Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/kernel/exit.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8#include <linux/mm.h>
9#include <linux/slab.h>
10#include <linux/sched/autogroup.h>
11#include <linux/sched/mm.h>
12#include <linux/sched/stat.h>
13#include <linux/sched/task.h>
14#include <linux/sched/task_stack.h>
15#include <linux/sched/cputime.h>
16#include <linux/interrupt.h>
17#include <linux/module.h>
18#include <linux/capability.h>
19#include <linux/completion.h>
20#include <linux/personality.h>
21#include <linux/tty.h>
22#include <linux/iocontext.h>
23#include <linux/key.h>
24#include <linux/cpu.h>
25#include <linux/acct.h>
26#include <linux/tsacct_kern.h>
27#include <linux/file.h>
28#include <linux/fdtable.h>
29#include <linux/freezer.h>
30#include <linux/binfmts.h>
31#include <linux/nsproxy.h>
32#include <linux/pid_namespace.h>
33#include <linux/ptrace.h>
34#include <linux/profile.h>
35#include <linux/mount.h>
36#include <linux/proc_fs.h>
37#include <linux/kthread.h>
38#include <linux/mempolicy.h>
39#include <linux/taskstats_kern.h>
40#include <linux/delayacct.h>
41#include <linux/cgroup.h>
42#include <linux/syscalls.h>
43#include <linux/signal.h>
44#include <linux/posix-timers.h>
45#include <linux/cn_proc.h>
46#include <linux/mutex.h>
47#include <linux/futex.h>
48#include <linux/pipe_fs_i.h>
49#include <linux/audit.h> /* for audit_free() */
50#include <linux/resource.h>
51#include <linux/task_io_accounting_ops.h>
52#include <linux/blkdev.h>
53#include <linux/task_work.h>
54#include <linux/fs_struct.h>
55#include <linux/init_task.h>
56#include <linux/perf_event.h>
57#include <trace/events/sched.h>
58#include <linux/hw_breakpoint.h>
59#include <linux/oom.h>
60#include <linux/writeback.h>
61#include <linux/shm.h>
62#include <linux/kcov.h>
63#include <linux/kmsan.h>
64#include <linux/random.h>
65#include <linux/rcuwait.h>
66#include <linux/compat.h>
67#include <linux/io_uring.h>
68#include <linux/kprobes.h>
69#include <linux/rethook.h>
70#include <linux/sysfs.h>
71
72#include <linux/uaccess.h>
73#include <asm/unistd.h>
74#include <asm/mmu_context.h>
75
76/*
77 * The default value should be high enough to not crash a system that randomly
78 * crashes its kernel from time to time, but low enough to at least not permit
79 * overflowing 32-bit refcounts or the ldsem writer count.
80 */
81static unsigned int oops_limit = 10000;
82
83#ifdef CONFIG_SYSCTL
84static struct ctl_table kern_exit_table[] = {
85 {
86 .procname = "oops_limit",
87 .data = &oops_limit,
88 .maxlen = sizeof(oops_limit),
89 .mode = 0644,
90 .proc_handler = proc_douintvec,
91 },
92 { }
93};
94
95static __init int kernel_exit_sysctls_init(void)
96{
97 register_sysctl_init("kernel", kern_exit_table);
98 return 0;
99}
100late_initcall(kernel_exit_sysctls_init);
101#endif
102
103static atomic_t oops_count = ATOMIC_INIT(0);
104
105#ifdef CONFIG_SYSFS
106static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
107 char *page)
108{
109 return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
110}
111
112static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
113
114static __init int kernel_exit_sysfs_init(void)
115{
116 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
117 return 0;
118}
119late_initcall(kernel_exit_sysfs_init);
120#endif
121
122static void __unhash_process(struct task_struct *p, bool group_dead)
123{
124 nr_threads--;
125 detach_pid(p, PIDTYPE_PID);
126 if (group_dead) {
127 detach_pid(p, PIDTYPE_TGID);
128 detach_pid(p, PIDTYPE_PGID);
129 detach_pid(p, PIDTYPE_SID);
130
131 list_del_rcu(&p->tasks);
132 list_del_init(&p->sibling);
133 __this_cpu_dec(process_counts);
134 }
135 list_del_rcu(&p->thread_group);
136 list_del_rcu(&p->thread_node);
137}
138
139/*
140 * This function expects the tasklist_lock write-locked.
141 */
142static void __exit_signal(struct task_struct *tsk)
143{
144 struct signal_struct *sig = tsk->signal;
145 bool group_dead = thread_group_leader(tsk);
146 struct sighand_struct *sighand;
147 struct tty_struct *tty;
148 u64 utime, stime;
149
150 sighand = rcu_dereference_check(tsk->sighand,
151 lockdep_tasklist_lock_is_held());
152 spin_lock(&sighand->siglock);
153
154#ifdef CONFIG_POSIX_TIMERS
155 posix_cpu_timers_exit(tsk);
156 if (group_dead)
157 posix_cpu_timers_exit_group(tsk);
158#endif
159
160 if (group_dead) {
161 tty = sig->tty;
162 sig->tty = NULL;
163 } else {
164 /*
165 * If there is any task waiting for the group exit
166 * then notify it:
167 */
168 if (sig->notify_count > 0 && !--sig->notify_count)
169 wake_up_process(sig->group_exec_task);
170
171 if (tsk == sig->curr_target)
172 sig->curr_target = next_thread(tsk);
173 }
174
175 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
176 sizeof(unsigned long long));
177
178 /*
179 * Accumulate here the counters for all threads as they die. We could
180 * skip the group leader because it is the last user of signal_struct,
181 * but we want to avoid the race with thread_group_cputime() which can
182 * see the empty ->thread_head list.
183 */
184 task_cputime(tsk, &utime, &stime);
185 write_seqlock(&sig->stats_lock);
186 sig->utime += utime;
187 sig->stime += stime;
188 sig->gtime += task_gtime(tsk);
189 sig->min_flt += tsk->min_flt;
190 sig->maj_flt += tsk->maj_flt;
191 sig->nvcsw += tsk->nvcsw;
192 sig->nivcsw += tsk->nivcsw;
193 sig->inblock += task_io_get_inblock(tsk);
194 sig->oublock += task_io_get_oublock(tsk);
195 task_io_accounting_add(&sig->ioac, &tsk->ioac);
196 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
197 sig->nr_threads--;
198 __unhash_process(tsk, group_dead);
199 write_sequnlock(&sig->stats_lock);
200
201 /*
202 * Do this under ->siglock, we can race with another thread
203 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
204 */
205 flush_sigqueue(&tsk->pending);
206 tsk->sighand = NULL;
207 spin_unlock(&sighand->siglock);
208
209 __cleanup_sighand(sighand);
210 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
211 if (group_dead) {
212 flush_sigqueue(&sig->shared_pending);
213 tty_kref_put(tty);
214 }
215}
216
217static void delayed_put_task_struct(struct rcu_head *rhp)
218{
219 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
220
221 kprobe_flush_task(tsk);
222 rethook_flush_task(tsk);
223 perf_event_delayed_put(tsk);
224 trace_sched_process_free(tsk);
225 put_task_struct(tsk);
226}
227
228void put_task_struct_rcu_user(struct task_struct *task)
229{
230 if (refcount_dec_and_test(&task->rcu_users))
231 call_rcu(&task->rcu, delayed_put_task_struct);
232}
233
234void __weak release_thread(struct task_struct *dead_task)
235{
236}
237
238void release_task(struct task_struct *p)
239{
240 struct task_struct *leader;
241 struct pid *thread_pid;
242 int zap_leader;
243repeat:
244 /* don't need to get the RCU readlock here - the process is dead and
245 * can't be modifying its own credentials. But shut RCU-lockdep up */
246 rcu_read_lock();
247 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
248 rcu_read_unlock();
249
250 cgroup_release(p);
251
252 write_lock_irq(&tasklist_lock);
253 ptrace_release_task(p);
254 thread_pid = get_pid(p->thread_pid);
255 __exit_signal(p);
256
257 /*
258 * If we are the last non-leader member of the thread
259 * group, and the leader is zombie, then notify the
260 * group leader's parent process. (if it wants notification.)
261 */
262 zap_leader = 0;
263 leader = p->group_leader;
264 if (leader != p && thread_group_empty(leader)
265 && leader->exit_state == EXIT_ZOMBIE) {
266 /*
267 * If we were the last child thread and the leader has
268 * exited already, and the leader's parent ignores SIGCHLD,
269 * then we are the one who should release the leader.
270 */
271 zap_leader = do_notify_parent(leader, leader->exit_signal);
272 if (zap_leader)
273 leader->exit_state = EXIT_DEAD;
274 }
275
276 write_unlock_irq(&tasklist_lock);
277 seccomp_filter_release(p);
278 proc_flush_pid(thread_pid);
279 put_pid(thread_pid);
280 release_thread(p);
281 put_task_struct_rcu_user(p);
282
283 p = leader;
284 if (unlikely(zap_leader))
285 goto repeat;
286}
287
288int rcuwait_wake_up(struct rcuwait *w)
289{
290 int ret = 0;
291 struct task_struct *task;
292
293 rcu_read_lock();
294
295 /*
296 * Order condition vs @task, such that everything prior to the load
297 * of @task is visible. This is the condition as to why the user called
298 * rcuwait_wake() in the first place. Pairs with set_current_state()
299 * barrier (A) in rcuwait_wait_event().
300 *
301 * WAIT WAKE
302 * [S] tsk = current [S] cond = true
303 * MB (A) MB (B)
304 * [L] cond [L] tsk
305 */
306 smp_mb(); /* (B) */
307
308 task = rcu_dereference(w->task);
309 if (task)
310 ret = wake_up_process(task);
311 rcu_read_unlock();
312
313 return ret;
314}
315EXPORT_SYMBOL_GPL(rcuwait_wake_up);
316
317/*
318 * Determine if a process group is "orphaned", according to the POSIX
319 * definition in 2.2.2.52. Orphaned process groups are not to be affected
320 * by terminal-generated stop signals. Newly orphaned process groups are
321 * to receive a SIGHUP and a SIGCONT.
322 *
323 * "I ask you, have you ever known what it is to be an orphan?"
324 */
325static int will_become_orphaned_pgrp(struct pid *pgrp,
326 struct task_struct *ignored_task)
327{
328 struct task_struct *p;
329
330 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
331 if ((p == ignored_task) ||
332 (p->exit_state && thread_group_empty(p)) ||
333 is_global_init(p->real_parent))
334 continue;
335
336 if (task_pgrp(p->real_parent) != pgrp &&
337 task_session(p->real_parent) == task_session(p))
338 return 0;
339 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
340
341 return 1;
342}
343
344int is_current_pgrp_orphaned(void)
345{
346 int retval;
347
348 read_lock(&tasklist_lock);
349 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
350 read_unlock(&tasklist_lock);
351
352 return retval;
353}
354
355static bool has_stopped_jobs(struct pid *pgrp)
356{
357 struct task_struct *p;
358
359 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
360 if (p->signal->flags & SIGNAL_STOP_STOPPED)
361 return true;
362 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
363
364 return false;
365}
366
367/*
368 * Check to see if any process groups have become orphaned as
369 * a result of our exiting, and if they have any stopped jobs,
370 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
371 */
372static void
373kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
374{
375 struct pid *pgrp = task_pgrp(tsk);
376 struct task_struct *ignored_task = tsk;
377
378 if (!parent)
379 /* exit: our father is in a different pgrp than
380 * we are and we were the only connection outside.
381 */
382 parent = tsk->real_parent;
383 else
384 /* reparent: our child is in a different pgrp than
385 * we are, and it was the only connection outside.
386 */
387 ignored_task = NULL;
388
389 if (task_pgrp(parent) != pgrp &&
390 task_session(parent) == task_session(tsk) &&
391 will_become_orphaned_pgrp(pgrp, ignored_task) &&
392 has_stopped_jobs(pgrp)) {
393 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
394 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
395 }
396}
397
398static void coredump_task_exit(struct task_struct *tsk)
399{
400 struct core_state *core_state;
401
402 /*
403 * Serialize with any possible pending coredump.
404 * We must hold siglock around checking core_state
405 * and setting PF_POSTCOREDUMP. The core-inducing thread
406 * will increment ->nr_threads for each thread in the
407 * group without PF_POSTCOREDUMP set.
408 */
409 spin_lock_irq(&tsk->sighand->siglock);
410 tsk->flags |= PF_POSTCOREDUMP;
411 core_state = tsk->signal->core_state;
412 spin_unlock_irq(&tsk->sighand->siglock);
413 if (core_state) {
414 struct core_thread self;
415
416 self.task = current;
417 if (self.task->flags & PF_SIGNALED)
418 self.next = xchg(&core_state->dumper.next, &self);
419 else
420 self.task = NULL;
421 /*
422 * Implies mb(), the result of xchg() must be visible
423 * to core_state->dumper.
424 */
425 if (atomic_dec_and_test(&core_state->nr_threads))
426 complete(&core_state->startup);
427
428 for (;;) {
429 set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
430 if (!self.task) /* see coredump_finish() */
431 break;
432 schedule();
433 }
434 __set_current_state(TASK_RUNNING);
435 }
436}
437
438#ifdef CONFIG_MEMCG
439/*
440 * A task is exiting. If it owned this mm, find a new owner for the mm.
441 */
442void mm_update_next_owner(struct mm_struct *mm)
443{
444 struct task_struct *c, *g, *p = current;
445
446retry:
447 /*
448 * If the exiting or execing task is not the owner, it's
449 * someone else's problem.
450 */
451 if (mm->owner != p)
452 return;
453 /*
454 * The current owner is exiting/execing and there are no other
455 * candidates. Do not leave the mm pointing to a possibly
456 * freed task structure.
457 */
458 if (atomic_read(&mm->mm_users) <= 1) {
459 WRITE_ONCE(mm->owner, NULL);
460 return;
461 }
462
463 read_lock(&tasklist_lock);
464 /*
465 * Search in the children
466 */
467 list_for_each_entry(c, &p->children, sibling) {
468 if (c->mm == mm)
469 goto assign_new_owner;
470 }
471
472 /*
473 * Search in the siblings
474 */
475 list_for_each_entry(c, &p->real_parent->children, sibling) {
476 if (c->mm == mm)
477 goto assign_new_owner;
478 }
479
480 /*
481 * Search through everything else, we should not get here often.
482 */
483 for_each_process(g) {
484 if (g->flags & PF_KTHREAD)
485 continue;
486 for_each_thread(g, c) {
487 if (c->mm == mm)
488 goto assign_new_owner;
489 if (c->mm)
490 break;
491 }
492 }
493 read_unlock(&tasklist_lock);
494 /*
495 * We found no owner yet mm_users > 1: this implies that we are
496 * most likely racing with swapoff (try_to_unuse()) or /proc or
497 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
498 */
499 WRITE_ONCE(mm->owner, NULL);
500 return;
501
502assign_new_owner:
503 BUG_ON(c == p);
504 get_task_struct(c);
505 /*
506 * The task_lock protects c->mm from changing.
507 * We always want mm->owner->mm == mm
508 */
509 task_lock(c);
510 /*
511 * Delay read_unlock() till we have the task_lock()
512 * to ensure that c does not slip away underneath us
513 */
514 read_unlock(&tasklist_lock);
515 if (c->mm != mm) {
516 task_unlock(c);
517 put_task_struct(c);
518 goto retry;
519 }
520 WRITE_ONCE(mm->owner, c);
521 lru_gen_migrate_mm(mm);
522 task_unlock(c);
523 put_task_struct(c);
524}
525#endif /* CONFIG_MEMCG */
526
527/*
528 * Turn us into a lazy TLB process if we
529 * aren't already..
530 */
531static void exit_mm(void)
532{
533 struct mm_struct *mm = current->mm;
534
535 exit_mm_release(current, mm);
536 if (!mm)
537 return;
538 sync_mm_rss(mm);
539 mmap_read_lock(mm);
540 mmgrab(mm);
541 BUG_ON(mm != current->active_mm);
542 /* more a memory barrier than a real lock */
543 task_lock(current);
544 /*
545 * When a thread stops operating on an address space, the loop
546 * in membarrier_private_expedited() may not observe that
547 * tsk->mm, and the loop in membarrier_global_expedited() may
548 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
549 * rq->membarrier_state, so those would not issue an IPI.
550 * Membarrier requires a memory barrier after accessing
551 * user-space memory, before clearing tsk->mm or the
552 * rq->membarrier_state.
553 */
554 smp_mb__after_spinlock();
555 local_irq_disable();
556 current->mm = NULL;
557 membarrier_update_current_mm(NULL);
558 enter_lazy_tlb(mm, current);
559 local_irq_enable();
560 task_unlock(current);
561 mmap_read_unlock(mm);
562 mm_update_next_owner(mm);
563 mmput(mm);
564 if (test_thread_flag(TIF_MEMDIE))
565 exit_oom_victim();
566}
567
568static struct task_struct *find_alive_thread(struct task_struct *p)
569{
570 struct task_struct *t;
571
572 for_each_thread(p, t) {
573 if (!(t->flags & PF_EXITING))
574 return t;
575 }
576 return NULL;
577}
578
579static struct task_struct *find_child_reaper(struct task_struct *father,
580 struct list_head *dead)
581 __releases(&tasklist_lock)
582 __acquires(&tasklist_lock)
583{
584 struct pid_namespace *pid_ns = task_active_pid_ns(father);
585 struct task_struct *reaper = pid_ns->child_reaper;
586 struct task_struct *p, *n;
587
588 if (likely(reaper != father))
589 return reaper;
590
591 reaper = find_alive_thread(father);
592 if (reaper) {
593 pid_ns->child_reaper = reaper;
594 return reaper;
595 }
596
597 write_unlock_irq(&tasklist_lock);
598
599 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
600 list_del_init(&p->ptrace_entry);
601 release_task(p);
602 }
603
604 zap_pid_ns_processes(pid_ns);
605 write_lock_irq(&tasklist_lock);
606
607 return father;
608}
609
610/*
611 * When we die, we re-parent all our children, and try to:
612 * 1. give them to another thread in our thread group, if such a member exists
613 * 2. give it to the first ancestor process which prctl'd itself as a
614 * child_subreaper for its children (like a service manager)
615 * 3. give it to the init process (PID 1) in our pid namespace
616 */
617static struct task_struct *find_new_reaper(struct task_struct *father,
618 struct task_struct *child_reaper)
619{
620 struct task_struct *thread, *reaper;
621
622 thread = find_alive_thread(father);
623 if (thread)
624 return thread;
625
626 if (father->signal->has_child_subreaper) {
627 unsigned int ns_level = task_pid(father)->level;
628 /*
629 * Find the first ->is_child_subreaper ancestor in our pid_ns.
630 * We can't check reaper != child_reaper to ensure we do not
631 * cross the namespaces, the exiting parent could be injected
632 * by setns() + fork().
633 * We check pid->level, this is slightly more efficient than
634 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
635 */
636 for (reaper = father->real_parent;
637 task_pid(reaper)->level == ns_level;
638 reaper = reaper->real_parent) {
639 if (reaper == &init_task)
640 break;
641 if (!reaper->signal->is_child_subreaper)
642 continue;
643 thread = find_alive_thread(reaper);
644 if (thread)
645 return thread;
646 }
647 }
648
649 return child_reaper;
650}
651
652/*
653* Any that need to be release_task'd are put on the @dead list.
654 */
655static void reparent_leader(struct task_struct *father, struct task_struct *p,
656 struct list_head *dead)
657{
658 if (unlikely(p->exit_state == EXIT_DEAD))
659 return;
660
661 /* We don't want people slaying init. */
662 p->exit_signal = SIGCHLD;
663
664 /* If it has exited notify the new parent about this child's death. */
665 if (!p->ptrace &&
666 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
667 if (do_notify_parent(p, p->exit_signal)) {
668 p->exit_state = EXIT_DEAD;
669 list_add(&p->ptrace_entry, dead);
670 }
671 }
672
673 kill_orphaned_pgrp(p, father);
674}
675
676/*
677 * This does two things:
678 *
679 * A. Make init inherit all the child processes
680 * B. Check to see if any process groups have become orphaned
681 * as a result of our exiting, and if they have any stopped
682 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
683 */
684static void forget_original_parent(struct task_struct *father,
685 struct list_head *dead)
686{
687 struct task_struct *p, *t, *reaper;
688
689 if (unlikely(!list_empty(&father->ptraced)))
690 exit_ptrace(father, dead);
691
692 /* Can drop and reacquire tasklist_lock */
693 reaper = find_child_reaper(father, dead);
694 if (list_empty(&father->children))
695 return;
696
697 reaper = find_new_reaper(father, reaper);
698 list_for_each_entry(p, &father->children, sibling) {
699 for_each_thread(p, t) {
700 RCU_INIT_POINTER(t->real_parent, reaper);
701 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
702 if (likely(!t->ptrace))
703 t->parent = t->real_parent;
704 if (t->pdeath_signal)
705 group_send_sig_info(t->pdeath_signal,
706 SEND_SIG_NOINFO, t,
707 PIDTYPE_TGID);
708 }
709 /*
710 * If this is a threaded reparent there is no need to
711 * notify anyone anything has happened.
712 */
713 if (!same_thread_group(reaper, father))
714 reparent_leader(father, p, dead);
715 }
716 list_splice_tail_init(&father->children, &reaper->children);
717}
718
719/*
720 * Send signals to all our closest relatives so that they know
721 * to properly mourn us..
722 */
723static void exit_notify(struct task_struct *tsk, int group_dead)
724{
725 bool autoreap;
726 struct task_struct *p, *n;
727 LIST_HEAD(dead);
728
729 write_lock_irq(&tasklist_lock);
730 forget_original_parent(tsk, &dead);
731
732 if (group_dead)
733 kill_orphaned_pgrp(tsk->group_leader, NULL);
734
735 tsk->exit_state = EXIT_ZOMBIE;
736 if (unlikely(tsk->ptrace)) {
737 int sig = thread_group_leader(tsk) &&
738 thread_group_empty(tsk) &&
739 !ptrace_reparented(tsk) ?
740 tsk->exit_signal : SIGCHLD;
741 autoreap = do_notify_parent(tsk, sig);
742 } else if (thread_group_leader(tsk)) {
743 autoreap = thread_group_empty(tsk) &&
744 do_notify_parent(tsk, tsk->exit_signal);
745 } else {
746 autoreap = true;
747 }
748
749 if (autoreap) {
750 tsk->exit_state = EXIT_DEAD;
751 list_add(&tsk->ptrace_entry, &dead);
752 }
753
754 /* mt-exec, de_thread() is waiting for group leader */
755 if (unlikely(tsk->signal->notify_count < 0))
756 wake_up_process(tsk->signal->group_exec_task);
757 write_unlock_irq(&tasklist_lock);
758
759 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
760 list_del_init(&p->ptrace_entry);
761 release_task(p);
762 }
763}
764
765#ifdef CONFIG_DEBUG_STACK_USAGE
766static void check_stack_usage(void)
767{
768 static DEFINE_SPINLOCK(low_water_lock);
769 static int lowest_to_date = THREAD_SIZE;
770 unsigned long free;
771
772 free = stack_not_used(current);
773
774 if (free >= lowest_to_date)
775 return;
776
777 spin_lock(&low_water_lock);
778 if (free < lowest_to_date) {
779 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
780 current->comm, task_pid_nr(current), free);
781 lowest_to_date = free;
782 }
783 spin_unlock(&low_water_lock);
784}
785#else
786static inline void check_stack_usage(void) {}
787#endif
788
789static void synchronize_group_exit(struct task_struct *tsk, long code)
790{
791 struct sighand_struct *sighand = tsk->sighand;
792 struct signal_struct *signal = tsk->signal;
793
794 spin_lock_irq(&sighand->siglock);
795 signal->quick_threads--;
796 if ((signal->quick_threads == 0) &&
797 !(signal->flags & SIGNAL_GROUP_EXIT)) {
798 signal->flags = SIGNAL_GROUP_EXIT;
799 signal->group_exit_code = code;
800 signal->group_stop_count = 0;
801 }
802 spin_unlock_irq(&sighand->siglock);
803}
804
805void __noreturn do_exit(long code)
806{
807 struct task_struct *tsk = current;
808 int group_dead;
809
810 synchronize_group_exit(tsk, code);
811
812 WARN_ON(tsk->plug);
813
814 kcov_task_exit(tsk);
815 kmsan_task_exit(tsk);
816
817 coredump_task_exit(tsk);
818 ptrace_event(PTRACE_EVENT_EXIT, code);
819
820 validate_creds_for_do_exit(tsk);
821
822 io_uring_files_cancel();
823 exit_signals(tsk); /* sets PF_EXITING */
824
825 /* sync mm's RSS info before statistics gathering */
826 if (tsk->mm)
827 sync_mm_rss(tsk->mm);
828 acct_update_integrals(tsk);
829 group_dead = atomic_dec_and_test(&tsk->signal->live);
830 if (group_dead) {
831 /*
832 * If the last thread of global init has exited, panic
833 * immediately to get a useable coredump.
834 */
835 if (unlikely(is_global_init(tsk)))
836 panic("Attempted to kill init! exitcode=0x%08x\n",
837 tsk->signal->group_exit_code ?: (int)code);
838
839#ifdef CONFIG_POSIX_TIMERS
840 hrtimer_cancel(&tsk->signal->real_timer);
841 exit_itimers(tsk);
842#endif
843 if (tsk->mm)
844 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
845 }
846 acct_collect(code, group_dead);
847 if (group_dead)
848 tty_audit_exit();
849 audit_free(tsk);
850
851 tsk->exit_code = code;
852 taskstats_exit(tsk, group_dead);
853
854 exit_mm();
855
856 if (group_dead)
857 acct_process();
858 trace_sched_process_exit(tsk);
859
860 exit_sem(tsk);
861 exit_shm(tsk);
862 exit_files(tsk);
863 exit_fs(tsk);
864 if (group_dead)
865 disassociate_ctty(1);
866 exit_task_namespaces(tsk);
867 exit_task_work(tsk);
868 exit_thread(tsk);
869
870 /*
871 * Flush inherited counters to the parent - before the parent
872 * gets woken up by child-exit notifications.
873 *
874 * because of cgroup mode, must be called before cgroup_exit()
875 */
876 perf_event_exit_task(tsk);
877
878 sched_autogroup_exit_task(tsk);
879 cgroup_exit(tsk);
880
881 /*
882 * FIXME: do that only when needed, using sched_exit tracepoint
883 */
884 flush_ptrace_hw_breakpoint(tsk);
885
886 exit_tasks_rcu_start();
887 exit_notify(tsk, group_dead);
888 proc_exit_connector(tsk);
889 mpol_put_task_policy(tsk);
890#ifdef CONFIG_FUTEX
891 if (unlikely(current->pi_state_cache))
892 kfree(current->pi_state_cache);
893#endif
894 /*
895 * Make sure we are holding no locks:
896 */
897 debug_check_no_locks_held();
898
899 if (tsk->io_context)
900 exit_io_context(tsk);
901
902 if (tsk->splice_pipe)
903 free_pipe_info(tsk->splice_pipe);
904
905 if (tsk->task_frag.page)
906 put_page(tsk->task_frag.page);
907
908 validate_creds_for_do_exit(tsk);
909 exit_task_stack_account(tsk);
910
911 check_stack_usage();
912 preempt_disable();
913 if (tsk->nr_dirtied)
914 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
915 exit_rcu();
916 exit_tasks_rcu_finish();
917
918 lockdep_free_task(tsk);
919 do_task_dead();
920}
921
922void __noreturn make_task_dead(int signr)
923{
924 /*
925 * Take the task off the cpu after something catastrophic has
926 * happened.
927 *
928 * We can get here from a kernel oops, sometimes with preemption off.
929 * Start by checking for critical errors.
930 * Then fix up important state like USER_DS and preemption.
931 * Then do everything else.
932 */
933 struct task_struct *tsk = current;
934 unsigned int limit;
935
936 if (unlikely(in_interrupt()))
937 panic("Aiee, killing interrupt handler!");
938 if (unlikely(!tsk->pid))
939 panic("Attempted to kill the idle task!");
940
941 if (unlikely(in_atomic())) {
942 pr_info("note: %s[%d] exited with preempt_count %d\n",
943 current->comm, task_pid_nr(current),
944 preempt_count());
945 preempt_count_set(PREEMPT_ENABLED);
946 }
947
948 /*
949 * Every time the system oopses, if the oops happens while a reference
950 * to an object was held, the reference leaks.
951 * If the oops doesn't also leak memory, repeated oopsing can cause
952 * reference counters to wrap around (if they're not using refcount_t).
953 * This means that repeated oopsing can make unexploitable-looking bugs
954 * exploitable through repeated oopsing.
955 * To make sure this can't happen, place an upper bound on how often the
956 * kernel may oops without panic().
957 */
958 limit = READ_ONCE(oops_limit);
959 if (atomic_inc_return(&oops_count) >= limit && limit)
960 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
961
962 /*
963 * We're taking recursive faults here in make_task_dead. Safest is to just
964 * leave this task alone and wait for reboot.
965 */
966 if (unlikely(tsk->flags & PF_EXITING)) {
967 pr_alert("Fixing recursive fault but reboot is needed!\n");
968 futex_exit_recursive(tsk);
969 tsk->exit_state = EXIT_DEAD;
970 refcount_inc(&tsk->rcu_users);
971 do_task_dead();
972 }
973
974 do_exit(signr);
975}
976
977SYSCALL_DEFINE1(exit, int, error_code)
978{
979 do_exit((error_code&0xff)<<8);
980}
981
982/*
983 * Take down every thread in the group. This is called by fatal signals
984 * as well as by sys_exit_group (below).
985 */
986void __noreturn
987do_group_exit(int exit_code)
988{
989 struct signal_struct *sig = current->signal;
990
991 if (sig->flags & SIGNAL_GROUP_EXIT)
992 exit_code = sig->group_exit_code;
993 else if (sig->group_exec_task)
994 exit_code = 0;
995 else {
996 struct sighand_struct *const sighand = current->sighand;
997
998 spin_lock_irq(&sighand->siglock);
999 if (sig->flags & SIGNAL_GROUP_EXIT)
1000 /* Another thread got here before we took the lock. */
1001 exit_code = sig->group_exit_code;
1002 else if (sig->group_exec_task)
1003 exit_code = 0;
1004 else {
1005 sig->group_exit_code = exit_code;
1006 sig->flags = SIGNAL_GROUP_EXIT;
1007 zap_other_threads(current);
1008 }
1009 spin_unlock_irq(&sighand->siglock);
1010 }
1011
1012 do_exit(exit_code);
1013 /* NOTREACHED */
1014}
1015
1016/*
1017 * this kills every thread in the thread group. Note that any externally
1018 * wait4()-ing process will get the correct exit code - even if this
1019 * thread is not the thread group leader.
1020 */
1021SYSCALL_DEFINE1(exit_group, int, error_code)
1022{
1023 do_group_exit((error_code & 0xff) << 8);
1024 /* NOTREACHED */
1025 return 0;
1026}
1027
1028struct waitid_info {
1029 pid_t pid;
1030 uid_t uid;
1031 int status;
1032 int cause;
1033};
1034
1035struct wait_opts {
1036 enum pid_type wo_type;
1037 int wo_flags;
1038 struct pid *wo_pid;
1039
1040 struct waitid_info *wo_info;
1041 int wo_stat;
1042 struct rusage *wo_rusage;
1043
1044 wait_queue_entry_t child_wait;
1045 int notask_error;
1046};
1047
1048static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1049{
1050 return wo->wo_type == PIDTYPE_MAX ||
1051 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1052}
1053
1054static int
1055eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1056{
1057 if (!eligible_pid(wo, p))
1058 return 0;
1059
1060 /*
1061 * Wait for all children (clone and not) if __WALL is set or
1062 * if it is traced by us.
1063 */
1064 if (ptrace || (wo->wo_flags & __WALL))
1065 return 1;
1066
1067 /*
1068 * Otherwise, wait for clone children *only* if __WCLONE is set;
1069 * otherwise, wait for non-clone children *only*.
1070 *
1071 * Note: a "clone" child here is one that reports to its parent
1072 * using a signal other than SIGCHLD, or a non-leader thread which
1073 * we can only see if it is traced by us.
1074 */
1075 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1076 return 0;
1077
1078 return 1;
1079}
1080
1081/*
1082 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1083 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1084 * the lock and this task is uninteresting. If we return nonzero, we have
1085 * released the lock and the system call should return.
1086 */
1087static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1088{
1089 int state, status;
1090 pid_t pid = task_pid_vnr(p);
1091 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1092 struct waitid_info *infop;
1093
1094 if (!likely(wo->wo_flags & WEXITED))
1095 return 0;
1096
1097 if (unlikely(wo->wo_flags & WNOWAIT)) {
1098 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1099 ? p->signal->group_exit_code : p->exit_code;
1100 get_task_struct(p);
1101 read_unlock(&tasklist_lock);
1102 sched_annotate_sleep();
1103 if (wo->wo_rusage)
1104 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1105 put_task_struct(p);
1106 goto out_info;
1107 }
1108 /*
1109 * Move the task's state to DEAD/TRACE, only one thread can do this.
1110 */
1111 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1112 EXIT_TRACE : EXIT_DEAD;
1113 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1114 return 0;
1115 /*
1116 * We own this thread, nobody else can reap it.
1117 */
1118 read_unlock(&tasklist_lock);
1119 sched_annotate_sleep();
1120
1121 /*
1122 * Check thread_group_leader() to exclude the traced sub-threads.
1123 */
1124 if (state == EXIT_DEAD && thread_group_leader(p)) {
1125 struct signal_struct *sig = p->signal;
1126 struct signal_struct *psig = current->signal;
1127 unsigned long maxrss;
1128 u64 tgutime, tgstime;
1129
1130 /*
1131 * The resource counters for the group leader are in its
1132 * own task_struct. Those for dead threads in the group
1133 * are in its signal_struct, as are those for the child
1134 * processes it has previously reaped. All these
1135 * accumulate in the parent's signal_struct c* fields.
1136 *
1137 * We don't bother to take a lock here to protect these
1138 * p->signal fields because the whole thread group is dead
1139 * and nobody can change them.
1140 *
1141 * psig->stats_lock also protects us from our sub-threads
1142 * which can reap other children at the same time. Until
1143 * we change k_getrusage()-like users to rely on this lock
1144 * we have to take ->siglock as well.
1145 *
1146 * We use thread_group_cputime_adjusted() to get times for
1147 * the thread group, which consolidates times for all threads
1148 * in the group including the group leader.
1149 */
1150 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1151 spin_lock_irq(¤t->sighand->siglock);
1152 write_seqlock(&psig->stats_lock);
1153 psig->cutime += tgutime + sig->cutime;
1154 psig->cstime += tgstime + sig->cstime;
1155 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1156 psig->cmin_flt +=
1157 p->min_flt + sig->min_flt + sig->cmin_flt;
1158 psig->cmaj_flt +=
1159 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1160 psig->cnvcsw +=
1161 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1162 psig->cnivcsw +=
1163 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1164 psig->cinblock +=
1165 task_io_get_inblock(p) +
1166 sig->inblock + sig->cinblock;
1167 psig->coublock +=
1168 task_io_get_oublock(p) +
1169 sig->oublock + sig->coublock;
1170 maxrss = max(sig->maxrss, sig->cmaxrss);
1171 if (psig->cmaxrss < maxrss)
1172 psig->cmaxrss = maxrss;
1173 task_io_accounting_add(&psig->ioac, &p->ioac);
1174 task_io_accounting_add(&psig->ioac, &sig->ioac);
1175 write_sequnlock(&psig->stats_lock);
1176 spin_unlock_irq(¤t->sighand->siglock);
1177 }
1178
1179 if (wo->wo_rusage)
1180 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1181 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1182 ? p->signal->group_exit_code : p->exit_code;
1183 wo->wo_stat = status;
1184
1185 if (state == EXIT_TRACE) {
1186 write_lock_irq(&tasklist_lock);
1187 /* We dropped tasklist, ptracer could die and untrace */
1188 ptrace_unlink(p);
1189
1190 /* If parent wants a zombie, don't release it now */
1191 state = EXIT_ZOMBIE;
1192 if (do_notify_parent(p, p->exit_signal))
1193 state = EXIT_DEAD;
1194 p->exit_state = state;
1195 write_unlock_irq(&tasklist_lock);
1196 }
1197 if (state == EXIT_DEAD)
1198 release_task(p);
1199
1200out_info:
1201 infop = wo->wo_info;
1202 if (infop) {
1203 if ((status & 0x7f) == 0) {
1204 infop->cause = CLD_EXITED;
1205 infop->status = status >> 8;
1206 } else {
1207 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1208 infop->status = status & 0x7f;
1209 }
1210 infop->pid = pid;
1211 infop->uid = uid;
1212 }
1213
1214 return pid;
1215}
1216
1217static int *task_stopped_code(struct task_struct *p, bool ptrace)
1218{
1219 if (ptrace) {
1220 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1221 return &p->exit_code;
1222 } else {
1223 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1224 return &p->signal->group_exit_code;
1225 }
1226 return NULL;
1227}
1228
1229/**
1230 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1231 * @wo: wait options
1232 * @ptrace: is the wait for ptrace
1233 * @p: task to wait for
1234 *
1235 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1236 *
1237 * CONTEXT:
1238 * read_lock(&tasklist_lock), which is released if return value is
1239 * non-zero. Also, grabs and releases @p->sighand->siglock.
1240 *
1241 * RETURNS:
1242 * 0 if wait condition didn't exist and search for other wait conditions
1243 * should continue. Non-zero return, -errno on failure and @p's pid on
1244 * success, implies that tasklist_lock is released and wait condition
1245 * search should terminate.
1246 */
1247static int wait_task_stopped(struct wait_opts *wo,
1248 int ptrace, struct task_struct *p)
1249{
1250 struct waitid_info *infop;
1251 int exit_code, *p_code, why;
1252 uid_t uid = 0; /* unneeded, required by compiler */
1253 pid_t pid;
1254
1255 /*
1256 * Traditionally we see ptrace'd stopped tasks regardless of options.
1257 */
1258 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1259 return 0;
1260
1261 if (!task_stopped_code(p, ptrace))
1262 return 0;
1263
1264 exit_code = 0;
1265 spin_lock_irq(&p->sighand->siglock);
1266
1267 p_code = task_stopped_code(p, ptrace);
1268 if (unlikely(!p_code))
1269 goto unlock_sig;
1270
1271 exit_code = *p_code;
1272 if (!exit_code)
1273 goto unlock_sig;
1274
1275 if (!unlikely(wo->wo_flags & WNOWAIT))
1276 *p_code = 0;
1277
1278 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1279unlock_sig:
1280 spin_unlock_irq(&p->sighand->siglock);
1281 if (!exit_code)
1282 return 0;
1283
1284 /*
1285 * Now we are pretty sure this task is interesting.
1286 * Make sure it doesn't get reaped out from under us while we
1287 * give up the lock and then examine it below. We don't want to
1288 * keep holding onto the tasklist_lock while we call getrusage and
1289 * possibly take page faults for user memory.
1290 */
1291 get_task_struct(p);
1292 pid = task_pid_vnr(p);
1293 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1294 read_unlock(&tasklist_lock);
1295 sched_annotate_sleep();
1296 if (wo->wo_rusage)
1297 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1298 put_task_struct(p);
1299
1300 if (likely(!(wo->wo_flags & WNOWAIT)))
1301 wo->wo_stat = (exit_code << 8) | 0x7f;
1302
1303 infop = wo->wo_info;
1304 if (infop) {
1305 infop->cause = why;
1306 infop->status = exit_code;
1307 infop->pid = pid;
1308 infop->uid = uid;
1309 }
1310 return pid;
1311}
1312
1313/*
1314 * Handle do_wait work for one task in a live, non-stopped state.
1315 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1316 * the lock and this task is uninteresting. If we return nonzero, we have
1317 * released the lock and the system call should return.
1318 */
1319static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1320{
1321 struct waitid_info *infop;
1322 pid_t pid;
1323 uid_t uid;
1324
1325 if (!unlikely(wo->wo_flags & WCONTINUED))
1326 return 0;
1327
1328 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1329 return 0;
1330
1331 spin_lock_irq(&p->sighand->siglock);
1332 /* Re-check with the lock held. */
1333 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1334 spin_unlock_irq(&p->sighand->siglock);
1335 return 0;
1336 }
1337 if (!unlikely(wo->wo_flags & WNOWAIT))
1338 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1339 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1340 spin_unlock_irq(&p->sighand->siglock);
1341
1342 pid = task_pid_vnr(p);
1343 get_task_struct(p);
1344 read_unlock(&tasklist_lock);
1345 sched_annotate_sleep();
1346 if (wo->wo_rusage)
1347 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1348 put_task_struct(p);
1349
1350 infop = wo->wo_info;
1351 if (!infop) {
1352 wo->wo_stat = 0xffff;
1353 } else {
1354 infop->cause = CLD_CONTINUED;
1355 infop->pid = pid;
1356 infop->uid = uid;
1357 infop->status = SIGCONT;
1358 }
1359 return pid;
1360}
1361
1362/*
1363 * Consider @p for a wait by @parent.
1364 *
1365 * -ECHILD should be in ->notask_error before the first call.
1366 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1367 * Returns zero if the search for a child should continue;
1368 * then ->notask_error is 0 if @p is an eligible child,
1369 * or still -ECHILD.
1370 */
1371static int wait_consider_task(struct wait_opts *wo, int ptrace,
1372 struct task_struct *p)
1373{
1374 /*
1375 * We can race with wait_task_zombie() from another thread.
1376 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1377 * can't confuse the checks below.
1378 */
1379 int exit_state = READ_ONCE(p->exit_state);
1380 int ret;
1381
1382 if (unlikely(exit_state == EXIT_DEAD))
1383 return 0;
1384
1385 ret = eligible_child(wo, ptrace, p);
1386 if (!ret)
1387 return ret;
1388
1389 if (unlikely(exit_state == EXIT_TRACE)) {
1390 /*
1391 * ptrace == 0 means we are the natural parent. In this case
1392 * we should clear notask_error, debugger will notify us.
1393 */
1394 if (likely(!ptrace))
1395 wo->notask_error = 0;
1396 return 0;
1397 }
1398
1399 if (likely(!ptrace) && unlikely(p->ptrace)) {
1400 /*
1401 * If it is traced by its real parent's group, just pretend
1402 * the caller is ptrace_do_wait() and reap this child if it
1403 * is zombie.
1404 *
1405 * This also hides group stop state from real parent; otherwise
1406 * a single stop can be reported twice as group and ptrace stop.
1407 * If a ptracer wants to distinguish these two events for its
1408 * own children it should create a separate process which takes
1409 * the role of real parent.
1410 */
1411 if (!ptrace_reparented(p))
1412 ptrace = 1;
1413 }
1414
1415 /* slay zombie? */
1416 if (exit_state == EXIT_ZOMBIE) {
1417 /* we don't reap group leaders with subthreads */
1418 if (!delay_group_leader(p)) {
1419 /*
1420 * A zombie ptracee is only visible to its ptracer.
1421 * Notification and reaping will be cascaded to the
1422 * real parent when the ptracer detaches.
1423 */
1424 if (unlikely(ptrace) || likely(!p->ptrace))
1425 return wait_task_zombie(wo, p);
1426 }
1427
1428 /*
1429 * Allow access to stopped/continued state via zombie by
1430 * falling through. Clearing of notask_error is complex.
1431 *
1432 * When !@ptrace:
1433 *
1434 * If WEXITED is set, notask_error should naturally be
1435 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1436 * so, if there are live subthreads, there are events to
1437 * wait for. If all subthreads are dead, it's still safe
1438 * to clear - this function will be called again in finite
1439 * amount time once all the subthreads are released and
1440 * will then return without clearing.
1441 *
1442 * When @ptrace:
1443 *
1444 * Stopped state is per-task and thus can't change once the
1445 * target task dies. Only continued and exited can happen.
1446 * Clear notask_error if WCONTINUED | WEXITED.
1447 */
1448 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1449 wo->notask_error = 0;
1450 } else {
1451 /*
1452 * @p is alive and it's gonna stop, continue or exit, so
1453 * there always is something to wait for.
1454 */
1455 wo->notask_error = 0;
1456 }
1457
1458 /*
1459 * Wait for stopped. Depending on @ptrace, different stopped state
1460 * is used and the two don't interact with each other.
1461 */
1462 ret = wait_task_stopped(wo, ptrace, p);
1463 if (ret)
1464 return ret;
1465
1466 /*
1467 * Wait for continued. There's only one continued state and the
1468 * ptracer can consume it which can confuse the real parent. Don't
1469 * use WCONTINUED from ptracer. You don't need or want it.
1470 */
1471 return wait_task_continued(wo, p);
1472}
1473
1474/*
1475 * Do the work of do_wait() for one thread in the group, @tsk.
1476 *
1477 * -ECHILD should be in ->notask_error before the first call.
1478 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1479 * Returns zero if the search for a child should continue; then
1480 * ->notask_error is 0 if there were any eligible children,
1481 * or still -ECHILD.
1482 */
1483static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1484{
1485 struct task_struct *p;
1486
1487 list_for_each_entry(p, &tsk->children, sibling) {
1488 int ret = wait_consider_task(wo, 0, p);
1489
1490 if (ret)
1491 return ret;
1492 }
1493
1494 return 0;
1495}
1496
1497static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1498{
1499 struct task_struct *p;
1500
1501 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1502 int ret = wait_consider_task(wo, 1, p);
1503
1504 if (ret)
1505 return ret;
1506 }
1507
1508 return 0;
1509}
1510
1511static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1512 int sync, void *key)
1513{
1514 struct wait_opts *wo = container_of(wait, struct wait_opts,
1515 child_wait);
1516 struct task_struct *p = key;
1517
1518 if (!eligible_pid(wo, p))
1519 return 0;
1520
1521 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1522 return 0;
1523
1524 return default_wake_function(wait, mode, sync, key);
1525}
1526
1527void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1528{
1529 __wake_up_sync_key(&parent->signal->wait_chldexit,
1530 TASK_INTERRUPTIBLE, p);
1531}
1532
1533static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1534 struct task_struct *target)
1535{
1536 struct task_struct *parent =
1537 !ptrace ? target->real_parent : target->parent;
1538
1539 return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1540 same_thread_group(current, parent));
1541}
1542
1543/*
1544 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1545 * and tracee lists to find the target task.
1546 */
1547static int do_wait_pid(struct wait_opts *wo)
1548{
1549 bool ptrace;
1550 struct task_struct *target;
1551 int retval;
1552
1553 ptrace = false;
1554 target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1555 if (target && is_effectively_child(wo, ptrace, target)) {
1556 retval = wait_consider_task(wo, ptrace, target);
1557 if (retval)
1558 return retval;
1559 }
1560
1561 ptrace = true;
1562 target = pid_task(wo->wo_pid, PIDTYPE_PID);
1563 if (target && target->ptrace &&
1564 is_effectively_child(wo, ptrace, target)) {
1565 retval = wait_consider_task(wo, ptrace, target);
1566 if (retval)
1567 return retval;
1568 }
1569
1570 return 0;
1571}
1572
1573static long do_wait(struct wait_opts *wo)
1574{
1575 int retval;
1576
1577 trace_sched_process_wait(wo->wo_pid);
1578
1579 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1580 wo->child_wait.private = current;
1581 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1582repeat:
1583 /*
1584 * If there is nothing that can match our criteria, just get out.
1585 * We will clear ->notask_error to zero if we see any child that
1586 * might later match our criteria, even if we are not able to reap
1587 * it yet.
1588 */
1589 wo->notask_error = -ECHILD;
1590 if ((wo->wo_type < PIDTYPE_MAX) &&
1591 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1592 goto notask;
1593
1594 set_current_state(TASK_INTERRUPTIBLE);
1595 read_lock(&tasklist_lock);
1596
1597 if (wo->wo_type == PIDTYPE_PID) {
1598 retval = do_wait_pid(wo);
1599 if (retval)
1600 goto end;
1601 } else {
1602 struct task_struct *tsk = current;
1603
1604 do {
1605 retval = do_wait_thread(wo, tsk);
1606 if (retval)
1607 goto end;
1608
1609 retval = ptrace_do_wait(wo, tsk);
1610 if (retval)
1611 goto end;
1612
1613 if (wo->wo_flags & __WNOTHREAD)
1614 break;
1615 } while_each_thread(current, tsk);
1616 }
1617 read_unlock(&tasklist_lock);
1618
1619notask:
1620 retval = wo->notask_error;
1621 if (!retval && !(wo->wo_flags & WNOHANG)) {
1622 retval = -ERESTARTSYS;
1623 if (!signal_pending(current)) {
1624 schedule();
1625 goto repeat;
1626 }
1627 }
1628end:
1629 __set_current_state(TASK_RUNNING);
1630 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1631 return retval;
1632}
1633
1634static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1635 int options, struct rusage *ru)
1636{
1637 struct wait_opts wo;
1638 struct pid *pid = NULL;
1639 enum pid_type type;
1640 long ret;
1641 unsigned int f_flags = 0;
1642
1643 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1644 __WNOTHREAD|__WCLONE|__WALL))
1645 return -EINVAL;
1646 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1647 return -EINVAL;
1648
1649 switch (which) {
1650 case P_ALL:
1651 type = PIDTYPE_MAX;
1652 break;
1653 case P_PID:
1654 type = PIDTYPE_PID;
1655 if (upid <= 0)
1656 return -EINVAL;
1657
1658 pid = find_get_pid(upid);
1659 break;
1660 case P_PGID:
1661 type = PIDTYPE_PGID;
1662 if (upid < 0)
1663 return -EINVAL;
1664
1665 if (upid)
1666 pid = find_get_pid(upid);
1667 else
1668 pid = get_task_pid(current, PIDTYPE_PGID);
1669 break;
1670 case P_PIDFD:
1671 type = PIDTYPE_PID;
1672 if (upid < 0)
1673 return -EINVAL;
1674
1675 pid = pidfd_get_pid(upid, &f_flags);
1676 if (IS_ERR(pid))
1677 return PTR_ERR(pid);
1678
1679 break;
1680 default:
1681 return -EINVAL;
1682 }
1683
1684 wo.wo_type = type;
1685 wo.wo_pid = pid;
1686 wo.wo_flags = options;
1687 wo.wo_info = infop;
1688 wo.wo_rusage = ru;
1689 if (f_flags & O_NONBLOCK)
1690 wo.wo_flags |= WNOHANG;
1691
1692 ret = do_wait(&wo);
1693 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1694 ret = -EAGAIN;
1695
1696 put_pid(pid);
1697 return ret;
1698}
1699
1700SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1701 infop, int, options, struct rusage __user *, ru)
1702{
1703 struct rusage r;
1704 struct waitid_info info = {.status = 0};
1705 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1706 int signo = 0;
1707
1708 if (err > 0) {
1709 signo = SIGCHLD;
1710 err = 0;
1711 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1712 return -EFAULT;
1713 }
1714 if (!infop)
1715 return err;
1716
1717 if (!user_write_access_begin(infop, sizeof(*infop)))
1718 return -EFAULT;
1719
1720 unsafe_put_user(signo, &infop->si_signo, Efault);
1721 unsafe_put_user(0, &infop->si_errno, Efault);
1722 unsafe_put_user(info.cause, &infop->si_code, Efault);
1723 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1724 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1725 unsafe_put_user(info.status, &infop->si_status, Efault);
1726 user_write_access_end();
1727 return err;
1728Efault:
1729 user_write_access_end();
1730 return -EFAULT;
1731}
1732
1733long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1734 struct rusage *ru)
1735{
1736 struct wait_opts wo;
1737 struct pid *pid = NULL;
1738 enum pid_type type;
1739 long ret;
1740
1741 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1742 __WNOTHREAD|__WCLONE|__WALL))
1743 return -EINVAL;
1744
1745 /* -INT_MIN is not defined */
1746 if (upid == INT_MIN)
1747 return -ESRCH;
1748
1749 if (upid == -1)
1750 type = PIDTYPE_MAX;
1751 else if (upid < 0) {
1752 type = PIDTYPE_PGID;
1753 pid = find_get_pid(-upid);
1754 } else if (upid == 0) {
1755 type = PIDTYPE_PGID;
1756 pid = get_task_pid(current, PIDTYPE_PGID);
1757 } else /* upid > 0 */ {
1758 type = PIDTYPE_PID;
1759 pid = find_get_pid(upid);
1760 }
1761
1762 wo.wo_type = type;
1763 wo.wo_pid = pid;
1764 wo.wo_flags = options | WEXITED;
1765 wo.wo_info = NULL;
1766 wo.wo_stat = 0;
1767 wo.wo_rusage = ru;
1768 ret = do_wait(&wo);
1769 put_pid(pid);
1770 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1771 ret = -EFAULT;
1772
1773 return ret;
1774}
1775
1776int kernel_wait(pid_t pid, int *stat)
1777{
1778 struct wait_opts wo = {
1779 .wo_type = PIDTYPE_PID,
1780 .wo_pid = find_get_pid(pid),
1781 .wo_flags = WEXITED,
1782 };
1783 int ret;
1784
1785 ret = do_wait(&wo);
1786 if (ret > 0 && wo.wo_stat)
1787 *stat = wo.wo_stat;
1788 put_pid(wo.wo_pid);
1789 return ret;
1790}
1791
1792SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1793 int, options, struct rusage __user *, ru)
1794{
1795 struct rusage r;
1796 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1797
1798 if (err > 0) {
1799 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1800 return -EFAULT;
1801 }
1802 return err;
1803}
1804
1805#ifdef __ARCH_WANT_SYS_WAITPID
1806
1807/*
1808 * sys_waitpid() remains for compatibility. waitpid() should be
1809 * implemented by calling sys_wait4() from libc.a.
1810 */
1811SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1812{
1813 return kernel_wait4(pid, stat_addr, options, NULL);
1814}
1815
1816#endif
1817
1818#ifdef CONFIG_COMPAT
1819COMPAT_SYSCALL_DEFINE4(wait4,
1820 compat_pid_t, pid,
1821 compat_uint_t __user *, stat_addr,
1822 int, options,
1823 struct compat_rusage __user *, ru)
1824{
1825 struct rusage r;
1826 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1827 if (err > 0) {
1828 if (ru && put_compat_rusage(&r, ru))
1829 return -EFAULT;
1830 }
1831 return err;
1832}
1833
1834COMPAT_SYSCALL_DEFINE5(waitid,
1835 int, which, compat_pid_t, pid,
1836 struct compat_siginfo __user *, infop, int, options,
1837 struct compat_rusage __user *, uru)
1838{
1839 struct rusage ru;
1840 struct waitid_info info = {.status = 0};
1841 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1842 int signo = 0;
1843 if (err > 0) {
1844 signo = SIGCHLD;
1845 err = 0;
1846 if (uru) {
1847 /* kernel_waitid() overwrites everything in ru */
1848 if (COMPAT_USE_64BIT_TIME)
1849 err = copy_to_user(uru, &ru, sizeof(ru));
1850 else
1851 err = put_compat_rusage(&ru, uru);
1852 if (err)
1853 return -EFAULT;
1854 }
1855 }
1856
1857 if (!infop)
1858 return err;
1859
1860 if (!user_write_access_begin(infop, sizeof(*infop)))
1861 return -EFAULT;
1862
1863 unsafe_put_user(signo, &infop->si_signo, Efault);
1864 unsafe_put_user(0, &infop->si_errno, Efault);
1865 unsafe_put_user(info.cause, &infop->si_code, Efault);
1866 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1867 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1868 unsafe_put_user(info.status, &infop->si_status, Efault);
1869 user_write_access_end();
1870 return err;
1871Efault:
1872 user_write_access_end();
1873 return -EFAULT;
1874}
1875#endif
1876
1877/**
1878 * thread_group_exited - check that a thread group has exited
1879 * @pid: tgid of thread group to be checked.
1880 *
1881 * Test if the thread group represented by tgid has exited (all
1882 * threads are zombies, dead or completely gone).
1883 *
1884 * Return: true if the thread group has exited. false otherwise.
1885 */
1886bool thread_group_exited(struct pid *pid)
1887{
1888 struct task_struct *task;
1889 bool exited;
1890
1891 rcu_read_lock();
1892 task = pid_task(pid, PIDTYPE_PID);
1893 exited = !task ||
1894 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1895 rcu_read_unlock();
1896
1897 return exited;
1898}
1899EXPORT_SYMBOL(thread_group_exited);
1900
1901__weak void abort(void)
1902{
1903 BUG();
1904
1905 /* if that doesn't kill us, halt */
1906 panic("Oops failed to kill thread");
1907}
1908EXPORT_SYMBOL(abort);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/kernel/exit.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8#include <linux/mm.h>
9#include <linux/slab.h>
10#include <linux/sched/autogroup.h>
11#include <linux/sched/mm.h>
12#include <linux/sched/stat.h>
13#include <linux/sched/task.h>
14#include <linux/sched/task_stack.h>
15#include <linux/sched/cputime.h>
16#include <linux/interrupt.h>
17#include <linux/module.h>
18#include <linux/capability.h>
19#include <linux/completion.h>
20#include <linux/personality.h>
21#include <linux/tty.h>
22#include <linux/iocontext.h>
23#include <linux/key.h>
24#include <linux/cpu.h>
25#include <linux/acct.h>
26#include <linux/tsacct_kern.h>
27#include <linux/file.h>
28#include <linux/freezer.h>
29#include <linux/binfmts.h>
30#include <linux/nsproxy.h>
31#include <linux/pid_namespace.h>
32#include <linux/ptrace.h>
33#include <linux/profile.h>
34#include <linux/mount.h>
35#include <linux/proc_fs.h>
36#include <linux/kthread.h>
37#include <linux/mempolicy.h>
38#include <linux/taskstats_kern.h>
39#include <linux/delayacct.h>
40#include <linux/cgroup.h>
41#include <linux/syscalls.h>
42#include <linux/signal.h>
43#include <linux/posix-timers.h>
44#include <linux/cn_proc.h>
45#include <linux/mutex.h>
46#include <linux/futex.h>
47#include <linux/pipe_fs_i.h>
48#include <linux/audit.h> /* for audit_free() */
49#include <linux/resource.h>
50#include <linux/task_io_accounting_ops.h>
51#include <linux/blkdev.h>
52#include <linux/task_work.h>
53#include <linux/fs_struct.h>
54#include <linux/init_task.h>
55#include <linux/perf_event.h>
56#include <trace/events/sched.h>
57#include <linux/hw_breakpoint.h>
58#include <linux/oom.h>
59#include <linux/writeback.h>
60#include <linux/shm.h>
61#include <linux/kcov.h>
62#include <linux/kmsan.h>
63#include <linux/random.h>
64#include <linux/rcuwait.h>
65#include <linux/compat.h>
66#include <linux/io_uring.h>
67#include <linux/kprobes.h>
68#include <linux/rethook.h>
69#include <linux/sysfs.h>
70#include <linux/user_events.h>
71#include <linux/uaccess.h>
72
73#include <uapi/linux/wait.h>
74
75#include <asm/unistd.h>
76#include <asm/mmu_context.h>
77
78#include "exit.h"
79
80/*
81 * The default value should be high enough to not crash a system that randomly
82 * crashes its kernel from time to time, but low enough to at least not permit
83 * overflowing 32-bit refcounts or the ldsem writer count.
84 */
85static unsigned int oops_limit = 10000;
86
87#ifdef CONFIG_SYSCTL
88static struct ctl_table kern_exit_table[] = {
89 {
90 .procname = "oops_limit",
91 .data = &oops_limit,
92 .maxlen = sizeof(oops_limit),
93 .mode = 0644,
94 .proc_handler = proc_douintvec,
95 },
96};
97
98static __init int kernel_exit_sysctls_init(void)
99{
100 register_sysctl_init("kernel", kern_exit_table);
101 return 0;
102}
103late_initcall(kernel_exit_sysctls_init);
104#endif
105
106static atomic_t oops_count = ATOMIC_INIT(0);
107
108#ifdef CONFIG_SYSFS
109static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
110 char *page)
111{
112 return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
113}
114
115static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
116
117static __init int kernel_exit_sysfs_init(void)
118{
119 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
120 return 0;
121}
122late_initcall(kernel_exit_sysfs_init);
123#endif
124
125static void __unhash_process(struct task_struct *p, bool group_dead)
126{
127 nr_threads--;
128 detach_pid(p, PIDTYPE_PID);
129 if (group_dead) {
130 detach_pid(p, PIDTYPE_TGID);
131 detach_pid(p, PIDTYPE_PGID);
132 detach_pid(p, PIDTYPE_SID);
133
134 list_del_rcu(&p->tasks);
135 list_del_init(&p->sibling);
136 __this_cpu_dec(process_counts);
137 }
138 list_del_rcu(&p->thread_node);
139}
140
141/*
142 * This function expects the tasklist_lock write-locked.
143 */
144static void __exit_signal(struct task_struct *tsk)
145{
146 struct signal_struct *sig = tsk->signal;
147 bool group_dead = thread_group_leader(tsk);
148 struct sighand_struct *sighand;
149 struct tty_struct *tty;
150 u64 utime, stime;
151
152 sighand = rcu_dereference_check(tsk->sighand,
153 lockdep_tasklist_lock_is_held());
154 spin_lock(&sighand->siglock);
155
156#ifdef CONFIG_POSIX_TIMERS
157 posix_cpu_timers_exit(tsk);
158 if (group_dead)
159 posix_cpu_timers_exit_group(tsk);
160#endif
161
162 if (group_dead) {
163 tty = sig->tty;
164 sig->tty = NULL;
165 } else {
166 /*
167 * If there is any task waiting for the group exit
168 * then notify it:
169 */
170 if (sig->notify_count > 0 && !--sig->notify_count)
171 wake_up_process(sig->group_exec_task);
172
173 if (tsk == sig->curr_target)
174 sig->curr_target = next_thread(tsk);
175 }
176
177 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
178 sizeof(unsigned long long));
179
180 /*
181 * Accumulate here the counters for all threads as they die. We could
182 * skip the group leader because it is the last user of signal_struct,
183 * but we want to avoid the race with thread_group_cputime() which can
184 * see the empty ->thread_head list.
185 */
186 task_cputime(tsk, &utime, &stime);
187 write_seqlock(&sig->stats_lock);
188 sig->utime += utime;
189 sig->stime += stime;
190 sig->gtime += task_gtime(tsk);
191 sig->min_flt += tsk->min_flt;
192 sig->maj_flt += tsk->maj_flt;
193 sig->nvcsw += tsk->nvcsw;
194 sig->nivcsw += tsk->nivcsw;
195 sig->inblock += task_io_get_inblock(tsk);
196 sig->oublock += task_io_get_oublock(tsk);
197 task_io_accounting_add(&sig->ioac, &tsk->ioac);
198 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
199 sig->nr_threads--;
200 __unhash_process(tsk, group_dead);
201 write_sequnlock(&sig->stats_lock);
202
203 /*
204 * Do this under ->siglock, we can race with another thread
205 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
206 */
207 flush_sigqueue(&tsk->pending);
208 tsk->sighand = NULL;
209 spin_unlock(&sighand->siglock);
210
211 __cleanup_sighand(sighand);
212 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
213 if (group_dead) {
214 flush_sigqueue(&sig->shared_pending);
215 tty_kref_put(tty);
216 }
217}
218
219static void delayed_put_task_struct(struct rcu_head *rhp)
220{
221 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
222
223 kprobe_flush_task(tsk);
224 rethook_flush_task(tsk);
225 perf_event_delayed_put(tsk);
226 trace_sched_process_free(tsk);
227 put_task_struct(tsk);
228}
229
230void put_task_struct_rcu_user(struct task_struct *task)
231{
232 if (refcount_dec_and_test(&task->rcu_users))
233 call_rcu(&task->rcu, delayed_put_task_struct);
234}
235
236void __weak release_thread(struct task_struct *dead_task)
237{
238}
239
240void release_task(struct task_struct *p)
241{
242 struct task_struct *leader;
243 struct pid *thread_pid;
244 int zap_leader;
245repeat:
246 /* don't need to get the RCU readlock here - the process is dead and
247 * can't be modifying its own credentials. But shut RCU-lockdep up */
248 rcu_read_lock();
249 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
250 rcu_read_unlock();
251
252 cgroup_release(p);
253
254 write_lock_irq(&tasklist_lock);
255 ptrace_release_task(p);
256 thread_pid = get_pid(p->thread_pid);
257 __exit_signal(p);
258
259 /*
260 * If we are the last non-leader member of the thread
261 * group, and the leader is zombie, then notify the
262 * group leader's parent process. (if it wants notification.)
263 */
264 zap_leader = 0;
265 leader = p->group_leader;
266 if (leader != p && thread_group_empty(leader)
267 && leader->exit_state == EXIT_ZOMBIE) {
268 /*
269 * If we were the last child thread and the leader has
270 * exited already, and the leader's parent ignores SIGCHLD,
271 * then we are the one who should release the leader.
272 */
273 zap_leader = do_notify_parent(leader, leader->exit_signal);
274 if (zap_leader)
275 leader->exit_state = EXIT_DEAD;
276 }
277
278 write_unlock_irq(&tasklist_lock);
279 proc_flush_pid(thread_pid);
280 put_pid(thread_pid);
281 release_thread(p);
282 put_task_struct_rcu_user(p);
283
284 p = leader;
285 if (unlikely(zap_leader))
286 goto repeat;
287}
288
289int rcuwait_wake_up(struct rcuwait *w)
290{
291 int ret = 0;
292 struct task_struct *task;
293
294 rcu_read_lock();
295
296 /*
297 * Order condition vs @task, such that everything prior to the load
298 * of @task is visible. This is the condition as to why the user called
299 * rcuwait_wake() in the first place. Pairs with set_current_state()
300 * barrier (A) in rcuwait_wait_event().
301 *
302 * WAIT WAKE
303 * [S] tsk = current [S] cond = true
304 * MB (A) MB (B)
305 * [L] cond [L] tsk
306 */
307 smp_mb(); /* (B) */
308
309 task = rcu_dereference(w->task);
310 if (task)
311 ret = wake_up_process(task);
312 rcu_read_unlock();
313
314 return ret;
315}
316EXPORT_SYMBOL_GPL(rcuwait_wake_up);
317
318/*
319 * Determine if a process group is "orphaned", according to the POSIX
320 * definition in 2.2.2.52. Orphaned process groups are not to be affected
321 * by terminal-generated stop signals. Newly orphaned process groups are
322 * to receive a SIGHUP and a SIGCONT.
323 *
324 * "I ask you, have you ever known what it is to be an orphan?"
325 */
326static int will_become_orphaned_pgrp(struct pid *pgrp,
327 struct task_struct *ignored_task)
328{
329 struct task_struct *p;
330
331 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
332 if ((p == ignored_task) ||
333 (p->exit_state && thread_group_empty(p)) ||
334 is_global_init(p->real_parent))
335 continue;
336
337 if (task_pgrp(p->real_parent) != pgrp &&
338 task_session(p->real_parent) == task_session(p))
339 return 0;
340 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
341
342 return 1;
343}
344
345int is_current_pgrp_orphaned(void)
346{
347 int retval;
348
349 read_lock(&tasklist_lock);
350 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
351 read_unlock(&tasklist_lock);
352
353 return retval;
354}
355
356static bool has_stopped_jobs(struct pid *pgrp)
357{
358 struct task_struct *p;
359
360 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
361 if (p->signal->flags & SIGNAL_STOP_STOPPED)
362 return true;
363 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
364
365 return false;
366}
367
368/*
369 * Check to see if any process groups have become orphaned as
370 * a result of our exiting, and if they have any stopped jobs,
371 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
372 */
373static void
374kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
375{
376 struct pid *pgrp = task_pgrp(tsk);
377 struct task_struct *ignored_task = tsk;
378
379 if (!parent)
380 /* exit: our father is in a different pgrp than
381 * we are and we were the only connection outside.
382 */
383 parent = tsk->real_parent;
384 else
385 /* reparent: our child is in a different pgrp than
386 * we are, and it was the only connection outside.
387 */
388 ignored_task = NULL;
389
390 if (task_pgrp(parent) != pgrp &&
391 task_session(parent) == task_session(tsk) &&
392 will_become_orphaned_pgrp(pgrp, ignored_task) &&
393 has_stopped_jobs(pgrp)) {
394 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
395 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
396 }
397}
398
399static void coredump_task_exit(struct task_struct *tsk)
400{
401 struct core_state *core_state;
402
403 /*
404 * Serialize with any possible pending coredump.
405 * We must hold siglock around checking core_state
406 * and setting PF_POSTCOREDUMP. The core-inducing thread
407 * will increment ->nr_threads for each thread in the
408 * group without PF_POSTCOREDUMP set.
409 */
410 spin_lock_irq(&tsk->sighand->siglock);
411 tsk->flags |= PF_POSTCOREDUMP;
412 core_state = tsk->signal->core_state;
413 spin_unlock_irq(&tsk->sighand->siglock);
414 if (core_state) {
415 struct core_thread self;
416
417 self.task = current;
418 if (self.task->flags & PF_SIGNALED)
419 self.next = xchg(&core_state->dumper.next, &self);
420 else
421 self.task = NULL;
422 /*
423 * Implies mb(), the result of xchg() must be visible
424 * to core_state->dumper.
425 */
426 if (atomic_dec_and_test(&core_state->nr_threads))
427 complete(&core_state->startup);
428
429 for (;;) {
430 set_current_state(TASK_IDLE|TASK_FREEZABLE);
431 if (!self.task) /* see coredump_finish() */
432 break;
433 schedule();
434 }
435 __set_current_state(TASK_RUNNING);
436 }
437}
438
439#ifdef CONFIG_MEMCG
440/* drops tasklist_lock if succeeds */
441static bool __try_to_set_owner(struct task_struct *tsk, struct mm_struct *mm)
442{
443 bool ret = false;
444
445 task_lock(tsk);
446 if (likely(tsk->mm == mm)) {
447 /* tsk can't pass exit_mm/exec_mmap and exit */
448 read_unlock(&tasklist_lock);
449 WRITE_ONCE(mm->owner, tsk);
450 lru_gen_migrate_mm(mm);
451 ret = true;
452 }
453 task_unlock(tsk);
454 return ret;
455}
456
457static bool try_to_set_owner(struct task_struct *g, struct mm_struct *mm)
458{
459 struct task_struct *t;
460
461 for_each_thread(g, t) {
462 struct mm_struct *t_mm = READ_ONCE(t->mm);
463 if (t_mm == mm) {
464 if (__try_to_set_owner(t, mm))
465 return true;
466 } else if (t_mm)
467 break;
468 }
469
470 return false;
471}
472
473/*
474 * A task is exiting. If it owned this mm, find a new owner for the mm.
475 */
476void mm_update_next_owner(struct mm_struct *mm)
477{
478 struct task_struct *g, *p = current;
479
480 /*
481 * If the exiting or execing task is not the owner, it's
482 * someone else's problem.
483 */
484 if (mm->owner != p)
485 return;
486 /*
487 * The current owner is exiting/execing and there are no other
488 * candidates. Do not leave the mm pointing to a possibly
489 * freed task structure.
490 */
491 if (atomic_read(&mm->mm_users) <= 1) {
492 WRITE_ONCE(mm->owner, NULL);
493 return;
494 }
495
496 read_lock(&tasklist_lock);
497 /*
498 * Search in the children
499 */
500 list_for_each_entry(g, &p->children, sibling) {
501 if (try_to_set_owner(g, mm))
502 goto ret;
503 }
504 /*
505 * Search in the siblings
506 */
507 list_for_each_entry(g, &p->real_parent->children, sibling) {
508 if (try_to_set_owner(g, mm))
509 goto ret;
510 }
511 /*
512 * Search through everything else, we should not get here often.
513 */
514 for_each_process(g) {
515 if (atomic_read(&mm->mm_users) <= 1)
516 break;
517 if (g->flags & PF_KTHREAD)
518 continue;
519 if (try_to_set_owner(g, mm))
520 goto ret;
521 }
522 read_unlock(&tasklist_lock);
523 /*
524 * We found no owner yet mm_users > 1: this implies that we are
525 * most likely racing with swapoff (try_to_unuse()) or /proc or
526 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
527 */
528 WRITE_ONCE(mm->owner, NULL);
529 ret:
530 return;
531
532}
533#endif /* CONFIG_MEMCG */
534
535/*
536 * Turn us into a lazy TLB process if we
537 * aren't already..
538 */
539static void exit_mm(void)
540{
541 struct mm_struct *mm = current->mm;
542
543 exit_mm_release(current, mm);
544 if (!mm)
545 return;
546 mmap_read_lock(mm);
547 mmgrab_lazy_tlb(mm);
548 BUG_ON(mm != current->active_mm);
549 /* more a memory barrier than a real lock */
550 task_lock(current);
551 /*
552 * When a thread stops operating on an address space, the loop
553 * in membarrier_private_expedited() may not observe that
554 * tsk->mm, and the loop in membarrier_global_expedited() may
555 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
556 * rq->membarrier_state, so those would not issue an IPI.
557 * Membarrier requires a memory barrier after accessing
558 * user-space memory, before clearing tsk->mm or the
559 * rq->membarrier_state.
560 */
561 smp_mb__after_spinlock();
562 local_irq_disable();
563 current->mm = NULL;
564 membarrier_update_current_mm(NULL);
565 enter_lazy_tlb(mm, current);
566 local_irq_enable();
567 task_unlock(current);
568 mmap_read_unlock(mm);
569 mm_update_next_owner(mm);
570 mmput(mm);
571 if (test_thread_flag(TIF_MEMDIE))
572 exit_oom_victim();
573}
574
575static struct task_struct *find_alive_thread(struct task_struct *p)
576{
577 struct task_struct *t;
578
579 for_each_thread(p, t) {
580 if (!(t->flags & PF_EXITING))
581 return t;
582 }
583 return NULL;
584}
585
586static struct task_struct *find_child_reaper(struct task_struct *father,
587 struct list_head *dead)
588 __releases(&tasklist_lock)
589 __acquires(&tasklist_lock)
590{
591 struct pid_namespace *pid_ns = task_active_pid_ns(father);
592 struct task_struct *reaper = pid_ns->child_reaper;
593 struct task_struct *p, *n;
594
595 if (likely(reaper != father))
596 return reaper;
597
598 reaper = find_alive_thread(father);
599 if (reaper) {
600 pid_ns->child_reaper = reaper;
601 return reaper;
602 }
603
604 write_unlock_irq(&tasklist_lock);
605
606 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
607 list_del_init(&p->ptrace_entry);
608 release_task(p);
609 }
610
611 zap_pid_ns_processes(pid_ns);
612 write_lock_irq(&tasklist_lock);
613
614 return father;
615}
616
617/*
618 * When we die, we re-parent all our children, and try to:
619 * 1. give them to another thread in our thread group, if such a member exists
620 * 2. give it to the first ancestor process which prctl'd itself as a
621 * child_subreaper for its children (like a service manager)
622 * 3. give it to the init process (PID 1) in our pid namespace
623 */
624static struct task_struct *find_new_reaper(struct task_struct *father,
625 struct task_struct *child_reaper)
626{
627 struct task_struct *thread, *reaper;
628
629 thread = find_alive_thread(father);
630 if (thread)
631 return thread;
632
633 if (father->signal->has_child_subreaper) {
634 unsigned int ns_level = task_pid(father)->level;
635 /*
636 * Find the first ->is_child_subreaper ancestor in our pid_ns.
637 * We can't check reaper != child_reaper to ensure we do not
638 * cross the namespaces, the exiting parent could be injected
639 * by setns() + fork().
640 * We check pid->level, this is slightly more efficient than
641 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
642 */
643 for (reaper = father->real_parent;
644 task_pid(reaper)->level == ns_level;
645 reaper = reaper->real_parent) {
646 if (reaper == &init_task)
647 break;
648 if (!reaper->signal->is_child_subreaper)
649 continue;
650 thread = find_alive_thread(reaper);
651 if (thread)
652 return thread;
653 }
654 }
655
656 return child_reaper;
657}
658
659/*
660* Any that need to be release_task'd are put on the @dead list.
661 */
662static void reparent_leader(struct task_struct *father, struct task_struct *p,
663 struct list_head *dead)
664{
665 if (unlikely(p->exit_state == EXIT_DEAD))
666 return;
667
668 /* We don't want people slaying init. */
669 p->exit_signal = SIGCHLD;
670
671 /* If it has exited notify the new parent about this child's death. */
672 if (!p->ptrace &&
673 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
674 if (do_notify_parent(p, p->exit_signal)) {
675 p->exit_state = EXIT_DEAD;
676 list_add(&p->ptrace_entry, dead);
677 }
678 }
679
680 kill_orphaned_pgrp(p, father);
681}
682
683/*
684 * This does two things:
685 *
686 * A. Make init inherit all the child processes
687 * B. Check to see if any process groups have become orphaned
688 * as a result of our exiting, and if they have any stopped
689 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
690 */
691static void forget_original_parent(struct task_struct *father,
692 struct list_head *dead)
693{
694 struct task_struct *p, *t, *reaper;
695
696 if (unlikely(!list_empty(&father->ptraced)))
697 exit_ptrace(father, dead);
698
699 /* Can drop and reacquire tasklist_lock */
700 reaper = find_child_reaper(father, dead);
701 if (list_empty(&father->children))
702 return;
703
704 reaper = find_new_reaper(father, reaper);
705 list_for_each_entry(p, &father->children, sibling) {
706 for_each_thread(p, t) {
707 RCU_INIT_POINTER(t->real_parent, reaper);
708 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
709 if (likely(!t->ptrace))
710 t->parent = t->real_parent;
711 if (t->pdeath_signal)
712 group_send_sig_info(t->pdeath_signal,
713 SEND_SIG_NOINFO, t,
714 PIDTYPE_TGID);
715 }
716 /*
717 * If this is a threaded reparent there is no need to
718 * notify anyone anything has happened.
719 */
720 if (!same_thread_group(reaper, father))
721 reparent_leader(father, p, dead);
722 }
723 list_splice_tail_init(&father->children, &reaper->children);
724}
725
726/*
727 * Send signals to all our closest relatives so that they know
728 * to properly mourn us..
729 */
730static void exit_notify(struct task_struct *tsk, int group_dead)
731{
732 bool autoreap;
733 struct task_struct *p, *n;
734 LIST_HEAD(dead);
735
736 write_lock_irq(&tasklist_lock);
737 forget_original_parent(tsk, &dead);
738
739 if (group_dead)
740 kill_orphaned_pgrp(tsk->group_leader, NULL);
741
742 tsk->exit_state = EXIT_ZOMBIE;
743 /*
744 * sub-thread or delay_group_leader(), wake up the
745 * PIDFD_THREAD waiters.
746 */
747 if (!thread_group_empty(tsk))
748 do_notify_pidfd(tsk);
749
750 if (unlikely(tsk->ptrace)) {
751 int sig = thread_group_leader(tsk) &&
752 thread_group_empty(tsk) &&
753 !ptrace_reparented(tsk) ?
754 tsk->exit_signal : SIGCHLD;
755 autoreap = do_notify_parent(tsk, sig);
756 } else if (thread_group_leader(tsk)) {
757 autoreap = thread_group_empty(tsk) &&
758 do_notify_parent(tsk, tsk->exit_signal);
759 } else {
760 autoreap = true;
761 }
762
763 if (autoreap) {
764 tsk->exit_state = EXIT_DEAD;
765 list_add(&tsk->ptrace_entry, &dead);
766 }
767
768 /* mt-exec, de_thread() is waiting for group leader */
769 if (unlikely(tsk->signal->notify_count < 0))
770 wake_up_process(tsk->signal->group_exec_task);
771 write_unlock_irq(&tasklist_lock);
772
773 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
774 list_del_init(&p->ptrace_entry);
775 release_task(p);
776 }
777}
778
779#ifdef CONFIG_DEBUG_STACK_USAGE
780unsigned long stack_not_used(struct task_struct *p)
781{
782 unsigned long *n = end_of_stack(p);
783
784 do { /* Skip over canary */
785# ifdef CONFIG_STACK_GROWSUP
786 n--;
787# else
788 n++;
789# endif
790 } while (!*n);
791
792# ifdef CONFIG_STACK_GROWSUP
793 return (unsigned long)end_of_stack(p) - (unsigned long)n;
794# else
795 return (unsigned long)n - (unsigned long)end_of_stack(p);
796# endif
797}
798
799/* Count the maximum pages reached in kernel stacks */
800static inline void kstack_histogram(unsigned long used_stack)
801{
802#ifdef CONFIG_VM_EVENT_COUNTERS
803 if (used_stack <= 1024)
804 count_vm_event(KSTACK_1K);
805#if THREAD_SIZE > 1024
806 else if (used_stack <= 2048)
807 count_vm_event(KSTACK_2K);
808#endif
809#if THREAD_SIZE > 2048
810 else if (used_stack <= 4096)
811 count_vm_event(KSTACK_4K);
812#endif
813#if THREAD_SIZE > 4096
814 else if (used_stack <= 8192)
815 count_vm_event(KSTACK_8K);
816#endif
817#if THREAD_SIZE > 8192
818 else if (used_stack <= 16384)
819 count_vm_event(KSTACK_16K);
820#endif
821#if THREAD_SIZE > 16384
822 else if (used_stack <= 32768)
823 count_vm_event(KSTACK_32K);
824#endif
825#if THREAD_SIZE > 32768
826 else if (used_stack <= 65536)
827 count_vm_event(KSTACK_64K);
828#endif
829#if THREAD_SIZE > 65536
830 else
831 count_vm_event(KSTACK_REST);
832#endif
833#endif /* CONFIG_VM_EVENT_COUNTERS */
834}
835
836static void check_stack_usage(void)
837{
838 static DEFINE_SPINLOCK(low_water_lock);
839 static int lowest_to_date = THREAD_SIZE;
840 unsigned long free;
841
842 free = stack_not_used(current);
843 kstack_histogram(THREAD_SIZE - free);
844
845 if (free >= lowest_to_date)
846 return;
847
848 spin_lock(&low_water_lock);
849 if (free < lowest_to_date) {
850 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
851 current->comm, task_pid_nr(current), free);
852 lowest_to_date = free;
853 }
854 spin_unlock(&low_water_lock);
855}
856#else
857static inline void check_stack_usage(void) {}
858#endif
859
860static void synchronize_group_exit(struct task_struct *tsk, long code)
861{
862 struct sighand_struct *sighand = tsk->sighand;
863 struct signal_struct *signal = tsk->signal;
864
865 spin_lock_irq(&sighand->siglock);
866 signal->quick_threads--;
867 if ((signal->quick_threads == 0) &&
868 !(signal->flags & SIGNAL_GROUP_EXIT)) {
869 signal->flags = SIGNAL_GROUP_EXIT;
870 signal->group_exit_code = code;
871 signal->group_stop_count = 0;
872 }
873 spin_unlock_irq(&sighand->siglock);
874}
875
876void __noreturn do_exit(long code)
877{
878 struct task_struct *tsk = current;
879 int group_dead;
880
881 WARN_ON(irqs_disabled());
882
883 synchronize_group_exit(tsk, code);
884
885 WARN_ON(tsk->plug);
886
887 kcov_task_exit(tsk);
888 kmsan_task_exit(tsk);
889
890 coredump_task_exit(tsk);
891 ptrace_event(PTRACE_EVENT_EXIT, code);
892 user_events_exit(tsk);
893
894 io_uring_files_cancel();
895 exit_signals(tsk); /* sets PF_EXITING */
896
897 seccomp_filter_release(tsk);
898
899 acct_update_integrals(tsk);
900 group_dead = atomic_dec_and_test(&tsk->signal->live);
901 if (group_dead) {
902 /*
903 * If the last thread of global init has exited, panic
904 * immediately to get a useable coredump.
905 */
906 if (unlikely(is_global_init(tsk)))
907 panic("Attempted to kill init! exitcode=0x%08x\n",
908 tsk->signal->group_exit_code ?: (int)code);
909
910#ifdef CONFIG_POSIX_TIMERS
911 hrtimer_cancel(&tsk->signal->real_timer);
912 exit_itimers(tsk);
913#endif
914 if (tsk->mm)
915 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
916 }
917 acct_collect(code, group_dead);
918 if (group_dead)
919 tty_audit_exit();
920 audit_free(tsk);
921
922 tsk->exit_code = code;
923 taskstats_exit(tsk, group_dead);
924
925 exit_mm();
926
927 if (group_dead)
928 acct_process();
929 trace_sched_process_exit(tsk);
930
931 exit_sem(tsk);
932 exit_shm(tsk);
933 exit_files(tsk);
934 exit_fs(tsk);
935 if (group_dead)
936 disassociate_ctty(1);
937 exit_task_namespaces(tsk);
938 exit_task_work(tsk);
939 exit_thread(tsk);
940
941 /*
942 * Flush inherited counters to the parent - before the parent
943 * gets woken up by child-exit notifications.
944 *
945 * because of cgroup mode, must be called before cgroup_exit()
946 */
947 perf_event_exit_task(tsk);
948
949 sched_autogroup_exit_task(tsk);
950 cgroup_exit(tsk);
951
952 /*
953 * FIXME: do that only when needed, using sched_exit tracepoint
954 */
955 flush_ptrace_hw_breakpoint(tsk);
956
957 exit_tasks_rcu_start();
958 exit_notify(tsk, group_dead);
959 proc_exit_connector(tsk);
960 mpol_put_task_policy(tsk);
961#ifdef CONFIG_FUTEX
962 if (unlikely(current->pi_state_cache))
963 kfree(current->pi_state_cache);
964#endif
965 /*
966 * Make sure we are holding no locks:
967 */
968 debug_check_no_locks_held();
969
970 if (tsk->io_context)
971 exit_io_context(tsk);
972
973 if (tsk->splice_pipe)
974 free_pipe_info(tsk->splice_pipe);
975
976 if (tsk->task_frag.page)
977 put_page(tsk->task_frag.page);
978
979 exit_task_stack_account(tsk);
980
981 check_stack_usage();
982 preempt_disable();
983 if (tsk->nr_dirtied)
984 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
985 exit_rcu();
986 exit_tasks_rcu_finish();
987
988 lockdep_free_task(tsk);
989 do_task_dead();
990}
991
992void __noreturn make_task_dead(int signr)
993{
994 /*
995 * Take the task off the cpu after something catastrophic has
996 * happened.
997 *
998 * We can get here from a kernel oops, sometimes with preemption off.
999 * Start by checking for critical errors.
1000 * Then fix up important state like USER_DS and preemption.
1001 * Then do everything else.
1002 */
1003 struct task_struct *tsk = current;
1004 unsigned int limit;
1005
1006 if (unlikely(in_interrupt()))
1007 panic("Aiee, killing interrupt handler!");
1008 if (unlikely(!tsk->pid))
1009 panic("Attempted to kill the idle task!");
1010
1011 if (unlikely(irqs_disabled())) {
1012 pr_info("note: %s[%d] exited with irqs disabled\n",
1013 current->comm, task_pid_nr(current));
1014 local_irq_enable();
1015 }
1016 if (unlikely(in_atomic())) {
1017 pr_info("note: %s[%d] exited with preempt_count %d\n",
1018 current->comm, task_pid_nr(current),
1019 preempt_count());
1020 preempt_count_set(PREEMPT_ENABLED);
1021 }
1022
1023 /*
1024 * Every time the system oopses, if the oops happens while a reference
1025 * to an object was held, the reference leaks.
1026 * If the oops doesn't also leak memory, repeated oopsing can cause
1027 * reference counters to wrap around (if they're not using refcount_t).
1028 * This means that repeated oopsing can make unexploitable-looking bugs
1029 * exploitable through repeated oopsing.
1030 * To make sure this can't happen, place an upper bound on how often the
1031 * kernel may oops without panic().
1032 */
1033 limit = READ_ONCE(oops_limit);
1034 if (atomic_inc_return(&oops_count) >= limit && limit)
1035 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
1036
1037 /*
1038 * We're taking recursive faults here in make_task_dead. Safest is to just
1039 * leave this task alone and wait for reboot.
1040 */
1041 if (unlikely(tsk->flags & PF_EXITING)) {
1042 pr_alert("Fixing recursive fault but reboot is needed!\n");
1043 futex_exit_recursive(tsk);
1044 tsk->exit_state = EXIT_DEAD;
1045 refcount_inc(&tsk->rcu_users);
1046 do_task_dead();
1047 }
1048
1049 do_exit(signr);
1050}
1051
1052SYSCALL_DEFINE1(exit, int, error_code)
1053{
1054 do_exit((error_code&0xff)<<8);
1055}
1056
1057/*
1058 * Take down every thread in the group. This is called by fatal signals
1059 * as well as by sys_exit_group (below).
1060 */
1061void __noreturn
1062do_group_exit(int exit_code)
1063{
1064 struct signal_struct *sig = current->signal;
1065
1066 if (sig->flags & SIGNAL_GROUP_EXIT)
1067 exit_code = sig->group_exit_code;
1068 else if (sig->group_exec_task)
1069 exit_code = 0;
1070 else {
1071 struct sighand_struct *const sighand = current->sighand;
1072
1073 spin_lock_irq(&sighand->siglock);
1074 if (sig->flags & SIGNAL_GROUP_EXIT)
1075 /* Another thread got here before we took the lock. */
1076 exit_code = sig->group_exit_code;
1077 else if (sig->group_exec_task)
1078 exit_code = 0;
1079 else {
1080 sig->group_exit_code = exit_code;
1081 sig->flags = SIGNAL_GROUP_EXIT;
1082 zap_other_threads(current);
1083 }
1084 spin_unlock_irq(&sighand->siglock);
1085 }
1086
1087 do_exit(exit_code);
1088 /* NOTREACHED */
1089}
1090
1091/*
1092 * this kills every thread in the thread group. Note that any externally
1093 * wait4()-ing process will get the correct exit code - even if this
1094 * thread is not the thread group leader.
1095 */
1096SYSCALL_DEFINE1(exit_group, int, error_code)
1097{
1098 do_group_exit((error_code & 0xff) << 8);
1099 /* NOTREACHED */
1100 return 0;
1101}
1102
1103static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1104{
1105 return wo->wo_type == PIDTYPE_MAX ||
1106 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1107}
1108
1109static int
1110eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1111{
1112 if (!eligible_pid(wo, p))
1113 return 0;
1114
1115 /*
1116 * Wait for all children (clone and not) if __WALL is set or
1117 * if it is traced by us.
1118 */
1119 if (ptrace || (wo->wo_flags & __WALL))
1120 return 1;
1121
1122 /*
1123 * Otherwise, wait for clone children *only* if __WCLONE is set;
1124 * otherwise, wait for non-clone children *only*.
1125 *
1126 * Note: a "clone" child here is one that reports to its parent
1127 * using a signal other than SIGCHLD, or a non-leader thread which
1128 * we can only see if it is traced by us.
1129 */
1130 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1131 return 0;
1132
1133 return 1;
1134}
1135
1136/*
1137 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1138 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1139 * the lock and this task is uninteresting. If we return nonzero, we have
1140 * released the lock and the system call should return.
1141 */
1142static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1143{
1144 int state, status;
1145 pid_t pid = task_pid_vnr(p);
1146 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1147 struct waitid_info *infop;
1148
1149 if (!likely(wo->wo_flags & WEXITED))
1150 return 0;
1151
1152 if (unlikely(wo->wo_flags & WNOWAIT)) {
1153 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1154 ? p->signal->group_exit_code : p->exit_code;
1155 get_task_struct(p);
1156 read_unlock(&tasklist_lock);
1157 sched_annotate_sleep();
1158 if (wo->wo_rusage)
1159 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1160 put_task_struct(p);
1161 goto out_info;
1162 }
1163 /*
1164 * Move the task's state to DEAD/TRACE, only one thread can do this.
1165 */
1166 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1167 EXIT_TRACE : EXIT_DEAD;
1168 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1169 return 0;
1170 /*
1171 * We own this thread, nobody else can reap it.
1172 */
1173 read_unlock(&tasklist_lock);
1174 sched_annotate_sleep();
1175
1176 /*
1177 * Check thread_group_leader() to exclude the traced sub-threads.
1178 */
1179 if (state == EXIT_DEAD && thread_group_leader(p)) {
1180 struct signal_struct *sig = p->signal;
1181 struct signal_struct *psig = current->signal;
1182 unsigned long maxrss;
1183 u64 tgutime, tgstime;
1184
1185 /*
1186 * The resource counters for the group leader are in its
1187 * own task_struct. Those for dead threads in the group
1188 * are in its signal_struct, as are those for the child
1189 * processes it has previously reaped. All these
1190 * accumulate in the parent's signal_struct c* fields.
1191 *
1192 * We don't bother to take a lock here to protect these
1193 * p->signal fields because the whole thread group is dead
1194 * and nobody can change them.
1195 *
1196 * psig->stats_lock also protects us from our sub-threads
1197 * which can reap other children at the same time.
1198 *
1199 * We use thread_group_cputime_adjusted() to get times for
1200 * the thread group, which consolidates times for all threads
1201 * in the group including the group leader.
1202 */
1203 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1204 write_seqlock_irq(&psig->stats_lock);
1205 psig->cutime += tgutime + sig->cutime;
1206 psig->cstime += tgstime + sig->cstime;
1207 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1208 psig->cmin_flt +=
1209 p->min_flt + sig->min_flt + sig->cmin_flt;
1210 psig->cmaj_flt +=
1211 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1212 psig->cnvcsw +=
1213 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1214 psig->cnivcsw +=
1215 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1216 psig->cinblock +=
1217 task_io_get_inblock(p) +
1218 sig->inblock + sig->cinblock;
1219 psig->coublock +=
1220 task_io_get_oublock(p) +
1221 sig->oublock + sig->coublock;
1222 maxrss = max(sig->maxrss, sig->cmaxrss);
1223 if (psig->cmaxrss < maxrss)
1224 psig->cmaxrss = maxrss;
1225 task_io_accounting_add(&psig->ioac, &p->ioac);
1226 task_io_accounting_add(&psig->ioac, &sig->ioac);
1227 write_sequnlock_irq(&psig->stats_lock);
1228 }
1229
1230 if (wo->wo_rusage)
1231 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1232 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1233 ? p->signal->group_exit_code : p->exit_code;
1234 wo->wo_stat = status;
1235
1236 if (state == EXIT_TRACE) {
1237 write_lock_irq(&tasklist_lock);
1238 /* We dropped tasklist, ptracer could die and untrace */
1239 ptrace_unlink(p);
1240
1241 /* If parent wants a zombie, don't release it now */
1242 state = EXIT_ZOMBIE;
1243 if (do_notify_parent(p, p->exit_signal))
1244 state = EXIT_DEAD;
1245 p->exit_state = state;
1246 write_unlock_irq(&tasklist_lock);
1247 }
1248 if (state == EXIT_DEAD)
1249 release_task(p);
1250
1251out_info:
1252 infop = wo->wo_info;
1253 if (infop) {
1254 if ((status & 0x7f) == 0) {
1255 infop->cause = CLD_EXITED;
1256 infop->status = status >> 8;
1257 } else {
1258 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1259 infop->status = status & 0x7f;
1260 }
1261 infop->pid = pid;
1262 infop->uid = uid;
1263 }
1264
1265 return pid;
1266}
1267
1268static int *task_stopped_code(struct task_struct *p, bool ptrace)
1269{
1270 if (ptrace) {
1271 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1272 return &p->exit_code;
1273 } else {
1274 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1275 return &p->signal->group_exit_code;
1276 }
1277 return NULL;
1278}
1279
1280/**
1281 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1282 * @wo: wait options
1283 * @ptrace: is the wait for ptrace
1284 * @p: task to wait for
1285 *
1286 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1287 *
1288 * CONTEXT:
1289 * read_lock(&tasklist_lock), which is released if return value is
1290 * non-zero. Also, grabs and releases @p->sighand->siglock.
1291 *
1292 * RETURNS:
1293 * 0 if wait condition didn't exist and search for other wait conditions
1294 * should continue. Non-zero return, -errno on failure and @p's pid on
1295 * success, implies that tasklist_lock is released and wait condition
1296 * search should terminate.
1297 */
1298static int wait_task_stopped(struct wait_opts *wo,
1299 int ptrace, struct task_struct *p)
1300{
1301 struct waitid_info *infop;
1302 int exit_code, *p_code, why;
1303 uid_t uid = 0; /* unneeded, required by compiler */
1304 pid_t pid;
1305
1306 /*
1307 * Traditionally we see ptrace'd stopped tasks regardless of options.
1308 */
1309 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1310 return 0;
1311
1312 if (!task_stopped_code(p, ptrace))
1313 return 0;
1314
1315 exit_code = 0;
1316 spin_lock_irq(&p->sighand->siglock);
1317
1318 p_code = task_stopped_code(p, ptrace);
1319 if (unlikely(!p_code))
1320 goto unlock_sig;
1321
1322 exit_code = *p_code;
1323 if (!exit_code)
1324 goto unlock_sig;
1325
1326 if (!unlikely(wo->wo_flags & WNOWAIT))
1327 *p_code = 0;
1328
1329 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1330unlock_sig:
1331 spin_unlock_irq(&p->sighand->siglock);
1332 if (!exit_code)
1333 return 0;
1334
1335 /*
1336 * Now we are pretty sure this task is interesting.
1337 * Make sure it doesn't get reaped out from under us while we
1338 * give up the lock and then examine it below. We don't want to
1339 * keep holding onto the tasklist_lock while we call getrusage and
1340 * possibly take page faults for user memory.
1341 */
1342 get_task_struct(p);
1343 pid = task_pid_vnr(p);
1344 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1345 read_unlock(&tasklist_lock);
1346 sched_annotate_sleep();
1347 if (wo->wo_rusage)
1348 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1349 put_task_struct(p);
1350
1351 if (likely(!(wo->wo_flags & WNOWAIT)))
1352 wo->wo_stat = (exit_code << 8) | 0x7f;
1353
1354 infop = wo->wo_info;
1355 if (infop) {
1356 infop->cause = why;
1357 infop->status = exit_code;
1358 infop->pid = pid;
1359 infop->uid = uid;
1360 }
1361 return pid;
1362}
1363
1364/*
1365 * Handle do_wait work for one task in a live, non-stopped state.
1366 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1367 * the lock and this task is uninteresting. If we return nonzero, we have
1368 * released the lock and the system call should return.
1369 */
1370static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1371{
1372 struct waitid_info *infop;
1373 pid_t pid;
1374 uid_t uid;
1375
1376 if (!unlikely(wo->wo_flags & WCONTINUED))
1377 return 0;
1378
1379 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1380 return 0;
1381
1382 spin_lock_irq(&p->sighand->siglock);
1383 /* Re-check with the lock held. */
1384 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1385 spin_unlock_irq(&p->sighand->siglock);
1386 return 0;
1387 }
1388 if (!unlikely(wo->wo_flags & WNOWAIT))
1389 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1390 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1391 spin_unlock_irq(&p->sighand->siglock);
1392
1393 pid = task_pid_vnr(p);
1394 get_task_struct(p);
1395 read_unlock(&tasklist_lock);
1396 sched_annotate_sleep();
1397 if (wo->wo_rusage)
1398 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1399 put_task_struct(p);
1400
1401 infop = wo->wo_info;
1402 if (!infop) {
1403 wo->wo_stat = 0xffff;
1404 } else {
1405 infop->cause = CLD_CONTINUED;
1406 infop->pid = pid;
1407 infop->uid = uid;
1408 infop->status = SIGCONT;
1409 }
1410 return pid;
1411}
1412
1413/*
1414 * Consider @p for a wait by @parent.
1415 *
1416 * -ECHILD should be in ->notask_error before the first call.
1417 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1418 * Returns zero if the search for a child should continue;
1419 * then ->notask_error is 0 if @p is an eligible child,
1420 * or still -ECHILD.
1421 */
1422static int wait_consider_task(struct wait_opts *wo, int ptrace,
1423 struct task_struct *p)
1424{
1425 /*
1426 * We can race with wait_task_zombie() from another thread.
1427 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1428 * can't confuse the checks below.
1429 */
1430 int exit_state = READ_ONCE(p->exit_state);
1431 int ret;
1432
1433 if (unlikely(exit_state == EXIT_DEAD))
1434 return 0;
1435
1436 ret = eligible_child(wo, ptrace, p);
1437 if (!ret)
1438 return ret;
1439
1440 if (unlikely(exit_state == EXIT_TRACE)) {
1441 /*
1442 * ptrace == 0 means we are the natural parent. In this case
1443 * we should clear notask_error, debugger will notify us.
1444 */
1445 if (likely(!ptrace))
1446 wo->notask_error = 0;
1447 return 0;
1448 }
1449
1450 if (likely(!ptrace) && unlikely(p->ptrace)) {
1451 /*
1452 * If it is traced by its real parent's group, just pretend
1453 * the caller is ptrace_do_wait() and reap this child if it
1454 * is zombie.
1455 *
1456 * This also hides group stop state from real parent; otherwise
1457 * a single stop can be reported twice as group and ptrace stop.
1458 * If a ptracer wants to distinguish these two events for its
1459 * own children it should create a separate process which takes
1460 * the role of real parent.
1461 */
1462 if (!ptrace_reparented(p))
1463 ptrace = 1;
1464 }
1465
1466 /* slay zombie? */
1467 if (exit_state == EXIT_ZOMBIE) {
1468 /* we don't reap group leaders with subthreads */
1469 if (!delay_group_leader(p)) {
1470 /*
1471 * A zombie ptracee is only visible to its ptracer.
1472 * Notification and reaping will be cascaded to the
1473 * real parent when the ptracer detaches.
1474 */
1475 if (unlikely(ptrace) || likely(!p->ptrace))
1476 return wait_task_zombie(wo, p);
1477 }
1478
1479 /*
1480 * Allow access to stopped/continued state via zombie by
1481 * falling through. Clearing of notask_error is complex.
1482 *
1483 * When !@ptrace:
1484 *
1485 * If WEXITED is set, notask_error should naturally be
1486 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1487 * so, if there are live subthreads, there are events to
1488 * wait for. If all subthreads are dead, it's still safe
1489 * to clear - this function will be called again in finite
1490 * amount time once all the subthreads are released and
1491 * will then return without clearing.
1492 *
1493 * When @ptrace:
1494 *
1495 * Stopped state is per-task and thus can't change once the
1496 * target task dies. Only continued and exited can happen.
1497 * Clear notask_error if WCONTINUED | WEXITED.
1498 */
1499 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1500 wo->notask_error = 0;
1501 } else {
1502 /*
1503 * @p is alive and it's gonna stop, continue or exit, so
1504 * there always is something to wait for.
1505 */
1506 wo->notask_error = 0;
1507 }
1508
1509 /*
1510 * Wait for stopped. Depending on @ptrace, different stopped state
1511 * is used and the two don't interact with each other.
1512 */
1513 ret = wait_task_stopped(wo, ptrace, p);
1514 if (ret)
1515 return ret;
1516
1517 /*
1518 * Wait for continued. There's only one continued state and the
1519 * ptracer can consume it which can confuse the real parent. Don't
1520 * use WCONTINUED from ptracer. You don't need or want it.
1521 */
1522 return wait_task_continued(wo, p);
1523}
1524
1525/*
1526 * Do the work of do_wait() for one thread in the group, @tsk.
1527 *
1528 * -ECHILD should be in ->notask_error before the first call.
1529 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1530 * Returns zero if the search for a child should continue; then
1531 * ->notask_error is 0 if there were any eligible children,
1532 * or still -ECHILD.
1533 */
1534static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1535{
1536 struct task_struct *p;
1537
1538 list_for_each_entry(p, &tsk->children, sibling) {
1539 int ret = wait_consider_task(wo, 0, p);
1540
1541 if (ret)
1542 return ret;
1543 }
1544
1545 return 0;
1546}
1547
1548static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1549{
1550 struct task_struct *p;
1551
1552 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1553 int ret = wait_consider_task(wo, 1, p);
1554
1555 if (ret)
1556 return ret;
1557 }
1558
1559 return 0;
1560}
1561
1562bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1563{
1564 if (!eligible_pid(wo, p))
1565 return false;
1566
1567 if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1568 return false;
1569
1570 return true;
1571}
1572
1573static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1574 int sync, void *key)
1575{
1576 struct wait_opts *wo = container_of(wait, struct wait_opts,
1577 child_wait);
1578 struct task_struct *p = key;
1579
1580 if (pid_child_should_wake(wo, p))
1581 return default_wake_function(wait, mode, sync, key);
1582
1583 return 0;
1584}
1585
1586void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1587{
1588 __wake_up_sync_key(&parent->signal->wait_chldexit,
1589 TASK_INTERRUPTIBLE, p);
1590}
1591
1592static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1593 struct task_struct *target)
1594{
1595 struct task_struct *parent =
1596 !ptrace ? target->real_parent : target->parent;
1597
1598 return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1599 same_thread_group(current, parent));
1600}
1601
1602/*
1603 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1604 * and tracee lists to find the target task.
1605 */
1606static int do_wait_pid(struct wait_opts *wo)
1607{
1608 bool ptrace;
1609 struct task_struct *target;
1610 int retval;
1611
1612 ptrace = false;
1613 target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1614 if (target && is_effectively_child(wo, ptrace, target)) {
1615 retval = wait_consider_task(wo, ptrace, target);
1616 if (retval)
1617 return retval;
1618 }
1619
1620 ptrace = true;
1621 target = pid_task(wo->wo_pid, PIDTYPE_PID);
1622 if (target && target->ptrace &&
1623 is_effectively_child(wo, ptrace, target)) {
1624 retval = wait_consider_task(wo, ptrace, target);
1625 if (retval)
1626 return retval;
1627 }
1628
1629 return 0;
1630}
1631
1632long __do_wait(struct wait_opts *wo)
1633{
1634 long retval;
1635
1636 /*
1637 * If there is nothing that can match our criteria, just get out.
1638 * We will clear ->notask_error to zero if we see any child that
1639 * might later match our criteria, even if we are not able to reap
1640 * it yet.
1641 */
1642 wo->notask_error = -ECHILD;
1643 if ((wo->wo_type < PIDTYPE_MAX) &&
1644 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1645 goto notask;
1646
1647 read_lock(&tasklist_lock);
1648
1649 if (wo->wo_type == PIDTYPE_PID) {
1650 retval = do_wait_pid(wo);
1651 if (retval)
1652 return retval;
1653 } else {
1654 struct task_struct *tsk = current;
1655
1656 do {
1657 retval = do_wait_thread(wo, tsk);
1658 if (retval)
1659 return retval;
1660
1661 retval = ptrace_do_wait(wo, tsk);
1662 if (retval)
1663 return retval;
1664
1665 if (wo->wo_flags & __WNOTHREAD)
1666 break;
1667 } while_each_thread(current, tsk);
1668 }
1669 read_unlock(&tasklist_lock);
1670
1671notask:
1672 retval = wo->notask_error;
1673 if (!retval && !(wo->wo_flags & WNOHANG))
1674 return -ERESTARTSYS;
1675
1676 return retval;
1677}
1678
1679static long do_wait(struct wait_opts *wo)
1680{
1681 int retval;
1682
1683 trace_sched_process_wait(wo->wo_pid);
1684
1685 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1686 wo->child_wait.private = current;
1687 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1688
1689 do {
1690 set_current_state(TASK_INTERRUPTIBLE);
1691 retval = __do_wait(wo);
1692 if (retval != -ERESTARTSYS)
1693 break;
1694 if (signal_pending(current))
1695 break;
1696 schedule();
1697 } while (1);
1698
1699 __set_current_state(TASK_RUNNING);
1700 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1701 return retval;
1702}
1703
1704int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1705 struct waitid_info *infop, int options,
1706 struct rusage *ru)
1707{
1708 unsigned int f_flags = 0;
1709 struct pid *pid = NULL;
1710 enum pid_type type;
1711
1712 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1713 __WNOTHREAD|__WCLONE|__WALL))
1714 return -EINVAL;
1715 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1716 return -EINVAL;
1717
1718 switch (which) {
1719 case P_ALL:
1720 type = PIDTYPE_MAX;
1721 break;
1722 case P_PID:
1723 type = PIDTYPE_PID;
1724 if (upid <= 0)
1725 return -EINVAL;
1726
1727 pid = find_get_pid(upid);
1728 break;
1729 case P_PGID:
1730 type = PIDTYPE_PGID;
1731 if (upid < 0)
1732 return -EINVAL;
1733
1734 if (upid)
1735 pid = find_get_pid(upid);
1736 else
1737 pid = get_task_pid(current, PIDTYPE_PGID);
1738 break;
1739 case P_PIDFD:
1740 type = PIDTYPE_PID;
1741 if (upid < 0)
1742 return -EINVAL;
1743
1744 pid = pidfd_get_pid(upid, &f_flags);
1745 if (IS_ERR(pid))
1746 return PTR_ERR(pid);
1747
1748 break;
1749 default:
1750 return -EINVAL;
1751 }
1752
1753 wo->wo_type = type;
1754 wo->wo_pid = pid;
1755 wo->wo_flags = options;
1756 wo->wo_info = infop;
1757 wo->wo_rusage = ru;
1758 if (f_flags & O_NONBLOCK)
1759 wo->wo_flags |= WNOHANG;
1760
1761 return 0;
1762}
1763
1764static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1765 int options, struct rusage *ru)
1766{
1767 struct wait_opts wo;
1768 long ret;
1769
1770 ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1771 if (ret)
1772 return ret;
1773
1774 ret = do_wait(&wo);
1775 if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1776 ret = -EAGAIN;
1777
1778 put_pid(wo.wo_pid);
1779 return ret;
1780}
1781
1782SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1783 infop, int, options, struct rusage __user *, ru)
1784{
1785 struct rusage r;
1786 struct waitid_info info = {.status = 0};
1787 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1788 int signo = 0;
1789
1790 if (err > 0) {
1791 signo = SIGCHLD;
1792 err = 0;
1793 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1794 return -EFAULT;
1795 }
1796 if (!infop)
1797 return err;
1798
1799 if (!user_write_access_begin(infop, sizeof(*infop)))
1800 return -EFAULT;
1801
1802 unsafe_put_user(signo, &infop->si_signo, Efault);
1803 unsafe_put_user(0, &infop->si_errno, Efault);
1804 unsafe_put_user(info.cause, &infop->si_code, Efault);
1805 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1806 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1807 unsafe_put_user(info.status, &infop->si_status, Efault);
1808 user_write_access_end();
1809 return err;
1810Efault:
1811 user_write_access_end();
1812 return -EFAULT;
1813}
1814
1815long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1816 struct rusage *ru)
1817{
1818 struct wait_opts wo;
1819 struct pid *pid = NULL;
1820 enum pid_type type;
1821 long ret;
1822
1823 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1824 __WNOTHREAD|__WCLONE|__WALL))
1825 return -EINVAL;
1826
1827 /* -INT_MIN is not defined */
1828 if (upid == INT_MIN)
1829 return -ESRCH;
1830
1831 if (upid == -1)
1832 type = PIDTYPE_MAX;
1833 else if (upid < 0) {
1834 type = PIDTYPE_PGID;
1835 pid = find_get_pid(-upid);
1836 } else if (upid == 0) {
1837 type = PIDTYPE_PGID;
1838 pid = get_task_pid(current, PIDTYPE_PGID);
1839 } else /* upid > 0 */ {
1840 type = PIDTYPE_PID;
1841 pid = find_get_pid(upid);
1842 }
1843
1844 wo.wo_type = type;
1845 wo.wo_pid = pid;
1846 wo.wo_flags = options | WEXITED;
1847 wo.wo_info = NULL;
1848 wo.wo_stat = 0;
1849 wo.wo_rusage = ru;
1850 ret = do_wait(&wo);
1851 put_pid(pid);
1852 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1853 ret = -EFAULT;
1854
1855 return ret;
1856}
1857
1858int kernel_wait(pid_t pid, int *stat)
1859{
1860 struct wait_opts wo = {
1861 .wo_type = PIDTYPE_PID,
1862 .wo_pid = find_get_pid(pid),
1863 .wo_flags = WEXITED,
1864 };
1865 int ret;
1866
1867 ret = do_wait(&wo);
1868 if (ret > 0 && wo.wo_stat)
1869 *stat = wo.wo_stat;
1870 put_pid(wo.wo_pid);
1871 return ret;
1872}
1873
1874SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1875 int, options, struct rusage __user *, ru)
1876{
1877 struct rusage r;
1878 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1879
1880 if (err > 0) {
1881 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1882 return -EFAULT;
1883 }
1884 return err;
1885}
1886
1887#ifdef __ARCH_WANT_SYS_WAITPID
1888
1889/*
1890 * sys_waitpid() remains for compatibility. waitpid() should be
1891 * implemented by calling sys_wait4() from libc.a.
1892 */
1893SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1894{
1895 return kernel_wait4(pid, stat_addr, options, NULL);
1896}
1897
1898#endif
1899
1900#ifdef CONFIG_COMPAT
1901COMPAT_SYSCALL_DEFINE4(wait4,
1902 compat_pid_t, pid,
1903 compat_uint_t __user *, stat_addr,
1904 int, options,
1905 struct compat_rusage __user *, ru)
1906{
1907 struct rusage r;
1908 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1909 if (err > 0) {
1910 if (ru && put_compat_rusage(&r, ru))
1911 return -EFAULT;
1912 }
1913 return err;
1914}
1915
1916COMPAT_SYSCALL_DEFINE5(waitid,
1917 int, which, compat_pid_t, pid,
1918 struct compat_siginfo __user *, infop, int, options,
1919 struct compat_rusage __user *, uru)
1920{
1921 struct rusage ru;
1922 struct waitid_info info = {.status = 0};
1923 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1924 int signo = 0;
1925 if (err > 0) {
1926 signo = SIGCHLD;
1927 err = 0;
1928 if (uru) {
1929 /* kernel_waitid() overwrites everything in ru */
1930 if (COMPAT_USE_64BIT_TIME)
1931 err = copy_to_user(uru, &ru, sizeof(ru));
1932 else
1933 err = put_compat_rusage(&ru, uru);
1934 if (err)
1935 return -EFAULT;
1936 }
1937 }
1938
1939 if (!infop)
1940 return err;
1941
1942 if (!user_write_access_begin(infop, sizeof(*infop)))
1943 return -EFAULT;
1944
1945 unsafe_put_user(signo, &infop->si_signo, Efault);
1946 unsafe_put_user(0, &infop->si_errno, Efault);
1947 unsafe_put_user(info.cause, &infop->si_code, Efault);
1948 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1949 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1950 unsafe_put_user(info.status, &infop->si_status, Efault);
1951 user_write_access_end();
1952 return err;
1953Efault:
1954 user_write_access_end();
1955 return -EFAULT;
1956}
1957#endif
1958
1959/*
1960 * This needs to be __function_aligned as GCC implicitly makes any
1961 * implementation of abort() cold and drops alignment specified by
1962 * -falign-functions=N.
1963 *
1964 * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1965 */
1966__weak __function_aligned void abort(void)
1967{
1968 BUG();
1969
1970 /* if that doesn't kill us, halt */
1971 panic("Oops failed to kill thread");
1972}
1973EXPORT_SYMBOL(abort);