Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  Kernel Probes (KProbes)
  4 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  5 * Copyright (C) IBM Corporation, 2002, 2004
  6 *
  7 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
  8 *		Probes initial implementation ( includes contributions from
  9 *		Rusty Russell).
 10 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
 11 *		interface to access function arguments.
 12 * 2004-Nov	Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
 13 *		for PPC64
 14 */
 15
 16#include <linux/kprobes.h>
 17#include <linux/ptrace.h>
 18#include <linux/preempt.h>
 19#include <linux/extable.h>
 20#include <linux/kdebug.h>
 21#include <linux/slab.h>
 22#include <linux/moduleloader.h>
 23#include <linux/set_memory.h>
 24#include <asm/code-patching.h>
 25#include <asm/cacheflush.h>
 26#include <asm/sstep.h>
 27#include <asm/sections.h>
 28#include <asm/inst.h>
 29#include <linux/uaccess.h>
 30
 31DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 32DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 33
 34struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
 35
 36bool arch_within_kprobe_blacklist(unsigned long addr)
 37{
 38	return  (addr >= (unsigned long)__kprobes_text_start &&
 39		 addr < (unsigned long)__kprobes_text_end) ||
 40		(addr >= (unsigned long)_stext &&
 41		 addr < (unsigned long)__head_end);
 42}
 43
 44kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset)
 45{
 46	kprobe_opcode_t *addr = NULL;
 47
 48#ifdef CONFIG_PPC64_ELF_ABI_V2
 49	/* PPC64 ABIv2 needs local entry point */
 50	addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
 51	if (addr && !offset) {
 52#ifdef CONFIG_KPROBES_ON_FTRACE
 53		unsigned long faddr;
 54		/*
 55		 * Per livepatch.h, ftrace location is always within the first
 56		 * 16 bytes of a function on powerpc with -mprofile-kernel.
 57		 */
 58		faddr = ftrace_location_range((unsigned long)addr,
 59					      (unsigned long)addr + 16);
 60		if (faddr)
 61			addr = (kprobe_opcode_t *)faddr;
 62		else
 63#endif
 64			addr = (kprobe_opcode_t *)ppc_function_entry(addr);
 65	}
 66#elif defined(CONFIG_PPC64_ELF_ABI_V1)
 67	/*
 68	 * 64bit powerpc ABIv1 uses function descriptors:
 69	 * - Check for the dot variant of the symbol first.
 70	 * - If that fails, try looking up the symbol provided.
 71	 *
 72	 * This ensures we always get to the actual symbol and not
 73	 * the descriptor.
 74	 *
 75	 * Also handle <module:symbol> format.
 76	 */
 77	char dot_name[MODULE_NAME_LEN + 1 + KSYM_NAME_LEN];
 78	bool dot_appended = false;
 79	const char *c;
 80	ssize_t ret = 0;
 81	int len = 0;
 82
 83	if ((c = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
 84		c++;
 85		len = c - name;
 86		memcpy(dot_name, name, len);
 87	} else
 88		c = name;
 89
 90	if (*c != '\0' && *c != '.') {
 91		dot_name[len++] = '.';
 92		dot_appended = true;
 93	}
 94	ret = strscpy(dot_name + len, c, KSYM_NAME_LEN);
 95	if (ret > 0)
 96		addr = (kprobe_opcode_t *)kallsyms_lookup_name(dot_name);
 97
 98	/* Fallback to the original non-dot symbol lookup */
 99	if (!addr && dot_appended)
100		addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
101#else
102	addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
103#endif
104
105	return addr;
106}
107
108static bool arch_kprobe_on_func_entry(unsigned long offset)
109{
110#ifdef CONFIG_PPC64_ELF_ABI_V2
111#ifdef CONFIG_KPROBES_ON_FTRACE
112	return offset <= 16;
113#else
114	return offset <= 8;
115#endif
116#else
117	return !offset;
118#endif
119}
120
121/* XXX try and fold the magic of kprobe_lookup_name() in this */
122kprobe_opcode_t *arch_adjust_kprobe_addr(unsigned long addr, unsigned long offset,
123					 bool *on_func_entry)
124{
125	*on_func_entry = arch_kprobe_on_func_entry(offset);
126	return (kprobe_opcode_t *)(addr + offset);
127}
128
129void *alloc_insn_page(void)
130{
131	void *page;
132
133	page = module_alloc(PAGE_SIZE);
134	if (!page)
135		return NULL;
136
137	if (strict_module_rwx_enabled())
138		set_memory_rox((unsigned long)page, 1);
139
140	return page;
141}
142
143int arch_prepare_kprobe(struct kprobe *p)
144{
145	int ret = 0;
146	struct kprobe *prev;
147	ppc_inst_t insn = ppc_inst_read(p->addr);
148
149	if ((unsigned long)p->addr & 0x03) {
150		printk("Attempt to register kprobe at an unaligned address\n");
151		ret = -EINVAL;
152	} else if (!can_single_step(ppc_inst_val(insn))) {
153		printk("Cannot register a kprobe on instructions that can't be single stepped\n");
154		ret = -EINVAL;
155	} else if ((unsigned long)p->addr & ~PAGE_MASK &&
156		   ppc_inst_prefixed(ppc_inst_read(p->addr - 1))) {
157		printk("Cannot register a kprobe on the second word of prefixed instruction\n");
158		ret = -EINVAL;
159	}
160	prev = get_kprobe(p->addr - 1);
161
162	/*
163	 * When prev is a ftrace-based kprobe, we don't have an insn, and it
164	 * doesn't probe for prefixed instruction.
165	 */
166	if (prev && !kprobe_ftrace(prev) &&
167	    ppc_inst_prefixed(ppc_inst_read(prev->ainsn.insn))) {
168		printk("Cannot register a kprobe on the second word of prefixed instruction\n");
169		ret = -EINVAL;
170	}
171
172	/* insn must be on a special executable page on ppc64.  This is
173	 * not explicitly required on ppc32 (right now), but it doesn't hurt */
174	if (!ret) {
175		p->ainsn.insn = get_insn_slot();
176		if (!p->ainsn.insn)
177			ret = -ENOMEM;
178	}
179
180	if (!ret) {
181		patch_instruction(p->ainsn.insn, insn);
182		p->opcode = ppc_inst_val(insn);
 
 
 
183	}
184
185	p->ainsn.boostable = 0;
186	return ret;
187}
188NOKPROBE_SYMBOL(arch_prepare_kprobe);
189
190void arch_arm_kprobe(struct kprobe *p)
191{
192	WARN_ON_ONCE(patch_instruction(p->addr, ppc_inst(BREAKPOINT_INSTRUCTION)));
 
 
193}
194NOKPROBE_SYMBOL(arch_arm_kprobe);
195
196void arch_disarm_kprobe(struct kprobe *p)
197{
198	WARN_ON_ONCE(patch_instruction(p->addr, ppc_inst(p->opcode)));
 
 
199}
200NOKPROBE_SYMBOL(arch_disarm_kprobe);
201
202void arch_remove_kprobe(struct kprobe *p)
203{
204	if (p->ainsn.insn) {
205		free_insn_slot(p->ainsn.insn, 0);
206		p->ainsn.insn = NULL;
207	}
208}
209NOKPROBE_SYMBOL(arch_remove_kprobe);
210
211static nokprobe_inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
212{
213	enable_single_step(regs);
214
215	/*
216	 * On powerpc we should single step on the original
217	 * instruction even if the probed insn is a trap
218	 * variant as values in regs could play a part in
219	 * if the trap is taken or not
220	 */
221	regs_set_return_ip(regs, (unsigned long)p->ainsn.insn);
222}
223
224static nokprobe_inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
225{
226	kcb->prev_kprobe.kp = kprobe_running();
227	kcb->prev_kprobe.status = kcb->kprobe_status;
228	kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
229}
230
231static nokprobe_inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
232{
233	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
234	kcb->kprobe_status = kcb->prev_kprobe.status;
235	kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
236}
237
238static nokprobe_inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
239				struct kprobe_ctlblk *kcb)
240{
241	__this_cpu_write(current_kprobe, p);
242	kcb->kprobe_saved_msr = regs->msr;
243}
244
245void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
 
246{
247	ri->ret_addr = (kprobe_opcode_t *)regs->link;
248	ri->fp = NULL;
249
250	/* Replace the return addr with trampoline addr */
251	regs->link = (unsigned long)__kretprobe_trampoline;
252}
253NOKPROBE_SYMBOL(arch_prepare_kretprobe);
254
255static int try_to_emulate(struct kprobe *p, struct pt_regs *regs)
256{
257	int ret;
258	ppc_inst_t insn = ppc_inst_read(p->ainsn.insn);
259
260	/* regs->nip is also adjusted if emulate_step returns 1 */
261	ret = emulate_step(regs, insn);
262	if (ret > 0) {
263		/*
264		 * Once this instruction has been boosted
265		 * successfully, set the boostable flag
266		 */
267		if (unlikely(p->ainsn.boostable == 0))
268			p->ainsn.boostable = 1;
269	} else if (ret < 0) {
270		/*
271		 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
272		 * So, we should never get here... but, its still
273		 * good to catch them, just in case...
274		 */
275		printk("Can't step on instruction %08lx\n", ppc_inst_as_ulong(insn));
276		BUG();
277	} else {
278		/*
279		 * If we haven't previously emulated this instruction, then it
280		 * can't be boosted. Note it down so we don't try to do so again.
281		 *
282		 * If, however, we had emulated this instruction in the past,
283		 * then this is just an error with the current run (for
284		 * instance, exceptions due to a load/store). We return 0 so
285		 * that this is now single-stepped, but continue to try
286		 * emulating it in subsequent probe hits.
287		 */
288		if (unlikely(p->ainsn.boostable != 1))
289			p->ainsn.boostable = -1;
290	}
291
292	return ret;
293}
294NOKPROBE_SYMBOL(try_to_emulate);
295
296int kprobe_handler(struct pt_regs *regs)
297{
298	struct kprobe *p;
299	int ret = 0;
300	unsigned int *addr = (unsigned int *)regs->nip;
301	struct kprobe_ctlblk *kcb;
302
303	if (user_mode(regs))
304		return 0;
305
306	if (!IS_ENABLED(CONFIG_BOOKE) &&
307	    (!(regs->msr & MSR_IR) || !(regs->msr & MSR_DR)))
308		return 0;
309
310	/*
311	 * We don't want to be preempted for the entire
312	 * duration of kprobe processing
313	 */
314	preempt_disable();
315	kcb = get_kprobe_ctlblk();
316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
317	p = get_kprobe(addr);
318	if (!p) {
319		unsigned int instr;
320
321		if (get_kernel_nofault(instr, addr))
322			goto no_kprobe;
323
324		if (instr != BREAKPOINT_INSTRUCTION) {
325			/*
326			 * PowerPC has multiple variants of the "trap"
327			 * instruction. If the current instruction is a
328			 * trap variant, it could belong to someone else
329			 */
330			if (is_trap(instr))
331				goto no_kprobe;
 
332			/*
333			 * The breakpoint instruction was removed right
334			 * after we hit it.  Another cpu has removed
335			 * either a probepoint or a debugger breakpoint
336			 * at this address.  In either case, no further
337			 * handling of this interrupt is appropriate.
338			 */
339			ret = 1;
340		}
341		/* Not one of ours: let kernel handle it */
342		goto no_kprobe;
343	}
344
345	/* Check we're not actually recursing */
346	if (kprobe_running()) {
347		kprobe_opcode_t insn = *p->ainsn.insn;
348		if (kcb->kprobe_status == KPROBE_HIT_SS && is_trap(insn)) {
349			/* Turn off 'trace' bits */
350			regs_set_return_msr(regs,
351				(regs->msr & ~MSR_SINGLESTEP) |
352				kcb->kprobe_saved_msr);
353			goto no_kprobe;
354		}
355
356		/*
357		 * We have reentered the kprobe_handler(), since another probe
358		 * was hit while within the handler. We here save the original
359		 * kprobes variables and just single step on the instruction of
360		 * the new probe without calling any user handlers.
361		 */
362		save_previous_kprobe(kcb);
363		set_current_kprobe(p, regs, kcb);
364		kprobes_inc_nmissed_count(p);
365		kcb->kprobe_status = KPROBE_REENTER;
366		if (p->ainsn.boostable >= 0) {
367			ret = try_to_emulate(p, regs);
368
369			if (ret > 0) {
370				restore_previous_kprobe(kcb);
371				preempt_enable();
372				return 1;
373			}
374		}
375		prepare_singlestep(p, regs);
376		return 1;
377	}
378
379	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
380	set_current_kprobe(p, regs, kcb);
381	if (p->pre_handler && p->pre_handler(p, regs)) {
382		/* handler changed execution path, so skip ss setup */
383		reset_current_kprobe();
384		preempt_enable();
385		return 1;
386	}
387
 
388	if (p->ainsn.boostable >= 0) {
389		ret = try_to_emulate(p, regs);
390
 
 
391		if (ret > 0) {
 
 
 
 
 
 
 
392			if (p->post_handler)
393				p->post_handler(p, regs, 0);
394
395			kcb->kprobe_status = KPROBE_HIT_SSDONE;
396			reset_current_kprobe();
397			preempt_enable();
398			return 1;
399		}
 
 
 
 
 
 
 
 
 
 
400	}
401	prepare_singlestep(p, regs);
402	kcb->kprobe_status = KPROBE_HIT_SS;
403	return 1;
404
405no_kprobe:
406	preempt_enable();
407	return ret;
408}
409NOKPROBE_SYMBOL(kprobe_handler);
410
411/*
412 * Function return probe trampoline:
413 * 	- init_kprobes() establishes a probepoint here
414 * 	- When the probed function returns, this probe
415 * 		causes the handlers to fire
416 */
417asm(".global __kretprobe_trampoline\n"
418	".type __kretprobe_trampoline, @function\n"
419	"__kretprobe_trampoline:\n"
420	"nop\n"
421	"blr\n"
422	".size __kretprobe_trampoline, .-__kretprobe_trampoline\n");
423
424/*
425 * Called when the probe at kretprobe trampoline is hit
426 */
427static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
 
428{
429	unsigned long orig_ret_address;
 
 
 
 
 
 
 
430
431	orig_ret_address = __kretprobe_trampoline_handler(regs, NULL);
432	/*
433	 * We get here through one of two paths:
434	 * 1. by taking a trap -> kprobe_handler() -> here
435	 * 2. by optprobe branch -> optimized_callback() -> opt_pre_handler() -> here
436	 *
437	 * When going back through (1), we need regs->nip to be setup properly
438	 * as it is used to determine the return address from the trap.
439	 * For (2), since nip is not honoured with optprobes, we instead setup
440	 * the link register properly so that the subsequent 'blr' in
441	 * __kretprobe_trampoline jumps back to the right instruction.
442	 *
443	 * For nip, we should set the address to the previous instruction since
444	 * we end up emulating it in kprobe_handler(), which increments the nip
445	 * again.
 
 
 
446	 */
447	regs_set_return_ip(regs, orig_ret_address - 4);
448	regs->link = orig_ret_address;
 
 
449
450	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
451}
452NOKPROBE_SYMBOL(trampoline_probe_handler);
453
454/*
455 * Called after single-stepping.  p->addr is the address of the
456 * instruction whose first byte has been replaced by the "breakpoint"
457 * instruction.  To avoid the SMP problems that can occur when we
458 * temporarily put back the original opcode to single-step, we
459 * single-stepped a copy of the instruction.  The address of this
460 * copy is p->ainsn.insn.
461 */
462int kprobe_post_handler(struct pt_regs *regs)
463{
464	int len;
465	struct kprobe *cur = kprobe_running();
466	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
467
468	if (!cur || user_mode(regs))
469		return 0;
470
471	len = ppc_inst_len(ppc_inst_read(cur->ainsn.insn));
472	/* make sure we got here for instruction we have a kprobe on */
473	if (((unsigned long)cur->ainsn.insn + len) != regs->nip)
474		return 0;
475
476	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
477		kcb->kprobe_status = KPROBE_HIT_SSDONE;
478		cur->post_handler(cur, regs, 0);
479	}
480
481	/* Adjust nip to after the single-stepped instruction */
482	regs_set_return_ip(regs, (unsigned long)cur->addr + len);
483	regs_set_return_msr(regs, regs->msr | kcb->kprobe_saved_msr);
484
485	/*Restore back the original saved kprobes variables and continue. */
486	if (kcb->kprobe_status == KPROBE_REENTER) {
487		restore_previous_kprobe(kcb);
488		goto out;
489	}
490	reset_current_kprobe();
491out:
492	preempt_enable();
493
494	/*
495	 * if somebody else is singlestepping across a probe point, msr
496	 * will have DE/SE set, in which case, continue the remaining processing
497	 * of do_debug, as if this is not a probe hit.
498	 */
499	if (regs->msr & MSR_SINGLESTEP)
500		return 0;
501
502	return 1;
503}
504NOKPROBE_SYMBOL(kprobe_post_handler);
505
506int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
507{
508	struct kprobe *cur = kprobe_running();
509	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
510	const struct exception_table_entry *entry;
511
512	switch(kcb->kprobe_status) {
513	case KPROBE_HIT_SS:
514	case KPROBE_REENTER:
515		/*
516		 * We are here because the instruction being single
517		 * stepped caused a page fault. We reset the current
518		 * kprobe and the nip points back to the probe address
519		 * and allow the page fault handler to continue as a
520		 * normal page fault.
521		 */
522		regs_set_return_ip(regs, (unsigned long)cur->addr);
523		/* Turn off 'trace' bits */
524		regs_set_return_msr(regs,
525			(regs->msr & ~MSR_SINGLESTEP) |
526			kcb->kprobe_saved_msr);
527		if (kcb->kprobe_status == KPROBE_REENTER)
528			restore_previous_kprobe(kcb);
529		else
530			reset_current_kprobe();
531		preempt_enable();
532		break;
533	case KPROBE_HIT_ACTIVE:
534	case KPROBE_HIT_SSDONE:
535		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
536		 * In case the user-specified fault handler returned
537		 * zero, try to fix up.
538		 */
539		if ((entry = search_exception_tables(regs->nip)) != NULL) {
540			regs_set_return_ip(regs, extable_fixup(entry));
541			return 1;
542		}
543
544		/*
545		 * fixup_exception() could not handle it,
546		 * Let do_page_fault() fix it.
547		 */
548		break;
549	default:
550		break;
551	}
552	return 0;
553}
554NOKPROBE_SYMBOL(kprobe_fault_handler);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
555
556static struct kprobe trampoline_p = {
557	.addr = (kprobe_opcode_t *) &__kretprobe_trampoline,
558	.pre_handler = trampoline_probe_handler
559};
560
561int __init arch_init_kprobes(void)
562{
563	return register_kprobe(&trampoline_p);
564}
565
566int arch_trampoline_kprobe(struct kprobe *p)
567{
568	if (p->addr == (kprobe_opcode_t *)&__kretprobe_trampoline)
569		return 1;
570
571	return 0;
572}
573NOKPROBE_SYMBOL(arch_trampoline_kprobe);
v4.6
 
  1/*
  2 *  Kernel Probes (KProbes)
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 17 *
 18 * Copyright (C) IBM Corporation, 2002, 2004
 19 *
 20 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
 21 *		Probes initial implementation ( includes contributions from
 22 *		Rusty Russell).
 23 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
 24 *		interface to access function arguments.
 25 * 2004-Nov	Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
 26 *		for PPC64
 27 */
 28
 29#include <linux/kprobes.h>
 30#include <linux/ptrace.h>
 31#include <linux/preempt.h>
 32#include <linux/module.h>
 33#include <linux/kdebug.h>
 34#include <linux/slab.h>
 
 
 35#include <asm/code-patching.h>
 36#include <asm/cacheflush.h>
 37#include <asm/sstep.h>
 38#include <asm/uaccess.h>
 
 
 39
 40DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 41DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 42
 43struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
 44
 45int __kprobes arch_prepare_kprobe(struct kprobe *p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 46{
 47	int ret = 0;
 48	kprobe_opcode_t insn = *p->addr;
 
 49
 50	if ((unsigned long)p->addr & 0x03) {
 51		printk("Attempt to register kprobe at an unaligned address\n");
 52		ret = -EINVAL;
 53	} else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
 54		printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 55		ret = -EINVAL;
 56	}
 57
 58	/* insn must be on a special executable page on ppc64.  This is
 59	 * not explicitly required on ppc32 (right now), but it doesn't hurt */
 60	if (!ret) {
 61		p->ainsn.insn = get_insn_slot();
 62		if (!p->ainsn.insn)
 63			ret = -ENOMEM;
 64	}
 65
 66	if (!ret) {
 67		memcpy(p->ainsn.insn, p->addr,
 68				MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
 69		p->opcode = *p->addr;
 70		flush_icache_range((unsigned long)p->ainsn.insn,
 71			(unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
 72	}
 73
 74	p->ainsn.boostable = 0;
 75	return ret;
 76}
 
 77
 78void __kprobes arch_arm_kprobe(struct kprobe *p)
 79{
 80	*p->addr = BREAKPOINT_INSTRUCTION;
 81	flush_icache_range((unsigned long) p->addr,
 82			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
 83}
 
 84
 85void __kprobes arch_disarm_kprobe(struct kprobe *p)
 86{
 87	*p->addr = p->opcode;
 88	flush_icache_range((unsigned long) p->addr,
 89			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
 90}
 
 91
 92void __kprobes arch_remove_kprobe(struct kprobe *p)
 93{
 94	if (p->ainsn.insn) {
 95		free_insn_slot(p->ainsn.insn, 0);
 96		p->ainsn.insn = NULL;
 97	}
 98}
 
 99
100static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
101{
102	enable_single_step(regs);
103
104	/*
105	 * On powerpc we should single step on the original
106	 * instruction even if the probed insn is a trap
107	 * variant as values in regs could play a part in
108	 * if the trap is taken or not
109	 */
110	regs->nip = (unsigned long)p->ainsn.insn;
111}
112
113static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
114{
115	kcb->prev_kprobe.kp = kprobe_running();
116	kcb->prev_kprobe.status = kcb->kprobe_status;
117	kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
118}
119
120static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
121{
122	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
123	kcb->kprobe_status = kcb->prev_kprobe.status;
124	kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
125}
126
127static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
128				struct kprobe_ctlblk *kcb)
129{
130	__this_cpu_write(current_kprobe, p);
131	kcb->kprobe_saved_msr = regs->msr;
132}
133
134void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
135				      struct pt_regs *regs)
136{
137	ri->ret_addr = (kprobe_opcode_t *)regs->link;
 
138
139	/* Replace the return addr with trampoline addr */
140	regs->link = (unsigned long)kretprobe_trampoline;
141}
 
142
143static int __kprobes kprobe_handler(struct pt_regs *regs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144{
145	struct kprobe *p;
146	int ret = 0;
147	unsigned int *addr = (unsigned int *)regs->nip;
148	struct kprobe_ctlblk *kcb;
149
 
 
 
 
 
 
 
150	/*
151	 * We don't want to be preempted for the entire
152	 * duration of kprobe processing
153	 */
154	preempt_disable();
155	kcb = get_kprobe_ctlblk();
156
157	/* Check we're not actually recursing */
158	if (kprobe_running()) {
159		p = get_kprobe(addr);
160		if (p) {
161			kprobe_opcode_t insn = *p->ainsn.insn;
162			if (kcb->kprobe_status == KPROBE_HIT_SS &&
163					is_trap(insn)) {
164				/* Turn off 'trace' bits */
165				regs->msr &= ~MSR_SINGLESTEP;
166				regs->msr |= kcb->kprobe_saved_msr;
167				goto no_kprobe;
168			}
169			/* We have reentered the kprobe_handler(), since
170			 * another probe was hit while within the handler.
171			 * We here save the original kprobes variables and
172			 * just single step on the instruction of the new probe
173			 * without calling any user handlers.
174			 */
175			save_previous_kprobe(kcb);
176			set_current_kprobe(p, regs, kcb);
177			kcb->kprobe_saved_msr = regs->msr;
178			kprobes_inc_nmissed_count(p);
179			prepare_singlestep(p, regs);
180			kcb->kprobe_status = KPROBE_REENTER;
181			return 1;
182		} else {
183			if (*addr != BREAKPOINT_INSTRUCTION) {
184				/* If trap variant, then it belongs not to us */
185				kprobe_opcode_t cur_insn = *addr;
186				if (is_trap(cur_insn))
187		       			goto no_kprobe;
188				/* The breakpoint instruction was removed by
189				 * another cpu right after we hit, no further
190				 * handling of this interrupt is appropriate
191				 */
192				ret = 1;
193				goto no_kprobe;
194			}
195			p = __this_cpu_read(current_kprobe);
196			if (p->break_handler && p->break_handler(p, regs)) {
197				goto ss_probe;
198			}
199		}
200		goto no_kprobe;
201	}
202
203	p = get_kprobe(addr);
204	if (!p) {
205		if (*addr != BREAKPOINT_INSTRUCTION) {
 
 
 
 
 
206			/*
207			 * PowerPC has multiple variants of the "trap"
208			 * instruction. If the current instruction is a
209			 * trap variant, it could belong to someone else
210			 */
211			kprobe_opcode_t cur_insn = *addr;
212			if (is_trap(cur_insn))
213		       		goto no_kprobe;
214			/*
215			 * The breakpoint instruction was removed right
216			 * after we hit it.  Another cpu has removed
217			 * either a probepoint or a debugger breakpoint
218			 * at this address.  In either case, no further
219			 * handling of this interrupt is appropriate.
220			 */
221			ret = 1;
222		}
223		/* Not one of ours: let kernel handle it */
224		goto no_kprobe;
225	}
226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
227	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
228	set_current_kprobe(p, regs, kcb);
229	if (p->pre_handler && p->pre_handler(p, regs))
230		/* handler has already set things up, so skip ss setup */
 
 
231		return 1;
 
232
233ss_probe:
234	if (p->ainsn.boostable >= 0) {
235		unsigned int insn = *p->ainsn.insn;
236
237		/* regs->nip is also adjusted if emulate_step returns 1 */
238		ret = emulate_step(regs, insn);
239		if (ret > 0) {
240			/*
241			 * Once this instruction has been boosted
242			 * successfully, set the boostable flag
243			 */
244			if (unlikely(p->ainsn.boostable == 0))
245				p->ainsn.boostable = 1;
246
247			if (p->post_handler)
248				p->post_handler(p, regs, 0);
249
250			kcb->kprobe_status = KPROBE_HIT_SSDONE;
251			reset_current_kprobe();
252			preempt_enable_no_resched();
253			return 1;
254		} else if (ret < 0) {
255			/*
256			 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
257			 * So, we should never get here... but, its still
258			 * good to catch them, just in case...
259			 */
260			printk("Can't step on instruction %x\n", insn);
261			BUG();
262		} else if (ret == 0)
263			/* This instruction can't be boosted */
264			p->ainsn.boostable = -1;
265	}
266	prepare_singlestep(p, regs);
267	kcb->kprobe_status = KPROBE_HIT_SS;
268	return 1;
269
270no_kprobe:
271	preempt_enable_no_resched();
272	return ret;
273}
 
274
275/*
276 * Function return probe trampoline:
277 * 	- init_kprobes() establishes a probepoint here
278 * 	- When the probed function returns, this probe
279 * 		causes the handlers to fire
280 */
281static void __used kretprobe_trampoline_holder(void)
282{
283	asm volatile(".global kretprobe_trampoline\n"
284			"kretprobe_trampoline:\n"
285			"nop\n");
286}
287
288/*
289 * Called when the probe at kretprobe trampoline is hit
290 */
291static int __kprobes trampoline_probe_handler(struct kprobe *p,
292						struct pt_regs *regs)
293{
294	struct kretprobe_instance *ri = NULL;
295	struct hlist_head *head, empty_rp;
296	struct hlist_node *tmp;
297	unsigned long flags, orig_ret_address = 0;
298	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
299
300	INIT_HLIST_HEAD(&empty_rp);
301	kretprobe_hash_lock(current, &head, &flags);
302
 
303	/*
304	 * It is possible to have multiple instances associated with a given
305	 * task either because an multiple functions in the call path
306	 * have a return probe installed on them, and/or more than one return
307	 * return probe was registered for a target function.
 
 
 
 
 
308	 *
309	 * We can handle this because:
310	 *     - instances are always inserted at the head of the list
311	 *     - when multiple return probes are registered for the same
312	 *       function, the first instance's ret_addr will point to the
313	 *       real return address, and all the rest will point to
314	 *       kretprobe_trampoline
315	 */
316	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
317		if (ri->task != current)
318			/* another task is sharing our hash bucket */
319			continue;
320
321		if (ri->rp && ri->rp->handler)
322			ri->rp->handler(ri, regs);
323
324		orig_ret_address = (unsigned long)ri->ret_addr;
325		recycle_rp_inst(ri, &empty_rp);
326
327		if (orig_ret_address != trampoline_address)
328			/*
329			 * This is the real return address. Any other
330			 * instances associated with this task are for
331			 * other calls deeper on the call stack
332			 */
333			break;
334	}
335
336	kretprobe_assert(ri, orig_ret_address, trampoline_address);
337	regs->nip = orig_ret_address;
338
339	reset_current_kprobe();
340	kretprobe_hash_unlock(current, &flags);
341	preempt_enable_no_resched();
342
343	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
344		hlist_del(&ri->hlist);
345		kfree(ri);
346	}
347	/*
348	 * By returning a non-zero value, we are telling
349	 * kprobe_handler() that we don't want the post_handler
350	 * to run (and have re-enabled preemption)
351	 */
352	return 1;
353}
 
354
355/*
356 * Called after single-stepping.  p->addr is the address of the
357 * instruction whose first byte has been replaced by the "breakpoint"
358 * instruction.  To avoid the SMP problems that can occur when we
359 * temporarily put back the original opcode to single-step, we
360 * single-stepped a copy of the instruction.  The address of this
361 * copy is p->ainsn.insn.
362 */
363static int __kprobes post_kprobe_handler(struct pt_regs *regs)
364{
 
365	struct kprobe *cur = kprobe_running();
366	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
367
368	if (!cur)
369		return 0;
370
 
371	/* make sure we got here for instruction we have a kprobe on */
372	if (((unsigned long)cur->ainsn.insn + 4) != regs->nip)
373		return 0;
374
375	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
376		kcb->kprobe_status = KPROBE_HIT_SSDONE;
377		cur->post_handler(cur, regs, 0);
378	}
379
380	/* Adjust nip to after the single-stepped instruction */
381	regs->nip = (unsigned long)cur->addr + 4;
382	regs->msr |= kcb->kprobe_saved_msr;
383
384	/*Restore back the original saved kprobes variables and continue. */
385	if (kcb->kprobe_status == KPROBE_REENTER) {
386		restore_previous_kprobe(kcb);
387		goto out;
388	}
389	reset_current_kprobe();
390out:
391	preempt_enable_no_resched();
392
393	/*
394	 * if somebody else is singlestepping across a probe point, msr
395	 * will have DE/SE set, in which case, continue the remaining processing
396	 * of do_debug, as if this is not a probe hit.
397	 */
398	if (regs->msr & MSR_SINGLESTEP)
399		return 0;
400
401	return 1;
402}
 
403
404int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
405{
406	struct kprobe *cur = kprobe_running();
407	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
408	const struct exception_table_entry *entry;
409
410	switch(kcb->kprobe_status) {
411	case KPROBE_HIT_SS:
412	case KPROBE_REENTER:
413		/*
414		 * We are here because the instruction being single
415		 * stepped caused a page fault. We reset the current
416		 * kprobe and the nip points back to the probe address
417		 * and allow the page fault handler to continue as a
418		 * normal page fault.
419		 */
420		regs->nip = (unsigned long)cur->addr;
421		regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
422		regs->msr |= kcb->kprobe_saved_msr;
 
 
423		if (kcb->kprobe_status == KPROBE_REENTER)
424			restore_previous_kprobe(kcb);
425		else
426			reset_current_kprobe();
427		preempt_enable_no_resched();
428		break;
429	case KPROBE_HIT_ACTIVE:
430	case KPROBE_HIT_SSDONE:
431		/*
432		 * We increment the nmissed count for accounting,
433		 * we can also use npre/npostfault count for accounting
434		 * these specific fault cases.
435		 */
436		kprobes_inc_nmissed_count(cur);
437
438		/*
439		 * We come here because instructions in the pre/post
440		 * handler caused the page_fault, this could happen
441		 * if handler tries to access user space by
442		 * copy_from_user(), get_user() etc. Let the
443		 * user-specified handler try to fix it first.
444		 */
445		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
446			return 1;
447
448		/*
449		 * In case the user-specified fault handler returned
450		 * zero, try to fix up.
451		 */
452		if ((entry = search_exception_tables(regs->nip)) != NULL) {
453			regs->nip = entry->fixup;
454			return 1;
455		}
456
457		/*
458		 * fixup_exception() could not handle it,
459		 * Let do_page_fault() fix it.
460		 */
461		break;
462	default:
463		break;
464	}
465	return 0;
466}
467
468/*
469 * Wrapper routine to for handling exceptions.
470 */
471int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
472				       unsigned long val, void *data)
473{
474	struct die_args *args = (struct die_args *)data;
475	int ret = NOTIFY_DONE;
476
477	if (args->regs && user_mode(args->regs))
478		return ret;
479
480	switch (val) {
481	case DIE_BPT:
482		if (kprobe_handler(args->regs))
483			ret = NOTIFY_STOP;
484		break;
485	case DIE_SSTEP:
486		if (post_kprobe_handler(args->regs))
487			ret = NOTIFY_STOP;
488		break;
489	default:
490		break;
491	}
492	return ret;
493}
494
495unsigned long arch_deref_entry_point(void *entry)
496{
497	return ppc_global_function_entry(entry);
498}
499
500int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
501{
502	struct jprobe *jp = container_of(p, struct jprobe, kp);
503	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
504
505	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
506
507	/* setup return addr to the jprobe handler routine */
508	regs->nip = arch_deref_entry_point(jp->entry);
509#ifdef CONFIG_PPC64
510#if defined(_CALL_ELF) && _CALL_ELF == 2
511	regs->gpr[12] = (unsigned long)jp->entry;
512#else
513	regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
514#endif
515#endif
516
517	return 1;
518}
519
520void __used __kprobes jprobe_return(void)
521{
522	asm volatile("trap" ::: "memory");
523}
524
525static void __used __kprobes jprobe_return_end(void)
526{
527};
528
529int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
530{
531	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
532
533	/*
534	 * FIXME - we should ideally be validating that we got here 'cos
535	 * of the "trap" in jprobe_return() above, before restoring the
536	 * saved regs...
537	 */
538	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
539	preempt_enable_no_resched();
540	return 1;
541}
542
543static struct kprobe trampoline_p = {
544	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
545	.pre_handler = trampoline_probe_handler
546};
547
548int __init arch_init_kprobes(void)
549{
550	return register_kprobe(&trampoline_p);
551}
552
553int __kprobes arch_trampoline_kprobe(struct kprobe *p)
554{
555	if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
556		return 1;
557
558	return 0;
559}