Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  Kernel Probes (KProbes)
  4 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  5 * Copyright (C) IBM Corporation, 2002, 2004
  6 *
  7 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
  8 *		Probes initial implementation ( includes contributions from
  9 *		Rusty Russell).
 10 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
 11 *		interface to access function arguments.
 12 * 2004-Nov	Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
 13 *		for PPC64
 14 */
 15
 16#include <linux/kprobes.h>
 17#include <linux/ptrace.h>
 18#include <linux/preempt.h>
 19#include <linux/extable.h>
 20#include <linux/kdebug.h>
 21#include <linux/slab.h>
 22#include <linux/moduleloader.h>
 23#include <linux/set_memory.h>
 24#include <asm/code-patching.h>
 25#include <asm/cacheflush.h>
 26#include <asm/sstep.h>
 27#include <asm/sections.h>
 28#include <asm/inst.h>
 29#include <linux/uaccess.h>
 30
 31DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 32DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 33
 34struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
 35
 36bool arch_within_kprobe_blacklist(unsigned long addr)
 37{
 38	return  (addr >= (unsigned long)__kprobes_text_start &&
 39		 addr < (unsigned long)__kprobes_text_end) ||
 40		(addr >= (unsigned long)_stext &&
 41		 addr < (unsigned long)__head_end);
 42}
 43
 44kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset)
 45{
 46	kprobe_opcode_t *addr = NULL;
 47
 48#ifdef CONFIG_PPC64_ELF_ABI_V2
 49	/* PPC64 ABIv2 needs local entry point */
 50	addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
 51	if (addr && !offset) {
 52#ifdef CONFIG_KPROBES_ON_FTRACE
 53		unsigned long faddr;
 54		/*
 55		 * Per livepatch.h, ftrace location is always within the first
 56		 * 16 bytes of a function on powerpc with -mprofile-kernel.
 57		 */
 58		faddr = ftrace_location_range((unsigned long)addr,
 59					      (unsigned long)addr + 16);
 60		if (faddr)
 61			addr = (kprobe_opcode_t *)faddr;
 62		else
 63#endif
 64			addr = (kprobe_opcode_t *)ppc_function_entry(addr);
 65	}
 66#elif defined(CONFIG_PPC64_ELF_ABI_V1)
 67	/*
 68	 * 64bit powerpc ABIv1 uses function descriptors:
 69	 * - Check for the dot variant of the symbol first.
 70	 * - If that fails, try looking up the symbol provided.
 71	 *
 72	 * This ensures we always get to the actual symbol and not
 73	 * the descriptor.
 74	 *
 75	 * Also handle <module:symbol> format.
 76	 */
 77	char dot_name[MODULE_NAME_LEN + 1 + KSYM_NAME_LEN];
 78	bool dot_appended = false;
 79	const char *c;
 80	ssize_t ret = 0;
 81	int len = 0;
 82
 83	if ((c = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
 84		c++;
 85		len = c - name;
 86		memcpy(dot_name, name, len);
 87	} else
 88		c = name;
 89
 90	if (*c != '\0' && *c != '.') {
 91		dot_name[len++] = '.';
 92		dot_appended = true;
 93	}
 94	ret = strscpy(dot_name + len, c, KSYM_NAME_LEN);
 95	if (ret > 0)
 96		addr = (kprobe_opcode_t *)kallsyms_lookup_name(dot_name);
 97
 98	/* Fallback to the original non-dot symbol lookup */
 99	if (!addr && dot_appended)
100		addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
101#else
102	addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
103#endif
104
105	return addr;
106}
107
108static bool arch_kprobe_on_func_entry(unsigned long offset)
109{
110#ifdef CONFIG_PPC64_ELF_ABI_V2
111#ifdef CONFIG_KPROBES_ON_FTRACE
112	return offset <= 16;
113#else
114	return offset <= 8;
115#endif
116#else
117	return !offset;
118#endif
119}
120
121/* XXX try and fold the magic of kprobe_lookup_name() in this */
122kprobe_opcode_t *arch_adjust_kprobe_addr(unsigned long addr, unsigned long offset,
123					 bool *on_func_entry)
124{
125	*on_func_entry = arch_kprobe_on_func_entry(offset);
126	return (kprobe_opcode_t *)(addr + offset);
127}
128
129void *alloc_insn_page(void)
130{
131	void *page;
132
133	page = module_alloc(PAGE_SIZE);
134	if (!page)
135		return NULL;
136
137	if (strict_module_rwx_enabled())
138		set_memory_rox((unsigned long)page, 1);
139
140	return page;
141}
142
143int arch_prepare_kprobe(struct kprobe *p)
144{
145	int ret = 0;
146	struct kprobe *prev;
147	ppc_inst_t insn = ppc_inst_read(p->addr);
148
149	if ((unsigned long)p->addr & 0x03) {
150		printk("Attempt to register kprobe at an unaligned address\n");
151		ret = -EINVAL;
152	} else if (!can_single_step(ppc_inst_val(insn))) {
153		printk("Cannot register a kprobe on instructions that can't be single stepped\n");
154		ret = -EINVAL;
155	} else if ((unsigned long)p->addr & ~PAGE_MASK &&
156		   ppc_inst_prefixed(ppc_inst_read(p->addr - 1))) {
157		printk("Cannot register a kprobe on the second word of prefixed instruction\n");
158		ret = -EINVAL;
159	}
160	prev = get_kprobe(p->addr - 1);
161
162	/*
163	 * When prev is a ftrace-based kprobe, we don't have an insn, and it
164	 * doesn't probe for prefixed instruction.
165	 */
166	if (prev && !kprobe_ftrace(prev) &&
167	    ppc_inst_prefixed(ppc_inst_read(prev->ainsn.insn))) {
168		printk("Cannot register a kprobe on the second word of prefixed instruction\n");
169		ret = -EINVAL;
170	}
171
172	/* insn must be on a special executable page on ppc64.  This is
173	 * not explicitly required on ppc32 (right now), but it doesn't hurt */
174	if (!ret) {
175		p->ainsn.insn = get_insn_slot();
176		if (!p->ainsn.insn)
177			ret = -ENOMEM;
178	}
179
180	if (!ret) {
181		patch_instruction(p->ainsn.insn, insn);
182		p->opcode = ppc_inst_val(insn);
 
 
 
183	}
184
185	p->ainsn.boostable = 0;
186	return ret;
187}
188NOKPROBE_SYMBOL(arch_prepare_kprobe);
189
190void arch_arm_kprobe(struct kprobe *p)
191{
192	WARN_ON_ONCE(patch_instruction(p->addr, ppc_inst(BREAKPOINT_INSTRUCTION)));
 
 
193}
194NOKPROBE_SYMBOL(arch_arm_kprobe);
195
196void arch_disarm_kprobe(struct kprobe *p)
197{
198	WARN_ON_ONCE(patch_instruction(p->addr, ppc_inst(p->opcode)));
 
 
199}
200NOKPROBE_SYMBOL(arch_disarm_kprobe);
201
202void arch_remove_kprobe(struct kprobe *p)
203{
204	if (p->ainsn.insn) {
205		free_insn_slot(p->ainsn.insn, 0);
206		p->ainsn.insn = NULL;
207	}
208}
209NOKPROBE_SYMBOL(arch_remove_kprobe);
210
211static nokprobe_inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
212{
213	enable_single_step(regs);
 
 
 
 
 
 
 
 
 
 
 
 
214
215	/*
216	 * On powerpc we should single step on the original
217	 * instruction even if the probed insn is a trap
218	 * variant as values in regs could play a part in
219	 * if the trap is taken or not
220	 */
221	regs_set_return_ip(regs, (unsigned long)p->ainsn.insn);
222}
223
224static nokprobe_inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
225{
226	kcb->prev_kprobe.kp = kprobe_running();
227	kcb->prev_kprobe.status = kcb->kprobe_status;
228	kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
229}
230
231static nokprobe_inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
232{
233	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
234	kcb->kprobe_status = kcb->prev_kprobe.status;
235	kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
236}
237
238static nokprobe_inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
239				struct kprobe_ctlblk *kcb)
240{
241	__this_cpu_write(current_kprobe, p);
242	kcb->kprobe_saved_msr = regs->msr;
243}
244
245void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
 
246{
247	ri->ret_addr = (kprobe_opcode_t *)regs->link;
248	ri->fp = NULL;
249
250	/* Replace the return addr with trampoline addr */
251	regs->link = (unsigned long)__kretprobe_trampoline;
252}
253NOKPROBE_SYMBOL(arch_prepare_kretprobe);
254
255static int try_to_emulate(struct kprobe *p, struct pt_regs *regs)
256{
257	int ret;
258	ppc_inst_t insn = ppc_inst_read(p->ainsn.insn);
259
260	/* regs->nip is also adjusted if emulate_step returns 1 */
261	ret = emulate_step(regs, insn);
262	if (ret > 0) {
263		/*
264		 * Once this instruction has been boosted
265		 * successfully, set the boostable flag
266		 */
267		if (unlikely(p->ainsn.boostable == 0))
268			p->ainsn.boostable = 1;
269	} else if (ret < 0) {
270		/*
271		 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
272		 * So, we should never get here... but, its still
273		 * good to catch them, just in case...
274		 */
275		printk("Can't step on instruction %08lx\n", ppc_inst_as_ulong(insn));
276		BUG();
277	} else {
278		/*
279		 * If we haven't previously emulated this instruction, then it
280		 * can't be boosted. Note it down so we don't try to do so again.
281		 *
282		 * If, however, we had emulated this instruction in the past,
283		 * then this is just an error with the current run (for
284		 * instance, exceptions due to a load/store). We return 0 so
285		 * that this is now single-stepped, but continue to try
286		 * emulating it in subsequent probe hits.
287		 */
288		if (unlikely(p->ainsn.boostable != 1))
289			p->ainsn.boostable = -1;
290	}
291
292	return ret;
293}
294NOKPROBE_SYMBOL(try_to_emulate);
295
296int kprobe_handler(struct pt_regs *regs)
297{
298	struct kprobe *p;
299	int ret = 0;
300	unsigned int *addr = (unsigned int *)regs->nip;
301	struct kprobe_ctlblk *kcb;
302
303	if (user_mode(regs))
304		return 0;
305
306	if (!IS_ENABLED(CONFIG_BOOKE) &&
307	    (!(regs->msr & MSR_IR) || !(regs->msr & MSR_DR)))
308		return 0;
309
310	/*
311	 * We don't want to be preempted for the entire
312	 * duration of kprobe processing
313	 */
314	preempt_disable();
315	kcb = get_kprobe_ctlblk();
316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
317	p = get_kprobe(addr);
318	if (!p) {
319		unsigned int instr;
320
321		if (get_kernel_nofault(instr, addr))
322			goto no_kprobe;
323
324		if (instr != BREAKPOINT_INSTRUCTION) {
325			/*
326			 * PowerPC has multiple variants of the "trap"
327			 * instruction. If the current instruction is a
328			 * trap variant, it could belong to someone else
329			 */
330			if (is_trap(instr))
331				goto no_kprobe;
 
332			/*
333			 * The breakpoint instruction was removed right
334			 * after we hit it.  Another cpu has removed
335			 * either a probepoint or a debugger breakpoint
336			 * at this address.  In either case, no further
337			 * handling of this interrupt is appropriate.
338			 */
339			ret = 1;
340		}
341		/* Not one of ours: let kernel handle it */
342		goto no_kprobe;
343	}
344
345	/* Check we're not actually recursing */
346	if (kprobe_running()) {
347		kprobe_opcode_t insn = *p->ainsn.insn;
348		if (kcb->kprobe_status == KPROBE_HIT_SS && is_trap(insn)) {
349			/* Turn off 'trace' bits */
350			regs_set_return_msr(regs,
351				(regs->msr & ~MSR_SINGLESTEP) |
352				kcb->kprobe_saved_msr);
353			goto no_kprobe;
354		}
355
356		/*
357		 * We have reentered the kprobe_handler(), since another probe
358		 * was hit while within the handler. We here save the original
359		 * kprobes variables and just single step on the instruction of
360		 * the new probe without calling any user handlers.
361		 */
362		save_previous_kprobe(kcb);
363		set_current_kprobe(p, regs, kcb);
364		kprobes_inc_nmissed_count(p);
365		kcb->kprobe_status = KPROBE_REENTER;
366		if (p->ainsn.boostable >= 0) {
367			ret = try_to_emulate(p, regs);
368
369			if (ret > 0) {
370				restore_previous_kprobe(kcb);
371				preempt_enable();
372				return 1;
373			}
374		}
375		prepare_singlestep(p, regs);
376		return 1;
377	}
378
379	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
380	set_current_kprobe(p, regs, kcb);
381	if (p->pre_handler && p->pre_handler(p, regs)) {
382		/* handler changed execution path, so skip ss setup */
383		reset_current_kprobe();
384		preempt_enable();
385		return 1;
386	}
387
 
388	if (p->ainsn.boostable >= 0) {
389		ret = try_to_emulate(p, regs);
390
 
 
391		if (ret > 0) {
 
 
 
 
 
 
 
392			if (p->post_handler)
393				p->post_handler(p, regs, 0);
394
395			kcb->kprobe_status = KPROBE_HIT_SSDONE;
396			reset_current_kprobe();
397			preempt_enable();
398			return 1;
399		}
 
 
 
 
 
 
 
 
 
 
400	}
401	prepare_singlestep(p, regs);
402	kcb->kprobe_status = KPROBE_HIT_SS;
403	return 1;
404
405no_kprobe:
406	preempt_enable();
407	return ret;
408}
409NOKPROBE_SYMBOL(kprobe_handler);
410
411/*
412 * Function return probe trampoline:
413 * 	- init_kprobes() establishes a probepoint here
414 * 	- When the probed function returns, this probe
415 * 		causes the handlers to fire
416 */
417asm(".global __kretprobe_trampoline\n"
418	".type __kretprobe_trampoline, @function\n"
419	"__kretprobe_trampoline:\n"
420	"nop\n"
421	"blr\n"
422	".size __kretprobe_trampoline, .-__kretprobe_trampoline\n");
423
424/*
425 * Called when the probe at kretprobe trampoline is hit
426 */
427static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
 
428{
429	unsigned long orig_ret_address;
 
 
 
 
 
 
 
430
431	orig_ret_address = __kretprobe_trampoline_handler(regs, NULL);
432	/*
433	 * We get here through one of two paths:
434	 * 1. by taking a trap -> kprobe_handler() -> here
435	 * 2. by optprobe branch -> optimized_callback() -> opt_pre_handler() -> here
 
436	 *
437	 * When going back through (1), we need regs->nip to be setup properly
438	 * as it is used to determine the return address from the trap.
439	 * For (2), since nip is not honoured with optprobes, we instead setup
440	 * the link register properly so that the subsequent 'blr' in
441	 * __kretprobe_trampoline jumps back to the right instruction.
442	 *
443	 * For nip, we should set the address to the previous instruction since
444	 * we end up emulating it in kprobe_handler(), which increments the nip
445	 * again.
446	 */
447	regs_set_return_ip(regs, orig_ret_address - 4);
448	regs->link = orig_ret_address;
 
 
449
450	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
451}
452NOKPROBE_SYMBOL(trampoline_probe_handler);
453
454/*
455 * Called after single-stepping.  p->addr is the address of the
456 * instruction whose first byte has been replaced by the "breakpoint"
457 * instruction.  To avoid the SMP problems that can occur when we
458 * temporarily put back the original opcode to single-step, we
459 * single-stepped a copy of the instruction.  The address of this
460 * copy is p->ainsn.insn.
461 */
462int kprobe_post_handler(struct pt_regs *regs)
463{
464	int len;
465	struct kprobe *cur = kprobe_running();
466	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
467
468	if (!cur || user_mode(regs))
469		return 0;
470
471	len = ppc_inst_len(ppc_inst_read(cur->ainsn.insn));
472	/* make sure we got here for instruction we have a kprobe on */
473	if (((unsigned long)cur->ainsn.insn + len) != regs->nip)
474		return 0;
475
476	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
477		kcb->kprobe_status = KPROBE_HIT_SSDONE;
478		cur->post_handler(cur, regs, 0);
479	}
480
481	/* Adjust nip to after the single-stepped instruction */
482	regs_set_return_ip(regs, (unsigned long)cur->addr + len);
483	regs_set_return_msr(regs, regs->msr | kcb->kprobe_saved_msr);
484
485	/*Restore back the original saved kprobes variables and continue. */
486	if (kcb->kprobe_status == KPROBE_REENTER) {
487		restore_previous_kprobe(kcb);
488		goto out;
489	}
490	reset_current_kprobe();
491out:
492	preempt_enable();
493
494	/*
495	 * if somebody else is singlestepping across a probe point, msr
496	 * will have DE/SE set, in which case, continue the remaining processing
497	 * of do_debug, as if this is not a probe hit.
498	 */
499	if (regs->msr & MSR_SINGLESTEP)
500		return 0;
501
502	return 1;
503}
504NOKPROBE_SYMBOL(kprobe_post_handler);
505
506int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
507{
508	struct kprobe *cur = kprobe_running();
509	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
510	const struct exception_table_entry *entry;
511
512	switch(kcb->kprobe_status) {
513	case KPROBE_HIT_SS:
514	case KPROBE_REENTER:
515		/*
516		 * We are here because the instruction being single
517		 * stepped caused a page fault. We reset the current
518		 * kprobe and the nip points back to the probe address
519		 * and allow the page fault handler to continue as a
520		 * normal page fault.
521		 */
522		regs_set_return_ip(regs, (unsigned long)cur->addr);
523		/* Turn off 'trace' bits */
524		regs_set_return_msr(regs,
525			(regs->msr & ~MSR_SINGLESTEP) |
526			kcb->kprobe_saved_msr);
527		if (kcb->kprobe_status == KPROBE_REENTER)
528			restore_previous_kprobe(kcb);
529		else
530			reset_current_kprobe();
531		preempt_enable();
532		break;
533	case KPROBE_HIT_ACTIVE:
534	case KPROBE_HIT_SSDONE:
535		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
536		 * In case the user-specified fault handler returned
537		 * zero, try to fix up.
538		 */
539		if ((entry = search_exception_tables(regs->nip)) != NULL) {
540			regs_set_return_ip(regs, extable_fixup(entry));
541			return 1;
542		}
543
544		/*
545		 * fixup_exception() could not handle it,
546		 * Let do_page_fault() fix it.
547		 */
548		break;
549	default:
550		break;
551	}
552	return 0;
553}
554NOKPROBE_SYMBOL(kprobe_fault_handler);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
555
556static struct kprobe trampoline_p = {
557	.addr = (kprobe_opcode_t *) &__kretprobe_trampoline,
558	.pre_handler = trampoline_probe_handler
559};
560
561int __init arch_init_kprobes(void)
562{
563	return register_kprobe(&trampoline_p);
564}
565
566int arch_trampoline_kprobe(struct kprobe *p)
567{
568	if (p->addr == (kprobe_opcode_t *)&__kretprobe_trampoline)
569		return 1;
570
571	return 0;
572}
573NOKPROBE_SYMBOL(arch_trampoline_kprobe);
v3.5.6
 
  1/*
  2 *  Kernel Probes (KProbes)
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 17 *
 18 * Copyright (C) IBM Corporation, 2002, 2004
 19 *
 20 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
 21 *		Probes initial implementation ( includes contributions from
 22 *		Rusty Russell).
 23 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
 24 *		interface to access function arguments.
 25 * 2004-Nov	Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
 26 *		for PPC64
 27 */
 28
 29#include <linux/kprobes.h>
 30#include <linux/ptrace.h>
 31#include <linux/preempt.h>
 32#include <linux/module.h>
 33#include <linux/kdebug.h>
 34#include <linux/slab.h>
 
 
 
 35#include <asm/cacheflush.h>
 36#include <asm/sstep.h>
 37#include <asm/uaccess.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 38
 39#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 40#define MSR_SINGLESTEP	(MSR_DE)
 
 
 
 
 
 
 41#else
 42#define MSR_SINGLESTEP	(MSR_SE)
 43#endif
 
 44
 45DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 46DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 47
 48struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
 
 49
 50int __kprobes arch_prepare_kprobe(struct kprobe *p)
 51{
 52	int ret = 0;
 53	kprobe_opcode_t insn = *p->addr;
 
 54
 55	if ((unsigned long)p->addr & 0x03) {
 56		printk("Attempt to register kprobe at an unaligned address\n");
 57		ret = -EINVAL;
 58	} else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
 59		printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 60		ret = -EINVAL;
 61	}
 62
 63	/* insn must be on a special executable page on ppc64.  This is
 64	 * not explicitly required on ppc32 (right now), but it doesn't hurt */
 65	if (!ret) {
 66		p->ainsn.insn = get_insn_slot();
 67		if (!p->ainsn.insn)
 68			ret = -ENOMEM;
 69	}
 70
 71	if (!ret) {
 72		memcpy(p->ainsn.insn, p->addr,
 73				MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
 74		p->opcode = *p->addr;
 75		flush_icache_range((unsigned long)p->ainsn.insn,
 76			(unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
 77	}
 78
 79	p->ainsn.boostable = 0;
 80	return ret;
 81}
 
 82
 83void __kprobes arch_arm_kprobe(struct kprobe *p)
 84{
 85	*p->addr = BREAKPOINT_INSTRUCTION;
 86	flush_icache_range((unsigned long) p->addr,
 87			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
 88}
 
 89
 90void __kprobes arch_disarm_kprobe(struct kprobe *p)
 91{
 92	*p->addr = p->opcode;
 93	flush_icache_range((unsigned long) p->addr,
 94			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
 95}
 
 96
 97void __kprobes arch_remove_kprobe(struct kprobe *p)
 98{
 99	if (p->ainsn.insn) {
100		free_insn_slot(p->ainsn.insn, 0);
101		p->ainsn.insn = NULL;
102	}
103}
 
104
105static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
106{
107	/* We turn off async exceptions to ensure that the single step will
108	 * be for the instruction we have the kprobe on, if we dont its
109	 * possible we'd get the single step reported for an exception handler
110	 * like Decrementer or External Interrupt */
111	regs->msr &= ~MSR_EE;
112	regs->msr |= MSR_SINGLESTEP;
113#ifdef CONFIG_PPC_ADV_DEBUG_REGS
114	regs->msr &= ~MSR_CE;
115	mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) | DBCR0_IC | DBCR0_IDM);
116#ifdef CONFIG_PPC_47x
117	isync();
118#endif
119#endif
120
121	/*
122	 * On powerpc we should single step on the original
123	 * instruction even if the probed insn is a trap
124	 * variant as values in regs could play a part in
125	 * if the trap is taken or not
126	 */
127	regs->nip = (unsigned long)p->ainsn.insn;
128}
129
130static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
131{
132	kcb->prev_kprobe.kp = kprobe_running();
133	kcb->prev_kprobe.status = kcb->kprobe_status;
134	kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
135}
136
137static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
138{
139	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
140	kcb->kprobe_status = kcb->prev_kprobe.status;
141	kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
142}
143
144static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
145				struct kprobe_ctlblk *kcb)
146{
147	__get_cpu_var(current_kprobe) = p;
148	kcb->kprobe_saved_msr = regs->msr;
149}
150
151void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
152				      struct pt_regs *regs)
153{
154	ri->ret_addr = (kprobe_opcode_t *)regs->link;
 
155
156	/* Replace the return addr with trampoline addr */
157	regs->link = (unsigned long)kretprobe_trampoline;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158}
 
159
160static int __kprobes kprobe_handler(struct pt_regs *regs)
161{
162	struct kprobe *p;
163	int ret = 0;
164	unsigned int *addr = (unsigned int *)regs->nip;
165	struct kprobe_ctlblk *kcb;
166
 
 
 
 
 
 
 
167	/*
168	 * We don't want to be preempted for the entire
169	 * duration of kprobe processing
170	 */
171	preempt_disable();
172	kcb = get_kprobe_ctlblk();
173
174	/* Check we're not actually recursing */
175	if (kprobe_running()) {
176		p = get_kprobe(addr);
177		if (p) {
178			kprobe_opcode_t insn = *p->ainsn.insn;
179			if (kcb->kprobe_status == KPROBE_HIT_SS &&
180					is_trap(insn)) {
181				/* Turn off 'trace' bits */
182				regs->msr &= ~MSR_SINGLESTEP;
183				regs->msr |= kcb->kprobe_saved_msr;
184				goto no_kprobe;
185			}
186			/* We have reentered the kprobe_handler(), since
187			 * another probe was hit while within the handler.
188			 * We here save the original kprobes variables and
189			 * just single step on the instruction of the new probe
190			 * without calling any user handlers.
191			 */
192			save_previous_kprobe(kcb);
193			set_current_kprobe(p, regs, kcb);
194			kcb->kprobe_saved_msr = regs->msr;
195			kprobes_inc_nmissed_count(p);
196			prepare_singlestep(p, regs);
197			kcb->kprobe_status = KPROBE_REENTER;
198			return 1;
199		} else {
200			if (*addr != BREAKPOINT_INSTRUCTION) {
201				/* If trap variant, then it belongs not to us */
202				kprobe_opcode_t cur_insn = *addr;
203				if (is_trap(cur_insn))
204		       			goto no_kprobe;
205				/* The breakpoint instruction was removed by
206				 * another cpu right after we hit, no further
207				 * handling of this interrupt is appropriate
208				 */
209				ret = 1;
210				goto no_kprobe;
211			}
212			p = __get_cpu_var(current_kprobe);
213			if (p->break_handler && p->break_handler(p, regs)) {
214				goto ss_probe;
215			}
216		}
217		goto no_kprobe;
218	}
219
220	p = get_kprobe(addr);
221	if (!p) {
222		if (*addr != BREAKPOINT_INSTRUCTION) {
 
 
 
 
 
223			/*
224			 * PowerPC has multiple variants of the "trap"
225			 * instruction. If the current instruction is a
226			 * trap variant, it could belong to someone else
227			 */
228			kprobe_opcode_t cur_insn = *addr;
229			if (is_trap(cur_insn))
230		       		goto no_kprobe;
231			/*
232			 * The breakpoint instruction was removed right
233			 * after we hit it.  Another cpu has removed
234			 * either a probepoint or a debugger breakpoint
235			 * at this address.  In either case, no further
236			 * handling of this interrupt is appropriate.
237			 */
238			ret = 1;
239		}
240		/* Not one of ours: let kernel handle it */
241		goto no_kprobe;
242	}
243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
244	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
245	set_current_kprobe(p, regs, kcb);
246	if (p->pre_handler && p->pre_handler(p, regs))
247		/* handler has already set things up, so skip ss setup */
 
 
248		return 1;
 
249
250ss_probe:
251	if (p->ainsn.boostable >= 0) {
252		unsigned int insn = *p->ainsn.insn;
253
254		/* regs->nip is also adjusted if emulate_step returns 1 */
255		ret = emulate_step(regs, insn);
256		if (ret > 0) {
257			/*
258			 * Once this instruction has been boosted
259			 * successfully, set the boostable flag
260			 */
261			if (unlikely(p->ainsn.boostable == 0))
262				p->ainsn.boostable = 1;
263
264			if (p->post_handler)
265				p->post_handler(p, regs, 0);
266
267			kcb->kprobe_status = KPROBE_HIT_SSDONE;
268			reset_current_kprobe();
269			preempt_enable_no_resched();
270			return 1;
271		} else if (ret < 0) {
272			/*
273			 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
274			 * So, we should never get here... but, its still
275			 * good to catch them, just in case...
276			 */
277			printk("Can't step on instruction %x\n", insn);
278			BUG();
279		} else if (ret == 0)
280			/* This instruction can't be boosted */
281			p->ainsn.boostable = -1;
282	}
283	prepare_singlestep(p, regs);
284	kcb->kprobe_status = KPROBE_HIT_SS;
285	return 1;
286
287no_kprobe:
288	preempt_enable_no_resched();
289	return ret;
290}
 
291
292/*
293 * Function return probe trampoline:
294 * 	- init_kprobes() establishes a probepoint here
295 * 	- When the probed function returns, this probe
296 * 		causes the handlers to fire
297 */
298static void __used kretprobe_trampoline_holder(void)
299{
300	asm volatile(".global kretprobe_trampoline\n"
301			"kretprobe_trampoline:\n"
302			"nop\n");
303}
304
305/*
306 * Called when the probe at kretprobe trampoline is hit
307 */
308static int __kprobes trampoline_probe_handler(struct kprobe *p,
309						struct pt_regs *regs)
310{
311	struct kretprobe_instance *ri = NULL;
312	struct hlist_head *head, empty_rp;
313	struct hlist_node *node, *tmp;
314	unsigned long flags, orig_ret_address = 0;
315	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
316
317	INIT_HLIST_HEAD(&empty_rp);
318	kretprobe_hash_lock(current, &head, &flags);
319
 
320	/*
321	 * It is possible to have multiple instances associated with a given
322	 * task either because an multiple functions in the call path
323	 * have a return probe installed on them, and/or more than one return
324	 * return probe was registered for a target function.
325	 *
326	 * We can handle this because:
327	 *     - instances are always inserted at the head of the list
328	 *     - when multiple return probes are registered for the same
329	 *       function, the first instance's ret_addr will point to the
330	 *       real return address, and all the rest will point to
331	 *       kretprobe_trampoline
 
 
 
332	 */
333	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
334		if (ri->task != current)
335			/* another task is sharing our hash bucket */
336			continue;
337
338		if (ri->rp && ri->rp->handler)
339			ri->rp->handler(ri, regs);
340
341		orig_ret_address = (unsigned long)ri->ret_addr;
342		recycle_rp_inst(ri, &empty_rp);
343
344		if (orig_ret_address != trampoline_address)
345			/*
346			 * This is the real return address. Any other
347			 * instances associated with this task are for
348			 * other calls deeper on the call stack
349			 */
350			break;
351	}
352
353	kretprobe_assert(ri, orig_ret_address, trampoline_address);
354	regs->nip = orig_ret_address;
355
356	reset_current_kprobe();
357	kretprobe_hash_unlock(current, &flags);
358	preempt_enable_no_resched();
359
360	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
361		hlist_del(&ri->hlist);
362		kfree(ri);
363	}
364	/*
365	 * By returning a non-zero value, we are telling
366	 * kprobe_handler() that we don't want the post_handler
367	 * to run (and have re-enabled preemption)
368	 */
369	return 1;
370}
 
371
372/*
373 * Called after single-stepping.  p->addr is the address of the
374 * instruction whose first byte has been replaced by the "breakpoint"
375 * instruction.  To avoid the SMP problems that can occur when we
376 * temporarily put back the original opcode to single-step, we
377 * single-stepped a copy of the instruction.  The address of this
378 * copy is p->ainsn.insn.
379 */
380static int __kprobes post_kprobe_handler(struct pt_regs *regs)
381{
 
382	struct kprobe *cur = kprobe_running();
383	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
384
385	if (!cur)
386		return 0;
387
 
388	/* make sure we got here for instruction we have a kprobe on */
389	if (((unsigned long)cur->ainsn.insn + 4) != regs->nip)
390		return 0;
391
392	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
393		kcb->kprobe_status = KPROBE_HIT_SSDONE;
394		cur->post_handler(cur, regs, 0);
395	}
396
397	/* Adjust nip to after the single-stepped instruction */
398	regs->nip = (unsigned long)cur->addr + 4;
399	regs->msr |= kcb->kprobe_saved_msr;
400
401	/*Restore back the original saved kprobes variables and continue. */
402	if (kcb->kprobe_status == KPROBE_REENTER) {
403		restore_previous_kprobe(kcb);
404		goto out;
405	}
406	reset_current_kprobe();
407out:
408	preempt_enable_no_resched();
409
410	/*
411	 * if somebody else is singlestepping across a probe point, msr
412	 * will have DE/SE set, in which case, continue the remaining processing
413	 * of do_debug, as if this is not a probe hit.
414	 */
415	if (regs->msr & MSR_SINGLESTEP)
416		return 0;
417
418	return 1;
419}
 
420
421int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
422{
423	struct kprobe *cur = kprobe_running();
424	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
425	const struct exception_table_entry *entry;
426
427	switch(kcb->kprobe_status) {
428	case KPROBE_HIT_SS:
429	case KPROBE_REENTER:
430		/*
431		 * We are here because the instruction being single
432		 * stepped caused a page fault. We reset the current
433		 * kprobe and the nip points back to the probe address
434		 * and allow the page fault handler to continue as a
435		 * normal page fault.
436		 */
437		regs->nip = (unsigned long)cur->addr;
438		regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
439		regs->msr |= kcb->kprobe_saved_msr;
 
 
440		if (kcb->kprobe_status == KPROBE_REENTER)
441			restore_previous_kprobe(kcb);
442		else
443			reset_current_kprobe();
444		preempt_enable_no_resched();
445		break;
446	case KPROBE_HIT_ACTIVE:
447	case KPROBE_HIT_SSDONE:
448		/*
449		 * We increment the nmissed count for accounting,
450		 * we can also use npre/npostfault count for accouting
451		 * these specific fault cases.
452		 */
453		kprobes_inc_nmissed_count(cur);
454
455		/*
456		 * We come here because instructions in the pre/post
457		 * handler caused the page_fault, this could happen
458		 * if handler tries to access user space by
459		 * copy_from_user(), get_user() etc. Let the
460		 * user-specified handler try to fix it first.
461		 */
462		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
463			return 1;
464
465		/*
466		 * In case the user-specified fault handler returned
467		 * zero, try to fix up.
468		 */
469		if ((entry = search_exception_tables(regs->nip)) != NULL) {
470			regs->nip = entry->fixup;
471			return 1;
472		}
473
474		/*
475		 * fixup_exception() could not handle it,
476		 * Let do_page_fault() fix it.
477		 */
478		break;
479	default:
480		break;
481	}
482	return 0;
483}
484
485/*
486 * Wrapper routine to for handling exceptions.
487 */
488int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
489				       unsigned long val, void *data)
490{
491	struct die_args *args = (struct die_args *)data;
492	int ret = NOTIFY_DONE;
493
494	if (args->regs && user_mode(args->regs))
495		return ret;
496
497	switch (val) {
498	case DIE_BPT:
499		if (kprobe_handler(args->regs))
500			ret = NOTIFY_STOP;
501		break;
502	case DIE_SSTEP:
503		if (post_kprobe_handler(args->regs))
504			ret = NOTIFY_STOP;
505		break;
506	default:
507		break;
508	}
509	return ret;
510}
511
512#ifdef CONFIG_PPC64
513unsigned long arch_deref_entry_point(void *entry)
514{
515	return ((func_descr_t *)entry)->entry;
516}
517#endif
518
519int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
520{
521	struct jprobe *jp = container_of(p, struct jprobe, kp);
522	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
523
524	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
525
526	/* setup return addr to the jprobe handler routine */
527	regs->nip = arch_deref_entry_point(jp->entry);
528#ifdef CONFIG_PPC64
529	regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
530#endif
531
532	return 1;
533}
534
535void __used __kprobes jprobe_return(void)
536{
537	asm volatile("trap" ::: "memory");
538}
539
540static void __used __kprobes jprobe_return_end(void)
541{
542};
543
544int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
545{
546	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
547
548	/*
549	 * FIXME - we should ideally be validating that we got here 'cos
550	 * of the "trap" in jprobe_return() above, before restoring the
551	 * saved regs...
552	 */
553	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
554	preempt_enable_no_resched();
555	return 1;
556}
557
558static struct kprobe trampoline_p = {
559	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
560	.pre_handler = trampoline_probe_handler
561};
562
563int __init arch_init_kprobes(void)
564{
565	return register_kprobe(&trampoline_p);
566}
567
568int __kprobes arch_trampoline_kprobe(struct kprobe *p)
569{
570	if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
571		return 1;
572
573	return 0;
574}