Linux Audio

Check our new training course

Loading...
v6.2
   1/*
   2 *	An async IO implementation for Linux
   3 *	Written by Benjamin LaHaise <bcrl@kvack.org>
   4 *
   5 *	Implements an efficient asynchronous io interface.
   6 *
   7 *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
   8 *	Copyright 2018 Christoph Hellwig.
   9 *
  10 *	See ../COPYING for licensing terms.
  11 */
  12#define pr_fmt(fmt) "%s: " fmt, __func__
  13
  14#include <linux/kernel.h>
  15#include <linux/init.h>
  16#include <linux/errno.h>
  17#include <linux/time.h>
  18#include <linux/aio_abi.h>
  19#include <linux/export.h>
  20#include <linux/syscalls.h>
  21#include <linux/backing-dev.h>
  22#include <linux/refcount.h>
  23#include <linux/uio.h>
  24
  25#include <linux/sched/signal.h>
 
 
  26#include <linux/fs.h>
  27#include <linux/file.h>
  28#include <linux/mm.h>
  29#include <linux/mman.h>
  30#include <linux/percpu.h>
  31#include <linux/slab.h>
  32#include <linux/timer.h>
  33#include <linux/aio.h>
  34#include <linux/highmem.h>
  35#include <linux/workqueue.h>
  36#include <linux/security.h>
  37#include <linux/eventfd.h>
  38#include <linux/blkdev.h>
  39#include <linux/compat.h>
  40#include <linux/migrate.h>
  41#include <linux/ramfs.h>
  42#include <linux/percpu-refcount.h>
  43#include <linux/mount.h>
  44#include <linux/pseudo_fs.h>
  45
  46#include <linux/uaccess.h>
  47#include <linux/nospec.h>
  48
  49#include "internal.h"
  50
  51#define KIOCB_KEY		0
  52
  53#define AIO_RING_MAGIC			0xa10a10a1
  54#define AIO_RING_COMPAT_FEATURES	1
  55#define AIO_RING_INCOMPAT_FEATURES	0
  56struct aio_ring {
  57	unsigned	id;	/* kernel internal index number */
  58	unsigned	nr;	/* number of io_events */
  59	unsigned	head;	/* Written to by userland or under ring_lock
  60				 * mutex by aio_read_events_ring(). */
  61	unsigned	tail;
  62
  63	unsigned	magic;
  64	unsigned	compat_features;
  65	unsigned	incompat_features;
  66	unsigned	header_length;	/* size of aio_ring */
  67
  68
  69	struct io_event		io_events[];
  70}; /* 128 bytes + ring size */
  71
  72/*
  73 * Plugging is meant to work with larger batches of IOs. If we don't
  74 * have more than the below, then don't bother setting up a plug.
  75 */
  76#define AIO_PLUG_THRESHOLD	2
  77
  78#define AIO_RING_PAGES	8
  79
  80struct kioctx_table {
  81	struct rcu_head		rcu;
  82	unsigned		nr;
  83	struct kioctx __rcu	*table[];
  84};
  85
  86struct kioctx_cpu {
  87	unsigned		reqs_available;
  88};
  89
  90struct ctx_rq_wait {
  91	struct completion comp;
  92	atomic_t count;
  93};
  94
  95struct kioctx {
  96	struct percpu_ref	users;
  97	atomic_t		dead;
  98
  99	struct percpu_ref	reqs;
 100
 101	unsigned long		user_id;
 
 102
 103	struct __percpu kioctx_cpu *cpu;
 104
 105	/*
 106	 * For percpu reqs_available, number of slots we move to/from global
 107	 * counter at a time:
 108	 */
 109	unsigned		req_batch;
 110	/*
 111	 * This is what userspace passed to io_setup(), it's not used for
 112	 * anything but counting against the global max_reqs quota.
 113	 *
 114	 * The real limit is nr_events - 1, which will be larger (see
 115	 * aio_setup_ring())
 116	 */
 117	unsigned		max_reqs;
 118
 119	/* Size of ringbuffer, in units of struct io_event */
 120	unsigned		nr_events;
 121
 122	unsigned long		mmap_base;
 123	unsigned long		mmap_size;
 124
 125	struct page		**ring_pages;
 126	long			nr_pages;
 127
 128	struct rcu_work		free_rwork;	/* see free_ioctx() */
 129
 130	/*
 131	 * signals when all in-flight requests are done
 132	 */
 133	struct ctx_rq_wait	*rq_wait;
 134
 135	struct {
 136		/*
 137		 * This counts the number of available slots in the ringbuffer,
 138		 * so we avoid overflowing it: it's decremented (if positive)
 139		 * when allocating a kiocb and incremented when the resulting
 140		 * io_event is pulled off the ringbuffer.
 141		 *
 142		 * We batch accesses to it with a percpu version.
 143		 */
 144		atomic_t	reqs_available;
 145	} ____cacheline_aligned_in_smp;
 146
 147	struct {
 148		spinlock_t	ctx_lock;
 149		struct list_head active_reqs;	/* used for cancellation */
 150	} ____cacheline_aligned_in_smp;
 151
 152	struct {
 153		struct mutex	ring_lock;
 154		wait_queue_head_t wait;
 155	} ____cacheline_aligned_in_smp;
 156
 157	struct {
 158		unsigned	tail;
 159		unsigned	completed_events;
 160		spinlock_t	completion_lock;
 161	} ____cacheline_aligned_in_smp;
 162
 163	struct page		*internal_pages[AIO_RING_PAGES];
 164	struct file		*aio_ring_file;
 165
 166	unsigned		id;
 167};
 168
 169/*
 170 * First field must be the file pointer in all the
 171 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
 172 */
 173struct fsync_iocb {
 174	struct file		*file;
 175	struct work_struct	work;
 176	bool			datasync;
 177	struct cred		*creds;
 178};
 179
 180struct poll_iocb {
 181	struct file		*file;
 182	struct wait_queue_head	*head;
 183	__poll_t		events;
 184	bool			cancelled;
 185	bool			work_scheduled;
 186	bool			work_need_resched;
 187	struct wait_queue_entry	wait;
 188	struct work_struct	work;
 189};
 190
 191/*
 192 * NOTE! Each of the iocb union members has the file pointer
 193 * as the first entry in their struct definition. So you can
 194 * access the file pointer through any of the sub-structs,
 195 * or directly as just 'ki_filp' in this struct.
 196 */
 197struct aio_kiocb {
 198	union {
 199		struct file		*ki_filp;
 200		struct kiocb		rw;
 201		struct fsync_iocb	fsync;
 202		struct poll_iocb	poll;
 203	};
 204
 205	struct kioctx		*ki_ctx;
 206	kiocb_cancel_fn		*ki_cancel;
 207
 208	struct io_event		ki_res;
 209
 210	struct list_head	ki_list;	/* the aio core uses this
 211						 * for cancellation */
 212	refcount_t		ki_refcnt;
 213
 214	/*
 215	 * If the aio_resfd field of the userspace iocb is not zero,
 216	 * this is the underlying eventfd context to deliver events to.
 217	 */
 218	struct eventfd_ctx	*ki_eventfd;
 219};
 220
 221/*------ sysctl variables----*/
 222static DEFINE_SPINLOCK(aio_nr_lock);
 223static unsigned long aio_nr;		/* current system wide number of aio requests */
 224static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
 225/*----end sysctl variables---*/
 226#ifdef CONFIG_SYSCTL
 227static struct ctl_table aio_sysctls[] = {
 228	{
 229		.procname	= "aio-nr",
 230		.data		= &aio_nr,
 231		.maxlen		= sizeof(aio_nr),
 232		.mode		= 0444,
 233		.proc_handler	= proc_doulongvec_minmax,
 234	},
 235	{
 236		.procname	= "aio-max-nr",
 237		.data		= &aio_max_nr,
 238		.maxlen		= sizeof(aio_max_nr),
 239		.mode		= 0644,
 240		.proc_handler	= proc_doulongvec_minmax,
 241	},
 242	{}
 243};
 244
 245static void __init aio_sysctl_init(void)
 246{
 247	register_sysctl_init("fs", aio_sysctls);
 248}
 249#else
 250#define aio_sysctl_init() do { } while (0)
 251#endif
 252
 253static struct kmem_cache	*kiocb_cachep;
 254static struct kmem_cache	*kioctx_cachep;
 255
 256static struct vfsmount *aio_mnt;
 257
 258static const struct file_operations aio_ring_fops;
 259static const struct address_space_operations aio_ctx_aops;
 
 260
 261static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
 262{
 263	struct file *file;
 264	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
 265	if (IS_ERR(inode))
 266		return ERR_CAST(inode);
 267
 268	inode->i_mapping->a_ops = &aio_ctx_aops;
 269	inode->i_mapping->private_data = ctx;
 270	inode->i_size = PAGE_SIZE * nr_pages;
 271
 272	file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
 273				O_RDWR, &aio_ring_fops);
 274	if (IS_ERR(file))
 275		iput(inode);
 276	return file;
 277}
 278
 279static int aio_init_fs_context(struct fs_context *fc)
 280{
 281	if (!init_pseudo(fc, AIO_RING_MAGIC))
 282		return -ENOMEM;
 283	fc->s_iflags |= SB_I_NOEXEC;
 284	return 0;
 285}
 286
 287/* aio_setup
 288 *	Creates the slab caches used by the aio routines, panic on
 289 *	failure as this is done early during the boot sequence.
 290 */
 291static int __init aio_setup(void)
 292{
 293	static struct file_system_type aio_fs = {
 294		.name		= "aio",
 295		.init_fs_context = aio_init_fs_context,
 296		.kill_sb	= kill_anon_super,
 297	};
 298	aio_mnt = kern_mount(&aio_fs);
 299	if (IS_ERR(aio_mnt))
 300		panic("Failed to create aio fs mount.");
 301
 302	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
 303	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
 304	aio_sysctl_init();
 305	return 0;
 306}
 307__initcall(aio_setup);
 308
 309static void put_aio_ring_file(struct kioctx *ctx)
 310{
 311	struct file *aio_ring_file = ctx->aio_ring_file;
 312	struct address_space *i_mapping;
 313
 314	if (aio_ring_file) {
 315		truncate_setsize(file_inode(aio_ring_file), 0);
 316
 317		/* Prevent further access to the kioctx from migratepages */
 318		i_mapping = aio_ring_file->f_mapping;
 319		spin_lock(&i_mapping->private_lock);
 320		i_mapping->private_data = NULL;
 321		ctx->aio_ring_file = NULL;
 322		spin_unlock(&i_mapping->private_lock);
 323
 324		fput(aio_ring_file);
 325	}
 326}
 
 327
 328static void aio_free_ring(struct kioctx *ctx)
 329{
 330	int i;
 
 331
 332	/* Disconnect the kiotx from the ring file.  This prevents future
 333	 * accesses to the kioctx from page migration.
 334	 */
 335	put_aio_ring_file(ctx);
 336
 337	for (i = 0; i < ctx->nr_pages; i++) {
 338		struct page *page;
 339		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
 340				page_count(ctx->ring_pages[i]));
 341		page = ctx->ring_pages[i];
 342		if (!page)
 343			continue;
 344		ctx->ring_pages[i] = NULL;
 345		put_page(page);
 346	}
 347
 348	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
 349		kfree(ctx->ring_pages);
 350		ctx->ring_pages = NULL;
 351	}
 352}
 353
 354static int aio_ring_mremap(struct vm_area_struct *vma)
 355{
 356	struct file *file = vma->vm_file;
 357	struct mm_struct *mm = vma->vm_mm;
 358	struct kioctx_table *table;
 359	int i, res = -EINVAL;
 360
 361	spin_lock(&mm->ioctx_lock);
 362	rcu_read_lock();
 363	table = rcu_dereference(mm->ioctx_table);
 364	if (!table)
 365		goto out_unlock;
 366
 367	for (i = 0; i < table->nr; i++) {
 368		struct kioctx *ctx;
 369
 370		ctx = rcu_dereference(table->table[i]);
 371		if (ctx && ctx->aio_ring_file == file) {
 372			if (!atomic_read(&ctx->dead)) {
 373				ctx->user_id = ctx->mmap_base = vma->vm_start;
 374				res = 0;
 375			}
 376			break;
 377		}
 378	}
 379
 380out_unlock:
 381	rcu_read_unlock();
 382	spin_unlock(&mm->ioctx_lock);
 383	return res;
 384}
 385
 386static const struct vm_operations_struct aio_ring_vm_ops = {
 387	.mremap		= aio_ring_mremap,
 388#if IS_ENABLED(CONFIG_MMU)
 389	.fault		= filemap_fault,
 390	.map_pages	= filemap_map_pages,
 391	.page_mkwrite	= filemap_page_mkwrite,
 392#endif
 393};
 394
 395static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
 396{
 397	vma->vm_flags |= VM_DONTEXPAND;
 398	vma->vm_ops = &aio_ring_vm_ops;
 399	return 0;
 400}
 401
 402static const struct file_operations aio_ring_fops = {
 403	.mmap = aio_ring_mmap,
 404};
 405
 406#if IS_ENABLED(CONFIG_MIGRATION)
 407static int aio_migrate_folio(struct address_space *mapping, struct folio *dst,
 408			struct folio *src, enum migrate_mode mode)
 409{
 410	struct kioctx *ctx;
 411	unsigned long flags;
 412	pgoff_t idx;
 413	int rc;
 414
 415	/*
 416	 * We cannot support the _NO_COPY case here, because copy needs to
 417	 * happen under the ctx->completion_lock. That does not work with the
 418	 * migration workflow of MIGRATE_SYNC_NO_COPY.
 419	 */
 420	if (mode == MIGRATE_SYNC_NO_COPY)
 421		return -EINVAL;
 422
 423	rc = 0;
 424
 425	/* mapping->private_lock here protects against the kioctx teardown.  */
 426	spin_lock(&mapping->private_lock);
 427	ctx = mapping->private_data;
 428	if (!ctx) {
 429		rc = -EINVAL;
 430		goto out;
 431	}
 432
 433	/* The ring_lock mutex.  The prevents aio_read_events() from writing
 434	 * to the ring's head, and prevents page migration from mucking in
 435	 * a partially initialized kiotx.
 436	 */
 437	if (!mutex_trylock(&ctx->ring_lock)) {
 438		rc = -EAGAIN;
 439		goto out;
 440	}
 441
 442	idx = src->index;
 443	if (idx < (pgoff_t)ctx->nr_pages) {
 444		/* Make sure the old folio hasn't already been changed */
 445		if (ctx->ring_pages[idx] != &src->page)
 446			rc = -EAGAIN;
 447	} else
 448		rc = -EINVAL;
 449
 450	if (rc != 0)
 451		goto out_unlock;
 452
 453	/* Writeback must be complete */
 454	BUG_ON(folio_test_writeback(src));
 455	folio_get(dst);
 456
 457	rc = folio_migrate_mapping(mapping, dst, src, 1);
 458	if (rc != MIGRATEPAGE_SUCCESS) {
 459		folio_put(dst);
 460		goto out_unlock;
 461	}
 462
 463	/* Take completion_lock to prevent other writes to the ring buffer
 464	 * while the old folio is copied to the new.  This prevents new
 465	 * events from being lost.
 466	 */
 467	spin_lock_irqsave(&ctx->completion_lock, flags);
 468	folio_migrate_copy(dst, src);
 469	BUG_ON(ctx->ring_pages[idx] != &src->page);
 470	ctx->ring_pages[idx] = &dst->page;
 471	spin_unlock_irqrestore(&ctx->completion_lock, flags);
 472
 473	/* The old folio is no longer accessible. */
 474	folio_put(src);
 475
 476out_unlock:
 477	mutex_unlock(&ctx->ring_lock);
 478out:
 479	spin_unlock(&mapping->private_lock);
 480	return rc;
 481}
 482#else
 483#define aio_migrate_folio NULL
 484#endif
 485
 486static const struct address_space_operations aio_ctx_aops = {
 487	.dirty_folio	= noop_dirty_folio,
 488	.migrate_folio	= aio_migrate_folio,
 489};
 490
 491static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
 492{
 493	struct aio_ring *ring;
 494	struct mm_struct *mm = current->mm;
 495	unsigned long size, unused;
 
 496	int nr_pages;
 497	int i;
 498	struct file *file;
 499
 500	/* Compensate for the ring buffer's head/tail overlap entry */
 501	nr_events += 2;	/* 1 is required, 2 for good luck */
 502
 503	size = sizeof(struct aio_ring);
 504	size += sizeof(struct io_event) * nr_events;
 
 505
 506	nr_pages = PFN_UP(size);
 507	if (nr_pages < 0)
 508		return -EINVAL;
 509
 510	file = aio_private_file(ctx, nr_pages);
 511	if (IS_ERR(file)) {
 512		ctx->aio_ring_file = NULL;
 513		return -ENOMEM;
 514	}
 515
 516	ctx->aio_ring_file = file;
 517	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
 518			/ sizeof(struct io_event);
 519
 520	ctx->ring_pages = ctx->internal_pages;
 
 521	if (nr_pages > AIO_RING_PAGES) {
 522		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
 523					  GFP_KERNEL);
 524		if (!ctx->ring_pages) {
 525			put_aio_ring_file(ctx);
 526			return -ENOMEM;
 527		}
 528	}
 529
 530	for (i = 0; i < nr_pages; i++) {
 531		struct page *page;
 532		page = find_or_create_page(file->f_mapping,
 533					   i, GFP_HIGHUSER | __GFP_ZERO);
 534		if (!page)
 535			break;
 536		pr_debug("pid(%d) page[%d]->count=%d\n",
 537			 current->pid, i, page_count(page));
 538		SetPageUptodate(page);
 539		unlock_page(page);
 540
 541		ctx->ring_pages[i] = page;
 542	}
 543	ctx->nr_pages = i;
 544
 545	if (unlikely(i != nr_pages)) {
 
 
 
 
 
 
 
 
 546		aio_free_ring(ctx);
 547		return -ENOMEM;
 548	}
 549
 550	ctx->mmap_size = nr_pages * PAGE_SIZE;
 551	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
 
 
 
 552
 553	if (mmap_write_lock_killable(mm)) {
 554		ctx->mmap_size = 0;
 555		aio_free_ring(ctx);
 556		return -EINTR;
 557	}
 558
 559	ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
 560				 PROT_READ | PROT_WRITE,
 561				 MAP_SHARED, 0, &unused, NULL);
 562	mmap_write_unlock(mm);
 563	if (IS_ERR((void *)ctx->mmap_base)) {
 564		ctx->mmap_size = 0;
 565		aio_free_ring(ctx);
 566		return -ENOMEM;
 567	}
 568
 569	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
 570
 571	ctx->user_id = ctx->mmap_base;
 572	ctx->nr_events = nr_events; /* trusted copy */
 573
 574	ring = kmap_atomic(ctx->ring_pages[0]);
 575	ring->nr = nr_events;	/* user copy */
 576	ring->id = ~0U;
 577	ring->head = ring->tail = 0;
 578	ring->magic = AIO_RING_MAGIC;
 579	ring->compat_features = AIO_RING_COMPAT_FEATURES;
 580	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
 581	ring->header_length = sizeof(struct aio_ring);
 582	kunmap_atomic(ring);
 583	flush_dcache_page(ctx->ring_pages[0]);
 584
 585	return 0;
 586}
 587
 
 
 
 
 588#define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
 589#define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
 590#define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
 591
 592void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
 593{
 594	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
 595	struct kioctx *ctx = req->ki_ctx;
 596	unsigned long flags;
 597
 598	if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
 599		return;
 600
 601	spin_lock_irqsave(&ctx->ctx_lock, flags);
 602	list_add_tail(&req->ki_list, &ctx->active_reqs);
 603	req->ki_cancel = cancel;
 604	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
 605}
 606EXPORT_SYMBOL(kiocb_set_cancel_fn);
 607
 608/*
 609 * free_ioctx() should be RCU delayed to synchronize against the RCU
 610 * protected lookup_ioctx() and also needs process context to call
 611 * aio_free_ring().  Use rcu_work.
 612 */
 613static void free_ioctx(struct work_struct *work)
 614{
 615	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
 616					  free_rwork);
 617	pr_debug("freeing %p\n", ctx);
 618
 619	aio_free_ring(ctx);
 620	free_percpu(ctx->cpu);
 621	percpu_ref_exit(&ctx->reqs);
 622	percpu_ref_exit(&ctx->users);
 623	kmem_cache_free(kioctx_cachep, ctx);
 624}
 625
 626static void free_ioctx_reqs(struct percpu_ref *ref)
 627{
 628	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
 629
 630	/* At this point we know that there are no any in-flight requests */
 631	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
 632		complete(&ctx->rq_wait->comp);
 633
 634	/* Synchronize against RCU protected table->table[] dereferences */
 635	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
 636	queue_rcu_work(system_wq, &ctx->free_rwork);
 637}
 638
 639/*
 640 * When this function runs, the kioctx has been removed from the "hash table"
 641 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
 642 * now it's safe to cancel any that need to be.
 643 */
 644static void free_ioctx_users(struct percpu_ref *ref)
 645{
 646	struct kioctx *ctx = container_of(ref, struct kioctx, users);
 647	struct aio_kiocb *req;
 648
 649	spin_lock_irq(&ctx->ctx_lock);
 650
 651	while (!list_empty(&ctx->active_reqs)) {
 652		req = list_first_entry(&ctx->active_reqs,
 653				       struct aio_kiocb, ki_list);
 654		req->ki_cancel(&req->rw);
 655		list_del_init(&req->ki_list);
 
 
 656	}
 657
 658	spin_unlock_irq(&ctx->ctx_lock);
 659
 660	percpu_ref_kill(&ctx->reqs);
 661	percpu_ref_put(&ctx->reqs);
 662}
 663
 664static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
 665{
 666	unsigned i, new_nr;
 667	struct kioctx_table *table, *old;
 668	struct aio_ring *ring;
 669
 670	spin_lock(&mm->ioctx_lock);
 671	table = rcu_dereference_raw(mm->ioctx_table);
 672
 673	while (1) {
 674		if (table)
 675			for (i = 0; i < table->nr; i++)
 676				if (!rcu_access_pointer(table->table[i])) {
 677					ctx->id = i;
 678					rcu_assign_pointer(table->table[i], ctx);
 679					spin_unlock(&mm->ioctx_lock);
 680
 681					/* While kioctx setup is in progress,
 682					 * we are protected from page migration
 683					 * changes ring_pages by ->ring_lock.
 684					 */
 685					ring = kmap_atomic(ctx->ring_pages[0]);
 686					ring->id = ctx->id;
 687					kunmap_atomic(ring);
 688					return 0;
 689				}
 690
 691		new_nr = (table ? table->nr : 1) * 4;
 692		spin_unlock(&mm->ioctx_lock);
 693
 694		table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL);
 695		if (!table)
 696			return -ENOMEM;
 697
 698		table->nr = new_nr;
 699
 700		spin_lock(&mm->ioctx_lock);
 701		old = rcu_dereference_raw(mm->ioctx_table);
 702
 703		if (!old) {
 704			rcu_assign_pointer(mm->ioctx_table, table);
 705		} else if (table->nr > old->nr) {
 706			memcpy(table->table, old->table,
 707			       old->nr * sizeof(struct kioctx *));
 708
 709			rcu_assign_pointer(mm->ioctx_table, table);
 710			kfree_rcu(old, rcu);
 711		} else {
 712			kfree(table);
 713			table = old;
 714		}
 715	}
 716}
 717
 718static void aio_nr_sub(unsigned nr)
 719{
 720	spin_lock(&aio_nr_lock);
 721	if (WARN_ON(aio_nr - nr > aio_nr))
 722		aio_nr = 0;
 723	else
 724		aio_nr -= nr;
 725	spin_unlock(&aio_nr_lock);
 726}
 727
 728/* ioctx_alloc
 729 *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
 730 */
 731static struct kioctx *ioctx_alloc(unsigned nr_events)
 732{
 733	struct mm_struct *mm = current->mm;
 734	struct kioctx *ctx;
 735	int err = -ENOMEM;
 736
 737	/*
 738	 * Store the original nr_events -- what userspace passed to io_setup(),
 739	 * for counting against the global limit -- before it changes.
 740	 */
 741	unsigned int max_reqs = nr_events;
 742
 743	/*
 744	 * We keep track of the number of available ringbuffer slots, to prevent
 745	 * overflow (reqs_available), and we also use percpu counters for this.
 746	 *
 747	 * So since up to half the slots might be on other cpu's percpu counters
 748	 * and unavailable, double nr_events so userspace sees what they
 749	 * expected: additionally, we move req_batch slots to/from percpu
 750	 * counters at a time, so make sure that isn't 0:
 751	 */
 752	nr_events = max(nr_events, num_possible_cpus() * 4);
 753	nr_events *= 2;
 754
 755	/* Prevent overflows */
 756	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
 
 757		pr_debug("ENOMEM: nr_events too high\n");
 758		return ERR_PTR(-EINVAL);
 759	}
 760
 761	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
 762		return ERR_PTR(-EAGAIN);
 763
 764	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
 765	if (!ctx)
 766		return ERR_PTR(-ENOMEM);
 767
 768	ctx->max_reqs = max_reqs;
 
 
 769
 
 770	spin_lock_init(&ctx->ctx_lock);
 771	spin_lock_init(&ctx->completion_lock);
 772	mutex_init(&ctx->ring_lock);
 773	/* Protect against page migration throughout kiotx setup by keeping
 774	 * the ring_lock mutex held until setup is complete. */
 775	mutex_lock(&ctx->ring_lock);
 776	init_waitqueue_head(&ctx->wait);
 777
 778	INIT_LIST_HEAD(&ctx->active_reqs);
 
 
 779
 780	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
 781		goto err;
 782
 783	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
 784		goto err;
 785
 786	ctx->cpu = alloc_percpu(struct kioctx_cpu);
 787	if (!ctx->cpu)
 788		goto err;
 789
 790	err = aio_setup_ring(ctx, nr_events);
 791	if (err < 0)
 792		goto err;
 793
 794	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
 795	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
 796	if (ctx->req_batch < 1)
 797		ctx->req_batch = 1;
 798
 799	/* limit the number of system wide aios */
 800	spin_lock(&aio_nr_lock);
 801	if (aio_nr + ctx->max_reqs > aio_max_nr ||
 802	    aio_nr + ctx->max_reqs < aio_nr) {
 803		spin_unlock(&aio_nr_lock);
 804		err = -EAGAIN;
 805		goto err_ctx;
 806	}
 807	aio_nr += ctx->max_reqs;
 808	spin_unlock(&aio_nr_lock);
 809
 810	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
 811	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
 812
 813	err = ioctx_add_table(ctx, mm);
 814	if (err)
 815		goto err_cleanup;
 816
 817	/* Release the ring_lock mutex now that all setup is complete. */
 818	mutex_unlock(&ctx->ring_lock);
 819
 820	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
 821		 ctx, ctx->user_id, mm, ctx->nr_events);
 822	return ctx;
 823
 824err_cleanup:
 825	aio_nr_sub(ctx->max_reqs);
 826err_ctx:
 827	atomic_set(&ctx->dead, 1);
 828	if (ctx->mmap_size)
 829		vm_munmap(ctx->mmap_base, ctx->mmap_size);
 830	aio_free_ring(ctx);
 831err:
 832	mutex_unlock(&ctx->ring_lock);
 833	free_percpu(ctx->cpu);
 834	percpu_ref_exit(&ctx->reqs);
 835	percpu_ref_exit(&ctx->users);
 836	kmem_cache_free(kioctx_cachep, ctx);
 837	pr_debug("error allocating ioctx %d\n", err);
 838	return ERR_PTR(err);
 839}
 840
 841/* kill_ioctx
 842 *	Cancels all outstanding aio requests on an aio context.  Used
 843 *	when the processes owning a context have all exited to encourage
 844 *	the rapid destruction of the kioctx.
 845 */
 846static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
 847		      struct ctx_rq_wait *wait)
 848{
 849	struct kioctx_table *table;
 
 
 
 850
 851	spin_lock(&mm->ioctx_lock);
 852	if (atomic_xchg(&ctx->dead, 1)) {
 853		spin_unlock(&mm->ioctx_lock);
 854		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 855	}
 856
 857	table = rcu_dereference_raw(mm->ioctx_table);
 858	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
 859	RCU_INIT_POINTER(table->table[ctx->id], NULL);
 860	spin_unlock(&mm->ioctx_lock);
 861
 862	/* free_ioctx_reqs() will do the necessary RCU synchronization */
 863	wake_up_all(&ctx->wait);
 
 
 
 
 
 
 
 
 864
 865	/*
 866	 * It'd be more correct to do this in free_ioctx(), after all
 867	 * the outstanding kiocbs have finished - but by then io_destroy
 868	 * has already returned, so io_setup() could potentially return
 869	 * -EAGAIN with no ioctxs actually in use (as far as userspace
 870	 *  could tell).
 871	 */
 872	aio_nr_sub(ctx->max_reqs);
 
 
 
 
 
 
 
 
 
 
 
 873
 874	if (ctx->mmap_size)
 875		vm_munmap(ctx->mmap_base, ctx->mmap_size);
 
 
 
 
 
 
 
 
 876
 877	ctx->rq_wait = wait;
 878	percpu_ref_kill(&ctx->users);
 879	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 880}
 881
 882/*
 883 * exit_aio: called when the last user of mm goes away.  At this point, there is
 884 * no way for any new requests to be submited or any of the io_* syscalls to be
 885 * called on the context.
 886 *
 887 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
 888 * them.
 
 
 889 */
 890void exit_aio(struct mm_struct *mm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 891{
 892	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
 893	struct ctx_rq_wait wait;
 894	int i, skipped;
 895
 896	if (!table)
 897		return;
 898
 899	atomic_set(&wait.count, table->nr);
 900	init_completion(&wait.comp);
 
 
 
 
 
 
 
 
 
 901
 902	skipped = 0;
 903	for (i = 0; i < table->nr; ++i) {
 904		struct kioctx *ctx =
 905			rcu_dereference_protected(table->table[i], true);
 906
 907		if (!ctx) {
 908			skipped++;
 909			continue;
 910		}
 
 
 911
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 912		/*
 913		 * We don't need to bother with munmap() here - exit_mmap(mm)
 914		 * is coming and it'll unmap everything. And we simply can't,
 915		 * this is not necessarily our ->mm.
 916		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
 917		 * that it needs to unmap the area, just set it to 0.
 
 918		 */
 919		ctx->mmap_size = 0;
 920		kill_ioctx(mm, ctx, &wait);
 
 
 
 921	}
 922
 923	if (!atomic_sub_and_test(skipped, &wait.count)) {
 924		/* Wait until all IO for the context are done. */
 925		wait_for_completion(&wait.comp);
 
 
 
 
 
 
 
 
 
 
 
 926	}
 927
 928	RCU_INIT_POINTER(mm->ioctx_table, NULL);
 929	kfree(table);
 
 
 
 930}
 931
 932static void put_reqs_available(struct kioctx *ctx, unsigned nr)
 
 933{
 934	struct kioctx_cpu *kcpu;
 935	unsigned long flags;
 936
 937	local_irq_save(flags);
 938	kcpu = this_cpu_ptr(ctx->cpu);
 939	kcpu->reqs_available += nr;
 
 
 
 
 940
 941	while (kcpu->reqs_available >= ctx->req_batch * 2) {
 942		kcpu->reqs_available -= ctx->req_batch;
 943		atomic_add(ctx->req_batch, &ctx->reqs_available);
 944	}
 
 
 
 
 
 
 
 
 945
 946	local_irq_restore(flags);
 
 947}
 948
 949static bool __get_reqs_available(struct kioctx *ctx)
 950{
 951	struct kioctx_cpu *kcpu;
 952	bool ret = false;
 953	unsigned long flags;
 
 954
 955	local_irq_save(flags);
 956	kcpu = this_cpu_ptr(ctx->cpu);
 957	if (!kcpu->reqs_available) {
 958		int avail = atomic_read(&ctx->reqs_available);
 959
 960		do {
 961			if (avail < ctx->req_batch)
 962				goto out;
 963		} while (!atomic_try_cmpxchg(&ctx->reqs_available,
 964					     &avail, avail - ctx->req_batch));
 965
 966		kcpu->reqs_available += ctx->req_batch;
 967	}
 
 
 
 
 
 
 
 
 968
 969	ret = true;
 970	kcpu->reqs_available--;
 971out:
 972	local_irq_restore(flags);
 973	return ret;
 974}
 975
 976/* refill_reqs_available
 977 *	Updates the reqs_available reference counts used for tracking the
 978 *	number of free slots in the completion ring.  This can be called
 979 *	from aio_complete() (to optimistically update reqs_available) or
 980 *	from aio_get_req() (the we're out of events case).  It must be
 981 *	called holding ctx->completion_lock.
 982 */
 983static void refill_reqs_available(struct kioctx *ctx, unsigned head,
 984                                  unsigned tail)
 985{
 986	unsigned events_in_ring, completed;
 987
 988	/* Clamp head since userland can write to it. */
 989	head %= ctx->nr_events;
 990	if (head <= tail)
 991		events_in_ring = tail - head;
 992	else
 993		events_in_ring = ctx->nr_events - (head - tail);
 994
 995	completed = ctx->completed_events;
 996	if (events_in_ring < completed)
 997		completed -= events_in_ring;
 998	else
 999		completed = 0;
1000
1001	if (!completed)
1002		return;
 
 
 
 
 
1003
1004	ctx->completed_events -= completed;
1005	put_reqs_available(ctx, completed);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1006}
1007
1008/* user_refill_reqs_available
1009 *	Called to refill reqs_available when aio_get_req() encounters an
1010 *	out of space in the completion ring.
1011 */
1012static void user_refill_reqs_available(struct kioctx *ctx)
1013{
1014	spin_lock_irq(&ctx->completion_lock);
1015	if (ctx->completed_events) {
1016		struct aio_ring *ring;
1017		unsigned head;
1018
1019		/* Access of ring->head may race with aio_read_events_ring()
1020		 * here, but that's okay since whether we read the old version
1021		 * or the new version, and either will be valid.  The important
1022		 * part is that head cannot pass tail since we prevent
1023		 * aio_complete() from updating tail by holding
1024		 * ctx->completion_lock.  Even if head is invalid, the check
1025		 * against ctx->completed_events below will make sure we do the
1026		 * safe/right thing.
1027		 */
1028		ring = kmap_atomic(ctx->ring_pages[0]);
1029		head = ring->head;
1030		kunmap_atomic(ring);
1031
1032		refill_reqs_available(ctx, head, ctx->tail);
 
 
 
 
 
 
 
 
 
 
1033	}
1034
1035	spin_unlock_irq(&ctx->completion_lock);
 
1036}
1037
1038static bool get_reqs_available(struct kioctx *ctx)
 
 
 
 
 
 
 
 
 
1039{
1040	if (__get_reqs_available(ctx))
1041		return true;
1042	user_refill_reqs_available(ctx);
1043	return __get_reqs_available(ctx);
 
 
 
 
 
 
1044}
1045
1046/* aio_get_req
1047 *	Allocate a slot for an aio request.
1048 * Returns NULL if no requests are free.
 
 
 
 
1049 *
1050 * The refcount is initialized to 2 - one for the async op completion,
1051 * one for the synchronous code that does this.
 
 
 
 
 
 
 
 
 
 
 
1052 */
1053static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1054{
1055	struct aio_kiocb *req;
1056
1057	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1058	if (unlikely(!req))
1059		return NULL;
1060
1061	if (unlikely(!get_reqs_available(ctx))) {
1062		kmem_cache_free(kiocb_cachep, req);
1063		return NULL;
1064	}
1065
1066	percpu_ref_get(&ctx->reqs);
1067	req->ki_ctx = ctx;
1068	INIT_LIST_HEAD(&req->ki_list);
1069	refcount_set(&req->ki_refcnt, 2);
1070	req->ki_eventfd = NULL;
1071	return req;
1072}
1073
1074static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1075{
1076	struct aio_ring __user *ring  = (void __user *)ctx_id;
1077	struct mm_struct *mm = current->mm;
1078	struct kioctx *ctx, *ret = NULL;
1079	struct kioctx_table *table;
1080	unsigned id;
 
 
 
1081
1082	if (get_user(id, &ring->id))
1083		return NULL;
1084
1085	rcu_read_lock();
1086	table = rcu_dereference(mm->ioctx_table);
 
 
 
 
 
 
1087
1088	if (!table || id >= table->nr)
 
 
 
 
1089		goto out;
 
1090
1091	id = array_index_nospec(id, table->nr);
1092	ctx = rcu_dereference(table->table[id]);
1093	if (ctx && ctx->user_id == ctx_id) {
1094		if (percpu_ref_tryget_live(&ctx->users))
1095			ret = ctx;
 
 
 
 
 
 
 
 
 
 
1096	}
1097out:
1098	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1099	return ret;
1100}
1101
1102static inline void iocb_destroy(struct aio_kiocb *iocb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1103{
1104	if (iocb->ki_eventfd)
1105		eventfd_ctx_put(iocb->ki_eventfd);
1106	if (iocb->ki_filp)
1107		fput(iocb->ki_filp);
1108	percpu_ref_put(&iocb->ki_ctx->reqs);
1109	kmem_cache_free(kiocb_cachep, iocb);
 
 
 
 
 
1110}
1111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1112/* aio_complete
1113 *	Called when the io request on the given iocb is complete.
 
 
1114 */
1115static void aio_complete(struct aio_kiocb *iocb)
1116{
1117	struct kioctx	*ctx = iocb->ki_ctx;
 
1118	struct aio_ring	*ring;
1119	struct io_event	*ev_page, *event;
1120	unsigned tail, pos, head;
1121	unsigned long	flags;
 
 
1122
1123	/*
1124	 * Add a completion event to the ring buffer. Must be done holding
1125	 * ctx->completion_lock to prevent other code from messing with the tail
1126	 * pointer since we might be called from irq context.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1127	 */
1128	spin_lock_irqsave(&ctx->completion_lock, flags);
1129
1130	tail = ctx->tail;
1131	pos = tail + AIO_EVENTS_OFFSET;
1132
1133	if (++tail >= ctx->nr_events)
1134		tail = 0;
1135
1136	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1137	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
 
 
 
 
1138
1139	*event = iocb->ki_res;
1140
1141	kunmap_atomic(ev_page);
1142	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
 
 
1143
1144	pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1145		 (void __user *)(unsigned long)iocb->ki_res.obj,
1146		 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
 
 
 
 
 
1147
1148	/* after flagging the request as done, we
1149	 * must never even look at it again
1150	 */
1151	smp_wmb();	/* make event visible before updating tail */
1152
1153	ctx->tail = tail;
1154
1155	ring = kmap_atomic(ctx->ring_pages[0]);
1156	head = ring->head;
1157	ring->tail = tail;
1158	kunmap_atomic(ring);
1159	flush_dcache_page(ctx->ring_pages[0]);
1160
1161	ctx->completed_events++;
1162	if (ctx->completed_events > 1)
1163		refill_reqs_available(ctx, head, tail);
1164	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1165
1166	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1167
1168	/*
1169	 * Check if the user asked us to deliver the result through an
1170	 * eventfd. The eventfd_signal() function is safe to be called
1171	 * from IRQ context.
1172	 */
1173	if (iocb->ki_eventfd)
1174		eventfd_signal(iocb->ki_eventfd, 1);
1175
 
 
 
 
1176	/*
1177	 * We have to order our ring_info tail store above and test
1178	 * of the wait list below outside the wait lock.  This is
1179	 * like in wake_up_bit() where clearing a bit has to be
1180	 * ordered with the unlocked test.
1181	 */
1182	smp_mb();
1183
1184	if (waitqueue_active(&ctx->wait))
1185		wake_up(&ctx->wait);
1186}
1187
1188static inline void iocb_put(struct aio_kiocb *iocb)
1189{
1190	if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1191		aio_complete(iocb);
1192		iocb_destroy(iocb);
1193	}
1194}
 
1195
1196/* aio_read_events_ring
1197 *	Pull an event off of the ioctx's event ring.  Returns the number of
1198 *	events fetched
 
 
1199 */
1200static long aio_read_events_ring(struct kioctx *ctx,
1201				 struct io_event __user *event, long nr)
1202{
 
1203	struct aio_ring *ring;
1204	unsigned head, tail, pos;
1205	long ret = 0;
1206	int copy_ret;
1207
1208	/*
1209	 * The mutex can block and wake us up and that will cause
1210	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1211	 * and repeat. This should be rare enough that it doesn't cause
1212	 * peformance issues. See the comment in read_events() for more detail.
1213	 */
1214	sched_annotate_sleep();
1215	mutex_lock(&ctx->ring_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
1216
1217	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1218	ring = kmap_atomic(ctx->ring_pages[0]);
1219	head = ring->head;
1220	tail = ring->tail;
1221	kunmap_atomic(ring);
 
 
 
 
1222
1223	/*
1224	 * Ensure that once we've read the current tail pointer, that
1225	 * we also see the events that were stored up to the tail.
1226	 */
1227	smp_rmb();
1228
1229	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
 
 
1230
1231	if (head == tail)
1232		goto out;
 
1233
1234	head %= ctx->nr_events;
1235	tail %= ctx->nr_events;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1236
1237	while (ret < nr) {
1238		long avail;
1239		struct io_event *ev;
1240		struct page *page;
1241
1242		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1243		if (head == tail)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1244			break;
1245
1246		pos = head + AIO_EVENTS_OFFSET;
1247		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1248		pos %= AIO_EVENTS_PER_PAGE;
1249
1250		avail = min(avail, nr - ret);
1251		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1252
1253		ev = kmap(page);
1254		copy_ret = copy_to_user(event + ret, ev + pos,
1255					sizeof(*ev) * avail);
1256		kunmap(page);
1257
1258		if (unlikely(copy_ret)) {
1259			ret = -EFAULT;
1260			goto out;
 
 
1261		}
 
1262
1263		ret += avail;
1264		head += avail;
1265		head %= ctx->nr_events;
1266	}
1267
1268	ring = kmap_atomic(ctx->ring_pages[0]);
1269	ring->head = head;
1270	kunmap_atomic(ring);
1271	flush_dcache_page(ctx->ring_pages[0]);
1272
1273	pr_debug("%li  h%u t%u\n", ret, head, tail);
1274out:
1275	mutex_unlock(&ctx->ring_lock);
1276
1277	return ret;
1278}
 
 
 
 
1279
1280static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1281			    struct io_event __user *event, long *i)
1282{
1283	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
 
 
1284
1285	if (ret > 0)
1286		*i += ret;
1287
1288	if (unlikely(atomic_read(&ctx->dead)))
1289		ret = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1290
1291	if (!*i)
1292		*i = ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1293
1294	return ret < 0 || *i >= min_nr;
 
 
 
 
1295}
1296
1297static long read_events(struct kioctx *ctx, long min_nr, long nr,
1298			struct io_event __user *event,
1299			ktime_t until)
 
1300{
1301	long ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1302
1303	/*
1304	 * Note that aio_read_events() is being called as the conditional - i.e.
1305	 * we're calling it after prepare_to_wait() has set task state to
1306	 * TASK_INTERRUPTIBLE.
1307	 *
1308	 * But aio_read_events() can block, and if it blocks it's going to flip
1309	 * the task state back to TASK_RUNNING.
1310	 *
1311	 * This should be ok, provided it doesn't flip the state back to
1312	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1313	 * will only happen if the mutex_lock() call blocks, and we then find
1314	 * the ringbuffer empty. So in practice we should be ok, but it's
1315	 * something to be aware of when touching this code.
1316	 */
1317	if (until == 0)
1318		aio_read_events(ctx, min_nr, nr, event, &ret);
1319	else
1320		wait_event_interruptible_hrtimeout(ctx->wait,
1321				aio_read_events(ctx, min_nr, nr, event, &ret),
1322				until);
1323	return ret;
1324}
1325
1326/* sys_io_setup:
1327 *	Create an aio_context capable of receiving at least nr_events.
1328 *	ctxp must not point to an aio_context that already exists, and
1329 *	must be initialized to 0 prior to the call.  On successful
1330 *	creation of the aio_context, *ctxp is filled in with the resulting 
1331 *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1332 *	if the specified nr_events exceeds internal limits.  May fail 
1333 *	with -EAGAIN if the specified nr_events exceeds the user's limit 
1334 *	of available events.  May fail with -ENOMEM if insufficient kernel
1335 *	resources are available.  May fail with -EFAULT if an invalid
1336 *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1337 *	implemented.
1338 */
1339SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1340{
1341	struct kioctx *ioctx = NULL;
1342	unsigned long ctx;
1343	long ret;
1344
1345	ret = get_user(ctx, ctxp);
1346	if (unlikely(ret))
1347		goto out;
1348
1349	ret = -EINVAL;
1350	if (unlikely(ctx || nr_events == 0)) {
1351		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1352		         ctx, nr_events);
1353		goto out;
1354	}
1355
1356	ioctx = ioctx_alloc(nr_events);
1357	ret = PTR_ERR(ioctx);
1358	if (!IS_ERR(ioctx)) {
1359		ret = put_user(ioctx->user_id, ctxp);
1360		if (ret)
1361			kill_ioctx(current->mm, ioctx, NULL);
1362		percpu_ref_put(&ioctx->users);
1363	}
1364
1365out:
1366	return ret;
1367}
1368
1369#ifdef CONFIG_COMPAT
1370COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1371{
1372	struct kioctx *ioctx = NULL;
1373	unsigned long ctx;
1374	long ret;
1375
1376	ret = get_user(ctx, ctx32p);
1377	if (unlikely(ret))
1378		goto out;
1379
1380	ret = -EINVAL;
1381	if (unlikely(ctx || nr_events == 0)) {
1382		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1383		         ctx, nr_events);
1384		goto out;
1385	}
1386
1387	ioctx = ioctx_alloc(nr_events);
1388	ret = PTR_ERR(ioctx);
1389	if (!IS_ERR(ioctx)) {
1390		/* truncating is ok because it's a user address */
1391		ret = put_user((u32)ioctx->user_id, ctx32p);
1392		if (ret)
1393			kill_ioctx(current->mm, ioctx, NULL);
1394		percpu_ref_put(&ioctx->users);
1395	}
1396
1397out:
1398	return ret;
1399}
1400#endif
1401
1402/* sys_io_destroy:
1403 *	Destroy the aio_context specified.  May cancel any outstanding 
1404 *	AIOs and block on completion.  Will fail with -ENOSYS if not
1405 *	implemented.  May fail with -EINVAL if the context pointed to
1406 *	is invalid.
1407 */
1408SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1409{
1410	struct kioctx *ioctx = lookup_ioctx(ctx);
1411	if (likely(NULL != ioctx)) {
1412		struct ctx_rq_wait wait;
1413		int ret;
1414
1415		init_completion(&wait.comp);
1416		atomic_set(&wait.count, 1);
1417
1418		/* Pass requests_done to kill_ioctx() where it can be set
1419		 * in a thread-safe way. If we try to set it here then we have
1420		 * a race condition if two io_destroy() called simultaneously.
1421		 */
1422		ret = kill_ioctx(current->mm, ioctx, &wait);
1423		percpu_ref_put(&ioctx->users);
1424
1425		/* Wait until all IO for the context are done. Otherwise kernel
1426		 * keep using user-space buffers even if user thinks the context
1427		 * is destroyed.
1428		 */
1429		if (!ret)
1430			wait_for_completion(&wait.comp);
1431
1432		return ret;
1433	}
1434	pr_debug("EINVAL: invalid context id\n");
1435	return -EINVAL;
1436}
1437
1438static void aio_remove_iocb(struct aio_kiocb *iocb)
1439{
1440	struct kioctx *ctx = iocb->ki_ctx;
1441	unsigned long flags;
1442
1443	spin_lock_irqsave(&ctx->ctx_lock, flags);
1444	list_del(&iocb->ki_list);
1445	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1446}
1447
1448static void aio_complete_rw(struct kiocb *kiocb, long res)
1449{
1450	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1451
1452	if (!list_empty_careful(&iocb->ki_list))
1453		aio_remove_iocb(iocb);
1454
1455	if (kiocb->ki_flags & IOCB_WRITE) {
1456		struct inode *inode = file_inode(kiocb->ki_filp);
1457
1458		/*
1459		 * Tell lockdep we inherited freeze protection from submission
1460		 * thread.
1461		 */
1462		if (S_ISREG(inode->i_mode))
1463			__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1464		file_end_write(kiocb->ki_filp);
1465	}
1466
1467	iocb->ki_res.res = res;
1468	iocb->ki_res.res2 = 0;
1469	iocb_put(iocb);
1470}
1471
1472static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1473{
1474	int ret;
1475
1476	req->ki_complete = aio_complete_rw;
1477	req->private = NULL;
1478	req->ki_pos = iocb->aio_offset;
1479	req->ki_flags = req->ki_filp->f_iocb_flags;
1480	if (iocb->aio_flags & IOCB_FLAG_RESFD)
1481		req->ki_flags |= IOCB_EVENTFD;
1482	if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1483		/*
1484		 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1485		 * aio_reqprio is interpreted as an I/O scheduling
1486		 * class and priority.
1487		 */
1488		ret = ioprio_check_cap(iocb->aio_reqprio);
1489		if (ret) {
1490			pr_debug("aio ioprio check cap error: %d\n", ret);
1491			return ret;
1492		}
1493
1494		req->ki_ioprio = iocb->aio_reqprio;
1495	} else
1496		req->ki_ioprio = get_current_ioprio();
1497
1498	ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1499	if (unlikely(ret))
1500		return ret;
1501
1502	req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1503	return 0;
1504}
1505
1506static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1507		struct iovec **iovec, bool vectored, bool compat,
1508		struct iov_iter *iter)
1509{
1510	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1511	size_t len = iocb->aio_nbytes;
1512
1513	if (!vectored) {
1514		ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1515		*iovec = NULL;
1516		return ret;
1517	}
1518
1519	return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1520}
1521
1522static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1523{
1524	switch (ret) {
1525	case -EIOCBQUEUED:
1526		break;
1527	case -ERESTARTSYS:
1528	case -ERESTARTNOINTR:
1529	case -ERESTARTNOHAND:
1530	case -ERESTART_RESTARTBLOCK:
1531		/*
1532		 * There's no easy way to restart the syscall since other AIO's
1533		 * may be already running. Just fail this IO with EINTR.
1534		 */
1535		ret = -EINTR;
1536		fallthrough;
1537	default:
1538		req->ki_complete(req, ret);
 
 
1539	}
1540}
1541
1542static int aio_read(struct kiocb *req, const struct iocb *iocb,
1543			bool vectored, bool compat)
1544{
1545	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1546	struct iov_iter iter;
1547	struct file *file;
1548	int ret;
1549
1550	ret = aio_prep_rw(req, iocb);
1551	if (ret)
1552		return ret;
1553	file = req->ki_filp;
1554	if (unlikely(!(file->f_mode & FMODE_READ)))
1555		return -EBADF;
1556	if (unlikely(!file->f_op->read_iter))
1557		return -EINVAL;
1558
1559	ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter);
1560	if (ret < 0)
1561		return ret;
1562	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1563	if (!ret)
1564		aio_rw_done(req, call_read_iter(file, req, &iter));
1565	kfree(iovec);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1566	return ret;
1567}
1568
1569static int aio_write(struct kiocb *req, const struct iocb *iocb,
1570			 bool vectored, bool compat)
1571{
1572	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1573	struct iov_iter iter;
1574	struct file *file;
1575	int ret;
1576
1577	ret = aio_prep_rw(req, iocb);
1578	if (ret)
1579		return ret;
1580	file = req->ki_filp;
1581
1582	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1583		return -EBADF;
1584	if (unlikely(!file->f_op->write_iter))
1585		return -EINVAL;
1586
1587	ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter);
1588	if (ret < 0)
1589		return ret;
1590	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1591	if (!ret) {
1592		/*
1593		 * Open-code file_start_write here to grab freeze protection,
1594		 * which will be released by another thread in
1595		 * aio_complete_rw().  Fool lockdep by telling it the lock got
1596		 * released so that it doesn't complain about the held lock when
1597		 * we return to userspace.
1598		 */
1599		if (S_ISREG(file_inode(file)->i_mode)) {
1600			sb_start_write(file_inode(file)->i_sb);
1601			__sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1602		}
1603		req->ki_flags |= IOCB_WRITE;
1604		aio_rw_done(req, call_write_iter(file, req, &iter));
1605	}
1606	kfree(iovec);
1607	return ret;
1608}
1609
1610static void aio_fsync_work(struct work_struct *work)
1611{
1612	struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1613	const struct cred *old_cred = override_creds(iocb->fsync.creds);
1614
1615	iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1616	revert_creds(old_cred);
1617	put_cred(iocb->fsync.creds);
1618	iocb_put(iocb);
1619}
1620
1621static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1622		     bool datasync)
1623{
1624	if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1625			iocb->aio_rw_flags))
1626		return -EINVAL;
1627
1628	if (unlikely(!req->file->f_op->fsync))
1629		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
1630
1631	req->creds = prepare_creds();
1632	if (!req->creds)
1633		return -ENOMEM;
1634
1635	req->datasync = datasync;
1636	INIT_WORK(&req->work, aio_fsync_work);
1637	schedule_work(&req->work);
1638	return 0;
 
 
 
 
 
1639}
1640
1641static void aio_poll_put_work(struct work_struct *work)
1642{
1643	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1644	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1645
1646	iocb_put(iocb);
 
 
 
 
 
 
 
 
 
1647}
1648
1649/*
1650 * Safely lock the waitqueue which the request is on, synchronizing with the
1651 * case where the ->poll() provider decides to free its waitqueue early.
1652 *
1653 * Returns true on success, meaning that req->head->lock was locked, req->wait
1654 * is on req->head, and an RCU read lock was taken.  Returns false if the
1655 * request was already removed from its waitqueue (which might no longer exist).
1656 */
1657static bool poll_iocb_lock_wq(struct poll_iocb *req)
1658{
1659	wait_queue_head_t *head;
 
1660
1661	/*
1662	 * While we hold the waitqueue lock and the waitqueue is nonempty,
1663	 * wake_up_pollfree() will wait for us.  However, taking the waitqueue
1664	 * lock in the first place can race with the waitqueue being freed.
1665	 *
1666	 * We solve this as eventpoll does: by taking advantage of the fact that
1667	 * all users of wake_up_pollfree() will RCU-delay the actual free.  If
1668	 * we enter rcu_read_lock() and see that the pointer to the queue is
1669	 * non-NULL, we can then lock it without the memory being freed out from
1670	 * under us, then check whether the request is still on the queue.
1671	 *
1672	 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1673	 * case the caller deletes the entry from the queue, leaving it empty.
1674	 * In that case, only RCU prevents the queue memory from being freed.
1675	 */
1676	rcu_read_lock();
1677	head = smp_load_acquire(&req->head);
1678	if (head) {
1679		spin_lock(&head->lock);
1680		if (!list_empty(&req->wait.entry))
1681			return true;
1682		spin_unlock(&head->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1683	}
1684	rcu_read_unlock();
1685	return false;
1686}
1687
1688static void poll_iocb_unlock_wq(struct poll_iocb *req)
1689{
1690	spin_unlock(&req->head->lock);
1691	rcu_read_unlock();
1692}
1693
1694static void aio_poll_complete_work(struct work_struct *work)
1695{
1696	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1697	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1698	struct poll_table_struct pt = { ._key = req->events };
1699	struct kioctx *ctx = iocb->ki_ctx;
1700	__poll_t mask = 0;
1701
1702	if (!READ_ONCE(req->cancelled))
1703		mask = vfs_poll(req->file, &pt) & req->events;
1704
1705	/*
1706	 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1707	 * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1708	 * synchronize with them.  In the cancellation case the list_del_init
1709	 * itself is not actually needed, but harmless so we keep it in to
1710	 * avoid further branches in the fast path.
1711	 */
1712	spin_lock_irq(&ctx->ctx_lock);
1713	if (poll_iocb_lock_wq(req)) {
1714		if (!mask && !READ_ONCE(req->cancelled)) {
1715			/*
1716			 * The request isn't actually ready to be completed yet.
1717			 * Reschedule completion if another wakeup came in.
1718			 */
1719			if (req->work_need_resched) {
1720				schedule_work(&req->work);
1721				req->work_need_resched = false;
1722			} else {
1723				req->work_scheduled = false;
1724			}
1725			poll_iocb_unlock_wq(req);
1726			spin_unlock_irq(&ctx->ctx_lock);
1727			return;
1728		}
1729		list_del_init(&req->wait.entry);
1730		poll_iocb_unlock_wq(req);
1731	} /* else, POLLFREE has freed the waitqueue, so we must complete */
1732	list_del_init(&iocb->ki_list);
1733	iocb->ki_res.res = mangle_poll(mask);
1734	spin_unlock_irq(&ctx->ctx_lock);
1735
1736	iocb_put(iocb);
1737}
1738
1739/* assumes we are called with irqs disabled */
1740static int aio_poll_cancel(struct kiocb *iocb)
1741{
1742	struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1743	struct poll_iocb *req = &aiocb->poll;
1744
1745	if (poll_iocb_lock_wq(req)) {
1746		WRITE_ONCE(req->cancelled, true);
1747		if (!req->work_scheduled) {
1748			schedule_work(&aiocb->poll.work);
1749			req->work_scheduled = true;
1750		}
1751		poll_iocb_unlock_wq(req);
1752	} /* else, the request was force-cancelled by POLLFREE already */
1753
1754	return 0;
1755}
1756
1757static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1758		void *key)
 
1759{
1760	struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1761	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1762	__poll_t mask = key_to_poll(key);
1763	unsigned long flags;
1764
1765	/* for instances that support it check for an event match first: */
1766	if (mask && !(mask & req->events))
1767		return 0;
1768
1769	/*
1770	 * Complete the request inline if possible.  This requires that three
1771	 * conditions be met:
1772	 *   1. An event mask must have been passed.  If a plain wakeup was done
1773	 *	instead, then mask == 0 and we have to call vfs_poll() to get
1774	 *	the events, so inline completion isn't possible.
1775	 *   2. The completion work must not have already been scheduled.
1776	 *   3. ctx_lock must not be busy.  We have to use trylock because we
1777	 *	already hold the waitqueue lock, so this inverts the normal
1778	 *	locking order.  Use irqsave/irqrestore because not all
1779	 *	filesystems (e.g. fuse) call this function with IRQs disabled,
1780	 *	yet IRQs have to be disabled before ctx_lock is obtained.
1781	 */
1782	if (mask && !req->work_scheduled &&
1783	    spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1784		struct kioctx *ctx = iocb->ki_ctx;
1785
1786		list_del_init(&req->wait.entry);
1787		list_del(&iocb->ki_list);
1788		iocb->ki_res.res = mangle_poll(mask);
1789		if (iocb->ki_eventfd && !eventfd_signal_allowed()) {
1790			iocb = NULL;
1791			INIT_WORK(&req->work, aio_poll_put_work);
1792			schedule_work(&req->work);
1793		}
1794		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1795		if (iocb)
1796			iocb_put(iocb);
1797	} else {
1798		/*
1799		 * Schedule the completion work if needed.  If it was already
1800		 * scheduled, record that another wakeup came in.
1801		 *
1802		 * Don't remove the request from the waitqueue here, as it might
1803		 * not actually be complete yet (we won't know until vfs_poll()
1804		 * is called), and we must not miss any wakeups.  POLLFREE is an
1805		 * exception to this; see below.
1806		 */
1807		if (req->work_scheduled) {
1808			req->work_need_resched = true;
1809		} else {
1810			schedule_work(&req->work);
1811			req->work_scheduled = true;
1812		}
1813
1814		/*
1815		 * If the waitqueue is being freed early but we can't complete
1816		 * the request inline, we have to tear down the request as best
1817		 * we can.  That means immediately removing the request from its
1818		 * waitqueue and preventing all further accesses to the
1819		 * waitqueue via the request.  We also need to schedule the
1820		 * completion work (done above).  Also mark the request as
1821		 * cancelled, to potentially skip an unneeded call to ->poll().
1822		 */
1823		if (mask & POLLFREE) {
1824			WRITE_ONCE(req->cancelled, true);
1825			list_del_init(&req->wait.entry);
1826
1827			/*
1828			 * Careful: this *must* be the last step, since as soon
1829			 * as req->head is NULL'ed out, the request can be
1830			 * completed and freed, since aio_poll_complete_work()
1831			 * will no longer need to take the waitqueue lock.
1832			 */
1833			smp_store_release(&req->head, NULL);
1834		}
1835	}
1836	return 1;
1837}
1838
1839struct aio_poll_table {
1840	struct poll_table_struct	pt;
1841	struct aio_kiocb		*iocb;
1842	bool				queued;
1843	int				error;
1844};
1845
1846static void
1847aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1848		struct poll_table_struct *p)
1849{
1850	struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1851
1852	/* multiple wait queues per file are not supported */
1853	if (unlikely(pt->queued)) {
1854		pt->error = -EINVAL;
1855		return;
1856	}
1857
1858	pt->queued = true;
1859	pt->error = 0;
1860	pt->iocb->poll.head = head;
1861	add_wait_queue(head, &pt->iocb->poll.wait);
1862}
1863
1864static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1865{
1866	struct kioctx *ctx = aiocb->ki_ctx;
1867	struct poll_iocb *req = &aiocb->poll;
1868	struct aio_poll_table apt;
1869	bool cancel = false;
1870	__poll_t mask;
1871
1872	/* reject any unknown events outside the normal event mask. */
1873	if ((u16)iocb->aio_buf != iocb->aio_buf)
1874		return -EINVAL;
1875	/* reject fields that are not defined for poll */
1876	if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1877		return -EINVAL;
1878
1879	INIT_WORK(&req->work, aio_poll_complete_work);
1880	req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1881
1882	req->head = NULL;
1883	req->cancelled = false;
1884	req->work_scheduled = false;
1885	req->work_need_resched = false;
1886
1887	apt.pt._qproc = aio_poll_queue_proc;
1888	apt.pt._key = req->events;
1889	apt.iocb = aiocb;
1890	apt.queued = false;
1891	apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1892
1893	/* initialized the list so that we can do list_empty checks */
1894	INIT_LIST_HEAD(&req->wait.entry);
1895	init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1896
1897	mask = vfs_poll(req->file, &apt.pt) & req->events;
1898	spin_lock_irq(&ctx->ctx_lock);
1899	if (likely(apt.queued)) {
1900		bool on_queue = poll_iocb_lock_wq(req);
1901
1902		if (!on_queue || req->work_scheduled) {
1903			/*
1904			 * aio_poll_wake() already either scheduled the async
1905			 * completion work, or completed the request inline.
1906			 */
1907			if (apt.error) /* unsupported case: multiple queues */
1908				cancel = true;
1909			apt.error = 0;
1910			mask = 0;
1911		}
1912		if (mask || apt.error) {
1913			/* Steal to complete synchronously. */
1914			list_del_init(&req->wait.entry);
1915		} else if (cancel) {
1916			/* Cancel if possible (may be too late though). */
1917			WRITE_ONCE(req->cancelled, true);
1918		} else if (on_queue) {
1919			/*
1920			 * Actually waiting for an event, so add the request to
1921			 * active_reqs so that it can be cancelled if needed.
1922			 */
1923			list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1924			aiocb->ki_cancel = aio_poll_cancel;
1925		}
1926		if (on_queue)
1927			poll_iocb_unlock_wq(req);
1928	}
1929	if (mask) { /* no async, we'd stolen it */
1930		aiocb->ki_res.res = mangle_poll(mask);
1931		apt.error = 0;
1932	}
1933	spin_unlock_irq(&ctx->ctx_lock);
1934	if (mask)
1935		iocb_put(aiocb);
1936	return apt.error;
1937}
1938
1939static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1940			   struct iocb __user *user_iocb, struct aio_kiocb *req,
1941			   bool compat)
1942{
1943	req->ki_filp = fget(iocb->aio_fildes);
1944	if (unlikely(!req->ki_filp))
1945		return -EBADF;
1946
 
 
 
 
 
 
1947	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1948		struct eventfd_ctx *eventfd;
1949		/*
1950		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1951		 * instance of the file* now. The file descriptor must be
1952		 * an eventfd() fd, and will be signaled for each completed
1953		 * event using the eventfd_signal() function.
1954		 */
1955		eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1956		if (IS_ERR(eventfd))
1957			return PTR_ERR(eventfd);
1958
1959		req->ki_eventfd = eventfd;
 
1960	}
1961
1962	if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1963		pr_debug("EFAULT: aio_key\n");
1964		return -EFAULT;
 
1965	}
1966
1967	req->ki_res.obj = (u64)(unsigned long)user_iocb;
1968	req->ki_res.data = iocb->aio_data;
1969	req->ki_res.res = 0;
1970	req->ki_res.res2 = 0;
1971
1972	switch (iocb->aio_lio_opcode) {
1973	case IOCB_CMD_PREAD:
1974		return aio_read(&req->rw, iocb, false, compat);
1975	case IOCB_CMD_PWRITE:
1976		return aio_write(&req->rw, iocb, false, compat);
1977	case IOCB_CMD_PREADV:
1978		return aio_read(&req->rw, iocb, true, compat);
1979	case IOCB_CMD_PWRITEV:
1980		return aio_write(&req->rw, iocb, true, compat);
1981	case IOCB_CMD_FSYNC:
1982		return aio_fsync(&req->fsync, iocb, false);
1983	case IOCB_CMD_FDSYNC:
1984		return aio_fsync(&req->fsync, iocb, true);
1985	case IOCB_CMD_POLL:
1986		return aio_poll(req, iocb);
1987	default:
1988		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1989		return -EINVAL;
1990	}
1991}
1992
1993static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1994			 bool compat)
1995{
1996	struct aio_kiocb *req;
1997	struct iocb iocb;
1998	int err;
1999
2000	if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
2001		return -EFAULT;
2002
2003	/* enforce forwards compatibility on users */
2004	if (unlikely(iocb.aio_reserved2)) {
2005		pr_debug("EINVAL: reserve field set\n");
2006		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
2007	}
2008
2009	/* prevent overflows */
2010	if (unlikely(
2011	    (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
2012	    (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
2013	    ((ssize_t)iocb.aio_nbytes < 0)
2014	   )) {
2015		pr_debug("EINVAL: overflow check\n");
2016		return -EINVAL;
2017	}
 
2018
2019	req = aio_get_req(ctx);
2020	if (unlikely(!req))
2021		return -EAGAIN;
2022
2023	err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2024
2025	/* Done with the synchronous reference */
2026	iocb_put(req);
2027
2028	/*
2029	 * If err is 0, we'd either done aio_complete() ourselves or have
2030	 * arranged for that to be done asynchronously.  Anything non-zero
2031	 * means that we need to destroy req ourselves.
2032	 */
2033	if (unlikely(err)) {
2034		iocb_destroy(req);
2035		put_reqs_available(ctx, 1);
2036	}
2037	return err;
2038}
2039
2040/* sys_io_submit:
2041 *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
2042 *	the number of iocbs queued.  May return -EINVAL if the aio_context
2043 *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
2044 *	*iocbpp[0] is not properly initialized, if the operation specified
2045 *	is invalid for the file descriptor in the iocb.  May fail with
2046 *	-EFAULT if any of the data structures point to invalid data.  May
2047 *	fail with -EBADF if the file descriptor specified in the first
2048 *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
2049 *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
2050 *	fail with -ENOSYS if not implemented.
2051 */
2052SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2053		struct iocb __user * __user *, iocbpp)
2054{
2055	struct kioctx *ctx;
2056	long ret = 0;
2057	int i = 0;
2058	struct blk_plug plug;
 
2059
2060	if (unlikely(nr < 0))
2061		return -EINVAL;
2062
 
 
 
 
 
 
2063	ctx = lookup_ioctx(ctx_id);
2064	if (unlikely(!ctx)) {
2065		pr_debug("EINVAL: invalid context id\n");
2066		return -EINVAL;
2067	}
2068
2069	if (nr > ctx->nr_events)
2070		nr = ctx->nr_events;
 
2071
2072	if (nr > AIO_PLUG_THRESHOLD)
2073		blk_start_plug(&plug);
2074	for (i = 0; i < nr; i++) {
 
 
2075		struct iocb __user *user_iocb;
 
 
 
 
 
 
2076
2077		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2078			ret = -EFAULT;
2079			break;
2080		}
2081
2082		ret = io_submit_one(ctx, user_iocb, false);
2083		if (ret)
2084			break;
2085	}
2086	if (nr > AIO_PLUG_THRESHOLD)
2087		blk_finish_plug(&plug);
2088
2089	percpu_ref_put(&ctx->users);
 
2090	return i ? i : ret;
2091}
2092
2093#ifdef CONFIG_COMPAT
2094COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2095		       int, nr, compat_uptr_t __user *, iocbpp)
 
 
 
 
 
 
 
 
 
 
 
2096{
2097	struct kioctx *ctx;
2098	long ret = 0;
2099	int i = 0;
2100	struct blk_plug plug;
2101
2102	if (unlikely(nr < 0))
2103		return -EINVAL;
2104
2105	ctx = lookup_ioctx(ctx_id);
2106	if (unlikely(!ctx)) {
2107		pr_debug("EINVAL: invalid context id\n");
2108		return -EINVAL;
2109	}
2110
2111	if (nr > ctx->nr_events)
2112		nr = ctx->nr_events;
2113
2114	if (nr > AIO_PLUG_THRESHOLD)
2115		blk_start_plug(&plug);
2116	for (i = 0; i < nr; i++) {
2117		compat_uptr_t user_iocb;
 
 
 
2118
2119		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2120			ret = -EFAULT;
2121			break;
2122		}
2123
2124		ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2125		if (ret)
2126			break;
 
 
2127	}
2128	if (nr > AIO_PLUG_THRESHOLD)
2129		blk_finish_plug(&plug);
2130
2131	percpu_ref_put(&ctx->users);
2132	return i ? i : ret;
2133}
2134#endif
2135
2136/* sys_io_cancel:
2137 *	Attempts to cancel an iocb previously passed to io_submit.  If
2138 *	the operation is successfully cancelled, the resulting event is
2139 *	copied into the memory pointed to by result without being placed
2140 *	into the completion queue and 0 is returned.  May fail with
2141 *	-EFAULT if any of the data structures pointed to are invalid.
2142 *	May fail with -EINVAL if aio_context specified by ctx_id is
2143 *	invalid.  May fail with -EAGAIN if the iocb specified was not
2144 *	cancelled.  Will fail with -ENOSYS if not implemented.
2145 */
2146SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2147		struct io_event __user *, result)
2148{
 
2149	struct kioctx *ctx;
2150	struct aio_kiocb *kiocb;
2151	int ret = -EINVAL;
2152	u32 key;
2153	u64 obj = (u64)(unsigned long)iocb;
2154
2155	if (unlikely(get_user(key, &iocb->aio_key)))
 
2156		return -EFAULT;
2157	if (unlikely(key != KIOCB_KEY))
2158		return -EINVAL;
2159
2160	ctx = lookup_ioctx(ctx_id);
2161	if (unlikely(!ctx))
2162		return -EINVAL;
2163
2164	spin_lock_irq(&ctx->ctx_lock);
2165	/* TODO: use a hash or array, this sucks. */
2166	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2167		if (kiocb->ki_res.obj == obj) {
2168			ret = kiocb->ki_cancel(&kiocb->rw);
2169			list_del_init(&kiocb->ki_list);
2170			break;
2171		}
2172	}
2173	spin_unlock_irq(&ctx->ctx_lock);
2174
2175	if (!ret) {
2176		/*
2177		 * The result argument is no longer used - the io_event is
2178		 * always delivered via the ring buffer. -EINPROGRESS indicates
2179		 * cancellation is progress:
2180		 */
2181		ret = -EINPROGRESS;
2182	}
2183
2184	percpu_ref_put(&ctx->users);
2185
2186	return ret;
2187}
2188
2189static long do_io_getevents(aio_context_t ctx_id,
2190		long min_nr,
2191		long nr,
2192		struct io_event __user *events,
2193		struct timespec64 *ts)
2194{
2195	ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2196	struct kioctx *ioctx = lookup_ioctx(ctx_id);
2197	long ret = -EINVAL;
2198
2199	if (likely(ioctx)) {
2200		if (likely(min_nr <= nr && min_nr >= 0))
2201			ret = read_events(ioctx, min_nr, nr, events, until);
2202		percpu_ref_put(&ioctx->users);
2203	}
2204
2205	return ret;
2206}
2207
2208/* io_getevents:
2209 *	Attempts to read at least min_nr events and up to nr events from
2210 *	the completion queue for the aio_context specified by ctx_id. If
2211 *	it succeeds, the number of read events is returned. May fail with
2212 *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2213 *	out of range, if timeout is out of range.  May fail with -EFAULT
2214 *	if any of the memory specified is invalid.  May return 0 or
2215 *	< min_nr if the timeout specified by timeout has elapsed
2216 *	before sufficient events are available, where timeout == NULL
2217 *	specifies an infinite timeout. Note that the timeout pointed to by
2218 *	timeout is relative.  Will fail with -ENOSYS if not implemented.
 
2219 */
2220#ifdef CONFIG_64BIT
2221
2222SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2223		long, min_nr,
2224		long, nr,
2225		struct io_event __user *, events,
2226		struct __kernel_timespec __user *, timeout)
2227{
2228	struct timespec64	ts;
2229	int			ret;
2230
2231	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2232		return -EFAULT;
2233
2234	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2235	if (!ret && signal_pending(current))
2236		ret = -EINTR;
2237	return ret;
2238}
2239
2240#endif
2241
2242struct __aio_sigset {
2243	const sigset_t __user	*sigmask;
2244	size_t		sigsetsize;
2245};
2246
2247SYSCALL_DEFINE6(io_pgetevents,
2248		aio_context_t, ctx_id,
2249		long, min_nr,
2250		long, nr,
2251		struct io_event __user *, events,
2252		struct __kernel_timespec __user *, timeout,
2253		const struct __aio_sigset __user *, usig)
2254{
2255	struct __aio_sigset	ksig = { NULL, };
2256	struct timespec64	ts;
2257	bool interrupted;
2258	int ret;
2259
2260	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2261		return -EFAULT;
2262
2263	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2264		return -EFAULT;
2265
2266	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2267	if (ret)
2268		return ret;
2269
2270	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2271
2272	interrupted = signal_pending(current);
2273	restore_saved_sigmask_unless(interrupted);
2274	if (interrupted && !ret)
2275		ret = -ERESTARTNOHAND;
2276
2277	return ret;
2278}
2279
2280#if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2281
2282SYSCALL_DEFINE6(io_pgetevents_time32,
2283		aio_context_t, ctx_id,
2284		long, min_nr,
2285		long, nr,
2286		struct io_event __user *, events,
2287		struct old_timespec32 __user *, timeout,
2288		const struct __aio_sigset __user *, usig)
2289{
2290	struct __aio_sigset	ksig = { NULL, };
2291	struct timespec64	ts;
2292	bool interrupted;
2293	int ret;
2294
2295	if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2296		return -EFAULT;
2297
2298	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2299		return -EFAULT;
2300
2301
2302	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2303	if (ret)
2304		return ret;
2305
2306	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2307
2308	interrupted = signal_pending(current);
2309	restore_saved_sigmask_unless(interrupted);
2310	if (interrupted && !ret)
2311		ret = -ERESTARTNOHAND;
2312
2313	return ret;
2314}
2315
2316#endif
2317
2318#if defined(CONFIG_COMPAT_32BIT_TIME)
2319
2320SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2321		__s32, min_nr,
2322		__s32, nr,
2323		struct io_event __user *, events,
2324		struct old_timespec32 __user *, timeout)
2325{
2326	struct timespec64 t;
2327	int ret;
2328
2329	if (timeout && get_old_timespec32(&t, timeout))
2330		return -EFAULT;
2331
2332	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2333	if (!ret && signal_pending(current))
2334		ret = -EINTR;
2335	return ret;
2336}
2337
2338#endif
2339
2340#ifdef CONFIG_COMPAT
2341
2342struct __compat_aio_sigset {
2343	compat_uptr_t		sigmask;
2344	compat_size_t		sigsetsize;
2345};
2346
2347#if defined(CONFIG_COMPAT_32BIT_TIME)
2348
2349COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2350		compat_aio_context_t, ctx_id,
2351		compat_long_t, min_nr,
2352		compat_long_t, nr,
2353		struct io_event __user *, events,
2354		struct old_timespec32 __user *, timeout,
2355		const struct __compat_aio_sigset __user *, usig)
2356{
2357	struct __compat_aio_sigset ksig = { 0, };
2358	struct timespec64 t;
2359	bool interrupted;
2360	int ret;
2361
2362	if (timeout && get_old_timespec32(&t, timeout))
2363		return -EFAULT;
2364
2365	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2366		return -EFAULT;
2367
2368	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2369	if (ret)
2370		return ret;
2371
2372	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2373
2374	interrupted = signal_pending(current);
2375	restore_saved_sigmask_unless(interrupted);
2376	if (interrupted && !ret)
2377		ret = -ERESTARTNOHAND;
2378
2379	return ret;
2380}
2381
2382#endif
2383
2384COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2385		compat_aio_context_t, ctx_id,
2386		compat_long_t, min_nr,
2387		compat_long_t, nr,
2388		struct io_event __user *, events,
2389		struct __kernel_timespec __user *, timeout,
2390		const struct __compat_aio_sigset __user *, usig)
2391{
2392	struct __compat_aio_sigset ksig = { 0, };
2393	struct timespec64 t;
2394	bool interrupted;
2395	int ret;
2396
2397	if (timeout && get_timespec64(&t, timeout))
2398		return -EFAULT;
2399
2400	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2401		return -EFAULT;
2402
2403	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2404	if (ret)
2405		return ret;
2406
2407	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2408
2409	interrupted = signal_pending(current);
2410	restore_saved_sigmask_unless(interrupted);
2411	if (interrupted && !ret)
2412		ret = -ERESTARTNOHAND;
 
2413
 
2414	return ret;
2415}
2416#endif
v3.5.6
   1/*
   2 *	An async IO implementation for Linux
   3 *	Written by Benjamin LaHaise <bcrl@kvack.org>
   4 *
   5 *	Implements an efficient asynchronous io interface.
   6 *
   7 *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
 
   8 *
   9 *	See ../COPYING for licensing terms.
  10 */
 
 
  11#include <linux/kernel.h>
  12#include <linux/init.h>
  13#include <linux/errno.h>
  14#include <linux/time.h>
  15#include <linux/aio_abi.h>
  16#include <linux/export.h>
  17#include <linux/syscalls.h>
  18#include <linux/backing-dev.h>
 
  19#include <linux/uio.h>
  20
  21#define DEBUG 0
  22
  23#include <linux/sched.h>
  24#include <linux/fs.h>
  25#include <linux/file.h>
  26#include <linux/mm.h>
  27#include <linux/mman.h>
  28#include <linux/mmu_context.h>
  29#include <linux/slab.h>
  30#include <linux/timer.h>
  31#include <linux/aio.h>
  32#include <linux/highmem.h>
  33#include <linux/workqueue.h>
  34#include <linux/security.h>
  35#include <linux/eventfd.h>
  36#include <linux/blkdev.h>
  37#include <linux/compat.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  38
  39#include <asm/kmap_types.h>
  40#include <asm/uaccess.h>
  41
  42#if DEBUG > 1
  43#define dprintk		printk
  44#else
  45#define dprintk(x...)	do { ; } while (0)
  46#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  47
  48/*------ sysctl variables----*/
  49static DEFINE_SPINLOCK(aio_nr_lock);
  50unsigned long aio_nr;		/* current system wide number of aio requests */
  51unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
  52/*----end sysctl variables---*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  53
  54static struct kmem_cache	*kiocb_cachep;
  55static struct kmem_cache	*kioctx_cachep;
  56
  57static struct workqueue_struct *aio_wq;
  58
  59/* Used for rare fput completion. */
  60static void aio_fput_routine(struct work_struct *);
  61static DECLARE_WORK(fput_work, aio_fput_routine);
  62
  63static DEFINE_SPINLOCK(fput_lock);
  64static LIST_HEAD(fput_head);
  65
  66static void aio_kick_handler(struct work_struct *);
  67static void aio_queue_work(struct kioctx *);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  68
  69/* aio_setup
  70 *	Creates the slab caches used by the aio routines, panic on
  71 *	failure as this is done early during the boot sequence.
  72 */
  73static int __init aio_setup(void)
  74{
  75	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
 
 
 
 
 
 
 
 
 
  76	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
 
 
 
 
  77
  78	aio_wq = alloc_workqueue("aio", 0, 1);	/* used to limit concurrency */
  79	BUG_ON(!aio_wq);
 
 
 
 
 
  80
  81	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
 
 
 
 
 
  82
  83	return 0;
 
  84}
  85__initcall(aio_setup);
  86
  87static void aio_free_ring(struct kioctx *ctx)
  88{
  89	struct aio_ring_info *info = &ctx->ring_info;
  90	long i;
  91
  92	for (i=0; i<info->nr_pages; i++)
  93		put_page(info->ring_pages[i]);
 
 
  94
  95	if (info->mmap_size) {
  96		BUG_ON(ctx->mm != current->mm);
  97		vm_munmap(info->mmap_base, info->mmap_size);
 
 
 
 
 
 
  98	}
  99
 100	if (info->ring_pages && info->ring_pages != info->internal_pages)
 101		kfree(info->ring_pages);
 102	info->ring_pages = NULL;
 103	info->nr = 0;
 104}
 105
 106static int aio_setup_ring(struct kioctx *ctx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 107{
 108	struct aio_ring *ring;
 109	struct aio_ring_info *info = &ctx->ring_info;
 110	unsigned nr_events = ctx->max_reqs;
 111	unsigned long size;
 112	int nr_pages;
 
 
 113
 114	/* Compensate for the ring buffer's head/tail overlap entry */
 115	nr_events += 2;	/* 1 is required, 2 for good luck */
 116
 117	size = sizeof(struct aio_ring);
 118	size += sizeof(struct io_event) * nr_events;
 119	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
 120
 
 121	if (nr_pages < 0)
 122		return -EINVAL;
 123
 124	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
 
 
 
 
 
 
 
 
 125
 126	info->nr = 0;
 127	info->ring_pages = info->internal_pages;
 128	if (nr_pages > AIO_RING_PAGES) {
 129		info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
 130		if (!info->ring_pages)
 
 
 131			return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 132	}
 
 133
 134	info->mmap_size = nr_pages * PAGE_SIZE;
 135	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
 136	down_write(&ctx->mm->mmap_sem);
 137	info->mmap_base = do_mmap_pgoff(NULL, 0, info->mmap_size, 
 138					PROT_READ|PROT_WRITE,
 139					MAP_ANONYMOUS|MAP_PRIVATE, 0);
 140	if (IS_ERR((void *)info->mmap_base)) {
 141		up_write(&ctx->mm->mmap_sem);
 142		info->mmap_size = 0;
 143		aio_free_ring(ctx);
 144		return -EAGAIN;
 145	}
 146
 147	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
 148	info->nr_pages = get_user_pages(current, ctx->mm,
 149					info->mmap_base, nr_pages, 
 150					1, 0, info->ring_pages, NULL);
 151	up_write(&ctx->mm->mmap_sem);
 152
 153	if (unlikely(info->nr_pages != nr_pages)) {
 
 154		aio_free_ring(ctx);
 155		return -EAGAIN;
 
 
 
 
 
 
 
 
 
 
 156	}
 157
 158	ctx->user_id = info->mmap_base;
 159
 160	info->nr = nr_events;		/* trusted copy */
 
 161
 162	ring = kmap_atomic(info->ring_pages[0]);
 163	ring->nr = nr_events;	/* user copy */
 164	ring->id = ctx->user_id;
 165	ring->head = ring->tail = 0;
 166	ring->magic = AIO_RING_MAGIC;
 167	ring->compat_features = AIO_RING_COMPAT_FEATURES;
 168	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
 169	ring->header_length = sizeof(struct aio_ring);
 170	kunmap_atomic(ring);
 
 171
 172	return 0;
 173}
 174
 175
 176/* aio_ring_event: returns a pointer to the event at the given index from
 177 * kmap_atomic().  Release the pointer with put_aio_ring_event();
 178 */
 179#define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
 180#define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
 181#define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
 182
 183#define aio_ring_event(info, nr) ({					\
 184	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
 185	struct io_event *__event;					\
 186	__event = kmap_atomic(						\
 187			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE]); \
 188	__event += pos % AIO_EVENTS_PER_PAGE;				\
 189	__event;							\
 190})
 191
 192#define put_aio_ring_event(event) do {		\
 193	struct io_event *__event = (event);	\
 194	(void)__event;				\
 195	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK)); \
 196} while(0)
 
 
 
 
 
 
 
 
 
 
 
 
 197
 198static void ctx_rcu_free(struct rcu_head *head)
 
 
 
 
 
 
 
 199{
 200	struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
 201	kmem_cache_free(kioctx_cachep, ctx);
 
 
 
 
 
 
 
 202}
 203
 204/* __put_ioctx
 205 *	Called when the last user of an aio context has gone away,
 206 *	and the struct needs to be freed.
 
 207 */
 208static void __put_ioctx(struct kioctx *ctx)
 209{
 210	unsigned nr_events = ctx->max_reqs;
 211	BUG_ON(ctx->reqs_active);
 212
 213	cancel_delayed_work_sync(&ctx->wq);
 214	aio_free_ring(ctx);
 215	mmdrop(ctx->mm);
 216	ctx->mm = NULL;
 217	if (nr_events) {
 218		spin_lock(&aio_nr_lock);
 219		BUG_ON(aio_nr - nr_events > aio_nr);
 220		aio_nr -= nr_events;
 221		spin_unlock(&aio_nr_lock);
 222	}
 223	pr_debug("__put_ioctx: freeing %p\n", ctx);
 224	call_rcu(&ctx->rcu_head, ctx_rcu_free);
 
 
 
 225}
 226
 227static inline int try_get_ioctx(struct kioctx *kioctx)
 228{
 229	return atomic_inc_not_zero(&kioctx->users);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 230}
 231
 232static inline void put_ioctx(struct kioctx *kioctx)
 233{
 234	BUG_ON(atomic_read(&kioctx->users) <= 0);
 235	if (unlikely(atomic_dec_and_test(&kioctx->users)))
 236		__put_ioctx(kioctx);
 
 
 
 237}
 238
 239/* ioctx_alloc
 240 *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
 241 */
 242static struct kioctx *ioctx_alloc(unsigned nr_events)
 243{
 244	struct mm_struct *mm;
 245	struct kioctx *ctx;
 246	int err = -ENOMEM;
 247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 248	/* Prevent overflows */
 249	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
 250	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
 251		pr_debug("ENOMEM: nr_events too high\n");
 252		return ERR_PTR(-EINVAL);
 253	}
 254
 255	if (!nr_events || (unsigned long)nr_events > aio_max_nr)
 256		return ERR_PTR(-EAGAIN);
 257
 258	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
 259	if (!ctx)
 260		return ERR_PTR(-ENOMEM);
 261
 262	ctx->max_reqs = nr_events;
 263	mm = ctx->mm = current->mm;
 264	atomic_inc(&mm->mm_count);
 265
 266	atomic_set(&ctx->users, 2);
 267	spin_lock_init(&ctx->ctx_lock);
 268	spin_lock_init(&ctx->ring_info.ring_lock);
 
 
 
 
 269	init_waitqueue_head(&ctx->wait);
 270
 271	INIT_LIST_HEAD(&ctx->active_reqs);
 272	INIT_LIST_HEAD(&ctx->run_list);
 273	INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
 274
 275	if (aio_setup_ring(ctx) < 0)
 276		goto out_freectx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 277
 278	/* limit the number of system wide aios */
 279	spin_lock(&aio_nr_lock);
 280	if (aio_nr + nr_events > aio_max_nr ||
 281	    aio_nr + nr_events < aio_nr) {
 282		spin_unlock(&aio_nr_lock);
 283		goto out_cleanup;
 
 284	}
 285	aio_nr += ctx->max_reqs;
 286	spin_unlock(&aio_nr_lock);
 287
 288	/* now link into global list. */
 289	spin_lock(&mm->ioctx_lock);
 290	hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
 291	spin_unlock(&mm->ioctx_lock);
 
 
 
 
 
 292
 293	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
 294		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
 295	return ctx;
 296
 297out_cleanup:
 298	err = -EAGAIN;
 
 
 
 
 299	aio_free_ring(ctx);
 300out_freectx:
 301	mmdrop(mm);
 
 
 
 302	kmem_cache_free(kioctx_cachep, ctx);
 303	dprintk("aio: error allocating ioctx %d\n", err);
 304	return ERR_PTR(err);
 305}
 306
 307/* kill_ctx
 308 *	Cancels all outstanding aio requests on an aio context.  Used 
 309 *	when the processes owning a context have all exited to encourage 
 310 *	the rapid destruction of the kioctx.
 311 */
 312static void kill_ctx(struct kioctx *ctx)
 
 313{
 314	int (*cancel)(struct kiocb *, struct io_event *);
 315	struct task_struct *tsk = current;
 316	DECLARE_WAITQUEUE(wait, tsk);
 317	struct io_event res;
 318
 319	spin_lock_irq(&ctx->ctx_lock);
 320	ctx->dead = 1;
 321	while (!list_empty(&ctx->active_reqs)) {
 322		struct list_head *pos = ctx->active_reqs.next;
 323		struct kiocb *iocb = list_kiocb(pos);
 324		list_del_init(&iocb->ki_list);
 325		cancel = iocb->ki_cancel;
 326		kiocbSetCancelled(iocb);
 327		if (cancel) {
 328			iocb->ki_users++;
 329			spin_unlock_irq(&ctx->ctx_lock);
 330			cancel(iocb, &res);
 331			spin_lock_irq(&ctx->ctx_lock);
 332		}
 333	}
 334
 335	if (!ctx->reqs_active)
 336		goto out;
 
 
 337
 338	add_wait_queue(&ctx->wait, &wait);
 339	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
 340	while (ctx->reqs_active) {
 341		spin_unlock_irq(&ctx->ctx_lock);
 342		io_schedule();
 343		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
 344		spin_lock_irq(&ctx->ctx_lock);
 345	}
 346	__set_task_state(tsk, TASK_RUNNING);
 347	remove_wait_queue(&ctx->wait, &wait);
 348
 349out:
 350	spin_unlock_irq(&ctx->ctx_lock);
 351}
 352
 353/* wait_on_sync_kiocb:
 354 *	Waits on the given sync kiocb to complete.
 355 */
 356ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
 357{
 358	while (iocb->ki_users) {
 359		set_current_state(TASK_UNINTERRUPTIBLE);
 360		if (!iocb->ki_users)
 361			break;
 362		io_schedule();
 363	}
 364	__set_current_state(TASK_RUNNING);
 365	return iocb->ki_user_data;
 366}
 367EXPORT_SYMBOL(wait_on_sync_kiocb);
 368
 369/* exit_aio: called when the last user of mm goes away.  At this point, 
 370 * there is no way for any new requests to be submited or any of the 
 371 * io_* syscalls to be called on the context.  However, there may be 
 372 * outstanding requests which hold references to the context; as they 
 373 * go away, they will call put_ioctx and release any pinned memory
 374 * associated with the request (held via struct page * references).
 375 */
 376void exit_aio(struct mm_struct *mm)
 377{
 378	struct kioctx *ctx;
 379
 380	while (!hlist_empty(&mm->ioctx_list)) {
 381		ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
 382		hlist_del_rcu(&ctx->list);
 383
 384		kill_ctx(ctx);
 385
 386		if (1 != atomic_read(&ctx->users))
 387			printk(KERN_DEBUG
 388				"exit_aio:ioctx still alive: %d %d %d\n",
 389				atomic_read(&ctx->users), ctx->dead,
 390				ctx->reqs_active);
 391		/*
 392		 * We don't need to bother with munmap() here -
 393		 * exit_mmap(mm) is coming and it'll unmap everything.
 394		 * Since aio_free_ring() uses non-zero ->mmap_size
 395		 * as indicator that it needs to unmap the area,
 396		 * just set it to 0; aio_free_ring() is the only
 397		 * place that uses ->mmap_size, so it's safe.
 398		 * That way we get all munmap done to current->mm -
 399		 * all other callers have ctx->mm == current->mm.
 400		 */
 401		ctx->ring_info.mmap_size = 0;
 402		put_ioctx(ctx);
 403	}
 404}
 405
 406/* aio_get_req
 407 *	Allocate a slot for an aio request.  Increments the users count
 408 * of the kioctx so that the kioctx stays around until all requests are
 409 * complete.  Returns NULL if no requests are free.
 410 *
 411 * Returns with kiocb->users set to 2.  The io submit code path holds
 412 * an extra reference while submitting the i/o.
 413 * This prevents races between the aio code path referencing the
 414 * req (after submitting it) and aio_complete() freeing the req.
 415 */
 416static struct kiocb *__aio_get_req(struct kioctx *ctx)
 417{
 418	struct kiocb *req = NULL;
 419
 420	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
 421	if (unlikely(!req))
 422		return NULL;
 423
 424	req->ki_flags = 0;
 425	req->ki_users = 2;
 426	req->ki_key = 0;
 427	req->ki_ctx = ctx;
 428	req->ki_cancel = NULL;
 429	req->ki_retry = NULL;
 430	req->ki_dtor = NULL;
 431	req->private = NULL;
 432	req->ki_iovec = NULL;
 433	INIT_LIST_HEAD(&req->ki_run_list);
 434	req->ki_eventfd = NULL;
 435
 436	return req;
 437}
 438
 439/*
 440 * struct kiocb's are allocated in batches to reduce the number of
 441 * times the ctx lock is acquired and released.
 442 */
 443#define KIOCB_BATCH_SIZE	32L
 444struct kiocb_batch {
 445	struct list_head head;
 446	long count; /* number of requests left to allocate */
 447};
 448
 449static void kiocb_batch_init(struct kiocb_batch *batch, long total)
 450{
 451	INIT_LIST_HEAD(&batch->head);
 452	batch->count = total;
 453}
 454
 455static void kiocb_batch_free(struct kioctx *ctx, struct kiocb_batch *batch)
 456{
 457	struct kiocb *req, *n;
 
 
 458
 459	if (list_empty(&batch->head))
 460		return;
 461
 462	spin_lock_irq(&ctx->ctx_lock);
 463	list_for_each_entry_safe(req, n, &batch->head, ki_batch) {
 464		list_del(&req->ki_batch);
 465		list_del(&req->ki_list);
 466		kmem_cache_free(kiocb_cachep, req);
 467		ctx->reqs_active--;
 468	}
 469	if (unlikely(!ctx->reqs_active && ctx->dead))
 470		wake_up_all(&ctx->wait);
 471	spin_unlock_irq(&ctx->ctx_lock);
 472}
 473
 474/*
 475 * Allocate a batch of kiocbs.  This avoids taking and dropping the
 476 * context lock a lot during setup.
 477 */
 478static int kiocb_batch_refill(struct kioctx *ctx, struct kiocb_batch *batch)
 479{
 480	unsigned short allocated, to_alloc;
 481	long avail;
 482	bool called_fput = false;
 483	struct kiocb *req, *n;
 484	struct aio_ring *ring;
 485
 486	to_alloc = min(batch->count, KIOCB_BATCH_SIZE);
 487	for (allocated = 0; allocated < to_alloc; allocated++) {
 488		req = __aio_get_req(ctx);
 489		if (!req)
 490			/* allocation failed, go with what we've got */
 491			break;
 492		list_add(&req->ki_batch, &batch->head);
 493	}
 494
 495	if (allocated == 0)
 496		goto out;
 497
 498retry:
 499	spin_lock_irq(&ctx->ctx_lock);
 500	ring = kmap_atomic(ctx->ring_info.ring_pages[0]);
 501
 502	avail = aio_ring_avail(&ctx->ring_info, ring) - ctx->reqs_active;
 503	BUG_ON(avail < 0);
 504	if (avail == 0 && !called_fput) {
 505		/*
 506		 * Handle a potential starvation case.  It is possible that
 507		 * we hold the last reference on a struct file, causing us
 508		 * to delay the final fput to non-irq context.  In this case,
 509		 * ctx->reqs_active is artificially high.  Calling the fput
 510		 * routine here may free up a slot in the event completion
 511		 * ring, allowing this allocation to succeed.
 512		 */
 513		kunmap_atomic(ring);
 514		spin_unlock_irq(&ctx->ctx_lock);
 515		aio_fput_routine(NULL);
 516		called_fput = true;
 517		goto retry;
 518	}
 519
 520	if (avail < allocated) {
 521		/* Trim back the number of requests. */
 522		list_for_each_entry_safe(req, n, &batch->head, ki_batch) {
 523			list_del(&req->ki_batch);
 524			kmem_cache_free(kiocb_cachep, req);
 525			if (--allocated <= avail)
 526				break;
 527		}
 528	}
 529
 530	batch->count -= allocated;
 531	list_for_each_entry(req, &batch->head, ki_batch) {
 532		list_add(&req->ki_list, &ctx->active_reqs);
 533		ctx->reqs_active++;
 534	}
 535
 536	kunmap_atomic(ring);
 537	spin_unlock_irq(&ctx->ctx_lock);
 538
 539out:
 540	return allocated;
 541}
 542
 543static inline struct kiocb *aio_get_req(struct kioctx *ctx,
 544					struct kiocb_batch *batch)
 545{
 546	struct kiocb *req;
 
 547
 548	if (list_empty(&batch->head))
 549		if (kiocb_batch_refill(ctx, batch) == 0)
 550			return NULL;
 551	req = list_first_entry(&batch->head, struct kiocb, ki_batch);
 552	list_del(&req->ki_batch);
 553	return req;
 554}
 555
 556static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
 557{
 558	assert_spin_locked(&ctx->ctx_lock);
 559
 560	if (req->ki_eventfd != NULL)
 561		eventfd_ctx_put(req->ki_eventfd);
 562	if (req->ki_dtor)
 563		req->ki_dtor(req);
 564	if (req->ki_iovec != &req->ki_inline_vec)
 565		kfree(req->ki_iovec);
 566	kmem_cache_free(kiocb_cachep, req);
 567	ctx->reqs_active--;
 568
 569	if (unlikely(!ctx->reqs_active && ctx->dead))
 570		wake_up_all(&ctx->wait);
 571}
 572
 573static void aio_fput_routine(struct work_struct *data)
 574{
 575	spin_lock_irq(&fput_lock);
 576	while (likely(!list_empty(&fput_head))) {
 577		struct kiocb *req = list_kiocb(fput_head.next);
 578		struct kioctx *ctx = req->ki_ctx;
 579
 580		list_del(&req->ki_list);
 581		spin_unlock_irq(&fput_lock);
 
 
 582
 583		/* Complete the fput(s) */
 584		if (req->ki_filp != NULL)
 585			fput(req->ki_filp);
 
 
 586
 587		/* Link the iocb into the context's free list */
 588		rcu_read_lock();
 589		spin_lock_irq(&ctx->ctx_lock);
 590		really_put_req(ctx, req);
 591		/*
 592		 * at that point ctx might've been killed, but actual
 593		 * freeing is RCU'd
 594		 */
 595		spin_unlock_irq(&ctx->ctx_lock);
 596		rcu_read_unlock();
 597
 598		spin_lock_irq(&fput_lock);
 599	}
 600	spin_unlock_irq(&fput_lock);
 
 
 601}
 602
 603/* __aio_put_req
 604 *	Returns true if this put was the last user of the request.
 605 */
 606static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
 607{
 608	dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
 609		req, atomic_long_read(&req->ki_filp->f_count));
 
 
 
 
 
 
 
 
 
 
 
 610
 611	assert_spin_locked(&ctx->ctx_lock);
 
 
 
 
 612
 613	req->ki_users--;
 614	BUG_ON(req->ki_users < 0);
 615	if (likely(req->ki_users))
 616		return 0;
 617	list_del(&req->ki_list);		/* remove from active_reqs */
 618	req->ki_cancel = NULL;
 619	req->ki_retry = NULL;
 620
 621	/*
 622	 * Try to optimize the aio and eventfd file* puts, by avoiding to
 623	 * schedule work in case it is not final fput() time. In normal cases,
 624	 * we would not be holding the last reference to the file*, so
 625	 * this function will be executed w/out any aio kthread wakeup.
 626	 */
 627	if (unlikely(!fput_atomic(req->ki_filp))) {
 628		spin_lock(&fput_lock);
 629		list_add(&req->ki_list, &fput_head);
 630		spin_unlock(&fput_lock);
 631		schedule_work(&fput_work);
 632	} else {
 633		req->ki_filp = NULL;
 634		really_put_req(ctx, req);
 635	}
 636	return 1;
 637}
 638
 639/* aio_put_req
 640 *	Returns true if this put was the last user of the kiocb,
 641 *	false if the request is still in use.
 642 */
 643int aio_put_req(struct kiocb *req)
 644{
 645	struct kioctx *ctx = req->ki_ctx;
 646	int ret;
 647	spin_lock_irq(&ctx->ctx_lock);
 648	ret = __aio_put_req(ctx, req);
 649	spin_unlock_irq(&ctx->ctx_lock);
 650	return ret;
 651}
 652EXPORT_SYMBOL(aio_put_req);
 653
 654static struct kioctx *lookup_ioctx(unsigned long ctx_id)
 655{
 656	struct mm_struct *mm = current->mm;
 657	struct kioctx *ctx, *ret = NULL;
 658	struct hlist_node *n;
 659
 660	rcu_read_lock();
 
 661
 662	hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
 663		/*
 664		 * RCU protects us against accessing freed memory but
 665		 * we have to be careful not to get a reference when the
 666		 * reference count already dropped to 0 (ctx->dead test
 667		 * is unreliable because of races).
 668		 */
 669		if (ctx->user_id == ctx_id && !ctx->dead && try_get_ioctx(ctx)){
 670			ret = ctx;
 671			break;
 672		}
 673	}
 674
 675	rcu_read_unlock();
 676	return ret;
 677}
 678
 679/*
 680 * Queue up a kiocb to be retried. Assumes that the kiocb
 681 * has already been marked as kicked, and places it on
 682 * the retry run list for the corresponding ioctx, if it
 683 * isn't already queued. Returns 1 if it actually queued
 684 * the kiocb (to tell the caller to activate the work
 685 * queue to process it), or 0, if it found that it was
 686 * already queued.
 687 */
 688static inline int __queue_kicked_iocb(struct kiocb *iocb)
 689{
 690	struct kioctx *ctx = iocb->ki_ctx;
 691
 692	assert_spin_locked(&ctx->ctx_lock);
 693
 694	if (list_empty(&iocb->ki_run_list)) {
 695		list_add_tail(&iocb->ki_run_list,
 696			&ctx->run_list);
 697		return 1;
 698	}
 699	return 0;
 700}
 701
 702/* aio_run_iocb
 703 *	This is the core aio execution routine. It is
 704 *	invoked both for initial i/o submission and
 705 *	subsequent retries via the aio_kick_handler.
 706 *	Expects to be invoked with iocb->ki_ctx->lock
 707 *	already held. The lock is released and reacquired
 708 *	as needed during processing.
 709 *
 710 * Calls the iocb retry method (already setup for the
 711 * iocb on initial submission) for operation specific
 712 * handling, but takes care of most of common retry
 713 * execution details for a given iocb. The retry method
 714 * needs to be non-blocking as far as possible, to avoid
 715 * holding up other iocbs waiting to be serviced by the
 716 * retry kernel thread.
 717 *
 718 * The trickier parts in this code have to do with
 719 * ensuring that only one retry instance is in progress
 720 * for a given iocb at any time. Providing that guarantee
 721 * simplifies the coding of individual aio operations as
 722 * it avoids various potential races.
 723 */
 724static ssize_t aio_run_iocb(struct kiocb *iocb)
 725{
 726	struct kioctx	*ctx = iocb->ki_ctx;
 727	ssize_t (*retry)(struct kiocb *);
 728	ssize_t ret;
 
 
 729
 730	if (!(retry = iocb->ki_retry)) {
 731		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
 732		return 0;
 733	}
 734
 735	/*
 736	 * We don't want the next retry iteration for this
 737	 * operation to start until this one has returned and
 738	 * updated the iocb state. However, wait_queue functions
 739	 * can trigger a kick_iocb from interrupt context in the
 740	 * meantime, indicating that data is available for the next
 741	 * iteration. We want to remember that and enable the
 742	 * next retry iteration _after_ we are through with
 743	 * this one.
 744	 *
 745	 * So, in order to be able to register a "kick", but
 746	 * prevent it from being queued now, we clear the kick
 747	 * flag, but make the kick code *think* that the iocb is
 748	 * still on the run list until we are actually done.
 749	 * When we are done with this iteration, we check if
 750	 * the iocb was kicked in the meantime and if so, queue
 751	 * it up afresh.
 752	 */
 753
 754	kiocbClearKicked(iocb);
 
 755
 756	/*
 757	 * This is so that aio_complete knows it doesn't need to
 758	 * pull the iocb off the run list (We can't just call
 759	 * INIT_LIST_HEAD because we don't want a kick_iocb to
 760	 * queue this on the run list yet)
 761	 */
 762	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
 763	spin_unlock_irq(&ctx->ctx_lock);
 764
 765	/* Quit retrying if the i/o has been cancelled */
 766	if (kiocbIsCancelled(iocb)) {
 767		ret = -EINTR;
 768		aio_complete(iocb, ret, 0);
 769		/* must not access the iocb after this */
 770		goto out;
 771	}
 772
 773	/*
 774	 * Now we are all set to call the retry method in async
 775	 * context.
 776	 */
 777	ret = retry(iocb);
 778
 779	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
 780		/*
 781		 * There's no easy way to restart the syscall since other AIO's
 782		 * may be already running. Just fail this IO with EINTR.
 783		 */
 784		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
 785			     ret == -ERESTARTNOHAND || ret == -ERESTART_RESTARTBLOCK))
 786			ret = -EINTR;
 787		aio_complete(iocb, ret, 0);
 788	}
 789out:
 790	spin_lock_irq(&ctx->ctx_lock);
 791
 792	if (-EIOCBRETRY == ret) {
 793		/*
 794		 * OK, now that we are done with this iteration
 795		 * and know that there is more left to go,
 796		 * this is where we let go so that a subsequent
 797		 * "kick" can start the next iteration
 798		 */
 799
 800		/* will make __queue_kicked_iocb succeed from here on */
 801		INIT_LIST_HEAD(&iocb->ki_run_list);
 802		/* we must queue the next iteration ourselves, if it
 803		 * has already been kicked */
 804		if (kiocbIsKicked(iocb)) {
 805			__queue_kicked_iocb(iocb);
 806
 807			/*
 808			 * __queue_kicked_iocb will always return 1 here, because
 809			 * iocb->ki_run_list is empty at this point so it should
 810			 * be safe to unconditionally queue the context into the
 811			 * work queue.
 812			 */
 813			aio_queue_work(ctx);
 814		}
 815	}
 816	return ret;
 817}
 818
 819/*
 820 * __aio_run_iocbs:
 821 * 	Process all pending retries queued on the ioctx
 822 * 	run list.
 823 * Assumes it is operating within the aio issuer's mm
 824 * context.
 825 */
 826static int __aio_run_iocbs(struct kioctx *ctx)
 827{
 828	struct kiocb *iocb;
 829	struct list_head run_list;
 830
 831	assert_spin_locked(&ctx->ctx_lock);
 832
 833	list_replace_init(&ctx->run_list, &run_list);
 834	while (!list_empty(&run_list)) {
 835		iocb = list_entry(run_list.next, struct kiocb,
 836			ki_run_list);
 837		list_del(&iocb->ki_run_list);
 838		/*
 839		 * Hold an extra reference while retrying i/o.
 840		 */
 841		iocb->ki_users++;       /* grab extra reference */
 842		aio_run_iocb(iocb);
 843		__aio_put_req(ctx, iocb);
 844 	}
 845	if (!list_empty(&ctx->run_list))
 846		return 1;
 847	return 0;
 848}
 849
 850static void aio_queue_work(struct kioctx * ctx)
 851{
 852	unsigned long timeout;
 853	/*
 854	 * if someone is waiting, get the work started right
 855	 * away, otherwise, use a longer delay
 856	 */
 857	smp_mb();
 858	if (waitqueue_active(&ctx->wait))
 859		timeout = 1;
 860	else
 861		timeout = HZ/10;
 862	queue_delayed_work(aio_wq, &ctx->wq, timeout);
 863}
 864
 865/*
 866 * aio_run_all_iocbs:
 867 *	Process all pending retries queued on the ioctx
 868 *	run list, and keep running them until the list
 869 *	stays empty.
 870 * Assumes it is operating within the aio issuer's mm context.
 871 */
 872static inline void aio_run_all_iocbs(struct kioctx *ctx)
 873{
 874	spin_lock_irq(&ctx->ctx_lock);
 875	while (__aio_run_iocbs(ctx))
 876		;
 877	spin_unlock_irq(&ctx->ctx_lock);
 878}
 879
 880/*
 881 * aio_kick_handler:
 882 * 	Work queue handler triggered to process pending
 883 * 	retries on an ioctx. Takes on the aio issuer's
 884 *	mm context before running the iocbs, so that
 885 *	copy_xxx_user operates on the issuer's address
 886 *      space.
 887 * Run on aiod's context.
 888 */
 889static void aio_kick_handler(struct work_struct *work)
 890{
 891	struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
 892	mm_segment_t oldfs = get_fs();
 893	struct mm_struct *mm;
 894	int requeue;
 895
 896	set_fs(USER_DS);
 897	use_mm(ctx->mm);
 898	spin_lock_irq(&ctx->ctx_lock);
 899	requeue =__aio_run_iocbs(ctx);
 900	mm = ctx->mm;
 901	spin_unlock_irq(&ctx->ctx_lock);
 902 	unuse_mm(mm);
 903	set_fs(oldfs);
 904	/*
 905	 * we're in a worker thread already; no point using non-zero delay
 906	 */
 907	if (requeue)
 908		queue_delayed_work(aio_wq, &ctx->wq, 0);
 909}
 910
 911
 912/*
 913 * Called by kick_iocb to queue the kiocb for retry
 914 * and if required activate the aio work queue to process
 915 * it
 916 */
 917static void try_queue_kicked_iocb(struct kiocb *iocb)
 918{
 919 	struct kioctx	*ctx = iocb->ki_ctx;
 920	unsigned long flags;
 921	int run = 0;
 922
 923	spin_lock_irqsave(&ctx->ctx_lock, flags);
 924	/* set this inside the lock so that we can't race with aio_run_iocb()
 925	 * testing it and putting the iocb on the run list under the lock */
 926	if (!kiocbTryKick(iocb))
 927		run = __queue_kicked_iocb(iocb);
 928	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
 929	if (run)
 930		aio_queue_work(ctx);
 931}
 932
 933/*
 934 * kick_iocb:
 935 *      Called typically from a wait queue callback context
 936 *      to trigger a retry of the iocb.
 937 *      The retry is usually executed by aio workqueue
 938 *      threads (See aio_kick_handler).
 939 */
 940void kick_iocb(struct kiocb *iocb)
 941{
 942	/* sync iocbs are easy: they can only ever be executing from a 
 943	 * single context. */
 944	if (is_sync_kiocb(iocb)) {
 945		kiocbSetKicked(iocb);
 946	        wake_up_process(iocb->ki_obj.tsk);
 947		return;
 948	}
 949
 950	try_queue_kicked_iocb(iocb);
 951}
 952EXPORT_SYMBOL(kick_iocb);
 953
 954/* aio_complete
 955 *	Called when the io request on the given iocb is complete.
 956 *	Returns true if this is the last user of the request.  The 
 957 *	only other user of the request can be the cancellation code.
 958 */
 959int aio_complete(struct kiocb *iocb, long res, long res2)
 960{
 961	struct kioctx	*ctx = iocb->ki_ctx;
 962	struct aio_ring_info	*info;
 963	struct aio_ring	*ring;
 964	struct io_event	*event;
 
 965	unsigned long	flags;
 966	unsigned long	tail;
 967	int		ret;
 968
 969	/*
 970	 * Special case handling for sync iocbs:
 971	 *  - events go directly into the iocb for fast handling
 972	 *  - the sync task with the iocb in its stack holds the single iocb
 973	 *    ref, no other paths have a way to get another ref
 974	 *  - the sync task helpfully left a reference to itself in the iocb
 975	 */
 976	if (is_sync_kiocb(iocb)) {
 977		BUG_ON(iocb->ki_users != 1);
 978		iocb->ki_user_data = res;
 979		iocb->ki_users = 0;
 980		wake_up_process(iocb->ki_obj.tsk);
 981		return 1;
 982	}
 983
 984	info = &ctx->ring_info;
 985
 986	/* add a completion event to the ring buffer.
 987	 * must be done holding ctx->ctx_lock to prevent
 988	 * other code from messing with the tail
 989	 * pointer since we might be called from irq
 990	 * context.
 991	 */
 992	spin_lock_irqsave(&ctx->ctx_lock, flags);
 
 
 
 993
 994	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
 995		list_del_init(&iocb->ki_run_list);
 996
 997	/*
 998	 * cancelled requests don't get events, userland was given one
 999	 * when the event got cancelled.
1000	 */
1001	if (kiocbIsCancelled(iocb))
1002		goto put_rq;
1003
1004	ring = kmap_atomic(info->ring_pages[0]);
1005
1006	tail = info->tail;
1007	event = aio_ring_event(info, tail);
1008	if (++tail >= info->nr)
1009		tail = 0;
1010
1011	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
1012	event->data = iocb->ki_user_data;
1013	event->res = res;
1014	event->res2 = res2;
1015
1016	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
1017		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
1018		res, res2);
1019
1020	/* after flagging the request as done, we
1021	 * must never even look at it again
1022	 */
1023	smp_wmb();	/* make event visible before updating tail */
1024
1025	info->tail = tail;
 
 
 
1026	ring->tail = tail;
 
 
1027
1028	put_aio_ring_event(event);
1029	kunmap_atomic(ring);
 
 
1030
1031	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
1032
1033	/*
1034	 * Check if the user asked us to deliver the result through an
1035	 * eventfd. The eventfd_signal() function is safe to be called
1036	 * from IRQ context.
1037	 */
1038	if (iocb->ki_eventfd != NULL)
1039		eventfd_signal(iocb->ki_eventfd, 1);
1040
1041put_rq:
1042	/* everything turned out well, dispose of the aiocb. */
1043	ret = __aio_put_req(ctx, iocb);
1044
1045	/*
1046	 * We have to order our ring_info tail store above and test
1047	 * of the wait list below outside the wait lock.  This is
1048	 * like in wake_up_bit() where clearing a bit has to be
1049	 * ordered with the unlocked test.
1050	 */
1051	smp_mb();
1052
1053	if (waitqueue_active(&ctx->wait))
1054		wake_up(&ctx->wait);
 
1055
1056	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1057	return ret;
 
 
 
 
1058}
1059EXPORT_SYMBOL(aio_complete);
1060
1061/* aio_read_evt
1062 *	Pull an event off of the ioctx's event ring.  Returns the number of 
1063 *	events fetched (0 or 1 ;-)
1064 *	FIXME: make this use cmpxchg.
1065 *	TODO: make the ringbuffer user mmap()able (requires FIXME).
1066 */
1067static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
 
1068{
1069	struct aio_ring_info *info = &ioctx->ring_info;
1070	struct aio_ring *ring;
1071	unsigned long head;
1072	int ret = 0;
 
1073
1074	ring = kmap_atomic(info->ring_pages[0]);
1075	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1076		 (unsigned long)ring->head, (unsigned long)ring->tail,
1077		 (unsigned long)ring->nr);
1078
1079	if (ring->head == ring->tail)
1080		goto out;
1081
1082	spin_lock(&info->ring_lock);
1083
1084	head = ring->head % info->nr;
1085	if (head != ring->tail) {
1086		struct io_event *evp = aio_ring_event(info, head);
1087		*ent = *evp;
1088		head = (head + 1) % info->nr;
1089		smp_mb(); /* finish reading the event before updatng the head */
1090		ring->head = head;
1091		ret = 1;
1092		put_aio_ring_event(evp);
1093	}
1094	spin_unlock(&info->ring_lock);
1095
1096out:
 
 
 
1097	kunmap_atomic(ring);
1098	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1099		 (unsigned long)ring->head, (unsigned long)ring->tail);
1100	return ret;
1101}
1102
1103struct aio_timeout {
1104	struct timer_list	timer;
1105	int			timed_out;
1106	struct task_struct	*p;
1107};
1108
1109static void timeout_func(unsigned long data)
1110{
1111	struct aio_timeout *to = (struct aio_timeout *)data;
1112
1113	to->timed_out = 1;
1114	wake_up_process(to->p);
1115}
1116
1117static inline void init_timeout(struct aio_timeout *to)
1118{
1119	setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1120	to->timed_out = 0;
1121	to->p = current;
1122}
1123
1124static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1125			       const struct timespec *ts)
1126{
1127	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1128	if (time_after(to->timer.expires, jiffies))
1129		add_timer(&to->timer);
1130	else
1131		to->timed_out = 1;
1132}
1133
1134static inline void clear_timeout(struct aio_timeout *to)
1135{
1136	del_singleshot_timer_sync(&to->timer);
1137}
1138
1139static int read_events(struct kioctx *ctx,
1140			long min_nr, long nr,
1141			struct io_event __user *event,
1142			struct timespec __user *timeout)
1143{
1144	long			start_jiffies = jiffies;
1145	struct task_struct	*tsk = current;
1146	DECLARE_WAITQUEUE(wait, tsk);
1147	int			ret;
1148	int			i = 0;
1149	struct io_event		ent;
1150	struct aio_timeout	to;
1151	int			retry = 0;
1152
1153	/* needed to zero any padding within an entry (there shouldn't be 
1154	 * any, but C is fun!
1155	 */
1156	memset(&ent, 0, sizeof(ent));
1157retry:
1158	ret = 0;
1159	while (likely(i < nr)) {
1160		ret = aio_read_evt(ctx, &ent);
1161		if (unlikely(ret <= 0))
1162			break;
1163
1164		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1165			ent.data, ent.obj, ent.res, ent.res2);
 
 
 
 
 
 
 
 
 
1166
1167		/* Could we split the check in two? */
1168		ret = -EFAULT;
1169		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1170			dprintk("aio: lost an event due to EFAULT.\n");
1171			break;
1172		}
1173		ret = 0;
1174
1175		/* Good, event copied to userland, update counts. */
1176		event ++;
1177		i ++;
1178	}
1179
1180	if (min_nr <= i)
1181		return i;
1182	if (ret)
1183		return ret;
1184
1185	/* End fast path */
 
 
1186
1187	/* racey check, but it gets redone */
1188	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1189		retry = 1;
1190		aio_run_all_iocbs(ctx);
1191		goto retry;
1192	}
1193
1194	init_timeout(&to);
1195	if (timeout) {
1196		struct timespec	ts;
1197		ret = -EFAULT;
1198		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1199			goto out;
1200
1201		set_timeout(start_jiffies, &to, &ts);
1202	}
1203
1204	while (likely(i < nr)) {
1205		add_wait_queue_exclusive(&ctx->wait, &wait);
1206		do {
1207			set_task_state(tsk, TASK_INTERRUPTIBLE);
1208			ret = aio_read_evt(ctx, &ent);
1209			if (ret)
1210				break;
1211			if (min_nr <= i)
1212				break;
1213			if (unlikely(ctx->dead)) {
1214				ret = -EINVAL;
1215				break;
1216			}
1217			if (to.timed_out)	/* Only check after read evt */
1218				break;
1219			/* Try to only show up in io wait if there are ops
1220			 *  in flight */
1221			if (ctx->reqs_active)
1222				io_schedule();
1223			else
1224				schedule();
1225			if (signal_pending(tsk)) {
1226				ret = -EINTR;
1227				break;
1228			}
1229			/*ret = aio_read_evt(ctx, &ent);*/
1230		} while (1) ;
1231
1232		set_task_state(tsk, TASK_RUNNING);
1233		remove_wait_queue(&ctx->wait, &wait);
1234
1235		if (unlikely(ret <= 0))
1236			break;
1237
1238		ret = -EFAULT;
1239		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1240			dprintk("aio: lost an event due to EFAULT.\n");
1241			break;
1242		}
1243
1244		/* Good, event copied to userland, update counts. */
1245		event ++;
1246		i ++;
1247	}
1248
1249	if (timeout)
1250		clear_timeout(&to);
1251out:
1252	destroy_timer_on_stack(&to.timer);
1253	return i ? i : ret;
1254}
1255
1256/* Take an ioctx and remove it from the list of ioctx's.  Protects 
1257 * against races with itself via ->dead.
1258 */
1259static void io_destroy(struct kioctx *ioctx)
1260{
1261	struct mm_struct *mm = current->mm;
1262	int was_dead;
1263
1264	/* delete the entry from the list is someone else hasn't already */
1265	spin_lock(&mm->ioctx_lock);
1266	was_dead = ioctx->dead;
1267	ioctx->dead = 1;
1268	hlist_del_rcu(&ioctx->list);
1269	spin_unlock(&mm->ioctx_lock);
1270
1271	dprintk("aio_release(%p)\n", ioctx);
1272	if (likely(!was_dead))
1273		put_ioctx(ioctx);	/* twice for the list */
1274
1275	kill_ctx(ioctx);
1276
1277	/*
1278	 * Wake up any waiters.  The setting of ctx->dead must be seen
1279	 * by other CPUs at this point.  Right now, we rely on the
1280	 * locking done by the above calls to ensure this consistency.
 
 
 
 
 
 
 
 
 
1281	 */
1282	wake_up_all(&ioctx->wait);
 
 
 
 
 
 
1283}
1284
1285/* sys_io_setup:
1286 *	Create an aio_context capable of receiving at least nr_events.
1287 *	ctxp must not point to an aio_context that already exists, and
1288 *	must be initialized to 0 prior to the call.  On successful
1289 *	creation of the aio_context, *ctxp is filled in with the resulting 
1290 *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1291 *	if the specified nr_events exceeds internal limits.  May fail 
1292 *	with -EAGAIN if the specified nr_events exceeds the user's limit 
1293 *	of available events.  May fail with -ENOMEM if insufficient kernel
1294 *	resources are available.  May fail with -EFAULT if an invalid
1295 *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1296 *	implemented.
1297 */
1298SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1299{
1300	struct kioctx *ioctx = NULL;
1301	unsigned long ctx;
1302	long ret;
1303
1304	ret = get_user(ctx, ctxp);
1305	if (unlikely(ret))
1306		goto out;
1307
1308	ret = -EINVAL;
1309	if (unlikely(ctx || nr_events == 0)) {
1310		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1311		         ctx, nr_events);
1312		goto out;
1313	}
1314
1315	ioctx = ioctx_alloc(nr_events);
1316	ret = PTR_ERR(ioctx);
1317	if (!IS_ERR(ioctx)) {
1318		ret = put_user(ioctx->user_id, ctxp);
1319		if (ret)
1320			io_destroy(ioctx);
1321		put_ioctx(ioctx);
1322	}
1323
1324out:
1325	return ret;
1326}
1327
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1328/* sys_io_destroy:
1329 *	Destroy the aio_context specified.  May cancel any outstanding 
1330 *	AIOs and block on completion.  Will fail with -ENOSYS if not
1331 *	implemented.  May fail with -EINVAL if the context pointed to
1332 *	is invalid.
1333 */
1334SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1335{
1336	struct kioctx *ioctx = lookup_ioctx(ctx);
1337	if (likely(NULL != ioctx)) {
1338		io_destroy(ioctx);
1339		put_ioctx(ioctx);
1340		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1341	}
1342	pr_debug("EINVAL: io_destroy: invalid context id\n");
1343	return -EINVAL;
1344}
1345
1346static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1347{
1348	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1349
1350	BUG_ON(ret <= 0);
 
 
1351
1352	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1353		ssize_t this = min((ssize_t)iov->iov_len, ret);
1354		iov->iov_base += this;
1355		iov->iov_len -= this;
1356		iocb->ki_left -= this;
1357		ret -= this;
1358		if (iov->iov_len == 0) {
1359			iocb->ki_cur_seg++;
1360			iov++;
 
 
 
 
 
 
 
1361		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1362	}
1363
1364	/* the caller should not have done more io than what fit in
1365	 * the remaining iovecs */
1366	BUG_ON(ret > 0 && iocb->ki_left == 0);
1367}
1368
1369static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1370{
1371	struct file *file = iocb->ki_filp;
1372	struct address_space *mapping = file->f_mapping;
1373	struct inode *inode = mapping->host;
1374	ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1375			 unsigned long, loff_t);
1376	ssize_t ret = 0;
1377	unsigned short opcode;
1378
1379	if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1380		(iocb->ki_opcode == IOCB_CMD_PREAD)) {
1381		rw_op = file->f_op->aio_read;
1382		opcode = IOCB_CMD_PREADV;
1383	} else {
1384		rw_op = file->f_op->aio_write;
1385		opcode = IOCB_CMD_PWRITEV;
1386	}
 
 
 
 
 
 
 
 
 
1387
1388	/* This matches the pread()/pwrite() logic */
1389	if (iocb->ki_pos < 0)
 
 
 
 
 
1390		return -EINVAL;
1391
1392	do {
1393		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1394			    iocb->ki_nr_segs - iocb->ki_cur_seg,
1395			    iocb->ki_pos);
1396		if (ret > 0)
1397			aio_advance_iovec(iocb, ret);
1398
1399	/* retry all partial writes.  retry partial reads as long as its a
1400	 * regular file. */
1401	} while (ret > 0 && iocb->ki_left > 0 &&
1402		 (opcode == IOCB_CMD_PWRITEV ||
1403		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1404
1405	/* This means we must have transferred all that we could */
1406	/* No need to retry anymore */
1407	if ((ret == 0) || (iocb->ki_left == 0))
1408		ret = iocb->ki_nbytes - iocb->ki_left;
1409
1410	/* If we managed to write some out we return that, rather than
1411	 * the eventual error. */
1412	if (opcode == IOCB_CMD_PWRITEV
1413	    && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1414	    && iocb->ki_nbytes - iocb->ki_left)
1415		ret = iocb->ki_nbytes - iocb->ki_left;
1416
1417	return ret;
1418}
1419
1420static ssize_t aio_fdsync(struct kiocb *iocb)
 
1421{
1422	struct file *file = iocb->ki_filp;
1423	ssize_t ret = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
1424
1425	if (file->f_op->aio_fsync)
1426		ret = file->f_op->aio_fsync(iocb, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1427	return ret;
1428}
1429
1430static ssize_t aio_fsync(struct kiocb *iocb)
1431{
1432	struct file *file = iocb->ki_filp;
1433	ssize_t ret = -EINVAL;
1434
1435	if (file->f_op->aio_fsync)
1436		ret = file->f_op->aio_fsync(iocb, 0);
1437	return ret;
 
1438}
1439
1440static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb, bool compat)
 
1441{
1442	ssize_t ret;
 
 
1443
1444#ifdef CONFIG_COMPAT
1445	if (compat)
1446		ret = compat_rw_copy_check_uvector(type,
1447				(struct compat_iovec __user *)kiocb->ki_buf,
1448				kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1449				&kiocb->ki_iovec);
1450	else
1451#endif
1452		ret = rw_copy_check_uvector(type,
1453				(struct iovec __user *)kiocb->ki_buf,
1454				kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1455				&kiocb->ki_iovec);
1456	if (ret < 0)
1457		goto out;
1458
1459	ret = rw_verify_area(type, kiocb->ki_filp, &kiocb->ki_pos, ret);
1460	if (ret < 0)
1461		goto out;
1462
1463	kiocb->ki_nr_segs = kiocb->ki_nbytes;
1464	kiocb->ki_cur_seg = 0;
1465	/* ki_nbytes/left now reflect bytes instead of segs */
1466	kiocb->ki_nbytes = ret;
1467	kiocb->ki_left = ret;
1468
1469	ret = 0;
1470out:
1471	return ret;
1472}
1473
1474static ssize_t aio_setup_single_vector(int type, struct file * file, struct kiocb *kiocb)
1475{
1476	int bytes;
 
1477
1478	bytes = rw_verify_area(type, file, &kiocb->ki_pos, kiocb->ki_left);
1479	if (bytes < 0)
1480		return bytes;
1481
1482	kiocb->ki_iovec = &kiocb->ki_inline_vec;
1483	kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1484	kiocb->ki_iovec->iov_len = bytes;
1485	kiocb->ki_nr_segs = 1;
1486	kiocb->ki_cur_seg = 0;
1487	return 0;
1488}
1489
1490/*
1491 * aio_setup_iocb:
1492 *	Performs the initial checks and aio retry method
1493 *	setup for the kiocb at the time of io submission.
 
 
 
1494 */
1495static ssize_t aio_setup_iocb(struct kiocb *kiocb, bool compat)
1496{
1497	struct file *file = kiocb->ki_filp;
1498	ssize_t ret = 0;
1499
1500	switch (kiocb->ki_opcode) {
1501	case IOCB_CMD_PREAD:
1502		ret = -EBADF;
1503		if (unlikely(!(file->f_mode & FMODE_READ)))
1504			break;
1505		ret = -EFAULT;
1506		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1507			kiocb->ki_left)))
1508			break;
1509		ret = aio_setup_single_vector(READ, file, kiocb);
1510		if (ret)
1511			break;
1512		ret = -EINVAL;
1513		if (file->f_op->aio_read)
1514			kiocb->ki_retry = aio_rw_vect_retry;
1515		break;
1516	case IOCB_CMD_PWRITE:
1517		ret = -EBADF;
1518		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1519			break;
1520		ret = -EFAULT;
1521		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1522			kiocb->ki_left)))
1523			break;
1524		ret = aio_setup_single_vector(WRITE, file, kiocb);
1525		if (ret)
1526			break;
1527		ret = -EINVAL;
1528		if (file->f_op->aio_write)
1529			kiocb->ki_retry = aio_rw_vect_retry;
1530		break;
1531	case IOCB_CMD_PREADV:
1532		ret = -EBADF;
1533		if (unlikely(!(file->f_mode & FMODE_READ)))
1534			break;
1535		ret = aio_setup_vectored_rw(READ, kiocb, compat);
1536		if (ret)
1537			break;
1538		ret = -EINVAL;
1539		if (file->f_op->aio_read)
1540			kiocb->ki_retry = aio_rw_vect_retry;
1541		break;
1542	case IOCB_CMD_PWRITEV:
1543		ret = -EBADF;
1544		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1545			break;
1546		ret = aio_setup_vectored_rw(WRITE, kiocb, compat);
1547		if (ret)
1548			break;
1549		ret = -EINVAL;
1550		if (file->f_op->aio_write)
1551			kiocb->ki_retry = aio_rw_vect_retry;
1552		break;
1553	case IOCB_CMD_FDSYNC:
1554		ret = -EINVAL;
1555		if (file->f_op->aio_fsync)
1556			kiocb->ki_retry = aio_fdsync;
1557		break;
1558	case IOCB_CMD_FSYNC:
1559		ret = -EINVAL;
1560		if (file->f_op->aio_fsync)
1561			kiocb->ki_retry = aio_fsync;
1562		break;
1563	default:
1564		dprintk("EINVAL: io_submit: no operation provided\n");
1565		ret = -EINVAL;
1566	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1567
1568	if (!kiocb->ki_retry)
1569		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1570
1571	return 0;
1572}
1573
1574static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1575			 struct iocb *iocb, struct kiocb_batch *batch,
1576			 bool compat)
1577{
1578	struct kiocb *req;
1579	struct file *file;
1580	ssize_t ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1581
1582	/* enforce forwards compatibility on users */
1583	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1584		pr_debug("EINVAL: io_submit: reserve field set\n");
1585		return -EINVAL;
 
 
 
 
 
 
1586	}
1587
1588	/* prevent overflows */
1589	if (unlikely(
1590	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1591	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1592	    ((ssize_t)iocb->aio_nbytes < 0)
1593	   )) {
1594		pr_debug("EINVAL: io_submit: overflow check\n");
 
 
 
 
 
 
 
 
 
 
 
 
1595		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1596	}
 
 
 
 
 
1597
1598	file = fget(iocb->aio_fildes);
1599	if (unlikely(!file))
 
 
 
 
1600		return -EBADF;
1601
1602	req = aio_get_req(ctx, batch);  /* returns with 2 references to req */
1603	if (unlikely(!req)) {
1604		fput(file);
1605		return -EAGAIN;
1606	}
1607	req->ki_filp = file;
1608	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
 
1609		/*
1610		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1611		 * instance of the file* now. The file descriptor must be
1612		 * an eventfd() fd, and will be signaled for each completed
1613		 * event using the eventfd_signal() function.
1614		 */
1615		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1616		if (IS_ERR(req->ki_eventfd)) {
1617			ret = PTR_ERR(req->ki_eventfd);
1618			req->ki_eventfd = NULL;
1619			goto out_put_req;
1620		}
1621	}
1622
1623	ret = put_user(req->ki_key, &user_iocb->aio_key);
1624	if (unlikely(ret)) {
1625		dprintk("EFAULT: aio_key\n");
1626		goto out_put_req;
1627	}
1628
1629	req->ki_obj.user = user_iocb;
1630	req->ki_user_data = iocb->aio_data;
1631	req->ki_pos = iocb->aio_offset;
 
1632
1633	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1634	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1635	req->ki_opcode = iocb->aio_lio_opcode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1636
1637	ret = aio_setup_iocb(req, compat);
 
 
 
 
 
1638
1639	if (ret)
1640		goto out_put_req;
1641
1642	spin_lock_irq(&ctx->ctx_lock);
1643	/*
1644	 * We could have raced with io_destroy() and are currently holding a
1645	 * reference to ctx which should be destroyed. We cannot submit IO
1646	 * since ctx gets freed as soon as io_submit() puts its reference.  The
1647	 * check here is reliable: io_destroy() sets ctx->dead before waiting
1648	 * for outstanding IO and the barrier between these two is realized by
1649	 * unlock of mm->ioctx_lock and lock of ctx->ctx_lock.  Analogously we
1650	 * increment ctx->reqs_active before checking for ctx->dead and the
1651	 * barrier is realized by unlock and lock of ctx->ctx_lock. Thus if we
1652	 * don't see ctx->dead set here, io_destroy() waits for our IO to
1653	 * finish.
1654	 */
1655	if (ctx->dead) {
1656		spin_unlock_irq(&ctx->ctx_lock);
1657		ret = -EINVAL;
1658		goto out_put_req;
1659	}
1660	aio_run_iocb(req);
1661	if (!list_empty(&ctx->run_list)) {
1662		/* drain the run list */
1663		while (__aio_run_iocbs(ctx))
1664			;
 
 
 
 
1665	}
1666	spin_unlock_irq(&ctx->ctx_lock);
1667
1668	aio_put_req(req);	/* drop extra ref to req */
1669	return 0;
 
 
 
 
 
 
1670
1671out_put_req:
1672	aio_put_req(req);	/* drop extra ref to req */
1673	aio_put_req(req);	/* drop i/o ref to req */
1674	return ret;
 
 
 
 
 
 
1675}
1676
1677long do_io_submit(aio_context_t ctx_id, long nr,
1678		  struct iocb __user *__user *iocbpp, bool compat)
 
 
 
 
 
 
 
 
 
 
 
 
1679{
1680	struct kioctx *ctx;
1681	long ret = 0;
1682	int i = 0;
1683	struct blk_plug plug;
1684	struct kiocb_batch batch;
1685
1686	if (unlikely(nr < 0))
1687		return -EINVAL;
1688
1689	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1690		nr = LONG_MAX/sizeof(*iocbpp);
1691
1692	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1693		return -EFAULT;
1694
1695	ctx = lookup_ioctx(ctx_id);
1696	if (unlikely(!ctx)) {
1697		pr_debug("EINVAL: io_submit: invalid context id\n");
1698		return -EINVAL;
1699	}
1700
1701	kiocb_batch_init(&batch, nr);
1702
1703	blk_start_plug(&plug);
1704
1705	/*
1706	 * AKPM: should this return a partial result if some of the IOs were
1707	 * successfully submitted?
1708	 */
1709	for (i=0; i<nr; i++) {
1710		struct iocb __user *user_iocb;
1711		struct iocb tmp;
1712
1713		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1714			ret = -EFAULT;
1715			break;
1716		}
1717
1718		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1719			ret = -EFAULT;
1720			break;
1721		}
1722
1723		ret = io_submit_one(ctx, user_iocb, &tmp, &batch, compat);
1724		if (ret)
1725			break;
1726	}
1727	blk_finish_plug(&plug);
 
1728
1729	kiocb_batch_free(ctx, &batch);
1730	put_ioctx(ctx);
1731	return i ? i : ret;
1732}
1733
1734/* sys_io_submit:
1735 *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1736 *	the number of iocbs queued.  May return -EINVAL if the aio_context
1737 *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1738 *	*iocbpp[0] is not properly initialized, if the operation specified
1739 *	is invalid for the file descriptor in the iocb.  May fail with
1740 *	-EFAULT if any of the data structures point to invalid data.  May
1741 *	fail with -EBADF if the file descriptor specified in the first
1742 *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1743 *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1744 *	fail with -ENOSYS if not implemented.
1745 */
1746SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1747		struct iocb __user * __user *, iocbpp)
1748{
1749	return do_io_submit(ctx_id, nr, iocbpp, 0);
1750}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1751
1752/* lookup_kiocb
1753 *	Finds a given iocb for cancellation.
1754 */
1755static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1756				  u32 key)
1757{
1758	struct list_head *pos;
1759
1760	assert_spin_locked(&ctx->ctx_lock);
 
 
 
1761
1762	/* TODO: use a hash or array, this sucks. */
1763	list_for_each(pos, &ctx->active_reqs) {
1764		struct kiocb *kiocb = list_kiocb(pos);
1765		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1766			return kiocb;
1767	}
1768	return NULL;
 
 
 
 
1769}
 
1770
1771/* sys_io_cancel:
1772 *	Attempts to cancel an iocb previously passed to io_submit.  If
1773 *	the operation is successfully cancelled, the resulting event is
1774 *	copied into the memory pointed to by result without being placed
1775 *	into the completion queue and 0 is returned.  May fail with
1776 *	-EFAULT if any of the data structures pointed to are invalid.
1777 *	May fail with -EINVAL if aio_context specified by ctx_id is
1778 *	invalid.  May fail with -EAGAIN if the iocb specified was not
1779 *	cancelled.  Will fail with -ENOSYS if not implemented.
1780 */
1781SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1782		struct io_event __user *, result)
1783{
1784	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1785	struct kioctx *ctx;
1786	struct kiocb *kiocb;
 
1787	u32 key;
1788	int ret;
1789
1790	ret = get_user(key, &iocb->aio_key);
1791	if (unlikely(ret))
1792		return -EFAULT;
 
 
1793
1794	ctx = lookup_ioctx(ctx_id);
1795	if (unlikely(!ctx))
1796		return -EINVAL;
1797
1798	spin_lock_irq(&ctx->ctx_lock);
1799	ret = -EAGAIN;
1800	kiocb = lookup_kiocb(ctx, iocb, key);
1801	if (kiocb && kiocb->ki_cancel) {
1802		cancel = kiocb->ki_cancel;
1803		kiocb->ki_users ++;
1804		kiocbSetCancelled(kiocb);
1805	} else
1806		cancel = NULL;
1807	spin_unlock_irq(&ctx->ctx_lock);
1808
1809	if (NULL != cancel) {
1810		struct io_event tmp;
1811		pr_debug("calling cancel\n");
1812		memset(&tmp, 0, sizeof(tmp));
1813		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1814		tmp.data = kiocb->ki_user_data;
1815		ret = cancel(kiocb, &tmp);
1816		if (!ret) {
1817			/* Cancellation succeeded -- copy the result
1818			 * into the user's buffer.
1819			 */
1820			if (copy_to_user(result, &tmp, sizeof(tmp)))
1821				ret = -EFAULT;
1822		}
1823	} else
1824		ret = -EINVAL;
 
 
 
 
 
 
 
1825
1826	put_ioctx(ctx);
 
 
 
 
1827
1828	return ret;
1829}
1830
1831/* io_getevents:
1832 *	Attempts to read at least min_nr events and up to nr events from
1833 *	the completion queue for the aio_context specified by ctx_id. If
1834 *	it succeeds, the number of read events is returned. May fail with
1835 *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1836 *	out of range, if timeout is out of range.  May fail with -EFAULT
1837 *	if any of the memory specified is invalid.  May return 0 or
1838 *	< min_nr if the timeout specified by timeout has elapsed
1839 *	before sufficient events are available, where timeout == NULL
1840 *	specifies an infinite timeout. Note that the timeout pointed to by
1841 *	timeout is relative and will be updated if not NULL and the
1842 *	operation blocks. Will fail with -ENOSYS if not implemented.
1843 */
 
 
1844SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1845		long, min_nr,
1846		long, nr,
1847		struct io_event __user *, events,
1848		struct timespec __user *, timeout)
1849{
1850	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1851	long ret = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1852
1853	if (likely(ioctx)) {
1854		if (likely(min_nr <= nr && min_nr >= 0))
1855			ret = read_events(ioctx, min_nr, nr, events, timeout);
1856		put_ioctx(ioctx);
1857	}
1858
1859	asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1860	return ret;
1861}