Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * linux/fs/nfs/direct.c
  4 *
  5 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
  6 *
  7 * High-performance uncached I/O for the Linux NFS client
  8 *
  9 * There are important applications whose performance or correctness
 10 * depends on uncached access to file data.  Database clusters
 11 * (multiple copies of the same instance running on separate hosts)
 12 * implement their own cache coherency protocol that subsumes file
 13 * system cache protocols.  Applications that process datasets
 14 * considerably larger than the client's memory do not always benefit
 15 * from a local cache.  A streaming video server, for instance, has no
 16 * need to cache the contents of a file.
 17 *
 18 * When an application requests uncached I/O, all read and write requests
 19 * are made directly to the server; data stored or fetched via these
 20 * requests is not cached in the Linux page cache.  The client does not
 21 * correct unaligned requests from applications.  All requested bytes are
 22 * held on permanent storage before a direct write system call returns to
 23 * an application.
 24 *
 25 * Solaris implements an uncached I/O facility called directio() that
 26 * is used for backups and sequential I/O to very large files.  Solaris
 27 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
 28 * an undocumented mount option.
 29 *
 30 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
 31 * help from Andrew Morton.
 32 *
 33 * 18 Dec 2001	Initial implementation for 2.4  --cel
 34 * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
 35 * 08 Jun 2003	Port to 2.5 APIs  --cel
 36 * 31 Mar 2004	Handle direct I/O without VFS support  --cel
 37 * 15 Sep 2004	Parallel async reads  --cel
 38 * 04 May 2005	support O_DIRECT with aio  --cel
 39 *
 40 */
 41
 42#include <linux/errno.h>
 43#include <linux/sched.h>
 44#include <linux/kernel.h>
 45#include <linux/file.h>
 46#include <linux/pagemap.h>
 47#include <linux/kref.h>
 48#include <linux/slab.h>
 49#include <linux/task_io_accounting_ops.h>
 50#include <linux/module.h>
 51
 52#include <linux/nfs_fs.h>
 53#include <linux/nfs_page.h>
 54#include <linux/sunrpc/clnt.h>
 55
 56#include <linux/uaccess.h>
 57#include <linux/atomic.h>
 58
 59#include "internal.h"
 60#include "iostat.h"
 61#include "pnfs.h"
 62#include "fscache.h"
 63#include "nfstrace.h"
 64
 65#define NFSDBG_FACILITY		NFSDBG_VFS
 66
 67static struct kmem_cache *nfs_direct_cachep;
 68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 69static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
 70static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
 71static void nfs_direct_write_complete(struct nfs_direct_req *dreq);
 72static void nfs_direct_write_schedule_work(struct work_struct *work);
 73
 74static inline void get_dreq(struct nfs_direct_req *dreq)
 75{
 76	atomic_inc(&dreq->io_count);
 77}
 78
 79static inline int put_dreq(struct nfs_direct_req *dreq)
 80{
 81	return atomic_dec_and_test(&dreq->io_count);
 82}
 83
 84static void
 85nfs_direct_handle_truncated(struct nfs_direct_req *dreq,
 86			    const struct nfs_pgio_header *hdr,
 87			    ssize_t dreq_len)
 88{
 89	if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) ||
 90	      test_bit(NFS_IOHDR_EOF, &hdr->flags)))
 91		return;
 92	if (dreq->max_count >= dreq_len) {
 93		dreq->max_count = dreq_len;
 94		if (dreq->count > dreq_len)
 95			dreq->count = dreq_len;
 96
 97		if (test_bit(NFS_IOHDR_ERROR, &hdr->flags))
 98			dreq->error = hdr->error;
 99		else /* Clear outstanding error if this is EOF */
100			dreq->error = 0;
101	}
102}
103
104static void
105nfs_direct_count_bytes(struct nfs_direct_req *dreq,
106		       const struct nfs_pgio_header *hdr)
107{
108	loff_t hdr_end = hdr->io_start + hdr->good_bytes;
109	ssize_t dreq_len = 0;
110
111	if (hdr_end > dreq->io_start)
112		dreq_len = hdr_end - dreq->io_start;
113
114	nfs_direct_handle_truncated(dreq, hdr, dreq_len);
115
116	if (dreq_len > dreq->max_count)
117		dreq_len = dreq->max_count;
118
119	if (dreq->count < dreq_len)
120		dreq->count = dreq_len;
121}
122
123/**
124 * nfs_swap_rw - NFS address space operation for swap I/O
 
125 * @iocb: target I/O control block
126 * @iter: I/O buffer
127 *
128 * Perform IO to the swap-file.  This is much like direct IO.
 
 
 
 
 
129 */
130int nfs_swap_rw(struct kiocb *iocb, struct iov_iter *iter)
131{
132	ssize_t ret;
133
134	VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
135
136	if (iov_iter_rw(iter) == READ)
137		ret = nfs_file_direct_read(iocb, iter, true);
138	else
139		ret = nfs_file_direct_write(iocb, iter, true);
140	if (ret < 0)
141		return ret;
142	return 0;
 
 
 
143}
144
145static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
146{
147	unsigned int i;
148	for (i = 0; i < npages; i++)
149		put_page(pages[i]);
150}
151
152void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
153			      struct nfs_direct_req *dreq)
154{
155	cinfo->inode = dreq->inode;
156	cinfo->mds = &dreq->mds_cinfo;
157	cinfo->ds = &dreq->ds_cinfo;
158	cinfo->dreq = dreq;
159	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
160}
161
162static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
163{
164	struct nfs_direct_req *dreq;
165
166	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
167	if (!dreq)
168		return NULL;
169
170	kref_init(&dreq->kref);
171	kref_get(&dreq->kref);
172	init_completion(&dreq->completion);
173	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
174	pnfs_init_ds_commit_info(&dreq->ds_cinfo);
175	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
176	spin_lock_init(&dreq->lock);
177
178	return dreq;
179}
180
181static void nfs_direct_req_free(struct kref *kref)
182{
183	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
184
185	pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode);
186	if (dreq->l_ctx != NULL)
187		nfs_put_lock_context(dreq->l_ctx);
188	if (dreq->ctx != NULL)
189		put_nfs_open_context(dreq->ctx);
190	kmem_cache_free(nfs_direct_cachep, dreq);
191}
192
193static void nfs_direct_req_release(struct nfs_direct_req *dreq)
194{
195	kref_put(&dreq->kref, nfs_direct_req_free);
196}
197
198ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
199{
200	return dreq->bytes_left;
201}
202EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
203
204/*
205 * Collects and returns the final error value/byte-count.
206 */
207static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
208{
209	ssize_t result = -EIOCBQUEUED;
210
211	/* Async requests don't wait here */
212	if (dreq->iocb)
213		goto out;
214
215	result = wait_for_completion_killable(&dreq->completion);
216
217	if (!result) {
218		result = dreq->count;
219		WARN_ON_ONCE(dreq->count < 0);
220	}
221	if (!result)
222		result = dreq->error;
 
 
223
224out:
225	return (ssize_t) result;
226}
227
228/*
229 * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
230 * the iocb is still valid here if this is a synchronous request.
231 */
232static void nfs_direct_complete(struct nfs_direct_req *dreq)
233{
234	struct inode *inode = dreq->inode;
235
236	inode_dio_end(inode);
 
 
 
 
 
 
 
 
 
 
 
 
237
238	if (dreq->iocb) {
239		long res = (long) dreq->error;
240		if (dreq->count != 0) {
241			res = (long) dreq->count;
242			WARN_ON_ONCE(dreq->count < 0);
243		}
244		dreq->iocb->ki_complete(dreq->iocb, res);
245	}
246
247	complete(&dreq->completion);
248
249	nfs_direct_req_release(dreq);
250}
251
 
 
 
 
 
 
 
 
 
 
252static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
253{
254	unsigned long bytes = 0;
255	struct nfs_direct_req *dreq = hdr->dreq;
256
257	spin_lock(&dreq->lock);
258	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
259		spin_unlock(&dreq->lock);
260		goto out_put;
261	}
262
263	nfs_direct_count_bytes(dreq, hdr);
 
 
 
 
264	spin_unlock(&dreq->lock);
265
266	while (!list_empty(&hdr->pages)) {
267		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
268		struct page *page = req->wb_page;
269
270		if (!PageCompound(page) && bytes < hdr->good_bytes &&
271		    (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY))
272			set_page_dirty(page);
273		bytes += req->wb_bytes;
274		nfs_list_remove_request(req);
275		nfs_release_request(req);
276	}
277out_put:
278	if (put_dreq(dreq))
279		nfs_direct_complete(dreq);
280	hdr->release(hdr);
281}
282
283static void nfs_read_sync_pgio_error(struct list_head *head, int error)
284{
285	struct nfs_page *req;
286
287	while (!list_empty(head)) {
288		req = nfs_list_entry(head->next);
289		nfs_list_remove_request(req);
290		nfs_release_request(req);
291	}
292}
293
294static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
295{
296	get_dreq(hdr->dreq);
297}
298
299static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
300	.error_cleanup = nfs_read_sync_pgio_error,
301	.init_hdr = nfs_direct_pgio_init,
302	.completion = nfs_direct_read_completion,
303};
304
305/*
306 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
307 * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
308 * bail and stop sending more reads.  Read length accounting is
309 * handled automatically by nfs_direct_read_result().  Otherwise, if
310 * no requests have been sent, just return an error.
311 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
312
313static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
314					      struct iov_iter *iter,
315					      loff_t pos)
316{
317	struct nfs_pageio_descriptor desc;
318	struct inode *inode = dreq->inode;
319	ssize_t result = -EINVAL;
320	size_t requested_bytes = 0;
321	size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
322
323	nfs_pageio_init_read(&desc, dreq->inode, false,
324			     &nfs_direct_read_completion_ops);
325	get_dreq(dreq);
326	desc.pg_dreq = dreq;
327	inode_dio_begin(inode);
328
329	while (iov_iter_count(iter)) {
330		struct page **pagevec;
331		size_t bytes;
332		size_t pgbase;
333		unsigned npages, i;
334
335		result = iov_iter_get_pages_alloc2(iter, &pagevec,
336						  rsize, &pgbase);
337		if (result < 0)
 
 
 
 
 
 
338			break;
339	
340		bytes = result;
341		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342		for (i = 0; i < npages; i++) {
343			struct nfs_page *req;
344			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
345			/* XXX do we need to do the eof zeroing found in async_filler? */
346			req = nfs_create_request(dreq->ctx, pagevec[i],
 
347						 pgbase, req_len);
348			if (IS_ERR(req)) {
349				result = PTR_ERR(req);
350				break;
351			}
352			req->wb_index = pos >> PAGE_SHIFT;
353			req->wb_offset = pos & ~PAGE_MASK;
354			if (!nfs_pageio_add_request(&desc, req)) {
355				result = desc.pg_error;
356				nfs_release_request(req);
357				break;
358			}
359			pgbase = 0;
360			bytes -= req_len;
361			requested_bytes += req_len;
 
362			pos += req_len;
 
363			dreq->bytes_left -= req_len;
364		}
 
365		nfs_direct_release_pages(pagevec, npages);
366		kvfree(pagevec);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
367		if (result < 0)
368			break;
 
 
 
 
369	}
370
371	nfs_pageio_complete(&desc);
372
373	/*
374	 * If no bytes were started, return the error, and let the
375	 * generic layer handle the completion.
376	 */
377	if (requested_bytes == 0) {
378		inode_dio_end(inode);
379		nfs_direct_req_release(dreq);
380		return result < 0 ? result : -EIO;
381	}
382
383	if (put_dreq(dreq))
384		nfs_direct_complete(dreq);
385	return requested_bytes;
386}
387
388/**
389 * nfs_file_direct_read - file direct read operation for NFS files
390 * @iocb: target I/O control block
391 * @iter: vector of user buffers into which to read data
392 * @swap: flag indicating this is swap IO, not O_DIRECT IO
 
393 *
394 * We use this function for direct reads instead of calling
395 * generic_file_aio_read() in order to avoid gfar's check to see if
396 * the request starts before the end of the file.  For that check
397 * to work, we must generate a GETATTR before each direct read, and
398 * even then there is a window between the GETATTR and the subsequent
399 * READ where the file size could change.  Our preference is simply
400 * to do all reads the application wants, and the server will take
401 * care of managing the end of file boundary.
402 *
403 * This function also eliminates unnecessarily updating the file's
404 * atime locally, as the NFS server sets the file's atime, and this
405 * client must read the updated atime from the server back into its
406 * cache.
407 */
408ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
409			     bool swap)
410{
411	struct file *file = iocb->ki_filp;
412	struct address_space *mapping = file->f_mapping;
413	struct inode *inode = mapping->host;
414	struct nfs_direct_req *dreq;
415	struct nfs_lock_context *l_ctx;
416	ssize_t result, requested;
417	size_t count = iov_iter_count(iter);
 
 
418	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
419
420	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
421		file, count, (long long) iocb->ki_pos);
422
423	result = 0;
424	if (!count)
425		goto out;
426
 
 
 
 
 
427	task_io_account_read(count);
428
429	result = -ENOMEM;
430	dreq = nfs_direct_req_alloc();
431	if (dreq == NULL)
432		goto out;
433
434	dreq->inode = inode;
435	dreq->bytes_left = dreq->max_count = count;
436	dreq->io_start = iocb->ki_pos;
437	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
438	l_ctx = nfs_get_lock_context(dreq->ctx);
439	if (IS_ERR(l_ctx)) {
440		result = PTR_ERR(l_ctx);
441		nfs_direct_req_release(dreq);
442		goto out_release;
443	}
444	dreq->l_ctx = l_ctx;
445	if (!is_sync_kiocb(iocb))
446		dreq->iocb = iocb;
447
448	if (user_backed_iter(iter))
449		dreq->flags = NFS_ODIRECT_SHOULD_DIRTY;
450
451	if (!swap)
452		nfs_start_io_direct(inode);
453
454	NFS_I(inode)->read_io += count;
455	requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
456
457	if (!swap)
458		nfs_end_io_direct(inode);
459
460	if (requested > 0) {
461		result = nfs_direct_wait(dreq);
462		if (result > 0) {
463			requested -= result;
464			iocb->ki_pos += result;
465		}
466		iov_iter_revert(iter, requested);
467	} else {
468		result = requested;
469	}
470
 
 
 
471out_release:
472	nfs_direct_req_release(dreq);
 
 
473out:
474	return result;
475}
476
477static void
478nfs_direct_join_group(struct list_head *list, struct inode *inode)
479{
480	struct nfs_page *req, *next;
481
482	list_for_each_entry(req, list, wb_list) {
483		if (req->wb_head != req || req->wb_this_page == req)
484			continue;
485		for (next = req->wb_this_page;
486				next != req->wb_head;
487				next = next->wb_this_page) {
488			nfs_list_remove_request(next);
489			nfs_release_request(next);
490		}
491		nfs_join_page_group(req, inode);
492	}
493}
494
495static void
496nfs_direct_write_scan_commit_list(struct inode *inode,
497				  struct list_head *list,
498				  struct nfs_commit_info *cinfo)
499{
500	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
501	pnfs_recover_commit_reqs(list, cinfo);
502	nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
503	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
504}
505
506static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
507{
508	struct nfs_pageio_descriptor desc;
509	struct nfs_page *req, *tmp;
510	LIST_HEAD(reqs);
511	struct nfs_commit_info cinfo;
512	LIST_HEAD(failed);
513
514	nfs_init_cinfo_from_dreq(&cinfo, dreq);
515	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
516
517	nfs_direct_join_group(&reqs, dreq->inode);
 
518
519	dreq->count = 0;
520	dreq->max_count = 0;
521	list_for_each_entry(req, &reqs, wb_list)
522		dreq->max_count += req->wb_bytes;
523	nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo);
524	get_dreq(dreq);
525
526	nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
527			      &nfs_direct_write_completion_ops);
528	desc.pg_dreq = dreq;
529
530	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
531		/* Bump the transmission count */
532		req->wb_nio++;
533		if (!nfs_pageio_add_request(&desc, req)) {
534			nfs_list_move_request(req, &failed);
535			spin_lock(&cinfo.inode->i_lock);
 
536			dreq->flags = 0;
537			if (desc.pg_error < 0)
538				dreq->error = desc.pg_error;
539			else
540				dreq->error = -EIO;
541			spin_unlock(&cinfo.inode->i_lock);
542		}
543		nfs_release_request(req);
544	}
545	nfs_pageio_complete(&desc);
546
547	while (!list_empty(&failed)) {
548		req = nfs_list_entry(failed.next);
549		nfs_list_remove_request(req);
550		nfs_unlock_and_release_request(req);
551	}
552
553	if (put_dreq(dreq))
554		nfs_direct_write_complete(dreq);
555}
556
557static void nfs_direct_commit_complete(struct nfs_commit_data *data)
558{
559	const struct nfs_writeverf *verf = data->res.verf;
560	struct nfs_direct_req *dreq = data->dreq;
561	struct nfs_commit_info cinfo;
562	struct nfs_page *req;
563	int status = data->task.tk_status;
564
565	trace_nfs_direct_commit_complete(dreq);
566
567	if (status < 0) {
568		/* Errors in commit are fatal */
569		dreq->error = status;
570		dreq->max_count = 0;
571		dreq->count = 0;
572		dreq->flags = NFS_ODIRECT_DONE;
573	} else {
574		status = dreq->error;
575	}
576
577	nfs_init_cinfo_from_dreq(&cinfo, dreq);
578
579	while (!list_empty(&data->pages)) {
580		req = nfs_list_entry(data->pages.next);
581		nfs_list_remove_request(req);
582		if (status >= 0 && !nfs_write_match_verf(verf, req)) {
583			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
584			/*
585			 * Despite the reboot, the write was successful,
586			 * so reset wb_nio.
587			 */
588			req->wb_nio = 0;
589			nfs_mark_request_commit(req, NULL, &cinfo, 0);
590		} else /* Error or match */
591			nfs_release_request(req);
592		nfs_unlock_and_release_request(req);
593	}
594
595	if (nfs_commit_end(cinfo.mds))
596		nfs_direct_write_complete(dreq);
597}
598
599static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
600		struct nfs_page *req)
601{
602	struct nfs_direct_req *dreq = cinfo->dreq;
603
604	trace_nfs_direct_resched_write(dreq);
605
606	spin_lock(&dreq->lock);
607	if (dreq->flags != NFS_ODIRECT_DONE)
608		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
609	spin_unlock(&dreq->lock);
610	nfs_mark_request_commit(req, NULL, cinfo, 0);
611}
612
613static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
614	.completion = nfs_direct_commit_complete,
615	.resched_write = nfs_direct_resched_write,
616};
617
618static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
619{
620	int res;
621	struct nfs_commit_info cinfo;
622	LIST_HEAD(mds_list);
623
624	nfs_init_cinfo_from_dreq(&cinfo, dreq);
625	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
626	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
627	if (res < 0) /* res == -ENOMEM */
628		nfs_direct_write_reschedule(dreq);
629}
630
631static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq)
632{
633	struct nfs_commit_info cinfo;
634	struct nfs_page *req;
635	LIST_HEAD(reqs);
636
637	nfs_init_cinfo_from_dreq(&cinfo, dreq);
638	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
639
640	while (!list_empty(&reqs)) {
641		req = nfs_list_entry(reqs.next);
642		nfs_list_remove_request(req);
643		nfs_release_request(req);
644		nfs_unlock_and_release_request(req);
645	}
646}
647
648static void nfs_direct_write_schedule_work(struct work_struct *work)
649{
650	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
651	int flags = dreq->flags;
652
653	dreq->flags = 0;
654	switch (flags) {
655		case NFS_ODIRECT_DO_COMMIT:
656			nfs_direct_commit_schedule(dreq);
657			break;
658		case NFS_ODIRECT_RESCHED_WRITES:
659			nfs_direct_write_reschedule(dreq);
660			break;
661		default:
662			nfs_direct_write_clear_reqs(dreq);
663			nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
664			nfs_direct_complete(dreq);
665	}
666}
667
668static void nfs_direct_write_complete(struct nfs_direct_req *dreq)
669{
670	trace_nfs_direct_write_complete(dreq);
671	queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
672}
673
674static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
675{
676	struct nfs_direct_req *dreq = hdr->dreq;
677	struct nfs_commit_info cinfo;
 
678	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
679	int flags = NFS_ODIRECT_DONE;
680
681	trace_nfs_direct_write_completion(dreq);
 
682
683	nfs_init_cinfo_from_dreq(&cinfo, dreq);
684
685	spin_lock(&dreq->lock);
686	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
687		spin_unlock(&dreq->lock);
688		goto out_put;
689	}
690
691	nfs_direct_count_bytes(dreq, hdr);
692	if (test_bit(NFS_IOHDR_UNSTABLE_WRITES, &hdr->flags)) {
693		if (!dreq->flags)
694			dreq->flags = NFS_ODIRECT_DO_COMMIT;
695		flags = dreq->flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
696	}
697	spin_unlock(&dreq->lock);
698
699	while (!list_empty(&hdr->pages)) {
700
701		req = nfs_list_entry(hdr->pages.next);
702		nfs_list_remove_request(req);
703		if (flags == NFS_ODIRECT_DO_COMMIT) {
 
 
704			kref_get(&req->wb_kref);
705			memcpy(&req->wb_verf, &hdr->verf.verifier,
706			       sizeof(req->wb_verf));
707			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
708				hdr->ds_commit_idx);
709		} else if (flags == NFS_ODIRECT_RESCHED_WRITES) {
710			kref_get(&req->wb_kref);
711			nfs_mark_request_commit(req, NULL, &cinfo, 0);
712		}
713		nfs_unlock_and_release_request(req);
714	}
715
716out_put:
717	if (put_dreq(dreq))
718		nfs_direct_write_complete(dreq);
719	hdr->release(hdr);
720}
721
722static void nfs_write_sync_pgio_error(struct list_head *head, int error)
723{
724	struct nfs_page *req;
725
726	while (!list_empty(head)) {
727		req = nfs_list_entry(head->next);
728		nfs_list_remove_request(req);
729		nfs_unlock_and_release_request(req);
730	}
731}
732
733static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
734{
735	struct nfs_direct_req *dreq = hdr->dreq;
736
737	trace_nfs_direct_write_reschedule_io(dreq);
738
739	spin_lock(&dreq->lock);
740	if (dreq->error == 0) {
741		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
742		/* fake unstable write to let common nfs resend pages */
743		hdr->verf.committed = NFS_UNSTABLE;
744		hdr->good_bytes = hdr->args.offset + hdr->args.count -
745			hdr->io_start;
746	}
747	spin_unlock(&dreq->lock);
748}
749
750static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
751	.error_cleanup = nfs_write_sync_pgio_error,
752	.init_hdr = nfs_direct_pgio_init,
753	.completion = nfs_direct_write_completion,
754	.reschedule_io = nfs_direct_write_reschedule_io,
755};
756
757
758/*
759 * NB: Return the value of the first error return code.  Subsequent
760 *     errors after the first one are ignored.
761 */
762/*
763 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
764 * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
765 * bail and stop sending more writes.  Write length accounting is
766 * handled automatically by nfs_direct_write_result().  Otherwise, if
767 * no requests have been sent, just return an error.
768 */
769static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
770					       struct iov_iter *iter,
771					       loff_t pos, int ioflags)
 
772{
773	struct nfs_pageio_descriptor desc;
774	struct inode *inode = dreq->inode;
775	ssize_t result = 0;
776	size_t requested_bytes = 0;
777	size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
778
779	trace_nfs_direct_write_schedule_iovec(dreq);
780
781	nfs_pageio_init_write(&desc, inode, ioflags, false,
782			      &nfs_direct_write_completion_ops);
783	desc.pg_dreq = dreq;
784	get_dreq(dreq);
785	inode_dio_begin(inode);
786
787	NFS_I(inode)->write_io += iov_iter_count(iter);
788	while (iov_iter_count(iter)) {
789		struct page **pagevec;
790		size_t bytes;
791		size_t pgbase;
792		unsigned npages, i;
793
794		result = iov_iter_get_pages_alloc2(iter, &pagevec,
795						  wsize, &pgbase);
 
 
796		if (result < 0)
797			break;
798
799		bytes = result;
800		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
801		for (i = 0; i < npages; i++) {
802			struct nfs_page *req;
803			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
804
805			req = nfs_create_request(dreq->ctx, pagevec[i],
806						 pgbase, req_len);
807			if (IS_ERR(req)) {
808				result = PTR_ERR(req);
809				break;
810			}
811
812			if (desc.pg_error < 0) {
813				nfs_free_request(req);
814				result = desc.pg_error;
815				break;
816			}
817
818			nfs_lock_request(req);
819			req->wb_index = pos >> PAGE_SHIFT;
820			req->wb_offset = pos & ~PAGE_MASK;
821			if (!nfs_pageio_add_request(&desc, req)) {
822				result = desc.pg_error;
823				nfs_unlock_and_release_request(req);
824				break;
825			}
826			pgbase = 0;
827			bytes -= req_len;
828			requested_bytes += req_len;
829			pos += req_len;
830			dreq->bytes_left -= req_len;
831		}
832		nfs_direct_release_pages(pagevec, npages);
833		kvfree(pagevec);
834		if (result < 0)
835			break;
 
836	}
837	nfs_pageio_complete(&desc);
838
839	/*
840	 * If no bytes were started, return the error, and let the
841	 * generic layer handle the completion.
842	 */
843	if (requested_bytes == 0) {
844		inode_dio_end(inode);
845		nfs_direct_req_release(dreq);
846		return result < 0 ? result : -EIO;
847	}
848
849	if (put_dreq(dreq))
850		nfs_direct_write_complete(dreq);
851	return requested_bytes;
852}
853
854/**
855 * nfs_file_direct_write - file direct write operation for NFS files
856 * @iocb: target I/O control block
857 * @iter: vector of user buffers from which to write data
858 * @swap: flag indicating this is swap IO, not O_DIRECT IO
 
859 *
860 * We use this function for direct writes instead of calling
861 * generic_file_aio_write() in order to avoid taking the inode
862 * semaphore and updating the i_size.  The NFS server will set
863 * the new i_size and this client must read the updated size
864 * back into its cache.  We let the server do generic write
865 * parameter checking and report problems.
866 *
867 * We eliminate local atime updates, see direct read above.
868 *
869 * We avoid unnecessary page cache invalidations for normal cached
870 * readers of this file.
871 *
872 * Note that O_APPEND is not supported for NFS direct writes, as there
873 * is no atomic O_APPEND write facility in the NFS protocol.
874 */
875ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter,
876			      bool swap)
877{
878	ssize_t result, requested;
879	size_t count;
880	struct file *file = iocb->ki_filp;
881	struct address_space *mapping = file->f_mapping;
882	struct inode *inode = mapping->host;
883	struct nfs_direct_req *dreq;
884	struct nfs_lock_context *l_ctx;
885	loff_t pos, end;
 
886
887	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
888		file, iov_iter_count(iter), (long long) iocb->ki_pos);
889
890	if (swap)
891		/* bypass generic checks */
892		result =  iov_iter_count(iter);
893	else
894		result = generic_write_checks(iocb, iter);
895	if (result <= 0)
896		return result;
897	count = result;
898	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
899
900	pos = iocb->ki_pos;
901	end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
902
903	task_io_account_write(count);
904
905	result = -ENOMEM;
906	dreq = nfs_direct_req_alloc();
907	if (!dreq)
908		goto out;
909
910	dreq->inode = inode;
911	dreq->bytes_left = dreq->max_count = count;
912	dreq->io_start = pos;
913	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
914	l_ctx = nfs_get_lock_context(dreq->ctx);
915	if (IS_ERR(l_ctx)) {
916		result = PTR_ERR(l_ctx);
917		nfs_direct_req_release(dreq);
918		goto out_release;
919	}
920	dreq->l_ctx = l_ctx;
921	if (!is_sync_kiocb(iocb))
922		dreq->iocb = iocb;
923	pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode);
924
925	if (swap) {
926		requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
927							    FLUSH_STABLE);
928	} else {
929		nfs_start_io_direct(inode);
930
931		requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
932							    FLUSH_COND_STABLE);
933
934		if (mapping->nrpages) {
935			invalidate_inode_pages2_range(mapping,
936						      pos >> PAGE_SHIFT, end);
937		}
938
939		nfs_end_io_direct(inode);
 
 
940	}
941
942	if (requested > 0) {
 
 
943		result = nfs_direct_wait(dreq);
944		if (result > 0) {
945			requested -= result;
 
946			iocb->ki_pos = pos + result;
947			/* XXX: should check the generic_write_sync retval */
948			generic_write_sync(iocb, result);
 
 
949		}
950		iov_iter_revert(iter, requested);
951	} else {
952		result = requested;
953	}
954	nfs_fscache_invalidate(inode, FSCACHE_INVAL_DIO_WRITE);
 
 
955out_release:
956	nfs_direct_req_release(dreq);
 
 
957out:
958	return result;
959}
960
961/**
962 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
963 *
964 */
965int __init nfs_init_directcache(void)
966{
967	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
968						sizeof(struct nfs_direct_req),
969						0, (SLAB_RECLAIM_ACCOUNT|
970							SLAB_MEM_SPREAD),
971						NULL);
972	if (nfs_direct_cachep == NULL)
973		return -ENOMEM;
974
975	return 0;
976}
977
978/**
979 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
980 *
981 */
982void nfs_destroy_directcache(void)
983{
984	kmem_cache_destroy(nfs_direct_cachep);
985}
v3.15
 
   1/*
   2 * linux/fs/nfs/direct.c
   3 *
   4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
   5 *
   6 * High-performance uncached I/O for the Linux NFS client
   7 *
   8 * There are important applications whose performance or correctness
   9 * depends on uncached access to file data.  Database clusters
  10 * (multiple copies of the same instance running on separate hosts)
  11 * implement their own cache coherency protocol that subsumes file
  12 * system cache protocols.  Applications that process datasets
  13 * considerably larger than the client's memory do not always benefit
  14 * from a local cache.  A streaming video server, for instance, has no
  15 * need to cache the contents of a file.
  16 *
  17 * When an application requests uncached I/O, all read and write requests
  18 * are made directly to the server; data stored or fetched via these
  19 * requests is not cached in the Linux page cache.  The client does not
  20 * correct unaligned requests from applications.  All requested bytes are
  21 * held on permanent storage before a direct write system call returns to
  22 * an application.
  23 *
  24 * Solaris implements an uncached I/O facility called directio() that
  25 * is used for backups and sequential I/O to very large files.  Solaris
  26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
  27 * an undocumented mount option.
  28 *
  29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
  30 * help from Andrew Morton.
  31 *
  32 * 18 Dec 2001	Initial implementation for 2.4  --cel
  33 * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
  34 * 08 Jun 2003	Port to 2.5 APIs  --cel
  35 * 31 Mar 2004	Handle direct I/O without VFS support  --cel
  36 * 15 Sep 2004	Parallel async reads  --cel
  37 * 04 May 2005	support O_DIRECT with aio  --cel
  38 *
  39 */
  40
  41#include <linux/errno.h>
  42#include <linux/sched.h>
  43#include <linux/kernel.h>
  44#include <linux/file.h>
  45#include <linux/pagemap.h>
  46#include <linux/kref.h>
  47#include <linux/slab.h>
  48#include <linux/task_io_accounting_ops.h>
  49#include <linux/module.h>
  50
  51#include <linux/nfs_fs.h>
  52#include <linux/nfs_page.h>
  53#include <linux/sunrpc/clnt.h>
  54
  55#include <asm/uaccess.h>
  56#include <linux/atomic.h>
  57
  58#include "internal.h"
  59#include "iostat.h"
  60#include "pnfs.h"
 
 
  61
  62#define NFSDBG_FACILITY		NFSDBG_VFS
  63
  64static struct kmem_cache *nfs_direct_cachep;
  65
  66/*
  67 * This represents a set of asynchronous requests that we're waiting on
  68 */
  69struct nfs_direct_req {
  70	struct kref		kref;		/* release manager */
  71
  72	/* I/O parameters */
  73	struct nfs_open_context	*ctx;		/* file open context info */
  74	struct nfs_lock_context *l_ctx;		/* Lock context info */
  75	struct kiocb *		iocb;		/* controlling i/o request */
  76	struct inode *		inode;		/* target file of i/o */
  77
  78	/* completion state */
  79	atomic_t		io_count;	/* i/os we're waiting for */
  80	spinlock_t		lock;		/* protect completion state */
  81	ssize_t			count,		/* bytes actually processed */
  82				bytes_left,	/* bytes left to be sent */
  83				error;		/* any reported error */
  84	struct completion	completion;	/* wait for i/o completion */
  85
  86	/* commit state */
  87	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
  88	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
  89	struct work_struct	work;
  90	int			flags;
  91#define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
  92#define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
  93	struct nfs_writeverf	verf;		/* unstable write verifier */
  94};
  95
  96static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
  97static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
  98static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
  99static void nfs_direct_write_schedule_work(struct work_struct *work);
 100
 101static inline void get_dreq(struct nfs_direct_req *dreq)
 102{
 103	atomic_inc(&dreq->io_count);
 104}
 105
 106static inline int put_dreq(struct nfs_direct_req *dreq)
 107{
 108	return atomic_dec_and_test(&dreq->io_count);
 109}
 110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111/**
 112 * nfs_direct_IO - NFS address space operation for direct I/O
 113 * @rw: direction (read or write)
 114 * @iocb: target I/O control block
 115 * @iov: array of vectors that define I/O buffer
 116 * @pos: offset in file to begin the operation
 117 * @nr_segs: size of iovec array
 118 *
 119 * The presence of this routine in the address space ops vector means
 120 * the NFS client supports direct I/O. However, for most direct IO, we
 121 * shunt off direct read and write requests before the VFS gets them,
 122 * so this method is only ever called for swap.
 123 */
 124ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
 125{
 126#ifndef CONFIG_NFS_SWAP
 127	dprintk("NFS: nfs_direct_IO (%pD) off/no(%Ld/%lu) EINVAL\n",
 128			iocb->ki_filp, (long long) pos, nr_segs);
 129
 130	return -EINVAL;
 131#else
 132	VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE);
 133
 134	if (rw == READ || rw == KERNEL_READ)
 135		return nfs_file_direct_read(iocb, iov, nr_segs, pos,
 136				rw == READ ? true : false);
 137	return nfs_file_direct_write(iocb, iov, nr_segs, pos,
 138				rw == WRITE ? true : false);
 139#endif /* CONFIG_NFS_SWAP */
 140}
 141
 142static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
 143{
 144	unsigned int i;
 145	for (i = 0; i < npages; i++)
 146		page_cache_release(pages[i]);
 147}
 148
 149void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
 150			      struct nfs_direct_req *dreq)
 151{
 152	cinfo->lock = &dreq->lock;
 153	cinfo->mds = &dreq->mds_cinfo;
 154	cinfo->ds = &dreq->ds_cinfo;
 155	cinfo->dreq = dreq;
 156	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
 157}
 158
 159static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
 160{
 161	struct nfs_direct_req *dreq;
 162
 163	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
 164	if (!dreq)
 165		return NULL;
 166
 167	kref_init(&dreq->kref);
 168	kref_get(&dreq->kref);
 169	init_completion(&dreq->completion);
 170	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
 
 171	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
 172	spin_lock_init(&dreq->lock);
 173
 174	return dreq;
 175}
 176
 177static void nfs_direct_req_free(struct kref *kref)
 178{
 179	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
 180
 
 181	if (dreq->l_ctx != NULL)
 182		nfs_put_lock_context(dreq->l_ctx);
 183	if (dreq->ctx != NULL)
 184		put_nfs_open_context(dreq->ctx);
 185	kmem_cache_free(nfs_direct_cachep, dreq);
 186}
 187
 188static void nfs_direct_req_release(struct nfs_direct_req *dreq)
 189{
 190	kref_put(&dreq->kref, nfs_direct_req_free);
 191}
 192
 193ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
 194{
 195	return dreq->bytes_left;
 196}
 197EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
 198
 199/*
 200 * Collects and returns the final error value/byte-count.
 201 */
 202static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
 203{
 204	ssize_t result = -EIOCBQUEUED;
 205
 206	/* Async requests don't wait here */
 207	if (dreq->iocb)
 208		goto out;
 209
 210	result = wait_for_completion_killable(&dreq->completion);
 211
 
 
 
 
 212	if (!result)
 213		result = dreq->error;
 214	if (!result)
 215		result = dreq->count;
 216
 217out:
 218	return (ssize_t) result;
 219}
 220
 221/*
 222 * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
 223 * the iocb is still valid here if this is a synchronous request.
 224 */
 225static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write)
 226{
 227	struct inode *inode = dreq->inode;
 228
 229	if (dreq->iocb && write) {
 230		loff_t pos = dreq->iocb->ki_pos + dreq->count;
 231
 232		spin_lock(&inode->i_lock);
 233		if (i_size_read(inode) < pos)
 234			i_size_write(inode, pos);
 235		spin_unlock(&inode->i_lock);
 236	}
 237
 238	if (write)
 239		nfs_zap_mapping(inode, inode->i_mapping);
 240
 241	inode_dio_done(inode);
 242
 243	if (dreq->iocb) {
 244		long res = (long) dreq->error;
 245		if (!res)
 246			res = (long) dreq->count;
 247		aio_complete(dreq->iocb, res, 0);
 
 
 248	}
 249
 250	complete_all(&dreq->completion);
 251
 252	nfs_direct_req_release(dreq);
 253}
 254
 255static void nfs_direct_readpage_release(struct nfs_page *req)
 256{
 257	dprintk("NFS: direct read done (%s/%llu %d@%lld)\n",
 258		req->wb_context->dentry->d_inode->i_sb->s_id,
 259		(unsigned long long)NFS_FILEID(req->wb_context->dentry->d_inode),
 260		req->wb_bytes,
 261		(long long)req_offset(req));
 262	nfs_release_request(req);
 263}
 264
 265static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
 266{
 267	unsigned long bytes = 0;
 268	struct nfs_direct_req *dreq = hdr->dreq;
 269
 270	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
 
 
 271		goto out_put;
 
 272
 273	spin_lock(&dreq->lock);
 274	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
 275		dreq->error = hdr->error;
 276	else
 277		dreq->count += hdr->good_bytes;
 278	spin_unlock(&dreq->lock);
 279
 280	while (!list_empty(&hdr->pages)) {
 281		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
 282		struct page *page = req->wb_page;
 283
 284		if (!PageCompound(page) && bytes < hdr->good_bytes)
 
 285			set_page_dirty(page);
 286		bytes += req->wb_bytes;
 287		nfs_list_remove_request(req);
 288		nfs_direct_readpage_release(req);
 289	}
 290out_put:
 291	if (put_dreq(dreq))
 292		nfs_direct_complete(dreq, false);
 293	hdr->release(hdr);
 294}
 295
 296static void nfs_read_sync_pgio_error(struct list_head *head)
 297{
 298	struct nfs_page *req;
 299
 300	while (!list_empty(head)) {
 301		req = nfs_list_entry(head->next);
 302		nfs_list_remove_request(req);
 303		nfs_release_request(req);
 304	}
 305}
 306
 307static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
 308{
 309	get_dreq(hdr->dreq);
 310}
 311
 312static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
 313	.error_cleanup = nfs_read_sync_pgio_error,
 314	.init_hdr = nfs_direct_pgio_init,
 315	.completion = nfs_direct_read_completion,
 316};
 317
 318/*
 319 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
 320 * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
 321 * bail and stop sending more reads.  Read length accounting is
 322 * handled automatically by nfs_direct_read_result().  Otherwise, if
 323 * no requests have been sent, just return an error.
 324 */
 325static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc,
 326						const struct iovec *iov,
 327						loff_t pos, bool uio)
 328{
 329	struct nfs_direct_req *dreq = desc->pg_dreq;
 330	struct nfs_open_context *ctx = dreq->ctx;
 331	struct inode *inode = ctx->dentry->d_inode;
 332	unsigned long user_addr = (unsigned long)iov->iov_base;
 333	size_t count = iov->iov_len;
 334	size_t rsize = NFS_SERVER(inode)->rsize;
 335	unsigned int pgbase;
 336	int result;
 337	ssize_t started = 0;
 338	struct page **pagevec = NULL;
 339	unsigned int npages;
 340
 341	do {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 342		size_t bytes;
 343		int i;
 
 344
 345		pgbase = user_addr & ~PAGE_MASK;
 346		bytes = min(max_t(size_t, rsize, PAGE_SIZE), count);
 347
 348		result = -ENOMEM;
 349		npages = nfs_page_array_len(pgbase, bytes);
 350		if (!pagevec)
 351			pagevec = kmalloc(npages * sizeof(struct page *),
 352					  GFP_KERNEL);
 353		if (!pagevec)
 354			break;
 355		if (uio) {
 356			down_read(&current->mm->mmap_sem);
 357			result = get_user_pages(current, current->mm, user_addr,
 358					npages, 1, 0, pagevec, NULL);
 359			up_read(&current->mm->mmap_sem);
 360			if (result < 0)
 361				break;
 362		} else {
 363			WARN_ON(npages != 1);
 364			result = get_kernel_page(user_addr, 1, pagevec);
 365			if (WARN_ON(result != 1))
 366				break;
 367		}
 368
 369		if ((unsigned)result < npages) {
 370			bytes = result * PAGE_SIZE;
 371			if (bytes <= pgbase) {
 372				nfs_direct_release_pages(pagevec, result);
 373				break;
 374			}
 375			bytes -= pgbase;
 376			npages = result;
 377		}
 378
 379		for (i = 0; i < npages; i++) {
 380			struct nfs_page *req;
 381			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
 382			/* XXX do we need to do the eof zeroing found in async_filler? */
 383			req = nfs_create_request(dreq->ctx, dreq->inode,
 384						 pagevec[i],
 385						 pgbase, req_len);
 386			if (IS_ERR(req)) {
 387				result = PTR_ERR(req);
 388				break;
 389			}
 390			req->wb_index = pos >> PAGE_SHIFT;
 391			req->wb_offset = pos & ~PAGE_MASK;
 392			if (!nfs_pageio_add_request(desc, req)) {
 393				result = desc->pg_error;
 394				nfs_release_request(req);
 395				break;
 396			}
 397			pgbase = 0;
 398			bytes -= req_len;
 399			started += req_len;
 400			user_addr += req_len;
 401			pos += req_len;
 402			count -= req_len;
 403			dreq->bytes_left -= req_len;
 404		}
 405		/* The nfs_page now hold references to these pages */
 406		nfs_direct_release_pages(pagevec, npages);
 407	} while (count != 0 && result >= 0);
 408
 409	kfree(pagevec);
 410
 411	if (started)
 412		return started;
 413	return result < 0 ? (ssize_t) result : -EFAULT;
 414}
 415
 416static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
 417					      const struct iovec *iov,
 418					      unsigned long nr_segs,
 419					      loff_t pos, bool uio)
 420{
 421	struct nfs_pageio_descriptor desc;
 422	struct inode *inode = dreq->inode;
 423	ssize_t result = -EINVAL;
 424	size_t requested_bytes = 0;
 425	unsigned long seg;
 426
 427	NFS_PROTO(dreq->inode)->read_pageio_init(&desc, dreq->inode,
 428			     &nfs_direct_read_completion_ops);
 429	get_dreq(dreq);
 430	desc.pg_dreq = dreq;
 431	atomic_inc(&inode->i_dio_count);
 432
 433	for (seg = 0; seg < nr_segs; seg++) {
 434		const struct iovec *vec = &iov[seg];
 435		result = nfs_direct_read_schedule_segment(&desc, vec, pos, uio);
 436		if (result < 0)
 437			break;
 438		requested_bytes += result;
 439		if ((size_t)result < vec->iov_len)
 440			break;
 441		pos += vec->iov_len;
 442	}
 443
 444	nfs_pageio_complete(&desc);
 445
 446	/*
 447	 * If no bytes were started, return the error, and let the
 448	 * generic layer handle the completion.
 449	 */
 450	if (requested_bytes == 0) {
 451		inode_dio_done(inode);
 452		nfs_direct_req_release(dreq);
 453		return result < 0 ? result : -EIO;
 454	}
 455
 456	if (put_dreq(dreq))
 457		nfs_direct_complete(dreq, false);
 458	return 0;
 459}
 460
 461/**
 462 * nfs_file_direct_read - file direct read operation for NFS files
 463 * @iocb: target I/O control block
 464 * @iov: vector of user buffers into which to read data
 465 * @nr_segs: size of iov vector
 466 * @pos: byte offset in file where reading starts
 467 *
 468 * We use this function for direct reads instead of calling
 469 * generic_file_aio_read() in order to avoid gfar's check to see if
 470 * the request starts before the end of the file.  For that check
 471 * to work, we must generate a GETATTR before each direct read, and
 472 * even then there is a window between the GETATTR and the subsequent
 473 * READ where the file size could change.  Our preference is simply
 474 * to do all reads the application wants, and the server will take
 475 * care of managing the end of file boundary.
 476 *
 477 * This function also eliminates unnecessarily updating the file's
 478 * atime locally, as the NFS server sets the file's atime, and this
 479 * client must read the updated atime from the server back into its
 480 * cache.
 481 */
 482ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
 483				unsigned long nr_segs, loff_t pos, bool uio)
 484{
 485	struct file *file = iocb->ki_filp;
 486	struct address_space *mapping = file->f_mapping;
 487	struct inode *inode = mapping->host;
 488	struct nfs_direct_req *dreq;
 489	struct nfs_lock_context *l_ctx;
 490	ssize_t result = -EINVAL;
 491	size_t count;
 492
 493	count = iov_length(iov, nr_segs);
 494	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
 495
 496	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
 497		file, count, (long long) pos);
 498
 499	result = 0;
 500	if (!count)
 501		goto out;
 502
 503	mutex_lock(&inode->i_mutex);
 504	result = nfs_sync_mapping(mapping);
 505	if (result)
 506		goto out_unlock;
 507
 508	task_io_account_read(count);
 509
 510	result = -ENOMEM;
 511	dreq = nfs_direct_req_alloc();
 512	if (dreq == NULL)
 513		goto out_unlock;
 514
 515	dreq->inode = inode;
 516	dreq->bytes_left = iov_length(iov, nr_segs);
 
 517	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
 518	l_ctx = nfs_get_lock_context(dreq->ctx);
 519	if (IS_ERR(l_ctx)) {
 520		result = PTR_ERR(l_ctx);
 
 521		goto out_release;
 522	}
 523	dreq->l_ctx = l_ctx;
 524	if (!is_sync_kiocb(iocb))
 525		dreq->iocb = iocb;
 526
 527	NFS_I(inode)->read_io += iov_length(iov, nr_segs);
 528	result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos, uio);
 
 
 
 529
 530	mutex_unlock(&inode->i_mutex);
 
 531
 532	if (!result) {
 
 
 
 533		result = nfs_direct_wait(dreq);
 534		if (result > 0)
 535			iocb->ki_pos = pos + result;
 
 
 
 
 
 536	}
 537
 538	nfs_direct_req_release(dreq);
 539	return result;
 540
 541out_release:
 542	nfs_direct_req_release(dreq);
 543out_unlock:
 544	mutex_unlock(&inode->i_mutex);
 545out:
 546	return result;
 547}
 548
 549#if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 550static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
 551{
 552	struct nfs_pageio_descriptor desc;
 553	struct nfs_page *req, *tmp;
 554	LIST_HEAD(reqs);
 555	struct nfs_commit_info cinfo;
 556	LIST_HEAD(failed);
 557
 558	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 559	pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
 560	spin_lock(cinfo.lock);
 561	nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
 562	spin_unlock(cinfo.lock);
 563
 564	dreq->count = 0;
 
 
 
 
 565	get_dreq(dreq);
 566
 567	NFS_PROTO(dreq->inode)->write_pageio_init(&desc, dreq->inode, FLUSH_STABLE,
 568			      &nfs_direct_write_completion_ops);
 569	desc.pg_dreq = dreq;
 570
 571	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
 
 
 572		if (!nfs_pageio_add_request(&desc, req)) {
 573			nfs_list_remove_request(req);
 574			nfs_list_add_request(req, &failed);
 575			spin_lock(cinfo.lock);
 576			dreq->flags = 0;
 577			dreq->error = -EIO;
 578			spin_unlock(cinfo.lock);
 
 
 
 579		}
 580		nfs_release_request(req);
 581	}
 582	nfs_pageio_complete(&desc);
 583
 584	while (!list_empty(&failed)) {
 585		req = nfs_list_entry(failed.next);
 586		nfs_list_remove_request(req);
 587		nfs_unlock_and_release_request(req);
 588	}
 589
 590	if (put_dreq(dreq))
 591		nfs_direct_write_complete(dreq, dreq->inode);
 592}
 593
 594static void nfs_direct_commit_complete(struct nfs_commit_data *data)
 595{
 
 596	struct nfs_direct_req *dreq = data->dreq;
 597	struct nfs_commit_info cinfo;
 598	struct nfs_page *req;
 599	int status = data->task.tk_status;
 600
 601	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 
 602	if (status < 0) {
 603		dprintk("NFS: %5u commit failed with error %d.\n",
 604			data->task.tk_pid, status);
 605		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 606	} else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
 607		dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
 608		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 
 609	}
 610
 611	dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
 
 612	while (!list_empty(&data->pages)) {
 613		req = nfs_list_entry(data->pages.next);
 614		nfs_list_remove_request(req);
 615		if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
 616			/* Note the rewrite will go through mds */
 617			nfs_mark_request_commit(req, NULL, &cinfo);
 618		} else
 
 
 
 
 
 619			nfs_release_request(req);
 620		nfs_unlock_and_release_request(req);
 621	}
 622
 623	if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
 624		nfs_direct_write_complete(dreq, data->inode);
 625}
 626
 627static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
 
 628{
 629	/* There is no lock to clear */
 
 
 
 
 
 
 
 
 630}
 631
 632static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
 633	.completion = nfs_direct_commit_complete,
 634	.error_cleanup = nfs_direct_error_cleanup,
 635};
 636
 637static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
 638{
 639	int res;
 640	struct nfs_commit_info cinfo;
 641	LIST_HEAD(mds_list);
 642
 643	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 644	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
 645	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
 646	if (res < 0) /* res == -ENOMEM */
 647		nfs_direct_write_reschedule(dreq);
 648}
 649
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 650static void nfs_direct_write_schedule_work(struct work_struct *work)
 651{
 652	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
 653	int flags = dreq->flags;
 654
 655	dreq->flags = 0;
 656	switch (flags) {
 657		case NFS_ODIRECT_DO_COMMIT:
 658			nfs_direct_commit_schedule(dreq);
 659			break;
 660		case NFS_ODIRECT_RESCHED_WRITES:
 661			nfs_direct_write_reschedule(dreq);
 662			break;
 663		default:
 664			nfs_direct_complete(dreq, true);
 
 
 665	}
 666}
 667
 668static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
 669{
 670	schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
 671}
 672
 673#else
 674static void nfs_direct_write_schedule_work(struct work_struct *work)
 675{
 676}
 677
 678static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
 679{
 680	nfs_direct_complete(dreq, true);
 681}
 682#endif
 683
 684/*
 685 * NB: Return the value of the first error return code.  Subsequent
 686 *     errors after the first one are ignored.
 687 */
 688/*
 689 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
 690 * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
 691 * bail and stop sending more writes.  Write length accounting is
 692 * handled automatically by nfs_direct_write_result().  Otherwise, if
 693 * no requests have been sent, just return an error.
 694 */
 695static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc,
 696						 const struct iovec *iov,
 697						 loff_t pos, bool uio)
 698{
 699	struct nfs_direct_req *dreq = desc->pg_dreq;
 700	struct nfs_open_context *ctx = dreq->ctx;
 701	struct inode *inode = ctx->dentry->d_inode;
 702	unsigned long user_addr = (unsigned long)iov->iov_base;
 703	size_t count = iov->iov_len;
 704	size_t wsize = NFS_SERVER(inode)->wsize;
 705	unsigned int pgbase;
 706	int result;
 707	ssize_t started = 0;
 708	struct page **pagevec = NULL;
 709	unsigned int npages;
 710
 711	do {
 712		size_t bytes;
 713		int i;
 714
 715		pgbase = user_addr & ~PAGE_MASK;
 716		bytes = min(max_t(size_t, wsize, PAGE_SIZE), count);
 717
 718		result = -ENOMEM;
 719		npages = nfs_page_array_len(pgbase, bytes);
 720		if (!pagevec)
 721			pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL);
 722		if (!pagevec)
 723			break;
 724
 725		if (uio) {
 726			down_read(&current->mm->mmap_sem);
 727			result = get_user_pages(current, current->mm, user_addr,
 728						npages, 0, 0, pagevec, NULL);
 729			up_read(&current->mm->mmap_sem);
 730			if (result < 0)
 731				break;
 732		} else {
 733			WARN_ON(npages != 1);
 734			result = get_kernel_page(user_addr, 0, pagevec);
 735			if (WARN_ON(result != 1))
 736				break;
 737		}
 738
 739		if ((unsigned)result < npages) {
 740			bytes = result * PAGE_SIZE;
 741			if (bytes <= pgbase) {
 742				nfs_direct_release_pages(pagevec, result);
 743				break;
 744			}
 745			bytes -= pgbase;
 746			npages = result;
 747		}
 748
 749		for (i = 0; i < npages; i++) {
 750			struct nfs_page *req;
 751			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
 752
 753			req = nfs_create_request(dreq->ctx, dreq->inode,
 754						 pagevec[i],
 755						 pgbase, req_len);
 756			if (IS_ERR(req)) {
 757				result = PTR_ERR(req);
 758				break;
 759			}
 760			nfs_lock_request(req);
 761			req->wb_index = pos >> PAGE_SHIFT;
 762			req->wb_offset = pos & ~PAGE_MASK;
 763			if (!nfs_pageio_add_request(desc, req)) {
 764				result = desc->pg_error;
 765				nfs_unlock_and_release_request(req);
 766				break;
 767			}
 768			pgbase = 0;
 769			bytes -= req_len;
 770			started += req_len;
 771			user_addr += req_len;
 772			pos += req_len;
 773			count -= req_len;
 774			dreq->bytes_left -= req_len;
 775		}
 776		/* The nfs_page now hold references to these pages */
 777		nfs_direct_release_pages(pagevec, npages);
 778	} while (count != 0 && result >= 0);
 779
 780	kfree(pagevec);
 781
 782	if (started)
 783		return started;
 784	return result < 0 ? (ssize_t) result : -EFAULT;
 785}
 786
 787static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
 788{
 789	struct nfs_direct_req *dreq = hdr->dreq;
 790	struct nfs_commit_info cinfo;
 791	int bit = -1;
 792	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
 
 793
 794	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
 795		goto out_put;
 796
 797	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 798
 799	spin_lock(&dreq->lock);
 
 
 
 
 800
 801	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
 802		dreq->flags = 0;
 803		dreq->error = hdr->error;
 804	}
 805	if (dreq->error != 0)
 806		bit = NFS_IOHDR_ERROR;
 807	else {
 808		dreq->count += hdr->good_bytes;
 809		if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
 810			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 811			bit = NFS_IOHDR_NEED_RESCHED;
 812		} else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
 813			if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
 814				bit = NFS_IOHDR_NEED_RESCHED;
 815			else if (dreq->flags == 0) {
 816				memcpy(&dreq->verf, hdr->verf,
 817				       sizeof(dreq->verf));
 818				bit = NFS_IOHDR_NEED_COMMIT;
 819				dreq->flags = NFS_ODIRECT_DO_COMMIT;
 820			} else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
 821				if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) {
 822					dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 823					bit = NFS_IOHDR_NEED_RESCHED;
 824				} else
 825					bit = NFS_IOHDR_NEED_COMMIT;
 826			}
 827		}
 828	}
 829	spin_unlock(&dreq->lock);
 830
 831	while (!list_empty(&hdr->pages)) {
 
 832		req = nfs_list_entry(hdr->pages.next);
 833		nfs_list_remove_request(req);
 834		switch (bit) {
 835		case NFS_IOHDR_NEED_RESCHED:
 836		case NFS_IOHDR_NEED_COMMIT:
 837			kref_get(&req->wb_kref);
 838			nfs_mark_request_commit(req, hdr->lseg, &cinfo);
 
 
 
 
 
 
 839		}
 840		nfs_unlock_and_release_request(req);
 841	}
 842
 843out_put:
 844	if (put_dreq(dreq))
 845		nfs_direct_write_complete(dreq, hdr->inode);
 846	hdr->release(hdr);
 847}
 848
 849static void nfs_write_sync_pgio_error(struct list_head *head)
 850{
 851	struct nfs_page *req;
 852
 853	while (!list_empty(head)) {
 854		req = nfs_list_entry(head->next);
 855		nfs_list_remove_request(req);
 856		nfs_unlock_and_release_request(req);
 857	}
 858}
 859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 860static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
 861	.error_cleanup = nfs_write_sync_pgio_error,
 862	.init_hdr = nfs_direct_pgio_init,
 863	.completion = nfs_direct_write_completion,
 
 864};
 865
 
 
 
 
 
 
 
 
 
 
 
 
 866static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
 867					       const struct iovec *iov,
 868					       unsigned long nr_segs,
 869					       loff_t pos, bool uio)
 870{
 871	struct nfs_pageio_descriptor desc;
 872	struct inode *inode = dreq->inode;
 873	ssize_t result = 0;
 874	size_t requested_bytes = 0;
 875	unsigned long seg;
 876
 877	NFS_PROTO(inode)->write_pageio_init(&desc, inode, FLUSH_COND_STABLE,
 
 
 878			      &nfs_direct_write_completion_ops);
 879	desc.pg_dreq = dreq;
 880	get_dreq(dreq);
 881	atomic_inc(&inode->i_dio_count);
 
 
 
 
 
 
 
 882
 883	NFS_I(dreq->inode)->write_io += iov_length(iov, nr_segs);
 884	for (seg = 0; seg < nr_segs; seg++) {
 885		const struct iovec *vec = &iov[seg];
 886		result = nfs_direct_write_schedule_segment(&desc, vec, pos, uio);
 887		if (result < 0)
 888			break;
 889		requested_bytes += result;
 890		if ((size_t)result < vec->iov_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 891			break;
 892		pos += vec->iov_len;
 893	}
 894	nfs_pageio_complete(&desc);
 895
 896	/*
 897	 * If no bytes were started, return the error, and let the
 898	 * generic layer handle the completion.
 899	 */
 900	if (requested_bytes == 0) {
 901		inode_dio_done(inode);
 902		nfs_direct_req_release(dreq);
 903		return result < 0 ? result : -EIO;
 904	}
 905
 906	if (put_dreq(dreq))
 907		nfs_direct_write_complete(dreq, dreq->inode);
 908	return 0;
 909}
 910
 911/**
 912 * nfs_file_direct_write - file direct write operation for NFS files
 913 * @iocb: target I/O control block
 914 * @iov: vector of user buffers from which to write data
 915 * @nr_segs: size of iov vector
 916 * @pos: byte offset in file where writing starts
 917 *
 918 * We use this function for direct writes instead of calling
 919 * generic_file_aio_write() in order to avoid taking the inode
 920 * semaphore and updating the i_size.  The NFS server will set
 921 * the new i_size and this client must read the updated size
 922 * back into its cache.  We let the server do generic write
 923 * parameter checking and report problems.
 924 *
 925 * We eliminate local atime updates, see direct read above.
 926 *
 927 * We avoid unnecessary page cache invalidations for normal cached
 928 * readers of this file.
 929 *
 930 * Note that O_APPEND is not supported for NFS direct writes, as there
 931 * is no atomic O_APPEND write facility in the NFS protocol.
 932 */
 933ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
 934				unsigned long nr_segs, loff_t pos, bool uio)
 935{
 936	ssize_t result = -EINVAL;
 
 937	struct file *file = iocb->ki_filp;
 938	struct address_space *mapping = file->f_mapping;
 939	struct inode *inode = mapping->host;
 940	struct nfs_direct_req *dreq;
 941	struct nfs_lock_context *l_ctx;
 942	loff_t end;
 943	size_t count;
 944
 945	count = iov_length(iov, nr_segs);
 946	end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
 947
 
 
 
 
 
 
 
 
 948	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
 949
 950	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
 951		file, count, (long long) pos);
 952
 953	result = generic_write_checks(file, &pos, &count, 0);
 954	if (result)
 955		goto out;
 956
 957	result = -EINVAL;
 958	if ((ssize_t) count < 0)
 959		goto out;
 960	result = 0;
 961	if (!count)
 962		goto out;
 963
 964	mutex_lock(&inode->i_mutex);
 965
 966	result = nfs_sync_mapping(mapping);
 967	if (result)
 968		goto out_unlock;
 969
 970	if (mapping->nrpages) {
 971		result = invalidate_inode_pages2_range(mapping,
 972					pos >> PAGE_CACHE_SHIFT, end);
 973		if (result)
 974			goto out_unlock;
 975	}
 976
 977	task_io_account_write(count);
 978
 979	result = -ENOMEM;
 980	dreq = nfs_direct_req_alloc();
 981	if (!dreq)
 982		goto out_unlock;
 983
 984	dreq->inode = inode;
 985	dreq->bytes_left = count;
 
 986	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
 987	l_ctx = nfs_get_lock_context(dreq->ctx);
 988	if (IS_ERR(l_ctx)) {
 989		result = PTR_ERR(l_ctx);
 
 990		goto out_release;
 991	}
 992	dreq->l_ctx = l_ctx;
 993	if (!is_sync_kiocb(iocb))
 994		dreq->iocb = iocb;
 
 995
 996	result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, uio);
 
 
 
 
 
 
 
 
 
 
 
 
 997
 998	if (mapping->nrpages) {
 999		invalidate_inode_pages2_range(mapping,
1000					      pos >> PAGE_CACHE_SHIFT, end);
1001	}
1002
1003	mutex_unlock(&inode->i_mutex);
1004
1005	if (!result) {
1006		result = nfs_direct_wait(dreq);
1007		if (result > 0) {
1008			struct inode *inode = mapping->host;
1009
1010			iocb->ki_pos = pos + result;
1011			spin_lock(&inode->i_lock);
1012			if (i_size_read(inode) < iocb->ki_pos)
1013				i_size_write(inode, iocb->ki_pos);
1014			spin_unlock(&inode->i_lock);
1015		}
 
 
 
1016	}
1017	nfs_direct_req_release(dreq);
1018	return result;
1019
1020out_release:
1021	nfs_direct_req_release(dreq);
1022out_unlock:
1023	mutex_unlock(&inode->i_mutex);
1024out:
1025	return result;
1026}
1027
1028/**
1029 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1030 *
1031 */
1032int __init nfs_init_directcache(void)
1033{
1034	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1035						sizeof(struct nfs_direct_req),
1036						0, (SLAB_RECLAIM_ACCOUNT|
1037							SLAB_MEM_SPREAD),
1038						NULL);
1039	if (nfs_direct_cachep == NULL)
1040		return -ENOMEM;
1041
1042	return 0;
1043}
1044
1045/**
1046 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1047 *
1048 */
1049void nfs_destroy_directcache(void)
1050{
1051	kmem_cache_destroy(nfs_direct_cachep);
1052}