Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the kernel access vector cache (AVC).
   4 *
   5 * Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
   6 *	     James Morris <jmorris@redhat.com>
   7 *
   8 * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
   9 *	Replaced the avc_lock spinlock by RCU.
  10 *
  11 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
 
 
 
 
  12 */
  13#include <linux/types.h>
  14#include <linux/stddef.h>
  15#include <linux/kernel.h>
  16#include <linux/slab.h>
  17#include <linux/fs.h>
  18#include <linux/dcache.h>
  19#include <linux/init.h>
  20#include <linux/skbuff.h>
  21#include <linux/percpu.h>
  22#include <linux/list.h>
  23#include <net/sock.h>
  24#include <linux/un.h>
  25#include <net/af_unix.h>
  26#include <linux/ip.h>
  27#include <linux/audit.h>
  28#include <linux/ipv6.h>
  29#include <net/ipv6.h>
  30#include "avc.h"
  31#include "avc_ss.h"
  32#include "classmap.h"
  33
  34#define CREATE_TRACE_POINTS
  35#include <trace/events/avc.h>
  36
  37#define AVC_CACHE_SLOTS			512
  38#define AVC_DEF_CACHE_THRESHOLD		512
  39#define AVC_CACHE_RECLAIM		16
  40
  41#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  42#define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
  43#else
  44#define avc_cache_stats_incr(field)	do {} while (0)
  45#endif
  46
  47struct avc_entry {
  48	u32			ssid;
  49	u32			tsid;
  50	u16			tclass;
  51	struct av_decision	avd;
  52	struct avc_xperms_node	*xp_node;
  53};
  54
  55struct avc_node {
  56	struct avc_entry	ae;
  57	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
  58	struct rcu_head		rhead;
  59};
  60
  61struct avc_xperms_decision_node {
  62	struct extended_perms_decision xpd;
  63	struct list_head xpd_list; /* list of extended_perms_decision */
  64};
  65
  66struct avc_xperms_node {
  67	struct extended_perms xp;
  68	struct list_head xpd_head; /* list head of extended_perms_decision */
  69};
  70
  71struct avc_cache {
  72	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
  73	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
  74	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
  75	atomic_t		active_nodes;
  76	u32			latest_notif;	/* latest revocation notification */
  77};
  78
  79struct avc_callback_node {
  80	int (*callback) (u32 event);
  81	u32 events;
  82	struct avc_callback_node *next;
  83};
  84
 
 
 
  85#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  86DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
  87#endif
  88
  89struct selinux_avc {
  90	unsigned int avc_cache_threshold;
  91	struct avc_cache avc_cache;
  92};
  93
  94static struct selinux_avc selinux_avc;
 
 
 
  95
  96void selinux_avc_init(struct selinux_avc **avc)
 
 
 
 
 
  97{
  98	int i;
 
  99
 100	selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
 101	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 102		INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]);
 103		spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]);
 104	}
 105	atomic_set(&selinux_avc.avc_cache.active_nodes, 0);
 106	atomic_set(&selinux_avc.avc_cache.lru_hint, 0);
 107	*avc = &selinux_avc;
 108}
 109
 110unsigned int avc_get_cache_threshold(struct selinux_avc *avc)
 111{
 112	return avc->avc_cache_threshold;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 113}
 114
 115void avc_set_cache_threshold(struct selinux_avc *avc,
 116			     unsigned int cache_threshold)
 
 
 
 
 
 117{
 118	avc->avc_cache_threshold = cache_threshold;
 119}
 
 120
 121static struct avc_callback_node *avc_callbacks __ro_after_init;
 122static struct kmem_cache *avc_node_cachep __ro_after_init;
 123static struct kmem_cache *avc_xperms_data_cachep __ro_after_init;
 124static struct kmem_cache *avc_xperms_decision_cachep __ro_after_init;
 125static struct kmem_cache *avc_xperms_cachep __ro_after_init;
 
 
 126
 127static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
 128{
 129	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
 
 
 
 
 
 
 
 130}
 131
 132/**
 133 * avc_init - Initialize the AVC.
 134 *
 135 * Initialize the access vector cache.
 136 */
 137void __init avc_init(void)
 138{
 
 
 
 
 
 
 
 
 
 139	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
 140					0, SLAB_PANIC, NULL);
 141	avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
 142					sizeof(struct avc_xperms_node),
 143					0, SLAB_PANIC, NULL);
 144	avc_xperms_decision_cachep = kmem_cache_create(
 145					"avc_xperms_decision_node",
 146					sizeof(struct avc_xperms_decision_node),
 147					0, SLAB_PANIC, NULL);
 148	avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
 149					sizeof(struct extended_perms_data),
 150					0, SLAB_PANIC, NULL);
 151}
 152
 153int avc_get_hash_stats(struct selinux_avc *avc, char *page)
 154{
 155	int i, chain_len, max_chain_len, slots_used;
 156	struct avc_node *node;
 157	struct hlist_head *head;
 158
 159	rcu_read_lock();
 160
 161	slots_used = 0;
 162	max_chain_len = 0;
 163	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 164		head = &avc->avc_cache.slots[i];
 165		if (!hlist_empty(head)) {
 166			slots_used++;
 167			chain_len = 0;
 168			hlist_for_each_entry_rcu(node, head, list)
 169				chain_len++;
 170			if (chain_len > max_chain_len)
 171				max_chain_len = chain_len;
 172		}
 173	}
 174
 175	rcu_read_unlock();
 176
 177	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
 178			 "longest chain: %d\n",
 179			 atomic_read(&avc->avc_cache.active_nodes),
 180			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
 181}
 182
 183/*
 184 * using a linked list for extended_perms_decision lookup because the list is
 185 * always small. i.e. less than 5, typically 1
 186 */
 187static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
 188					struct avc_xperms_node *xp_node)
 189{
 190	struct avc_xperms_decision_node *xpd_node;
 191
 192	list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
 193		if (xpd_node->xpd.driver == driver)
 194			return &xpd_node->xpd;
 195	}
 196	return NULL;
 197}
 198
 199static inline unsigned int
 200avc_xperms_has_perm(struct extended_perms_decision *xpd,
 201					u8 perm, u8 which)
 202{
 203	unsigned int rc = 0;
 204
 205	if ((which == XPERMS_ALLOWED) &&
 206			(xpd->used & XPERMS_ALLOWED))
 207		rc = security_xperm_test(xpd->allowed->p, perm);
 208	else if ((which == XPERMS_AUDITALLOW) &&
 209			(xpd->used & XPERMS_AUDITALLOW))
 210		rc = security_xperm_test(xpd->auditallow->p, perm);
 211	else if ((which == XPERMS_DONTAUDIT) &&
 212			(xpd->used & XPERMS_DONTAUDIT))
 213		rc = security_xperm_test(xpd->dontaudit->p, perm);
 214	return rc;
 215}
 216
 217static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
 218				u8 driver, u8 perm)
 219{
 220	struct extended_perms_decision *xpd;
 221	security_xperm_set(xp_node->xp.drivers.p, driver);
 222	xpd = avc_xperms_decision_lookup(driver, xp_node);
 223	if (xpd && xpd->allowed)
 224		security_xperm_set(xpd->allowed->p, perm);
 225}
 226
 227static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
 228{
 229	struct extended_perms_decision *xpd;
 230
 231	xpd = &xpd_node->xpd;
 232	if (xpd->allowed)
 233		kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
 234	if (xpd->auditallow)
 235		kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
 236	if (xpd->dontaudit)
 237		kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
 238	kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
 239}
 240
 241static void avc_xperms_free(struct avc_xperms_node *xp_node)
 242{
 243	struct avc_xperms_decision_node *xpd_node, *tmp;
 244
 245	if (!xp_node)
 246		return;
 247
 248	list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
 249		list_del(&xpd_node->xpd_list);
 250		avc_xperms_decision_free(xpd_node);
 251	}
 252	kmem_cache_free(avc_xperms_cachep, xp_node);
 253}
 254
 255static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
 256					struct extended_perms_decision *src)
 257{
 258	dest->driver = src->driver;
 259	dest->used = src->used;
 260	if (dest->used & XPERMS_ALLOWED)
 261		memcpy(dest->allowed->p, src->allowed->p,
 262				sizeof(src->allowed->p));
 263	if (dest->used & XPERMS_AUDITALLOW)
 264		memcpy(dest->auditallow->p, src->auditallow->p,
 265				sizeof(src->auditallow->p));
 266	if (dest->used & XPERMS_DONTAUDIT)
 267		memcpy(dest->dontaudit->p, src->dontaudit->p,
 268				sizeof(src->dontaudit->p));
 269}
 270
 271/*
 272 * similar to avc_copy_xperms_decision, but only copy decision
 273 * information relevant to this perm
 274 */
 275static inline void avc_quick_copy_xperms_decision(u8 perm,
 276			struct extended_perms_decision *dest,
 277			struct extended_perms_decision *src)
 278{
 279	/*
 280	 * compute index of the u32 of the 256 bits (8 u32s) that contain this
 281	 * command permission
 282	 */
 283	u8 i = perm >> 5;
 284
 285	dest->used = src->used;
 286	if (dest->used & XPERMS_ALLOWED)
 287		dest->allowed->p[i] = src->allowed->p[i];
 288	if (dest->used & XPERMS_AUDITALLOW)
 289		dest->auditallow->p[i] = src->auditallow->p[i];
 290	if (dest->used & XPERMS_DONTAUDIT)
 291		dest->dontaudit->p[i] = src->dontaudit->p[i];
 292}
 293
 294static struct avc_xperms_decision_node
 295		*avc_xperms_decision_alloc(u8 which)
 296{
 297	struct avc_xperms_decision_node *xpd_node;
 298	struct extended_perms_decision *xpd;
 299
 300	xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep,
 301				     GFP_NOWAIT | __GFP_NOWARN);
 302	if (!xpd_node)
 303		return NULL;
 304
 305	xpd = &xpd_node->xpd;
 306	if (which & XPERMS_ALLOWED) {
 307		xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
 308						GFP_NOWAIT | __GFP_NOWARN);
 309		if (!xpd->allowed)
 310			goto error;
 311	}
 312	if (which & XPERMS_AUDITALLOW) {
 313		xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
 314						GFP_NOWAIT | __GFP_NOWARN);
 315		if (!xpd->auditallow)
 316			goto error;
 317	}
 318	if (which & XPERMS_DONTAUDIT) {
 319		xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
 320						GFP_NOWAIT | __GFP_NOWARN);
 321		if (!xpd->dontaudit)
 322			goto error;
 323	}
 324	return xpd_node;
 325error:
 326	avc_xperms_decision_free(xpd_node);
 327	return NULL;
 328}
 329
 330static int avc_add_xperms_decision(struct avc_node *node,
 331			struct extended_perms_decision *src)
 332{
 333	struct avc_xperms_decision_node *dest_xpd;
 334
 335	node->ae.xp_node->xp.len++;
 336	dest_xpd = avc_xperms_decision_alloc(src->used);
 337	if (!dest_xpd)
 338		return -ENOMEM;
 339	avc_copy_xperms_decision(&dest_xpd->xpd, src);
 340	list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
 341	return 0;
 342}
 343
 344static struct avc_xperms_node *avc_xperms_alloc(void)
 345{
 346	struct avc_xperms_node *xp_node;
 347
 348	xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT | __GFP_NOWARN);
 349	if (!xp_node)
 350		return xp_node;
 351	INIT_LIST_HEAD(&xp_node->xpd_head);
 352	return xp_node;
 353}
 354
 355static int avc_xperms_populate(struct avc_node *node,
 356				struct avc_xperms_node *src)
 357{
 358	struct avc_xperms_node *dest;
 359	struct avc_xperms_decision_node *dest_xpd;
 360	struct avc_xperms_decision_node *src_xpd;
 361
 362	if (src->xp.len == 0)
 363		return 0;
 364	dest = avc_xperms_alloc();
 365	if (!dest)
 366		return -ENOMEM;
 367
 368	memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
 369	dest->xp.len = src->xp.len;
 370
 371	/* for each source xpd allocate a destination xpd and copy */
 372	list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
 373		dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
 374		if (!dest_xpd)
 375			goto error;
 376		avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
 377		list_add(&dest_xpd->xpd_list, &dest->xpd_head);
 378	}
 379	node->ae.xp_node = dest;
 380	return 0;
 381error:
 382	avc_xperms_free(dest);
 383	return -ENOMEM;
 384
 385}
 386
 387static inline u32 avc_xperms_audit_required(u32 requested,
 388					struct av_decision *avd,
 389					struct extended_perms_decision *xpd,
 390					u8 perm,
 391					int result,
 392					u32 *deniedp)
 393{
 394	u32 denied, audited;
 395
 396	denied = requested & ~avd->allowed;
 397	if (unlikely(denied)) {
 398		audited = denied & avd->auditdeny;
 399		if (audited && xpd) {
 400			if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
 401				audited &= ~requested;
 402		}
 403	} else if (result) {
 404		audited = denied = requested;
 405	} else {
 406		audited = requested & avd->auditallow;
 407		if (audited && xpd) {
 408			if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
 409				audited &= ~requested;
 410		}
 411	}
 412
 413	*deniedp = denied;
 414	return audited;
 415}
 416
 417static inline int avc_xperms_audit(struct selinux_state *state,
 418				   u32 ssid, u32 tsid, u16 tclass,
 419				   u32 requested, struct av_decision *avd,
 420				   struct extended_perms_decision *xpd,
 421				   u8 perm, int result,
 422				   struct common_audit_data *ad)
 423{
 424	u32 audited, denied;
 425
 426	audited = avc_xperms_audit_required(
 427			requested, avd, xpd, perm, result, &denied);
 428	if (likely(!audited))
 429		return 0;
 430	return slow_avc_audit(state, ssid, tsid, tclass, requested,
 431			audited, denied, result, ad);
 432}
 433
 434static void avc_node_free(struct rcu_head *rhead)
 435{
 436	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
 437	avc_xperms_free(node->ae.xp_node);
 438	kmem_cache_free(avc_node_cachep, node);
 439	avc_cache_stats_incr(frees);
 440}
 441
 442static void avc_node_delete(struct selinux_avc *avc, struct avc_node *node)
 443{
 444	hlist_del_rcu(&node->list);
 445	call_rcu(&node->rhead, avc_node_free);
 446	atomic_dec(&avc->avc_cache.active_nodes);
 447}
 448
 449static void avc_node_kill(struct selinux_avc *avc, struct avc_node *node)
 450{
 451	avc_xperms_free(node->ae.xp_node);
 452	kmem_cache_free(avc_node_cachep, node);
 453	avc_cache_stats_incr(frees);
 454	atomic_dec(&avc->avc_cache.active_nodes);
 455}
 456
 457static void avc_node_replace(struct selinux_avc *avc,
 458			     struct avc_node *new, struct avc_node *old)
 459{
 460	hlist_replace_rcu(&old->list, &new->list);
 461	call_rcu(&old->rhead, avc_node_free);
 462	atomic_dec(&avc->avc_cache.active_nodes);
 463}
 464
 465static inline int avc_reclaim_node(struct selinux_avc *avc)
 466{
 467	struct avc_node *node;
 468	int hvalue, try, ecx;
 469	unsigned long flags;
 470	struct hlist_head *head;
 471	spinlock_t *lock;
 472
 473	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
 474		hvalue = atomic_inc_return(&avc->avc_cache.lru_hint) &
 475			(AVC_CACHE_SLOTS - 1);
 476		head = &avc->avc_cache.slots[hvalue];
 477		lock = &avc->avc_cache.slots_lock[hvalue];
 478
 479		if (!spin_trylock_irqsave(lock, flags))
 480			continue;
 481
 482		rcu_read_lock();
 483		hlist_for_each_entry(node, head, list) {
 484			avc_node_delete(avc, node);
 485			avc_cache_stats_incr(reclaims);
 486			ecx++;
 487			if (ecx >= AVC_CACHE_RECLAIM) {
 488				rcu_read_unlock();
 489				spin_unlock_irqrestore(lock, flags);
 490				goto out;
 491			}
 492		}
 493		rcu_read_unlock();
 494		spin_unlock_irqrestore(lock, flags);
 495	}
 496out:
 497	return ecx;
 498}
 499
 500static struct avc_node *avc_alloc_node(struct selinux_avc *avc)
 501{
 502	struct avc_node *node;
 503
 504	node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT | __GFP_NOWARN);
 505	if (!node)
 506		goto out;
 507
 508	INIT_HLIST_NODE(&node->list);
 509	avc_cache_stats_incr(allocations);
 510
 511	if (atomic_inc_return(&avc->avc_cache.active_nodes) >
 512	    avc->avc_cache_threshold)
 513		avc_reclaim_node(avc);
 514
 515out:
 516	return node;
 517}
 518
 519static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
 520{
 521	node->ae.ssid = ssid;
 522	node->ae.tsid = tsid;
 523	node->ae.tclass = tclass;
 524	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
 525}
 526
 527static inline struct avc_node *avc_search_node(struct selinux_avc *avc,
 528					       u32 ssid, u32 tsid, u16 tclass)
 529{
 530	struct avc_node *node, *ret = NULL;
 531	int hvalue;
 532	struct hlist_head *head;
 533
 534	hvalue = avc_hash(ssid, tsid, tclass);
 535	head = &avc->avc_cache.slots[hvalue];
 536	hlist_for_each_entry_rcu(node, head, list) {
 537		if (ssid == node->ae.ssid &&
 538		    tclass == node->ae.tclass &&
 539		    tsid == node->ae.tsid) {
 540			ret = node;
 541			break;
 542		}
 543	}
 544
 545	return ret;
 546}
 547
 548/**
 549 * avc_lookup - Look up an AVC entry.
 550 * @avc: the access vector cache
 551 * @ssid: source security identifier
 552 * @tsid: target security identifier
 553 * @tclass: target security class
 554 *
 555 * Look up an AVC entry that is valid for the
 556 * (@ssid, @tsid), interpreting the permissions
 557 * based on @tclass.  If a valid AVC entry exists,
 558 * then this function returns the avc_node.
 559 * Otherwise, this function returns NULL.
 560 */
 561static struct avc_node *avc_lookup(struct selinux_avc *avc,
 562				   u32 ssid, u32 tsid, u16 tclass)
 563{
 564	struct avc_node *node;
 565
 566	avc_cache_stats_incr(lookups);
 567	node = avc_search_node(avc, ssid, tsid, tclass);
 568
 569	if (node)
 570		return node;
 571
 572	avc_cache_stats_incr(misses);
 573	return NULL;
 574}
 575
 576static int avc_latest_notif_update(struct selinux_avc *avc,
 577				   int seqno, int is_insert)
 578{
 579	int ret = 0;
 580	static DEFINE_SPINLOCK(notif_lock);
 581	unsigned long flag;
 582
 583	spin_lock_irqsave(&notif_lock, flag);
 584	if (is_insert) {
 585		if (seqno < avc->avc_cache.latest_notif) {
 586			pr_warn("SELinux: avc:  seqno %d < latest_notif %d\n",
 587			       seqno, avc->avc_cache.latest_notif);
 588			ret = -EAGAIN;
 589		}
 590	} else {
 591		if (seqno > avc->avc_cache.latest_notif)
 592			avc->avc_cache.latest_notif = seqno;
 593	}
 594	spin_unlock_irqrestore(&notif_lock, flag);
 595
 596	return ret;
 597}
 598
 599/**
 600 * avc_insert - Insert an AVC entry.
 601 * @avc: the access vector cache
 602 * @ssid: source security identifier
 603 * @tsid: target security identifier
 604 * @tclass: target security class
 605 * @avd: resulting av decision
 606 * @xp_node: resulting extended permissions
 607 *
 608 * Insert an AVC entry for the SID pair
 609 * (@ssid, @tsid) and class @tclass.
 610 * The access vectors and the sequence number are
 611 * normally provided by the security server in
 612 * response to a security_compute_av() call.  If the
 613 * sequence number @avd->seqno is not less than the latest
 614 * revocation notification, then the function copies
 615 * the access vectors into a cache entry, returns
 616 * avc_node inserted. Otherwise, this function returns NULL.
 617 */
 618static struct avc_node *avc_insert(struct selinux_avc *avc,
 619				   u32 ssid, u32 tsid, u16 tclass,
 620				   struct av_decision *avd,
 621				   struct avc_xperms_node *xp_node)
 622{
 623	struct avc_node *pos, *node = NULL;
 624	int hvalue;
 625	unsigned long flag;
 626	spinlock_t *lock;
 627	struct hlist_head *head;
 628
 629	if (avc_latest_notif_update(avc, avd->seqno, 1))
 630		return NULL;
 631
 632	node = avc_alloc_node(avc);
 633	if (!node)
 634		return NULL;
 
 635
 636	avc_node_populate(node, ssid, tsid, tclass, avd);
 637	if (avc_xperms_populate(node, xp_node)) {
 638		avc_node_kill(avc, node);
 639		return NULL;
 640	}
 641
 642	hvalue = avc_hash(ssid, tsid, tclass);
 643	head = &avc->avc_cache.slots[hvalue];
 644	lock = &avc->avc_cache.slots_lock[hvalue];
 645	spin_lock_irqsave(lock, flag);
 646	hlist_for_each_entry(pos, head, list) {
 647		if (pos->ae.ssid == ssid &&
 648			pos->ae.tsid == tsid &&
 649			pos->ae.tclass == tclass) {
 650			avc_node_replace(avc, node, pos);
 651			goto found;
 
 652		}
 653	}
 654	hlist_add_head_rcu(&node->list, head);
 655found:
 656	spin_unlock_irqrestore(lock, flag);
 
 
 657	return node;
 658}
 659
 660/**
 661 * avc_audit_pre_callback - SELinux specific information
 662 * will be called by generic audit code
 663 * @ab: the audit buffer
 664 * @a: audit_data
 665 */
 666static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
 667{
 668	struct common_audit_data *ad = a;
 669	struct selinux_audit_data *sad = ad->selinux_audit_data;
 670	u32 av = sad->audited;
 671	const char *const *perms;
 672	int i, perm;
 673
 674	audit_log_format(ab, "avc:  %s ", sad->denied ? "denied" : "granted");
 675
 676	if (av == 0) {
 677		audit_log_format(ab, " null");
 678		return;
 679	}
 680
 681	perms = secclass_map[sad->tclass-1].perms;
 682
 683	audit_log_format(ab, " {");
 684	i = 0;
 685	perm = 1;
 686	while (i < (sizeof(av) * 8)) {
 687		if ((perm & av) && perms[i]) {
 688			audit_log_format(ab, " %s", perms[i]);
 689			av &= ~perm;
 690		}
 691		i++;
 692		perm <<= 1;
 693	}
 694
 695	if (av)
 696		audit_log_format(ab, " 0x%x", av);
 697
 698	audit_log_format(ab, " } for ");
 699}
 700
 701/**
 702 * avc_audit_post_callback - SELinux specific information
 703 * will be called by generic audit code
 704 * @ab: the audit buffer
 705 * @a: audit_data
 706 */
 707static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
 708{
 709	struct common_audit_data *ad = a;
 710	struct selinux_audit_data *sad = ad->selinux_audit_data;
 711	char *scontext = NULL;
 712	char *tcontext = NULL;
 713	const char *tclass = NULL;
 714	u32 scontext_len;
 715	u32 tcontext_len;
 716	int rc;
 717
 718	rc = security_sid_to_context(sad->state, sad->ssid, &scontext,
 719				     &scontext_len);
 720	if (rc)
 721		audit_log_format(ab, " ssid=%d", sad->ssid);
 722	else
 723		audit_log_format(ab, " scontext=%s", scontext);
 724
 725	rc = security_sid_to_context(sad->state, sad->tsid, &tcontext,
 726				     &tcontext_len);
 727	if (rc)
 728		audit_log_format(ab, " tsid=%d", sad->tsid);
 729	else
 730		audit_log_format(ab, " tcontext=%s", tcontext);
 731
 732	tclass = secclass_map[sad->tclass-1].name;
 733	audit_log_format(ab, " tclass=%s", tclass);
 734
 735	if (sad->denied)
 736		audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1);
 737
 738	trace_selinux_audited(sad, scontext, tcontext, tclass);
 739	kfree(tcontext);
 740	kfree(scontext);
 741
 742	/* in case of invalid context report also the actual context string */
 743	rc = security_sid_to_context_inval(sad->state, sad->ssid, &scontext,
 744					   &scontext_len);
 745	if (!rc && scontext) {
 746		if (scontext_len && scontext[scontext_len - 1] == '\0')
 747			scontext_len--;
 748		audit_log_format(ab, " srawcon=");
 749		audit_log_n_untrustedstring(ab, scontext, scontext_len);
 750		kfree(scontext);
 751	}
 752
 753	rc = security_sid_to_context_inval(sad->state, sad->tsid, &scontext,
 754					   &scontext_len);
 755	if (!rc && scontext) {
 756		if (scontext_len && scontext[scontext_len - 1] == '\0')
 757			scontext_len--;
 758		audit_log_format(ab, " trawcon=");
 759		audit_log_n_untrustedstring(ab, scontext, scontext_len);
 760		kfree(scontext);
 761	}
 762}
 763
 764/*
 765 * This is the slow part of avc audit with big stack footprint.
 766 * Note that it is non-blocking and can be called from under
 767 * rcu_read_lock().
 768 */
 769noinline int slow_avc_audit(struct selinux_state *state,
 770			    u32 ssid, u32 tsid, u16 tclass,
 771			    u32 requested, u32 audited, u32 denied, int result,
 772			    struct common_audit_data *a)
 773{
 774	struct common_audit_data stack_data;
 775	struct selinux_audit_data sad;
 776
 777	if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)))
 778		return -EINVAL;
 779
 780	if (!a) {
 781		a = &stack_data;
 782		a->type = LSM_AUDIT_DATA_NONE;
 783	}
 784
 
 
 
 
 
 
 
 
 
 
 
 785	sad.tclass = tclass;
 786	sad.requested = requested;
 787	sad.ssid = ssid;
 788	sad.tsid = tsid;
 789	sad.audited = audited;
 790	sad.denied = denied;
 791	sad.result = result;
 792	sad.state = state;
 793
 794	a->selinux_audit_data = &sad;
 795
 796	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
 797	return 0;
 798}
 799
 800/**
 801 * avc_add_callback - Register a callback for security events.
 802 * @callback: callback function
 803 * @events: security events
 804 *
 805 * Register a callback function for events in the set @events.
 806 * Returns %0 on success or -%ENOMEM if insufficient memory
 807 * exists to add the callback.
 808 */
 809int __init avc_add_callback(int (*callback)(u32 event), u32 events)
 810{
 811	struct avc_callback_node *c;
 812	int rc = 0;
 813
 814	c = kmalloc(sizeof(*c), GFP_KERNEL);
 815	if (!c) {
 816		rc = -ENOMEM;
 817		goto out;
 818	}
 819
 820	c->callback = callback;
 821	c->events = events;
 822	c->next = avc_callbacks;
 823	avc_callbacks = c;
 824out:
 825	return rc;
 826}
 827
 
 
 
 
 
 828/**
 829 * avc_update_node - Update an AVC entry
 830 * @avc: the access vector cache
 831 * @event : Updating event
 832 * @perms : Permission mask bits
 833 * @driver: xperm driver information
 834 * @xperm: xperm permissions
 835 * @ssid: AVC entry source sid
 836 * @tsid: AVC entry target sid
 837 * @tclass : AVC entry target object class
 838 * @seqno : sequence number when decision was made
 839 * @xpd: extended_perms_decision to be added to the node
 840 * @flags: the AVC_* flags, e.g. AVC_EXTENDED_PERMS, or 0.
 841 *
 842 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
 843 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
 844 * otherwise, this function updates the AVC entry. The original AVC-entry object
 845 * will release later by RCU.
 846 */
 847static int avc_update_node(struct selinux_avc *avc,
 848			   u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
 849			   u32 tsid, u16 tclass, u32 seqno,
 850			   struct extended_perms_decision *xpd,
 851			   u32 flags)
 852{
 853	int hvalue, rc = 0;
 854	unsigned long flag;
 855	struct avc_node *pos, *node, *orig = NULL;
 856	struct hlist_head *head;
 857	spinlock_t *lock;
 858
 859	node = avc_alloc_node(avc);
 860	if (!node) {
 861		rc = -ENOMEM;
 862		goto out;
 863	}
 864
 865	/* Lock the target slot */
 866	hvalue = avc_hash(ssid, tsid, tclass);
 867
 868	head = &avc->avc_cache.slots[hvalue];
 869	lock = &avc->avc_cache.slots_lock[hvalue];
 870
 871	spin_lock_irqsave(lock, flag);
 872
 873	hlist_for_each_entry(pos, head, list) {
 874		if (ssid == pos->ae.ssid &&
 875		    tsid == pos->ae.tsid &&
 876		    tclass == pos->ae.tclass &&
 877		    seqno == pos->ae.avd.seqno){
 878			orig = pos;
 879			break;
 880		}
 881	}
 882
 883	if (!orig) {
 884		rc = -ENOENT;
 885		avc_node_kill(avc, node);
 886		goto out_unlock;
 887	}
 888
 889	/*
 890	 * Copy and replace original node.
 891	 */
 892
 893	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
 894
 895	if (orig->ae.xp_node) {
 896		rc = avc_xperms_populate(node, orig->ae.xp_node);
 897		if (rc) {
 898			avc_node_kill(avc, node);
 899			goto out_unlock;
 900		}
 901	}
 902
 903	switch (event) {
 904	case AVC_CALLBACK_GRANT:
 905		node->ae.avd.allowed |= perms;
 906		if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
 907			avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
 908		break;
 909	case AVC_CALLBACK_TRY_REVOKE:
 910	case AVC_CALLBACK_REVOKE:
 911		node->ae.avd.allowed &= ~perms;
 912		break;
 913	case AVC_CALLBACK_AUDITALLOW_ENABLE:
 914		node->ae.avd.auditallow |= perms;
 915		break;
 916	case AVC_CALLBACK_AUDITALLOW_DISABLE:
 917		node->ae.avd.auditallow &= ~perms;
 918		break;
 919	case AVC_CALLBACK_AUDITDENY_ENABLE:
 920		node->ae.avd.auditdeny |= perms;
 921		break;
 922	case AVC_CALLBACK_AUDITDENY_DISABLE:
 923		node->ae.avd.auditdeny &= ~perms;
 924		break;
 925	case AVC_CALLBACK_ADD_XPERMS:
 926		avc_add_xperms_decision(node, xpd);
 927		break;
 928	}
 929	avc_node_replace(avc, node, orig);
 930out_unlock:
 931	spin_unlock_irqrestore(lock, flag);
 932out:
 933	return rc;
 934}
 935
 936/**
 937 * avc_flush - Flush the cache
 938 * @avc: the access vector cache
 939 */
 940static void avc_flush(struct selinux_avc *avc)
 941{
 942	struct hlist_head *head;
 943	struct avc_node *node;
 944	spinlock_t *lock;
 945	unsigned long flag;
 946	int i;
 947
 948	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 949		head = &avc->avc_cache.slots[i];
 950		lock = &avc->avc_cache.slots_lock[i];
 951
 952		spin_lock_irqsave(lock, flag);
 953		/*
 954		 * With preemptable RCU, the outer spinlock does not
 955		 * prevent RCU grace periods from ending.
 956		 */
 957		rcu_read_lock();
 958		hlist_for_each_entry(node, head, list)
 959			avc_node_delete(avc, node);
 960		rcu_read_unlock();
 961		spin_unlock_irqrestore(lock, flag);
 962	}
 963}
 964
 965/**
 966 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
 967 * @avc: the access vector cache
 968 * @seqno: policy sequence number
 969 */
 970int avc_ss_reset(struct selinux_avc *avc, u32 seqno)
 971{
 972	struct avc_callback_node *c;
 973	int rc = 0, tmprc;
 974
 975	avc_flush(avc);
 976
 977	for (c = avc_callbacks; c; c = c->next) {
 978		if (c->events & AVC_CALLBACK_RESET) {
 979			tmprc = c->callback(AVC_CALLBACK_RESET);
 980			/* save the first error encountered for the return
 981			   value and continue processing the callbacks */
 982			if (!rc)
 983				rc = tmprc;
 984		}
 985	}
 986
 987	avc_latest_notif_update(avc, seqno, 0);
 988	return rc;
 989}
 990
 991/*
 992 * Slow-path helper function for avc_has_perm_noaudit,
 993 * when the avc_node lookup fails. We get called with
 994 * the RCU read lock held, and need to return with it
 995 * still held, but drop if for the security compute.
 996 *
 997 * Don't inline this, since it's the slow-path and just
 998 * results in a bigger stack frame.
 999 */
1000static noinline
1001struct avc_node *avc_compute_av(struct selinux_state *state,
1002				u32 ssid, u32 tsid,
1003				u16 tclass, struct av_decision *avd,
1004				struct avc_xperms_node *xp_node)
1005{
1006	rcu_read_unlock();
1007	INIT_LIST_HEAD(&xp_node->xpd_head);
1008	security_compute_av(state, ssid, tsid, tclass, avd, &xp_node->xp);
1009	rcu_read_lock();
1010	return avc_insert(state->avc, ssid, tsid, tclass, avd, xp_node);
1011}
1012
1013static noinline int avc_denied(struct selinux_state *state,
1014			       u32 ssid, u32 tsid,
1015			       u16 tclass, u32 requested,
1016			       u8 driver, u8 xperm, unsigned int flags,
1017			       struct av_decision *avd)
1018{
1019	if (flags & AVC_STRICT)
1020		return -EACCES;
1021
1022	if (enforcing_enabled(state) &&
1023	    !(avd->flags & AVD_FLAGS_PERMISSIVE))
1024		return -EACCES;
1025
1026	avc_update_node(state->avc, AVC_CALLBACK_GRANT, requested, driver,
1027			xperm, ssid, tsid, tclass, avd->seqno, NULL, flags);
1028	return 0;
1029}
1030
1031/*
1032 * The avc extended permissions logic adds an additional 256 bits of
1033 * permissions to an avc node when extended permissions for that node are
1034 * specified in the avtab. If the additional 256 permissions is not adequate,
1035 * as-is the case with ioctls, then multiple may be chained together and the
1036 * driver field is used to specify which set contains the permission.
1037 */
1038int avc_has_extended_perms(struct selinux_state *state,
1039			   u32 ssid, u32 tsid, u16 tclass, u32 requested,
1040			   u8 driver, u8 xperm, struct common_audit_data *ad)
1041{
1042	struct avc_node *node;
1043	struct av_decision avd;
1044	u32 denied;
1045	struct extended_perms_decision local_xpd;
1046	struct extended_perms_decision *xpd = NULL;
1047	struct extended_perms_data allowed;
1048	struct extended_perms_data auditallow;
1049	struct extended_perms_data dontaudit;
1050	struct avc_xperms_node local_xp_node;
1051	struct avc_xperms_node *xp_node;
1052	int rc = 0, rc2;
1053
1054	xp_node = &local_xp_node;
1055	if (WARN_ON(!requested))
1056		return -EACCES;
1057
1058	rcu_read_lock();
1059
1060	node = avc_lookup(state->avc, ssid, tsid, tclass);
1061	if (unlikely(!node)) {
1062		avc_compute_av(state, ssid, tsid, tclass, &avd, xp_node);
1063	} else {
1064		memcpy(&avd, &node->ae.avd, sizeof(avd));
1065		xp_node = node->ae.xp_node;
1066	}
1067	/* if extended permissions are not defined, only consider av_decision */
1068	if (!xp_node || !xp_node->xp.len)
1069		goto decision;
1070
1071	local_xpd.allowed = &allowed;
1072	local_xpd.auditallow = &auditallow;
1073	local_xpd.dontaudit = &dontaudit;
1074
1075	xpd = avc_xperms_decision_lookup(driver, xp_node);
1076	if (unlikely(!xpd)) {
1077		/*
1078		 * Compute the extended_perms_decision only if the driver
1079		 * is flagged
1080		 */
1081		if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1082			avd.allowed &= ~requested;
1083			goto decision;
1084		}
1085		rcu_read_unlock();
1086		security_compute_xperms_decision(state, ssid, tsid, tclass,
1087						 driver, &local_xpd);
1088		rcu_read_lock();
1089		avc_update_node(state->avc, AVC_CALLBACK_ADD_XPERMS, requested,
1090				driver, xperm, ssid, tsid, tclass, avd.seqno,
1091				&local_xpd, 0);
1092	} else {
1093		avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1094	}
1095	xpd = &local_xpd;
1096
1097	if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1098		avd.allowed &= ~requested;
1099
1100decision:
1101	denied = requested & ~(avd.allowed);
1102	if (unlikely(denied))
1103		rc = avc_denied(state, ssid, tsid, tclass, requested,
1104				driver, xperm, AVC_EXTENDED_PERMS, &avd);
1105
1106	rcu_read_unlock();
1107
1108	rc2 = avc_xperms_audit(state, ssid, tsid, tclass, requested,
1109			&avd, xpd, xperm, rc, ad);
1110	if (rc2)
1111		return rc2;
1112	return rc;
1113}
1114
1115/**
1116 * avc_has_perm_noaudit - Check permissions but perform no auditing.
1117 * @state: SELinux state
1118 * @ssid: source security identifier
1119 * @tsid: target security identifier
1120 * @tclass: target security class
1121 * @requested: requested permissions, interpreted based on @tclass
1122 * @flags:  AVC_STRICT or 0
1123 * @avd: access vector decisions
1124 *
1125 * Check the AVC to determine whether the @requested permissions are granted
1126 * for the SID pair (@ssid, @tsid), interpreting the permissions
1127 * based on @tclass, and call the security server on a cache miss to obtain
1128 * a new decision and add it to the cache.  Return a copy of the decisions
1129 * in @avd.  Return %0 if all @requested permissions are granted,
1130 * -%EACCES if any permissions are denied, or another -errno upon
1131 * other errors.  This function is typically called by avc_has_perm(),
1132 * but may also be called directly to separate permission checking from
1133 * auditing, e.g. in cases where a lock must be held for the check but
1134 * should be released for the auditing.
1135 */
1136inline int avc_has_perm_noaudit(struct selinux_state *state,
1137				u32 ssid, u32 tsid,
1138				u16 tclass, u32 requested,
1139				unsigned int flags,
1140				struct av_decision *avd)
1141{
1142	struct avc_node *node;
1143	struct avc_xperms_node xp_node;
1144	int rc = 0;
1145	u32 denied;
1146
1147	if (WARN_ON(!requested))
1148		return -EACCES;
1149
1150	rcu_read_lock();
1151
1152	node = avc_lookup(state->avc, ssid, tsid, tclass);
1153	if (unlikely(!node))
1154		avc_compute_av(state, ssid, tsid, tclass, avd, &xp_node);
1155	else
1156		memcpy(avd, &node->ae.avd, sizeof(*avd));
 
 
1157
1158	denied = requested & ~(avd->allowed);
1159	if (unlikely(denied))
1160		rc = avc_denied(state, ssid, tsid, tclass, requested, 0, 0,
1161				flags, avd);
1162
1163	rcu_read_unlock();
1164	return rc;
1165}
1166
1167/**
1168 * avc_has_perm - Check permissions and perform any appropriate auditing.
1169 * @state: SELinux state
1170 * @ssid: source security identifier
1171 * @tsid: target security identifier
1172 * @tclass: target security class
1173 * @requested: requested permissions, interpreted based on @tclass
1174 * @auditdata: auxiliary audit data
1175 *
1176 * Check the AVC to determine whether the @requested permissions are granted
1177 * for the SID pair (@ssid, @tsid), interpreting the permissions
1178 * based on @tclass, and call the security server on a cache miss to obtain
1179 * a new decision and add it to the cache.  Audit the granting or denial of
1180 * permissions in accordance with the policy.  Return %0 if all @requested
1181 * permissions are granted, -%EACCES if any permissions are denied, or
1182 * another -errno upon other errors.
1183 */
1184int avc_has_perm(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass,
1185		 u32 requested, struct common_audit_data *auditdata)
1186{
1187	struct av_decision avd;
1188	int rc, rc2;
1189
1190	rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0,
1191				  &avd);
1192
1193	rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1194			auditdata);
1195	if (rc2)
1196		return rc2;
1197	return rc;
1198}
1199
1200u32 avc_policy_seqno(struct selinux_state *state)
1201{
1202	return state->avc->avc_cache.latest_notif;
1203}
1204
1205void avc_disable(void)
1206{
1207	/*
1208	 * If you are looking at this because you have realized that we are
1209	 * not destroying the avc_node_cachep it might be easy to fix, but
1210	 * I don't know the memory barrier semantics well enough to know.  It's
1211	 * possible that some other task dereferenced security_ops when
1212	 * it still pointed to selinux operations.  If that is the case it's
1213	 * possible that it is about to use the avc and is about to need the
1214	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
1215	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
1216	 * the cache and get that memory back.
1217	 */
1218	if (avc_node_cachep) {
1219		avc_flush(selinux_state.avc);
1220		/* kmem_cache_destroy(avc_node_cachep); */
1221	}
1222}
v3.15
 
  1/*
  2 * Implementation of the kernel access vector cache (AVC).
  3 *
  4 * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
  5 *	     James Morris <jmorris@redhat.com>
  6 *
  7 * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
  8 *	Replaced the avc_lock spinlock by RCU.
  9 *
 10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
 11 *
 12 *	This program is free software; you can redistribute it and/or modify
 13 *	it under the terms of the GNU General Public License version 2,
 14 *	as published by the Free Software Foundation.
 15 */
 16#include <linux/types.h>
 17#include <linux/stddef.h>
 18#include <linux/kernel.h>
 19#include <linux/slab.h>
 20#include <linux/fs.h>
 21#include <linux/dcache.h>
 22#include <linux/init.h>
 23#include <linux/skbuff.h>
 24#include <linux/percpu.h>
 
 25#include <net/sock.h>
 26#include <linux/un.h>
 27#include <net/af_unix.h>
 28#include <linux/ip.h>
 29#include <linux/audit.h>
 30#include <linux/ipv6.h>
 31#include <net/ipv6.h>
 32#include "avc.h"
 33#include "avc_ss.h"
 34#include "classmap.h"
 35
 
 
 
 36#define AVC_CACHE_SLOTS			512
 37#define AVC_DEF_CACHE_THRESHOLD		512
 38#define AVC_CACHE_RECLAIM		16
 39
 40#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
 41#define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
 42#else
 43#define avc_cache_stats_incr(field)	do {} while (0)
 44#endif
 45
 46struct avc_entry {
 47	u32			ssid;
 48	u32			tsid;
 49	u16			tclass;
 50	struct av_decision	avd;
 
 51};
 52
 53struct avc_node {
 54	struct avc_entry	ae;
 55	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
 56	struct rcu_head		rhead;
 57};
 58
 
 
 
 
 
 
 
 
 
 
 59struct avc_cache {
 60	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
 61	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
 62	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
 63	atomic_t		active_nodes;
 64	u32			latest_notif;	/* latest revocation notification */
 65};
 66
 67struct avc_callback_node {
 68	int (*callback) (u32 event);
 69	u32 events;
 70	struct avc_callback_node *next;
 71};
 72
 73/* Exported via selinufs */
 74unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
 75
 76#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
 77DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
 78#endif
 79
 80static struct avc_cache avc_cache;
 81static struct avc_callback_node *avc_callbacks;
 82static struct kmem_cache *avc_node_cachep;
 
 83
 84static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
 85{
 86	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
 87}
 88
 89/**
 90 * avc_dump_av - Display an access vector in human-readable form.
 91 * @tclass: target security class
 92 * @av: access vector
 93 */
 94static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
 95{
 96	const char **perms;
 97	int i, perm;
 98
 99	if (av == 0) {
100		audit_log_format(ab, " null");
101		return;
 
102	}
 
 
 
 
103
104	perms = secclass_map[tclass-1].perms;
105
106	audit_log_format(ab, " {");
107	i = 0;
108	perm = 1;
109	while (i < (sizeof(av) * 8)) {
110		if ((perm & av) && perms[i]) {
111			audit_log_format(ab, " %s", perms[i]);
112			av &= ~perm;
113		}
114		i++;
115		perm <<= 1;
116	}
117
118	if (av)
119		audit_log_format(ab, " 0x%x", av);
120
121	audit_log_format(ab, " }");
122}
123
124/**
125 * avc_dump_query - Display a SID pair and a class in human-readable form.
126 * @ssid: source security identifier
127 * @tsid: target security identifier
128 * @tclass: target security class
129 */
130static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
131{
132	int rc;
133	char *scontext;
134	u32 scontext_len;
135
136	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
137	if (rc)
138		audit_log_format(ab, "ssid=%d", ssid);
139	else {
140		audit_log_format(ab, "scontext=%s", scontext);
141		kfree(scontext);
142	}
143
144	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
145	if (rc)
146		audit_log_format(ab, " tsid=%d", tsid);
147	else {
148		audit_log_format(ab, " tcontext=%s", scontext);
149		kfree(scontext);
150	}
151
152	BUG_ON(tclass >= ARRAY_SIZE(secclass_map));
153	audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
154}
155
156/**
157 * avc_init - Initialize the AVC.
158 *
159 * Initialize the access vector cache.
160 */
161void __init avc_init(void)
162{
163	int i;
164
165	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
166		INIT_HLIST_HEAD(&avc_cache.slots[i]);
167		spin_lock_init(&avc_cache.slots_lock[i]);
168	}
169	atomic_set(&avc_cache.active_nodes, 0);
170	atomic_set(&avc_cache.lru_hint, 0);
171
172	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
173					     0, SLAB_PANIC, NULL);
174
175	audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
 
 
 
 
 
 
 
 
176}
177
178int avc_get_hash_stats(char *page)
179{
180	int i, chain_len, max_chain_len, slots_used;
181	struct avc_node *node;
182	struct hlist_head *head;
183
184	rcu_read_lock();
185
186	slots_used = 0;
187	max_chain_len = 0;
188	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
189		head = &avc_cache.slots[i];
190		if (!hlist_empty(head)) {
191			slots_used++;
192			chain_len = 0;
193			hlist_for_each_entry_rcu(node, head, list)
194				chain_len++;
195			if (chain_len > max_chain_len)
196				max_chain_len = chain_len;
197		}
198	}
199
200	rcu_read_unlock();
201
202	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
203			 "longest chain: %d\n",
204			 atomic_read(&avc_cache.active_nodes),
205			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
206}
207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
208static void avc_node_free(struct rcu_head *rhead)
209{
210	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
 
211	kmem_cache_free(avc_node_cachep, node);
212	avc_cache_stats_incr(frees);
213}
214
215static void avc_node_delete(struct avc_node *node)
216{
217	hlist_del_rcu(&node->list);
218	call_rcu(&node->rhead, avc_node_free);
219	atomic_dec(&avc_cache.active_nodes);
220}
221
222static void avc_node_kill(struct avc_node *node)
223{
 
224	kmem_cache_free(avc_node_cachep, node);
225	avc_cache_stats_incr(frees);
226	atomic_dec(&avc_cache.active_nodes);
227}
228
229static void avc_node_replace(struct avc_node *new, struct avc_node *old)
 
230{
231	hlist_replace_rcu(&old->list, &new->list);
232	call_rcu(&old->rhead, avc_node_free);
233	atomic_dec(&avc_cache.active_nodes);
234}
235
236static inline int avc_reclaim_node(void)
237{
238	struct avc_node *node;
239	int hvalue, try, ecx;
240	unsigned long flags;
241	struct hlist_head *head;
242	spinlock_t *lock;
243
244	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
245		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
246		head = &avc_cache.slots[hvalue];
247		lock = &avc_cache.slots_lock[hvalue];
 
248
249		if (!spin_trylock_irqsave(lock, flags))
250			continue;
251
252		rcu_read_lock();
253		hlist_for_each_entry(node, head, list) {
254			avc_node_delete(node);
255			avc_cache_stats_incr(reclaims);
256			ecx++;
257			if (ecx >= AVC_CACHE_RECLAIM) {
258				rcu_read_unlock();
259				spin_unlock_irqrestore(lock, flags);
260				goto out;
261			}
262		}
263		rcu_read_unlock();
264		spin_unlock_irqrestore(lock, flags);
265	}
266out:
267	return ecx;
268}
269
270static struct avc_node *avc_alloc_node(void)
271{
272	struct avc_node *node;
273
274	node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC|__GFP_NOMEMALLOC);
275	if (!node)
276		goto out;
277
278	INIT_HLIST_NODE(&node->list);
279	avc_cache_stats_incr(allocations);
280
281	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
282		avc_reclaim_node();
 
283
284out:
285	return node;
286}
287
288static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
289{
290	node->ae.ssid = ssid;
291	node->ae.tsid = tsid;
292	node->ae.tclass = tclass;
293	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
294}
295
296static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
 
297{
298	struct avc_node *node, *ret = NULL;
299	int hvalue;
300	struct hlist_head *head;
301
302	hvalue = avc_hash(ssid, tsid, tclass);
303	head = &avc_cache.slots[hvalue];
304	hlist_for_each_entry_rcu(node, head, list) {
305		if (ssid == node->ae.ssid &&
306		    tclass == node->ae.tclass &&
307		    tsid == node->ae.tsid) {
308			ret = node;
309			break;
310		}
311	}
312
313	return ret;
314}
315
316/**
317 * avc_lookup - Look up an AVC entry.
 
318 * @ssid: source security identifier
319 * @tsid: target security identifier
320 * @tclass: target security class
321 *
322 * Look up an AVC entry that is valid for the
323 * (@ssid, @tsid), interpreting the permissions
324 * based on @tclass.  If a valid AVC entry exists,
325 * then this function returns the avc_node.
326 * Otherwise, this function returns NULL.
327 */
328static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
 
329{
330	struct avc_node *node;
331
332	avc_cache_stats_incr(lookups);
333	node = avc_search_node(ssid, tsid, tclass);
334
335	if (node)
336		return node;
337
338	avc_cache_stats_incr(misses);
339	return NULL;
340}
341
342static int avc_latest_notif_update(int seqno, int is_insert)
 
343{
344	int ret = 0;
345	static DEFINE_SPINLOCK(notif_lock);
346	unsigned long flag;
347
348	spin_lock_irqsave(&notif_lock, flag);
349	if (is_insert) {
350		if (seqno < avc_cache.latest_notif) {
351			printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n",
352			       seqno, avc_cache.latest_notif);
353			ret = -EAGAIN;
354		}
355	} else {
356		if (seqno > avc_cache.latest_notif)
357			avc_cache.latest_notif = seqno;
358	}
359	spin_unlock_irqrestore(&notif_lock, flag);
360
361	return ret;
362}
363
364/**
365 * avc_insert - Insert an AVC entry.
 
366 * @ssid: source security identifier
367 * @tsid: target security identifier
368 * @tclass: target security class
369 * @avd: resulting av decision
 
370 *
371 * Insert an AVC entry for the SID pair
372 * (@ssid, @tsid) and class @tclass.
373 * The access vectors and the sequence number are
374 * normally provided by the security server in
375 * response to a security_compute_av() call.  If the
376 * sequence number @avd->seqno is not less than the latest
377 * revocation notification, then the function copies
378 * the access vectors into a cache entry, returns
379 * avc_node inserted. Otherwise, this function returns NULL.
380 */
381static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
 
 
 
382{
383	struct avc_node *pos, *node = NULL;
384	int hvalue;
385	unsigned long flag;
 
 
386
387	if (avc_latest_notif_update(avd->seqno, 1))
388		goto out;
389
390	node = avc_alloc_node();
391	if (node) {
392		struct hlist_head *head;
393		spinlock_t *lock;
394
395		hvalue = avc_hash(ssid, tsid, tclass);
396		avc_node_populate(node, ssid, tsid, tclass, avd);
 
 
 
397
398		head = &avc_cache.slots[hvalue];
399		lock = &avc_cache.slots_lock[hvalue];
400
401		spin_lock_irqsave(lock, flag);
402		hlist_for_each_entry(pos, head, list) {
403			if (pos->ae.ssid == ssid &&
404			    pos->ae.tsid == tsid &&
405			    pos->ae.tclass == tclass) {
406				avc_node_replace(node, pos);
407				goto found;
408			}
409		}
410		hlist_add_head_rcu(&node->list, head);
 
411found:
412		spin_unlock_irqrestore(lock, flag);
413	}
414out:
415	return node;
416}
417
418/**
419 * avc_audit_pre_callback - SELinux specific information
420 * will be called by generic audit code
421 * @ab: the audit buffer
422 * @a: audit_data
423 */
424static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
425{
426	struct common_audit_data *ad = a;
427	audit_log_format(ab, "avc:  %s ",
428			 ad->selinux_audit_data->denied ? "denied" : "granted");
429	avc_dump_av(ab, ad->selinux_audit_data->tclass,
430			ad->selinux_audit_data->audited);
431	audit_log_format(ab, " for ");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
432}
433
434/**
435 * avc_audit_post_callback - SELinux specific information
436 * will be called by generic audit code
437 * @ab: the audit buffer
438 * @a: audit_data
439 */
440static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
441{
442	struct common_audit_data *ad = a;
443	audit_log_format(ab, " ");
444	avc_dump_query(ab, ad->selinux_audit_data->ssid,
445			   ad->selinux_audit_data->tsid,
446			   ad->selinux_audit_data->tclass);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
447}
448
449/* This is the slow part of avc audit with big stack footprint */
450noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
451		u32 requested, u32 audited, u32 denied,
452		struct common_audit_data *a,
453		unsigned flags)
 
 
 
 
454{
455	struct common_audit_data stack_data;
456	struct selinux_audit_data sad;
457
 
 
 
458	if (!a) {
459		a = &stack_data;
460		a->type = LSM_AUDIT_DATA_NONE;
461	}
462
463	/*
464	 * When in a RCU walk do the audit on the RCU retry.  This is because
465	 * the collection of the dname in an inode audit message is not RCU
466	 * safe.  Note this may drop some audits when the situation changes
467	 * during retry. However this is logically just as if the operation
468	 * happened a little later.
469	 */
470	if ((a->type == LSM_AUDIT_DATA_INODE) &&
471	    (flags & MAY_NOT_BLOCK))
472		return -ECHILD;
473
474	sad.tclass = tclass;
475	sad.requested = requested;
476	sad.ssid = ssid;
477	sad.tsid = tsid;
478	sad.audited = audited;
479	sad.denied = denied;
 
 
480
481	a->selinux_audit_data = &sad;
482
483	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
484	return 0;
485}
486
487/**
488 * avc_add_callback - Register a callback for security events.
489 * @callback: callback function
490 * @events: security events
491 *
492 * Register a callback function for events in the set @events.
493 * Returns %0 on success or -%ENOMEM if insufficient memory
494 * exists to add the callback.
495 */
496int __init avc_add_callback(int (*callback)(u32 event), u32 events)
497{
498	struct avc_callback_node *c;
499	int rc = 0;
500
501	c = kmalloc(sizeof(*c), GFP_KERNEL);
502	if (!c) {
503		rc = -ENOMEM;
504		goto out;
505	}
506
507	c->callback = callback;
508	c->events = events;
509	c->next = avc_callbacks;
510	avc_callbacks = c;
511out:
512	return rc;
513}
514
515static inline int avc_sidcmp(u32 x, u32 y)
516{
517	return (x == y || x == SECSID_WILD || y == SECSID_WILD);
518}
519
520/**
521 * avc_update_node Update an AVC entry
 
522 * @event : Updating event
523 * @perms : Permission mask bits
524 * @ssid,@tsid,@tclass : identifier of an AVC entry
 
 
 
 
525 * @seqno : sequence number when decision was made
 
 
526 *
527 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
528 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
529 * otherwise, this function updates the AVC entry. The original AVC-entry object
530 * will release later by RCU.
531 */
532static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
533			   u32 seqno)
 
 
 
534{
535	int hvalue, rc = 0;
536	unsigned long flag;
537	struct avc_node *pos, *node, *orig = NULL;
538	struct hlist_head *head;
539	spinlock_t *lock;
540
541	node = avc_alloc_node();
542	if (!node) {
543		rc = -ENOMEM;
544		goto out;
545	}
546
547	/* Lock the target slot */
548	hvalue = avc_hash(ssid, tsid, tclass);
549
550	head = &avc_cache.slots[hvalue];
551	lock = &avc_cache.slots_lock[hvalue];
552
553	spin_lock_irqsave(lock, flag);
554
555	hlist_for_each_entry(pos, head, list) {
556		if (ssid == pos->ae.ssid &&
557		    tsid == pos->ae.tsid &&
558		    tclass == pos->ae.tclass &&
559		    seqno == pos->ae.avd.seqno){
560			orig = pos;
561			break;
562		}
563	}
564
565	if (!orig) {
566		rc = -ENOENT;
567		avc_node_kill(node);
568		goto out_unlock;
569	}
570
571	/*
572	 * Copy and replace original node.
573	 */
574
575	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
576
 
 
 
 
 
 
 
 
577	switch (event) {
578	case AVC_CALLBACK_GRANT:
579		node->ae.avd.allowed |= perms;
 
 
580		break;
581	case AVC_CALLBACK_TRY_REVOKE:
582	case AVC_CALLBACK_REVOKE:
583		node->ae.avd.allowed &= ~perms;
584		break;
585	case AVC_CALLBACK_AUDITALLOW_ENABLE:
586		node->ae.avd.auditallow |= perms;
587		break;
588	case AVC_CALLBACK_AUDITALLOW_DISABLE:
589		node->ae.avd.auditallow &= ~perms;
590		break;
591	case AVC_CALLBACK_AUDITDENY_ENABLE:
592		node->ae.avd.auditdeny |= perms;
593		break;
594	case AVC_CALLBACK_AUDITDENY_DISABLE:
595		node->ae.avd.auditdeny &= ~perms;
596		break;
 
 
 
597	}
598	avc_node_replace(node, orig);
599out_unlock:
600	spin_unlock_irqrestore(lock, flag);
601out:
602	return rc;
603}
604
605/**
606 * avc_flush - Flush the cache
 
607 */
608static void avc_flush(void)
609{
610	struct hlist_head *head;
611	struct avc_node *node;
612	spinlock_t *lock;
613	unsigned long flag;
614	int i;
615
616	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
617		head = &avc_cache.slots[i];
618		lock = &avc_cache.slots_lock[i];
619
620		spin_lock_irqsave(lock, flag);
621		/*
622		 * With preemptable RCU, the outer spinlock does not
623		 * prevent RCU grace periods from ending.
624		 */
625		rcu_read_lock();
626		hlist_for_each_entry(node, head, list)
627			avc_node_delete(node);
628		rcu_read_unlock();
629		spin_unlock_irqrestore(lock, flag);
630	}
631}
632
633/**
634 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
 
635 * @seqno: policy sequence number
636 */
637int avc_ss_reset(u32 seqno)
638{
639	struct avc_callback_node *c;
640	int rc = 0, tmprc;
641
642	avc_flush();
643
644	for (c = avc_callbacks; c; c = c->next) {
645		if (c->events & AVC_CALLBACK_RESET) {
646			tmprc = c->callback(AVC_CALLBACK_RESET);
647			/* save the first error encountered for the return
648			   value and continue processing the callbacks */
649			if (!rc)
650				rc = tmprc;
651		}
652	}
653
654	avc_latest_notif_update(seqno, 0);
655	return rc;
656}
657
658/*
659 * Slow-path helper function for avc_has_perm_noaudit,
660 * when the avc_node lookup fails. We get called with
661 * the RCU read lock held, and need to return with it
662 * still held, but drop if for the security compute.
663 *
664 * Don't inline this, since it's the slow-path and just
665 * results in a bigger stack frame.
666 */
667static noinline struct avc_node *avc_compute_av(u32 ssid, u32 tsid,
668			 u16 tclass, struct av_decision *avd)
 
 
 
669{
670	rcu_read_unlock();
671	security_compute_av(ssid, tsid, tclass, avd);
 
672	rcu_read_lock();
673	return avc_insert(ssid, tsid, tclass, avd);
674}
675
676static noinline int avc_denied(u32 ssid, u32 tsid,
677			 u16 tclass, u32 requested,
678			 unsigned flags,
679			 struct av_decision *avd)
 
680{
681	if (flags & AVC_STRICT)
682		return -EACCES;
683
684	if (selinux_enforcing && !(avd->flags & AVD_FLAGS_PERMISSIVE))
 
685		return -EACCES;
686
687	avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
688				tsid, tclass, avd->seqno);
689	return 0;
690}
691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
692
693/**
694 * avc_has_perm_noaudit - Check permissions but perform no auditing.
 
695 * @ssid: source security identifier
696 * @tsid: target security identifier
697 * @tclass: target security class
698 * @requested: requested permissions, interpreted based on @tclass
699 * @flags:  AVC_STRICT or 0
700 * @avd: access vector decisions
701 *
702 * Check the AVC to determine whether the @requested permissions are granted
703 * for the SID pair (@ssid, @tsid), interpreting the permissions
704 * based on @tclass, and call the security server on a cache miss to obtain
705 * a new decision and add it to the cache.  Return a copy of the decisions
706 * in @avd.  Return %0 if all @requested permissions are granted,
707 * -%EACCES if any permissions are denied, or another -errno upon
708 * other errors.  This function is typically called by avc_has_perm(),
709 * but may also be called directly to separate permission checking from
710 * auditing, e.g. in cases where a lock must be held for the check but
711 * should be released for the auditing.
712 */
713inline int avc_has_perm_noaudit(u32 ssid, u32 tsid,
714			 u16 tclass, u32 requested,
715			 unsigned flags,
716			 struct av_decision *avd)
 
717{
718	struct avc_node *node;
 
719	int rc = 0;
720	u32 denied;
721
722	BUG_ON(!requested);
 
723
724	rcu_read_lock();
725
726	node = avc_lookup(ssid, tsid, tclass);
727	if (unlikely(!node)) {
728		node = avc_compute_av(ssid, tsid, tclass, avd);
729	} else {
730		memcpy(avd, &node->ae.avd, sizeof(*avd));
731		avd = &node->ae.avd;
732	}
733
734	denied = requested & ~(avd->allowed);
735	if (unlikely(denied))
736		rc = avc_denied(ssid, tsid, tclass, requested, flags, avd);
 
737
738	rcu_read_unlock();
739	return rc;
740}
741
742/**
743 * avc_has_perm - Check permissions and perform any appropriate auditing.
 
744 * @ssid: source security identifier
745 * @tsid: target security identifier
746 * @tclass: target security class
747 * @requested: requested permissions, interpreted based on @tclass
748 * @auditdata: auxiliary audit data
749 *
750 * Check the AVC to determine whether the @requested permissions are granted
751 * for the SID pair (@ssid, @tsid), interpreting the permissions
752 * based on @tclass, and call the security server on a cache miss to obtain
753 * a new decision and add it to the cache.  Audit the granting or denial of
754 * permissions in accordance with the policy.  Return %0 if all @requested
755 * permissions are granted, -%EACCES if any permissions are denied, or
756 * another -errno upon other errors.
757 */
758int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
759		 u32 requested, struct common_audit_data *auditdata)
760{
761	struct av_decision avd;
762	int rc, rc2;
763
764	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
 
765
766	rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
 
767	if (rc2)
768		return rc2;
769	return rc;
770}
771
772u32 avc_policy_seqno(void)
773{
774	return avc_cache.latest_notif;
775}
776
777void avc_disable(void)
778{
779	/*
780	 * If you are looking at this because you have realized that we are
781	 * not destroying the avc_node_cachep it might be easy to fix, but
782	 * I don't know the memory barrier semantics well enough to know.  It's
783	 * possible that some other task dereferenced security_ops when
784	 * it still pointed to selinux operations.  If that is the case it's
785	 * possible that it is about to use the avc and is about to need the
786	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
787	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
788	 * the cache and get that memory back.
789	 */
790	if (avc_node_cachep) {
791		avc_flush();
792		/* kmem_cache_destroy(avc_node_cachep); */
793	}
794}