Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * linux/fs/nfs/direct.c
  4 *
  5 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
  6 *
  7 * High-performance uncached I/O for the Linux NFS client
  8 *
  9 * There are important applications whose performance or correctness
 10 * depends on uncached access to file data.  Database clusters
 11 * (multiple copies of the same instance running on separate hosts)
 12 * implement their own cache coherency protocol that subsumes file
 13 * system cache protocols.  Applications that process datasets
 14 * considerably larger than the client's memory do not always benefit
 15 * from a local cache.  A streaming video server, for instance, has no
 16 * need to cache the contents of a file.
 17 *
 18 * When an application requests uncached I/O, all read and write requests
 19 * are made directly to the server; data stored or fetched via these
 20 * requests is not cached in the Linux page cache.  The client does not
 21 * correct unaligned requests from applications.  All requested bytes are
 22 * held on permanent storage before a direct write system call returns to
 23 * an application.
 24 *
 25 * Solaris implements an uncached I/O facility called directio() that
 26 * is used for backups and sequential I/O to very large files.  Solaris
 27 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
 28 * an undocumented mount option.
 29 *
 30 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
 31 * help from Andrew Morton.
 32 *
 33 * 18 Dec 2001	Initial implementation for 2.4  --cel
 34 * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
 35 * 08 Jun 2003	Port to 2.5 APIs  --cel
 36 * 31 Mar 2004	Handle direct I/O without VFS support  --cel
 37 * 15 Sep 2004	Parallel async reads  --cel
 38 * 04 May 2005	support O_DIRECT with aio  --cel
 39 *
 40 */
 41
 42#include <linux/errno.h>
 43#include <linux/sched.h>
 44#include <linux/kernel.h>
 45#include <linux/file.h>
 46#include <linux/pagemap.h>
 47#include <linux/kref.h>
 48#include <linux/slab.h>
 49#include <linux/task_io_accounting_ops.h>
 50#include <linux/module.h>
 51
 52#include <linux/nfs_fs.h>
 53#include <linux/nfs_page.h>
 54#include <linux/sunrpc/clnt.h>
 55
 56#include <linux/uaccess.h>
 57#include <linux/atomic.h>
 58
 59#include "internal.h"
 60#include "iostat.h"
 61#include "pnfs.h"
 62#include "fscache.h"
 63#include "nfstrace.h"
 64
 65#define NFSDBG_FACILITY		NFSDBG_VFS
 66
 67static struct kmem_cache *nfs_direct_cachep;
 68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 69static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
 70static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
 71static void nfs_direct_write_complete(struct nfs_direct_req *dreq);
 72static void nfs_direct_write_schedule_work(struct work_struct *work);
 73
 74static inline void get_dreq(struct nfs_direct_req *dreq)
 75{
 76	atomic_inc(&dreq->io_count);
 77}
 78
 79static inline int put_dreq(struct nfs_direct_req *dreq)
 80{
 81	return atomic_dec_and_test(&dreq->io_count);
 82}
 83
 84static void
 85nfs_direct_handle_truncated(struct nfs_direct_req *dreq,
 86			    const struct nfs_pgio_header *hdr,
 87			    ssize_t dreq_len)
 88{
 89	if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) ||
 90	      test_bit(NFS_IOHDR_EOF, &hdr->flags)))
 91		return;
 92	if (dreq->max_count >= dreq_len) {
 93		dreq->max_count = dreq_len;
 94		if (dreq->count > dreq_len)
 95			dreq->count = dreq_len;
 96
 97		if (test_bit(NFS_IOHDR_ERROR, &hdr->flags))
 98			dreq->error = hdr->error;
 99		else /* Clear outstanding error if this is EOF */
100			dreq->error = 0;
101	}
102}
103
104static void
105nfs_direct_count_bytes(struct nfs_direct_req *dreq,
106		       const struct nfs_pgio_header *hdr)
107{
108	loff_t hdr_end = hdr->io_start + hdr->good_bytes;
109	ssize_t dreq_len = 0;
110
111	if (hdr_end > dreq->io_start)
112		dreq_len = hdr_end - dreq->io_start;
113
114	nfs_direct_handle_truncated(dreq, hdr, dreq_len);
115
116	if (dreq_len > dreq->max_count)
117		dreq_len = dreq->max_count;
118
119	if (dreq->count < dreq_len)
120		dreq->count = dreq_len;
121}
122
123/**
124 * nfs_swap_rw - NFS address space operation for swap I/O
 
125 * @iocb: target I/O control block
126 * @iter: I/O buffer
127 *
128 * Perform IO to the swap-file.  This is much like direct IO.
 
 
 
 
 
129 */
130int nfs_swap_rw(struct kiocb *iocb, struct iov_iter *iter)
131{
132	ssize_t ret;
133
134	VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
135
136	if (iov_iter_rw(iter) == READ)
137		ret = nfs_file_direct_read(iocb, iter, true);
138	else
139		ret = nfs_file_direct_write(iocb, iter, true);
140	if (ret < 0)
141		return ret;
142	return 0;
143}
144
145static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
146{
147	unsigned int i;
148	for (i = 0; i < npages; i++)
149		put_page(pages[i]);
150}
151
152void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
153			      struct nfs_direct_req *dreq)
154{
155	cinfo->inode = dreq->inode;
156	cinfo->mds = &dreq->mds_cinfo;
157	cinfo->ds = &dreq->ds_cinfo;
158	cinfo->dreq = dreq;
159	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
160}
161
162static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
163{
164	struct nfs_direct_req *dreq;
165
166	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
167	if (!dreq)
168		return NULL;
169
170	kref_init(&dreq->kref);
171	kref_get(&dreq->kref);
172	init_completion(&dreq->completion);
173	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
174	pnfs_init_ds_commit_info(&dreq->ds_cinfo);
175	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
176	spin_lock_init(&dreq->lock);
177
178	return dreq;
179}
180
181static void nfs_direct_req_free(struct kref *kref)
182{
183	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
184
185	pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode);
186	if (dreq->l_ctx != NULL)
187		nfs_put_lock_context(dreq->l_ctx);
188	if (dreq->ctx != NULL)
189		put_nfs_open_context(dreq->ctx);
190	kmem_cache_free(nfs_direct_cachep, dreq);
191}
192
193static void nfs_direct_req_release(struct nfs_direct_req *dreq)
194{
195	kref_put(&dreq->kref, nfs_direct_req_free);
196}
197
198ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
199{
200	return dreq->bytes_left;
201}
202EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
203
204/*
205 * Collects and returns the final error value/byte-count.
206 */
207static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
208{
209	ssize_t result = -EIOCBQUEUED;
210
211	/* Async requests don't wait here */
212	if (dreq->iocb)
213		goto out;
214
215	result = wait_for_completion_killable(&dreq->completion);
216
217	if (!result) {
218		result = dreq->count;
219		WARN_ON_ONCE(dreq->count < 0);
220	}
221	if (!result)
222		result = dreq->error;
 
 
223
224out:
225	return (ssize_t) result;
226}
227
228/*
229 * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
230 * the iocb is still valid here if this is a synchronous request.
231 */
232static void nfs_direct_complete(struct nfs_direct_req *dreq)
233{
234	struct inode *inode = dreq->inode;
235
236	inode_dio_end(inode);
237
238	if (dreq->iocb) {
239		long res = (long) dreq->error;
240		if (dreq->count != 0) {
241			res = (long) dreq->count;
242			WARN_ON_ONCE(dreq->count < 0);
243		}
244		dreq->iocb->ki_complete(dreq->iocb, res);
245	}
246
247	complete(&dreq->completion);
248
249	nfs_direct_req_release(dreq);
250}
251
 
 
 
 
 
 
 
 
 
 
252static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
253{
254	unsigned long bytes = 0;
255	struct nfs_direct_req *dreq = hdr->dreq;
256
257	spin_lock(&dreq->lock);
258	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
259		spin_unlock(&dreq->lock);
260		goto out_put;
261	}
262
263	nfs_direct_count_bytes(dreq, hdr);
 
 
 
 
264	spin_unlock(&dreq->lock);
265
266	while (!list_empty(&hdr->pages)) {
267		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
268		struct page *page = req->wb_page;
269
270		if (!PageCompound(page) && bytes < hdr->good_bytes &&
271		    (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY))
272			set_page_dirty(page);
 
 
 
 
 
 
 
 
 
 
 
 
273		bytes += req->wb_bytes;
274		nfs_list_remove_request(req);
275		nfs_release_request(req);
276	}
277out_put:
278	if (put_dreq(dreq))
279		nfs_direct_complete(dreq);
280	hdr->release(hdr);
281}
282
283static void nfs_read_sync_pgio_error(struct list_head *head, int error)
284{
285	struct nfs_page *req;
286
287	while (!list_empty(head)) {
288		req = nfs_list_entry(head->next);
289		nfs_list_remove_request(req);
290		nfs_release_request(req);
291	}
292}
293
294static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
295{
296	get_dreq(hdr->dreq);
297}
298
299static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
300	.error_cleanup = nfs_read_sync_pgio_error,
301	.init_hdr = nfs_direct_pgio_init,
302	.completion = nfs_direct_read_completion,
303};
304
305/*
306 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
307 * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
308 * bail and stop sending more reads.  Read length accounting is
309 * handled automatically by nfs_direct_read_result().  Otherwise, if
310 * no requests have been sent, just return an error.
311 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
312
313static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
314					      struct iov_iter *iter,
315					      loff_t pos)
316{
317	struct nfs_pageio_descriptor desc;
318	struct inode *inode = dreq->inode;
319	ssize_t result = -EINVAL;
320	size_t requested_bytes = 0;
321	size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
322
323	nfs_pageio_init_read(&desc, dreq->inode, false,
324			     &nfs_direct_read_completion_ops);
325	get_dreq(dreq);
326	desc.pg_dreq = dreq;
327	inode_dio_begin(inode);
328
329	while (iov_iter_count(iter)) {
330		struct page **pagevec;
331		size_t bytes;
332		size_t pgbase;
333		unsigned npages, i;
334
335		result = iov_iter_get_pages_alloc2(iter, &pagevec,
336						  rsize, &pgbase);
 
 
 
 
 
 
 
 
 
 
 
 
337		if (result < 0)
338			break;
339	
340		bytes = result;
341		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
 
 
 
 
 
 
 
342		for (i = 0; i < npages; i++) {
343			struct nfs_page *req;
344			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
345			/* XXX do we need to do the eof zeroing found in async_filler? */
346			req = nfs_create_request(dreq->ctx, pagevec[i],
 
347						 pgbase, req_len);
348			if (IS_ERR(req)) {
349				result = PTR_ERR(req);
350				break;
351			}
352			req->wb_index = pos >> PAGE_SHIFT;
353			req->wb_offset = pos & ~PAGE_MASK;
354			if (!nfs_pageio_add_request(&desc, req)) {
355				result = desc.pg_error;
356				nfs_release_request(req);
357				break;
358			}
359			pgbase = 0;
360			bytes -= req_len;
361			requested_bytes += req_len;
 
362			pos += req_len;
363			dreq->bytes_left -= req_len;
364		}
 
365		nfs_direct_release_pages(pagevec, npages);
366		kvfree(pagevec);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
367		if (result < 0)
368			break;
 
 
 
 
369	}
370
371	nfs_pageio_complete(&desc);
372
373	/*
374	 * If no bytes were started, return the error, and let the
375	 * generic layer handle the completion.
376	 */
377	if (requested_bytes == 0) {
378		inode_dio_end(inode);
379		nfs_direct_req_release(dreq);
380		return result < 0 ? result : -EIO;
381	}
382
383	if (put_dreq(dreq))
384		nfs_direct_complete(dreq);
385	return requested_bytes;
386}
387
388/**
389 * nfs_file_direct_read - file direct read operation for NFS files
390 * @iocb: target I/O control block
391 * @iter: vector of user buffers into which to read data
392 * @swap: flag indicating this is swap IO, not O_DIRECT IO
393 *
394 * We use this function for direct reads instead of calling
395 * generic_file_aio_read() in order to avoid gfar's check to see if
396 * the request starts before the end of the file.  For that check
397 * to work, we must generate a GETATTR before each direct read, and
398 * even then there is a window between the GETATTR and the subsequent
399 * READ where the file size could change.  Our preference is simply
400 * to do all reads the application wants, and the server will take
401 * care of managing the end of file boundary.
402 *
403 * This function also eliminates unnecessarily updating the file's
404 * atime locally, as the NFS server sets the file's atime, and this
405 * client must read the updated atime from the server back into its
406 * cache.
407 */
408ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
409			     bool swap)
410{
411	struct file *file = iocb->ki_filp;
412	struct address_space *mapping = file->f_mapping;
413	struct inode *inode = mapping->host;
414	struct nfs_direct_req *dreq;
415	struct nfs_lock_context *l_ctx;
416	ssize_t result, requested;
417	size_t count = iov_iter_count(iter);
418	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
419
420	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
421		file, count, (long long) iocb->ki_pos);
422
423	result = 0;
424	if (!count)
425		goto out;
426
427	task_io_account_read(count);
428
429	result = -ENOMEM;
430	dreq = nfs_direct_req_alloc();
431	if (dreq == NULL)
432		goto out;
433
434	dreq->inode = inode;
435	dreq->bytes_left = dreq->max_count = count;
436	dreq->io_start = iocb->ki_pos;
437	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
438	l_ctx = nfs_get_lock_context(dreq->ctx);
439	if (IS_ERR(l_ctx)) {
440		result = PTR_ERR(l_ctx);
441		nfs_direct_req_release(dreq);
442		goto out_release;
443	}
444	dreq->l_ctx = l_ctx;
445	if (!is_sync_kiocb(iocb))
446		dreq->iocb = iocb;
447
448	if (user_backed_iter(iter))
449		dreq->flags = NFS_ODIRECT_SHOULD_DIRTY;
450
451	if (!swap)
452		nfs_start_io_direct(inode);
453
454	NFS_I(inode)->read_io += count;
455	requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
456
457	if (!swap)
458		nfs_end_io_direct(inode);
459
460	if (requested > 0) {
461		result = nfs_direct_wait(dreq);
462		if (result > 0) {
463			requested -= result;
464			iocb->ki_pos += result;
465		}
466		iov_iter_revert(iter, requested);
467	} else {
468		result = requested;
469	}
470
471out_release:
472	nfs_direct_req_release(dreq);
473out:
474	return result;
475}
476
477static void
478nfs_direct_join_group(struct list_head *list, struct inode *inode)
479{
480	struct nfs_page *req, *next;
481
482	list_for_each_entry(req, list, wb_list) {
483		if (req->wb_head != req || req->wb_this_page == req)
484			continue;
485		for (next = req->wb_this_page;
486				next != req->wb_head;
487				next = next->wb_this_page) {
488			nfs_list_remove_request(next);
489			nfs_release_request(next);
490		}
491		nfs_join_page_group(req, inode);
492	}
493}
494
495static void
496nfs_direct_write_scan_commit_list(struct inode *inode,
497				  struct list_head *list,
498				  struct nfs_commit_info *cinfo)
499{
500	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
501	pnfs_recover_commit_reqs(list, cinfo);
502	nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
503	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
504}
505
 
506static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
507{
508	struct nfs_pageio_descriptor desc;
509	struct nfs_page *req, *tmp;
510	LIST_HEAD(reqs);
511	struct nfs_commit_info cinfo;
512	LIST_HEAD(failed);
513
514	nfs_init_cinfo_from_dreq(&cinfo, dreq);
515	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
516
517	nfs_direct_join_group(&reqs, dreq->inode);
 
518
519	dreq->count = 0;
520	dreq->max_count = 0;
521	list_for_each_entry(req, &reqs, wb_list)
522		dreq->max_count += req->wb_bytes;
523	nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo);
524	get_dreq(dreq);
525
526	nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
527			      &nfs_direct_write_completion_ops);
528	desc.pg_dreq = dreq;
529
530	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
531		/* Bump the transmission count */
532		req->wb_nio++;
533		if (!nfs_pageio_add_request(&desc, req)) {
534			nfs_list_move_request(req, &failed);
535			spin_lock(&cinfo.inode->i_lock);
 
536			dreq->flags = 0;
537			if (desc.pg_error < 0)
538				dreq->error = desc.pg_error;
539			else
540				dreq->error = -EIO;
541			spin_unlock(&cinfo.inode->i_lock);
542		}
543		nfs_release_request(req);
544	}
545	nfs_pageio_complete(&desc);
546
547	while (!list_empty(&failed)) {
548		req = nfs_list_entry(failed.next);
549		nfs_list_remove_request(req);
550		nfs_unlock_and_release_request(req);
551	}
552
553	if (put_dreq(dreq))
554		nfs_direct_write_complete(dreq);
555}
556
557static void nfs_direct_commit_complete(struct nfs_commit_data *data)
558{
559	const struct nfs_writeverf *verf = data->res.verf;
560	struct nfs_direct_req *dreq = data->dreq;
561	struct nfs_commit_info cinfo;
562	struct nfs_page *req;
563	int status = data->task.tk_status;
564
565	trace_nfs_direct_commit_complete(dreq);
566
567	if (status < 0) {
568		/* Errors in commit are fatal */
569		dreq->error = status;
570		dreq->max_count = 0;
571		dreq->count = 0;
572		dreq->flags = NFS_ODIRECT_DONE;
573	} else {
574		status = dreq->error;
575	}
576
577	nfs_init_cinfo_from_dreq(&cinfo, dreq);
578
579	while (!list_empty(&data->pages)) {
580		req = nfs_list_entry(data->pages.next);
581		nfs_list_remove_request(req);
582		if (status >= 0 && !nfs_write_match_verf(verf, req)) {
583			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
584			/*
585			 * Despite the reboot, the write was successful,
586			 * so reset wb_nio.
587			 */
588			req->wb_nio = 0;
589			nfs_mark_request_commit(req, NULL, &cinfo, 0);
590		} else /* Error or match */
591			nfs_release_request(req);
592		nfs_unlock_and_release_request(req);
593	}
594
595	if (nfs_commit_end(cinfo.mds))
596		nfs_direct_write_complete(dreq);
597}
598
599static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
600		struct nfs_page *req)
601{
602	struct nfs_direct_req *dreq = cinfo->dreq;
603
604	trace_nfs_direct_resched_write(dreq);
605
606	spin_lock(&dreq->lock);
607	if (dreq->flags != NFS_ODIRECT_DONE)
608		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
609	spin_unlock(&dreq->lock);
610	nfs_mark_request_commit(req, NULL, cinfo, 0);
611}
612
613static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
614	.completion = nfs_direct_commit_complete,
615	.resched_write = nfs_direct_resched_write,
616};
617
618static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
619{
620	int res;
621	struct nfs_commit_info cinfo;
622	LIST_HEAD(mds_list);
623
624	nfs_init_cinfo_from_dreq(&cinfo, dreq);
625	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
626	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
627	if (res < 0) /* res == -ENOMEM */
628		nfs_direct_write_reschedule(dreq);
629}
630
631static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq)
632{
633	struct nfs_commit_info cinfo;
634	struct nfs_page *req;
635	LIST_HEAD(reqs);
636
637	nfs_init_cinfo_from_dreq(&cinfo, dreq);
638	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
639
640	while (!list_empty(&reqs)) {
641		req = nfs_list_entry(reqs.next);
642		nfs_list_remove_request(req);
643		nfs_release_request(req);
644		nfs_unlock_and_release_request(req);
645	}
646}
647
648static void nfs_direct_write_schedule_work(struct work_struct *work)
649{
650	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
651	int flags = dreq->flags;
652
653	dreq->flags = 0;
654	switch (flags) {
655		case NFS_ODIRECT_DO_COMMIT:
656			nfs_direct_commit_schedule(dreq);
657			break;
658		case NFS_ODIRECT_RESCHED_WRITES:
659			nfs_direct_write_reschedule(dreq);
660			break;
661		default:
662			nfs_direct_write_clear_reqs(dreq);
663			nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
664			nfs_direct_complete(dreq);
665	}
666}
667
668static void nfs_direct_write_complete(struct nfs_direct_req *dreq)
669{
670	trace_nfs_direct_write_complete(dreq);
671	queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
672}
673
674static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
675{
676	struct nfs_direct_req *dreq = hdr->dreq;
677	struct nfs_commit_info cinfo;
 
678	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
679	int flags = NFS_ODIRECT_DONE;
680
681	trace_nfs_direct_write_completion(dreq);
 
682
683	nfs_init_cinfo_from_dreq(&cinfo, dreq);
684
685	spin_lock(&dreq->lock);
686	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
687		spin_unlock(&dreq->lock);
688		goto out_put;
689	}
690
691	nfs_direct_count_bytes(dreq, hdr);
692	if (test_bit(NFS_IOHDR_UNSTABLE_WRITES, &hdr->flags)) {
693		if (!dreq->flags)
694			dreq->flags = NFS_ODIRECT_DO_COMMIT;
695		flags = dreq->flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
696	}
697	spin_unlock(&dreq->lock);
698
699	while (!list_empty(&hdr->pages)) {
700
701		req = nfs_list_entry(hdr->pages.next);
702		nfs_list_remove_request(req);
703		if (flags == NFS_ODIRECT_DO_COMMIT) {
704			kref_get(&req->wb_kref);
705			memcpy(&req->wb_verf, &hdr->verf.verifier,
706			       sizeof(req->wb_verf));
707			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
708				hdr->ds_commit_idx);
709		} else if (flags == NFS_ODIRECT_RESCHED_WRITES) {
710			kref_get(&req->wb_kref);
711			nfs_mark_request_commit(req, NULL, &cinfo, 0);
712		}
713		nfs_unlock_and_release_request(req);
714	}
715
716out_put:
717	if (put_dreq(dreq))
718		nfs_direct_write_complete(dreq);
719	hdr->release(hdr);
720}
721
722static void nfs_write_sync_pgio_error(struct list_head *head, int error)
723{
724	struct nfs_page *req;
725
726	while (!list_empty(head)) {
727		req = nfs_list_entry(head->next);
728		nfs_list_remove_request(req);
729		nfs_unlock_and_release_request(req);
730	}
731}
732
733static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
734{
735	struct nfs_direct_req *dreq = hdr->dreq;
736
737	trace_nfs_direct_write_reschedule_io(dreq);
738
739	spin_lock(&dreq->lock);
740	if (dreq->error == 0) {
741		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
742		/* fake unstable write to let common nfs resend pages */
743		hdr->verf.committed = NFS_UNSTABLE;
744		hdr->good_bytes = hdr->args.offset + hdr->args.count -
745			hdr->io_start;
746	}
747	spin_unlock(&dreq->lock);
748}
749
750static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
751	.error_cleanup = nfs_write_sync_pgio_error,
752	.init_hdr = nfs_direct_pgio_init,
753	.completion = nfs_direct_write_completion,
754	.reschedule_io = nfs_direct_write_reschedule_io,
755};
756
757
758/*
759 * NB: Return the value of the first error return code.  Subsequent
760 *     errors after the first one are ignored.
761 */
762/*
763 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
764 * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
765 * bail and stop sending more writes.  Write length accounting is
766 * handled automatically by nfs_direct_write_result().  Otherwise, if
767 * no requests have been sent, just return an error.
768 */
769static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
770					       struct iov_iter *iter,
771					       loff_t pos, int ioflags)
 
772{
773	struct nfs_pageio_descriptor desc;
774	struct inode *inode = dreq->inode;
775	ssize_t result = 0;
776	size_t requested_bytes = 0;
777	size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
778
779	trace_nfs_direct_write_schedule_iovec(dreq);
780
781	nfs_pageio_init_write(&desc, inode, ioflags, false,
782			      &nfs_direct_write_completion_ops);
783	desc.pg_dreq = dreq;
784	get_dreq(dreq);
785	inode_dio_begin(inode);
786
787	NFS_I(inode)->write_io += iov_iter_count(iter);
788	while (iov_iter_count(iter)) {
789		struct page **pagevec;
790		size_t bytes;
791		size_t pgbase;
792		unsigned npages, i;
793
794		result = iov_iter_get_pages_alloc2(iter, &pagevec,
795						  wsize, &pgbase);
 
796		if (result < 0)
797			break;
798
799		bytes = result;
800		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
801		for (i = 0; i < npages; i++) {
802			struct nfs_page *req;
803			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
804
805			req = nfs_create_request(dreq->ctx, pagevec[i],
806						 pgbase, req_len);
807			if (IS_ERR(req)) {
808				result = PTR_ERR(req);
809				break;
810			}
811
812			if (desc.pg_error < 0) {
813				nfs_free_request(req);
814				result = desc.pg_error;
815				break;
816			}
817
818			nfs_lock_request(req);
819			req->wb_index = pos >> PAGE_SHIFT;
820			req->wb_offset = pos & ~PAGE_MASK;
821			if (!nfs_pageio_add_request(&desc, req)) {
822				result = desc.pg_error;
823				nfs_unlock_and_release_request(req);
824				break;
825			}
826			pgbase = 0;
827			bytes -= req_len;
828			requested_bytes += req_len;
829			pos += req_len;
830			dreq->bytes_left -= req_len;
831		}
832		nfs_direct_release_pages(pagevec, npages);
833		kvfree(pagevec);
834		if (result < 0)
835			break;
 
836	}
837	nfs_pageio_complete(&desc);
 
838
839	/*
840	 * If no bytes were started, return the error, and let the
841	 * generic layer handle the completion.
842	 */
843	if (requested_bytes == 0) {
844		inode_dio_end(inode);
845		nfs_direct_req_release(dreq);
846		return result < 0 ? result : -EIO;
847	}
848
849	if (put_dreq(dreq))
850		nfs_direct_write_complete(dreq);
851	return requested_bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
852}
853
854/**
855 * nfs_file_direct_write - file direct write operation for NFS files
856 * @iocb: target I/O control block
857 * @iter: vector of user buffers from which to write data
858 * @swap: flag indicating this is swap IO, not O_DIRECT IO
 
859 *
860 * We use this function for direct writes instead of calling
861 * generic_file_aio_write() in order to avoid taking the inode
862 * semaphore and updating the i_size.  The NFS server will set
863 * the new i_size and this client must read the updated size
864 * back into its cache.  We let the server do generic write
865 * parameter checking and report problems.
866 *
867 * We eliminate local atime updates, see direct read above.
868 *
869 * We avoid unnecessary page cache invalidations for normal cached
870 * readers of this file.
871 *
872 * Note that O_APPEND is not supported for NFS direct writes, as there
873 * is no atomic O_APPEND write facility in the NFS protocol.
874 */
875ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter,
876			      bool swap)
877{
878	ssize_t result, requested;
879	size_t count;
880	struct file *file = iocb->ki_filp;
881	struct address_space *mapping = file->f_mapping;
882	struct inode *inode = mapping->host;
883	struct nfs_direct_req *dreq;
884	struct nfs_lock_context *l_ctx;
885	loff_t pos, end;
886
887	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
888		file, iov_iter_count(iter), (long long) iocb->ki_pos);
889
890	if (swap)
891		/* bypass generic checks */
892		result =  iov_iter_count(iter);
893	else
894		result = generic_write_checks(iocb, iter);
895	if (result <= 0)
896		return result;
897	count = result;
898	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
899
900	pos = iocb->ki_pos;
901	end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
902
903	task_io_account_write(count);
904
905	result = -ENOMEM;
906	dreq = nfs_direct_req_alloc();
907	if (!dreq)
908		goto out;
909
910	dreq->inode = inode;
911	dreq->bytes_left = dreq->max_count = count;
912	dreq->io_start = pos;
913	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
914	l_ctx = nfs_get_lock_context(dreq->ctx);
915	if (IS_ERR(l_ctx)) {
916		result = PTR_ERR(l_ctx);
917		nfs_direct_req_release(dreq);
918		goto out_release;
919	}
920	dreq->l_ctx = l_ctx;
921	if (!is_sync_kiocb(iocb))
922		dreq->iocb = iocb;
923	pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode);
924
925	if (swap) {
926		requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
927							    FLUSH_STABLE);
928	} else {
929		nfs_start_io_direct(inode);
930
931		requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
932							    FLUSH_COND_STABLE);
933
934		if (mapping->nrpages) {
935			invalidate_inode_pages2_range(mapping,
936						      pos >> PAGE_SHIFT, end);
937		}
938
939		nfs_end_io_direct(inode);
940	}
941
942	if (requested > 0) {
943		result = nfs_direct_wait(dreq);
944		if (result > 0) {
945			requested -= result;
946			iocb->ki_pos = pos + result;
947			/* XXX: should check the generic_write_sync retval */
948			generic_write_sync(iocb, result);
949		}
950		iov_iter_revert(iter, requested);
951	} else {
952		result = requested;
953	}
954	nfs_fscache_invalidate(inode, FSCACHE_INVAL_DIO_WRITE);
955out_release:
956	nfs_direct_req_release(dreq);
957out:
958	return result;
959}
960
961/**
962 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
963 *
964 */
965int __init nfs_init_directcache(void)
966{
967	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
968						sizeof(struct nfs_direct_req),
969						0, (SLAB_RECLAIM_ACCOUNT|
970							SLAB_MEM_SPREAD),
971						NULL);
972	if (nfs_direct_cachep == NULL)
973		return -ENOMEM;
974
975	return 0;
976}
977
978/**
979 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
980 *
981 */
982void nfs_destroy_directcache(void)
983{
984	kmem_cache_destroy(nfs_direct_cachep);
985}
v3.5.6
 
  1/*
  2 * linux/fs/nfs/direct.c
  3 *
  4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
  5 *
  6 * High-performance uncached I/O for the Linux NFS client
  7 *
  8 * There are important applications whose performance or correctness
  9 * depends on uncached access to file data.  Database clusters
 10 * (multiple copies of the same instance running on separate hosts)
 11 * implement their own cache coherency protocol that subsumes file
 12 * system cache protocols.  Applications that process datasets
 13 * considerably larger than the client's memory do not always benefit
 14 * from a local cache.  A streaming video server, for instance, has no
 15 * need to cache the contents of a file.
 16 *
 17 * When an application requests uncached I/O, all read and write requests
 18 * are made directly to the server; data stored or fetched via these
 19 * requests is not cached in the Linux page cache.  The client does not
 20 * correct unaligned requests from applications.  All requested bytes are
 21 * held on permanent storage before a direct write system call returns to
 22 * an application.
 23 *
 24 * Solaris implements an uncached I/O facility called directio() that
 25 * is used for backups and sequential I/O to very large files.  Solaris
 26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
 27 * an undocumented mount option.
 28 *
 29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
 30 * help from Andrew Morton.
 31 *
 32 * 18 Dec 2001	Initial implementation for 2.4  --cel
 33 * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
 34 * 08 Jun 2003	Port to 2.5 APIs  --cel
 35 * 31 Mar 2004	Handle direct I/O without VFS support  --cel
 36 * 15 Sep 2004	Parallel async reads  --cel
 37 * 04 May 2005	support O_DIRECT with aio  --cel
 38 *
 39 */
 40
 41#include <linux/errno.h>
 42#include <linux/sched.h>
 43#include <linux/kernel.h>
 44#include <linux/file.h>
 45#include <linux/pagemap.h>
 46#include <linux/kref.h>
 47#include <linux/slab.h>
 48#include <linux/task_io_accounting_ops.h>
 
 49
 50#include <linux/nfs_fs.h>
 51#include <linux/nfs_page.h>
 52#include <linux/sunrpc/clnt.h>
 53
 54#include <asm/uaccess.h>
 55#include <linux/atomic.h>
 56
 57#include "internal.h"
 58#include "iostat.h"
 59#include "pnfs.h"
 
 
 60
 61#define NFSDBG_FACILITY		NFSDBG_VFS
 62
 63static struct kmem_cache *nfs_direct_cachep;
 64
 65/*
 66 * This represents a set of asynchronous requests that we're waiting on
 67 */
 68struct nfs_direct_req {
 69	struct kref		kref;		/* release manager */
 70
 71	/* I/O parameters */
 72	struct nfs_open_context	*ctx;		/* file open context info */
 73	struct nfs_lock_context *l_ctx;		/* Lock context info */
 74	struct kiocb *		iocb;		/* controlling i/o request */
 75	struct inode *		inode;		/* target file of i/o */
 76
 77	/* completion state */
 78	atomic_t		io_count;	/* i/os we're waiting for */
 79	spinlock_t		lock;		/* protect completion state */
 80	ssize_t			count,		/* bytes actually processed */
 81				error;		/* any reported error */
 82	struct completion	completion;	/* wait for i/o completion */
 83
 84	/* commit state */
 85	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
 86	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
 87	struct work_struct	work;
 88	int			flags;
 89#define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
 90#define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
 91	struct nfs_writeverf	verf;		/* unstable write verifier */
 92};
 93
 94static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
 95static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
 96static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
 97static void nfs_direct_write_schedule_work(struct work_struct *work);
 98
 99static inline void get_dreq(struct nfs_direct_req *dreq)
100{
101	atomic_inc(&dreq->io_count);
102}
103
104static inline int put_dreq(struct nfs_direct_req *dreq)
105{
106	return atomic_dec_and_test(&dreq->io_count);
107}
108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109/**
110 * nfs_direct_IO - NFS address space operation for direct I/O
111 * @rw: direction (read or write)
112 * @iocb: target I/O control block
113 * @iov: array of vectors that define I/O buffer
114 * @pos: offset in file to begin the operation
115 * @nr_segs: size of iovec array
116 *
117 * The presence of this routine in the address space ops vector means
118 * the NFS client supports direct I/O.  However, we shunt off direct
119 * read and write requests before the VFS gets them, so this method
120 * should never be called.
121 */
122ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
123{
124	dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
125			iocb->ki_filp->f_path.dentry->d_name.name,
126			(long long) pos, nr_segs);
127
128	return -EINVAL;
 
 
 
 
 
 
129}
130
131static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
132{
133	unsigned int i;
134	for (i = 0; i < npages; i++)
135		page_cache_release(pages[i]);
136}
137
138void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
139			      struct nfs_direct_req *dreq)
140{
141	cinfo->lock = &dreq->lock;
142	cinfo->mds = &dreq->mds_cinfo;
143	cinfo->ds = &dreq->ds_cinfo;
144	cinfo->dreq = dreq;
145	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
146}
147
148static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
149{
150	struct nfs_direct_req *dreq;
151
152	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
153	if (!dreq)
154		return NULL;
155
156	kref_init(&dreq->kref);
157	kref_get(&dreq->kref);
158	init_completion(&dreq->completion);
159	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
 
160	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
161	spin_lock_init(&dreq->lock);
162
163	return dreq;
164}
165
166static void nfs_direct_req_free(struct kref *kref)
167{
168	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
169
 
170	if (dreq->l_ctx != NULL)
171		nfs_put_lock_context(dreq->l_ctx);
172	if (dreq->ctx != NULL)
173		put_nfs_open_context(dreq->ctx);
174	kmem_cache_free(nfs_direct_cachep, dreq);
175}
176
177static void nfs_direct_req_release(struct nfs_direct_req *dreq)
178{
179	kref_put(&dreq->kref, nfs_direct_req_free);
180}
181
 
 
 
 
 
 
182/*
183 * Collects and returns the final error value/byte-count.
184 */
185static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
186{
187	ssize_t result = -EIOCBQUEUED;
188
189	/* Async requests don't wait here */
190	if (dreq->iocb)
191		goto out;
192
193	result = wait_for_completion_killable(&dreq->completion);
194
 
 
 
 
195	if (!result)
196		result = dreq->error;
197	if (!result)
198		result = dreq->count;
199
200out:
201	return (ssize_t) result;
202}
203
204/*
205 * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
206 * the iocb is still valid here if this is a synchronous request.
207 */
208static void nfs_direct_complete(struct nfs_direct_req *dreq)
209{
 
 
 
 
210	if (dreq->iocb) {
211		long res = (long) dreq->error;
212		if (!res)
213			res = (long) dreq->count;
214		aio_complete(dreq->iocb, res, 0);
 
 
215	}
216	complete_all(&dreq->completion);
 
217
218	nfs_direct_req_release(dreq);
219}
220
221static void nfs_direct_readpage_release(struct nfs_page *req)
222{
223	dprintk("NFS: direct read done (%s/%lld %d@%lld)\n",
224		req->wb_context->dentry->d_inode->i_sb->s_id,
225		(long long)NFS_FILEID(req->wb_context->dentry->d_inode),
226		req->wb_bytes,
227		(long long)req_offset(req));
228	nfs_release_request(req);
229}
230
231static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
232{
233	unsigned long bytes = 0;
234	struct nfs_direct_req *dreq = hdr->dreq;
235
236	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
 
 
237		goto out_put;
 
238
239	spin_lock(&dreq->lock);
240	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
241		dreq->error = hdr->error;
242	else
243		dreq->count += hdr->good_bytes;
244	spin_unlock(&dreq->lock);
245
246	while (!list_empty(&hdr->pages)) {
247		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
248		struct page *page = req->wb_page;
249
250		if (test_bit(NFS_IOHDR_EOF, &hdr->flags)) {
251			if (bytes > hdr->good_bytes)
252				zero_user(page, 0, PAGE_SIZE);
253			else if (hdr->good_bytes - bytes < PAGE_SIZE)
254				zero_user_segment(page,
255					hdr->good_bytes & ~PAGE_MASK,
256					PAGE_SIZE);
257		}
258		if (!PageCompound(page)) {
259			if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
260				if (bytes < hdr->good_bytes)
261					set_page_dirty(page);
262			} else
263				set_page_dirty(page);
264		}
265		bytes += req->wb_bytes;
266		nfs_list_remove_request(req);
267		nfs_direct_readpage_release(req);
268	}
269out_put:
270	if (put_dreq(dreq))
271		nfs_direct_complete(dreq);
272	hdr->release(hdr);
273}
274
275static void nfs_read_sync_pgio_error(struct list_head *head)
276{
277	struct nfs_page *req;
278
279	while (!list_empty(head)) {
280		req = nfs_list_entry(head->next);
281		nfs_list_remove_request(req);
282		nfs_release_request(req);
283	}
284}
285
286static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
287{
288	get_dreq(hdr->dreq);
289}
290
291static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
292	.error_cleanup = nfs_read_sync_pgio_error,
293	.init_hdr = nfs_direct_pgio_init,
294	.completion = nfs_direct_read_completion,
295};
296
297/*
298 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
299 * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
300 * bail and stop sending more reads.  Read length accounting is
301 * handled automatically by nfs_direct_read_result().  Otherwise, if
302 * no requests have been sent, just return an error.
303 */
304static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc,
305						const struct iovec *iov,
306						loff_t pos)
307{
308	struct nfs_direct_req *dreq = desc->pg_dreq;
309	struct nfs_open_context *ctx = dreq->ctx;
310	struct inode *inode = ctx->dentry->d_inode;
311	unsigned long user_addr = (unsigned long)iov->iov_base;
312	size_t count = iov->iov_len;
313	size_t rsize = NFS_SERVER(inode)->rsize;
314	unsigned int pgbase;
315	int result;
316	ssize_t started = 0;
317	struct page **pagevec = NULL;
318	unsigned int npages;
319
320	do {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
321		size_t bytes;
322		int i;
 
323
324		pgbase = user_addr & ~PAGE_MASK;
325		bytes = min(max_t(size_t, rsize, PAGE_SIZE), count);
326
327		result = -ENOMEM;
328		npages = nfs_page_array_len(pgbase, bytes);
329		if (!pagevec)
330			pagevec = kmalloc(npages * sizeof(struct page *),
331					  GFP_KERNEL);
332		if (!pagevec)
333			break;
334		down_read(&current->mm->mmap_sem);
335		result = get_user_pages(current, current->mm, user_addr,
336					npages, 1, 0, pagevec, NULL);
337		up_read(&current->mm->mmap_sem);
338		if (result < 0)
339			break;
340		if ((unsigned)result < npages) {
341			bytes = result * PAGE_SIZE;
342			if (bytes <= pgbase) {
343				nfs_direct_release_pages(pagevec, result);
344				break;
345			}
346			bytes -= pgbase;
347			npages = result;
348		}
349
350		for (i = 0; i < npages; i++) {
351			struct nfs_page *req;
352			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
353			/* XXX do we need to do the eof zeroing found in async_filler? */
354			req = nfs_create_request(dreq->ctx, dreq->inode,
355						 pagevec[i],
356						 pgbase, req_len);
357			if (IS_ERR(req)) {
358				result = PTR_ERR(req);
359				break;
360			}
361			req->wb_index = pos >> PAGE_SHIFT;
362			req->wb_offset = pos & ~PAGE_MASK;
363			if (!nfs_pageio_add_request(desc, req)) {
364				result = desc->pg_error;
365				nfs_release_request(req);
366				break;
367			}
368			pgbase = 0;
369			bytes -= req_len;
370			started += req_len;
371			user_addr += req_len;
372			pos += req_len;
373			count -= req_len;
374		}
375		/* The nfs_page now hold references to these pages */
376		nfs_direct_release_pages(pagevec, npages);
377	} while (count != 0 && result >= 0);
378
379	kfree(pagevec);
380
381	if (started)
382		return started;
383	return result < 0 ? (ssize_t) result : -EFAULT;
384}
385
386static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
387					      const struct iovec *iov,
388					      unsigned long nr_segs,
389					      loff_t pos)
390{
391	struct nfs_pageio_descriptor desc;
392	ssize_t result = -EINVAL;
393	size_t requested_bytes = 0;
394	unsigned long seg;
395
396	nfs_pageio_init_read(&desc, dreq->inode,
397			     &nfs_direct_read_completion_ops);
398	get_dreq(dreq);
399	desc.pg_dreq = dreq;
400
401	for (seg = 0; seg < nr_segs; seg++) {
402		const struct iovec *vec = &iov[seg];
403		result = nfs_direct_read_schedule_segment(&desc, vec, pos);
404		if (result < 0)
405			break;
406		requested_bytes += result;
407		if ((size_t)result < vec->iov_len)
408			break;
409		pos += vec->iov_len;
410	}
411
412	nfs_pageio_complete(&desc);
413
414	/*
415	 * If no bytes were started, return the error, and let the
416	 * generic layer handle the completion.
417	 */
418	if (requested_bytes == 0) {
 
419		nfs_direct_req_release(dreq);
420		return result < 0 ? result : -EIO;
421	}
422
423	if (put_dreq(dreq))
424		nfs_direct_complete(dreq);
425	return 0;
426}
427
428static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
429			       unsigned long nr_segs, loff_t pos)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
430{
431	ssize_t result = -ENOMEM;
432	struct inode *inode = iocb->ki_filp->f_mapping->host;
 
433	struct nfs_direct_req *dreq;
 
 
 
 
 
 
 
 
 
 
 
434
 
 
 
435	dreq = nfs_direct_req_alloc();
436	if (dreq == NULL)
437		goto out;
438
439	dreq->inode = inode;
 
 
440	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
441	dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
442	if (dreq->l_ctx == NULL)
 
 
443		goto out_release;
 
 
444	if (!is_sync_kiocb(iocb))
445		dreq->iocb = iocb;
446
447	result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos);
448	if (!result)
 
 
 
 
 
 
 
 
 
 
 
449		result = nfs_direct_wait(dreq);
450	NFS_I(inode)->read_io += result;
 
 
 
 
 
 
 
 
451out_release:
452	nfs_direct_req_release(dreq);
453out:
454	return result;
455}
456
457static void nfs_inode_dio_write_done(struct inode *inode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
458{
459	nfs_zap_mapping(inode, inode->i_mapping);
460	inode_dio_done(inode);
 
 
461}
462
463#if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
464static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
465{
466	struct nfs_pageio_descriptor desc;
467	struct nfs_page *req, *tmp;
468	LIST_HEAD(reqs);
469	struct nfs_commit_info cinfo;
470	LIST_HEAD(failed);
471
472	nfs_init_cinfo_from_dreq(&cinfo, dreq);
473	pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
474	spin_lock(cinfo.lock);
475	nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
476	spin_unlock(cinfo.lock);
477
478	dreq->count = 0;
 
 
 
 
479	get_dreq(dreq);
480
481	nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE,
482			      &nfs_direct_write_completion_ops);
483	desc.pg_dreq = dreq;
484
485	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
 
 
486		if (!nfs_pageio_add_request(&desc, req)) {
487			nfs_list_remove_request(req);
488			nfs_list_add_request(req, &failed);
489			spin_lock(cinfo.lock);
490			dreq->flags = 0;
491			dreq->error = -EIO;
492			spin_unlock(cinfo.lock);
 
 
 
493		}
494		nfs_release_request(req);
495	}
496	nfs_pageio_complete(&desc);
497
498	while (!list_empty(&failed)) {
499		req = nfs_list_entry(failed.next);
500		nfs_list_remove_request(req);
501		nfs_unlock_and_release_request(req);
502	}
503
504	if (put_dreq(dreq))
505		nfs_direct_write_complete(dreq, dreq->inode);
506}
507
508static void nfs_direct_commit_complete(struct nfs_commit_data *data)
509{
 
510	struct nfs_direct_req *dreq = data->dreq;
511	struct nfs_commit_info cinfo;
512	struct nfs_page *req;
513	int status = data->task.tk_status;
514
515	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 
516	if (status < 0) {
517		dprintk("NFS: %5u commit failed with error %d.\n",
518			data->task.tk_pid, status);
519		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
520	} else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
521		dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
522		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 
523	}
524
525	dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
 
526	while (!list_empty(&data->pages)) {
527		req = nfs_list_entry(data->pages.next);
528		nfs_list_remove_request(req);
529		if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
530			/* Note the rewrite will go through mds */
531			nfs_mark_request_commit(req, NULL, &cinfo);
532		} else
 
 
 
 
 
533			nfs_release_request(req);
534		nfs_unlock_and_release_request(req);
535	}
536
537	if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
538		nfs_direct_write_complete(dreq, data->inode);
539}
540
541static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
 
542{
543	/* There is no lock to clear */
 
 
 
 
 
 
 
 
544}
545
546static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
547	.completion = nfs_direct_commit_complete,
548	.error_cleanup = nfs_direct_error_cleanup,
549};
550
551static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
552{
553	int res;
554	struct nfs_commit_info cinfo;
555	LIST_HEAD(mds_list);
556
557	nfs_init_cinfo_from_dreq(&cinfo, dreq);
558	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
559	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
560	if (res < 0) /* res == -ENOMEM */
561		nfs_direct_write_reschedule(dreq);
562}
563
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
564static void nfs_direct_write_schedule_work(struct work_struct *work)
565{
566	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
567	int flags = dreq->flags;
568
569	dreq->flags = 0;
570	switch (flags) {
571		case NFS_ODIRECT_DO_COMMIT:
572			nfs_direct_commit_schedule(dreq);
573			break;
574		case NFS_ODIRECT_RESCHED_WRITES:
575			nfs_direct_write_reschedule(dreq);
576			break;
577		default:
578			nfs_inode_dio_write_done(dreq->inode);
 
579			nfs_direct_complete(dreq);
580	}
581}
582
583static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
584{
585	schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
586}
587
588#else
589static void nfs_direct_write_schedule_work(struct work_struct *work)
590{
591}
592
593static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
594{
595	nfs_inode_dio_write_done(inode);
596	nfs_direct_complete(dreq);
597}
598#endif
599
600/*
601 * NB: Return the value of the first error return code.  Subsequent
602 *     errors after the first one are ignored.
603 */
604/*
605 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
606 * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
607 * bail and stop sending more writes.  Write length accounting is
608 * handled automatically by nfs_direct_write_result().  Otherwise, if
609 * no requests have been sent, just return an error.
610 */
611static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc,
612						 const struct iovec *iov,
613						 loff_t pos)
614{
615	struct nfs_direct_req *dreq = desc->pg_dreq;
616	struct nfs_open_context *ctx = dreq->ctx;
617	struct inode *inode = ctx->dentry->d_inode;
618	unsigned long user_addr = (unsigned long)iov->iov_base;
619	size_t count = iov->iov_len;
620	size_t wsize = NFS_SERVER(inode)->wsize;
621	unsigned int pgbase;
622	int result;
623	ssize_t started = 0;
624	struct page **pagevec = NULL;
625	unsigned int npages;
626
627	do {
628		size_t bytes;
629		int i;
630
631		pgbase = user_addr & ~PAGE_MASK;
632		bytes = min(max_t(size_t, wsize, PAGE_SIZE), count);
633
634		result = -ENOMEM;
635		npages = nfs_page_array_len(pgbase, bytes);
636		if (!pagevec)
637			pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL);
638		if (!pagevec)
639			break;
640
641		down_read(&current->mm->mmap_sem);
642		result = get_user_pages(current, current->mm, user_addr,
643					npages, 0, 0, pagevec, NULL);
644		up_read(&current->mm->mmap_sem);
645		if (result < 0)
646			break;
647
648		if ((unsigned)result < npages) {
649			bytes = result * PAGE_SIZE;
650			if (bytes <= pgbase) {
651				nfs_direct_release_pages(pagevec, result);
652				break;
653			}
654			bytes -= pgbase;
655			npages = result;
656		}
657
658		for (i = 0; i < npages; i++) {
659			struct nfs_page *req;
660			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
661
662			req = nfs_create_request(dreq->ctx, dreq->inode,
663						 pagevec[i],
664						 pgbase, req_len);
665			if (IS_ERR(req)) {
666				result = PTR_ERR(req);
667				break;
668			}
669			nfs_lock_request(req);
670			req->wb_index = pos >> PAGE_SHIFT;
671			req->wb_offset = pos & ~PAGE_MASK;
672			if (!nfs_pageio_add_request(desc, req)) {
673				result = desc->pg_error;
674				nfs_unlock_and_release_request(req);
675				break;
676			}
677			pgbase = 0;
678			bytes -= req_len;
679			started += req_len;
680			user_addr += req_len;
681			pos += req_len;
682			count -= req_len;
683		}
684		/* The nfs_page now hold references to these pages */
685		nfs_direct_release_pages(pagevec, npages);
686	} while (count != 0 && result >= 0);
687
688	kfree(pagevec);
689
690	if (started)
691		return started;
692	return result < 0 ? (ssize_t) result : -EFAULT;
693}
694
695static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
696{
697	struct nfs_direct_req *dreq = hdr->dreq;
698	struct nfs_commit_info cinfo;
699	int bit = -1;
700	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
 
701
702	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
703		goto out_put;
704
705	nfs_init_cinfo_from_dreq(&cinfo, dreq);
706
707	spin_lock(&dreq->lock);
 
 
 
 
708
709	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
710		dreq->flags = 0;
711		dreq->error = hdr->error;
712	}
713	if (dreq->error != 0)
714		bit = NFS_IOHDR_ERROR;
715	else {
716		dreq->count += hdr->good_bytes;
717		if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
718			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
719			bit = NFS_IOHDR_NEED_RESCHED;
720		} else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
721			if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
722				bit = NFS_IOHDR_NEED_RESCHED;
723			else if (dreq->flags == 0) {
724				memcpy(&dreq->verf, hdr->verf,
725				       sizeof(dreq->verf));
726				bit = NFS_IOHDR_NEED_COMMIT;
727				dreq->flags = NFS_ODIRECT_DO_COMMIT;
728			} else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
729				if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) {
730					dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
731					bit = NFS_IOHDR_NEED_RESCHED;
732				} else
733					bit = NFS_IOHDR_NEED_COMMIT;
734			}
735		}
736	}
737	spin_unlock(&dreq->lock);
738
739	while (!list_empty(&hdr->pages)) {
 
740		req = nfs_list_entry(hdr->pages.next);
741		nfs_list_remove_request(req);
742		switch (bit) {
743		case NFS_IOHDR_NEED_RESCHED:
744		case NFS_IOHDR_NEED_COMMIT:
 
 
 
 
745			kref_get(&req->wb_kref);
746			nfs_mark_request_commit(req, hdr->lseg, &cinfo);
747		}
748		nfs_unlock_and_release_request(req);
749	}
750
751out_put:
752	if (put_dreq(dreq))
753		nfs_direct_write_complete(dreq, hdr->inode);
754	hdr->release(hdr);
755}
756
757static void nfs_write_sync_pgio_error(struct list_head *head)
758{
759	struct nfs_page *req;
760
761	while (!list_empty(head)) {
762		req = nfs_list_entry(head->next);
763		nfs_list_remove_request(req);
764		nfs_unlock_and_release_request(req);
765	}
766}
767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
768static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
769	.error_cleanup = nfs_write_sync_pgio_error,
770	.init_hdr = nfs_direct_pgio_init,
771	.completion = nfs_direct_write_completion,
 
772};
773
 
 
 
 
 
 
 
 
 
 
 
 
774static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
775					       const struct iovec *iov,
776					       unsigned long nr_segs,
777					       loff_t pos)
778{
779	struct nfs_pageio_descriptor desc;
780	struct inode *inode = dreq->inode;
781	ssize_t result = 0;
782	size_t requested_bytes = 0;
783	unsigned long seg;
784
785	nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE,
 
 
786			      &nfs_direct_write_completion_ops);
787	desc.pg_dreq = dreq;
788	get_dreq(dreq);
789	atomic_inc(&inode->i_dio_count);
 
 
 
 
 
 
 
790
791	for (seg = 0; seg < nr_segs; seg++) {
792		const struct iovec *vec = &iov[seg];
793		result = nfs_direct_write_schedule_segment(&desc, vec, pos);
794		if (result < 0)
795			break;
796		requested_bytes += result;
797		if ((size_t)result < vec->iov_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
798			break;
799		pos += vec->iov_len;
800	}
801	nfs_pageio_complete(&desc);
802	NFS_I(dreq->inode)->write_io += desc.pg_bytes_written;
803
804	/*
805	 * If no bytes were started, return the error, and let the
806	 * generic layer handle the completion.
807	 */
808	if (requested_bytes == 0) {
809		inode_dio_done(inode);
810		nfs_direct_req_release(dreq);
811		return result < 0 ? result : -EIO;
812	}
813
814	if (put_dreq(dreq))
815		nfs_direct_write_complete(dreq, dreq->inode);
816	return 0;
817}
818
819static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
820				unsigned long nr_segs, loff_t pos,
821				size_t count)
822{
823	ssize_t result = -ENOMEM;
824	struct inode *inode = iocb->ki_filp->f_mapping->host;
825	struct nfs_direct_req *dreq;
826
827	dreq = nfs_direct_req_alloc();
828	if (!dreq)
829		goto out;
830
831	dreq->inode = inode;
832	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
833	dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
834	if (dreq->l_ctx == NULL)
835		goto out_release;
836	if (!is_sync_kiocb(iocb))
837		dreq->iocb = iocb;
838
839	result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos);
840	if (!result)
841		result = nfs_direct_wait(dreq);
842out_release:
843	nfs_direct_req_release(dreq);
844out:
845	return result;
846}
847
848/**
849 * nfs_file_direct_read - file direct read operation for NFS files
850 * @iocb: target I/O control block
851 * @iov: vector of user buffers into which to read data
852 * @nr_segs: size of iov vector
853 * @pos: byte offset in file where reading starts
854 *
855 * We use this function for direct reads instead of calling
856 * generic_file_aio_read() in order to avoid gfar's check to see if
857 * the request starts before the end of the file.  For that check
858 * to work, we must generate a GETATTR before each direct read, and
859 * even then there is a window between the GETATTR and the subsequent
860 * READ where the file size could change.  Our preference is simply
861 * to do all reads the application wants, and the server will take
862 * care of managing the end of file boundary.
863 *
864 * This function also eliminates unnecessarily updating the file's
865 * atime locally, as the NFS server sets the file's atime, and this
866 * client must read the updated atime from the server back into its
867 * cache.
868 */
869ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
870				unsigned long nr_segs, loff_t pos)
871{
872	ssize_t retval = -EINVAL;
873	struct file *file = iocb->ki_filp;
874	struct address_space *mapping = file->f_mapping;
875	size_t count;
876
877	count = iov_length(iov, nr_segs);
878	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
879
880	dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n",
881		file->f_path.dentry->d_parent->d_name.name,
882		file->f_path.dentry->d_name.name,
883		count, (long long) pos);
884
885	retval = 0;
886	if (!count)
887		goto out;
888
889	retval = nfs_sync_mapping(mapping);
890	if (retval)
891		goto out;
892
893	task_io_account_read(count);
894
895	retval = nfs_direct_read(iocb, iov, nr_segs, pos);
896	if (retval > 0)
897		iocb->ki_pos = pos + retval;
898
899out:
900	return retval;
901}
902
903/**
904 * nfs_file_direct_write - file direct write operation for NFS files
905 * @iocb: target I/O control block
906 * @iov: vector of user buffers from which to write data
907 * @nr_segs: size of iov vector
908 * @pos: byte offset in file where writing starts
909 *
910 * We use this function for direct writes instead of calling
911 * generic_file_aio_write() in order to avoid taking the inode
912 * semaphore and updating the i_size.  The NFS server will set
913 * the new i_size and this client must read the updated size
914 * back into its cache.  We let the server do generic write
915 * parameter checking and report problems.
916 *
917 * We eliminate local atime updates, see direct read above.
918 *
919 * We avoid unnecessary page cache invalidations for normal cached
920 * readers of this file.
921 *
922 * Note that O_APPEND is not supported for NFS direct writes, as there
923 * is no atomic O_APPEND write facility in the NFS protocol.
924 */
925ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
926				unsigned long nr_segs, loff_t pos)
927{
928	ssize_t retval = -EINVAL;
 
929	struct file *file = iocb->ki_filp;
930	struct address_space *mapping = file->f_mapping;
931	size_t count;
 
 
 
 
 
 
932
933	count = iov_length(iov, nr_segs);
 
 
 
 
 
 
 
934	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
935
936	dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n",
937		file->f_path.dentry->d_parent->d_name.name,
938		file->f_path.dentry->d_name.name,
939		count, (long long) pos);
940
941	retval = generic_write_checks(file, &pos, &count, 0);
942	if (retval)
 
943		goto out;
944
945	retval = -EINVAL;
946	if ((ssize_t) count < 0)
947		goto out;
948	retval = 0;
949	if (!count)
950		goto out;
 
 
 
 
 
 
 
 
951
952	retval = nfs_sync_mapping(mapping);
953	if (retval)
954		goto out;
 
 
 
 
 
 
 
 
 
 
955
956	task_io_account_write(count);
 
957
958	retval = nfs_direct_write(iocb, iov, nr_segs, pos, count);
959	if (retval > 0) {
960		struct inode *inode = mapping->host;
961
962		iocb->ki_pos = pos + retval;
963		spin_lock(&inode->i_lock);
964		if (i_size_read(inode) < iocb->ki_pos)
965			i_size_write(inode, iocb->ki_pos);
966		spin_unlock(&inode->i_lock);
 
 
967	}
 
 
 
968out:
969	return retval;
970}
971
972/**
973 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
974 *
975 */
976int __init nfs_init_directcache(void)
977{
978	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
979						sizeof(struct nfs_direct_req),
980						0, (SLAB_RECLAIM_ACCOUNT|
981							SLAB_MEM_SPREAD),
982						NULL);
983	if (nfs_direct_cachep == NULL)
984		return -ENOMEM;
985
986	return 0;
987}
988
989/**
990 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
991 *
992 */
993void nfs_destroy_directcache(void)
994{
995	kmem_cache_destroy(nfs_direct_cachep);
996}