Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* auditsc.c -- System-call auditing support
   3 * Handles all system-call specific auditing features.
   4 *
   5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   6 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   7 * Copyright (C) 2005, 2006 IBM Corporation
   8 * All Rights Reserved.
   9 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  11 *
  12 * Many of the ideas implemented here are from Stephen C. Tweedie,
  13 * especially the idea of avoiding a copy by using getname.
  14 *
  15 * The method for actual interception of syscall entry and exit (not in
  16 * this file -- see entry.S) is based on a GPL'd patch written by
  17 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  18 *
  19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  20 * 2006.
  21 *
  22 * The support of additional filter rules compares (>, <, >=, <=) was
  23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  24 *
  25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  26 * filesystem information.
  27 *
  28 * Subject and object context labeling support added by <danjones@us.ibm.com>
  29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#include <linux/init.h>
  35#include <asm/types.h>
  36#include <linux/atomic.h>
  37#include <linux/fs.h>
  38#include <linux/namei.h>
  39#include <linux/mm.h>
  40#include <linux/export.h>
  41#include <linux/slab.h>
  42#include <linux/mount.h>
  43#include <linux/socket.h>
  44#include <linux/mqueue.h>
  45#include <linux/audit.h>
  46#include <linux/personality.h>
  47#include <linux/time.h>
  48#include <linux/netlink.h>
  49#include <linux/compiler.h>
  50#include <asm/unistd.h>
  51#include <linux/security.h>
  52#include <linux/list.h>
 
  53#include <linux/binfmts.h>
  54#include <linux/highmem.h>
  55#include <linux/syscalls.h>
  56#include <asm/syscall.h>
  57#include <linux/capability.h>
  58#include <linux/fs_struct.h>
  59#include <linux/compat.h>
  60#include <linux/ctype.h>
  61#include <linux/string.h>
  62#include <linux/uaccess.h>
  63#include <linux/fsnotify_backend.h>
  64#include <uapi/linux/limits.h>
  65#include <uapi/linux/netfilter/nf_tables.h>
  66#include <uapi/linux/openat2.h> // struct open_how
  67
  68#include "audit.h"
  69
  70/* flags stating the success for a syscall */
  71#define AUDITSC_INVALID 0
  72#define AUDITSC_SUCCESS 1
  73#define AUDITSC_FAILURE 2
  74
  75/* no execve audit message should be longer than this (userspace limits),
  76 * see the note near the top of audit_log_execve_info() about this value */
  77#define MAX_EXECVE_AUDIT_LEN 7500
 
  78
  79/* max length to print of cmdline/proctitle value during audit */
  80#define MAX_PROCTITLE_AUDIT_LEN 128
 
 
 
  81
  82/* number of audit rules */
  83int audit_n_rules;
  84
  85/* determines whether we collect data for signals sent */
  86int audit_signals;
  87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  88struct audit_aux_data {
  89	struct audit_aux_data	*next;
  90	int			type;
  91};
  92
 
 
  93/* Number of target pids per aux struct. */
  94#define AUDIT_AUX_PIDS	16
  95
 
 
 
 
 
 
 
  96struct audit_aux_data_pids {
  97	struct audit_aux_data	d;
  98	pid_t			target_pid[AUDIT_AUX_PIDS];
  99	kuid_t			target_auid[AUDIT_AUX_PIDS];
 100	kuid_t			target_uid[AUDIT_AUX_PIDS];
 101	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
 102	u32			target_sid[AUDIT_AUX_PIDS];
 103	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 104	int			pid_count;
 105};
 106
 107struct audit_aux_data_bprm_fcaps {
 108	struct audit_aux_data	d;
 109	struct audit_cap_data	fcap;
 110	unsigned int		fcap_ver;
 111	struct audit_cap_data	old_pcap;
 112	struct audit_cap_data	new_pcap;
 113};
 114
 
 
 
 
 
 
 115struct audit_tree_refs {
 116	struct audit_tree_refs *next;
 117	struct audit_chunk *c[31];
 118};
 119
 120struct audit_nfcfgop_tab {
 121	enum audit_nfcfgop	op;
 122	const char		*s;
 123};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 124
 125static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
 126	{ AUDIT_XT_OP_REGISTER,			"xt_register"		   },
 127	{ AUDIT_XT_OP_REPLACE,			"xt_replace"		   },
 128	{ AUDIT_XT_OP_UNREGISTER,		"xt_unregister"		   },
 129	{ AUDIT_NFT_OP_TABLE_REGISTER,		"nft_register_table"	   },
 130	{ AUDIT_NFT_OP_TABLE_UNREGISTER,	"nft_unregister_table"	   },
 131	{ AUDIT_NFT_OP_CHAIN_REGISTER,		"nft_register_chain"	   },
 132	{ AUDIT_NFT_OP_CHAIN_UNREGISTER,	"nft_unregister_chain"	   },
 133	{ AUDIT_NFT_OP_RULE_REGISTER,		"nft_register_rule"	   },
 134	{ AUDIT_NFT_OP_RULE_UNREGISTER,		"nft_unregister_rule"	   },
 135	{ AUDIT_NFT_OP_SET_REGISTER,		"nft_register_set"	   },
 136	{ AUDIT_NFT_OP_SET_UNREGISTER,		"nft_unregister_set"	   },
 137	{ AUDIT_NFT_OP_SETELEM_REGISTER,	"nft_register_setelem"	   },
 138	{ AUDIT_NFT_OP_SETELEM_UNREGISTER,	"nft_unregister_setelem"   },
 139	{ AUDIT_NFT_OP_GEN_REGISTER,		"nft_register_gen"	   },
 140	{ AUDIT_NFT_OP_OBJ_REGISTER,		"nft_register_obj"	   },
 141	{ AUDIT_NFT_OP_OBJ_UNREGISTER,		"nft_unregister_obj"	   },
 142	{ AUDIT_NFT_OP_OBJ_RESET,		"nft_reset_obj"		   },
 143	{ AUDIT_NFT_OP_FLOWTABLE_REGISTER,	"nft_register_flowtable"   },
 144	{ AUDIT_NFT_OP_FLOWTABLE_UNREGISTER,	"nft_unregister_flowtable" },
 145	{ AUDIT_NFT_OP_INVALID,			"nft_invalid"		   },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 146};
 147
 
 
 
 
 
 
 
 
 148static int audit_match_perm(struct audit_context *ctx, int mask)
 149{
 150	unsigned n;
 151
 152	if (unlikely(!ctx))
 153		return 0;
 154	n = ctx->major;
 155
 156	switch (audit_classify_syscall(ctx->arch, n)) {
 157	case AUDITSC_NATIVE:
 158		if ((mask & AUDIT_PERM_WRITE) &&
 159		     audit_match_class(AUDIT_CLASS_WRITE, n))
 160			return 1;
 161		if ((mask & AUDIT_PERM_READ) &&
 162		     audit_match_class(AUDIT_CLASS_READ, n))
 163			return 1;
 164		if ((mask & AUDIT_PERM_ATTR) &&
 165		     audit_match_class(AUDIT_CLASS_CHATTR, n))
 166			return 1;
 167		return 0;
 168	case AUDITSC_COMPAT: /* 32bit on biarch */
 169		if ((mask & AUDIT_PERM_WRITE) &&
 170		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 171			return 1;
 172		if ((mask & AUDIT_PERM_READ) &&
 173		     audit_match_class(AUDIT_CLASS_READ_32, n))
 174			return 1;
 175		if ((mask & AUDIT_PERM_ATTR) &&
 176		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 177			return 1;
 178		return 0;
 179	case AUDITSC_OPEN:
 180		return mask & ACC_MODE(ctx->argv[1]);
 181	case AUDITSC_OPENAT:
 182		return mask & ACC_MODE(ctx->argv[2]);
 183	case AUDITSC_SOCKETCALL:
 184		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 185	case AUDITSC_EXECVE:
 186		return mask & AUDIT_PERM_EXEC;
 187	case AUDITSC_OPENAT2:
 188		return mask & ACC_MODE((u32)ctx->openat2.flags);
 189	default:
 190		return 0;
 191	}
 192}
 193
 194static int audit_match_filetype(struct audit_context *ctx, int val)
 195{
 196	struct audit_names *n;
 197	umode_t mode = (umode_t)val;
 198
 199	if (unlikely(!ctx))
 200		return 0;
 201
 202	list_for_each_entry(n, &ctx->names_list, list) {
 203		if ((n->ino != AUDIT_INO_UNSET) &&
 204		    ((n->mode & S_IFMT) == mode))
 205			return 1;
 206	}
 207
 208	return 0;
 209}
 210
 211/*
 212 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 213 * ->first_trees points to its beginning, ->trees - to the current end of data.
 214 * ->tree_count is the number of free entries in array pointed to by ->trees.
 215 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 216 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 217 * it's going to remain 1-element for almost any setup) until we free context itself.
 218 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 219 */
 220
 
 221static void audit_set_auditable(struct audit_context *ctx)
 222{
 223	if (!ctx->prio) {
 224		ctx->prio = 1;
 225		ctx->current_state = AUDIT_STATE_RECORD;
 226	}
 227}
 228
 229static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 230{
 231	struct audit_tree_refs *p = ctx->trees;
 232	int left = ctx->tree_count;
 233
 234	if (likely(left)) {
 235		p->c[--left] = chunk;
 236		ctx->tree_count = left;
 237		return 1;
 238	}
 239	if (!p)
 240		return 0;
 241	p = p->next;
 242	if (p) {
 243		p->c[30] = chunk;
 244		ctx->trees = p;
 245		ctx->tree_count = 30;
 246		return 1;
 247	}
 248	return 0;
 249}
 250
 251static int grow_tree_refs(struct audit_context *ctx)
 252{
 253	struct audit_tree_refs *p = ctx->trees;
 254
 255	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 256	if (!ctx->trees) {
 257		ctx->trees = p;
 258		return 0;
 259	}
 260	if (p)
 261		p->next = ctx->trees;
 262	else
 263		ctx->first_trees = ctx->trees;
 264	ctx->tree_count = 31;
 265	return 1;
 266}
 
 267
 268static void unroll_tree_refs(struct audit_context *ctx,
 269		      struct audit_tree_refs *p, int count)
 270{
 
 271	struct audit_tree_refs *q;
 272	int n;
 273
 274	if (!p) {
 275		/* we started with empty chain */
 276		p = ctx->first_trees;
 277		count = 31;
 278		/* if the very first allocation has failed, nothing to do */
 279		if (!p)
 280			return;
 281	}
 282	n = count;
 283	for (q = p; q != ctx->trees; q = q->next, n = 31) {
 284		while (n--) {
 285			audit_put_chunk(q->c[n]);
 286			q->c[n] = NULL;
 287		}
 288	}
 289	while (n-- > ctx->tree_count) {
 290		audit_put_chunk(q->c[n]);
 291		q->c[n] = NULL;
 292	}
 293	ctx->trees = p;
 294	ctx->tree_count = count;
 
 295}
 296
 297static void free_tree_refs(struct audit_context *ctx)
 298{
 299	struct audit_tree_refs *p, *q;
 300
 301	for (p = ctx->first_trees; p; p = q) {
 302		q = p->next;
 303		kfree(p);
 304	}
 305}
 306
 307static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 308{
 
 309	struct audit_tree_refs *p;
 310	int n;
 311
 312	if (!tree)
 313		return 0;
 314	/* full ones */
 315	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 316		for (n = 0; n < 31; n++)
 317			if (audit_tree_match(p->c[n], tree))
 318				return 1;
 319	}
 320	/* partial */
 321	if (p) {
 322		for (n = ctx->tree_count; n < 31; n++)
 323			if (audit_tree_match(p->c[n], tree))
 324				return 1;
 325	}
 
 326	return 0;
 327}
 328
 329static int audit_compare_uid(kuid_t uid,
 330			     struct audit_names *name,
 331			     struct audit_field *f,
 332			     struct audit_context *ctx)
 
 333{
 334	struct audit_names *n;
 
 
 335	int rc;
 336
 
 
 337	if (name) {
 338		rc = audit_uid_comparator(uid, f->op, name->uid);
 
 
 
 
 339		if (rc)
 340			return rc;
 341	}
 342
 343	if (ctx) {
 344		list_for_each_entry(n, &ctx->names_list, list) {
 345			rc = audit_uid_comparator(uid, f->op, n->uid);
 346			if (rc)
 347				return rc;
 348		}
 349	}
 350	return 0;
 351}
 352
 353static int audit_compare_gid(kgid_t gid,
 354			     struct audit_names *name,
 355			     struct audit_field *f,
 356			     struct audit_context *ctx)
 357{
 358	struct audit_names *n;
 359	int rc;
 360
 361	if (name) {
 362		rc = audit_gid_comparator(gid, f->op, name->gid);
 363		if (rc)
 364			return rc;
 365	}
 366
 367	if (ctx) {
 368		list_for_each_entry(n, &ctx->names_list, list) {
 369			rc = audit_gid_comparator(gid, f->op, n->gid);
 370			if (rc)
 371				return rc;
 372		}
 373	}
 374	return 0;
 375}
 376
 377static int audit_field_compare(struct task_struct *tsk,
 378			       const struct cred *cred,
 379			       struct audit_field *f,
 380			       struct audit_context *ctx,
 381			       struct audit_names *name)
 382{
 383	switch (f->val) {
 384	/* process to file object comparisons */
 385	case AUDIT_COMPARE_UID_TO_OBJ_UID:
 386		return audit_compare_uid(cred->uid, name, f, ctx);
 
 
 387	case AUDIT_COMPARE_GID_TO_OBJ_GID:
 388		return audit_compare_gid(cred->gid, name, f, ctx);
 
 
 389	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 390		return audit_compare_uid(cred->euid, name, f, ctx);
 
 
 391	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 392		return audit_compare_gid(cred->egid, name, f, ctx);
 
 
 393	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 394		return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
 
 
 395	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 396		return audit_compare_uid(cred->suid, name, f, ctx);
 
 
 397	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 398		return audit_compare_gid(cred->sgid, name, f, ctx);
 
 
 399	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 400		return audit_compare_uid(cred->fsuid, name, f, ctx);
 
 
 401	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 402		return audit_compare_gid(cred->fsgid, name, f, ctx);
 
 
 403	/* uid comparisons */
 404	case AUDIT_COMPARE_UID_TO_AUID:
 405		return audit_uid_comparator(cred->uid, f->op,
 406					    audit_get_loginuid(tsk));
 407	case AUDIT_COMPARE_UID_TO_EUID:
 408		return audit_uid_comparator(cred->uid, f->op, cred->euid);
 409	case AUDIT_COMPARE_UID_TO_SUID:
 410		return audit_uid_comparator(cred->uid, f->op, cred->suid);
 411	case AUDIT_COMPARE_UID_TO_FSUID:
 412		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
 413	/* auid comparisons */
 414	case AUDIT_COMPARE_AUID_TO_EUID:
 415		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 416					    cred->euid);
 417	case AUDIT_COMPARE_AUID_TO_SUID:
 418		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 419					    cred->suid);
 420	case AUDIT_COMPARE_AUID_TO_FSUID:
 421		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 422					    cred->fsuid);
 423	/* euid comparisons */
 424	case AUDIT_COMPARE_EUID_TO_SUID:
 425		return audit_uid_comparator(cred->euid, f->op, cred->suid);
 426	case AUDIT_COMPARE_EUID_TO_FSUID:
 427		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
 428	/* suid comparisons */
 429	case AUDIT_COMPARE_SUID_TO_FSUID:
 430		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
 431	/* gid comparisons */
 432	case AUDIT_COMPARE_GID_TO_EGID:
 433		return audit_gid_comparator(cred->gid, f->op, cred->egid);
 434	case AUDIT_COMPARE_GID_TO_SGID:
 435		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
 436	case AUDIT_COMPARE_GID_TO_FSGID:
 437		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
 438	/* egid comparisons */
 439	case AUDIT_COMPARE_EGID_TO_SGID:
 440		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
 441	case AUDIT_COMPARE_EGID_TO_FSGID:
 442		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
 443	/* sgid comparison */
 444	case AUDIT_COMPARE_SGID_TO_FSGID:
 445		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
 446	default:
 447		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 448		return 0;
 449	}
 450	return 0;
 451}
 452
 453/* Determine if any context name data matches a rule's watch data */
 454/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 455 * otherwise.
 456 *
 457 * If task_creation is true, this is an explicit indication that we are
 458 * filtering a task rule at task creation time.  This and tsk == current are
 459 * the only situations where tsk->cred may be accessed without an rcu read lock.
 460 */
 461static int audit_filter_rules(struct task_struct *tsk,
 462			      struct audit_krule *rule,
 463			      struct audit_context *ctx,
 464			      struct audit_names *name,
 465			      enum audit_state *state,
 466			      bool task_creation)
 467{
 468	const struct cred *cred;
 469	int i, need_sid = 1;
 470	u32 sid;
 471	unsigned int sessionid;
 472
 473	if (ctx && rule->prio <= ctx->prio)
 474		return 0;
 475
 476	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 477
 478	for (i = 0; i < rule->field_count; i++) {
 479		struct audit_field *f = &rule->fields[i];
 480		struct audit_names *n;
 481		int result = 0;
 482		pid_t pid;
 483
 484		switch (f->type) {
 485		case AUDIT_PID:
 486			pid = task_tgid_nr(tsk);
 487			result = audit_comparator(pid, f->op, f->val);
 488			break;
 489		case AUDIT_PPID:
 490			if (ctx) {
 491				if (!ctx->ppid)
 492					ctx->ppid = task_ppid_nr(tsk);
 493				result = audit_comparator(ctx->ppid, f->op, f->val);
 494			}
 495			break;
 496		case AUDIT_EXE:
 497			result = audit_exe_compare(tsk, rule->exe);
 498			if (f->op == Audit_not_equal)
 499				result = !result;
 500			break;
 501		case AUDIT_UID:
 502			result = audit_uid_comparator(cred->uid, f->op, f->uid);
 503			break;
 504		case AUDIT_EUID:
 505			result = audit_uid_comparator(cred->euid, f->op, f->uid);
 506			break;
 507		case AUDIT_SUID:
 508			result = audit_uid_comparator(cred->suid, f->op, f->uid);
 509			break;
 510		case AUDIT_FSUID:
 511			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
 512			break;
 513		case AUDIT_GID:
 514			result = audit_gid_comparator(cred->gid, f->op, f->gid);
 515			if (f->op == Audit_equal) {
 516				if (!result)
 517					result = groups_search(cred->group_info, f->gid);
 518			} else if (f->op == Audit_not_equal) {
 519				if (result)
 520					result = !groups_search(cred->group_info, f->gid);
 521			}
 522			break;
 523		case AUDIT_EGID:
 524			result = audit_gid_comparator(cred->egid, f->op, f->gid);
 525			if (f->op == Audit_equal) {
 526				if (!result)
 527					result = groups_search(cred->group_info, f->gid);
 528			} else if (f->op == Audit_not_equal) {
 529				if (result)
 530					result = !groups_search(cred->group_info, f->gid);
 531			}
 532			break;
 533		case AUDIT_SGID:
 534			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
 535			break;
 536		case AUDIT_FSGID:
 537			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
 538			break;
 539		case AUDIT_SESSIONID:
 540			sessionid = audit_get_sessionid(tsk);
 541			result = audit_comparator(sessionid, f->op, f->val);
 542			break;
 543		case AUDIT_PERS:
 544			result = audit_comparator(tsk->personality, f->op, f->val);
 545			break;
 546		case AUDIT_ARCH:
 547			if (ctx)
 548				result = audit_comparator(ctx->arch, f->op, f->val);
 549			break;
 550
 551		case AUDIT_EXIT:
 552			if (ctx && ctx->return_valid != AUDITSC_INVALID)
 553				result = audit_comparator(ctx->return_code, f->op, f->val);
 554			break;
 555		case AUDIT_SUCCESS:
 556			if (ctx && ctx->return_valid != AUDITSC_INVALID) {
 557				if (f->val)
 558					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 559				else
 560					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 561			}
 562			break;
 563		case AUDIT_DEVMAJOR:
 564			if (name) {
 565				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 566				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 567					++result;
 568			} else if (ctx) {
 569				list_for_each_entry(n, &ctx->names_list, list) {
 570					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 571					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 572						++result;
 573						break;
 574					}
 575				}
 576			}
 577			break;
 578		case AUDIT_DEVMINOR:
 579			if (name) {
 580				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 581				    audit_comparator(MINOR(name->rdev), f->op, f->val))
 582					++result;
 583			} else if (ctx) {
 584				list_for_each_entry(n, &ctx->names_list, list) {
 585					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 586					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 587						++result;
 588						break;
 589					}
 590				}
 591			}
 592			break;
 593		case AUDIT_INODE:
 594			if (name)
 595				result = audit_comparator(name->ino, f->op, f->val);
 596			else if (ctx) {
 597				list_for_each_entry(n, &ctx->names_list, list) {
 598					if (audit_comparator(n->ino, f->op, f->val)) {
 599						++result;
 600						break;
 601					}
 602				}
 603			}
 604			break;
 605		case AUDIT_OBJ_UID:
 606			if (name) {
 607				result = audit_uid_comparator(name->uid, f->op, f->uid);
 608			} else if (ctx) {
 609				list_for_each_entry(n, &ctx->names_list, list) {
 610					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
 611						++result;
 612						break;
 613					}
 614				}
 615			}
 616			break;
 617		case AUDIT_OBJ_GID:
 618			if (name) {
 619				result = audit_gid_comparator(name->gid, f->op, f->gid);
 620			} else if (ctx) {
 621				list_for_each_entry(n, &ctx->names_list, list) {
 622					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
 623						++result;
 624						break;
 625					}
 626				}
 627			}
 628			break;
 629		case AUDIT_WATCH:
 630			if (name) {
 631				result = audit_watch_compare(rule->watch,
 632							     name->ino,
 633							     name->dev);
 634				if (f->op == Audit_not_equal)
 635					result = !result;
 636			}
 637			break;
 638		case AUDIT_DIR:
 639			if (ctx) {
 640				result = match_tree_refs(ctx, rule->tree);
 641				if (f->op == Audit_not_equal)
 642					result = !result;
 643			}
 644			break;
 645		case AUDIT_LOGINUID:
 646			result = audit_uid_comparator(audit_get_loginuid(tsk),
 647						      f->op, f->uid);
 648			break;
 649		case AUDIT_LOGINUID_SET:
 650			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
 651			break;
 652		case AUDIT_SADDR_FAM:
 653			if (ctx && ctx->sockaddr)
 654				result = audit_comparator(ctx->sockaddr->ss_family,
 655							  f->op, f->val);
 656			break;
 657		case AUDIT_SUBJ_USER:
 658		case AUDIT_SUBJ_ROLE:
 659		case AUDIT_SUBJ_TYPE:
 660		case AUDIT_SUBJ_SEN:
 661		case AUDIT_SUBJ_CLR:
 662			/* NOTE: this may return negative values indicating
 663			   a temporary error.  We simply treat this as a
 664			   match for now to avoid losing information that
 665			   may be wanted.   An error message will also be
 666			   logged upon error */
 667			if (f->lsm_rule) {
 668				if (need_sid) {
 669					/* @tsk should always be equal to
 670					 * @current with the exception of
 671					 * fork()/copy_process() in which case
 672					 * the new @tsk creds are still a dup
 673					 * of @current's creds so we can still
 674					 * use security_current_getsecid_subj()
 675					 * here even though it always refs
 676					 * @current's creds
 677					 */
 678					security_current_getsecid_subj(&sid);
 679					need_sid = 0;
 680				}
 681				result = security_audit_rule_match(sid, f->type,
 682								   f->op,
 683								   f->lsm_rule);
 
 684			}
 685			break;
 686		case AUDIT_OBJ_USER:
 687		case AUDIT_OBJ_ROLE:
 688		case AUDIT_OBJ_TYPE:
 689		case AUDIT_OBJ_LEV_LOW:
 690		case AUDIT_OBJ_LEV_HIGH:
 691			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 692			   also applies here */
 693			if (f->lsm_rule) {
 694				/* Find files that match */
 695				if (name) {
 696					result = security_audit_rule_match(
 697								name->osid,
 698								f->type,
 699								f->op,
 700								f->lsm_rule);
 701				} else if (ctx) {
 702					list_for_each_entry(n, &ctx->names_list, list) {
 703						if (security_audit_rule_match(
 704								n->osid,
 705								f->type,
 706								f->op,
 707								f->lsm_rule)) {
 708							++result;
 709							break;
 710						}
 711					}
 712				}
 713				/* Find ipc objects that match */
 714				if (!ctx || ctx->type != AUDIT_IPC)
 715					break;
 716				if (security_audit_rule_match(ctx->ipc.osid,
 717							      f->type, f->op,
 718							      f->lsm_rule))
 719					++result;
 720			}
 721			break;
 722		case AUDIT_ARG0:
 723		case AUDIT_ARG1:
 724		case AUDIT_ARG2:
 725		case AUDIT_ARG3:
 726			if (ctx)
 727				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 728			break;
 729		case AUDIT_FILTERKEY:
 730			/* ignore this field for filtering */
 731			result = 1;
 732			break;
 733		case AUDIT_PERM:
 734			result = audit_match_perm(ctx, f->val);
 735			if (f->op == Audit_not_equal)
 736				result = !result;
 737			break;
 738		case AUDIT_FILETYPE:
 739			result = audit_match_filetype(ctx, f->val);
 740			if (f->op == Audit_not_equal)
 741				result = !result;
 742			break;
 743		case AUDIT_FIELD_COMPARE:
 744			result = audit_field_compare(tsk, cred, f, ctx, name);
 745			break;
 746		}
 747		if (!result)
 748			return 0;
 749	}
 750
 751	if (ctx) {
 
 
 752		if (rule->filterkey) {
 753			kfree(ctx->filterkey);
 754			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 755		}
 756		ctx->prio = rule->prio;
 757	}
 758	switch (rule->action) {
 759	case AUDIT_NEVER:
 760		*state = AUDIT_STATE_DISABLED;
 761		break;
 762	case AUDIT_ALWAYS:
 763		*state = AUDIT_STATE_RECORD;
 764		break;
 765	}
 766	return 1;
 767}
 768
 769/* At process creation time, we can determine if system-call auditing is
 770 * completely disabled for this task.  Since we only have the task
 771 * structure at this point, we can only check uid and gid.
 772 */
 773static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 774{
 775	struct audit_entry *e;
 776	enum audit_state   state;
 777
 778	rcu_read_lock();
 779	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 780		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 781				       &state, true)) {
 782			if (state == AUDIT_STATE_RECORD)
 783				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 784			rcu_read_unlock();
 785			return state;
 786		}
 787	}
 788	rcu_read_unlock();
 789	return AUDIT_STATE_BUILD;
 790}
 791
 792static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
 793{
 794	int word, bit;
 795
 796	if (val > 0xffffffff)
 797		return false;
 798
 799	word = AUDIT_WORD(val);
 800	if (word >= AUDIT_BITMASK_SIZE)
 801		return false;
 802
 803	bit = AUDIT_BIT(val);
 804
 805	return rule->mask[word] & bit;
 806}
 807
 808/**
 809 * __audit_filter_op - common filter helper for operations (syscall/uring/etc)
 810 * @tsk: associated task
 811 * @ctx: audit context
 812 * @list: audit filter list
 813 * @name: audit_name (can be NULL)
 814 * @op: current syscall/uring_op
 815 *
 816 * Run the udit filters specified in @list against @tsk using @ctx,
 817 * @name, and @op, as necessary; the caller is responsible for ensuring
 818 * that the call is made while the RCU read lock is held. The @name
 819 * parameter can be NULL, but all others must be specified.
 820 * Returns 1/true if the filter finds a match, 0/false if none are found.
 821 */
 822static int __audit_filter_op(struct task_struct *tsk,
 823			   struct audit_context *ctx,
 824			   struct list_head *list,
 825			   struct audit_names *name,
 826			   unsigned long op)
 827{
 828	struct audit_entry *e;
 829	enum audit_state state;
 830
 831	list_for_each_entry_rcu(e, list, list) {
 832		if (audit_in_mask(&e->rule, op) &&
 833		    audit_filter_rules(tsk, &e->rule, ctx, name,
 834				       &state, false)) {
 835			ctx->current_state = state;
 836			return 1;
 837		}
 838	}
 839	return 0;
 840}
 841
 842/**
 843 * audit_filter_uring - apply filters to an io_uring operation
 844 * @tsk: associated task
 845 * @ctx: audit context
 846 */
 847static void audit_filter_uring(struct task_struct *tsk,
 848			       struct audit_context *ctx)
 849{
 850	if (auditd_test_task(tsk))
 851		return;
 852
 853	rcu_read_lock();
 854	__audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
 855			NULL, ctx->uring_op);
 856	rcu_read_unlock();
 857}
 858
 859/* At syscall exit time, this filter is called if the audit_state is
 860 * not low enough that auditing cannot take place, but is also not
 861 * high enough that we already know we have to write an audit record
 862 * (i.e., the state is AUDIT_STATE_BUILD).
 863 */
 864static void audit_filter_syscall(struct task_struct *tsk,
 865				 struct audit_context *ctx)
 866{
 867	if (auditd_test_task(tsk))
 868		return;
 869
 870	rcu_read_lock();
 871	__audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT],
 872			NULL, ctx->major);
 873	rcu_read_unlock();
 
 874}
 875
 876/*
 877 * Given an audit_name check the inode hash table to see if they match.
 878 * Called holding the rcu read lock to protect the use of audit_inode_hash
 879 */
 880static int audit_filter_inode_name(struct task_struct *tsk,
 881				   struct audit_names *n,
 882				   struct audit_context *ctx) {
 
 883	int h = audit_hash_ino((u32)n->ino);
 884	struct list_head *list = &audit_inode_hash[h];
 
 
 885
 886	return __audit_filter_op(tsk, ctx, list, n, ctx->major);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 887}
 888
 889/* At syscall exit time, this filter is called if any audit_names have been
 890 * collected during syscall processing.  We only check rules in sublists at hash
 891 * buckets applicable to the inode numbers in audit_names.
 892 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 893 */
 894void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 895{
 896	struct audit_names *n;
 897
 898	if (auditd_test_task(tsk))
 899		return;
 900
 901	rcu_read_lock();
 902
 903	list_for_each_entry(n, &ctx->names_list, list) {
 904		if (audit_filter_inode_name(tsk, n, ctx))
 905			break;
 906	}
 907	rcu_read_unlock();
 908}
 909
 910static inline void audit_proctitle_free(struct audit_context *context)
 
 
 911{
 912	kfree(context->proctitle.value);
 913	context->proctitle.value = NULL;
 914	context->proctitle.len = 0;
 915}
 916
 917static inline void audit_free_module(struct audit_context *context)
 918{
 919	if (context->type == AUDIT_KERN_MODULE) {
 920		kfree(context->module.name);
 921		context->module.name = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 922	}
 
 
 
 923}
 
 924static inline void audit_free_names(struct audit_context *context)
 925{
 926	struct audit_names *n, *next;
 927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 928	list_for_each_entry_safe(n, next, &context->names_list, list) {
 929		list_del(&n->list);
 930		if (n->name)
 931			putname(n->name);
 932		if (n->should_free)
 933			kfree(n);
 934	}
 935	context->name_count = 0;
 936	path_put(&context->pwd);
 937	context->pwd.dentry = NULL;
 938	context->pwd.mnt = NULL;
 939}
 940
 941static inline void audit_free_aux(struct audit_context *context)
 942{
 943	struct audit_aux_data *aux;
 944
 945	while ((aux = context->aux)) {
 946		context->aux = aux->next;
 947		kfree(aux);
 948	}
 949	context->aux = NULL;
 950	while ((aux = context->aux_pids)) {
 951		context->aux_pids = aux->next;
 952		kfree(aux);
 953	}
 954	context->aux_pids = NULL;
 955}
 956
 957/**
 958 * audit_reset_context - reset a audit_context structure
 959 * @ctx: the audit_context to reset
 960 *
 961 * All fields in the audit_context will be reset to an initial state, all
 962 * references held by fields will be dropped, and private memory will be
 963 * released.  When this function returns the audit_context will be suitable
 964 * for reuse, so long as the passed context is not NULL or a dummy context.
 965 */
 966static void audit_reset_context(struct audit_context *ctx)
 967{
 968	if (!ctx)
 969		return;
 970
 971	/* if ctx is non-null, reset the "ctx->context" regardless */
 972	ctx->context = AUDIT_CTX_UNUSED;
 973	if (ctx->dummy)
 974		return;
 975
 976	/*
 977	 * NOTE: It shouldn't matter in what order we release the fields, so
 978	 *       release them in the order in which they appear in the struct;
 979	 *       this gives us some hope of quickly making sure we are
 980	 *       resetting the audit_context properly.
 981	 *
 982	 *       Other things worth mentioning:
 983	 *       - we don't reset "dummy"
 984	 *       - we don't reset "state", we do reset "current_state"
 985	 *       - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
 986	 *       - much of this is likely overkill, but play it safe for now
 987	 *       - we really need to work on improving the audit_context struct
 988	 */
 989
 990	ctx->current_state = ctx->state;
 991	ctx->serial = 0;
 992	ctx->major = 0;
 993	ctx->uring_op = 0;
 994	ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
 995	memset(ctx->argv, 0, sizeof(ctx->argv));
 996	ctx->return_code = 0;
 997	ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
 998	ctx->return_valid = AUDITSC_INVALID;
 999	audit_free_names(ctx);
1000	if (ctx->state != AUDIT_STATE_RECORD) {
1001		kfree(ctx->filterkey);
1002		ctx->filterkey = NULL;
1003	}
1004	audit_free_aux(ctx);
1005	kfree(ctx->sockaddr);
1006	ctx->sockaddr = NULL;
1007	ctx->sockaddr_len = 0;
1008	ctx->ppid = 0;
1009	ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
1010	ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
1011	ctx->personality = 0;
1012	ctx->arch = 0;
1013	ctx->target_pid = 0;
1014	ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
1015	ctx->target_sessionid = 0;
1016	ctx->target_sid = 0;
1017	ctx->target_comm[0] = '\0';
1018	unroll_tree_refs(ctx, NULL, 0);
1019	WARN_ON(!list_empty(&ctx->killed_trees));
1020	audit_free_module(ctx);
1021	ctx->fds[0] = -1;
1022	ctx->type = 0; /* reset last for audit_free_*() */
1023}
1024
1025static inline struct audit_context *audit_alloc_context(enum audit_state state)
1026{
1027	struct audit_context *context;
1028
1029	context = kzalloc(sizeof(*context), GFP_KERNEL);
1030	if (!context)
1031		return NULL;
1032	context->context = AUDIT_CTX_UNUSED;
1033	context->state = state;
1034	context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1035	INIT_LIST_HEAD(&context->killed_trees);
1036	INIT_LIST_HEAD(&context->names_list);
1037	context->fds[0] = -1;
1038	context->return_valid = AUDITSC_INVALID;
1039	return context;
1040}
1041
1042/**
1043 * audit_alloc - allocate an audit context block for a task
1044 * @tsk: task
1045 *
1046 * Filter on the task information and allocate a per-task audit context
1047 * if necessary.  Doing so turns on system call auditing for the
1048 * specified task.  This is called from copy_process, so no lock is
1049 * needed.
1050 */
1051int audit_alloc(struct task_struct *tsk)
1052{
1053	struct audit_context *context;
1054	enum audit_state     state;
1055	char *key = NULL;
1056
1057	if (likely(!audit_ever_enabled))
1058		return 0;
1059
1060	state = audit_filter_task(tsk, &key);
1061	if (state == AUDIT_STATE_DISABLED) {
1062		clear_task_syscall_work(tsk, SYSCALL_AUDIT);
1063		return 0;
1064	}
1065
1066	if (!(context = audit_alloc_context(state))) {
1067		kfree(key);
1068		audit_log_lost("out of memory in audit_alloc");
1069		return -ENOMEM;
1070	}
1071	context->filterkey = key;
1072
1073	audit_set_context(tsk, context);
1074	set_task_syscall_work(tsk, SYSCALL_AUDIT);
1075	return 0;
1076}
1077
1078static inline void audit_free_context(struct audit_context *context)
1079{
1080	/* resetting is extra work, but it is likely just noise */
1081	audit_reset_context(context);
1082	audit_proctitle_free(context);
1083	free_tree_refs(context);
1084	kfree(context->filterkey);
1085	kfree(context);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086}
1087
1088static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1089				 kuid_t auid, kuid_t uid, unsigned int sessionid,
1090				 u32 sid, char *comm)
1091{
1092	struct audit_buffer *ab;
1093	char *ctx = NULL;
1094	u32 len;
1095	int rc = 0;
1096
1097	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1098	if (!ab)
1099		return rc;
1100
1101	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1102			 from_kuid(&init_user_ns, auid),
1103			 from_kuid(&init_user_ns, uid), sessionid);
1104	if (sid) {
1105		if (security_secid_to_secctx(sid, &ctx, &len)) {
1106			audit_log_format(ab, " obj=(none)");
1107			rc = 1;
1108		} else {
1109			audit_log_format(ab, " obj=%s", ctx);
1110			security_release_secctx(ctx, len);
1111		}
1112	}
1113	audit_log_format(ab, " ocomm=");
1114	audit_log_untrustedstring(ab, comm);
1115	audit_log_end(ab);
1116
1117	return rc;
1118}
1119
1120static void audit_log_execve_info(struct audit_context *context,
1121				  struct audit_buffer **ab)
1122{
1123	long len_max;
1124	long len_rem;
1125	long len_full;
1126	long len_buf;
1127	long len_abuf = 0;
1128	long len_tmp;
1129	bool require_data;
1130	bool encode;
1131	unsigned int iter;
1132	unsigned int arg;
1133	char *buf_head;
1134	char *buf;
1135	const char __user *p = (const char __user *)current->mm->arg_start;
 
 
 
 
 
 
 
 
 
 
1136
1137	/* NOTE: this buffer needs to be large enough to hold all the non-arg
1138	 *       data we put in the audit record for this argument (see the
1139	 *       code below) ... at this point in time 96 is plenty */
1140	char abuf[96];
1141
1142	/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1143	 *       current value of 7500 is not as important as the fact that it
1144	 *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1145	 *       room if we go over a little bit in the logging below */
1146	WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1147	len_max = MAX_EXECVE_AUDIT_LEN;
1148
1149	/* scratch buffer to hold the userspace args */
1150	buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1151	if (!buf_head) {
1152		audit_panic("out of memory for argv string");
1153		return;
1154	}
1155	buf = buf_head;
1156
1157	audit_log_format(*ab, "argc=%d", context->execve.argc);
1158
1159	len_rem = len_max;
1160	len_buf = 0;
1161	len_full = 0;
1162	require_data = true;
1163	encode = false;
1164	iter = 0;
1165	arg = 0;
1166	do {
1167		/* NOTE: we don't ever want to trust this value for anything
1168		 *       serious, but the audit record format insists we
1169		 *       provide an argument length for really long arguments,
1170		 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1171		 *       to use strncpy_from_user() to obtain this value for
1172		 *       recording in the log, although we don't use it
1173		 *       anywhere here to avoid a double-fetch problem */
1174		if (len_full == 0)
1175			len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1176
1177		/* read more data from userspace */
1178		if (require_data) {
1179			/* can we make more room in the buffer? */
1180			if (buf != buf_head) {
1181				memmove(buf_head, buf, len_buf);
1182				buf = buf_head;
1183			}
1184
1185			/* fetch as much as we can of the argument */
1186			len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1187						    len_max - len_buf);
1188			if (len_tmp == -EFAULT) {
1189				/* unable to copy from userspace */
1190				send_sig(SIGKILL, current, 0);
1191				goto out;
1192			} else if (len_tmp == (len_max - len_buf)) {
1193				/* buffer is not large enough */
1194				require_data = true;
1195				/* NOTE: if we are going to span multiple
1196				 *       buffers force the encoding so we stand
1197				 *       a chance at a sane len_full value and
1198				 *       consistent record encoding */
1199				encode = true;
1200				len_full = len_full * 2;
1201				p += len_tmp;
1202			} else {
1203				require_data = false;
1204				if (!encode)
1205					encode = audit_string_contains_control(
1206								buf, len_tmp);
1207				/* try to use a trusted value for len_full */
1208				if (len_full < len_max)
1209					len_full = (encode ?
1210						    len_tmp * 2 : len_tmp);
1211				p += len_tmp + 1;
1212			}
1213			len_buf += len_tmp;
1214			buf_head[len_buf] = '\0';
1215
1216			/* length of the buffer in the audit record? */
1217			len_abuf = (encode ? len_buf * 2 : len_buf + 2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1218		}
1219
1220		/* write as much as we can to the audit log */
1221		if (len_buf >= 0) {
1222			/* NOTE: some magic numbers here - basically if we
1223			 *       can't fit a reasonable amount of data into the
1224			 *       existing audit buffer, flush it and start with
1225			 *       a new buffer */
1226			if ((sizeof(abuf) + 8) > len_rem) {
1227				len_rem = len_max;
1228				audit_log_end(*ab);
1229				*ab = audit_log_start(context,
1230						      GFP_KERNEL, AUDIT_EXECVE);
1231				if (!*ab)
1232					goto out;
1233			}
1234
1235			/* create the non-arg portion of the arg record */
1236			len_tmp = 0;
1237			if (require_data || (iter > 0) ||
1238			    ((len_abuf + sizeof(abuf)) > len_rem)) {
1239				if (iter == 0) {
1240					len_tmp += snprintf(&abuf[len_tmp],
1241							sizeof(abuf) - len_tmp,
1242							" a%d_len=%lu",
1243							arg, len_full);
1244				}
1245				len_tmp += snprintf(&abuf[len_tmp],
1246						    sizeof(abuf) - len_tmp,
1247						    " a%d[%d]=", arg, iter++);
1248			} else
1249				len_tmp += snprintf(&abuf[len_tmp],
1250						    sizeof(abuf) - len_tmp,
1251						    " a%d=", arg);
1252			WARN_ON(len_tmp >= sizeof(abuf));
1253			abuf[sizeof(abuf) - 1] = '\0';
1254
1255			/* log the arg in the audit record */
1256			audit_log_format(*ab, "%s", abuf);
1257			len_rem -= len_tmp;
1258			len_tmp = len_buf;
1259			if (encode) {
1260				if (len_abuf > len_rem)
1261					len_tmp = len_rem / 2; /* encoding */
1262				audit_log_n_hex(*ab, buf, len_tmp);
1263				len_rem -= len_tmp * 2;
1264				len_abuf -= len_tmp * 2;
1265			} else {
1266				if (len_abuf > len_rem)
1267					len_tmp = len_rem - 2; /* quotes */
1268				audit_log_n_string(*ab, buf, len_tmp);
1269				len_rem -= len_tmp + 2;
1270				/* don't subtract the "2" because we still need
1271				 * to add quotes to the remaining string */
1272				len_abuf -= len_tmp;
1273			}
1274			len_buf -= len_tmp;
1275			buf += len_tmp;
1276		}
1277
1278		/* ready to move to the next argument? */
1279		if ((len_buf == 0) && !require_data) {
1280			arg++;
1281			iter = 0;
1282			len_full = 0;
1283			require_data = true;
1284			encode = false;
1285		}
1286	} while (arg < context->execve.argc);
1287
1288	/* NOTE: the caller handles the final audit_log_end() call */
 
1289
1290out:
1291	kfree(buf_head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1292}
1293
1294static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1295			  kernel_cap_t *cap)
1296{
1297	int i;
1298
1299	if (cap_isclear(*cap)) {
1300		audit_log_format(ab, " %s=0", prefix);
1301		return;
1302	}
1303	audit_log_format(ab, " %s=", prefix);
1304	CAP_FOR_EACH_U32(i)
1305		audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
 
1306}
1307
1308static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1309{
1310	if (name->fcap_ver == -1) {
1311		audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1312		return;
1313	}
1314	audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1315	audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1316	audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1317			 name->fcap.fE, name->fcap_ver,
1318			 from_kuid(&init_user_ns, name->fcap.rootid));
1319}
1320
1321static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1322{
1323	const struct audit_ntp_data *ntp = &context->time.ntp_data;
1324	const struct timespec64 *tk = &context->time.tk_injoffset;
1325	static const char * const ntp_name[] = {
1326		"offset",
1327		"freq",
1328		"status",
1329		"tai",
1330		"tick",
1331		"adjust",
1332	};
1333	int type;
1334
1335	if (context->type == AUDIT_TIME_ADJNTPVAL) {
1336		for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1337			if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1338				if (!*ab) {
1339					*ab = audit_log_start(context,
1340							GFP_KERNEL,
1341							AUDIT_TIME_ADJNTPVAL);
1342					if (!*ab)
1343						return;
1344				}
1345				audit_log_format(*ab, "op=%s old=%lli new=%lli",
1346						 ntp_name[type],
1347						 ntp->vals[type].oldval,
1348						 ntp->vals[type].newval);
1349				audit_log_end(*ab);
1350				*ab = NULL;
1351			}
1352		}
1353	}
1354	if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1355		if (!*ab) {
1356			*ab = audit_log_start(context, GFP_KERNEL,
1357					      AUDIT_TIME_INJOFFSET);
1358			if (!*ab)
1359				return;
1360		}
1361		audit_log_format(*ab, "sec=%lli nsec=%li",
1362				 (long long)tk->tv_sec, tk->tv_nsec);
1363		audit_log_end(*ab);
1364		*ab = NULL;
1365	}
 
 
 
1366}
1367
1368static void show_special(struct audit_context *context, int *call_panic)
1369{
1370	struct audit_buffer *ab;
1371	int i;
1372
1373	ab = audit_log_start(context, GFP_KERNEL, context->type);
1374	if (!ab)
1375		return;
1376
1377	switch (context->type) {
1378	case AUDIT_SOCKETCALL: {
1379		int nargs = context->socketcall.nargs;
1380
1381		audit_log_format(ab, "nargs=%d", nargs);
1382		for (i = 0; i < nargs; i++)
1383			audit_log_format(ab, " a%d=%lx", i,
1384				context->socketcall.args[i]);
1385		break; }
1386	case AUDIT_IPC: {
1387		u32 osid = context->ipc.osid;
1388
1389		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1390				 from_kuid(&init_user_ns, context->ipc.uid),
1391				 from_kgid(&init_user_ns, context->ipc.gid),
1392				 context->ipc.mode);
1393		if (osid) {
1394			char *ctx = NULL;
1395			u32 len;
1396
1397			if (security_secid_to_secctx(osid, &ctx, &len)) {
1398				audit_log_format(ab, " osid=%u", osid);
1399				*call_panic = 1;
1400			} else {
1401				audit_log_format(ab, " obj=%s", ctx);
1402				security_release_secctx(ctx, len);
1403			}
1404		}
1405		if (context->ipc.has_perm) {
1406			audit_log_end(ab);
1407			ab = audit_log_start(context, GFP_KERNEL,
1408					     AUDIT_IPC_SET_PERM);
1409			if (unlikely(!ab))
1410				return;
1411			audit_log_format(ab,
1412				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1413				context->ipc.qbytes,
1414				context->ipc.perm_uid,
1415				context->ipc.perm_gid,
1416				context->ipc.perm_mode);
 
 
1417		}
1418		break; }
1419	case AUDIT_MQ_OPEN:
1420		audit_log_format(ab,
1421			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1422			"mq_msgsize=%ld mq_curmsgs=%ld",
1423			context->mq_open.oflag, context->mq_open.mode,
1424			context->mq_open.attr.mq_flags,
1425			context->mq_open.attr.mq_maxmsg,
1426			context->mq_open.attr.mq_msgsize,
1427			context->mq_open.attr.mq_curmsgs);
1428		break;
1429	case AUDIT_MQ_SENDRECV:
1430		audit_log_format(ab,
1431			"mqdes=%d msg_len=%zd msg_prio=%u "
1432			"abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1433			context->mq_sendrecv.mqdes,
1434			context->mq_sendrecv.msg_len,
1435			context->mq_sendrecv.msg_prio,
1436			(long long) context->mq_sendrecv.abs_timeout.tv_sec,
1437			context->mq_sendrecv.abs_timeout.tv_nsec);
1438		break;
1439	case AUDIT_MQ_NOTIFY:
1440		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1441				context->mq_notify.mqdes,
1442				context->mq_notify.sigev_signo);
1443		break;
1444	case AUDIT_MQ_GETSETATTR: {
1445		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1446
1447		audit_log_format(ab,
1448			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1449			"mq_curmsgs=%ld ",
1450			context->mq_getsetattr.mqdes,
1451			attr->mq_flags, attr->mq_maxmsg,
1452			attr->mq_msgsize, attr->mq_curmsgs);
1453		break; }
1454	case AUDIT_CAPSET:
1455		audit_log_format(ab, "pid=%d", context->capset.pid);
1456		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1457		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1458		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1459		audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1460		break;
1461	case AUDIT_MMAP:
1462		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1463				 context->mmap.flags);
1464		break;
1465	case AUDIT_OPENAT2:
1466		audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
1467				 context->openat2.flags,
1468				 context->openat2.mode,
1469				 context->openat2.resolve);
1470		break;
1471	case AUDIT_EXECVE:
1472		audit_log_execve_info(context, &ab);
1473		break;
1474	case AUDIT_KERN_MODULE:
1475		audit_log_format(ab, "name=");
1476		if (context->module.name) {
1477			audit_log_untrustedstring(ab, context->module.name);
1478		} else
1479			audit_log_format(ab, "(null)");
1480
1481		break;
1482	case AUDIT_TIME_ADJNTPVAL:
1483	case AUDIT_TIME_INJOFFSET:
1484		/* this call deviates from the rest, eating the buffer */
1485		audit_log_time(context, &ab);
1486		break;
1487	}
1488	audit_log_end(ab);
1489}
1490
1491static inline int audit_proctitle_rtrim(char *proctitle, int len)
1492{
1493	char *end = proctitle + len - 1;
1494
1495	while (end > proctitle && !isprint(*end))
1496		end--;
1497
1498	/* catch the case where proctitle is only 1 non-print character */
1499	len = end - proctitle + 1;
1500	len -= isprint(proctitle[len-1]) == 0;
1501	return len;
1502}
1503
1504/*
1505 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1506 * @context: audit_context for the task
1507 * @n: audit_names structure with reportable details
1508 * @path: optional path to report instead of audit_names->name
1509 * @record_num: record number to report when handling a list of names
1510 * @call_panic: optional pointer to int that will be updated if secid fails
1511 */
1512static void audit_log_name(struct audit_context *context, struct audit_names *n,
1513		    const struct path *path, int record_num, int *call_panic)
1514{
1515	struct audit_buffer *ab;
1516
1517	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1518	if (!ab)
1519		return;
1520
1521	audit_log_format(ab, "item=%d", record_num);
1522
1523	if (path)
1524		audit_log_d_path(ab, " name=", path);
1525	else if (n->name) {
1526		switch (n->name_len) {
1527		case AUDIT_NAME_FULL:
1528			/* log the full path */
1529			audit_log_format(ab, " name=");
1530			audit_log_untrustedstring(ab, n->name->name);
1531			break;
1532		case 0:
1533			/* name was specified as a relative path and the
1534			 * directory component is the cwd
1535			 */
1536			if (context->pwd.dentry && context->pwd.mnt)
1537				audit_log_d_path(ab, " name=", &context->pwd);
1538			else
1539				audit_log_format(ab, " name=(null)");
1540			break;
1541		default:
1542			/* log the name's directory component */
1543			audit_log_format(ab, " name=");
1544			audit_log_n_untrustedstring(ab, n->name->name,
1545						    n->name_len);
1546		}
1547	} else
1548		audit_log_format(ab, " name=(null)");
1549
1550	if (n->ino != AUDIT_INO_UNSET)
1551		audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
 
 
1552				 n->ino,
1553				 MAJOR(n->dev),
1554				 MINOR(n->dev),
1555				 n->mode,
1556				 from_kuid(&init_user_ns, n->uid),
1557				 from_kgid(&init_user_ns, n->gid),
1558				 MAJOR(n->rdev),
1559				 MINOR(n->rdev));
 
1560	if (n->osid != 0) {
1561		char *ctx = NULL;
1562		u32 len;
1563
1564		if (security_secid_to_secctx(
1565			n->osid, &ctx, &len)) {
1566			audit_log_format(ab, " osid=%u", n->osid);
1567			if (call_panic)
1568				*call_panic = 2;
1569		} else {
1570			audit_log_format(ab, " obj=%s", ctx);
1571			security_release_secctx(ctx, len);
1572		}
1573	}
1574
1575	/* log the audit_names record type */
1576	switch (n->type) {
1577	case AUDIT_TYPE_NORMAL:
1578		audit_log_format(ab, " nametype=NORMAL");
1579		break;
1580	case AUDIT_TYPE_PARENT:
1581		audit_log_format(ab, " nametype=PARENT");
1582		break;
1583	case AUDIT_TYPE_CHILD_DELETE:
1584		audit_log_format(ab, " nametype=DELETE");
1585		break;
1586	case AUDIT_TYPE_CHILD_CREATE:
1587		audit_log_format(ab, " nametype=CREATE");
1588		break;
1589	default:
1590		audit_log_format(ab, " nametype=UNKNOWN");
1591		break;
1592	}
1593
1594	audit_log_fcaps(ab, n);
1595	audit_log_end(ab);
1596}
1597
1598static void audit_log_proctitle(void)
1599{
1600	int res;
1601	char *buf;
1602	char *msg = "(null)";
1603	int len = strlen(msg);
1604	struct audit_context *context = audit_context();
1605	struct audit_buffer *ab;
1606
1607	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1608	if (!ab)
1609		return;	/* audit_panic or being filtered */
1610
1611	audit_log_format(ab, "proctitle=");
1612
1613	/* Not  cached */
1614	if (!context->proctitle.value) {
1615		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1616		if (!buf)
1617			goto out;
1618		/* Historically called this from procfs naming */
1619		res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1620		if (res == 0) {
1621			kfree(buf);
1622			goto out;
1623		}
1624		res = audit_proctitle_rtrim(buf, res);
1625		if (res == 0) {
1626			kfree(buf);
1627			goto out;
1628		}
1629		context->proctitle.value = buf;
1630		context->proctitle.len = res;
1631	}
1632	msg = context->proctitle.value;
1633	len = context->proctitle.len;
1634out:
1635	audit_log_n_untrustedstring(ab, msg, len);
1636	audit_log_end(ab);
1637}
1638
1639/**
1640 * audit_log_uring - generate a AUDIT_URINGOP record
1641 * @ctx: the audit context
1642 */
1643static void audit_log_uring(struct audit_context *ctx)
1644{
1645	struct audit_buffer *ab;
1646	const struct cred *cred;
1647
1648	ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
1649	if (!ab)
1650		return;
1651	cred = current_cred();
1652	audit_log_format(ab, "uring_op=%d", ctx->uring_op);
1653	if (ctx->return_valid != AUDITSC_INVALID)
1654		audit_log_format(ab, " success=%s exit=%ld",
1655				 (ctx->return_valid == AUDITSC_SUCCESS ?
1656				  "yes" : "no"),
1657				 ctx->return_code);
1658	audit_log_format(ab,
1659			 " items=%d"
1660			 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
1661			 " fsuid=%u egid=%u sgid=%u fsgid=%u",
1662			 ctx->name_count,
1663			 task_ppid_nr(current), task_tgid_nr(current),
1664			 from_kuid(&init_user_ns, cred->uid),
1665			 from_kgid(&init_user_ns, cred->gid),
1666			 from_kuid(&init_user_ns, cred->euid),
1667			 from_kuid(&init_user_ns, cred->suid),
1668			 from_kuid(&init_user_ns, cred->fsuid),
1669			 from_kgid(&init_user_ns, cred->egid),
1670			 from_kgid(&init_user_ns, cred->sgid),
1671			 from_kgid(&init_user_ns, cred->fsgid));
1672	audit_log_task_context(ab);
1673	audit_log_key(ab, ctx->filterkey);
1674	audit_log_end(ab);
1675}
1676
1677static void audit_log_exit(void)
1678{
1679	int i, call_panic = 0;
1680	struct audit_context *context = audit_context();
1681	struct audit_buffer *ab;
1682	struct audit_aux_data *aux;
 
1683	struct audit_names *n;
1684
1685	context->personality = current->personality;
 
 
 
 
 
 
 
 
 
 
 
 
 
1686
1687	switch (context->context) {
1688	case AUDIT_CTX_SYSCALL:
1689		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1690		if (!ab)
1691			return;
1692		audit_log_format(ab, "arch=%x syscall=%d",
1693				 context->arch, context->major);
1694		if (context->personality != PER_LINUX)
1695			audit_log_format(ab, " per=%lx", context->personality);
1696		if (context->return_valid != AUDITSC_INVALID)
1697			audit_log_format(ab, " success=%s exit=%ld",
1698					 (context->return_valid == AUDITSC_SUCCESS ?
1699					  "yes" : "no"),
1700					 context->return_code);
1701		audit_log_format(ab,
1702				 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1703				 context->argv[0],
1704				 context->argv[1],
1705				 context->argv[2],
1706				 context->argv[3],
1707				 context->name_count);
1708		audit_log_task_info(ab);
1709		audit_log_key(ab, context->filterkey);
1710		audit_log_end(ab);
1711		break;
1712	case AUDIT_CTX_URING:
1713		audit_log_uring(context);
1714		break;
1715	default:
1716		BUG();
1717		break;
1718	}
 
 
 
 
 
 
 
 
 
 
1719
1720	for (aux = context->aux; aux; aux = aux->next) {
1721
1722		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1723		if (!ab)
1724			continue; /* audit_panic has been called */
1725
1726		switch (aux->type) {
1727
 
 
 
 
 
1728		case AUDIT_BPRM_FCAPS: {
1729			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1730
1731			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1732			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1733			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1734			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1735			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1736			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1737			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1738			audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1739			audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1740			audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1741			audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1742			audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1743			audit_log_format(ab, " frootid=%d",
1744					 from_kuid(&init_user_ns,
1745						   axs->fcap.rootid));
1746			break; }
1747
1748		}
1749		audit_log_end(ab);
1750	}
1751
1752	if (context->type)
1753		show_special(context, &call_panic);
1754
1755	if (context->fds[0] >= 0) {
1756		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1757		if (ab) {
1758			audit_log_format(ab, "fd0=%d fd1=%d",
1759					context->fds[0], context->fds[1]);
1760			audit_log_end(ab);
1761		}
1762	}
1763
1764	if (context->sockaddr_len) {
1765		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1766		if (ab) {
1767			audit_log_format(ab, "saddr=");
1768			audit_log_n_hex(ab, (void *)context->sockaddr,
1769					context->sockaddr_len);
1770			audit_log_end(ab);
1771		}
1772	}
1773
1774	for (aux = context->aux_pids; aux; aux = aux->next) {
1775		struct audit_aux_data_pids *axs = (void *)aux;
1776
1777		for (i = 0; i < axs->pid_count; i++)
1778			if (audit_log_pid_context(context, axs->target_pid[i],
1779						  axs->target_auid[i],
1780						  axs->target_uid[i],
1781						  axs->target_sessionid[i],
1782						  axs->target_sid[i],
1783						  axs->target_comm[i]))
1784				call_panic = 1;
1785	}
1786
1787	if (context->target_pid &&
1788	    audit_log_pid_context(context, context->target_pid,
1789				  context->target_auid, context->target_uid,
1790				  context->target_sessionid,
1791				  context->target_sid, context->target_comm))
1792			call_panic = 1;
1793
1794	if (context->pwd.dentry && context->pwd.mnt) {
1795		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1796		if (ab) {
1797			audit_log_d_path(ab, "cwd=", &context->pwd);
1798			audit_log_end(ab);
1799		}
1800	}
1801
1802	i = 0;
1803	list_for_each_entry(n, &context->names_list, list) {
1804		if (n->hidden)
1805			continue;
1806		audit_log_name(context, n, NULL, i++, &call_panic);
1807	}
1808
1809	if (context->context == AUDIT_CTX_SYSCALL)
1810		audit_log_proctitle();
1811
1812	/* Send end of event record to help user space know we are finished */
1813	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1814	if (ab)
1815		audit_log_end(ab);
1816	if (call_panic)
1817		audit_panic("error in audit_log_exit()");
1818}
1819
1820/**
1821 * __audit_free - free a per-task audit context
1822 * @tsk: task whose audit context block to free
1823 *
1824 * Called from copy_process, do_exit, and the io_uring code
1825 */
1826void __audit_free(struct task_struct *tsk)
1827{
1828	struct audit_context *context = tsk->audit_context;
1829
 
1830	if (!context)
1831		return;
1832
1833	/* this may generate CONFIG_CHANGE records */
 
 
 
 
 
 
1834	if (!list_empty(&context->killed_trees))
1835		audit_kill_trees(context);
1836
1837	/* We are called either by do_exit() or the fork() error handling code;
1838	 * in the former case tsk == current and in the latter tsk is a
1839	 * random task_struct that doesn't have any meaningful data we
1840	 * need to log via audit_log_exit().
1841	 */
1842	if (tsk == current && !context->dummy) {
1843		context->return_valid = AUDITSC_INVALID;
1844		context->return_code = 0;
1845		if (context->context == AUDIT_CTX_SYSCALL) {
1846			audit_filter_syscall(tsk, context);
1847			audit_filter_inodes(tsk, context);
1848			if (context->current_state == AUDIT_STATE_RECORD)
1849				audit_log_exit();
1850		} else if (context->context == AUDIT_CTX_URING) {
1851			/* TODO: verify this case is real and valid */
1852			audit_filter_uring(tsk, context);
1853			audit_filter_inodes(tsk, context);
1854			if (context->current_state == AUDIT_STATE_RECORD)
1855				audit_log_uring(context);
1856		}
1857	}
1858
1859	audit_set_context(tsk, NULL);
1860	audit_free_context(context);
1861}
1862
1863/**
1864 * audit_return_fixup - fixup the return codes in the audit_context
1865 * @ctx: the audit_context
1866 * @success: true/false value to indicate if the operation succeeded or not
1867 * @code: operation return code
1868 *
1869 * We need to fixup the return code in the audit logs if the actual return
1870 * codes are later going to be fixed by the arch specific signal handlers.
1871 */
1872static void audit_return_fixup(struct audit_context *ctx,
1873			       int success, long code)
1874{
1875	/*
1876	 * This is actually a test for:
1877	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1878	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1879	 *
1880	 * but is faster than a bunch of ||
1881	 */
1882	if (unlikely(code <= -ERESTARTSYS) &&
1883	    (code >= -ERESTART_RESTARTBLOCK) &&
1884	    (code != -ENOIOCTLCMD))
1885		ctx->return_code = -EINTR;
1886	else
1887		ctx->return_code  = code;
1888	ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
1889}
1890
1891/**
1892 * __audit_uring_entry - prepare the kernel task's audit context for io_uring
1893 * @op: the io_uring opcode
1894 *
1895 * This is similar to audit_syscall_entry() but is intended for use by io_uring
1896 * operations.  This function should only ever be called from
1897 * audit_uring_entry() as we rely on the audit context checking present in that
1898 * function.
1899 */
1900void __audit_uring_entry(u8 op)
1901{
1902	struct audit_context *ctx = audit_context();
1903
1904	if (ctx->state == AUDIT_STATE_DISABLED)
1905		return;
1906
1907	/*
1908	 * NOTE: It's possible that we can be called from the process' context
1909	 *       before it returns to userspace, and before audit_syscall_exit()
1910	 *       is called.  In this case there is not much to do, just record
1911	 *       the io_uring details and return.
1912	 */
1913	ctx->uring_op = op;
1914	if (ctx->context == AUDIT_CTX_SYSCALL)
1915		return;
1916
1917	ctx->dummy = !audit_n_rules;
1918	if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
1919		ctx->prio = 0;
1920
1921	ctx->context = AUDIT_CTX_URING;
1922	ctx->current_state = ctx->state;
1923	ktime_get_coarse_real_ts64(&ctx->ctime);
1924}
1925
1926/**
1927 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring
1928 * @success: true/false value to indicate if the operation succeeded or not
1929 * @code: operation return code
1930 *
1931 * This is similar to audit_syscall_exit() but is intended for use by io_uring
1932 * operations.  This function should only ever be called from
1933 * audit_uring_exit() as we rely on the audit context checking present in that
1934 * function.
1935 */
1936void __audit_uring_exit(int success, long code)
1937{
1938	struct audit_context *ctx = audit_context();
1939
1940	if (ctx->dummy) {
1941		if (ctx->context != AUDIT_CTX_URING)
1942			return;
1943		goto out;
1944	}
1945
1946	audit_return_fixup(ctx, success, code);
1947	if (ctx->context == AUDIT_CTX_SYSCALL) {
1948		/*
1949		 * NOTE: See the note in __audit_uring_entry() about the case
1950		 *       where we may be called from process context before we
1951		 *       return to userspace via audit_syscall_exit().  In this
1952		 *       case we simply emit a URINGOP record and bail, the
1953		 *       normal syscall exit handling will take care of
1954		 *       everything else.
1955		 *       It is also worth mentioning that when we are called,
1956		 *       the current process creds may differ from the creds
1957		 *       used during the normal syscall processing; keep that
1958		 *       in mind if/when we move the record generation code.
1959		 */
1960
1961		/*
1962		 * We need to filter on the syscall info here to decide if we
1963		 * should emit a URINGOP record.  I know it seems odd but this
1964		 * solves the problem where users have a filter to block *all*
1965		 * syscall records in the "exit" filter; we want to preserve
1966		 * the behavior here.
1967		 */
1968		audit_filter_syscall(current, ctx);
1969		if (ctx->current_state != AUDIT_STATE_RECORD)
1970			audit_filter_uring(current, ctx);
1971		audit_filter_inodes(current, ctx);
1972		if (ctx->current_state != AUDIT_STATE_RECORD)
1973			return;
1974
1975		audit_log_uring(ctx);
1976		return;
1977	}
1978
1979	/* this may generate CONFIG_CHANGE records */
1980	if (!list_empty(&ctx->killed_trees))
1981		audit_kill_trees(ctx);
1982
1983	/* run through both filters to ensure we set the filterkey properly */
1984	audit_filter_uring(current, ctx);
1985	audit_filter_inodes(current, ctx);
1986	if (ctx->current_state != AUDIT_STATE_RECORD)
1987		goto out;
1988	audit_log_exit();
1989
1990out:
1991	audit_reset_context(ctx);
1992}
1993
1994/**
1995 * __audit_syscall_entry - fill in an audit record at syscall entry
1996 * @major: major syscall type (function)
1997 * @a1: additional syscall register 1
1998 * @a2: additional syscall register 2
1999 * @a3: additional syscall register 3
2000 * @a4: additional syscall register 4
2001 *
2002 * Fill in audit context at syscall entry.  This only happens if the
2003 * audit context was created when the task was created and the state or
2004 * filters demand the audit context be built.  If the state from the
2005 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
2006 * then the record will be written at syscall exit time (otherwise, it
2007 * will only be written if another part of the kernel requests that it
2008 * be written).
2009 */
2010void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
2011			   unsigned long a3, unsigned long a4)
 
2012{
2013	struct audit_context *context = audit_context();
 
2014	enum audit_state     state;
2015
2016	if (!audit_enabled || !context)
2017		return;
2018
2019	WARN_ON(context->context != AUDIT_CTX_UNUSED);
2020	WARN_ON(context->name_count);
2021	if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
2022		audit_panic("unrecoverable error in audit_syscall_entry()");
2023		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2024	}
 
2025
2026	state = context->state;
2027	if (state == AUDIT_STATE_DISABLED)
2028		return;
2029
2030	context->dummy = !audit_n_rules;
2031	if (!context->dummy && state == AUDIT_STATE_BUILD) {
2032		context->prio = 0;
2033		if (auditd_test_task(current))
2034			return;
2035	}
2036
2037	context->arch	    = syscall_get_arch(current);
2038	context->major      = major;
2039	context->argv[0]    = a1;
2040	context->argv[1]    = a2;
2041	context->argv[2]    = a3;
2042	context->argv[3]    = a4;
2043	context->context = AUDIT_CTX_SYSCALL;
 
 
 
 
 
 
 
 
 
 
 
 
2044	context->current_state  = state;
2045	ktime_get_coarse_real_ts64(&context->ctime);
2046}
2047
2048/**
2049 * __audit_syscall_exit - deallocate audit context after a system call
2050 * @success: success value of the syscall
2051 * @return_code: return value of the syscall
2052 *
2053 * Tear down after system call.  If the audit context has been marked as
2054 * auditable (either because of the AUDIT_STATE_RECORD state from
2055 * filtering, or because some other part of the kernel wrote an audit
2056 * message), then write out the syscall information.  In call cases,
2057 * free the names stored from getname().
2058 */
2059void __audit_syscall_exit(int success, long return_code)
2060{
2061	struct audit_context *context = audit_context();
 
2062
2063	if (!context || context->dummy ||
2064	    context->context != AUDIT_CTX_SYSCALL)
2065		goto out;
 
2066
2067	/* this may generate CONFIG_CHANGE records */
2068	if (!list_empty(&context->killed_trees))
2069		audit_kill_trees(context);
2070
2071	audit_return_fixup(context, success, return_code);
2072	/* run through both filters to ensure we set the filterkey properly */
2073	audit_filter_syscall(current, context);
2074	audit_filter_inodes(current, context);
2075	if (context->current_state != AUDIT_STATE_RECORD)
2076		goto out;
2077
2078	audit_log_exit();
 
2079
2080out:
2081	audit_reset_context(context);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2082}
2083
2084static inline void handle_one(const struct inode *inode)
2085{
 
2086	struct audit_context *context;
2087	struct audit_tree_refs *p;
2088	struct audit_chunk *chunk;
2089	int count;
2090
2091	if (likely(!inode->i_fsnotify_marks))
2092		return;
2093	context = audit_context();
2094	p = context->trees;
2095	count = context->tree_count;
2096	rcu_read_lock();
2097	chunk = audit_tree_lookup(inode);
2098	rcu_read_unlock();
2099	if (!chunk)
2100		return;
2101	if (likely(put_tree_ref(context, chunk)))
2102		return;
2103	if (unlikely(!grow_tree_refs(context))) {
2104		pr_warn("out of memory, audit has lost a tree reference\n");
2105		audit_set_auditable(context);
2106		audit_put_chunk(chunk);
2107		unroll_tree_refs(context, p, count);
2108		return;
2109	}
2110	put_tree_ref(context, chunk);
 
2111}
2112
2113static void handle_path(const struct dentry *dentry)
2114{
 
2115	struct audit_context *context;
2116	struct audit_tree_refs *p;
2117	const struct dentry *d, *parent;
2118	struct audit_chunk *drop;
2119	unsigned long seq;
2120	int count;
2121
2122	context = audit_context();
2123	p = context->trees;
2124	count = context->tree_count;
2125retry:
2126	drop = NULL;
2127	d = dentry;
2128	rcu_read_lock();
2129	seq = read_seqbegin(&rename_lock);
2130	for(;;) {
2131		struct inode *inode = d_backing_inode(d);
2132
2133		if (inode && unlikely(inode->i_fsnotify_marks)) {
2134			struct audit_chunk *chunk;
2135
2136			chunk = audit_tree_lookup(inode);
2137			if (chunk) {
2138				if (unlikely(!put_tree_ref(context, chunk))) {
2139					drop = chunk;
2140					break;
2141				}
2142			}
2143		}
2144		parent = d->d_parent;
2145		if (parent == d)
2146			break;
2147		d = parent;
2148	}
2149	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
2150		rcu_read_unlock();
2151		if (!drop) {
2152			/* just a race with rename */
2153			unroll_tree_refs(context, p, count);
2154			goto retry;
2155		}
2156		audit_put_chunk(drop);
2157		if (grow_tree_refs(context)) {
2158			/* OK, got more space */
2159			unroll_tree_refs(context, p, count);
2160			goto retry;
2161		}
2162		/* too bad */
2163		pr_warn("out of memory, audit has lost a tree reference\n");
 
2164		unroll_tree_refs(context, p, count);
2165		audit_set_auditable(context);
2166		return;
2167	}
2168	rcu_read_unlock();
 
2169}
2170
2171static struct audit_names *audit_alloc_name(struct audit_context *context,
2172						unsigned char type)
2173{
2174	struct audit_names *aname;
2175
2176	if (context->name_count < AUDIT_NAMES) {
2177		aname = &context->preallocated_names[context->name_count];
2178		memset(aname, 0, sizeof(*aname));
2179	} else {
2180		aname = kzalloc(sizeof(*aname), GFP_NOFS);
2181		if (!aname)
2182			return NULL;
2183		aname->should_free = true;
2184	}
2185
2186	aname->ino = AUDIT_INO_UNSET;
2187	aname->type = type;
2188	list_add_tail(&aname->list, &context->names_list);
2189
2190	context->name_count++;
2191	if (!context->pwd.dentry)
2192		get_fs_pwd(current->fs, &context->pwd);
 
2193	return aname;
2194}
2195
2196/**
2197 * __audit_reusename - fill out filename with info from existing entry
2198 * @uptr: userland ptr to pathname
2199 *
2200 * Search the audit_names list for the current audit context. If there is an
2201 * existing entry with a matching "uptr" then return the filename
2202 * associated with that audit_name. If not, return NULL.
2203 */
2204struct filename *
2205__audit_reusename(const __user char *uptr)
2206{
2207	struct audit_context *context = audit_context();
2208	struct audit_names *n;
2209
2210	list_for_each_entry(n, &context->names_list, list) {
2211		if (!n->name)
2212			continue;
2213		if (n->name->uptr == uptr) {
2214			n->name->refcnt++;
2215			return n->name;
2216		}
2217	}
2218	return NULL;
2219}
2220
2221/**
2222 * __audit_getname - add a name to the list
2223 * @name: name to add
2224 *
2225 * Add a name to the list of audit names for this context.
2226 * Called from fs/namei.c:getname().
2227 */
2228void __audit_getname(struct filename *name)
2229{
2230	struct audit_context *context = audit_context();
2231	struct audit_names *n;
2232
2233	if (context->context == AUDIT_CTX_UNUSED)
 
 
 
 
 
2234		return;
 
2235
2236	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2237	if (!n)
2238		return;
2239
2240	n->name = name;
2241	n->name_len = AUDIT_NAME_FULL;
2242	name->aname = n;
2243	name->refcnt++;
 
 
2244}
2245
2246static inline int audit_copy_fcaps(struct audit_names *name,
2247				   const struct dentry *dentry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2248{
2249	struct cpu_vfs_cap_data caps;
2250	int rc;
2251
2252	if (!dentry)
2253		return 0;
2254
2255	rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps);
2256	if (rc)
2257		return rc;
2258
2259	name->fcap.permitted = caps.permitted;
2260	name->fcap.inheritable = caps.inheritable;
2261	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2262	name->fcap.rootid = caps.rootid;
2263	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2264				VFS_CAP_REVISION_SHIFT;
2265
2266	return 0;
2267}
2268
 
2269/* Copy inode data into an audit_names. */
2270static void audit_copy_inode(struct audit_names *name,
2271			     const struct dentry *dentry,
2272			     struct inode *inode, unsigned int flags)
2273{
2274	name->ino   = inode->i_ino;
2275	name->dev   = inode->i_sb->s_dev;
2276	name->mode  = inode->i_mode;
2277	name->uid   = inode->i_uid;
2278	name->gid   = inode->i_gid;
2279	name->rdev  = inode->i_rdev;
2280	security_inode_getsecid(inode, &name->osid);
2281	if (flags & AUDIT_INODE_NOEVAL) {
2282		name->fcap_ver = -1;
2283		return;
2284	}
2285	audit_copy_fcaps(name, dentry);
2286}
2287
2288/**
2289 * __audit_inode - store the inode and device from a lookup
2290 * @name: name being audited
2291 * @dentry: dentry being audited
2292 * @flags: attributes for this particular entry
 
2293 */
2294void __audit_inode(struct filename *name, const struct dentry *dentry,
2295		   unsigned int flags)
2296{
2297	struct audit_context *context = audit_context();
2298	struct inode *inode = d_backing_inode(dentry);
2299	struct audit_names *n;
2300	bool parent = flags & AUDIT_INODE_PARENT;
2301	struct audit_entry *e;
2302	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2303	int i;
2304
2305	if (context->context == AUDIT_CTX_UNUSED)
2306		return;
2307
2308	rcu_read_lock();
2309	list_for_each_entry_rcu(e, list, list) {
2310		for (i = 0; i < e->rule.field_count; i++) {
2311			struct audit_field *f = &e->rule.fields[i];
2312
2313			if (f->type == AUDIT_FSTYPE
2314			    && audit_comparator(inode->i_sb->s_magic,
2315						f->op, f->val)
2316			    && e->rule.action == AUDIT_NEVER) {
2317				rcu_read_unlock();
2318				return;
2319			}
2320		}
2321	}
2322	rcu_read_unlock();
2323
2324	if (!name)
2325		goto out_alloc;
2326
2327	/*
2328	 * If we have a pointer to an audit_names entry already, then we can
2329	 * just use it directly if the type is correct.
2330	 */
2331	n = name->aname;
2332	if (n) {
2333		if (parent) {
2334			if (n->type == AUDIT_TYPE_PARENT ||
2335			    n->type == AUDIT_TYPE_UNKNOWN)
2336				goto out;
2337		} else {
2338			if (n->type != AUDIT_TYPE_PARENT)
2339				goto out;
2340		}
2341	}
2342
2343	list_for_each_entry_reverse(n, &context->names_list, list) {
2344		if (n->ino) {
2345			/* valid inode number, use that for the comparison */
2346			if (n->ino != inode->i_ino ||
2347			    n->dev != inode->i_sb->s_dev)
2348				continue;
2349		} else if (n->name) {
2350			/* inode number has not been set, check the name */
2351			if (strcmp(n->name->name, name->name))
2352				continue;
2353		} else
2354			/* no inode and no name (?!) ... this is odd ... */
2355			continue;
2356
2357		/* match the correct record type */
2358		if (parent) {
2359			if (n->type == AUDIT_TYPE_PARENT ||
2360			    n->type == AUDIT_TYPE_UNKNOWN)
2361				goto out;
2362		} else {
2363			if (n->type != AUDIT_TYPE_PARENT)
2364				goto out;
2365		}
2366	}
2367
2368out_alloc:
2369	/* unable to find an entry with both a matching name and type */
2370	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2371	if (!n)
2372		return;
2373	if (name) {
2374		n->name = name;
2375		name->refcnt++;
2376	}
2377
2378out:
2379	if (parent) {
2380		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2381		n->type = AUDIT_TYPE_PARENT;
2382		if (flags & AUDIT_INODE_HIDDEN)
2383			n->hidden = true;
2384	} else {
2385		n->name_len = AUDIT_NAME_FULL;
2386		n->type = AUDIT_TYPE_NORMAL;
2387	}
2388	handle_path(dentry);
2389	audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2390}
2391
2392void __audit_file(const struct file *file)
2393{
2394	__audit_inode(NULL, file->f_path.dentry, 0);
2395}
2396
2397/**
2398 * __audit_inode_child - collect inode info for created/removed objects
2399 * @parent: inode of dentry parent
2400 * @dentry: dentry being audited
2401 * @type:   AUDIT_TYPE_* value that we're looking for
2402 *
2403 * For syscalls that create or remove filesystem objects, audit_inode
2404 * can only collect information for the filesystem object's parent.
2405 * This call updates the audit context with the child's information.
2406 * Syscalls that create a new filesystem object must be hooked after
2407 * the object is created.  Syscalls that remove a filesystem object
2408 * must be hooked prior, in order to capture the target inode during
2409 * unsuccessful attempts.
2410 */
2411void __audit_inode_child(struct inode *parent,
2412			 const struct dentry *dentry,
2413			 const unsigned char type)
2414{
2415	struct audit_context *context = audit_context();
2416	struct inode *inode = d_backing_inode(dentry);
2417	const struct qstr *dname = &dentry->d_name;
2418	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2419	struct audit_entry *e;
2420	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2421	int i;
2422
2423	if (context->context == AUDIT_CTX_UNUSED)
2424		return;
2425
2426	rcu_read_lock();
2427	list_for_each_entry_rcu(e, list, list) {
2428		for (i = 0; i < e->rule.field_count; i++) {
2429			struct audit_field *f = &e->rule.fields[i];
2430
2431			if (f->type == AUDIT_FSTYPE
2432			    && audit_comparator(parent->i_sb->s_magic,
2433						f->op, f->val)
2434			    && e->rule.action == AUDIT_NEVER) {
2435				rcu_read_unlock();
2436				return;
2437			}
2438		}
2439	}
2440	rcu_read_unlock();
2441
2442	if (inode)
2443		handle_one(inode);
2444
2445	/* look for a parent entry first */
2446	list_for_each_entry(n, &context->names_list, list) {
2447		if (!n->name ||
2448		    (n->type != AUDIT_TYPE_PARENT &&
2449		     n->type != AUDIT_TYPE_UNKNOWN))
2450			continue;
2451
2452		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2453		    !audit_compare_dname_path(dname,
2454					      n->name->name, n->name_len)) {
2455			if (n->type == AUDIT_TYPE_UNKNOWN)
2456				n->type = AUDIT_TYPE_PARENT;
2457			found_parent = n;
2458			break;
2459		}
2460	}
2461
2462	/* is there a matching child entry? */
2463	list_for_each_entry(n, &context->names_list, list) {
2464		/* can only match entries that have a name */
2465		if (!n->name ||
2466		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2467			continue;
2468
2469		if (!strcmp(dname->name, n->name->name) ||
2470		    !audit_compare_dname_path(dname, n->name->name,
2471						found_parent ?
2472						found_parent->name_len :
2473						AUDIT_NAME_FULL)) {
2474			if (n->type == AUDIT_TYPE_UNKNOWN)
2475				n->type = type;
2476			found_child = n;
2477			break;
2478		}
2479	}
2480
 
2481	if (!found_parent) {
2482		/* create a new, "anonymous" parent record */
2483		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2484		if (!n)
2485			return;
2486		audit_copy_inode(n, NULL, parent, 0);
2487	}
2488
2489	if (!found_child) {
2490		found_child = audit_alloc_name(context, type);
2491		if (!found_child)
2492			return;
2493
2494		/* Re-use the name belonging to the slot for a matching parent
2495		 * directory. All names for this context are relinquished in
2496		 * audit_free_names() */
2497		if (found_parent) {
2498			found_child->name = found_parent->name;
2499			found_child->name_len = AUDIT_NAME_FULL;
2500			found_child->name->refcnt++;
 
2501		}
2502	}
2503
2504	if (inode)
2505		audit_copy_inode(found_child, dentry, inode, 0);
2506	else
2507		found_child->ino = AUDIT_INO_UNSET;
2508}
2509EXPORT_SYMBOL_GPL(__audit_inode_child);
2510
2511/**
2512 * auditsc_get_stamp - get local copies of audit_context values
2513 * @ctx: audit_context for the task
2514 * @t: timespec64 to store time recorded in the audit_context
2515 * @serial: serial value that is recorded in the audit_context
2516 *
2517 * Also sets the context as auditable.
2518 */
2519int auditsc_get_stamp(struct audit_context *ctx,
2520		       struct timespec64 *t, unsigned int *serial)
2521{
2522	if (ctx->context == AUDIT_CTX_UNUSED)
2523		return 0;
2524	if (!ctx->serial)
2525		ctx->serial = audit_serial();
2526	t->tv_sec  = ctx->ctime.tv_sec;
2527	t->tv_nsec = ctx->ctime.tv_nsec;
2528	*serial    = ctx->serial;
2529	if (!ctx->prio) {
2530		ctx->prio = 1;
2531		ctx->current_state = AUDIT_STATE_RECORD;
2532	}
2533	return 1;
2534}
2535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2536/**
2537 * __audit_mq_open - record audit data for a POSIX MQ open
2538 * @oflag: open flag
2539 * @mode: mode bits
2540 * @attr: queue attributes
2541 *
2542 */
2543void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2544{
2545	struct audit_context *context = audit_context();
2546
2547	if (attr)
2548		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2549	else
2550		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2551
2552	context->mq_open.oflag = oflag;
2553	context->mq_open.mode = mode;
2554
2555	context->type = AUDIT_MQ_OPEN;
2556}
2557
2558/**
2559 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2560 * @mqdes: MQ descriptor
2561 * @msg_len: Message length
2562 * @msg_prio: Message priority
2563 * @abs_timeout: Message timeout in absolute time
2564 *
2565 */
2566void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2567			const struct timespec64 *abs_timeout)
2568{
2569	struct audit_context *context = audit_context();
2570	struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2571
2572	if (abs_timeout)
2573		memcpy(p, abs_timeout, sizeof(*p));
2574	else
2575		memset(p, 0, sizeof(*p));
2576
2577	context->mq_sendrecv.mqdes = mqdes;
2578	context->mq_sendrecv.msg_len = msg_len;
2579	context->mq_sendrecv.msg_prio = msg_prio;
2580
2581	context->type = AUDIT_MQ_SENDRECV;
2582}
2583
2584/**
2585 * __audit_mq_notify - record audit data for a POSIX MQ notify
2586 * @mqdes: MQ descriptor
2587 * @notification: Notification event
2588 *
2589 */
2590
2591void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2592{
2593	struct audit_context *context = audit_context();
2594
2595	if (notification)
2596		context->mq_notify.sigev_signo = notification->sigev_signo;
2597	else
2598		context->mq_notify.sigev_signo = 0;
2599
2600	context->mq_notify.mqdes = mqdes;
2601	context->type = AUDIT_MQ_NOTIFY;
2602}
2603
2604/**
2605 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2606 * @mqdes: MQ descriptor
2607 * @mqstat: MQ flags
2608 *
2609 */
2610void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2611{
2612	struct audit_context *context = audit_context();
2613
2614	context->mq_getsetattr.mqdes = mqdes;
2615	context->mq_getsetattr.mqstat = *mqstat;
2616	context->type = AUDIT_MQ_GETSETATTR;
2617}
2618
2619/**
2620 * __audit_ipc_obj - record audit data for ipc object
2621 * @ipcp: ipc permissions
2622 *
2623 */
2624void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2625{
2626	struct audit_context *context = audit_context();
2627
2628	context->ipc.uid = ipcp->uid;
2629	context->ipc.gid = ipcp->gid;
2630	context->ipc.mode = ipcp->mode;
2631	context->ipc.has_perm = 0;
2632	security_ipc_getsecid(ipcp, &context->ipc.osid);
2633	context->type = AUDIT_IPC;
2634}
2635
2636/**
2637 * __audit_ipc_set_perm - record audit data for new ipc permissions
2638 * @qbytes: msgq bytes
2639 * @uid: msgq user id
2640 * @gid: msgq group id
2641 * @mode: msgq mode (permissions)
2642 *
2643 * Called only after audit_ipc_obj().
2644 */
2645void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2646{
2647	struct audit_context *context = audit_context();
2648
2649	context->ipc.qbytes = qbytes;
2650	context->ipc.perm_uid = uid;
2651	context->ipc.perm_gid = gid;
2652	context->ipc.perm_mode = mode;
2653	context->ipc.has_perm = 1;
2654}
2655
2656void __audit_bprm(struct linux_binprm *bprm)
2657{
2658	struct audit_context *context = audit_context();
 
 
 
 
 
2659
2660	context->type = AUDIT_EXECVE;
2661	context->execve.argc = bprm->argc;
 
 
 
 
 
2662}
2663
2664
2665/**
2666 * __audit_socketcall - record audit data for sys_socketcall
2667 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2668 * @args: args array
2669 *
2670 */
2671int __audit_socketcall(int nargs, unsigned long *args)
2672{
2673	struct audit_context *context = audit_context();
2674
2675	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2676		return -EINVAL;
2677	context->type = AUDIT_SOCKETCALL;
2678	context->socketcall.nargs = nargs;
2679	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2680	return 0;
2681}
2682
2683/**
2684 * __audit_fd_pair - record audit data for pipe and socketpair
2685 * @fd1: the first file descriptor
2686 * @fd2: the second file descriptor
2687 *
2688 */
2689void __audit_fd_pair(int fd1, int fd2)
2690{
2691	struct audit_context *context = audit_context();
2692
2693	context->fds[0] = fd1;
2694	context->fds[1] = fd2;
2695}
2696
2697/**
2698 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2699 * @len: data length in user space
2700 * @a: data address in kernel space
2701 *
2702 * Returns 0 for success or NULL context or < 0 on error.
2703 */
2704int __audit_sockaddr(int len, void *a)
2705{
2706	struct audit_context *context = audit_context();
2707
2708	if (!context->sockaddr) {
2709		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2710
2711		if (!p)
2712			return -ENOMEM;
2713		context->sockaddr = p;
2714	}
2715
2716	context->sockaddr_len = len;
2717	memcpy(context->sockaddr, a, len);
2718	return 0;
2719}
2720
2721void __audit_ptrace(struct task_struct *t)
2722{
2723	struct audit_context *context = audit_context();
2724
2725	context->target_pid = task_tgid_nr(t);
2726	context->target_auid = audit_get_loginuid(t);
2727	context->target_uid = task_uid(t);
2728	context->target_sessionid = audit_get_sessionid(t);
2729	security_task_getsecid_obj(t, &context->target_sid);
2730	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2731}
2732
2733/**
2734 * audit_signal_info_syscall - record signal info for syscalls
 
2735 * @t: task being signaled
2736 *
2737 * If the audit subsystem is being terminated, record the task (pid)
2738 * and uid that is doing that.
2739 */
2740int audit_signal_info_syscall(struct task_struct *t)
2741{
2742	struct audit_aux_data_pids *axp;
2743	struct audit_context *ctx = audit_context();
2744	kuid_t t_uid = task_uid(t);
2745
2746	if (!audit_signals || audit_dummy_context())
2747		return 0;
 
 
 
 
 
 
 
 
 
 
 
2748
2749	/* optimize the common case by putting first signal recipient directly
2750	 * in audit_context */
2751	if (!ctx->target_pid) {
2752		ctx->target_pid = task_tgid_nr(t);
2753		ctx->target_auid = audit_get_loginuid(t);
2754		ctx->target_uid = t_uid;
2755		ctx->target_sessionid = audit_get_sessionid(t);
2756		security_task_getsecid_obj(t, &ctx->target_sid);
2757		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2758		return 0;
2759	}
2760
2761	axp = (void *)ctx->aux_pids;
2762	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2763		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2764		if (!axp)
2765			return -ENOMEM;
2766
2767		axp->d.type = AUDIT_OBJ_PID;
2768		axp->d.next = ctx->aux_pids;
2769		ctx->aux_pids = (void *)axp;
2770	}
2771	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2772
2773	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2774	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2775	axp->target_uid[axp->pid_count] = t_uid;
2776	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2777	security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
2778	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2779	axp->pid_count++;
2780
2781	return 0;
2782}
2783
2784/**
2785 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2786 * @bprm: pointer to the bprm being processed
2787 * @new: the proposed new credentials
2788 * @old: the old credentials
2789 *
2790 * Simply check if the proc already has the caps given by the file and if not
2791 * store the priv escalation info for later auditing at the end of the syscall
2792 *
2793 * -Eric
2794 */
2795int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2796			   const struct cred *new, const struct cred *old)
2797{
2798	struct audit_aux_data_bprm_fcaps *ax;
2799	struct audit_context *context = audit_context();
2800	struct cpu_vfs_cap_data vcaps;
 
2801
2802	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2803	if (!ax)
2804		return -ENOMEM;
2805
2806	ax->d.type = AUDIT_BPRM_FCAPS;
2807	ax->d.next = context->aux;
2808	context->aux = (void *)ax;
2809
2810	get_vfs_caps_from_disk(&init_user_ns,
2811			       bprm->file->f_path.dentry, &vcaps);
 
2812
2813	ax->fcap.permitted = vcaps.permitted;
2814	ax->fcap.inheritable = vcaps.inheritable;
2815	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2816	ax->fcap.rootid = vcaps.rootid;
2817	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2818
2819	ax->old_pcap.permitted   = old->cap_permitted;
2820	ax->old_pcap.inheritable = old->cap_inheritable;
2821	ax->old_pcap.effective   = old->cap_effective;
2822	ax->old_pcap.ambient     = old->cap_ambient;
2823
2824	ax->new_pcap.permitted   = new->cap_permitted;
2825	ax->new_pcap.inheritable = new->cap_inheritable;
2826	ax->new_pcap.effective   = new->cap_effective;
2827	ax->new_pcap.ambient     = new->cap_ambient;
2828	return 0;
2829}
2830
2831/**
2832 * __audit_log_capset - store information about the arguments to the capset syscall
 
2833 * @new: the new credentials
2834 * @old: the old (current) credentials
2835 *
2836 * Record the arguments userspace sent to sys_capset for later printing by the
2837 * audit system if applicable
2838 */
2839void __audit_log_capset(const struct cred *new, const struct cred *old)
 
2840{
2841	struct audit_context *context = audit_context();
2842
2843	context->capset.pid = task_tgid_nr(current);
2844	context->capset.cap.effective   = new->cap_effective;
2845	context->capset.cap.inheritable = new->cap_effective;
2846	context->capset.cap.permitted   = new->cap_permitted;
2847	context->capset.cap.ambient     = new->cap_ambient;
2848	context->type = AUDIT_CAPSET;
2849}
2850
2851void __audit_mmap_fd(int fd, int flags)
2852{
2853	struct audit_context *context = audit_context();
2854
2855	context->mmap.fd = fd;
2856	context->mmap.flags = flags;
2857	context->type = AUDIT_MMAP;
2858}
2859
2860void __audit_openat2_how(struct open_how *how)
2861{
2862	struct audit_context *context = audit_context();
2863
2864	context->openat2.flags = how->flags;
2865	context->openat2.mode = how->mode;
2866	context->openat2.resolve = how->resolve;
2867	context->type = AUDIT_OPENAT2;
2868}
2869
2870void __audit_log_kern_module(char *name)
2871{
2872	struct audit_context *context = audit_context();
2873
2874	context->module.name = kstrdup(name, GFP_KERNEL);
2875	if (!context->module.name)
2876		audit_log_lost("out of memory in __audit_log_kern_module");
2877	context->type = AUDIT_KERN_MODULE;
2878}
2879
2880void __audit_fanotify(unsigned int response)
2881{
2882	audit_log(audit_context(), GFP_KERNEL,
2883		AUDIT_FANOTIFY,	"resp=%u", response);
2884}
2885
2886void __audit_tk_injoffset(struct timespec64 offset)
2887{
2888	struct audit_context *context = audit_context();
2889
2890	/* only set type if not already set by NTP */
2891	if (!context->type)
2892		context->type = AUDIT_TIME_INJOFFSET;
2893	memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
2894}
2895
2896void __audit_ntp_log(const struct audit_ntp_data *ad)
2897{
2898	struct audit_context *context = audit_context();
2899	int type;
2900
2901	for (type = 0; type < AUDIT_NTP_NVALS; type++)
2902		if (ad->vals[type].newval != ad->vals[type].oldval) {
2903			/* unconditionally set type, overwriting TK */
2904			context->type = AUDIT_TIME_ADJNTPVAL;
2905			memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2906			break;
2907		}
2908}
2909
2910void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2911		       enum audit_nfcfgop op, gfp_t gfp)
2912{
2913	struct audit_buffer *ab;
2914	char comm[sizeof(current->comm)];
2915
2916	ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2917	if (!ab)
2918		return;
2919	audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2920			 name, af, nentries, audit_nfcfgs[op].s);
2921
2922	audit_log_format(ab, " pid=%u", task_pid_nr(current));
2923	audit_log_task_context(ab); /* subj= */
2924	audit_log_format(ab, " comm=");
2925	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2926	audit_log_end(ab);
2927}
2928EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2929
2930static void audit_log_task(struct audit_buffer *ab)
2931{
2932	kuid_t auid, uid;
2933	kgid_t gid;
2934	unsigned int sessionid;
2935	char comm[sizeof(current->comm)];
2936
2937	auid = audit_get_loginuid(current);
2938	sessionid = audit_get_sessionid(current);
2939	current_uid_gid(&uid, &gid);
2940
2941	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2942			 from_kuid(&init_user_ns, auid),
2943			 from_kuid(&init_user_ns, uid),
2944			 from_kgid(&init_user_ns, gid),
2945			 sessionid);
2946	audit_log_task_context(ab);
2947	audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2948	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2949	audit_log_d_path_exe(ab, current->mm);
 
 
2950}
2951
2952/**
2953 * audit_core_dumps - record information about processes that end abnormally
2954 * @signr: signal value
2955 *
2956 * If a process ends with a core dump, something fishy is going on and we
2957 * should record the event for investigation.
2958 */
2959void audit_core_dumps(long signr)
2960{
2961	struct audit_buffer *ab;
2962
2963	if (!audit_enabled)
2964		return;
2965
2966	if (signr == SIGQUIT)	/* don't care for those */
2967		return;
2968
2969	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2970	if (unlikely(!ab))
2971		return;
2972	audit_log_task(ab);
2973	audit_log_format(ab, " sig=%ld res=1", signr);
2974	audit_log_end(ab);
2975}
2976
2977/**
2978 * audit_seccomp - record information about a seccomp action
2979 * @syscall: syscall number
2980 * @signr: signal value
2981 * @code: the seccomp action
2982 *
2983 * Record the information associated with a seccomp action. Event filtering for
2984 * seccomp actions that are not to be logged is done in seccomp_log().
2985 * Therefore, this function forces auditing independent of the audit_enabled
2986 * and dummy context state because seccomp actions should be logged even when
2987 * audit is not in use.
2988 */
2989void audit_seccomp(unsigned long syscall, long signr, int code)
2990{
2991	struct audit_buffer *ab;
2992
2993	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2994	if (unlikely(!ab))
2995		return;
2996	audit_log_task(ab);
2997	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2998			 signr, syscall_get_arch(current), syscall,
2999			 in_compat_syscall(), KSTK_EIP(current), code);
3000	audit_log_end(ab);
3001}
3002
3003void audit_seccomp_actions_logged(const char *names, const char *old_names,
3004				  int res)
3005{
3006	struct audit_buffer *ab;
3007
3008	if (!audit_enabled)
3009		return;
3010
3011	ab = audit_log_start(audit_context(), GFP_KERNEL,
3012			     AUDIT_CONFIG_CHANGE);
3013	if (unlikely(!ab))
3014		return;
3015
3016	audit_log_format(ab,
3017			 "op=seccomp-logging actions=%s old-actions=%s res=%d",
3018			 names, old_names, res);
3019	audit_log_end(ab);
3020}
3021
3022struct list_head *audit_killed_trees(void)
3023{
3024	struct audit_context *ctx = audit_context();
3025	if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
3026		return NULL;
3027	return &ctx->killed_trees;
3028}
v3.5.6
 
   1/* auditsc.c -- System-call auditing support
   2 * Handles all system-call specific auditing features.
   3 *
   4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   6 * Copyright (C) 2005, 2006 IBM Corporation
   7 * All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24 *
  25 * Many of the ideas implemented here are from Stephen C. Tweedie,
  26 * especially the idea of avoiding a copy by using getname.
  27 *
  28 * The method for actual interception of syscall entry and exit (not in
  29 * this file -- see entry.S) is based on a GPL'd patch written by
  30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31 *
  32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33 * 2006.
  34 *
  35 * The support of additional filter rules compares (>, <, >=, <=) was
  36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37 *
  38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39 * filesystem information.
  40 *
  41 * Subject and object context labeling support added by <danjones@us.ibm.com>
  42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43 */
  44
 
 
  45#include <linux/init.h>
  46#include <asm/types.h>
  47#include <linux/atomic.h>
  48#include <linux/fs.h>
  49#include <linux/namei.h>
  50#include <linux/mm.h>
  51#include <linux/export.h>
  52#include <linux/slab.h>
  53#include <linux/mount.h>
  54#include <linux/socket.h>
  55#include <linux/mqueue.h>
  56#include <linux/audit.h>
  57#include <linux/personality.h>
  58#include <linux/time.h>
  59#include <linux/netlink.h>
  60#include <linux/compiler.h>
  61#include <asm/unistd.h>
  62#include <linux/security.h>
  63#include <linux/list.h>
  64#include <linux/tty.h>
  65#include <linux/binfmts.h>
  66#include <linux/highmem.h>
  67#include <linux/syscalls.h>
 
  68#include <linux/capability.h>
  69#include <linux/fs_struct.h>
  70#include <linux/compat.h>
 
 
 
 
 
 
 
  71
  72#include "audit.h"
  73
  74/* flags stating the success for a syscall */
  75#define AUDITSC_INVALID 0
  76#define AUDITSC_SUCCESS 1
  77#define AUDITSC_FAILURE 2
  78
  79/* AUDIT_NAMES is the number of slots we reserve in the audit_context
  80 * for saving names from getname().  If we get more names we will allocate
  81 * a name dynamically and also add those to the list anchored by names_list. */
  82#define AUDIT_NAMES	5
  83
  84/* Indicates that audit should log the full pathname. */
  85#define AUDIT_NAME_FULL -1
  86
  87/* no execve audit message should be longer than this (userspace limits) */
  88#define MAX_EXECVE_AUDIT_LEN 7500
  89
  90/* number of audit rules */
  91int audit_n_rules;
  92
  93/* determines whether we collect data for signals sent */
  94int audit_signals;
  95
  96struct audit_cap_data {
  97	kernel_cap_t		permitted;
  98	kernel_cap_t		inheritable;
  99	union {
 100		unsigned int	fE;		/* effective bit of a file capability */
 101		kernel_cap_t	effective;	/* effective set of a process */
 102	};
 103};
 104
 105/* When fs/namei.c:getname() is called, we store the pointer in name and
 106 * we don't let putname() free it (instead we free all of the saved
 107 * pointers at syscall exit time).
 108 *
 109 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
 110struct audit_names {
 111	struct list_head list;		/* audit_context->names_list */
 112	const char	*name;
 113	unsigned long	ino;
 114	dev_t		dev;
 115	umode_t		mode;
 116	uid_t		uid;
 117	gid_t		gid;
 118	dev_t		rdev;
 119	u32		osid;
 120	struct audit_cap_data fcap;
 121	unsigned int	fcap_ver;
 122	int		name_len;	/* number of name's characters to log */
 123	bool		name_put;	/* call __putname() for this name */
 124	/*
 125	 * This was an allocated audit_names and not from the array of
 126	 * names allocated in the task audit context.  Thus this name
 127	 * should be freed on syscall exit
 128	 */
 129	bool		should_free;
 130};
 131
 132struct audit_aux_data {
 133	struct audit_aux_data	*next;
 134	int			type;
 135};
 136
 137#define AUDIT_AUX_IPCPERM	0
 138
 139/* Number of target pids per aux struct. */
 140#define AUDIT_AUX_PIDS	16
 141
 142struct audit_aux_data_execve {
 143	struct audit_aux_data	d;
 144	int argc;
 145	int envc;
 146	struct mm_struct *mm;
 147};
 148
 149struct audit_aux_data_pids {
 150	struct audit_aux_data	d;
 151	pid_t			target_pid[AUDIT_AUX_PIDS];
 152	uid_t			target_auid[AUDIT_AUX_PIDS];
 153	uid_t			target_uid[AUDIT_AUX_PIDS];
 154	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
 155	u32			target_sid[AUDIT_AUX_PIDS];
 156	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 157	int			pid_count;
 158};
 159
 160struct audit_aux_data_bprm_fcaps {
 161	struct audit_aux_data	d;
 162	struct audit_cap_data	fcap;
 163	unsigned int		fcap_ver;
 164	struct audit_cap_data	old_pcap;
 165	struct audit_cap_data	new_pcap;
 166};
 167
 168struct audit_aux_data_capset {
 169	struct audit_aux_data	d;
 170	pid_t			pid;
 171	struct audit_cap_data	cap;
 172};
 173
 174struct audit_tree_refs {
 175	struct audit_tree_refs *next;
 176	struct audit_chunk *c[31];
 177};
 178
 179/* The per-task audit context. */
 180struct audit_context {
 181	int		    dummy;	/* must be the first element */
 182	int		    in_syscall;	/* 1 if task is in a syscall */
 183	enum audit_state    state, current_state;
 184	unsigned int	    serial;     /* serial number for record */
 185	int		    major;      /* syscall number */
 186	struct timespec	    ctime;      /* time of syscall entry */
 187	unsigned long	    argv[4];    /* syscall arguments */
 188	long		    return_code;/* syscall return code */
 189	u64		    prio;
 190	int		    return_valid; /* return code is valid */
 191	/*
 192	 * The names_list is the list of all audit_names collected during this
 193	 * syscall.  The first AUDIT_NAMES entries in the names_list will
 194	 * actually be from the preallocated_names array for performance
 195	 * reasons.  Except during allocation they should never be referenced
 196	 * through the preallocated_names array and should only be found/used
 197	 * by running the names_list.
 198	 */
 199	struct audit_names  preallocated_names[AUDIT_NAMES];
 200	int		    name_count; /* total records in names_list */
 201	struct list_head    names_list;	/* anchor for struct audit_names->list */
 202	char *		    filterkey;	/* key for rule that triggered record */
 203	struct path	    pwd;
 204	struct audit_context *previous; /* For nested syscalls */
 205	struct audit_aux_data *aux;
 206	struct audit_aux_data *aux_pids;
 207	struct sockaddr_storage *sockaddr;
 208	size_t sockaddr_len;
 209				/* Save things to print about task_struct */
 210	pid_t		    pid, ppid;
 211	uid_t		    uid, euid, suid, fsuid;
 212	gid_t		    gid, egid, sgid, fsgid;
 213	unsigned long	    personality;
 214	int		    arch;
 215
 216	pid_t		    target_pid;
 217	uid_t		    target_auid;
 218	uid_t		    target_uid;
 219	unsigned int	    target_sessionid;
 220	u32		    target_sid;
 221	char		    target_comm[TASK_COMM_LEN];
 222
 223	struct audit_tree_refs *trees, *first_trees;
 224	struct list_head killed_trees;
 225	int tree_count;
 226
 227	int type;
 228	union {
 229		struct {
 230			int nargs;
 231			long args[6];
 232		} socketcall;
 233		struct {
 234			uid_t			uid;
 235			gid_t			gid;
 236			umode_t			mode;
 237			u32			osid;
 238			int			has_perm;
 239			uid_t			perm_uid;
 240			gid_t			perm_gid;
 241			umode_t			perm_mode;
 242			unsigned long		qbytes;
 243		} ipc;
 244		struct {
 245			mqd_t			mqdes;
 246			struct mq_attr 		mqstat;
 247		} mq_getsetattr;
 248		struct {
 249			mqd_t			mqdes;
 250			int			sigev_signo;
 251		} mq_notify;
 252		struct {
 253			mqd_t			mqdes;
 254			size_t			msg_len;
 255			unsigned int		msg_prio;
 256			struct timespec		abs_timeout;
 257		} mq_sendrecv;
 258		struct {
 259			int			oflag;
 260			umode_t			mode;
 261			struct mq_attr		attr;
 262		} mq_open;
 263		struct {
 264			pid_t			pid;
 265			struct audit_cap_data	cap;
 266		} capset;
 267		struct {
 268			int			fd;
 269			int			flags;
 270		} mmap;
 271	};
 272	int fds[2];
 273
 274#if AUDIT_DEBUG
 275	int		    put_count;
 276	int		    ino_count;
 277#endif
 278};
 279
 280static inline int open_arg(int flags, int mask)
 281{
 282	int n = ACC_MODE(flags);
 283	if (flags & (O_TRUNC | O_CREAT))
 284		n |= AUDIT_PERM_WRITE;
 285	return n & mask;
 286}
 287
 288static int audit_match_perm(struct audit_context *ctx, int mask)
 289{
 290	unsigned n;
 
 291	if (unlikely(!ctx))
 292		return 0;
 293	n = ctx->major;
 294
 295	switch (audit_classify_syscall(ctx->arch, n)) {
 296	case 0:	/* native */
 297		if ((mask & AUDIT_PERM_WRITE) &&
 298		     audit_match_class(AUDIT_CLASS_WRITE, n))
 299			return 1;
 300		if ((mask & AUDIT_PERM_READ) &&
 301		     audit_match_class(AUDIT_CLASS_READ, n))
 302			return 1;
 303		if ((mask & AUDIT_PERM_ATTR) &&
 304		     audit_match_class(AUDIT_CLASS_CHATTR, n))
 305			return 1;
 306		return 0;
 307	case 1: /* 32bit on biarch */
 308		if ((mask & AUDIT_PERM_WRITE) &&
 309		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 310			return 1;
 311		if ((mask & AUDIT_PERM_READ) &&
 312		     audit_match_class(AUDIT_CLASS_READ_32, n))
 313			return 1;
 314		if ((mask & AUDIT_PERM_ATTR) &&
 315		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 316			return 1;
 317		return 0;
 318	case 2: /* open */
 319		return mask & ACC_MODE(ctx->argv[1]);
 320	case 3: /* openat */
 321		return mask & ACC_MODE(ctx->argv[2]);
 322	case 4: /* socketcall */
 323		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 324	case 5: /* execve */
 325		return mask & AUDIT_PERM_EXEC;
 
 
 326	default:
 327		return 0;
 328	}
 329}
 330
 331static int audit_match_filetype(struct audit_context *ctx, int val)
 332{
 333	struct audit_names *n;
 334	umode_t mode = (umode_t)val;
 335
 336	if (unlikely(!ctx))
 337		return 0;
 338
 339	list_for_each_entry(n, &ctx->names_list, list) {
 340		if ((n->ino != -1) &&
 341		    ((n->mode & S_IFMT) == mode))
 342			return 1;
 343	}
 344
 345	return 0;
 346}
 347
 348/*
 349 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 350 * ->first_trees points to its beginning, ->trees - to the current end of data.
 351 * ->tree_count is the number of free entries in array pointed to by ->trees.
 352 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 353 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 354 * it's going to remain 1-element for almost any setup) until we free context itself.
 355 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 356 */
 357
 358#ifdef CONFIG_AUDIT_TREE
 359static void audit_set_auditable(struct audit_context *ctx)
 360{
 361	if (!ctx->prio) {
 362		ctx->prio = 1;
 363		ctx->current_state = AUDIT_RECORD_CONTEXT;
 364	}
 365}
 366
 367static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 368{
 369	struct audit_tree_refs *p = ctx->trees;
 370	int left = ctx->tree_count;
 
 371	if (likely(left)) {
 372		p->c[--left] = chunk;
 373		ctx->tree_count = left;
 374		return 1;
 375	}
 376	if (!p)
 377		return 0;
 378	p = p->next;
 379	if (p) {
 380		p->c[30] = chunk;
 381		ctx->trees = p;
 382		ctx->tree_count = 30;
 383		return 1;
 384	}
 385	return 0;
 386}
 387
 388static int grow_tree_refs(struct audit_context *ctx)
 389{
 390	struct audit_tree_refs *p = ctx->trees;
 
 391	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 392	if (!ctx->trees) {
 393		ctx->trees = p;
 394		return 0;
 395	}
 396	if (p)
 397		p->next = ctx->trees;
 398	else
 399		ctx->first_trees = ctx->trees;
 400	ctx->tree_count = 31;
 401	return 1;
 402}
 403#endif
 404
 405static void unroll_tree_refs(struct audit_context *ctx,
 406		      struct audit_tree_refs *p, int count)
 407{
 408#ifdef CONFIG_AUDIT_TREE
 409	struct audit_tree_refs *q;
 410	int n;
 
 411	if (!p) {
 412		/* we started with empty chain */
 413		p = ctx->first_trees;
 414		count = 31;
 415		/* if the very first allocation has failed, nothing to do */
 416		if (!p)
 417			return;
 418	}
 419	n = count;
 420	for (q = p; q != ctx->trees; q = q->next, n = 31) {
 421		while (n--) {
 422			audit_put_chunk(q->c[n]);
 423			q->c[n] = NULL;
 424		}
 425	}
 426	while (n-- > ctx->tree_count) {
 427		audit_put_chunk(q->c[n]);
 428		q->c[n] = NULL;
 429	}
 430	ctx->trees = p;
 431	ctx->tree_count = count;
 432#endif
 433}
 434
 435static void free_tree_refs(struct audit_context *ctx)
 436{
 437	struct audit_tree_refs *p, *q;
 
 438	for (p = ctx->first_trees; p; p = q) {
 439		q = p->next;
 440		kfree(p);
 441	}
 442}
 443
 444static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 445{
 446#ifdef CONFIG_AUDIT_TREE
 447	struct audit_tree_refs *p;
 448	int n;
 
 449	if (!tree)
 450		return 0;
 451	/* full ones */
 452	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 453		for (n = 0; n < 31; n++)
 454			if (audit_tree_match(p->c[n], tree))
 455				return 1;
 456	}
 457	/* partial */
 458	if (p) {
 459		for (n = ctx->tree_count; n < 31; n++)
 460			if (audit_tree_match(p->c[n], tree))
 461				return 1;
 462	}
 463#endif
 464	return 0;
 465}
 466
 467static int audit_compare_id(uid_t uid1,
 468			    struct audit_names *name,
 469			    unsigned long name_offset,
 470			    struct audit_field *f,
 471			    struct audit_context *ctx)
 472{
 473	struct audit_names *n;
 474	unsigned long addr;
 475	uid_t uid2;
 476	int rc;
 477
 478	BUILD_BUG_ON(sizeof(uid_t) != sizeof(gid_t));
 479
 480	if (name) {
 481		addr = (unsigned long)name;
 482		addr += name_offset;
 483
 484		uid2 = *(uid_t *)addr;
 485		rc = audit_comparator(uid1, f->op, uid2);
 486		if (rc)
 487			return rc;
 488	}
 489
 490	if (ctx) {
 491		list_for_each_entry(n, &ctx->names_list, list) {
 492			addr = (unsigned long)n;
 493			addr += name_offset;
 
 
 
 
 
 494
 495			uid2 = *(uid_t *)addr;
 
 
 
 
 
 
 496
 497			rc = audit_comparator(uid1, f->op, uid2);
 
 
 
 
 
 
 
 
 498			if (rc)
 499				return rc;
 500		}
 501	}
 502	return 0;
 503}
 504
 505static int audit_field_compare(struct task_struct *tsk,
 506			       const struct cred *cred,
 507			       struct audit_field *f,
 508			       struct audit_context *ctx,
 509			       struct audit_names *name)
 510{
 511	switch (f->val) {
 512	/* process to file object comparisons */
 513	case AUDIT_COMPARE_UID_TO_OBJ_UID:
 514		return audit_compare_id(cred->uid,
 515					name, offsetof(struct audit_names, uid),
 516					f, ctx);
 517	case AUDIT_COMPARE_GID_TO_OBJ_GID:
 518		return audit_compare_id(cred->gid,
 519					name, offsetof(struct audit_names, gid),
 520					f, ctx);
 521	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 522		return audit_compare_id(cred->euid,
 523					name, offsetof(struct audit_names, uid),
 524					f, ctx);
 525	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 526		return audit_compare_id(cred->egid,
 527					name, offsetof(struct audit_names, gid),
 528					f, ctx);
 529	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 530		return audit_compare_id(tsk->loginuid,
 531					name, offsetof(struct audit_names, uid),
 532					f, ctx);
 533	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 534		return audit_compare_id(cred->suid,
 535					name, offsetof(struct audit_names, uid),
 536					f, ctx);
 537	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 538		return audit_compare_id(cred->sgid,
 539					name, offsetof(struct audit_names, gid),
 540					f, ctx);
 541	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 542		return audit_compare_id(cred->fsuid,
 543					name, offsetof(struct audit_names, uid),
 544					f, ctx);
 545	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 546		return audit_compare_id(cred->fsgid,
 547					name, offsetof(struct audit_names, gid),
 548					f, ctx);
 549	/* uid comparisons */
 550	case AUDIT_COMPARE_UID_TO_AUID:
 551		return audit_comparator(cred->uid, f->op, tsk->loginuid);
 
 552	case AUDIT_COMPARE_UID_TO_EUID:
 553		return audit_comparator(cred->uid, f->op, cred->euid);
 554	case AUDIT_COMPARE_UID_TO_SUID:
 555		return audit_comparator(cred->uid, f->op, cred->suid);
 556	case AUDIT_COMPARE_UID_TO_FSUID:
 557		return audit_comparator(cred->uid, f->op, cred->fsuid);
 558	/* auid comparisons */
 559	case AUDIT_COMPARE_AUID_TO_EUID:
 560		return audit_comparator(tsk->loginuid, f->op, cred->euid);
 
 561	case AUDIT_COMPARE_AUID_TO_SUID:
 562		return audit_comparator(tsk->loginuid, f->op, cred->suid);
 
 563	case AUDIT_COMPARE_AUID_TO_FSUID:
 564		return audit_comparator(tsk->loginuid, f->op, cred->fsuid);
 
 565	/* euid comparisons */
 566	case AUDIT_COMPARE_EUID_TO_SUID:
 567		return audit_comparator(cred->euid, f->op, cred->suid);
 568	case AUDIT_COMPARE_EUID_TO_FSUID:
 569		return audit_comparator(cred->euid, f->op, cred->fsuid);
 570	/* suid comparisons */
 571	case AUDIT_COMPARE_SUID_TO_FSUID:
 572		return audit_comparator(cred->suid, f->op, cred->fsuid);
 573	/* gid comparisons */
 574	case AUDIT_COMPARE_GID_TO_EGID:
 575		return audit_comparator(cred->gid, f->op, cred->egid);
 576	case AUDIT_COMPARE_GID_TO_SGID:
 577		return audit_comparator(cred->gid, f->op, cred->sgid);
 578	case AUDIT_COMPARE_GID_TO_FSGID:
 579		return audit_comparator(cred->gid, f->op, cred->fsgid);
 580	/* egid comparisons */
 581	case AUDIT_COMPARE_EGID_TO_SGID:
 582		return audit_comparator(cred->egid, f->op, cred->sgid);
 583	case AUDIT_COMPARE_EGID_TO_FSGID:
 584		return audit_comparator(cred->egid, f->op, cred->fsgid);
 585	/* sgid comparison */
 586	case AUDIT_COMPARE_SGID_TO_FSGID:
 587		return audit_comparator(cred->sgid, f->op, cred->fsgid);
 588	default:
 589		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 590		return 0;
 591	}
 592	return 0;
 593}
 594
 595/* Determine if any context name data matches a rule's watch data */
 596/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 597 * otherwise.
 598 *
 599 * If task_creation is true, this is an explicit indication that we are
 600 * filtering a task rule at task creation time.  This and tsk == current are
 601 * the only situations where tsk->cred may be accessed without an rcu read lock.
 602 */
 603static int audit_filter_rules(struct task_struct *tsk,
 604			      struct audit_krule *rule,
 605			      struct audit_context *ctx,
 606			      struct audit_names *name,
 607			      enum audit_state *state,
 608			      bool task_creation)
 609{
 610	const struct cred *cred;
 611	int i, need_sid = 1;
 612	u32 sid;
 
 
 
 
 613
 614	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 615
 616	for (i = 0; i < rule->field_count; i++) {
 617		struct audit_field *f = &rule->fields[i];
 618		struct audit_names *n;
 619		int result = 0;
 
 620
 621		switch (f->type) {
 622		case AUDIT_PID:
 623			result = audit_comparator(tsk->pid, f->op, f->val);
 
 624			break;
 625		case AUDIT_PPID:
 626			if (ctx) {
 627				if (!ctx->ppid)
 628					ctx->ppid = sys_getppid();
 629				result = audit_comparator(ctx->ppid, f->op, f->val);
 630			}
 631			break;
 
 
 
 
 
 632		case AUDIT_UID:
 633			result = audit_comparator(cred->uid, f->op, f->val);
 634			break;
 635		case AUDIT_EUID:
 636			result = audit_comparator(cred->euid, f->op, f->val);
 637			break;
 638		case AUDIT_SUID:
 639			result = audit_comparator(cred->suid, f->op, f->val);
 640			break;
 641		case AUDIT_FSUID:
 642			result = audit_comparator(cred->fsuid, f->op, f->val);
 643			break;
 644		case AUDIT_GID:
 645			result = audit_comparator(cred->gid, f->op, f->val);
 
 
 
 
 
 
 
 646			break;
 647		case AUDIT_EGID:
 648			result = audit_comparator(cred->egid, f->op, f->val);
 
 
 
 
 
 
 
 649			break;
 650		case AUDIT_SGID:
 651			result = audit_comparator(cred->sgid, f->op, f->val);
 652			break;
 653		case AUDIT_FSGID:
 654			result = audit_comparator(cred->fsgid, f->op, f->val);
 
 
 
 
 655			break;
 656		case AUDIT_PERS:
 657			result = audit_comparator(tsk->personality, f->op, f->val);
 658			break;
 659		case AUDIT_ARCH:
 660			if (ctx)
 661				result = audit_comparator(ctx->arch, f->op, f->val);
 662			break;
 663
 664		case AUDIT_EXIT:
 665			if (ctx && ctx->return_valid)
 666				result = audit_comparator(ctx->return_code, f->op, f->val);
 667			break;
 668		case AUDIT_SUCCESS:
 669			if (ctx && ctx->return_valid) {
 670				if (f->val)
 671					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 672				else
 673					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 674			}
 675			break;
 676		case AUDIT_DEVMAJOR:
 677			if (name) {
 678				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 679				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 680					++result;
 681			} else if (ctx) {
 682				list_for_each_entry(n, &ctx->names_list, list) {
 683					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 684					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 685						++result;
 686						break;
 687					}
 688				}
 689			}
 690			break;
 691		case AUDIT_DEVMINOR:
 692			if (name) {
 693				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 694				    audit_comparator(MINOR(name->rdev), f->op, f->val))
 695					++result;
 696			} else if (ctx) {
 697				list_for_each_entry(n, &ctx->names_list, list) {
 698					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 699					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 700						++result;
 701						break;
 702					}
 703				}
 704			}
 705			break;
 706		case AUDIT_INODE:
 707			if (name)
 708				result = (name->ino == f->val);
 709			else if (ctx) {
 710				list_for_each_entry(n, &ctx->names_list, list) {
 711					if (audit_comparator(n->ino, f->op, f->val)) {
 712						++result;
 713						break;
 714					}
 715				}
 716			}
 717			break;
 718		case AUDIT_OBJ_UID:
 719			if (name) {
 720				result = audit_comparator(name->uid, f->op, f->val);
 721			} else if (ctx) {
 722				list_for_each_entry(n, &ctx->names_list, list) {
 723					if (audit_comparator(n->uid, f->op, f->val)) {
 724						++result;
 725						break;
 726					}
 727				}
 728			}
 729			break;
 730		case AUDIT_OBJ_GID:
 731			if (name) {
 732				result = audit_comparator(name->gid, f->op, f->val);
 733			} else if (ctx) {
 734				list_for_each_entry(n, &ctx->names_list, list) {
 735					if (audit_comparator(n->gid, f->op, f->val)) {
 736						++result;
 737						break;
 738					}
 739				}
 740			}
 741			break;
 742		case AUDIT_WATCH:
 743			if (name)
 744				result = audit_watch_compare(rule->watch, name->ino, name->dev);
 
 
 
 
 
 745			break;
 746		case AUDIT_DIR:
 747			if (ctx)
 748				result = match_tree_refs(ctx, rule->tree);
 
 
 
 749			break;
 750		case AUDIT_LOGINUID:
 751			result = 0;
 752			if (ctx)
 753				result = audit_comparator(tsk->loginuid, f->op, f->val);
 
 
 
 
 
 
 
 754			break;
 755		case AUDIT_SUBJ_USER:
 756		case AUDIT_SUBJ_ROLE:
 757		case AUDIT_SUBJ_TYPE:
 758		case AUDIT_SUBJ_SEN:
 759		case AUDIT_SUBJ_CLR:
 760			/* NOTE: this may return negative values indicating
 761			   a temporary error.  We simply treat this as a
 762			   match for now to avoid losing information that
 763			   may be wanted.   An error message will also be
 764			   logged upon error */
 765			if (f->lsm_rule) {
 766				if (need_sid) {
 767					security_task_getsecid(tsk, &sid);
 
 
 
 
 
 
 
 
 
 768					need_sid = 0;
 769				}
 770				result = security_audit_rule_match(sid, f->type,
 771				                                  f->op,
 772				                                  f->lsm_rule,
 773				                                  ctx);
 774			}
 775			break;
 776		case AUDIT_OBJ_USER:
 777		case AUDIT_OBJ_ROLE:
 778		case AUDIT_OBJ_TYPE:
 779		case AUDIT_OBJ_LEV_LOW:
 780		case AUDIT_OBJ_LEV_HIGH:
 781			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 782			   also applies here */
 783			if (f->lsm_rule) {
 784				/* Find files that match */
 785				if (name) {
 786					result = security_audit_rule_match(
 787					           name->osid, f->type, f->op,
 788					           f->lsm_rule, ctx);
 
 
 789				} else if (ctx) {
 790					list_for_each_entry(n, &ctx->names_list, list) {
 791						if (security_audit_rule_match(n->osid, f->type,
 792									      f->op, f->lsm_rule,
 793									      ctx)) {
 
 
 794							++result;
 795							break;
 796						}
 797					}
 798				}
 799				/* Find ipc objects that match */
 800				if (!ctx || ctx->type != AUDIT_IPC)
 801					break;
 802				if (security_audit_rule_match(ctx->ipc.osid,
 803							      f->type, f->op,
 804							      f->lsm_rule, ctx))
 805					++result;
 806			}
 807			break;
 808		case AUDIT_ARG0:
 809		case AUDIT_ARG1:
 810		case AUDIT_ARG2:
 811		case AUDIT_ARG3:
 812			if (ctx)
 813				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 814			break;
 815		case AUDIT_FILTERKEY:
 816			/* ignore this field for filtering */
 817			result = 1;
 818			break;
 819		case AUDIT_PERM:
 820			result = audit_match_perm(ctx, f->val);
 
 
 821			break;
 822		case AUDIT_FILETYPE:
 823			result = audit_match_filetype(ctx, f->val);
 
 
 824			break;
 825		case AUDIT_FIELD_COMPARE:
 826			result = audit_field_compare(tsk, cred, f, ctx, name);
 827			break;
 828		}
 829		if (!result)
 830			return 0;
 831	}
 832
 833	if (ctx) {
 834		if (rule->prio <= ctx->prio)
 835			return 0;
 836		if (rule->filterkey) {
 837			kfree(ctx->filterkey);
 838			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 839		}
 840		ctx->prio = rule->prio;
 841	}
 842	switch (rule->action) {
 843	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
 844	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
 
 
 
 
 845	}
 846	return 1;
 847}
 848
 849/* At process creation time, we can determine if system-call auditing is
 850 * completely disabled for this task.  Since we only have the task
 851 * structure at this point, we can only check uid and gid.
 852 */
 853static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 854{
 855	struct audit_entry *e;
 856	enum audit_state   state;
 857
 858	rcu_read_lock();
 859	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 860		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 861				       &state, true)) {
 862			if (state == AUDIT_RECORD_CONTEXT)
 863				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 864			rcu_read_unlock();
 865			return state;
 866		}
 867	}
 868	rcu_read_unlock();
 869	return AUDIT_BUILD_CONTEXT;
 870}
 871
 872/* At syscall entry and exit time, this filter is called if the
 873 * audit_state is not low enough that auditing cannot take place, but is
 874 * also not high enough that we already know we have to write an audit
 875 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 876 */
 877static enum audit_state audit_filter_syscall(struct task_struct *tsk,
 878					     struct audit_context *ctx,
 879					     struct list_head *list)
 
 
 880{
 881	struct audit_entry *e;
 882	enum audit_state state;
 883
 884	if (audit_pid && tsk->tgid == audit_pid)
 885		return AUDIT_DISABLED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 886
 887	rcu_read_lock();
 888	if (!list_empty(list)) {
 889		int word = AUDIT_WORD(ctx->major);
 890		int bit  = AUDIT_BIT(ctx->major);
 891
 892		list_for_each_entry_rcu(e, list, list) {
 893			if ((e->rule.mask[word] & bit) == bit &&
 894			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
 895					       &state, false)) {
 896				rcu_read_unlock();
 897				ctx->current_state = state;
 898				return state;
 899			}
 900		}
 901	}
 
 
 
 
 
 902	rcu_read_unlock();
 903	return AUDIT_BUILD_CONTEXT;
 904}
 905
 906/*
 907 * Given an audit_name check the inode hash table to see if they match.
 908 * Called holding the rcu read lock to protect the use of audit_inode_hash
 909 */
 910static int audit_filter_inode_name(struct task_struct *tsk,
 911				   struct audit_names *n,
 912				   struct audit_context *ctx) {
 913	int word, bit;
 914	int h = audit_hash_ino((u32)n->ino);
 915	struct list_head *list = &audit_inode_hash[h];
 916	struct audit_entry *e;
 917	enum audit_state state;
 918
 919	word = AUDIT_WORD(ctx->major);
 920	bit  = AUDIT_BIT(ctx->major);
 921
 922	if (list_empty(list))
 923		return 0;
 924
 925	list_for_each_entry_rcu(e, list, list) {
 926		if ((e->rule.mask[word] & bit) == bit &&
 927		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
 928			ctx->current_state = state;
 929			return 1;
 930		}
 931	}
 932
 933	return 0;
 934}
 935
 936/* At syscall exit time, this filter is called if any audit_names have been
 937 * collected during syscall processing.  We only check rules in sublists at hash
 938 * buckets applicable to the inode numbers in audit_names.
 939 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 940 */
 941void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 942{
 943	struct audit_names *n;
 944
 945	if (audit_pid && tsk->tgid == audit_pid)
 946		return;
 947
 948	rcu_read_lock();
 949
 950	list_for_each_entry(n, &ctx->names_list, list) {
 951		if (audit_filter_inode_name(tsk, n, ctx))
 952			break;
 953	}
 954	rcu_read_unlock();
 955}
 956
 957static inline struct audit_context *audit_get_context(struct task_struct *tsk,
 958						      int return_valid,
 959						      long return_code)
 960{
 961	struct audit_context *context = tsk->audit_context;
 
 
 
 962
 963	if (!context)
 964		return NULL;
 965	context->return_valid = return_valid;
 966
 967	/*
 968	 * we need to fix up the return code in the audit logs if the actual
 969	 * return codes are later going to be fixed up by the arch specific
 970	 * signal handlers
 971	 *
 972	 * This is actually a test for:
 973	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
 974	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
 975	 *
 976	 * but is faster than a bunch of ||
 977	 */
 978	if (unlikely(return_code <= -ERESTARTSYS) &&
 979	    (return_code >= -ERESTART_RESTARTBLOCK) &&
 980	    (return_code != -ENOIOCTLCMD))
 981		context->return_code = -EINTR;
 982	else
 983		context->return_code  = return_code;
 984
 985	if (context->in_syscall && !context->dummy) {
 986		audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
 987		audit_filter_inodes(tsk, context);
 988	}
 989
 990	tsk->audit_context = NULL;
 991	return context;
 992}
 993
 994static inline void audit_free_names(struct audit_context *context)
 995{
 996	struct audit_names *n, *next;
 997
 998#if AUDIT_DEBUG == 2
 999	if (context->put_count + context->ino_count != context->name_count) {
1000		printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1001		       " name_count=%d put_count=%d"
1002		       " ino_count=%d [NOT freeing]\n",
1003		       __FILE__, __LINE__,
1004		       context->serial, context->major, context->in_syscall,
1005		       context->name_count, context->put_count,
1006		       context->ino_count);
1007		list_for_each_entry(n, &context->names_list, list) {
1008			printk(KERN_ERR "names[%d] = %p = %s\n", i,
1009			       n->name, n->name ?: "(null)");
1010		}
1011		dump_stack();
1012		return;
1013	}
1014#endif
1015#if AUDIT_DEBUG
1016	context->put_count  = 0;
1017	context->ino_count  = 0;
1018#endif
1019
1020	list_for_each_entry_safe(n, next, &context->names_list, list) {
1021		list_del(&n->list);
1022		if (n->name && n->name_put)
1023			__putname(n->name);
1024		if (n->should_free)
1025			kfree(n);
1026	}
1027	context->name_count = 0;
1028	path_put(&context->pwd);
1029	context->pwd.dentry = NULL;
1030	context->pwd.mnt = NULL;
1031}
1032
1033static inline void audit_free_aux(struct audit_context *context)
1034{
1035	struct audit_aux_data *aux;
1036
1037	while ((aux = context->aux)) {
1038		context->aux = aux->next;
1039		kfree(aux);
1040	}
 
1041	while ((aux = context->aux_pids)) {
1042		context->aux_pids = aux->next;
1043		kfree(aux);
1044	}
 
1045}
1046
1047static inline void audit_zero_context(struct audit_context *context,
1048				      enum audit_state state)
 
 
 
 
 
 
 
 
1049{
1050	memset(context, 0, sizeof(*context));
1051	context->state      = state;
1052	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1053}
1054
1055static inline struct audit_context *audit_alloc_context(enum audit_state state)
1056{
1057	struct audit_context *context;
1058
1059	if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
 
1060		return NULL;
1061	audit_zero_context(context, state);
 
 
1062	INIT_LIST_HEAD(&context->killed_trees);
1063	INIT_LIST_HEAD(&context->names_list);
 
 
1064	return context;
1065}
1066
1067/**
1068 * audit_alloc - allocate an audit context block for a task
1069 * @tsk: task
1070 *
1071 * Filter on the task information and allocate a per-task audit context
1072 * if necessary.  Doing so turns on system call auditing for the
1073 * specified task.  This is called from copy_process, so no lock is
1074 * needed.
1075 */
1076int audit_alloc(struct task_struct *tsk)
1077{
1078	struct audit_context *context;
1079	enum audit_state     state;
1080	char *key = NULL;
1081
1082	if (likely(!audit_ever_enabled))
1083		return 0; /* Return if not auditing. */
1084
1085	state = audit_filter_task(tsk, &key);
1086	if (state == AUDIT_DISABLED)
 
1087		return 0;
 
1088
1089	if (!(context = audit_alloc_context(state))) {
1090		kfree(key);
1091		audit_log_lost("out of memory in audit_alloc");
1092		return -ENOMEM;
1093	}
1094	context->filterkey = key;
1095
1096	tsk->audit_context  = context;
1097	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1098	return 0;
1099}
1100
1101static inline void audit_free_context(struct audit_context *context)
1102{
1103	struct audit_context *previous;
1104	int		     count = 0;
1105
1106	do {
1107		previous = context->previous;
1108		if (previous || (count &&  count < 10)) {
1109			++count;
1110			printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
1111			       " freeing multiple contexts (%d)\n",
1112			       context->serial, context->major,
1113			       context->name_count, count);
1114		}
1115		audit_free_names(context);
1116		unroll_tree_refs(context, NULL, 0);
1117		free_tree_refs(context);
1118		audit_free_aux(context);
1119		kfree(context->filterkey);
1120		kfree(context->sockaddr);
1121		kfree(context);
1122		context  = previous;
1123	} while (context);
1124	if (count >= 10)
1125		printk(KERN_ERR "audit: freed %d contexts\n", count);
1126}
1127
1128void audit_log_task_context(struct audit_buffer *ab)
1129{
1130	char *ctx = NULL;
1131	unsigned len;
1132	int error;
1133	u32 sid;
1134
1135	security_task_getsecid(current, &sid);
1136	if (!sid)
1137		return;
1138
1139	error = security_secid_to_secctx(sid, &ctx, &len);
1140	if (error) {
1141		if (error != -EINVAL)
1142			goto error_path;
1143		return;
1144	}
1145
1146	audit_log_format(ab, " subj=%s", ctx);
1147	security_release_secctx(ctx, len);
1148	return;
1149
1150error_path:
1151	audit_panic("error in audit_log_task_context");
1152	return;
1153}
1154
1155EXPORT_SYMBOL(audit_log_task_context);
1156
1157static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1158{
1159	char name[sizeof(tsk->comm)];
1160	struct mm_struct *mm = tsk->mm;
1161	struct vm_area_struct *vma;
1162
1163	/* tsk == current */
1164
1165	get_task_comm(name, tsk);
1166	audit_log_format(ab, " comm=");
1167	audit_log_untrustedstring(ab, name);
1168
1169	if (mm) {
1170		down_read(&mm->mmap_sem);
1171		vma = mm->mmap;
1172		while (vma) {
1173			if ((vma->vm_flags & VM_EXECUTABLE) &&
1174			    vma->vm_file) {
1175				audit_log_d_path(ab, " exe=",
1176						 &vma->vm_file->f_path);
1177				break;
1178			}
1179			vma = vma->vm_next;
1180		}
1181		up_read(&mm->mmap_sem);
1182	}
1183	audit_log_task_context(ab);
1184}
1185
1186static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1187				 uid_t auid, uid_t uid, unsigned int sessionid,
1188				 u32 sid, char *comm)
1189{
1190	struct audit_buffer *ab;
1191	char *ctx = NULL;
1192	u32 len;
1193	int rc = 0;
1194
1195	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1196	if (!ab)
1197		return rc;
1198
1199	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1200			 uid, sessionid);
1201	if (security_secid_to_secctx(sid, &ctx, &len)) {
1202		audit_log_format(ab, " obj=(none)");
1203		rc = 1;
1204	} else {
1205		audit_log_format(ab, " obj=%s", ctx);
1206		security_release_secctx(ctx, len);
 
 
 
1207	}
1208	audit_log_format(ab, " ocomm=");
1209	audit_log_untrustedstring(ab, comm);
1210	audit_log_end(ab);
1211
1212	return rc;
1213}
1214
1215/*
1216 * to_send and len_sent accounting are very loose estimates.  We aren't
1217 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1218 * within about 500 bytes (next page boundary)
1219 *
1220 * why snprintf?  an int is up to 12 digits long.  if we just assumed when
1221 * logging that a[%d]= was going to be 16 characters long we would be wasting
1222 * space in every audit message.  In one 7500 byte message we can log up to
1223 * about 1000 min size arguments.  That comes down to about 50% waste of space
1224 * if we didn't do the snprintf to find out how long arg_num_len was.
1225 */
1226static int audit_log_single_execve_arg(struct audit_context *context,
1227					struct audit_buffer **ab,
1228					int arg_num,
1229					size_t *len_sent,
1230					const char __user *p,
1231					char *buf)
1232{
1233	char arg_num_len_buf[12];
1234	const char __user *tmp_p = p;
1235	/* how many digits are in arg_num? 5 is the length of ' a=""' */
1236	size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1237	size_t len, len_left, to_send;
1238	size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1239	unsigned int i, has_cntl = 0, too_long = 0;
1240	int ret;
1241
1242	/* strnlen_user includes the null we don't want to send */
1243	len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1244
1245	/*
1246	 * We just created this mm, if we can't find the strings
1247	 * we just copied into it something is _very_ wrong. Similar
1248	 * for strings that are too long, we should not have created
1249	 * any.
1250	 */
1251	if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1252		WARN_ON(1);
1253		send_sig(SIGKILL, current, 0);
1254		return -1;
1255	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1256
1257	/* walk the whole argument looking for non-ascii chars */
1258	do {
1259		if (len_left > MAX_EXECVE_AUDIT_LEN)
1260			to_send = MAX_EXECVE_AUDIT_LEN;
1261		else
1262			to_send = len_left;
1263		ret = copy_from_user(buf, tmp_p, to_send);
1264		/*
1265		 * There is no reason for this copy to be short. We just
1266		 * copied them here, and the mm hasn't been exposed to user-
1267		 * space yet.
1268		 */
1269		if (ret) {
1270			WARN_ON(1);
1271			send_sig(SIGKILL, current, 0);
1272			return -1;
1273		}
1274		buf[to_send] = '\0';
1275		has_cntl = audit_string_contains_control(buf, to_send);
1276		if (has_cntl) {
1277			/*
1278			 * hex messages get logged as 2 bytes, so we can only
1279			 * send half as much in each message
1280			 */
1281			max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1282			break;
1283		}
1284		len_left -= to_send;
1285		tmp_p += to_send;
1286	} while (len_left > 0);
1287
1288	len_left = len;
1289
1290	if (len > max_execve_audit_len)
1291		too_long = 1;
1292
1293	/* rewalk the argument actually logging the message */
1294	for (i = 0; len_left > 0; i++) {
1295		int room_left;
1296
1297		if (len_left > max_execve_audit_len)
1298			to_send = max_execve_audit_len;
1299		else
1300			to_send = len_left;
1301
1302		/* do we have space left to send this argument in this ab? */
1303		room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1304		if (has_cntl)
1305			room_left -= (to_send * 2);
1306		else
1307			room_left -= to_send;
1308		if (room_left < 0) {
1309			*len_sent = 0;
1310			audit_log_end(*ab);
1311			*ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1312			if (!*ab)
1313				return 0;
1314		}
1315
1316		/*
1317		 * first record needs to say how long the original string was
1318		 * so we can be sure nothing was lost.
1319		 */
1320		if ((i == 0) && (too_long))
1321			audit_log_format(*ab, " a%d_len=%zu", arg_num,
1322					 has_cntl ? 2*len : len);
 
 
 
 
 
 
 
1323
1324		/*
1325		 * normally arguments are small enough to fit and we already
1326		 * filled buf above when we checked for control characters
1327		 * so don't bother with another copy_from_user
1328		 */
1329		if (len >= max_execve_audit_len)
1330			ret = copy_from_user(buf, p, to_send);
1331		else
1332			ret = 0;
1333		if (ret) {
1334			WARN_ON(1);
1335			send_sig(SIGKILL, current, 0);
1336			return -1;
1337		}
1338		buf[to_send] = '\0';
1339
1340		/* actually log it */
1341		audit_log_format(*ab, " a%d", arg_num);
1342		if (too_long)
1343			audit_log_format(*ab, "[%d]", i);
1344		audit_log_format(*ab, "=");
1345		if (has_cntl)
1346			audit_log_n_hex(*ab, buf, to_send);
1347		else
1348			audit_log_string(*ab, buf);
1349
1350		p += to_send;
1351		len_left -= to_send;
1352		*len_sent += arg_num_len;
1353		if (has_cntl)
1354			*len_sent += to_send * 2;
1355		else
1356			*len_sent += to_send;
1357	}
1358	/* include the null we didn't log */
1359	return len + 1;
1360}
 
 
 
 
 
1361
1362static void audit_log_execve_info(struct audit_context *context,
1363				  struct audit_buffer **ab,
1364				  struct audit_aux_data_execve *axi)
1365{
1366	int i, len;
1367	size_t len_sent = 0;
1368	const char __user *p;
1369	char *buf;
 
1370
1371	if (axi->mm != current->mm)
1372		return; /* execve failed, no additional info */
1373
1374	p = (const char __user *)axi->mm->arg_start;
1375
1376	audit_log_format(*ab, "argc=%d", axi->argc);
1377
1378	/*
1379	 * we need some kernel buffer to hold the userspace args.  Just
1380	 * allocate one big one rather than allocating one of the right size
1381	 * for every single argument inside audit_log_single_execve_arg()
1382	 * should be <8k allocation so should be pretty safe.
1383	 */
1384	buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1385	if (!buf) {
1386		audit_panic("out of memory for argv string\n");
1387		return;
1388	}
1389
1390	for (i = 0; i < axi->argc; i++) {
1391		len = audit_log_single_execve_arg(context, ab, i,
1392						  &len_sent, p, buf);
1393		if (len <= 0)
1394			break;
1395		p += len;
1396	}
1397	kfree(buf);
1398}
1399
1400static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
 
1401{
1402	int i;
1403
 
 
 
 
1404	audit_log_format(ab, " %s=", prefix);
1405	CAP_FOR_EACH_U32(i) {
1406		audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1407	}
1408}
1409
1410static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1411{
1412	kernel_cap_t *perm = &name->fcap.permitted;
1413	kernel_cap_t *inh = &name->fcap.inheritable;
1414	int log = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1415
1416	if (!cap_isclear(*perm)) {
1417		audit_log_cap(ab, "cap_fp", perm);
1418		log = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1419	}
1420	if (!cap_isclear(*inh)) {
1421		audit_log_cap(ab, "cap_fi", inh);
1422		log = 1;
 
 
 
 
 
 
 
 
1423	}
1424
1425	if (log)
1426		audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1427}
1428
1429static void show_special(struct audit_context *context, int *call_panic)
1430{
1431	struct audit_buffer *ab;
1432	int i;
1433
1434	ab = audit_log_start(context, GFP_KERNEL, context->type);
1435	if (!ab)
1436		return;
1437
1438	switch (context->type) {
1439	case AUDIT_SOCKETCALL: {
1440		int nargs = context->socketcall.nargs;
 
1441		audit_log_format(ab, "nargs=%d", nargs);
1442		for (i = 0; i < nargs; i++)
1443			audit_log_format(ab, " a%d=%lx", i,
1444				context->socketcall.args[i]);
1445		break; }
1446	case AUDIT_IPC: {
1447		u32 osid = context->ipc.osid;
1448
1449		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1450			 context->ipc.uid, context->ipc.gid, context->ipc.mode);
 
 
1451		if (osid) {
1452			char *ctx = NULL;
1453			u32 len;
 
1454			if (security_secid_to_secctx(osid, &ctx, &len)) {
1455				audit_log_format(ab, " osid=%u", osid);
1456				*call_panic = 1;
1457			} else {
1458				audit_log_format(ab, " obj=%s", ctx);
1459				security_release_secctx(ctx, len);
1460			}
1461		}
1462		if (context->ipc.has_perm) {
1463			audit_log_end(ab);
1464			ab = audit_log_start(context, GFP_KERNEL,
1465					     AUDIT_IPC_SET_PERM);
 
 
1466			audit_log_format(ab,
1467				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1468				context->ipc.qbytes,
1469				context->ipc.perm_uid,
1470				context->ipc.perm_gid,
1471				context->ipc.perm_mode);
1472			if (!ab)
1473				return;
1474		}
1475		break; }
1476	case AUDIT_MQ_OPEN: {
1477		audit_log_format(ab,
1478			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1479			"mq_msgsize=%ld mq_curmsgs=%ld",
1480			context->mq_open.oflag, context->mq_open.mode,
1481			context->mq_open.attr.mq_flags,
1482			context->mq_open.attr.mq_maxmsg,
1483			context->mq_open.attr.mq_msgsize,
1484			context->mq_open.attr.mq_curmsgs);
1485		break; }
1486	case AUDIT_MQ_SENDRECV: {
1487		audit_log_format(ab,
1488			"mqdes=%d msg_len=%zd msg_prio=%u "
1489			"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1490			context->mq_sendrecv.mqdes,
1491			context->mq_sendrecv.msg_len,
1492			context->mq_sendrecv.msg_prio,
1493			context->mq_sendrecv.abs_timeout.tv_sec,
1494			context->mq_sendrecv.abs_timeout.tv_nsec);
1495		break; }
1496	case AUDIT_MQ_NOTIFY: {
1497		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1498				context->mq_notify.mqdes,
1499				context->mq_notify.sigev_signo);
1500		break; }
1501	case AUDIT_MQ_GETSETATTR: {
1502		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
 
1503		audit_log_format(ab,
1504			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1505			"mq_curmsgs=%ld ",
1506			context->mq_getsetattr.mqdes,
1507			attr->mq_flags, attr->mq_maxmsg,
1508			attr->mq_msgsize, attr->mq_curmsgs);
1509		break; }
1510	case AUDIT_CAPSET: {
1511		audit_log_format(ab, "pid=%d", context->capset.pid);
1512		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1513		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1514		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1515		break; }
1516	case AUDIT_MMAP: {
 
1517		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1518				 context->mmap.flags);
1519		break; }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1520	}
1521	audit_log_end(ab);
1522}
1523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1524static void audit_log_name(struct audit_context *context, struct audit_names *n,
1525			   int record_num, int *call_panic)
1526{
1527	struct audit_buffer *ab;
 
1528	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1529	if (!ab)
1530		return; /* audit_panic has been called */
1531
1532	audit_log_format(ab, "item=%d", record_num);
1533
1534	if (n->name) {
 
 
1535		switch (n->name_len) {
1536		case AUDIT_NAME_FULL:
1537			/* log the full path */
1538			audit_log_format(ab, " name=");
1539			audit_log_untrustedstring(ab, n->name);
1540			break;
1541		case 0:
1542			/* name was specified as a relative path and the
1543			 * directory component is the cwd */
1544			audit_log_d_path(ab, " name=", &context->pwd);
 
 
 
 
1545			break;
1546		default:
1547			/* log the name's directory component */
1548			audit_log_format(ab, " name=");
1549			audit_log_n_untrustedstring(ab, n->name,
1550						    n->name_len);
1551		}
1552	} else
1553		audit_log_format(ab, " name=(null)");
1554
1555	if (n->ino != (unsigned long)-1) {
1556		audit_log_format(ab, " inode=%lu"
1557				 " dev=%02x:%02x mode=%#ho"
1558				 " ouid=%u ogid=%u rdev=%02x:%02x",
1559				 n->ino,
1560				 MAJOR(n->dev),
1561				 MINOR(n->dev),
1562				 n->mode,
1563				 n->uid,
1564				 n->gid,
1565				 MAJOR(n->rdev),
1566				 MINOR(n->rdev));
1567	}
1568	if (n->osid != 0) {
1569		char *ctx = NULL;
1570		u32 len;
 
1571		if (security_secid_to_secctx(
1572			n->osid, &ctx, &len)) {
1573			audit_log_format(ab, " osid=%u", n->osid);
1574			*call_panic = 2;
 
1575		} else {
1576			audit_log_format(ab, " obj=%s", ctx);
1577			security_release_secctx(ctx, len);
1578		}
1579	}
1580
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1581	audit_log_fcaps(ab, n);
 
 
 
 
 
 
 
 
 
 
 
1582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1583	audit_log_end(ab);
1584}
1585
1586static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
 
 
 
 
1587{
 
1588	const struct cred *cred;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1589	int i, call_panic = 0;
 
1590	struct audit_buffer *ab;
1591	struct audit_aux_data *aux;
1592	const char *tty;
1593	struct audit_names *n;
1594
1595	/* tsk == current */
1596	context->pid = tsk->pid;
1597	if (!context->ppid)
1598		context->ppid = sys_getppid();
1599	cred = current_cred();
1600	context->uid   = cred->uid;
1601	context->gid   = cred->gid;
1602	context->euid  = cred->euid;
1603	context->suid  = cred->suid;
1604	context->fsuid = cred->fsuid;
1605	context->egid  = cred->egid;
1606	context->sgid  = cred->sgid;
1607	context->fsgid = cred->fsgid;
1608	context->personality = tsk->personality;
1609
1610	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1611	if (!ab)
1612		return;		/* audit_panic has been called */
1613	audit_log_format(ab, "arch=%x syscall=%d",
1614			 context->arch, context->major);
1615	if (context->personality != PER_LINUX)
1616		audit_log_format(ab, " per=%lx", context->personality);
1617	if (context->return_valid)
1618		audit_log_format(ab, " success=%s exit=%ld",
1619				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1620				 context->return_code);
1621
1622	spin_lock_irq(&tsk->sighand->siglock);
1623	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1624		tty = tsk->signal->tty->name;
1625	else
1626		tty = "(none)";
1627	spin_unlock_irq(&tsk->sighand->siglock);
1628
1629	audit_log_format(ab,
1630		  " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1631		  " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1632		  " euid=%u suid=%u fsuid=%u"
1633		  " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1634		  context->argv[0],
1635		  context->argv[1],
1636		  context->argv[2],
1637		  context->argv[3],
1638		  context->name_count,
1639		  context->ppid,
1640		  context->pid,
1641		  tsk->loginuid,
1642		  context->uid,
1643		  context->gid,
1644		  context->euid, context->suid, context->fsuid,
1645		  context->egid, context->sgid, context->fsgid, tty,
1646		  tsk->sessionid);
1647
1648
1649	audit_log_task_info(ab, tsk);
1650	audit_log_key(ab, context->filterkey);
1651	audit_log_end(ab);
1652
1653	for (aux = context->aux; aux; aux = aux->next) {
1654
1655		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1656		if (!ab)
1657			continue; /* audit_panic has been called */
1658
1659		switch (aux->type) {
1660
1661		case AUDIT_EXECVE: {
1662			struct audit_aux_data_execve *axi = (void *)aux;
1663			audit_log_execve_info(context, &ab, axi);
1664			break; }
1665
1666		case AUDIT_BPRM_FCAPS: {
1667			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
 
1668			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1669			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1670			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1671			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1672			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1673			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1674			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1675			audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1676			audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1677			audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
 
 
 
 
 
1678			break; }
1679
1680		}
1681		audit_log_end(ab);
1682	}
1683
1684	if (context->type)
1685		show_special(context, &call_panic);
1686
1687	if (context->fds[0] >= 0) {
1688		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1689		if (ab) {
1690			audit_log_format(ab, "fd0=%d fd1=%d",
1691					context->fds[0], context->fds[1]);
1692			audit_log_end(ab);
1693		}
1694	}
1695
1696	if (context->sockaddr_len) {
1697		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1698		if (ab) {
1699			audit_log_format(ab, "saddr=");
1700			audit_log_n_hex(ab, (void *)context->sockaddr,
1701					context->sockaddr_len);
1702			audit_log_end(ab);
1703		}
1704	}
1705
1706	for (aux = context->aux_pids; aux; aux = aux->next) {
1707		struct audit_aux_data_pids *axs = (void *)aux;
1708
1709		for (i = 0; i < axs->pid_count; i++)
1710			if (audit_log_pid_context(context, axs->target_pid[i],
1711						  axs->target_auid[i],
1712						  axs->target_uid[i],
1713						  axs->target_sessionid[i],
1714						  axs->target_sid[i],
1715						  axs->target_comm[i]))
1716				call_panic = 1;
1717	}
1718
1719	if (context->target_pid &&
1720	    audit_log_pid_context(context, context->target_pid,
1721				  context->target_auid, context->target_uid,
1722				  context->target_sessionid,
1723				  context->target_sid, context->target_comm))
1724			call_panic = 1;
1725
1726	if (context->pwd.dentry && context->pwd.mnt) {
1727		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1728		if (ab) {
1729			audit_log_d_path(ab, " cwd=", &context->pwd);
1730			audit_log_end(ab);
1731		}
1732	}
1733
1734	i = 0;
1735	list_for_each_entry(n, &context->names_list, list)
1736		audit_log_name(context, n, i++, &call_panic);
 
 
 
 
 
 
1737
1738	/* Send end of event record to help user space know we are finished */
1739	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1740	if (ab)
1741		audit_log_end(ab);
1742	if (call_panic)
1743		audit_panic("error converting sid to string");
1744}
1745
1746/**
1747 * audit_free - free a per-task audit context
1748 * @tsk: task whose audit context block to free
1749 *
1750 * Called from copy_process and do_exit
1751 */
1752void __audit_free(struct task_struct *tsk)
1753{
1754	struct audit_context *context;
1755
1756	context = audit_get_context(tsk, 0, 0);
1757	if (!context)
1758		return;
1759
1760	/* Check for system calls that do not go through the exit
1761	 * function (e.g., exit_group), then free context block.
1762	 * We use GFP_ATOMIC here because we might be doing this
1763	 * in the context of the idle thread */
1764	/* that can happen only if we are called from do_exit() */
1765	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1766		audit_log_exit(context, tsk);
1767	if (!list_empty(&context->killed_trees))
1768		audit_kill_trees(&context->killed_trees);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1769
 
1770	audit_free_context(context);
1771}
1772
1773/**
1774 * audit_syscall_entry - fill in an audit record at syscall entry
1775 * @arch: architecture type
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1776 * @major: major syscall type (function)
1777 * @a1: additional syscall register 1
1778 * @a2: additional syscall register 2
1779 * @a3: additional syscall register 3
1780 * @a4: additional syscall register 4
1781 *
1782 * Fill in audit context at syscall entry.  This only happens if the
1783 * audit context was created when the task was created and the state or
1784 * filters demand the audit context be built.  If the state from the
1785 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1786 * then the record will be written at syscall exit time (otherwise, it
1787 * will only be written if another part of the kernel requests that it
1788 * be written).
1789 */
1790void __audit_syscall_entry(int arch, int major,
1791			 unsigned long a1, unsigned long a2,
1792			 unsigned long a3, unsigned long a4)
1793{
1794	struct task_struct *tsk = current;
1795	struct audit_context *context = tsk->audit_context;
1796	enum audit_state     state;
1797
1798	if (!context)
1799		return;
1800
1801	/*
1802	 * This happens only on certain architectures that make system
1803	 * calls in kernel_thread via the entry.S interface, instead of
1804	 * with direct calls.  (If you are porting to a new
1805	 * architecture, hitting this condition can indicate that you
1806	 * got the _exit/_leave calls backward in entry.S.)
1807	 *
1808	 * i386     no
1809	 * x86_64   no
1810	 * ppc64    yes (see arch/powerpc/platforms/iseries/misc.S)
1811	 *
1812	 * This also happens with vm86 emulation in a non-nested manner
1813	 * (entries without exits), so this case must be caught.
1814	 */
1815	if (context->in_syscall) {
1816		struct audit_context *newctx;
1817
1818#if AUDIT_DEBUG
1819		printk(KERN_ERR
1820		       "audit(:%d) pid=%d in syscall=%d;"
1821		       " entering syscall=%d\n",
1822		       context->serial, tsk->pid, context->major, major);
1823#endif
1824		newctx = audit_alloc_context(context->state);
1825		if (newctx) {
1826			newctx->previous   = context;
1827			context		   = newctx;
1828			tsk->audit_context = newctx;
1829		} else	{
1830			/* If we can't alloc a new context, the best we
1831			 * can do is to leak memory (any pending putname
1832			 * will be lost).  The only other alternative is
1833			 * to abandon auditing. */
1834			audit_zero_context(context, context->state);
1835		}
1836	}
1837	BUG_ON(context->in_syscall || context->name_count);
1838
1839	if (!audit_enabled)
 
1840		return;
1841
1842	context->arch	    = arch;
 
 
 
 
 
 
 
1843	context->major      = major;
1844	context->argv[0]    = a1;
1845	context->argv[1]    = a2;
1846	context->argv[2]    = a3;
1847	context->argv[3]    = a4;
1848
1849	state = context->state;
1850	context->dummy = !audit_n_rules;
1851	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1852		context->prio = 0;
1853		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1854	}
1855	if (state == AUDIT_DISABLED)
1856		return;
1857
1858	context->serial     = 0;
1859	context->ctime      = CURRENT_TIME;
1860	context->in_syscall = 1;
1861	context->current_state  = state;
1862	context->ppid       = 0;
1863}
1864
1865/**
1866 * audit_syscall_exit - deallocate audit context after a system call
1867 * @success: success value of the syscall
1868 * @return_code: return value of the syscall
1869 *
1870 * Tear down after system call.  If the audit context has been marked as
1871 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1872 * filtering, or because some other part of the kernel wrote an audit
1873 * message), then write out the syscall information.  In call cases,
1874 * free the names stored from getname().
1875 */
1876void __audit_syscall_exit(int success, long return_code)
1877{
1878	struct task_struct *tsk = current;
1879	struct audit_context *context;
1880
1881	if (success)
1882		success = AUDITSC_SUCCESS;
1883	else
1884		success = AUDITSC_FAILURE;
1885
1886	context = audit_get_context(tsk, success, return_code);
1887	if (!context)
1888		return;
1889
1890	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1891		audit_log_exit(context, tsk);
 
 
 
 
1892
1893	context->in_syscall = 0;
1894	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1895
1896	if (!list_empty(&context->killed_trees))
1897		audit_kill_trees(&context->killed_trees);
1898
1899	if (context->previous) {
1900		struct audit_context *new_context = context->previous;
1901		context->previous  = NULL;
1902		audit_free_context(context);
1903		tsk->audit_context = new_context;
1904	} else {
1905		audit_free_names(context);
1906		unroll_tree_refs(context, NULL, 0);
1907		audit_free_aux(context);
1908		context->aux = NULL;
1909		context->aux_pids = NULL;
1910		context->target_pid = 0;
1911		context->target_sid = 0;
1912		context->sockaddr_len = 0;
1913		context->type = 0;
1914		context->fds[0] = -1;
1915		if (context->state != AUDIT_RECORD_CONTEXT) {
1916			kfree(context->filterkey);
1917			context->filterkey = NULL;
1918		}
1919		tsk->audit_context = context;
1920	}
1921}
1922
1923static inline void handle_one(const struct inode *inode)
1924{
1925#ifdef CONFIG_AUDIT_TREE
1926	struct audit_context *context;
1927	struct audit_tree_refs *p;
1928	struct audit_chunk *chunk;
1929	int count;
1930	if (likely(hlist_empty(&inode->i_fsnotify_marks)))
 
1931		return;
1932	context = current->audit_context;
1933	p = context->trees;
1934	count = context->tree_count;
1935	rcu_read_lock();
1936	chunk = audit_tree_lookup(inode);
1937	rcu_read_unlock();
1938	if (!chunk)
1939		return;
1940	if (likely(put_tree_ref(context, chunk)))
1941		return;
1942	if (unlikely(!grow_tree_refs(context))) {
1943		printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1944		audit_set_auditable(context);
1945		audit_put_chunk(chunk);
1946		unroll_tree_refs(context, p, count);
1947		return;
1948	}
1949	put_tree_ref(context, chunk);
1950#endif
1951}
1952
1953static void handle_path(const struct dentry *dentry)
1954{
1955#ifdef CONFIG_AUDIT_TREE
1956	struct audit_context *context;
1957	struct audit_tree_refs *p;
1958	const struct dentry *d, *parent;
1959	struct audit_chunk *drop;
1960	unsigned long seq;
1961	int count;
1962
1963	context = current->audit_context;
1964	p = context->trees;
1965	count = context->tree_count;
1966retry:
1967	drop = NULL;
1968	d = dentry;
1969	rcu_read_lock();
1970	seq = read_seqbegin(&rename_lock);
1971	for(;;) {
1972		struct inode *inode = d->d_inode;
1973		if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
 
1974			struct audit_chunk *chunk;
 
1975			chunk = audit_tree_lookup(inode);
1976			if (chunk) {
1977				if (unlikely(!put_tree_ref(context, chunk))) {
1978					drop = chunk;
1979					break;
1980				}
1981			}
1982		}
1983		parent = d->d_parent;
1984		if (parent == d)
1985			break;
1986		d = parent;
1987	}
1988	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1989		rcu_read_unlock();
1990		if (!drop) {
1991			/* just a race with rename */
1992			unroll_tree_refs(context, p, count);
1993			goto retry;
1994		}
1995		audit_put_chunk(drop);
1996		if (grow_tree_refs(context)) {
1997			/* OK, got more space */
1998			unroll_tree_refs(context, p, count);
1999			goto retry;
2000		}
2001		/* too bad */
2002		printk(KERN_WARNING
2003			"out of memory, audit has lost a tree reference\n");
2004		unroll_tree_refs(context, p, count);
2005		audit_set_auditable(context);
2006		return;
2007	}
2008	rcu_read_unlock();
2009#endif
2010}
2011
2012static struct audit_names *audit_alloc_name(struct audit_context *context)
 
2013{
2014	struct audit_names *aname;
2015
2016	if (context->name_count < AUDIT_NAMES) {
2017		aname = &context->preallocated_names[context->name_count];
2018		memset(aname, 0, sizeof(*aname));
2019	} else {
2020		aname = kzalloc(sizeof(*aname), GFP_NOFS);
2021		if (!aname)
2022			return NULL;
2023		aname->should_free = true;
2024	}
2025
2026	aname->ino = (unsigned long)-1;
 
2027	list_add_tail(&aname->list, &context->names_list);
2028
2029	context->name_count++;
2030#if AUDIT_DEBUG
2031	context->ino_count++;
2032#endif
2033	return aname;
2034}
2035
2036/**
2037 * audit_getname - add a name to the list
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2038 * @name: name to add
2039 *
2040 * Add a name to the list of audit names for this context.
2041 * Called from fs/namei.c:getname().
2042 */
2043void __audit_getname(const char *name)
2044{
2045	struct audit_context *context = current->audit_context;
2046	struct audit_names *n;
2047
2048	if (!context->in_syscall) {
2049#if AUDIT_DEBUG == 2
2050		printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
2051		       __FILE__, __LINE__, context->serial, name);
2052		dump_stack();
2053#endif
2054		return;
2055	}
2056
2057	n = audit_alloc_name(context);
2058	if (!n)
2059		return;
2060
2061	n->name = name;
2062	n->name_len = AUDIT_NAME_FULL;
2063	n->name_put = true;
2064
2065	if (!context->pwd.dentry)
2066		get_fs_pwd(current->fs, &context->pwd);
2067}
2068
2069/* audit_putname - intercept a putname request
2070 * @name: name to intercept and delay for putname
2071 *
2072 * If we have stored the name from getname in the audit context,
2073 * then we delay the putname until syscall exit.
2074 * Called from include/linux/fs.h:putname().
2075 */
2076void audit_putname(const char *name)
2077{
2078	struct audit_context *context = current->audit_context;
2079
2080	BUG_ON(!context);
2081	if (!context->in_syscall) {
2082#if AUDIT_DEBUG == 2
2083		printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2084		       __FILE__, __LINE__, context->serial, name);
2085		if (context->name_count) {
2086			struct audit_names *n;
2087			int i;
2088
2089			list_for_each_entry(n, &context->names_list, list)
2090				printk(KERN_ERR "name[%d] = %p = %s\n", i,
2091				       n->name, n->name ?: "(null)");
2092			}
2093#endif
2094		__putname(name);
2095	}
2096#if AUDIT_DEBUG
2097	else {
2098		++context->put_count;
2099		if (context->put_count > context->name_count) {
2100			printk(KERN_ERR "%s:%d(:%d): major=%d"
2101			       " in_syscall=%d putname(%p) name_count=%d"
2102			       " put_count=%d\n",
2103			       __FILE__, __LINE__,
2104			       context->serial, context->major,
2105			       context->in_syscall, name, context->name_count,
2106			       context->put_count);
2107			dump_stack();
2108		}
2109	}
2110#endif
2111}
2112
2113static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2114{
2115	struct cpu_vfs_cap_data caps;
2116	int rc;
2117
2118	if (!dentry)
2119		return 0;
2120
2121	rc = get_vfs_caps_from_disk(dentry, &caps);
2122	if (rc)
2123		return rc;
2124
2125	name->fcap.permitted = caps.permitted;
2126	name->fcap.inheritable = caps.inheritable;
2127	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2128	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
 
 
2129
2130	return 0;
2131}
2132
2133
2134/* Copy inode data into an audit_names. */
2135static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2136			     const struct inode *inode)
 
2137{
2138	name->ino   = inode->i_ino;
2139	name->dev   = inode->i_sb->s_dev;
2140	name->mode  = inode->i_mode;
2141	name->uid   = inode->i_uid;
2142	name->gid   = inode->i_gid;
2143	name->rdev  = inode->i_rdev;
2144	security_inode_getsecid(inode, &name->osid);
 
 
 
 
2145	audit_copy_fcaps(name, dentry);
2146}
2147
2148/**
2149 * audit_inode - store the inode and device from a lookup
2150 * @name: name being audited
2151 * @dentry: dentry being audited
2152 *
2153 * Called from fs/namei.c:path_lookup().
2154 */
2155void __audit_inode(const char *name, const struct dentry *dentry)
 
2156{
2157	struct audit_context *context = current->audit_context;
2158	const struct inode *inode = dentry->d_inode;
2159	struct audit_names *n;
 
 
 
 
2160
2161	if (!context->in_syscall)
2162		return;
2163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2164	list_for_each_entry_reverse(n, &context->names_list, list) {
2165		if (n->name && (n->name == name))
2166			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2167	}
2168
2169	/* unable to find the name from a previous getname() */
2170	n = audit_alloc_name(context);
 
2171	if (!n)
2172		return;
 
 
 
 
 
2173out:
 
 
 
 
 
 
 
 
 
2174	handle_path(dentry);
2175	audit_copy_inode(n, dentry, inode);
 
 
 
 
 
2176}
2177
2178/**
2179 * audit_inode_child - collect inode info for created/removed objects
 
2180 * @dentry: dentry being audited
2181 * @parent: inode of dentry parent
2182 *
2183 * For syscalls that create or remove filesystem objects, audit_inode
2184 * can only collect information for the filesystem object's parent.
2185 * This call updates the audit context with the child's information.
2186 * Syscalls that create a new filesystem object must be hooked after
2187 * the object is created.  Syscalls that remove a filesystem object
2188 * must be hooked prior, in order to capture the target inode during
2189 * unsuccessful attempts.
2190 */
2191void __audit_inode_child(const struct dentry *dentry,
2192			 const struct inode *parent)
2193{
2194	struct audit_context *context = current->audit_context;
2195	const char *found_parent = NULL, *found_child = NULL;
2196	const struct inode *inode = dentry->d_inode;
2197	const char *dname = dentry->d_name.name;
2198	struct audit_names *n;
2199	int dirlen = 0;
 
 
2200
2201	if (!context->in_syscall)
2202		return;
2203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2204	if (inode)
2205		handle_one(inode);
2206
2207	/* parent is more likely, look for it first */
2208	list_for_each_entry(n, &context->names_list, list) {
2209		if (!n->name)
 
 
2210			continue;
2211
2212		if (n->ino == parent->i_ino &&
2213		    !audit_compare_dname_path(dname, n->name, &dirlen)) {
2214			n->name_len = dirlen; /* update parent data in place */
2215			found_parent = n->name;
2216			goto add_names;
 
 
2217		}
2218	}
2219
2220	/* no matching parent, look for matching child */
2221	list_for_each_entry(n, &context->names_list, list) {
2222		if (!n->name)
 
 
2223			continue;
2224
2225		/* strcmp() is the more likely scenario */
2226		if (!strcmp(dname, n->name) ||
2227		     !audit_compare_dname_path(dname, n->name, &dirlen)) {
2228			if (inode)
2229				audit_copy_inode(n, NULL, inode);
2230			else
2231				n->ino = (unsigned long)-1;
2232			found_child = n->name;
2233			goto add_names;
2234		}
2235	}
2236
2237add_names:
2238	if (!found_parent) {
2239		n = audit_alloc_name(context);
 
2240		if (!n)
2241			return;
2242		audit_copy_inode(n, NULL, parent);
2243	}
2244
2245	if (!found_child) {
2246		n = audit_alloc_name(context);
2247		if (!n)
2248			return;
2249
2250		/* Re-use the name belonging to the slot for a matching parent
2251		 * directory. All names for this context are relinquished in
2252		 * audit_free_names() */
2253		if (found_parent) {
2254			n->name = found_parent;
2255			n->name_len = AUDIT_NAME_FULL;
2256			/* don't call __putname() */
2257			n->name_put = false;
2258		}
 
2259
2260		if (inode)
2261			audit_copy_inode(n, NULL, inode);
2262	}
 
2263}
2264EXPORT_SYMBOL_GPL(__audit_inode_child);
2265
2266/**
2267 * auditsc_get_stamp - get local copies of audit_context values
2268 * @ctx: audit_context for the task
2269 * @t: timespec to store time recorded in the audit_context
2270 * @serial: serial value that is recorded in the audit_context
2271 *
2272 * Also sets the context as auditable.
2273 */
2274int auditsc_get_stamp(struct audit_context *ctx,
2275		       struct timespec *t, unsigned int *serial)
2276{
2277	if (!ctx->in_syscall)
2278		return 0;
2279	if (!ctx->serial)
2280		ctx->serial = audit_serial();
2281	t->tv_sec  = ctx->ctime.tv_sec;
2282	t->tv_nsec = ctx->ctime.tv_nsec;
2283	*serial    = ctx->serial;
2284	if (!ctx->prio) {
2285		ctx->prio = 1;
2286		ctx->current_state = AUDIT_RECORD_CONTEXT;
2287	}
2288	return 1;
2289}
2290
2291/* global counter which is incremented every time something logs in */
2292static atomic_t session_id = ATOMIC_INIT(0);
2293
2294/**
2295 * audit_set_loginuid - set current task's audit_context loginuid
2296 * @loginuid: loginuid value
2297 *
2298 * Returns 0.
2299 *
2300 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2301 */
2302int audit_set_loginuid(uid_t loginuid)
2303{
2304	struct task_struct *task = current;
2305	struct audit_context *context = task->audit_context;
2306	unsigned int sessionid;
2307
2308#ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2309	if (task->loginuid != -1)
2310		return -EPERM;
2311#else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2312	if (!capable(CAP_AUDIT_CONTROL))
2313		return -EPERM;
2314#endif  /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2315
2316	sessionid = atomic_inc_return(&session_id);
2317	if (context && context->in_syscall) {
2318		struct audit_buffer *ab;
2319
2320		ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2321		if (ab) {
2322			audit_log_format(ab, "login pid=%d uid=%u "
2323				"old auid=%u new auid=%u"
2324				" old ses=%u new ses=%u",
2325				task->pid, task_uid(task),
2326				task->loginuid, loginuid,
2327				task->sessionid, sessionid);
2328			audit_log_end(ab);
2329		}
2330	}
2331	task->sessionid = sessionid;
2332	task->loginuid = loginuid;
2333	return 0;
2334}
2335
2336/**
2337 * __audit_mq_open - record audit data for a POSIX MQ open
2338 * @oflag: open flag
2339 * @mode: mode bits
2340 * @attr: queue attributes
2341 *
2342 */
2343void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2344{
2345	struct audit_context *context = current->audit_context;
2346
2347	if (attr)
2348		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2349	else
2350		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2351
2352	context->mq_open.oflag = oflag;
2353	context->mq_open.mode = mode;
2354
2355	context->type = AUDIT_MQ_OPEN;
2356}
2357
2358/**
2359 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2360 * @mqdes: MQ descriptor
2361 * @msg_len: Message length
2362 * @msg_prio: Message priority
2363 * @abs_timeout: Message timeout in absolute time
2364 *
2365 */
2366void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2367			const struct timespec *abs_timeout)
2368{
2369	struct audit_context *context = current->audit_context;
2370	struct timespec *p = &context->mq_sendrecv.abs_timeout;
2371
2372	if (abs_timeout)
2373		memcpy(p, abs_timeout, sizeof(struct timespec));
2374	else
2375		memset(p, 0, sizeof(struct timespec));
2376
2377	context->mq_sendrecv.mqdes = mqdes;
2378	context->mq_sendrecv.msg_len = msg_len;
2379	context->mq_sendrecv.msg_prio = msg_prio;
2380
2381	context->type = AUDIT_MQ_SENDRECV;
2382}
2383
2384/**
2385 * __audit_mq_notify - record audit data for a POSIX MQ notify
2386 * @mqdes: MQ descriptor
2387 * @notification: Notification event
2388 *
2389 */
2390
2391void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2392{
2393	struct audit_context *context = current->audit_context;
2394
2395	if (notification)
2396		context->mq_notify.sigev_signo = notification->sigev_signo;
2397	else
2398		context->mq_notify.sigev_signo = 0;
2399
2400	context->mq_notify.mqdes = mqdes;
2401	context->type = AUDIT_MQ_NOTIFY;
2402}
2403
2404/**
2405 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2406 * @mqdes: MQ descriptor
2407 * @mqstat: MQ flags
2408 *
2409 */
2410void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2411{
2412	struct audit_context *context = current->audit_context;
 
2413	context->mq_getsetattr.mqdes = mqdes;
2414	context->mq_getsetattr.mqstat = *mqstat;
2415	context->type = AUDIT_MQ_GETSETATTR;
2416}
2417
2418/**
2419 * audit_ipc_obj - record audit data for ipc object
2420 * @ipcp: ipc permissions
2421 *
2422 */
2423void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2424{
2425	struct audit_context *context = current->audit_context;
 
2426	context->ipc.uid = ipcp->uid;
2427	context->ipc.gid = ipcp->gid;
2428	context->ipc.mode = ipcp->mode;
2429	context->ipc.has_perm = 0;
2430	security_ipc_getsecid(ipcp, &context->ipc.osid);
2431	context->type = AUDIT_IPC;
2432}
2433
2434/**
2435 * audit_ipc_set_perm - record audit data for new ipc permissions
2436 * @qbytes: msgq bytes
2437 * @uid: msgq user id
2438 * @gid: msgq group id
2439 * @mode: msgq mode (permissions)
2440 *
2441 * Called only after audit_ipc_obj().
2442 */
2443void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2444{
2445	struct audit_context *context = current->audit_context;
2446
2447	context->ipc.qbytes = qbytes;
2448	context->ipc.perm_uid = uid;
2449	context->ipc.perm_gid = gid;
2450	context->ipc.perm_mode = mode;
2451	context->ipc.has_perm = 1;
2452}
2453
2454int __audit_bprm(struct linux_binprm *bprm)
2455{
2456	struct audit_aux_data_execve *ax;
2457	struct audit_context *context = current->audit_context;
2458
2459	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2460	if (!ax)
2461		return -ENOMEM;
2462
2463	ax->argc = bprm->argc;
2464	ax->envc = bprm->envc;
2465	ax->mm = bprm->mm;
2466	ax->d.type = AUDIT_EXECVE;
2467	ax->d.next = context->aux;
2468	context->aux = (void *)ax;
2469	return 0;
2470}
2471
2472
2473/**
2474 * audit_socketcall - record audit data for sys_socketcall
2475 * @nargs: number of args
2476 * @args: args array
2477 *
2478 */
2479void __audit_socketcall(int nargs, unsigned long *args)
2480{
2481	struct audit_context *context = current->audit_context;
2482
 
 
2483	context->type = AUDIT_SOCKETCALL;
2484	context->socketcall.nargs = nargs;
2485	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
 
2486}
2487
2488/**
2489 * __audit_fd_pair - record audit data for pipe and socketpair
2490 * @fd1: the first file descriptor
2491 * @fd2: the second file descriptor
2492 *
2493 */
2494void __audit_fd_pair(int fd1, int fd2)
2495{
2496	struct audit_context *context = current->audit_context;
 
2497	context->fds[0] = fd1;
2498	context->fds[1] = fd2;
2499}
2500
2501/**
2502 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2503 * @len: data length in user space
2504 * @a: data address in kernel space
2505 *
2506 * Returns 0 for success or NULL context or < 0 on error.
2507 */
2508int __audit_sockaddr(int len, void *a)
2509{
2510	struct audit_context *context = current->audit_context;
2511
2512	if (!context->sockaddr) {
2513		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
 
2514		if (!p)
2515			return -ENOMEM;
2516		context->sockaddr = p;
2517	}
2518
2519	context->sockaddr_len = len;
2520	memcpy(context->sockaddr, a, len);
2521	return 0;
2522}
2523
2524void __audit_ptrace(struct task_struct *t)
2525{
2526	struct audit_context *context = current->audit_context;
2527
2528	context->target_pid = t->pid;
2529	context->target_auid = audit_get_loginuid(t);
2530	context->target_uid = task_uid(t);
2531	context->target_sessionid = audit_get_sessionid(t);
2532	security_task_getsecid(t, &context->target_sid);
2533	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2534}
2535
2536/**
2537 * audit_signal_info - record signal info for shutting down audit subsystem
2538 * @sig: signal value
2539 * @t: task being signaled
2540 *
2541 * If the audit subsystem is being terminated, record the task (pid)
2542 * and uid that is doing that.
2543 */
2544int __audit_signal_info(int sig, struct task_struct *t)
2545{
2546	struct audit_aux_data_pids *axp;
2547	struct task_struct *tsk = current;
2548	struct audit_context *ctx = tsk->audit_context;
2549	uid_t uid = current_uid(), t_uid = task_uid(t);
2550
2551	if (audit_pid && t->tgid == audit_pid) {
2552		if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2553			audit_sig_pid = tsk->pid;
2554			if (tsk->loginuid != -1)
2555				audit_sig_uid = tsk->loginuid;
2556			else
2557				audit_sig_uid = uid;
2558			security_task_getsecid(tsk, &audit_sig_sid);
2559		}
2560		if (!audit_signals || audit_dummy_context())
2561			return 0;
2562	}
2563
2564	/* optimize the common case by putting first signal recipient directly
2565	 * in audit_context */
2566	if (!ctx->target_pid) {
2567		ctx->target_pid = t->tgid;
2568		ctx->target_auid = audit_get_loginuid(t);
2569		ctx->target_uid = t_uid;
2570		ctx->target_sessionid = audit_get_sessionid(t);
2571		security_task_getsecid(t, &ctx->target_sid);
2572		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2573		return 0;
2574	}
2575
2576	axp = (void *)ctx->aux_pids;
2577	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2578		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2579		if (!axp)
2580			return -ENOMEM;
2581
2582		axp->d.type = AUDIT_OBJ_PID;
2583		axp->d.next = ctx->aux_pids;
2584		ctx->aux_pids = (void *)axp;
2585	}
2586	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2587
2588	axp->target_pid[axp->pid_count] = t->tgid;
2589	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2590	axp->target_uid[axp->pid_count] = t_uid;
2591	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2592	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2593	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2594	axp->pid_count++;
2595
2596	return 0;
2597}
2598
2599/**
2600 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2601 * @bprm: pointer to the bprm being processed
2602 * @new: the proposed new credentials
2603 * @old: the old credentials
2604 *
2605 * Simply check if the proc already has the caps given by the file and if not
2606 * store the priv escalation info for later auditing at the end of the syscall
2607 *
2608 * -Eric
2609 */
2610int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2611			   const struct cred *new, const struct cred *old)
2612{
2613	struct audit_aux_data_bprm_fcaps *ax;
2614	struct audit_context *context = current->audit_context;
2615	struct cpu_vfs_cap_data vcaps;
2616	struct dentry *dentry;
2617
2618	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2619	if (!ax)
2620		return -ENOMEM;
2621
2622	ax->d.type = AUDIT_BPRM_FCAPS;
2623	ax->d.next = context->aux;
2624	context->aux = (void *)ax;
2625
2626	dentry = dget(bprm->file->f_dentry);
2627	get_vfs_caps_from_disk(dentry, &vcaps);
2628	dput(dentry);
2629
2630	ax->fcap.permitted = vcaps.permitted;
2631	ax->fcap.inheritable = vcaps.inheritable;
2632	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
 
2633	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2634
2635	ax->old_pcap.permitted   = old->cap_permitted;
2636	ax->old_pcap.inheritable = old->cap_inheritable;
2637	ax->old_pcap.effective   = old->cap_effective;
 
2638
2639	ax->new_pcap.permitted   = new->cap_permitted;
2640	ax->new_pcap.inheritable = new->cap_inheritable;
2641	ax->new_pcap.effective   = new->cap_effective;
 
2642	return 0;
2643}
2644
2645/**
2646 * __audit_log_capset - store information about the arguments to the capset syscall
2647 * @pid: target pid of the capset call
2648 * @new: the new credentials
2649 * @old: the old (current) credentials
2650 *
2651 * Record the aguments userspace sent to sys_capset for later printing by the
2652 * audit system if applicable
2653 */
2654void __audit_log_capset(pid_t pid,
2655		       const struct cred *new, const struct cred *old)
2656{
2657	struct audit_context *context = current->audit_context;
2658	context->capset.pid = pid;
 
2659	context->capset.cap.effective   = new->cap_effective;
2660	context->capset.cap.inheritable = new->cap_effective;
2661	context->capset.cap.permitted   = new->cap_permitted;
 
2662	context->type = AUDIT_CAPSET;
2663}
2664
2665void __audit_mmap_fd(int fd, int flags)
2666{
2667	struct audit_context *context = current->audit_context;
 
2668	context->mmap.fd = fd;
2669	context->mmap.flags = flags;
2670	context->type = AUDIT_MMAP;
2671}
2672
2673static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2674{
2675	uid_t auid, uid;
2676	gid_t gid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2677	unsigned int sessionid;
 
2678
2679	auid = audit_get_loginuid(current);
2680	sessionid = audit_get_sessionid(current);
2681	current_uid_gid(&uid, &gid);
2682
2683	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2684			 auid, uid, gid, sessionid);
 
 
 
2685	audit_log_task_context(ab);
2686	audit_log_format(ab, " pid=%d comm=", current->pid);
2687	audit_log_untrustedstring(ab, current->comm);
2688	audit_log_format(ab, " reason=");
2689	audit_log_string(ab, reason);
2690	audit_log_format(ab, " sig=%ld", signr);
2691}
 
2692/**
2693 * audit_core_dumps - record information about processes that end abnormally
2694 * @signr: signal value
2695 *
2696 * If a process ends with a core dump, something fishy is going on and we
2697 * should record the event for investigation.
2698 */
2699void audit_core_dumps(long signr)
2700{
2701	struct audit_buffer *ab;
2702
2703	if (!audit_enabled)
2704		return;
2705
2706	if (signr == SIGQUIT)	/* don't care for those */
2707		return;
2708
2709	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2710	audit_log_abend(ab, "memory violation", signr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2711	audit_log_end(ab);
2712}
2713
2714void __audit_seccomp(unsigned long syscall, long signr, int code)
 
2715{
2716	struct audit_buffer *ab;
2717
2718	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2719	audit_log_abend(ab, "seccomp", signr);
2720	audit_log_format(ab, " syscall=%ld", syscall);
2721	audit_log_format(ab, " compat=%d", is_compat_task());
2722	audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2723	audit_log_format(ab, " code=0x%x", code);
 
 
 
 
 
2724	audit_log_end(ab);
2725}
2726
2727struct list_head *audit_killed_trees(void)
2728{
2729	struct audit_context *ctx = current->audit_context;
2730	if (likely(!ctx || !ctx->in_syscall))
2731		return NULL;
2732	return &ctx->killed_trees;
2733}