subreaper for its children (like a service manager)
707 * 3. give it to the init process (PID 1) in our pid namespace
708 */
709static struct task_struct *find_new_reaper(struct task_struct *father)
710 __releases(&tasklist_lock)
711 __acquires(&tasklist_lock)
712{
713 struct pid_namespace *pid_ns = task_active_pid_ns(father);
714 struct task_struct *thread;
715
716 thread = father;
717 while_each_thread(father, thread) {
718 if (thread->flags & PF_EXITING)
719 continue;
720 if (unlikely(pid_ns->child_reaper == father))
721 pid_ns->child_reaper = thread;
722 return thread;
723 }
724
725 if (unlikely(pid_ns->child_reaper == father)) {
726 write_unlock_irq(&tasklist_lock);
727 if (unlikely(pid_ns == &init_pid_ns)) {
728 panic("Attempted to kill init! exitcode=0x%08x\n",
729 father->signal->group_exit_code ?:
730 father->exit_code);
731 }
732
733 zap_pid_ns_processes(pid_ns);
734 write_lock_irq(&tasklist_lock);
735 } else if (father->signal->has_child_subreaper) {
736 struct task_struct *reaper;
737
738 /*
739 * Find the first ancestor marked as child_subreaper.
740 * Note that the code below checks same_thread_group(reaper,
741 * pid_ns->child_reaper). This is what we need to DTRT in a
742 * PID namespace. However we still need the check above, see
743 * http://marc.info/?l=linux-kernel&m=131385460420380
744 */
745 for (reaper = father->real_parent;
746 reaper != &init_task;
747 reaper = reaper->real_parent) {
748 if (same_thread_group(reaper, pid_ns->child_reaper))
749 break;
750 if (!reaper->signal->is_child_subreaper)
751 continue;
752 thread = reaper;
753 do {
754 if (!(thread->flags & PF_EXITING))
755 return reaper;
756 } while_each_thread(reaper, thread);
757 }
758 }
759
760 return pid_ns->child_reaper;
761}
762
763/*
764* Any that need to be release_task'd are put on the @dead list.
765 */
766static void reparent_leader(struct task_struct *father, struct task_struct *p,
767 struct list_head *dead)
768{
769 list_move_tail(&p->sibling, &p->real_parent->children);
770
771 if (p->exit_state == EXIT_DEAD)
772 return;
773 /*
774 * If this is a threaded reparent there is no need to
775 * notify anyone anything has happened.
776 */
777 if (same_thread_group(p->real_parent, father))
778 return;
779
780 /* We don't want people slaying init. */
781 p->exit_signal = SIGCHLD;
782
783 /* If it has exited notify the new parent about this child's death. */
784 if (!p->ptrace &&
785 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
786 if (do_notify_parent(p, p->exit_signal)) {
787 p->exit_state = EXIT_DEAD;
788 list_move_tail(&p->sibling, dead);
789 }
790 }
791
792 kill_orphaned_pgrp(p, father);
793}
794
795static void forget_original_parent(struct task_struct *father)
796{
797 struct task_struct *p, *n, *reaper;
798 LIST_HEAD(dead_children);
799
800 write_lock_irq(&tasklist_lock);
801 /*
802 * Note that exit_ptrace() and find_new_reaper() might
803 * drop tasklist_lock and reacquire it.
804 */
805 exit_ptrace(father);
806 reaper = find_new_reaper(father);
807
808 list_for_each_entry_safe(p, n, &father->children, sibling) {
809 struct task_struct *t = p;
810 do {
811 t->real_parent = reaper;
812 if (t->parent == father) {
813 BUG_ON(t->ptrace);
814 t->parent = t->real_parent;
815 }
816 if (t->pdeath_signal)
817 group_send_sig_info(t->pdeath_signal,
818 SEND_SIG_NOINFO, t);
819 } while_each_thread(p, t);
820 reparent_leader(father, p, &dead_children);
821 }
822 write_unlock_irq(&tasklist_lock);
823
824 BUG_ON(!list_empty(&father->children));
825
826 list_for_each_entry_safe(p, n, &dead_children, sibling) {
827 list_del_init(&p->sibling);
828 release_task(p);
829 }
830}
831
832/*
833 * Send signals to all our closest relatives so that they know
834 * to properly mourn us..
835 */
836static void exit_notify(struct task_struct *tsk, int group_dead)
837{
838 bool autoreap;
839
840 /*
841 * This does two things:
842 *
843 * A. Make init inherit all the child processes
844 * B. Check to see if any process groups have become orphaned
845 * as a result of our exiting, and if they have any stopped
846 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
847 */
848 forget_original_parent(tsk);
849 exit_task_namespaces(tsk);
850
851 write_lock_irq(&tasklist_lock);
852 if (group_dead)
853 kill_orphaned_pgrp(tsk->group_leader, NULL);
854
855 if (unlikely(tsk->ptrace)) {
856 int sig = thread_group_leader(tsk) &&
857 thread_group_empty(tsk) &&
858 !ptrace_reparented(tsk) ?
859 tsk->exit_signal : SIGCHLD;
860 autoreap = do_notify_parent(tsk, sig);
861 } else if (thread_group_leader(tsk)) {
862 autoreap = thread_group_empty(tsk) &&
863 do_notify_parent(tsk, tsk->exit_signal);
864 } else {
865 autoreap = true;
866 }
867
868 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
869
870 /* mt-exec, de_thread() is waiting for group leader */
871 if (unlikely(tsk->signal->notify_count < 0))
872 wake_up_process(tsk->signal->group_exit_task);
873 write_unlock_irq(&tasklist_lock);
874
875 /* If the process is dead, release it - nobody will wait for it */
876 if (autoreap)
877 release_task(tsk);
878}
879
880#ifdef CONFIG_DEBUG_STACK_USAGE
881static void check_stack_usage(void)
882{
883 static DEFINE_SPINLOCK(low_water_lock);
884 static int lowest_to_date = THREAD_SIZE;
885 unsigned long free;
886
887 free = stack_not_used(current);
888
889 if (free >= lowest_to_date)
890 return;
891
892 spin_lock(&low_water_lock);
893 if (free < lowest_to_date) {
894 printk(KERN_WARNING "%s (%d) used greatest stack depth: "
895 "%lu bytes left\n",
896 current->comm, task_pid_nr(current), free);
897 lowest_to_date = free;
898 }
899 spin_unlock(&low_water_lock);
900}
901#else
902static inline void check_stack_usage(void) {}
903#endif
904
905void do_exit(long code)
906{
907 struct task_struct *tsk = current;
908 int group_dead;
909
910 profile_task_exit(tsk);
911
912 WARN_ON(blk_needs_flush_plug(tsk));
913
914 if (unlikely(in_interrupt()))
915 panic("Aiee, killing interrupt handler!");
916 if (unlikely(!tsk->pid))
917 panic("Attempted to kill the idle task!");
918
919 /*
920 * If do_exit is called because this processes oopsed, it's possible
921 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
922 * continuing. Amongst other possible reasons, this is to prevent
923 * mm_release()->clear_child_tid() from writing to a user-controlled
924 * kernel address.
925 */
926 set_fs(USER_DS);
927
928 ptrace_event(PTRACE_EVENT_EXIT, code);
929
930 validate_creds_for_do_exit(tsk);
931
932 /*
933 * We're taking recursive faults here in do_exit. Safest is to just
934 * leave this task alone and wait for reboot.
935 */
936 if (unlikely(tsk->flags & PF_EXITING)) {
937 printk(KERN_ALERT
938 "Fixing recursive fault but reboot is needed!\n");
939 /*
940 * We can do this unlocked here. The futex code uses
941 * this flag just to verify whether the pi state
942 * cleanup has been done or not. In the worst case it
943 * loops once more. We pretend that the cleanup was
944 * done as there is no way to return. Either the
945 * OWNER_DIED bit is set by now or we push the blocked
946 * task into the wait for ever nirwana as well.
947 */
948 tsk->flags |= PF_EXITPIDONE;
949 set_current_state(TASK_UNINTERRUPTIBLE);
950 schedule();
951 }
952
953 exit_signals(tsk); /* sets PF_EXITING */
954 /*
955 * tsk->flags are checked in the futex code to protect against
956 * an exiting task cleaning up the robust pi futexes, and in
957 * task_work_add() to avoid the race with exit_task_work().
958 */
959 smp_mb();
960 raw_spin_unlock_wait(&tsk->pi_lock);
961
962 exit_task_work(tsk);
963
964 if (unlikely(in_atomic()))
965 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
966 current->comm, task_pid_nr(current),
967 preempt_count());
968
969 acct_update_integrals(tsk);
970 /* sync mm's RSS info before statistics gathering */
971 if (tsk->mm)
972 sync_mm_rss(tsk->mm);
973 group_dead = atomic_dec_and_test(&tsk->signal->live);
974 if (group_dead) {
975 hrtimer_cancel(&tsk->signal->real_timer);
976 exit_itimers(tsk->signal);
977 if (tsk->mm)
978 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
979 }
980 acct_collect(code, group_dead);
981 if (group_dead)
982 tty_audit_exit();
983 audit_free(tsk);
984
985 tsk->exit_code = code;
986 taskstats_exit(tsk, group_dead);
987
988 exit_mm(tsk);
989
990 if (group_dead)
991 acct_process();
992 trace_sched_process_exit(tsk);
993
994 exit_sem(tsk);
995 exit_shm(tsk);
996 exit_files(tsk);
997 exit_fs(tsk);
998 check_stack_usage();
999 exit_thread();
1000
1001 /*
1002 * Flush inherited counters to the parent - before the parent
1003 * gets woken up by child-exit notifications.
1004 *
1005 * because of cgroup mode, must be called before cgroup_exit()
1006 */
1007 perf_event_exit_task(tsk);
1008
1009 cgroup_exit(tsk, 1);
1010
1011 if (group_dead)
1012 disassociate_ctty(1);
1013
1014 module_put(task_thread_info(tsk)->exec_domain->module);
1015
1016 proc_exit_connector(tsk);
1017
1018 /*
1019 * FIXME: do that only when needed, using sched_exit tracepoint
1020 */
1021 ptrace_put_breakpoints(tsk);
1022
1023 exit_notify(tsk, group_dead);
1024#ifdef CONFIG_NUMA
1025 task_lock(tsk);
1026 mpol_put(tsk->mempolicy);
1027 tsk->mempolicy = NULL;
1028 task_unlock(tsk);
1029#endif
1030#ifdef CONFIG_FUTEX
1031 if (unlikely(current->pi_state_cache))
1032 kfree(current->pi_state_cache);
1033#endif
1034 /*
1035 * Make sure we are holding no locks:
1036 */
1037 debug_check_no_locks_held(tsk);
1038 /*
1039 * We can do this unlocked here. The futex code uses this flag
1040 * just to verify whether the pi state cleanup has been done
1041 * or not. In the worst case it loops once more.
1042 */
1043 tsk->flags |= PF_EXITPIDONE;
1044
1045 if (tsk->io_context)
1046 exit_io_context(tsk);
1047
1048 if (tsk->splice_pipe)
1049 __free_pipe_info(tsk->splice_pipe);
1050
1051 validate_creds_for_do_exit(tsk);
1052
1053 preempt_disable();
1054 if (tsk->nr_dirtied)
1055 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
1056 exit_rcu();
1057
1058 /*
1059 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
1060 * when the following two conditions become true.
1061 * - There is race condition of mmap_sem (It is acquired by
1062 * exit_mm()), and
1063 * - SMI occurs before setting TASK_RUNINNG.
1064 * (or hypervisor of virtual machine switches to other guest)
1065 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
1066 *
1067 * To avoid it, we have to wait for releasing tsk->pi_lock which
1068 * is held by try_to_wake_up()
1069 */
1070 smp_mb();
1071 raw_spin_unlock_wait(&tsk->pi_lock);
1072
1073 /* causes final put_task_struct in finish_task_switch(). */
1074 tsk->state = TASK_DEAD;
1075 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
1076 schedule();
1077 BUG();
1078 /* Avoid "noreturn function does return". */
1079 for (;;)
1080 cpu_relax(); /* For when BUG is null */
1081}
1082
1083EXPORT_SYMBOL_GPL(do_exit);
1084
1085void complete_and_exit(struct completion *comp, long code)
1086{
1087 if (comp)
1088 complete(comp);
1089
1090 do_exit(code);
1091}
1092
1093EXPORT_SYMBOL(complete_and_exit);
1094
1095SYSCALL_DEFINE1(exit, int, error_code)
1096{
1097 do_exit((error_code&0xff)<<8);
1098}
1099
1100/*
1101 * Take down every thread in the group. This is called by fatal signals
1102 * as well as by sys_exit_group (below).
1103 */
1104void
1105do_group_exit(int exit_code)
1106{
1107 struct signal_struct *sig = current->signal;
1108
1109 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1110
1111 if (signal_group_exit(sig))
1112 exit_code = sig->group_exit_code;
1113 else if (!thread_group_empty(current)) {
1114 struct sighand_struct *const sighand = current->sighand;
1115 spin_lock_irq(&sighand->siglock);
1116 if (signal_group_exit(sig))
1117 /* Another thread got here before we took the lock. */
1118 exit_code = sig->group_exit_code;
1119 else {
1120 sig->group_exit_code = exit_code;
1121 sig->flags = SIGNAL_GROUP_EXIT;
1122 zap_other_threads(current);
1123 }
1124 spin_unlock_irq(&sighand->siglock);
1125 }
1126
1127 do_exit(exit_code);
1128 /* NOTREACHED */
1129}
1130
1131/*
1132 * this kills every thread in the thread group. Note that any externally
1133 * wait4()-ing process will get the correct exit code - even if this
1134 * thread is not the thread group leader.
1135 */
1136SYSCALL_DEFINE1(exit_group, int, error_code)
1137{
1138 do_group_exit((error_code & 0xff) << 8);
1139 /* NOTREACHED */
1140 return 0;
1141}
1142
1143struct wait_opts {
1144 enum pid_type wo_type;
1145 int wo_flags;
1146 struct pid *wo_pid;
1147
1148 struct siginfo __user *wo_info;
1149 int __user *wo_stat;
1150 struct rusage __user *wo_rusage;
1151
1152 wait_queue_t child_wait;
1153 int notask_error;
1154};
1155
1156static inline
1157struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1158{
1159 if (type != PIDTYPE_PID)
1160 task = task->group_leader;
1161 return task->pids[type].pid;
1162}
1163
1164static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1165{
1166 return wo->wo_type == PIDTYPE_MAX ||
1167 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1168}
1169
1170static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1171{
1172 if (!eligible_pid(wo, p))
1173 return 0;
1174 /* Wait for all children (clone and not) if __WALL is set;
1175 * otherwise, wait for clone children *only* if __WCLONE is
1176 * set; otherwise, wait for non-clone children *only*. (Note:
1177 * A "clone" child here is one that reports to its parent
1178 * using a signal other than SIGCHLD.) */
1179 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1180 && !(wo->wo_flags & __WALL))
1181 return 0;
1182
1183 return 1;
1184}
1185
1186static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1187 pid_t pid, uid_t uid, int why, int status)
1188{
1189 struct siginfo __user *infop;
1190 int retval = wo->wo_rusage
1191 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1192
1193 put_task_struct(p);
1194 infop = wo->wo_info;
1195 if (infop) {
1196 if (!retval)
1197 retval = put_user(SIGCHLD, &infop->si_signo);
1198 if (!retval)
1199 retval = put_user(0, &infop->si_errno);
1200 if (!retval)
1201 retval = put_user((short)why, &infop->si_code);
1202 if (!retval)
1203 retval = put_user(pid, &infop->si_pid);
1204 if (!retval)
1205 retval = put_user(uid, &infop->si_uid);
1206 if (!retval)
1207 retval = put_user(status, &infop->si_status);
1208 }
1209 if (!retval)
1210 retval = pid;
1211 return retval;
1212}
1213
1214/*
1215 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1216 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1217 * the lock and this task is uninteresting. If we return nonzero, we have
1218 * released the lock and the system call should return.
1219 */
1220static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1221{
1222 unsigned long state;
1223 int retval, status, traced;
1224 pid_t pid = task_pid_vnr(p);
1225 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1226 struct siginfo __user *infop;
1227
1228 if (!likely(wo->wo_flags & WEXITED))
1229 return 0;
1230
1231 if (unlikely(wo->wo_flags & WNOWAIT)) {
1232 int exit_code = p->exit_code;
1233 int why;
1234
1235 get_task_struct(p);
1236 read_unlock(&tasklist_lock);
1237 if ((exit_code & 0x7f) == 0) {
1238 why = CLD_EXITED;
1239 status = exit_code >> 8;
1240 } else {
1241 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1242 status = exit_code & 0x7f;
1243 }
1244 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1245 }
1246
1247 /*
1248 * Try to move the task's state to DEAD
1249 * only one thread is allowed to do this:
1250 */
1251 state = xchg(&p->exit_state, EXIT_DEAD);
1252 if (state != EXIT_ZOMBIE) {
1253 BUG_ON(state != EXIT_DEAD);
1254 return 0;
1255 }
1256
1257 traced = ptrace_reparented(p);
1258 /*
1259 * It can be ptraced but not reparented, check
1260 * thread_group_leader() to filter out sub-threads.
1261 */
1262 if (likely(!traced) && thread_group_leader(p)) {
1263 struct signal_struct *psig;
1264 struct signal_struct *sig;
1265 unsigned long maxrss;
1266 cputime_t tgutime, tgstime;
1267
1268 /*
1269 * The resource counters for the group leader are in its
1270 * own task_struct. Those for dead threads in the group
1271 * are in its signal_struct, as are those for the child
1272 * processes it has previously reaped. All these
1273 * accumulate in the parent's signal_struct c* fields.
1274 *
1275 * We don't bother to take a lock here to protect these
1276 * p->signal fields, because they are only touched by
1277 * __exit_signal, which runs with tasklist_lock
1278 * write-locked anyway, and so is excluded here. We do
1279 * need to protect the access to parent->signal fields,
1280 * as other threads in the parent group can be right
1281 * here reaping other children at the same time.
1282 *
1283 * We use thread_group_times() to get times for the thread
1284 * group, which consolidates times for all threads in the
1285 * group including the group leader.
1286 */
1287 thread_group_times(p, &tgutime, &tgstime);
1288 spin_lock_irq(&p->real_parent->sighand->siglock);
1289 psig = p->real_parent->signal;
1290 sig = p->signal;
1291 psig->cutime += tgutime + sig->cutime;
1292 psig->cstime += tgstime + sig->cstime;
1293 psig->cgtime += p->gtime + sig->gtime + sig->cgtime;
1294 psig->cmin_flt +=
1295 p->min_flt + sig->min_flt + sig->cmin_flt;
1296 psig->cmaj_flt +=
1297 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1298 psig->cnvcsw +=
1299 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1300 psig->cnivcsw +=
1301 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1302 psig->cinblock +=
1303 task_io_get_inblock(p) +
1304 sig->inblock + sig->cinblock;
1305 psig->coublock +=
1306 task_io_get_oublock(p) +
1307 sig->oublock + sig->coublock;
1308 maxrss = max(sig->maxrss, sig->cmaxrss);
1309 if (psig->cmaxrss < maxrss)
1310 psig->cmaxrss = maxrss;
1311 task_io_accounting_add(&psig->ioac, &p->ioac);
1312 task_io_accounting_add(&psig->ioac, &sig->ioac);
1313 spin_unlock_irq(&p->real_parent->sighand->siglock);
1314 }
1315
1316 /*
1317 * Now we are sure this task is interesting, and no other
1318 * thread can reap it because we set its state to EXIT_DEAD.
1319 */
1320 read_unlock(&tasklist_lock);
1321
1322 retval = wo->wo_rusage
1323 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1324 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1325 ? p->signal->group_exit_code : p->exit_code;
1326 if (!retval && wo->wo_stat)
1327 retval = put_user(status, wo->wo_stat);
1328
1329 infop = wo->wo_info;
1330 if (!retval && infop)
1331 retval = put_user(SIGCHLD, &infop->si_signo);
1332 if (!retval && infop)
1333 retval = put_user(0, &infop->si_errno);
1334 if (!retval && infop) {
1335 int why;
1336
1337 if ((status & 0x7f) == 0) {
1338 why = CLD_EXITED;
1339 status >>= 8;
1340 } else {
1341 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1342 status &= 0x7f;
1343 }
1344 retval = put_user((short)why, &infop->si_code);
1345 if (!retval)
1346 retval = put_user(status, &infop->si_status);
1347 }
1348 if (!retval && infop)
1349 retval = put_user(pid, &infop->si_pid);
1350 if (!retval && infop)
1351 retval = put_user(uid, &infop->si_uid);
1352 if (!retval)
1353 retval = pid;
1354
1355 if (traced) {
1356 write_lock_irq(&tasklist_lock);
1357 /* We dropped tasklist, ptracer could die and untrace */
1358 ptrace_unlink(p);
1359 /*
1360 * If this is not a sub-thread, notify the parent.
1361 * If parent wants a zombie, don't release it now.
1362 */
1363 if (thread_group_leader(p) &&
1364 !do_notify_parent(p, p->exit_signal)) {
1365 p->exit_state = EXIT_ZOMBIE;
1366 p = NULL;
1367 }
1368 write_unlock_irq(&tasklist_lock);
1369 }
1370 if (p != NULL)
1371 release_task(p);
1372
1373 return retval;
1374}
1375
1376static int *task_stopped_code(struct task_struct *p, bool ptrace)
1377{
1378 if (ptrace) {
1379 if (task_is_stopped_or_traced(p) &&
1380 !(p->jobctl & JOBCTL_LISTENING))
1381 return &p->exit_code;
1382 } else {
1383 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1384 return &p->signal->group_exit_code;
1385 }
1386 return NULL;
1387}
1388
1389/**
1390 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1391 * @wo: wait options
1392 * @ptrace: is the wait for ptrace
1393 * @p: task to wait for
1394 *
1395 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1396 *
1397 * CONTEXT:
1398 * read_lock(&tasklist_lock), which is released if return value is
1399 * non-zero. Also, grabs and releases @p->sighand->siglock.
1400 *
1401 * RETURNS:
1402 * 0 if wait condition didn't exist and search for other wait conditions
1403 * should continue. Non-zero return, -errno on failure and @p's pid on
1404 * success, implies that tasklist_lock is released and wait condition
1405 * search should terminate.
1406 */
1407static int wait_task_stopped(struct wait_opts *wo,
1408 int ptrace, struct task_struct *p)
1409{
1410 struct siginfo __user *infop;
1411 int retval, exit_code, *p_code, why;
1412 uid_t uid = 0; /* unneeded, required by compiler */
1413 pid_t pid;
1414
1415 /*
1416 * Traditionally we see ptrace'd stopped tasks regardless of options.
1417 */
1418 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1419 return 0;
1420
1421 if (!task_stopped_code(p, ptrace))
1422 return 0;
1423
1424 exit_code = 0;
1425 spin_lock_irq(&p->sighand->siglock);
1426
1427 p_code = task_stopped_code(p, ptrace);
1428 if (unlikely(!p_code))
1429 goto unlock_sig;
1430
1431 exit_code = *p_code;
1432 if (!exit_code)
1433 goto unlock_sig;
1434
1435 if (!unlikely(wo->wo_flags & WNOWAIT))
1436 *p_code = 0;
1437
1438 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1439unlock_sig:
1440 spin_unlock_irq(&p->sighand->siglock);
1441 if (!exit_code)
1442 return 0;
1443
1444 /*
1445 * Now we are pretty sure this task is interesting.
1446 * Make sure it doesn't get reaped out from under us while we
1447 * give up the lock and then examine it below. We don't want to
1448 * keep holding onto the tasklist_lock while we call getrusage and
1449 * possibly take page faults for user memory.
1450 */
1451 get_task_struct(p);
1452 pid = task_pid_vnr(p);
1453 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1454 read_unlock(&tasklist_lock);
1455
1456 if (unlikely(wo->wo_flags & WNOWAIT))
1457 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1458
1459 retval = wo->wo_rusage
1460 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1461 if (!retval && wo->wo_stat)
1462 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1463
1464 infop = wo->wo_info;
1465 if (!retval && infop)
1466 retval = put_user(SIGCHLD, &infop->si_signo);
1467 if (!retval && infop)
1468 retval = put_user(0, &infop->si_errno);
1469 if (!retval && infop)
1470 retval = put_user((short)why, &infop->si_code);
1471 if (!retval && infop)
1472 retval = put_user(exit_code, &infop->si_status);
1473 if (!retval && infop)
1474 retval = put_user(pid, &infop->si_pid);
1475 if (!retval && infop)
1476 retval = put_user(uid, &infop->si_uid);
1477 if (!retval)
1478 retval = pid;
1479 put_task_struct(p);
1480
1481 BUG_ON(!retval);
1482 return retval;
1483}
1484
1485/*
1486 * Handle do_wait work for one task in a live, non-stopped state.
1487 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1488 * the lock and this task is uninteresting. If we return nonzero, we have
1489 * released the lock and the system call should return.
1490 */
1491static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1492{
1493 int retval;
1494 pid_t pid;
1495 uid_t uid;
1496
1497 if (!unlikely(wo->wo_flags & WCONTINUED))
1498 return 0;
1499
1500 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1501 return 0;
1502
1503 spin_lock_irq(&p->sighand->siglock);
1504 /* Re-check with the lock held. */
1505 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1506 spin_unlock_irq(&p->sighand->siglock);
1507 return 0;
1508 }
1509 if (!unlikely(wo->wo_flags & WNOWAIT))
1510 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1511 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1512 spin_unlock_irq(&p->sighand->siglock);
1513
1514 pid = task_pid_vnr(p);
1515 get_task_struct(p);
1516 read_unlock(&tasklist_lock);
1517
1518 if (!wo->wo_info) {
1519 retval = wo->wo_rusage
1520 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1521 put_task_struct(p);
1522 if (!retval && wo->wo_stat)
1523 retval = put_user(0xffff, wo->wo_stat);
1524 if (!retval)
1525 retval = pid;
1526 } else {
1527 retval = wait_noreap_copyout(wo, p, pid, uid,
1528 CLD_CONTINUED, SIGCONT);
1529 BUG_ON(retval == 0);
1530 }
1531
1532 return retval;
1533}
1534
1535/*
1536 * Consider @p for a wait by @parent.
1537 *
1538 * -ECHILD should be in ->notask_error before the first call.
1539 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1540 * Returns zero if the search for a child should continue;
1541 * then ->notask_error is 0 if @p is an eligible child,
1542 * or another error from security_task_wait(), or still -ECHILD.
1543 */
1544static int wait_consider_task(struct wait_opts *wo, int ptrace,
1545 struct task_struct *p)
1546{
1547 int ret = eligible_child(wo, p);
1548 if (!ret)
1549 return ret;
1550
1551 ret = security_task_wait(p);
1552 if (unlikely(ret < 0)) {
1553 /*
1554 * If we have not yet seen any eligible child,
1555 * then let this error code replace -ECHILD.
1556 * A permission error will give the user a clue
1557 * to look for security policy problems, rather
1558 * than for mysterious wait bugs.
1559 */
1560 if (wo->notask_error)
1561 wo->notask_error = ret;
1562 return 0;
1563 }
1564
1565 /* dead body doesn't have much to contribute */
1566 if (unlikely(p->exit_state == EXIT_DEAD)) {
1567 /*
1568 * But do not ignore this task until the tracer does
1569 * wait_task_zombie()->do_notify_parent().
1570 */
1571 if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
1572 wo->notask_error = 0;
1573 return 0;
1574 }
1575
1576 /* slay zombie? */
1577 if (p->exit_state == EXIT_ZOMBIE) {
1578 /*
1579 * A zombie ptracee is only visible to its ptracer.
1580 * Notification and reaping will be cascaded to the real
1581 * parent when the ptracer detaches.
1582 */
1583 if (likely(!ptrace) && unlikely(p->ptrace)) {
1584 /* it will become visible, clear notask_error */
1585 wo->notask_error = 0;
1586 return 0;
1587 }
1588
1589 /* we don't reap group leaders with subthreads */
1590 if (!delay_group_leader(p))
1591 return wait_task_zombie(wo, p);
1592
1593 /*
1594 * Allow access to stopped/continued state via zombie by
1595 * falling through. Clearing of notask_error is complex.
1596 *
1597 * When !@ptrace:
1598 *
1599 * If WEXITED is set, notask_error should naturally be
1600 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1601 * so, if there are live subthreads, there are events to
1602 * wait for. If all subthreads are dead, it's still safe
1603 * to clear - this function will be called again in finite
1604 * amount time once all the subthreads are released and
1605 * will then return without clearing.
1606 *
1607 * When @ptrace:
1608 *
1609 * Stopped state is per-task and thus can't change once the
1610 * target task dies. Only continued and exited can happen.
1611 * Clear notask_error if WCONTINUED | WEXITED.
1612 */
1613 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1614 wo->notask_error = 0;
1615 } else {
1616 /*
1617 * If @p is ptraced by a task in its real parent's group,
1618 * hide group stop/continued state when looking at @p as
1619 * the real parent; otherwise, a single stop can be
1620 * reported twice as group and ptrace stops.
1621 *
1622 * If a ptracer wants to distinguish the two events for its
1623 * own children, it should create a separate process which
1624 * takes the role of real parent.
1625 */
1626 if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1627 return 0;
1628
1629 /*
1630 * @p is alive and it's gonna stop, continue or exit, so
1631 * there always is something to wait for.
1632 */
1633 wo->notask_error = 0;
1634 }
1635
1636 /*
1637 * Wait for stopped. Depending on @ptrace, different stopped state
1638 * is used and the two don't interact with each other.
1639 */
1640 ret = wait_task_stopped(wo, ptrace, p);
1641 if (ret)
1642 return ret;
1643
1644 /*
1645 * Wait for continued. There's only one continued state and the
1646 * ptracer can consume it which can confuse the real parent. Don't
1647 * use WCONTINUED from ptracer. You don't need or want it.
1648 */
1649 return wait_task_continued(wo, p);
1650}
1651
1652/*
1653 * Do the work of do_wait() for one thread in the group, @tsk.
1654 *
1655 * -ECHILD should be in ->notask_error before the first call.
1656 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1657 * Returns zero if the search for a child should continue; then
1658 * ->notask_error is 0 if there were any eligible children,
1659 * or another error from security_task_wait(), or still -ECHILD.
1660 */
1661static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1662{
1663 struct task_struct *p;
1664
1665 list_for_each_entry(p, &tsk->children, sibling) {
1666 int ret = wait_consider_task(wo, 0, p);
1667 if (ret)
1668 return ret;
1669 }
1670
1671 return 0;
1672}
1673
1674static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1675{
1676 struct task_struct *p;
1677
1678 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1679 int ret = wait_consider_task(wo, 1, p);
1680 if (ret)
1681 return ret;
1682 }
1683
1684 return 0;
1685}
1686
1687static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1688 int sync, void *key)
1689{
1690 struct wait_opts *wo = container_of(wait, struct wait_opts,
1691 child_wait);
1692 struct task_struct *p = key;
1693
1694 if (!eligible_pid(wo, p))
1695 return 0;
1696
1697 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1698 return 0;
1699
1700 return default_wake_function(wait, mode, sync, key);
1701}
1702
1703void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1704{
1705 __wake_up_sync_key(&parent->signal->wait_chldexit,
1706 TASK_INTERRUPTIBLE, 1, p);
1707}
1708
1709static long do_wait(struct wait_opts *wo)
1710{
1711 struct task_struct *tsk;
1712 int retval;
1713
1714 trace_sched_process_wait(wo->wo_pid);
1715
1716 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1717 wo->child_wait.private = current;
1718 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1719repeat:
1720 /*
1721 * If there is nothing that can match our critiera just get out.
1722 * We will clear ->notask_error to zero if we see any child that
1723 * might later match our criteria, even if we are not able to reap
1724 * it yet.
1725 */
1726 wo->notask_error = -ECHILD;
1727 if ((wo->wo_type < PIDTYPE_MAX) &&
1728 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1729 goto notask;
1730
1731 set_current_state(TASK_INTERRUPTIBLE);
1732 read_lock(&tasklist_lock);
1733 tsk = current;
1734 do {
1735 retval = do_wait_thread(wo, tsk);
1736 if (retval)
1737 goto end;
1738
1739 retval = ptrace_do_wait(wo, tsk);
1740 if (retval)
1741 goto end;
1742
1743 if (wo->wo_flags & __WNOTHREAD)
1744 break;
1745 } while_each_thread(current, tsk);
1746 read_unlock(&tasklist_lock);
1747
1748notask:
1749 retval = wo->notask_error;
1750 if (!retval && !(wo->wo_flags & WNOHANG)) {
1751 retval = -ERESTARTSYS;
1752 if (!signal_pending(current)) {
1753 schedule();
1754 goto repeat;
1755 }
1756 }
1757end:
1758 __set_current_state(TASK_RUNNING);
1759 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1760 return retval;
1761}
1762
1763SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1764 infop, int, options, struct rusage __user *, ru)
1765{
1766 struct wait_opts wo;
1767 struct pid *pid = NULL;
1768 enum pid_type type;
1769 long ret;
1770
1771 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1772 return -EINVAL;
1773 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1774 return -EINVAL;
1775
1776 switch (which) {
1777 case P_ALL:
1778 type = PIDTYPE_MAX;
1779 break;
1780 case P_PID:
1781 type = PIDTYPE_PID;
1782 if (upid <= 0)
1783 return -EINVAL;
1784 break;
1785 case P_PGID:
1786 type = PIDTYPE_PGID;
1787 if (upid <= 0)
1788 return -EINVAL;
1789 break;
1790 default:
1791 return -EINVAL;
1792 }
1793
1794 if (type < PIDTYPE_MAX)
1795 pid = find_get_pid(upid);
1796
1797 wo.wo_type = type;
1798 wo.wo_pid = pid;
1799 wo.wo_flags = options;
1800 wo.wo_info = infop;
1801 wo.wo_stat = NULL;
1802 wo.wo_rusage = ru;
1803 ret = do_wait(&wo);
1804
1805 if (ret > 0) {
1806 ret = 0;
1807 } else if (infop) {
1808 /*
1809 * For a WNOHANG return, clear out all the fields
1810 * we would set so the user can easily tell the
1811 * difference.
1812 */
1813 if (!ret)
1814 ret = put_user(0, &infop->si_signo);
1815 if (!ret)
1816 ret = put_user(0, &infop->si_errno);
1817 if (!ret)
1818 ret = put_user(0, &infop->si_code);
1819 if (!ret)
1820 ret = put_user(0, &infop->si_pid);
1821 if (!ret)
1822 ret = put_user(0, &infop->si_uid);
1823 if (!ret)
1824 ret = put_user(0, &infop->si_status);
1825 }
1826
1827 put_pid(pid);
1828
1829 /* avoid REGPARM breakage on x86: */
1830 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1831 return ret;
1832}
1833
1834SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1835 int, options, struct rusage __user *, ru)
1836{
1837 struct wait_opts wo;
1838 struct pid *pid = NULL;
1839 enum pid_type type;
1840 long ret;
1841
1842 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1843 __WNOTHREAD|__WCLONE|__WALL))
1844 return -EINVAL;
1845
1846 if (upid == -1)
1847 type = PIDTYPE_MAX;
1848 else if (upid < 0) {
1849 type = PIDTYPE_PGID;
1850 pid = find_get_pid(-upid);
1851 } else if (upid == 0) {
1852 type = PIDTYPE_PGID;
1853 pid = get_task_pid(current, PIDTYPE_PGID);
1854 } else /* upid > 0 */ {
1855 type = PIDTYPE_PID;
1856 pid = find_get_pid(upid);
1857 }
1858
1859 wo.wo_type = type;
1860 wo.wo_pid = pid;
1861 wo.wo_flags = options | WEXITED;
1862 wo.wo_info = NULL;
1863 wo.wo_stat = stat_addr;
1864 wo.wo_rusage = ru;
1865 ret = do_wait(&wo);
1866 put_pid(pid);
1867
1868 /* avoid REGPARM breakage on x86: */
1869 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1870 return ret;
1871}
1872
1873#ifdef __ARCH_WANT_SYS_WAITPID
1874
1875/*
1876 * sys_waitpid() remains for compatibility. waitpid() should be
1877 * implemented by calling sys_wait4() from libc.a.
1878 */
1879SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1880{
1881 return sys_wait4(pid, stat_addr, options, NULL);
1882}
1883
1884#endif