Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/ceph/ceph_debug.h>
3
4#include <linux/crc32c.h>
5#include <linux/ctype.h>
6#include <linux/highmem.h>
7#include <linux/inet.h>
8#include <linux/kthread.h>
9#include <linux/net.h>
10#include <linux/nsproxy.h>
11#include <linux/sched/mm.h>
12#include <linux/slab.h>
13#include <linux/socket.h>
14#include <linux/string.h>
15#ifdef CONFIG_BLOCK
16#include <linux/bio.h>
17#endif /* CONFIG_BLOCK */
18#include <linux/dns_resolver.h>
19#include <net/tcp.h>
20
21#include <linux/ceph/ceph_features.h>
22#include <linux/ceph/libceph.h>
23#include <linux/ceph/messenger.h>
24#include <linux/ceph/decode.h>
25#include <linux/ceph/pagelist.h>
26#include <linux/export.h>
27
28/*
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
34 * the sender.
35 */
36
37/*
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
41 * unexpected state.
42 *
43 * --------
44 * | NEW* | transient initial state
45 * --------
46 * | con_sock_state_init()
47 * v
48 * ----------
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
51 * ^ \
52 * | \ con_sock_state_connecting()
53 * | ----------------------
54 * | \
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
57 * | \ \ \
58 * | ----------- \ \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
61 * | ^ \ |
62 * | | \ |
63 * | + con_sock_state_closing() \ |
64 * | / \ | |
65 * | / --------------- | |
66 * | / \ v v
67 * | / --------------
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
71 * | | v
72 * -------------
73 * | CONNECTED | TCP connection established
74 * -------------
75 *
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77 */
78
79#define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80#define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81#define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82#define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83#define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
84
85static bool con_flag_valid(unsigned long con_flag)
86{
87 switch (con_flag) {
88 case CEPH_CON_F_LOSSYTX:
89 case CEPH_CON_F_KEEPALIVE_PENDING:
90 case CEPH_CON_F_WRITE_PENDING:
91 case CEPH_CON_F_SOCK_CLOSED:
92 case CEPH_CON_F_BACKOFF:
93 return true;
94 default:
95 return false;
96 }
97}
98
99void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
100{
101 BUG_ON(!con_flag_valid(con_flag));
102
103 clear_bit(con_flag, &con->flags);
104}
105
106void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag)
107{
108 BUG_ON(!con_flag_valid(con_flag));
109
110 set_bit(con_flag, &con->flags);
111}
112
113bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag)
114{
115 BUG_ON(!con_flag_valid(con_flag));
116
117 return test_bit(con_flag, &con->flags);
118}
119
120bool ceph_con_flag_test_and_clear(struct ceph_connection *con,
121 unsigned long con_flag)
122{
123 BUG_ON(!con_flag_valid(con_flag));
124
125 return test_and_clear_bit(con_flag, &con->flags);
126}
127
128bool ceph_con_flag_test_and_set(struct ceph_connection *con,
129 unsigned long con_flag)
130{
131 BUG_ON(!con_flag_valid(con_flag));
132
133 return test_and_set_bit(con_flag, &con->flags);
134}
135
136/* Slab caches for frequently-allocated structures */
137
138static struct kmem_cache *ceph_msg_cache;
139
140#ifdef CONFIG_LOCKDEP
141static struct lock_class_key socket_class;
142#endif
143
144static void queue_con(struct ceph_connection *con);
145static void cancel_con(struct ceph_connection *con);
146static void ceph_con_workfn(struct work_struct *);
147static void con_fault(struct ceph_connection *con);
148
149/*
150 * Nicely render a sockaddr as a string. An array of formatted
151 * strings is used, to approximate reentrancy.
152 */
153#define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
154#define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
155#define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
156#define MAX_ADDR_STR_LEN 64 /* 54 is enough */
157
158static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
159static atomic_t addr_str_seq = ATOMIC_INIT(0);
160
161struct page *ceph_zero_page; /* used in certain error cases */
162
163const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
164{
165 int i;
166 char *s;
167 struct sockaddr_storage ss = addr->in_addr; /* align */
168 struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
169 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
170
171 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
172 s = addr_str[i];
173
174 switch (ss.ss_family) {
175 case AF_INET:
176 snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
177 le32_to_cpu(addr->type), &in4->sin_addr,
178 ntohs(in4->sin_port));
179 break;
180
181 case AF_INET6:
182 snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
183 le32_to_cpu(addr->type), &in6->sin6_addr,
184 ntohs(in6->sin6_port));
185 break;
186
187 default:
188 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
189 ss.ss_family);
190 }
191
192 return s;
193}
194EXPORT_SYMBOL(ceph_pr_addr);
195
196void ceph_encode_my_addr(struct ceph_messenger *msgr)
197{
198 if (!ceph_msgr2(from_msgr(msgr))) {
199 memcpy(&msgr->my_enc_addr, &msgr->inst.addr,
200 sizeof(msgr->my_enc_addr));
201 ceph_encode_banner_addr(&msgr->my_enc_addr);
202 }
203}
204
205/*
206 * work queue for all reading and writing to/from the socket.
207 */
208static struct workqueue_struct *ceph_msgr_wq;
209
210static int ceph_msgr_slab_init(void)
211{
212 BUG_ON(ceph_msg_cache);
213 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
214 if (!ceph_msg_cache)
215 return -ENOMEM;
216
217 return 0;
218}
219
220static void ceph_msgr_slab_exit(void)
221{
222 BUG_ON(!ceph_msg_cache);
223 kmem_cache_destroy(ceph_msg_cache);
224 ceph_msg_cache = NULL;
225}
226
227static void _ceph_msgr_exit(void)
228{
229 if (ceph_msgr_wq) {
230 destroy_workqueue(ceph_msgr_wq);
231 ceph_msgr_wq = NULL;
232 }
233
234 BUG_ON(!ceph_zero_page);
235 put_page(ceph_zero_page);
236 ceph_zero_page = NULL;
237
238 ceph_msgr_slab_exit();
239}
240
241int __init ceph_msgr_init(void)
242{
243 if (ceph_msgr_slab_init())
244 return -ENOMEM;
245
246 BUG_ON(ceph_zero_page);
247 ceph_zero_page = ZERO_PAGE(0);
248 get_page(ceph_zero_page);
249
250 /*
251 * The number of active work items is limited by the number of
252 * connections, so leave @max_active at default.
253 */
254 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
255 if (ceph_msgr_wq)
256 return 0;
257
258 pr_err("msgr_init failed to create workqueue\n");
259 _ceph_msgr_exit();
260
261 return -ENOMEM;
262}
263
264void ceph_msgr_exit(void)
265{
266 BUG_ON(ceph_msgr_wq == NULL);
267
268 _ceph_msgr_exit();
269}
270
271void ceph_msgr_flush(void)
272{
273 flush_workqueue(ceph_msgr_wq);
274}
275EXPORT_SYMBOL(ceph_msgr_flush);
276
277/* Connection socket state transition functions */
278
279static void con_sock_state_init(struct ceph_connection *con)
280{
281 int old_state;
282
283 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
284 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
285 printk("%s: unexpected old state %d\n", __func__, old_state);
286 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
287 CON_SOCK_STATE_CLOSED);
288}
289
290static void con_sock_state_connecting(struct ceph_connection *con)
291{
292 int old_state;
293
294 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
295 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
296 printk("%s: unexpected old state %d\n", __func__, old_state);
297 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
298 CON_SOCK_STATE_CONNECTING);
299}
300
301static void con_sock_state_connected(struct ceph_connection *con)
302{
303 int old_state;
304
305 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
306 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
307 printk("%s: unexpected old state %d\n", __func__, old_state);
308 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
309 CON_SOCK_STATE_CONNECTED);
310}
311
312static void con_sock_state_closing(struct ceph_connection *con)
313{
314 int old_state;
315
316 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
317 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
318 old_state != CON_SOCK_STATE_CONNECTED &&
319 old_state != CON_SOCK_STATE_CLOSING))
320 printk("%s: unexpected old state %d\n", __func__, old_state);
321 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
322 CON_SOCK_STATE_CLOSING);
323}
324
325static void con_sock_state_closed(struct ceph_connection *con)
326{
327 int old_state;
328
329 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
330 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
331 old_state != CON_SOCK_STATE_CLOSING &&
332 old_state != CON_SOCK_STATE_CONNECTING &&
333 old_state != CON_SOCK_STATE_CLOSED))
334 printk("%s: unexpected old state %d\n", __func__, old_state);
335 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
336 CON_SOCK_STATE_CLOSED);
337}
338
339/*
340 * socket callback functions
341 */
342
343/* data available on socket, or listen socket received a connect */
344static void ceph_sock_data_ready(struct sock *sk)
345{
346 struct ceph_connection *con = sk->sk_user_data;
347 if (atomic_read(&con->msgr->stopping)) {
348 return;
349 }
350
351 if (sk->sk_state != TCP_CLOSE_WAIT) {
352 dout("%s %p state = %d, queueing work\n", __func__,
353 con, con->state);
354 queue_con(con);
355 }
356}
357
358/* socket has buffer space for writing */
359static void ceph_sock_write_space(struct sock *sk)
360{
361 struct ceph_connection *con = sk->sk_user_data;
362
363 /* only queue to workqueue if there is data we want to write,
364 * and there is sufficient space in the socket buffer to accept
365 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
366 * doesn't get called again until try_write() fills the socket
367 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
368 * and net/core/stream.c:sk_stream_write_space().
369 */
370 if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) {
371 if (sk_stream_is_writeable(sk)) {
372 dout("%s %p queueing write work\n", __func__, con);
373 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
374 queue_con(con);
375 }
376 } else {
377 dout("%s %p nothing to write\n", __func__, con);
378 }
379}
380
381/* socket's state has changed */
382static void ceph_sock_state_change(struct sock *sk)
383{
384 struct ceph_connection *con = sk->sk_user_data;
385
386 dout("%s %p state = %d sk_state = %u\n", __func__,
387 con, con->state, sk->sk_state);
388
389 switch (sk->sk_state) {
390 case TCP_CLOSE:
391 dout("%s TCP_CLOSE\n", __func__);
392 fallthrough;
393 case TCP_CLOSE_WAIT:
394 dout("%s TCP_CLOSE_WAIT\n", __func__);
395 con_sock_state_closing(con);
396 ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED);
397 queue_con(con);
398 break;
399 case TCP_ESTABLISHED:
400 dout("%s TCP_ESTABLISHED\n", __func__);
401 con_sock_state_connected(con);
402 queue_con(con);
403 break;
404 default: /* Everything else is uninteresting */
405 break;
406 }
407}
408
409/*
410 * set up socket callbacks
411 */
412static void set_sock_callbacks(struct socket *sock,
413 struct ceph_connection *con)
414{
415 struct sock *sk = sock->sk;
416 sk->sk_user_data = con;
417 sk->sk_data_ready = ceph_sock_data_ready;
418 sk->sk_write_space = ceph_sock_write_space;
419 sk->sk_state_change = ceph_sock_state_change;
420}
421
422
423/*
424 * socket helpers
425 */
426
427/*
428 * initiate connection to a remote socket.
429 */
430int ceph_tcp_connect(struct ceph_connection *con)
431{
432 struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
433 struct socket *sock;
434 unsigned int noio_flag;
435 int ret;
436
437 dout("%s con %p peer_addr %s\n", __func__, con,
438 ceph_pr_addr(&con->peer_addr));
439 BUG_ON(con->sock);
440
441 /* sock_create_kern() allocates with GFP_KERNEL */
442 noio_flag = memalloc_noio_save();
443 ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
444 SOCK_STREAM, IPPROTO_TCP, &sock);
445 memalloc_noio_restore(noio_flag);
446 if (ret)
447 return ret;
448 sock->sk->sk_allocation = GFP_NOFS;
449 sock->sk->sk_use_task_frag = false;
450
451#ifdef CONFIG_LOCKDEP
452 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
453#endif
454
455 set_sock_callbacks(sock, con);
456
457 con_sock_state_connecting(con);
458 ret = sock->ops->connect(sock, (struct sockaddr *)&ss, sizeof(ss),
459 O_NONBLOCK);
460 if (ret == -EINPROGRESS) {
461 dout("connect %s EINPROGRESS sk_state = %u\n",
462 ceph_pr_addr(&con->peer_addr),
463 sock->sk->sk_state);
464 } else if (ret < 0) {
465 pr_err("connect %s error %d\n",
466 ceph_pr_addr(&con->peer_addr), ret);
467 sock_release(sock);
468 return ret;
469 }
470
471 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
472 tcp_sock_set_nodelay(sock->sk);
473
474 con->sock = sock;
475 return 0;
476}
477
478/*
479 * Shutdown/close the socket for the given connection.
480 */
481int ceph_con_close_socket(struct ceph_connection *con)
482{
483 int rc = 0;
484
485 dout("%s con %p sock %p\n", __func__, con, con->sock);
486 if (con->sock) {
487 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
488 sock_release(con->sock);
489 con->sock = NULL;
490 }
491
492 /*
493 * Forcibly clear the SOCK_CLOSED flag. It gets set
494 * independent of the connection mutex, and we could have
495 * received a socket close event before we had the chance to
496 * shut the socket down.
497 */
498 ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED);
499
500 con_sock_state_closed(con);
501 return rc;
502}
503
504static void ceph_con_reset_protocol(struct ceph_connection *con)
505{
506 dout("%s con %p\n", __func__, con);
507
508 ceph_con_close_socket(con);
509 if (con->in_msg) {
510 WARN_ON(con->in_msg->con != con);
511 ceph_msg_put(con->in_msg);
512 con->in_msg = NULL;
513 }
514 if (con->out_msg) {
515 WARN_ON(con->out_msg->con != con);
516 ceph_msg_put(con->out_msg);
517 con->out_msg = NULL;
518 }
519 if (con->bounce_page) {
520 __free_page(con->bounce_page);
521 con->bounce_page = NULL;
522 }
523
524 if (ceph_msgr2(from_msgr(con->msgr)))
525 ceph_con_v2_reset_protocol(con);
526 else
527 ceph_con_v1_reset_protocol(con);
528}
529
530/*
531 * Reset a connection. Discard all incoming and outgoing messages
532 * and clear *_seq state.
533 */
534static void ceph_msg_remove(struct ceph_msg *msg)
535{
536 list_del_init(&msg->list_head);
537
538 ceph_msg_put(msg);
539}
540
541static void ceph_msg_remove_list(struct list_head *head)
542{
543 while (!list_empty(head)) {
544 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
545 list_head);
546 ceph_msg_remove(msg);
547 }
548}
549
550void ceph_con_reset_session(struct ceph_connection *con)
551{
552 dout("%s con %p\n", __func__, con);
553
554 WARN_ON(con->in_msg);
555 WARN_ON(con->out_msg);
556 ceph_msg_remove_list(&con->out_queue);
557 ceph_msg_remove_list(&con->out_sent);
558 con->out_seq = 0;
559 con->in_seq = 0;
560 con->in_seq_acked = 0;
561
562 if (ceph_msgr2(from_msgr(con->msgr)))
563 ceph_con_v2_reset_session(con);
564 else
565 ceph_con_v1_reset_session(con);
566}
567
568/*
569 * mark a peer down. drop any open connections.
570 */
571void ceph_con_close(struct ceph_connection *con)
572{
573 mutex_lock(&con->mutex);
574 dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
575 con->state = CEPH_CON_S_CLOSED;
576
577 ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX); /* so we retry next
578 connect */
579 ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING);
580 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
581 ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF);
582
583 ceph_con_reset_protocol(con);
584 ceph_con_reset_session(con);
585 cancel_con(con);
586 mutex_unlock(&con->mutex);
587}
588EXPORT_SYMBOL(ceph_con_close);
589
590/*
591 * Reopen a closed connection, with a new peer address.
592 */
593void ceph_con_open(struct ceph_connection *con,
594 __u8 entity_type, __u64 entity_num,
595 struct ceph_entity_addr *addr)
596{
597 mutex_lock(&con->mutex);
598 dout("con_open %p %s\n", con, ceph_pr_addr(addr));
599
600 WARN_ON(con->state != CEPH_CON_S_CLOSED);
601 con->state = CEPH_CON_S_PREOPEN;
602
603 con->peer_name.type = (__u8) entity_type;
604 con->peer_name.num = cpu_to_le64(entity_num);
605
606 memcpy(&con->peer_addr, addr, sizeof(*addr));
607 con->delay = 0; /* reset backoff memory */
608 mutex_unlock(&con->mutex);
609 queue_con(con);
610}
611EXPORT_SYMBOL(ceph_con_open);
612
613/*
614 * return true if this connection ever successfully opened
615 */
616bool ceph_con_opened(struct ceph_connection *con)
617{
618 if (ceph_msgr2(from_msgr(con->msgr)))
619 return ceph_con_v2_opened(con);
620
621 return ceph_con_v1_opened(con);
622}
623
624/*
625 * initialize a new connection.
626 */
627void ceph_con_init(struct ceph_connection *con, void *private,
628 const struct ceph_connection_operations *ops,
629 struct ceph_messenger *msgr)
630{
631 dout("con_init %p\n", con);
632 memset(con, 0, sizeof(*con));
633 con->private = private;
634 con->ops = ops;
635 con->msgr = msgr;
636
637 con_sock_state_init(con);
638
639 mutex_init(&con->mutex);
640 INIT_LIST_HEAD(&con->out_queue);
641 INIT_LIST_HEAD(&con->out_sent);
642 INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
643
644 con->state = CEPH_CON_S_CLOSED;
645}
646EXPORT_SYMBOL(ceph_con_init);
647
648/*
649 * We maintain a global counter to order connection attempts. Get
650 * a unique seq greater than @gt.
651 */
652u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt)
653{
654 u32 ret;
655
656 spin_lock(&msgr->global_seq_lock);
657 if (msgr->global_seq < gt)
658 msgr->global_seq = gt;
659 ret = ++msgr->global_seq;
660 spin_unlock(&msgr->global_seq_lock);
661 return ret;
662}
663
664/*
665 * Discard messages that have been acked by the server.
666 */
667void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq)
668{
669 struct ceph_msg *msg;
670 u64 seq;
671
672 dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq);
673 while (!list_empty(&con->out_sent)) {
674 msg = list_first_entry(&con->out_sent, struct ceph_msg,
675 list_head);
676 WARN_ON(msg->needs_out_seq);
677 seq = le64_to_cpu(msg->hdr.seq);
678 if (seq > ack_seq)
679 break;
680
681 dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
682 msg, seq);
683 ceph_msg_remove(msg);
684 }
685}
686
687/*
688 * Discard messages that have been requeued in con_fault(), up to
689 * reconnect_seq. This avoids gratuitously resending messages that
690 * the server had received and handled prior to reconnect.
691 */
692void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq)
693{
694 struct ceph_msg *msg;
695 u64 seq;
696
697 dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq);
698 while (!list_empty(&con->out_queue)) {
699 msg = list_first_entry(&con->out_queue, struct ceph_msg,
700 list_head);
701 if (msg->needs_out_seq)
702 break;
703 seq = le64_to_cpu(msg->hdr.seq);
704 if (seq > reconnect_seq)
705 break;
706
707 dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
708 msg, seq);
709 ceph_msg_remove(msg);
710 }
711}
712
713#ifdef CONFIG_BLOCK
714
715/*
716 * For a bio data item, a piece is whatever remains of the next
717 * entry in the current bio iovec, or the first entry in the next
718 * bio in the list.
719 */
720static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
721 size_t length)
722{
723 struct ceph_msg_data *data = cursor->data;
724 struct ceph_bio_iter *it = &cursor->bio_iter;
725
726 cursor->resid = min_t(size_t, length, data->bio_length);
727 *it = data->bio_pos;
728 if (cursor->resid < it->iter.bi_size)
729 it->iter.bi_size = cursor->resid;
730
731 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
732}
733
734static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
735 size_t *page_offset,
736 size_t *length)
737{
738 struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
739 cursor->bio_iter.iter);
740
741 *page_offset = bv.bv_offset;
742 *length = bv.bv_len;
743 return bv.bv_page;
744}
745
746static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
747 size_t bytes)
748{
749 struct ceph_bio_iter *it = &cursor->bio_iter;
750 struct page *page = bio_iter_page(it->bio, it->iter);
751
752 BUG_ON(bytes > cursor->resid);
753 BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
754 cursor->resid -= bytes;
755 bio_advance_iter(it->bio, &it->iter, bytes);
756
757 if (!cursor->resid)
758 return false; /* no more data */
759
760 if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
761 page == bio_iter_page(it->bio, it->iter)))
762 return false; /* more bytes to process in this segment */
763
764 if (!it->iter.bi_size) {
765 it->bio = it->bio->bi_next;
766 it->iter = it->bio->bi_iter;
767 if (cursor->resid < it->iter.bi_size)
768 it->iter.bi_size = cursor->resid;
769 }
770
771 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
772 return true;
773}
774#endif /* CONFIG_BLOCK */
775
776static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
777 size_t length)
778{
779 struct ceph_msg_data *data = cursor->data;
780 struct bio_vec *bvecs = data->bvec_pos.bvecs;
781
782 cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
783 cursor->bvec_iter = data->bvec_pos.iter;
784 cursor->bvec_iter.bi_size = cursor->resid;
785
786 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
787}
788
789static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
790 size_t *page_offset,
791 size_t *length)
792{
793 struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
794 cursor->bvec_iter);
795
796 *page_offset = bv.bv_offset;
797 *length = bv.bv_len;
798 return bv.bv_page;
799}
800
801static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
802 size_t bytes)
803{
804 struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
805 struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
806
807 BUG_ON(bytes > cursor->resid);
808 BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
809 cursor->resid -= bytes;
810 bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
811
812 if (!cursor->resid)
813 return false; /* no more data */
814
815 if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
816 page == bvec_iter_page(bvecs, cursor->bvec_iter)))
817 return false; /* more bytes to process in this segment */
818
819 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
820 return true;
821}
822
823/*
824 * For a page array, a piece comes from the first page in the array
825 * that has not already been fully consumed.
826 */
827static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
828 size_t length)
829{
830 struct ceph_msg_data *data = cursor->data;
831 int page_count;
832
833 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
834
835 BUG_ON(!data->pages);
836 BUG_ON(!data->length);
837
838 cursor->resid = min(length, data->length);
839 page_count = calc_pages_for(data->alignment, (u64)data->length);
840 cursor->page_offset = data->alignment & ~PAGE_MASK;
841 cursor->page_index = 0;
842 BUG_ON(page_count > (int)USHRT_MAX);
843 cursor->page_count = (unsigned short)page_count;
844 BUG_ON(length > SIZE_MAX - cursor->page_offset);
845}
846
847static struct page *
848ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
849 size_t *page_offset, size_t *length)
850{
851 struct ceph_msg_data *data = cursor->data;
852
853 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
854
855 BUG_ON(cursor->page_index >= cursor->page_count);
856 BUG_ON(cursor->page_offset >= PAGE_SIZE);
857
858 *page_offset = cursor->page_offset;
859 *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
860 return data->pages[cursor->page_index];
861}
862
863static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
864 size_t bytes)
865{
866 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
867
868 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
869
870 /* Advance the cursor page offset */
871
872 cursor->resid -= bytes;
873 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
874 if (!bytes || cursor->page_offset)
875 return false; /* more bytes to process in the current page */
876
877 if (!cursor->resid)
878 return false; /* no more data */
879
880 /* Move on to the next page; offset is already at 0 */
881
882 BUG_ON(cursor->page_index >= cursor->page_count);
883 cursor->page_index++;
884 return true;
885}
886
887/*
888 * For a pagelist, a piece is whatever remains to be consumed in the
889 * first page in the list, or the front of the next page.
890 */
891static void
892ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
893 size_t length)
894{
895 struct ceph_msg_data *data = cursor->data;
896 struct ceph_pagelist *pagelist;
897 struct page *page;
898
899 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
900
901 pagelist = data->pagelist;
902 BUG_ON(!pagelist);
903
904 if (!length)
905 return; /* pagelist can be assigned but empty */
906
907 BUG_ON(list_empty(&pagelist->head));
908 page = list_first_entry(&pagelist->head, struct page, lru);
909
910 cursor->resid = min(length, pagelist->length);
911 cursor->page = page;
912 cursor->offset = 0;
913}
914
915static struct page *
916ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
917 size_t *page_offset, size_t *length)
918{
919 struct ceph_msg_data *data = cursor->data;
920 struct ceph_pagelist *pagelist;
921
922 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
923
924 pagelist = data->pagelist;
925 BUG_ON(!pagelist);
926
927 BUG_ON(!cursor->page);
928 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
929
930 /* offset of first page in pagelist is always 0 */
931 *page_offset = cursor->offset & ~PAGE_MASK;
932 *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
933 return cursor->page;
934}
935
936static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
937 size_t bytes)
938{
939 struct ceph_msg_data *data = cursor->data;
940 struct ceph_pagelist *pagelist;
941
942 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
943
944 pagelist = data->pagelist;
945 BUG_ON(!pagelist);
946
947 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
948 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
949
950 /* Advance the cursor offset */
951
952 cursor->resid -= bytes;
953 cursor->offset += bytes;
954 /* offset of first page in pagelist is always 0 */
955 if (!bytes || cursor->offset & ~PAGE_MASK)
956 return false; /* more bytes to process in the current page */
957
958 if (!cursor->resid)
959 return false; /* no more data */
960
961 /* Move on to the next page */
962
963 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
964 cursor->page = list_next_entry(cursor->page, lru);
965 return true;
966}
967
968/*
969 * Message data is handled (sent or received) in pieces, where each
970 * piece resides on a single page. The network layer might not
971 * consume an entire piece at once. A data item's cursor keeps
972 * track of which piece is next to process and how much remains to
973 * be processed in that piece. It also tracks whether the current
974 * piece is the last one in the data item.
975 */
976static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
977{
978 size_t length = cursor->total_resid;
979
980 switch (cursor->data->type) {
981 case CEPH_MSG_DATA_PAGELIST:
982 ceph_msg_data_pagelist_cursor_init(cursor, length);
983 break;
984 case CEPH_MSG_DATA_PAGES:
985 ceph_msg_data_pages_cursor_init(cursor, length);
986 break;
987#ifdef CONFIG_BLOCK
988 case CEPH_MSG_DATA_BIO:
989 ceph_msg_data_bio_cursor_init(cursor, length);
990 break;
991#endif /* CONFIG_BLOCK */
992 case CEPH_MSG_DATA_BVECS:
993 ceph_msg_data_bvecs_cursor_init(cursor, length);
994 break;
995 case CEPH_MSG_DATA_NONE:
996 default:
997 /* BUG(); */
998 break;
999 }
1000 cursor->need_crc = true;
1001}
1002
1003void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor,
1004 struct ceph_msg *msg, size_t length)
1005{
1006 BUG_ON(!length);
1007 BUG_ON(length > msg->data_length);
1008 BUG_ON(!msg->num_data_items);
1009
1010 cursor->total_resid = length;
1011 cursor->data = msg->data;
1012
1013 __ceph_msg_data_cursor_init(cursor);
1014}
1015
1016/*
1017 * Return the page containing the next piece to process for a given
1018 * data item, and supply the page offset and length of that piece.
1019 * Indicate whether this is the last piece in this data item.
1020 */
1021struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1022 size_t *page_offset, size_t *length)
1023{
1024 struct page *page;
1025
1026 switch (cursor->data->type) {
1027 case CEPH_MSG_DATA_PAGELIST:
1028 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1029 break;
1030 case CEPH_MSG_DATA_PAGES:
1031 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1032 break;
1033#ifdef CONFIG_BLOCK
1034 case CEPH_MSG_DATA_BIO:
1035 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1036 break;
1037#endif /* CONFIG_BLOCK */
1038 case CEPH_MSG_DATA_BVECS:
1039 page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1040 break;
1041 case CEPH_MSG_DATA_NONE:
1042 default:
1043 page = NULL;
1044 break;
1045 }
1046
1047 BUG_ON(!page);
1048 BUG_ON(*page_offset + *length > PAGE_SIZE);
1049 BUG_ON(!*length);
1050 BUG_ON(*length > cursor->resid);
1051
1052 return page;
1053}
1054
1055/*
1056 * Returns true if the result moves the cursor on to the next piece
1057 * of the data item.
1058 */
1059void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes)
1060{
1061 bool new_piece;
1062
1063 BUG_ON(bytes > cursor->resid);
1064 switch (cursor->data->type) {
1065 case CEPH_MSG_DATA_PAGELIST:
1066 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1067 break;
1068 case CEPH_MSG_DATA_PAGES:
1069 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1070 break;
1071#ifdef CONFIG_BLOCK
1072 case CEPH_MSG_DATA_BIO:
1073 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1074 break;
1075#endif /* CONFIG_BLOCK */
1076 case CEPH_MSG_DATA_BVECS:
1077 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1078 break;
1079 case CEPH_MSG_DATA_NONE:
1080 default:
1081 BUG();
1082 break;
1083 }
1084 cursor->total_resid -= bytes;
1085
1086 if (!cursor->resid && cursor->total_resid) {
1087 cursor->data++;
1088 __ceph_msg_data_cursor_init(cursor);
1089 new_piece = true;
1090 }
1091 cursor->need_crc = new_piece;
1092}
1093
1094u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset,
1095 unsigned int length)
1096{
1097 char *kaddr;
1098
1099 kaddr = kmap(page);
1100 BUG_ON(kaddr == NULL);
1101 crc = crc32c(crc, kaddr + page_offset, length);
1102 kunmap(page);
1103
1104 return crc;
1105}
1106
1107bool ceph_addr_is_blank(const struct ceph_entity_addr *addr)
1108{
1109 struct sockaddr_storage ss = addr->in_addr; /* align */
1110 struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1111 struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
1112
1113 switch (ss.ss_family) {
1114 case AF_INET:
1115 return addr4->s_addr == htonl(INADDR_ANY);
1116 case AF_INET6:
1117 return ipv6_addr_any(addr6);
1118 default:
1119 return true;
1120 }
1121}
1122
1123int ceph_addr_port(const struct ceph_entity_addr *addr)
1124{
1125 switch (get_unaligned(&addr->in_addr.ss_family)) {
1126 case AF_INET:
1127 return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1128 case AF_INET6:
1129 return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1130 }
1131 return 0;
1132}
1133
1134void ceph_addr_set_port(struct ceph_entity_addr *addr, int p)
1135{
1136 switch (get_unaligned(&addr->in_addr.ss_family)) {
1137 case AF_INET:
1138 put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1139 break;
1140 case AF_INET6:
1141 put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1142 break;
1143 }
1144}
1145
1146/*
1147 * Unlike other *_pton function semantics, zero indicates success.
1148 */
1149static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1150 char delim, const char **ipend)
1151{
1152 memset(&addr->in_addr, 0, sizeof(addr->in_addr));
1153
1154 if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1155 put_unaligned(AF_INET, &addr->in_addr.ss_family);
1156 return 0;
1157 }
1158
1159 if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1160 put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1161 return 0;
1162 }
1163
1164 return -EINVAL;
1165}
1166
1167/*
1168 * Extract hostname string and resolve using kernel DNS facility.
1169 */
1170#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1171static int ceph_dns_resolve_name(const char *name, size_t namelen,
1172 struct ceph_entity_addr *addr, char delim, const char **ipend)
1173{
1174 const char *end, *delim_p;
1175 char *colon_p, *ip_addr = NULL;
1176 int ip_len, ret;
1177
1178 /*
1179 * The end of the hostname occurs immediately preceding the delimiter or
1180 * the port marker (':') where the delimiter takes precedence.
1181 */
1182 delim_p = memchr(name, delim, namelen);
1183 colon_p = memchr(name, ':', namelen);
1184
1185 if (delim_p && colon_p)
1186 end = delim_p < colon_p ? delim_p : colon_p;
1187 else if (!delim_p && colon_p)
1188 end = colon_p;
1189 else {
1190 end = delim_p;
1191 if (!end) /* case: hostname:/ */
1192 end = name + namelen;
1193 }
1194
1195 if (end <= name)
1196 return -EINVAL;
1197
1198 /* do dns_resolve upcall */
1199 ip_len = dns_query(current->nsproxy->net_ns,
1200 NULL, name, end - name, NULL, &ip_addr, NULL, false);
1201 if (ip_len > 0)
1202 ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1203 else
1204 ret = -ESRCH;
1205
1206 kfree(ip_addr);
1207
1208 *ipend = end;
1209
1210 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1211 ret, ret ? "failed" : ceph_pr_addr(addr));
1212
1213 return ret;
1214}
1215#else
1216static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1217 struct ceph_entity_addr *addr, char delim, const char **ipend)
1218{
1219 return -EINVAL;
1220}
1221#endif
1222
1223/*
1224 * Parse a server name (IP or hostname). If a valid IP address is not found
1225 * then try to extract a hostname to resolve using userspace DNS upcall.
1226 */
1227static int ceph_parse_server_name(const char *name, size_t namelen,
1228 struct ceph_entity_addr *addr, char delim, const char **ipend)
1229{
1230 int ret;
1231
1232 ret = ceph_pton(name, namelen, addr, delim, ipend);
1233 if (ret)
1234 ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1235
1236 return ret;
1237}
1238
1239/*
1240 * Parse an ip[:port] list into an addr array. Use the default
1241 * monitor port if a port isn't specified.
1242 */
1243int ceph_parse_ips(const char *c, const char *end,
1244 struct ceph_entity_addr *addr,
1245 int max_count, int *count, char delim)
1246{
1247 int i, ret = -EINVAL;
1248 const char *p = c;
1249
1250 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1251 for (i = 0; i < max_count; i++) {
1252 char cur_delim = delim;
1253 const char *ipend;
1254 int port;
1255
1256 if (*p == '[') {
1257 cur_delim = ']';
1258 p++;
1259 }
1260
1261 ret = ceph_parse_server_name(p, end - p, &addr[i], cur_delim,
1262 &ipend);
1263 if (ret)
1264 goto bad;
1265 ret = -EINVAL;
1266
1267 p = ipend;
1268
1269 if (cur_delim == ']') {
1270 if (*p != ']') {
1271 dout("missing matching ']'\n");
1272 goto bad;
1273 }
1274 p++;
1275 }
1276
1277 /* port? */
1278 if (p < end && *p == ':') {
1279 port = 0;
1280 p++;
1281 while (p < end && *p >= '0' && *p <= '9') {
1282 port = (port * 10) + (*p - '0');
1283 p++;
1284 }
1285 if (port == 0)
1286 port = CEPH_MON_PORT;
1287 else if (port > 65535)
1288 goto bad;
1289 } else {
1290 port = CEPH_MON_PORT;
1291 }
1292
1293 ceph_addr_set_port(&addr[i], port);
1294 /*
1295 * We want the type to be set according to ms_mode
1296 * option, but options are normally parsed after mon
1297 * addresses. Rather than complicating parsing, set
1298 * to LEGACY and override in build_initial_monmap()
1299 * for mon addresses and ceph_messenger_init() for
1300 * ip option.
1301 */
1302 addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
1303 addr[i].nonce = 0;
1304
1305 dout("%s got %s\n", __func__, ceph_pr_addr(&addr[i]));
1306
1307 if (p == end)
1308 break;
1309 if (*p != delim)
1310 goto bad;
1311 p++;
1312 }
1313
1314 if (p != end)
1315 goto bad;
1316
1317 if (count)
1318 *count = i + 1;
1319 return 0;
1320
1321bad:
1322 return ret;
1323}
1324
1325/*
1326 * Process message. This happens in the worker thread. The callback should
1327 * be careful not to do anything that waits on other incoming messages or it
1328 * may deadlock.
1329 */
1330void ceph_con_process_message(struct ceph_connection *con)
1331{
1332 struct ceph_msg *msg = con->in_msg;
1333
1334 BUG_ON(con->in_msg->con != con);
1335 con->in_msg = NULL;
1336
1337 /* if first message, set peer_name */
1338 if (con->peer_name.type == 0)
1339 con->peer_name = msg->hdr.src;
1340
1341 con->in_seq++;
1342 mutex_unlock(&con->mutex);
1343
1344 dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n",
1345 msg, le64_to_cpu(msg->hdr.seq),
1346 ENTITY_NAME(msg->hdr.src),
1347 le16_to_cpu(msg->hdr.type),
1348 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1349 le32_to_cpu(msg->hdr.front_len),
1350 le32_to_cpu(msg->hdr.middle_len),
1351 le32_to_cpu(msg->hdr.data_len),
1352 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1353 con->ops->dispatch(con, msg);
1354
1355 mutex_lock(&con->mutex);
1356}
1357
1358/*
1359 * Atomically queue work on a connection after the specified delay.
1360 * Bump @con reference to avoid races with connection teardown.
1361 * Returns 0 if work was queued, or an error code otherwise.
1362 */
1363static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
1364{
1365 if (!con->ops->get(con)) {
1366 dout("%s %p ref count 0\n", __func__, con);
1367 return -ENOENT;
1368 }
1369
1370 if (delay >= HZ)
1371 delay = round_jiffies_relative(delay);
1372
1373 dout("%s %p %lu\n", __func__, con, delay);
1374 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
1375 dout("%s %p - already queued\n", __func__, con);
1376 con->ops->put(con);
1377 return -EBUSY;
1378 }
1379
1380 return 0;
1381}
1382
1383static void queue_con(struct ceph_connection *con)
1384{
1385 (void) queue_con_delay(con, 0);
1386}
1387
1388static void cancel_con(struct ceph_connection *con)
1389{
1390 if (cancel_delayed_work(&con->work)) {
1391 dout("%s %p\n", __func__, con);
1392 con->ops->put(con);
1393 }
1394}
1395
1396static bool con_sock_closed(struct ceph_connection *con)
1397{
1398 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED))
1399 return false;
1400
1401#define CASE(x) \
1402 case CEPH_CON_S_ ## x: \
1403 con->error_msg = "socket closed (con state " #x ")"; \
1404 break;
1405
1406 switch (con->state) {
1407 CASE(CLOSED);
1408 CASE(PREOPEN);
1409 CASE(V1_BANNER);
1410 CASE(V1_CONNECT_MSG);
1411 CASE(V2_BANNER_PREFIX);
1412 CASE(V2_BANNER_PAYLOAD);
1413 CASE(V2_HELLO);
1414 CASE(V2_AUTH);
1415 CASE(V2_AUTH_SIGNATURE);
1416 CASE(V2_SESSION_CONNECT);
1417 CASE(V2_SESSION_RECONNECT);
1418 CASE(OPEN);
1419 CASE(STANDBY);
1420 default:
1421 BUG();
1422 }
1423#undef CASE
1424
1425 return true;
1426}
1427
1428static bool con_backoff(struct ceph_connection *con)
1429{
1430 int ret;
1431
1432 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF))
1433 return false;
1434
1435 ret = queue_con_delay(con, con->delay);
1436 if (ret) {
1437 dout("%s: con %p FAILED to back off %lu\n", __func__,
1438 con, con->delay);
1439 BUG_ON(ret == -ENOENT);
1440 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1441 }
1442
1443 return true;
1444}
1445
1446/* Finish fault handling; con->mutex must *not* be held here */
1447
1448static void con_fault_finish(struct ceph_connection *con)
1449{
1450 dout("%s %p\n", __func__, con);
1451
1452 /*
1453 * in case we faulted due to authentication, invalidate our
1454 * current tickets so that we can get new ones.
1455 */
1456 if (con->v1.auth_retry) {
1457 dout("auth_retry %d, invalidating\n", con->v1.auth_retry);
1458 if (con->ops->invalidate_authorizer)
1459 con->ops->invalidate_authorizer(con);
1460 con->v1.auth_retry = 0;
1461 }
1462
1463 if (con->ops->fault)
1464 con->ops->fault(con);
1465}
1466
1467/*
1468 * Do some work on a connection. Drop a connection ref when we're done.
1469 */
1470static void ceph_con_workfn(struct work_struct *work)
1471{
1472 struct ceph_connection *con = container_of(work, struct ceph_connection,
1473 work.work);
1474 bool fault;
1475
1476 mutex_lock(&con->mutex);
1477 while (true) {
1478 int ret;
1479
1480 if ((fault = con_sock_closed(con))) {
1481 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
1482 break;
1483 }
1484 if (con_backoff(con)) {
1485 dout("%s: con %p BACKOFF\n", __func__, con);
1486 break;
1487 }
1488 if (con->state == CEPH_CON_S_STANDBY) {
1489 dout("%s: con %p STANDBY\n", __func__, con);
1490 break;
1491 }
1492 if (con->state == CEPH_CON_S_CLOSED) {
1493 dout("%s: con %p CLOSED\n", __func__, con);
1494 BUG_ON(con->sock);
1495 break;
1496 }
1497 if (con->state == CEPH_CON_S_PREOPEN) {
1498 dout("%s: con %p PREOPEN\n", __func__, con);
1499 BUG_ON(con->sock);
1500 }
1501
1502 if (ceph_msgr2(from_msgr(con->msgr)))
1503 ret = ceph_con_v2_try_read(con);
1504 else
1505 ret = ceph_con_v1_try_read(con);
1506 if (ret < 0) {
1507 if (ret == -EAGAIN)
1508 continue;
1509 if (!con->error_msg)
1510 con->error_msg = "socket error on read";
1511 fault = true;
1512 break;
1513 }
1514
1515 if (ceph_msgr2(from_msgr(con->msgr)))
1516 ret = ceph_con_v2_try_write(con);
1517 else
1518 ret = ceph_con_v1_try_write(con);
1519 if (ret < 0) {
1520 if (ret == -EAGAIN)
1521 continue;
1522 if (!con->error_msg)
1523 con->error_msg = "socket error on write";
1524 fault = true;
1525 }
1526
1527 break; /* If we make it to here, we're done */
1528 }
1529 if (fault)
1530 con_fault(con);
1531 mutex_unlock(&con->mutex);
1532
1533 if (fault)
1534 con_fault_finish(con);
1535
1536 con->ops->put(con);
1537}
1538
1539/*
1540 * Generic error/fault handler. A retry mechanism is used with
1541 * exponential backoff
1542 */
1543static void con_fault(struct ceph_connection *con)
1544{
1545 dout("fault %p state %d to peer %s\n",
1546 con, con->state, ceph_pr_addr(&con->peer_addr));
1547
1548 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1549 ceph_pr_addr(&con->peer_addr), con->error_msg);
1550 con->error_msg = NULL;
1551
1552 WARN_ON(con->state == CEPH_CON_S_STANDBY ||
1553 con->state == CEPH_CON_S_CLOSED);
1554
1555 ceph_con_reset_protocol(con);
1556
1557 if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) {
1558 dout("fault on LOSSYTX channel, marking CLOSED\n");
1559 con->state = CEPH_CON_S_CLOSED;
1560 return;
1561 }
1562
1563 /* Requeue anything that hasn't been acked */
1564 list_splice_init(&con->out_sent, &con->out_queue);
1565
1566 /* If there are no messages queued or keepalive pending, place
1567 * the connection in a STANDBY state */
1568 if (list_empty(&con->out_queue) &&
1569 !ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
1570 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
1571 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
1572 con->state = CEPH_CON_S_STANDBY;
1573 } else {
1574 /* retry after a delay. */
1575 con->state = CEPH_CON_S_PREOPEN;
1576 if (!con->delay) {
1577 con->delay = BASE_DELAY_INTERVAL;
1578 } else if (con->delay < MAX_DELAY_INTERVAL) {
1579 con->delay *= 2;
1580 if (con->delay > MAX_DELAY_INTERVAL)
1581 con->delay = MAX_DELAY_INTERVAL;
1582 }
1583 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1584 queue_con(con);
1585 }
1586}
1587
1588void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
1589{
1590 u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
1591 msgr->inst.addr.nonce = cpu_to_le32(nonce);
1592 ceph_encode_my_addr(msgr);
1593}
1594
1595/*
1596 * initialize a new messenger instance
1597 */
1598void ceph_messenger_init(struct ceph_messenger *msgr,
1599 struct ceph_entity_addr *myaddr)
1600{
1601 spin_lock_init(&msgr->global_seq_lock);
1602
1603 if (myaddr) {
1604 memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr,
1605 sizeof(msgr->inst.addr.in_addr));
1606 ceph_addr_set_port(&msgr->inst.addr, 0);
1607 }
1608
1609 /*
1610 * Since nautilus, clients are identified using type ANY.
1611 * For msgr1, ceph_encode_banner_addr() munges it to NONE.
1612 */
1613 msgr->inst.addr.type = CEPH_ENTITY_ADDR_TYPE_ANY;
1614
1615 /* generate a random non-zero nonce */
1616 do {
1617 get_random_bytes(&msgr->inst.addr.nonce,
1618 sizeof(msgr->inst.addr.nonce));
1619 } while (!msgr->inst.addr.nonce);
1620 ceph_encode_my_addr(msgr);
1621
1622 atomic_set(&msgr->stopping, 0);
1623 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
1624
1625 dout("%s %p\n", __func__, msgr);
1626}
1627
1628void ceph_messenger_fini(struct ceph_messenger *msgr)
1629{
1630 put_net(read_pnet(&msgr->net));
1631}
1632
1633static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
1634{
1635 if (msg->con)
1636 msg->con->ops->put(msg->con);
1637
1638 msg->con = con ? con->ops->get(con) : NULL;
1639 BUG_ON(msg->con != con);
1640}
1641
1642static void clear_standby(struct ceph_connection *con)
1643{
1644 /* come back from STANDBY? */
1645 if (con->state == CEPH_CON_S_STANDBY) {
1646 dout("clear_standby %p and ++connect_seq\n", con);
1647 con->state = CEPH_CON_S_PREOPEN;
1648 con->v1.connect_seq++;
1649 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING));
1650 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING));
1651 }
1652}
1653
1654/*
1655 * Queue up an outgoing message on the given connection.
1656 *
1657 * Consumes a ref on @msg.
1658 */
1659void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1660{
1661 /* set src+dst */
1662 msg->hdr.src = con->msgr->inst.name;
1663 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1664 msg->needs_out_seq = true;
1665
1666 mutex_lock(&con->mutex);
1667
1668 if (con->state == CEPH_CON_S_CLOSED) {
1669 dout("con_send %p closed, dropping %p\n", con, msg);
1670 ceph_msg_put(msg);
1671 mutex_unlock(&con->mutex);
1672 return;
1673 }
1674
1675 msg_con_set(msg, con);
1676
1677 BUG_ON(!list_empty(&msg->list_head));
1678 list_add_tail(&msg->list_head, &con->out_queue);
1679 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1680 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1681 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1682 le32_to_cpu(msg->hdr.front_len),
1683 le32_to_cpu(msg->hdr.middle_len),
1684 le32_to_cpu(msg->hdr.data_len));
1685
1686 clear_standby(con);
1687 mutex_unlock(&con->mutex);
1688
1689 /* if there wasn't anything waiting to send before, queue
1690 * new work */
1691 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1692 queue_con(con);
1693}
1694EXPORT_SYMBOL(ceph_con_send);
1695
1696/*
1697 * Revoke a message that was previously queued for send
1698 */
1699void ceph_msg_revoke(struct ceph_msg *msg)
1700{
1701 struct ceph_connection *con = msg->con;
1702
1703 if (!con) {
1704 dout("%s msg %p null con\n", __func__, msg);
1705 return; /* Message not in our possession */
1706 }
1707
1708 mutex_lock(&con->mutex);
1709 if (list_empty(&msg->list_head)) {
1710 WARN_ON(con->out_msg == msg);
1711 dout("%s con %p msg %p not linked\n", __func__, con, msg);
1712 mutex_unlock(&con->mutex);
1713 return;
1714 }
1715
1716 dout("%s con %p msg %p was linked\n", __func__, con, msg);
1717 msg->hdr.seq = 0;
1718 ceph_msg_remove(msg);
1719
1720 if (con->out_msg == msg) {
1721 WARN_ON(con->state != CEPH_CON_S_OPEN);
1722 dout("%s con %p msg %p was sending\n", __func__, con, msg);
1723 if (ceph_msgr2(from_msgr(con->msgr)))
1724 ceph_con_v2_revoke(con);
1725 else
1726 ceph_con_v1_revoke(con);
1727 ceph_msg_put(con->out_msg);
1728 con->out_msg = NULL;
1729 } else {
1730 dout("%s con %p msg %p not current, out_msg %p\n", __func__,
1731 con, msg, con->out_msg);
1732 }
1733 mutex_unlock(&con->mutex);
1734}
1735
1736/*
1737 * Revoke a message that we may be reading data into
1738 */
1739void ceph_msg_revoke_incoming(struct ceph_msg *msg)
1740{
1741 struct ceph_connection *con = msg->con;
1742
1743 if (!con) {
1744 dout("%s msg %p null con\n", __func__, msg);
1745 return; /* Message not in our possession */
1746 }
1747
1748 mutex_lock(&con->mutex);
1749 if (con->in_msg == msg) {
1750 WARN_ON(con->state != CEPH_CON_S_OPEN);
1751 dout("%s con %p msg %p was recving\n", __func__, con, msg);
1752 if (ceph_msgr2(from_msgr(con->msgr)))
1753 ceph_con_v2_revoke_incoming(con);
1754 else
1755 ceph_con_v1_revoke_incoming(con);
1756 ceph_msg_put(con->in_msg);
1757 con->in_msg = NULL;
1758 } else {
1759 dout("%s con %p msg %p not current, in_msg %p\n", __func__,
1760 con, msg, con->in_msg);
1761 }
1762 mutex_unlock(&con->mutex);
1763}
1764
1765/*
1766 * Queue a keepalive byte to ensure the tcp connection is alive.
1767 */
1768void ceph_con_keepalive(struct ceph_connection *con)
1769{
1770 dout("con_keepalive %p\n", con);
1771 mutex_lock(&con->mutex);
1772 clear_standby(con);
1773 ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING);
1774 mutex_unlock(&con->mutex);
1775
1776 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1777 queue_con(con);
1778}
1779EXPORT_SYMBOL(ceph_con_keepalive);
1780
1781bool ceph_con_keepalive_expired(struct ceph_connection *con,
1782 unsigned long interval)
1783{
1784 if (interval > 0 &&
1785 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
1786 struct timespec64 now;
1787 struct timespec64 ts;
1788 ktime_get_real_ts64(&now);
1789 jiffies_to_timespec64(interval, &ts);
1790 ts = timespec64_add(con->last_keepalive_ack, ts);
1791 return timespec64_compare(&now, &ts) >= 0;
1792 }
1793 return false;
1794}
1795
1796static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
1797{
1798 BUG_ON(msg->num_data_items >= msg->max_data_items);
1799 return &msg->data[msg->num_data_items++];
1800}
1801
1802static void ceph_msg_data_destroy(struct ceph_msg_data *data)
1803{
1804 if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
1805 int num_pages = calc_pages_for(data->alignment, data->length);
1806 ceph_release_page_vector(data->pages, num_pages);
1807 } else if (data->type == CEPH_MSG_DATA_PAGELIST) {
1808 ceph_pagelist_release(data->pagelist);
1809 }
1810}
1811
1812void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
1813 size_t length, size_t alignment, bool own_pages)
1814{
1815 struct ceph_msg_data *data;
1816
1817 BUG_ON(!pages);
1818 BUG_ON(!length);
1819
1820 data = ceph_msg_data_add(msg);
1821 data->type = CEPH_MSG_DATA_PAGES;
1822 data->pages = pages;
1823 data->length = length;
1824 data->alignment = alignment & ~PAGE_MASK;
1825 data->own_pages = own_pages;
1826
1827 msg->data_length += length;
1828}
1829EXPORT_SYMBOL(ceph_msg_data_add_pages);
1830
1831void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
1832 struct ceph_pagelist *pagelist)
1833{
1834 struct ceph_msg_data *data;
1835
1836 BUG_ON(!pagelist);
1837 BUG_ON(!pagelist->length);
1838
1839 data = ceph_msg_data_add(msg);
1840 data->type = CEPH_MSG_DATA_PAGELIST;
1841 refcount_inc(&pagelist->refcnt);
1842 data->pagelist = pagelist;
1843
1844 msg->data_length += pagelist->length;
1845}
1846EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
1847
1848#ifdef CONFIG_BLOCK
1849void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
1850 u32 length)
1851{
1852 struct ceph_msg_data *data;
1853
1854 data = ceph_msg_data_add(msg);
1855 data->type = CEPH_MSG_DATA_BIO;
1856 data->bio_pos = *bio_pos;
1857 data->bio_length = length;
1858
1859 msg->data_length += length;
1860}
1861EXPORT_SYMBOL(ceph_msg_data_add_bio);
1862#endif /* CONFIG_BLOCK */
1863
1864void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
1865 struct ceph_bvec_iter *bvec_pos)
1866{
1867 struct ceph_msg_data *data;
1868
1869 data = ceph_msg_data_add(msg);
1870 data->type = CEPH_MSG_DATA_BVECS;
1871 data->bvec_pos = *bvec_pos;
1872
1873 msg->data_length += bvec_pos->iter.bi_size;
1874}
1875EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
1876
1877/*
1878 * construct a new message with given type, size
1879 * the new msg has a ref count of 1.
1880 */
1881struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
1882 gfp_t flags, bool can_fail)
1883{
1884 struct ceph_msg *m;
1885
1886 m = kmem_cache_zalloc(ceph_msg_cache, flags);
1887 if (m == NULL)
1888 goto out;
1889
1890 m->hdr.type = cpu_to_le16(type);
1891 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
1892 m->hdr.front_len = cpu_to_le32(front_len);
1893
1894 INIT_LIST_HEAD(&m->list_head);
1895 kref_init(&m->kref);
1896
1897 /* front */
1898 if (front_len) {
1899 m->front.iov_base = kvmalloc(front_len, flags);
1900 if (m->front.iov_base == NULL) {
1901 dout("ceph_msg_new can't allocate %d bytes\n",
1902 front_len);
1903 goto out2;
1904 }
1905 } else {
1906 m->front.iov_base = NULL;
1907 }
1908 m->front_alloc_len = m->front.iov_len = front_len;
1909
1910 if (max_data_items) {
1911 m->data = kmalloc_array(max_data_items, sizeof(*m->data),
1912 flags);
1913 if (!m->data)
1914 goto out2;
1915
1916 m->max_data_items = max_data_items;
1917 }
1918
1919 dout("ceph_msg_new %p front %d\n", m, front_len);
1920 return m;
1921
1922out2:
1923 ceph_msg_put(m);
1924out:
1925 if (!can_fail) {
1926 pr_err("msg_new can't create type %d front %d\n", type,
1927 front_len);
1928 WARN_ON(1);
1929 } else {
1930 dout("msg_new can't create type %d front %d\n", type,
1931 front_len);
1932 }
1933 return NULL;
1934}
1935EXPORT_SYMBOL(ceph_msg_new2);
1936
1937struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
1938 bool can_fail)
1939{
1940 return ceph_msg_new2(type, front_len, 0, flags, can_fail);
1941}
1942EXPORT_SYMBOL(ceph_msg_new);
1943
1944/*
1945 * Allocate "middle" portion of a message, if it is needed and wasn't
1946 * allocated by alloc_msg. This allows us to read a small fixed-size
1947 * per-type header in the front and then gracefully fail (i.e.,
1948 * propagate the error to the caller based on info in the front) when
1949 * the middle is too large.
1950 */
1951static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
1952{
1953 int type = le16_to_cpu(msg->hdr.type);
1954 int middle_len = le32_to_cpu(msg->hdr.middle_len);
1955
1956 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
1957 ceph_msg_type_name(type), middle_len);
1958 BUG_ON(!middle_len);
1959 BUG_ON(msg->middle);
1960
1961 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
1962 if (!msg->middle)
1963 return -ENOMEM;
1964 return 0;
1965}
1966
1967/*
1968 * Allocate a message for receiving an incoming message on a
1969 * connection, and save the result in con->in_msg. Uses the
1970 * connection's private alloc_msg op if available.
1971 *
1972 * Returns 0 on success, or a negative error code.
1973 *
1974 * On success, if we set *skip = 1:
1975 * - the next message should be skipped and ignored.
1976 * - con->in_msg == NULL
1977 * or if we set *skip = 0:
1978 * - con->in_msg is non-null.
1979 * On error (ENOMEM, EAGAIN, ...),
1980 * - con->in_msg == NULL
1981 */
1982int ceph_con_in_msg_alloc(struct ceph_connection *con,
1983 struct ceph_msg_header *hdr, int *skip)
1984{
1985 int middle_len = le32_to_cpu(hdr->middle_len);
1986 struct ceph_msg *msg;
1987 int ret = 0;
1988
1989 BUG_ON(con->in_msg != NULL);
1990 BUG_ON(!con->ops->alloc_msg);
1991
1992 mutex_unlock(&con->mutex);
1993 msg = con->ops->alloc_msg(con, hdr, skip);
1994 mutex_lock(&con->mutex);
1995 if (con->state != CEPH_CON_S_OPEN) {
1996 if (msg)
1997 ceph_msg_put(msg);
1998 return -EAGAIN;
1999 }
2000 if (msg) {
2001 BUG_ON(*skip);
2002 msg_con_set(msg, con);
2003 con->in_msg = msg;
2004 } else {
2005 /*
2006 * Null message pointer means either we should skip
2007 * this message or we couldn't allocate memory. The
2008 * former is not an error.
2009 */
2010 if (*skip)
2011 return 0;
2012
2013 con->error_msg = "error allocating memory for incoming message";
2014 return -ENOMEM;
2015 }
2016 memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr));
2017
2018 if (middle_len && !con->in_msg->middle) {
2019 ret = ceph_alloc_middle(con, con->in_msg);
2020 if (ret < 0) {
2021 ceph_msg_put(con->in_msg);
2022 con->in_msg = NULL;
2023 }
2024 }
2025
2026 return ret;
2027}
2028
2029void ceph_con_get_out_msg(struct ceph_connection *con)
2030{
2031 struct ceph_msg *msg;
2032
2033 BUG_ON(list_empty(&con->out_queue));
2034 msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
2035 WARN_ON(msg->con != con);
2036
2037 /*
2038 * Put the message on "sent" list using a ref from ceph_con_send().
2039 * It is put when the message is acked or revoked.
2040 */
2041 list_move_tail(&msg->list_head, &con->out_sent);
2042
2043 /*
2044 * Only assign outgoing seq # if we haven't sent this message
2045 * yet. If it is requeued, resend with it's original seq.
2046 */
2047 if (msg->needs_out_seq) {
2048 msg->hdr.seq = cpu_to_le64(++con->out_seq);
2049 msg->needs_out_seq = false;
2050
2051 if (con->ops->reencode_message)
2052 con->ops->reencode_message(msg);
2053 }
2054
2055 /*
2056 * Get a ref for out_msg. It is put when we are done sending the
2057 * message or in case of a fault.
2058 */
2059 WARN_ON(con->out_msg);
2060 con->out_msg = ceph_msg_get(msg);
2061}
2062
2063/*
2064 * Free a generically kmalloc'd message.
2065 */
2066static void ceph_msg_free(struct ceph_msg *m)
2067{
2068 dout("%s %p\n", __func__, m);
2069 kvfree(m->front.iov_base);
2070 kfree(m->data);
2071 kmem_cache_free(ceph_msg_cache, m);
2072}
2073
2074static void ceph_msg_release(struct kref *kref)
2075{
2076 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2077 int i;
2078
2079 dout("%s %p\n", __func__, m);
2080 WARN_ON(!list_empty(&m->list_head));
2081
2082 msg_con_set(m, NULL);
2083
2084 /* drop middle, data, if any */
2085 if (m->middle) {
2086 ceph_buffer_put(m->middle);
2087 m->middle = NULL;
2088 }
2089
2090 for (i = 0; i < m->num_data_items; i++)
2091 ceph_msg_data_destroy(&m->data[i]);
2092
2093 if (m->pool)
2094 ceph_msgpool_put(m->pool, m);
2095 else
2096 ceph_msg_free(m);
2097}
2098
2099struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
2100{
2101 dout("%s %p (was %d)\n", __func__, msg,
2102 kref_read(&msg->kref));
2103 kref_get(&msg->kref);
2104 return msg;
2105}
2106EXPORT_SYMBOL(ceph_msg_get);
2107
2108void ceph_msg_put(struct ceph_msg *msg)
2109{
2110 dout("%s %p (was %d)\n", __func__, msg,
2111 kref_read(&msg->kref));
2112 kref_put(&msg->kref, ceph_msg_release);
2113}
2114EXPORT_SYMBOL(ceph_msg_put);
2115
2116void ceph_msg_dump(struct ceph_msg *msg)
2117{
2118 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
2119 msg->front_alloc_len, msg->data_length);
2120 print_hex_dump(KERN_DEBUG, "header: ",
2121 DUMP_PREFIX_OFFSET, 16, 1,
2122 &msg->hdr, sizeof(msg->hdr), true);
2123 print_hex_dump(KERN_DEBUG, " front: ",
2124 DUMP_PREFIX_OFFSET, 16, 1,
2125 msg->front.iov_base, msg->front.iov_len, true);
2126 if (msg->middle)
2127 print_hex_dump(KERN_DEBUG, "middle: ",
2128 DUMP_PREFIX_OFFSET, 16, 1,
2129 msg->middle->vec.iov_base,
2130 msg->middle->vec.iov_len, true);
2131 print_hex_dump(KERN_DEBUG, "footer: ",
2132 DUMP_PREFIX_OFFSET, 16, 1,
2133 &msg->footer, sizeof(msg->footer), true);
2134}
2135EXPORT_SYMBOL(ceph_msg_dump);
1#include <linux/ceph/ceph_debug.h>
2
3#include <linux/crc32c.h>
4#include <linux/ctype.h>
5#include <linux/highmem.h>
6#include <linux/inet.h>
7#include <linux/kthread.h>
8#include <linux/net.h>
9#include <linux/slab.h>
10#include <linux/socket.h>
11#include <linux/string.h>
12#ifdef CONFIG_BLOCK
13#include <linux/bio.h>
14#endif /* CONFIG_BLOCK */
15#include <linux/dns_resolver.h>
16#include <net/tcp.h>
17
18#include <linux/ceph/ceph_features.h>
19#include <linux/ceph/libceph.h>
20#include <linux/ceph/messenger.h>
21#include <linux/ceph/decode.h>
22#include <linux/ceph/pagelist.h>
23#include <linux/export.h>
24
25#define list_entry_next(pos, member) \
26 list_entry(pos->member.next, typeof(*pos), member)
27
28/*
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
34 * the sender.
35 */
36
37/*
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
41 * unexpected state.
42 *
43 * --------
44 * | NEW* | transient initial state
45 * --------
46 * | con_sock_state_init()
47 * v
48 * ----------
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
51 * ^ \
52 * | \ con_sock_state_connecting()
53 * | ----------------------
54 * | \
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
57 * | \ \ \
58 * | ----------- \ \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
61 * | ^ \ |
62 * | | \ |
63 * | + con_sock_state_closing() \ |
64 * | / \ | |
65 * | / --------------- | |
66 * | / \ v v
67 * | / --------------
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
71 * | | v
72 * -------------
73 * | CONNECTED | TCP connection established
74 * -------------
75 *
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77 */
78
79#define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80#define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81#define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82#define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83#define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
84
85/*
86 * connection states
87 */
88#define CON_STATE_CLOSED 1 /* -> PREOPEN */
89#define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
90#define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
91#define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
92#define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
93#define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
94
95/*
96 * ceph_connection flag bits
97 */
98#define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
99 * messages on errors */
100#define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
101#define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
102#define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
103#define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
104
105static bool con_flag_valid(unsigned long con_flag)
106{
107 switch (con_flag) {
108 case CON_FLAG_LOSSYTX:
109 case CON_FLAG_KEEPALIVE_PENDING:
110 case CON_FLAG_WRITE_PENDING:
111 case CON_FLAG_SOCK_CLOSED:
112 case CON_FLAG_BACKOFF:
113 return true;
114 default:
115 return false;
116 }
117}
118
119static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120{
121 BUG_ON(!con_flag_valid(con_flag));
122
123 clear_bit(con_flag, &con->flags);
124}
125
126static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127{
128 BUG_ON(!con_flag_valid(con_flag));
129
130 set_bit(con_flag, &con->flags);
131}
132
133static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134{
135 BUG_ON(!con_flag_valid(con_flag));
136
137 return test_bit(con_flag, &con->flags);
138}
139
140static bool con_flag_test_and_clear(struct ceph_connection *con,
141 unsigned long con_flag)
142{
143 BUG_ON(!con_flag_valid(con_flag));
144
145 return test_and_clear_bit(con_flag, &con->flags);
146}
147
148static bool con_flag_test_and_set(struct ceph_connection *con,
149 unsigned long con_flag)
150{
151 BUG_ON(!con_flag_valid(con_flag));
152
153 return test_and_set_bit(con_flag, &con->flags);
154}
155
156/* Slab caches for frequently-allocated structures */
157
158static struct kmem_cache *ceph_msg_cache;
159static struct kmem_cache *ceph_msg_data_cache;
160
161/* static tag bytes (protocol control messages) */
162static char tag_msg = CEPH_MSGR_TAG_MSG;
163static char tag_ack = CEPH_MSGR_TAG_ACK;
164static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
165
166#ifdef CONFIG_LOCKDEP
167static struct lock_class_key socket_class;
168#endif
169
170/*
171 * When skipping (ignoring) a block of input we read it into a "skip
172 * buffer," which is this many bytes in size.
173 */
174#define SKIP_BUF_SIZE 1024
175
176static void queue_con(struct ceph_connection *con);
177static void con_work(struct work_struct *);
178static void con_fault(struct ceph_connection *con);
179
180/*
181 * Nicely render a sockaddr as a string. An array of formatted
182 * strings is used, to approximate reentrancy.
183 */
184#define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
185#define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
186#define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
187#define MAX_ADDR_STR_LEN 64 /* 54 is enough */
188
189static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
190static atomic_t addr_str_seq = ATOMIC_INIT(0);
191
192static struct page *zero_page; /* used in certain error cases */
193
194const char *ceph_pr_addr(const struct sockaddr_storage *ss)
195{
196 int i;
197 char *s;
198 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
199 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
200
201 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
202 s = addr_str[i];
203
204 switch (ss->ss_family) {
205 case AF_INET:
206 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
207 ntohs(in4->sin_port));
208 break;
209
210 case AF_INET6:
211 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
212 ntohs(in6->sin6_port));
213 break;
214
215 default:
216 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
217 ss->ss_family);
218 }
219
220 return s;
221}
222EXPORT_SYMBOL(ceph_pr_addr);
223
224static void encode_my_addr(struct ceph_messenger *msgr)
225{
226 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
227 ceph_encode_addr(&msgr->my_enc_addr);
228}
229
230/*
231 * work queue for all reading and writing to/from the socket.
232 */
233static struct workqueue_struct *ceph_msgr_wq;
234
235static int ceph_msgr_slab_init(void)
236{
237 BUG_ON(ceph_msg_cache);
238 ceph_msg_cache = kmem_cache_create("ceph_msg",
239 sizeof (struct ceph_msg),
240 __alignof__(struct ceph_msg), 0, NULL);
241
242 if (!ceph_msg_cache)
243 return -ENOMEM;
244
245 BUG_ON(ceph_msg_data_cache);
246 ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
247 sizeof (struct ceph_msg_data),
248 __alignof__(struct ceph_msg_data),
249 0, NULL);
250 if (ceph_msg_data_cache)
251 return 0;
252
253 kmem_cache_destroy(ceph_msg_cache);
254 ceph_msg_cache = NULL;
255
256 return -ENOMEM;
257}
258
259static void ceph_msgr_slab_exit(void)
260{
261 BUG_ON(!ceph_msg_data_cache);
262 kmem_cache_destroy(ceph_msg_data_cache);
263 ceph_msg_data_cache = NULL;
264
265 BUG_ON(!ceph_msg_cache);
266 kmem_cache_destroy(ceph_msg_cache);
267 ceph_msg_cache = NULL;
268}
269
270static void _ceph_msgr_exit(void)
271{
272 if (ceph_msgr_wq) {
273 destroy_workqueue(ceph_msgr_wq);
274 ceph_msgr_wq = NULL;
275 }
276
277 ceph_msgr_slab_exit();
278
279 BUG_ON(zero_page == NULL);
280 kunmap(zero_page);
281 page_cache_release(zero_page);
282 zero_page = NULL;
283}
284
285int ceph_msgr_init(void)
286{
287 BUG_ON(zero_page != NULL);
288 zero_page = ZERO_PAGE(0);
289 page_cache_get(zero_page);
290
291 if (ceph_msgr_slab_init())
292 return -ENOMEM;
293
294 ceph_msgr_wq = alloc_workqueue("ceph-msgr", 0, 0);
295 if (ceph_msgr_wq)
296 return 0;
297
298 pr_err("msgr_init failed to create workqueue\n");
299 _ceph_msgr_exit();
300
301 return -ENOMEM;
302}
303EXPORT_SYMBOL(ceph_msgr_init);
304
305void ceph_msgr_exit(void)
306{
307 BUG_ON(ceph_msgr_wq == NULL);
308
309 _ceph_msgr_exit();
310}
311EXPORT_SYMBOL(ceph_msgr_exit);
312
313void ceph_msgr_flush(void)
314{
315 flush_workqueue(ceph_msgr_wq);
316}
317EXPORT_SYMBOL(ceph_msgr_flush);
318
319/* Connection socket state transition functions */
320
321static void con_sock_state_init(struct ceph_connection *con)
322{
323 int old_state;
324
325 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
326 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
327 printk("%s: unexpected old state %d\n", __func__, old_state);
328 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
329 CON_SOCK_STATE_CLOSED);
330}
331
332static void con_sock_state_connecting(struct ceph_connection *con)
333{
334 int old_state;
335
336 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
337 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
338 printk("%s: unexpected old state %d\n", __func__, old_state);
339 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
340 CON_SOCK_STATE_CONNECTING);
341}
342
343static void con_sock_state_connected(struct ceph_connection *con)
344{
345 int old_state;
346
347 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
348 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
349 printk("%s: unexpected old state %d\n", __func__, old_state);
350 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
351 CON_SOCK_STATE_CONNECTED);
352}
353
354static void con_sock_state_closing(struct ceph_connection *con)
355{
356 int old_state;
357
358 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
359 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
360 old_state != CON_SOCK_STATE_CONNECTED &&
361 old_state != CON_SOCK_STATE_CLOSING))
362 printk("%s: unexpected old state %d\n", __func__, old_state);
363 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
364 CON_SOCK_STATE_CLOSING);
365}
366
367static void con_sock_state_closed(struct ceph_connection *con)
368{
369 int old_state;
370
371 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
372 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
373 old_state != CON_SOCK_STATE_CLOSING &&
374 old_state != CON_SOCK_STATE_CONNECTING &&
375 old_state != CON_SOCK_STATE_CLOSED))
376 printk("%s: unexpected old state %d\n", __func__, old_state);
377 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
378 CON_SOCK_STATE_CLOSED);
379}
380
381/*
382 * socket callback functions
383 */
384
385/* data available on socket, or listen socket received a connect */
386static void ceph_sock_data_ready(struct sock *sk)
387{
388 struct ceph_connection *con = sk->sk_user_data;
389 if (atomic_read(&con->msgr->stopping)) {
390 return;
391 }
392
393 if (sk->sk_state != TCP_CLOSE_WAIT) {
394 dout("%s on %p state = %lu, queueing work\n", __func__,
395 con, con->state);
396 queue_con(con);
397 }
398}
399
400/* socket has buffer space for writing */
401static void ceph_sock_write_space(struct sock *sk)
402{
403 struct ceph_connection *con = sk->sk_user_data;
404
405 /* only queue to workqueue if there is data we want to write,
406 * and there is sufficient space in the socket buffer to accept
407 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
408 * doesn't get called again until try_write() fills the socket
409 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
410 * and net/core/stream.c:sk_stream_write_space().
411 */
412 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
413 if (sk_stream_is_writeable(sk)) {
414 dout("%s %p queueing write work\n", __func__, con);
415 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
416 queue_con(con);
417 }
418 } else {
419 dout("%s %p nothing to write\n", __func__, con);
420 }
421}
422
423/* socket's state has changed */
424static void ceph_sock_state_change(struct sock *sk)
425{
426 struct ceph_connection *con = sk->sk_user_data;
427
428 dout("%s %p state = %lu sk_state = %u\n", __func__,
429 con, con->state, sk->sk_state);
430
431 switch (sk->sk_state) {
432 case TCP_CLOSE:
433 dout("%s TCP_CLOSE\n", __func__);
434 case TCP_CLOSE_WAIT:
435 dout("%s TCP_CLOSE_WAIT\n", __func__);
436 con_sock_state_closing(con);
437 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
438 queue_con(con);
439 break;
440 case TCP_ESTABLISHED:
441 dout("%s TCP_ESTABLISHED\n", __func__);
442 con_sock_state_connected(con);
443 queue_con(con);
444 break;
445 default: /* Everything else is uninteresting */
446 break;
447 }
448}
449
450/*
451 * set up socket callbacks
452 */
453static void set_sock_callbacks(struct socket *sock,
454 struct ceph_connection *con)
455{
456 struct sock *sk = sock->sk;
457 sk->sk_user_data = con;
458 sk->sk_data_ready = ceph_sock_data_ready;
459 sk->sk_write_space = ceph_sock_write_space;
460 sk->sk_state_change = ceph_sock_state_change;
461}
462
463
464/*
465 * socket helpers
466 */
467
468/*
469 * initiate connection to a remote socket.
470 */
471static int ceph_tcp_connect(struct ceph_connection *con)
472{
473 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
474 struct socket *sock;
475 int ret;
476
477 BUG_ON(con->sock);
478 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
479 IPPROTO_TCP, &sock);
480 if (ret)
481 return ret;
482 sock->sk->sk_allocation = GFP_NOFS;
483
484#ifdef CONFIG_LOCKDEP
485 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
486#endif
487
488 set_sock_callbacks(sock, con);
489
490 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
491
492 con_sock_state_connecting(con);
493 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
494 O_NONBLOCK);
495 if (ret == -EINPROGRESS) {
496 dout("connect %s EINPROGRESS sk_state = %u\n",
497 ceph_pr_addr(&con->peer_addr.in_addr),
498 sock->sk->sk_state);
499 } else if (ret < 0) {
500 pr_err("connect %s error %d\n",
501 ceph_pr_addr(&con->peer_addr.in_addr), ret);
502 sock_release(sock);
503 con->error_msg = "connect error";
504
505 return ret;
506 }
507 con->sock = sock;
508 return 0;
509}
510
511static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
512{
513 struct kvec iov = {buf, len};
514 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
515 int r;
516
517 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
518 if (r == -EAGAIN)
519 r = 0;
520 return r;
521}
522
523static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
524 int page_offset, size_t length)
525{
526 void *kaddr;
527 int ret;
528
529 BUG_ON(page_offset + length > PAGE_SIZE);
530
531 kaddr = kmap(page);
532 BUG_ON(!kaddr);
533 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
534 kunmap(page);
535
536 return ret;
537}
538
539/*
540 * write something. @more is true if caller will be sending more data
541 * shortly.
542 */
543static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
544 size_t kvlen, size_t len, int more)
545{
546 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
547 int r;
548
549 if (more)
550 msg.msg_flags |= MSG_MORE;
551 else
552 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
553
554 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
555 if (r == -EAGAIN)
556 r = 0;
557 return r;
558}
559
560static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
561 int offset, size_t size, bool more)
562{
563 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
564 int ret;
565
566 ret = kernel_sendpage(sock, page, offset, size, flags);
567 if (ret == -EAGAIN)
568 ret = 0;
569
570 return ret;
571}
572
573static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
574 int offset, size_t size, bool more)
575{
576 int ret;
577 struct kvec iov;
578
579 /* sendpage cannot properly handle pages with page_count == 0,
580 * we need to fallback to sendmsg if that's the case */
581 if (page_count(page) >= 1)
582 return __ceph_tcp_sendpage(sock, page, offset, size, more);
583
584 iov.iov_base = kmap(page) + offset;
585 iov.iov_len = size;
586 ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
587 kunmap(page);
588
589 return ret;
590}
591
592/*
593 * Shutdown/close the socket for the given connection.
594 */
595static int con_close_socket(struct ceph_connection *con)
596{
597 int rc = 0;
598
599 dout("con_close_socket on %p sock %p\n", con, con->sock);
600 if (con->sock) {
601 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
602 sock_release(con->sock);
603 con->sock = NULL;
604 }
605
606 /*
607 * Forcibly clear the SOCK_CLOSED flag. It gets set
608 * independent of the connection mutex, and we could have
609 * received a socket close event before we had the chance to
610 * shut the socket down.
611 */
612 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
613
614 con_sock_state_closed(con);
615 return rc;
616}
617
618/*
619 * Reset a connection. Discard all incoming and outgoing messages
620 * and clear *_seq state.
621 */
622static void ceph_msg_remove(struct ceph_msg *msg)
623{
624 list_del_init(&msg->list_head);
625 BUG_ON(msg->con == NULL);
626 msg->con->ops->put(msg->con);
627 msg->con = NULL;
628
629 ceph_msg_put(msg);
630}
631static void ceph_msg_remove_list(struct list_head *head)
632{
633 while (!list_empty(head)) {
634 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
635 list_head);
636 ceph_msg_remove(msg);
637 }
638}
639
640static void reset_connection(struct ceph_connection *con)
641{
642 /* reset connection, out_queue, msg_ and connect_seq */
643 /* discard existing out_queue and msg_seq */
644 dout("reset_connection %p\n", con);
645 ceph_msg_remove_list(&con->out_queue);
646 ceph_msg_remove_list(&con->out_sent);
647
648 if (con->in_msg) {
649 BUG_ON(con->in_msg->con != con);
650 con->in_msg->con = NULL;
651 ceph_msg_put(con->in_msg);
652 con->in_msg = NULL;
653 con->ops->put(con);
654 }
655
656 con->connect_seq = 0;
657 con->out_seq = 0;
658 if (con->out_msg) {
659 ceph_msg_put(con->out_msg);
660 con->out_msg = NULL;
661 }
662 con->in_seq = 0;
663 con->in_seq_acked = 0;
664}
665
666/*
667 * mark a peer down. drop any open connections.
668 */
669void ceph_con_close(struct ceph_connection *con)
670{
671 mutex_lock(&con->mutex);
672 dout("con_close %p peer %s\n", con,
673 ceph_pr_addr(&con->peer_addr.in_addr));
674 con->state = CON_STATE_CLOSED;
675
676 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
677 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
678 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
679 con_flag_clear(con, CON_FLAG_BACKOFF);
680
681 reset_connection(con);
682 con->peer_global_seq = 0;
683 cancel_delayed_work(&con->work);
684 con_close_socket(con);
685 mutex_unlock(&con->mutex);
686}
687EXPORT_SYMBOL(ceph_con_close);
688
689/*
690 * Reopen a closed connection, with a new peer address.
691 */
692void ceph_con_open(struct ceph_connection *con,
693 __u8 entity_type, __u64 entity_num,
694 struct ceph_entity_addr *addr)
695{
696 mutex_lock(&con->mutex);
697 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
698
699 WARN_ON(con->state != CON_STATE_CLOSED);
700 con->state = CON_STATE_PREOPEN;
701
702 con->peer_name.type = (__u8) entity_type;
703 con->peer_name.num = cpu_to_le64(entity_num);
704
705 memcpy(&con->peer_addr, addr, sizeof(*addr));
706 con->delay = 0; /* reset backoff memory */
707 mutex_unlock(&con->mutex);
708 queue_con(con);
709}
710EXPORT_SYMBOL(ceph_con_open);
711
712/*
713 * return true if this connection ever successfully opened
714 */
715bool ceph_con_opened(struct ceph_connection *con)
716{
717 return con->connect_seq > 0;
718}
719
720/*
721 * initialize a new connection.
722 */
723void ceph_con_init(struct ceph_connection *con, void *private,
724 const struct ceph_connection_operations *ops,
725 struct ceph_messenger *msgr)
726{
727 dout("con_init %p\n", con);
728 memset(con, 0, sizeof(*con));
729 con->private = private;
730 con->ops = ops;
731 con->msgr = msgr;
732
733 con_sock_state_init(con);
734
735 mutex_init(&con->mutex);
736 INIT_LIST_HEAD(&con->out_queue);
737 INIT_LIST_HEAD(&con->out_sent);
738 INIT_DELAYED_WORK(&con->work, con_work);
739
740 con->state = CON_STATE_CLOSED;
741}
742EXPORT_SYMBOL(ceph_con_init);
743
744
745/*
746 * We maintain a global counter to order connection attempts. Get
747 * a unique seq greater than @gt.
748 */
749static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
750{
751 u32 ret;
752
753 spin_lock(&msgr->global_seq_lock);
754 if (msgr->global_seq < gt)
755 msgr->global_seq = gt;
756 ret = ++msgr->global_seq;
757 spin_unlock(&msgr->global_seq_lock);
758 return ret;
759}
760
761static void con_out_kvec_reset(struct ceph_connection *con)
762{
763 con->out_kvec_left = 0;
764 con->out_kvec_bytes = 0;
765 con->out_kvec_cur = &con->out_kvec[0];
766}
767
768static void con_out_kvec_add(struct ceph_connection *con,
769 size_t size, void *data)
770{
771 int index;
772
773 index = con->out_kvec_left;
774 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
775
776 con->out_kvec[index].iov_len = size;
777 con->out_kvec[index].iov_base = data;
778 con->out_kvec_left++;
779 con->out_kvec_bytes += size;
780}
781
782#ifdef CONFIG_BLOCK
783
784/*
785 * For a bio data item, a piece is whatever remains of the next
786 * entry in the current bio iovec, or the first entry in the next
787 * bio in the list.
788 */
789static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
790 size_t length)
791{
792 struct ceph_msg_data *data = cursor->data;
793 struct bio *bio;
794
795 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
796
797 bio = data->bio;
798 BUG_ON(!bio);
799
800 cursor->resid = min(length, data->bio_length);
801 cursor->bio = bio;
802 cursor->bvec_iter = bio->bi_iter;
803 cursor->last_piece =
804 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
805}
806
807static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
808 size_t *page_offset,
809 size_t *length)
810{
811 struct ceph_msg_data *data = cursor->data;
812 struct bio *bio;
813 struct bio_vec bio_vec;
814
815 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
816
817 bio = cursor->bio;
818 BUG_ON(!bio);
819
820 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
821
822 *page_offset = (size_t) bio_vec.bv_offset;
823 BUG_ON(*page_offset >= PAGE_SIZE);
824 if (cursor->last_piece) /* pagelist offset is always 0 */
825 *length = cursor->resid;
826 else
827 *length = (size_t) bio_vec.bv_len;
828 BUG_ON(*length > cursor->resid);
829 BUG_ON(*page_offset + *length > PAGE_SIZE);
830
831 return bio_vec.bv_page;
832}
833
834static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
835 size_t bytes)
836{
837 struct bio *bio;
838 struct bio_vec bio_vec;
839
840 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
841
842 bio = cursor->bio;
843 BUG_ON(!bio);
844
845 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
846
847 /* Advance the cursor offset */
848
849 BUG_ON(cursor->resid < bytes);
850 cursor->resid -= bytes;
851
852 bio_advance_iter(bio, &cursor->bvec_iter, bytes);
853
854 if (bytes < bio_vec.bv_len)
855 return false; /* more bytes to process in this segment */
856
857 /* Move on to the next segment, and possibly the next bio */
858
859 if (!cursor->bvec_iter.bi_size) {
860 bio = bio->bi_next;
861 cursor->bio = bio;
862 if (bio)
863 cursor->bvec_iter = bio->bi_iter;
864 else
865 memset(&cursor->bvec_iter, 0,
866 sizeof(cursor->bvec_iter));
867 }
868
869 if (!cursor->last_piece) {
870 BUG_ON(!cursor->resid);
871 BUG_ON(!bio);
872 /* A short read is OK, so use <= rather than == */
873 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
874 cursor->last_piece = true;
875 }
876
877 return true;
878}
879#endif /* CONFIG_BLOCK */
880
881/*
882 * For a page array, a piece comes from the first page in the array
883 * that has not already been fully consumed.
884 */
885static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
886 size_t length)
887{
888 struct ceph_msg_data *data = cursor->data;
889 int page_count;
890
891 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
892
893 BUG_ON(!data->pages);
894 BUG_ON(!data->length);
895
896 cursor->resid = min(length, data->length);
897 page_count = calc_pages_for(data->alignment, (u64)data->length);
898 cursor->page_offset = data->alignment & ~PAGE_MASK;
899 cursor->page_index = 0;
900 BUG_ON(page_count > (int)USHRT_MAX);
901 cursor->page_count = (unsigned short)page_count;
902 BUG_ON(length > SIZE_MAX - cursor->page_offset);
903 cursor->last_piece = (size_t)cursor->page_offset + length <= PAGE_SIZE;
904}
905
906static struct page *
907ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
908 size_t *page_offset, size_t *length)
909{
910 struct ceph_msg_data *data = cursor->data;
911
912 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
913
914 BUG_ON(cursor->page_index >= cursor->page_count);
915 BUG_ON(cursor->page_offset >= PAGE_SIZE);
916
917 *page_offset = cursor->page_offset;
918 if (cursor->last_piece)
919 *length = cursor->resid;
920 else
921 *length = PAGE_SIZE - *page_offset;
922
923 return data->pages[cursor->page_index];
924}
925
926static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
927 size_t bytes)
928{
929 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
930
931 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
932
933 /* Advance the cursor page offset */
934
935 cursor->resid -= bytes;
936 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
937 if (!bytes || cursor->page_offset)
938 return false; /* more bytes to process in the current page */
939
940 if (!cursor->resid)
941 return false; /* no more data */
942
943 /* Move on to the next page; offset is already at 0 */
944
945 BUG_ON(cursor->page_index >= cursor->page_count);
946 cursor->page_index++;
947 cursor->last_piece = cursor->resid <= PAGE_SIZE;
948
949 return true;
950}
951
952/*
953 * For a pagelist, a piece is whatever remains to be consumed in the
954 * first page in the list, or the front of the next page.
955 */
956static void
957ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
958 size_t length)
959{
960 struct ceph_msg_data *data = cursor->data;
961 struct ceph_pagelist *pagelist;
962 struct page *page;
963
964 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
965
966 pagelist = data->pagelist;
967 BUG_ON(!pagelist);
968
969 if (!length)
970 return; /* pagelist can be assigned but empty */
971
972 BUG_ON(list_empty(&pagelist->head));
973 page = list_first_entry(&pagelist->head, struct page, lru);
974
975 cursor->resid = min(length, pagelist->length);
976 cursor->page = page;
977 cursor->offset = 0;
978 cursor->last_piece = cursor->resid <= PAGE_SIZE;
979}
980
981static struct page *
982ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
983 size_t *page_offset, size_t *length)
984{
985 struct ceph_msg_data *data = cursor->data;
986 struct ceph_pagelist *pagelist;
987
988 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
989
990 pagelist = data->pagelist;
991 BUG_ON(!pagelist);
992
993 BUG_ON(!cursor->page);
994 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
995
996 /* offset of first page in pagelist is always 0 */
997 *page_offset = cursor->offset & ~PAGE_MASK;
998 if (cursor->last_piece)
999 *length = cursor->resid;
1000 else
1001 *length = PAGE_SIZE - *page_offset;
1002
1003 return cursor->page;
1004}
1005
1006static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1007 size_t bytes)
1008{
1009 struct ceph_msg_data *data = cursor->data;
1010 struct ceph_pagelist *pagelist;
1011
1012 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1013
1014 pagelist = data->pagelist;
1015 BUG_ON(!pagelist);
1016
1017 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1018 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1019
1020 /* Advance the cursor offset */
1021
1022 cursor->resid -= bytes;
1023 cursor->offset += bytes;
1024 /* offset of first page in pagelist is always 0 */
1025 if (!bytes || cursor->offset & ~PAGE_MASK)
1026 return false; /* more bytes to process in the current page */
1027
1028 if (!cursor->resid)
1029 return false; /* no more data */
1030
1031 /* Move on to the next page */
1032
1033 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1034 cursor->page = list_entry_next(cursor->page, lru);
1035 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1036
1037 return true;
1038}
1039
1040/*
1041 * Message data is handled (sent or received) in pieces, where each
1042 * piece resides on a single page. The network layer might not
1043 * consume an entire piece at once. A data item's cursor keeps
1044 * track of which piece is next to process and how much remains to
1045 * be processed in that piece. It also tracks whether the current
1046 * piece is the last one in the data item.
1047 */
1048static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1049{
1050 size_t length = cursor->total_resid;
1051
1052 switch (cursor->data->type) {
1053 case CEPH_MSG_DATA_PAGELIST:
1054 ceph_msg_data_pagelist_cursor_init(cursor, length);
1055 break;
1056 case CEPH_MSG_DATA_PAGES:
1057 ceph_msg_data_pages_cursor_init(cursor, length);
1058 break;
1059#ifdef CONFIG_BLOCK
1060 case CEPH_MSG_DATA_BIO:
1061 ceph_msg_data_bio_cursor_init(cursor, length);
1062 break;
1063#endif /* CONFIG_BLOCK */
1064 case CEPH_MSG_DATA_NONE:
1065 default:
1066 /* BUG(); */
1067 break;
1068 }
1069 cursor->need_crc = true;
1070}
1071
1072static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1073{
1074 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1075 struct ceph_msg_data *data;
1076
1077 BUG_ON(!length);
1078 BUG_ON(length > msg->data_length);
1079 BUG_ON(list_empty(&msg->data));
1080
1081 cursor->data_head = &msg->data;
1082 cursor->total_resid = length;
1083 data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1084 cursor->data = data;
1085
1086 __ceph_msg_data_cursor_init(cursor);
1087}
1088
1089/*
1090 * Return the page containing the next piece to process for a given
1091 * data item, and supply the page offset and length of that piece.
1092 * Indicate whether this is the last piece in this data item.
1093 */
1094static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1095 size_t *page_offset, size_t *length,
1096 bool *last_piece)
1097{
1098 struct page *page;
1099
1100 switch (cursor->data->type) {
1101 case CEPH_MSG_DATA_PAGELIST:
1102 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1103 break;
1104 case CEPH_MSG_DATA_PAGES:
1105 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1106 break;
1107#ifdef CONFIG_BLOCK
1108 case CEPH_MSG_DATA_BIO:
1109 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1110 break;
1111#endif /* CONFIG_BLOCK */
1112 case CEPH_MSG_DATA_NONE:
1113 default:
1114 page = NULL;
1115 break;
1116 }
1117 BUG_ON(!page);
1118 BUG_ON(*page_offset + *length > PAGE_SIZE);
1119 BUG_ON(!*length);
1120 if (last_piece)
1121 *last_piece = cursor->last_piece;
1122
1123 return page;
1124}
1125
1126/*
1127 * Returns true if the result moves the cursor on to the next piece
1128 * of the data item.
1129 */
1130static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1131 size_t bytes)
1132{
1133 bool new_piece;
1134
1135 BUG_ON(bytes > cursor->resid);
1136 switch (cursor->data->type) {
1137 case CEPH_MSG_DATA_PAGELIST:
1138 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1139 break;
1140 case CEPH_MSG_DATA_PAGES:
1141 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1142 break;
1143#ifdef CONFIG_BLOCK
1144 case CEPH_MSG_DATA_BIO:
1145 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1146 break;
1147#endif /* CONFIG_BLOCK */
1148 case CEPH_MSG_DATA_NONE:
1149 default:
1150 BUG();
1151 break;
1152 }
1153 cursor->total_resid -= bytes;
1154
1155 if (!cursor->resid && cursor->total_resid) {
1156 WARN_ON(!cursor->last_piece);
1157 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1158 cursor->data = list_entry_next(cursor->data, links);
1159 __ceph_msg_data_cursor_init(cursor);
1160 new_piece = true;
1161 }
1162 cursor->need_crc = new_piece;
1163
1164 return new_piece;
1165}
1166
1167static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1168{
1169 BUG_ON(!msg);
1170 BUG_ON(!data_len);
1171
1172 /* Initialize data cursor */
1173
1174 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1175}
1176
1177/*
1178 * Prepare footer for currently outgoing message, and finish things
1179 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1180 */
1181static void prepare_write_message_footer(struct ceph_connection *con)
1182{
1183 struct ceph_msg *m = con->out_msg;
1184 int v = con->out_kvec_left;
1185
1186 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1187
1188 dout("prepare_write_message_footer %p\n", con);
1189 con->out_kvec_is_msg = true;
1190 con->out_kvec[v].iov_base = &m->footer;
1191 con->out_kvec[v].iov_len = sizeof(m->footer);
1192 con->out_kvec_bytes += sizeof(m->footer);
1193 con->out_kvec_left++;
1194 con->out_more = m->more_to_follow;
1195 con->out_msg_done = true;
1196}
1197
1198/*
1199 * Prepare headers for the next outgoing message.
1200 */
1201static void prepare_write_message(struct ceph_connection *con)
1202{
1203 struct ceph_msg *m;
1204 u32 crc;
1205
1206 con_out_kvec_reset(con);
1207 con->out_kvec_is_msg = true;
1208 con->out_msg_done = false;
1209
1210 /* Sneak an ack in there first? If we can get it into the same
1211 * TCP packet that's a good thing. */
1212 if (con->in_seq > con->in_seq_acked) {
1213 con->in_seq_acked = con->in_seq;
1214 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1215 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1216 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1217 &con->out_temp_ack);
1218 }
1219
1220 BUG_ON(list_empty(&con->out_queue));
1221 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1222 con->out_msg = m;
1223 BUG_ON(m->con != con);
1224
1225 /* put message on sent list */
1226 ceph_msg_get(m);
1227 list_move_tail(&m->list_head, &con->out_sent);
1228
1229 /*
1230 * only assign outgoing seq # if we haven't sent this message
1231 * yet. if it is requeued, resend with it's original seq.
1232 */
1233 if (m->needs_out_seq) {
1234 m->hdr.seq = cpu_to_le64(++con->out_seq);
1235 m->needs_out_seq = false;
1236 }
1237 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1238
1239 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1240 m, con->out_seq, le16_to_cpu(m->hdr.type),
1241 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1242 m->data_length);
1243 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1244
1245 /* tag + hdr + front + middle */
1246 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1247 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1248 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1249
1250 if (m->middle)
1251 con_out_kvec_add(con, m->middle->vec.iov_len,
1252 m->middle->vec.iov_base);
1253
1254 /* fill in crc (except data pages), footer */
1255 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1256 con->out_msg->hdr.crc = cpu_to_le32(crc);
1257 con->out_msg->footer.flags = 0;
1258
1259 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1260 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1261 if (m->middle) {
1262 crc = crc32c(0, m->middle->vec.iov_base,
1263 m->middle->vec.iov_len);
1264 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1265 } else
1266 con->out_msg->footer.middle_crc = 0;
1267 dout("%s front_crc %u middle_crc %u\n", __func__,
1268 le32_to_cpu(con->out_msg->footer.front_crc),
1269 le32_to_cpu(con->out_msg->footer.middle_crc));
1270
1271 /* is there a data payload? */
1272 con->out_msg->footer.data_crc = 0;
1273 if (m->data_length) {
1274 prepare_message_data(con->out_msg, m->data_length);
1275 con->out_more = 1; /* data + footer will follow */
1276 } else {
1277 /* no, queue up footer too and be done */
1278 prepare_write_message_footer(con);
1279 }
1280
1281 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1282}
1283
1284/*
1285 * Prepare an ack.
1286 */
1287static void prepare_write_ack(struct ceph_connection *con)
1288{
1289 dout("prepare_write_ack %p %llu -> %llu\n", con,
1290 con->in_seq_acked, con->in_seq);
1291 con->in_seq_acked = con->in_seq;
1292
1293 con_out_kvec_reset(con);
1294
1295 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1296
1297 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1298 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1299 &con->out_temp_ack);
1300
1301 con->out_more = 1; /* more will follow.. eventually.. */
1302 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1303}
1304
1305/*
1306 * Prepare to share the seq during handshake
1307 */
1308static void prepare_write_seq(struct ceph_connection *con)
1309{
1310 dout("prepare_write_seq %p %llu -> %llu\n", con,
1311 con->in_seq_acked, con->in_seq);
1312 con->in_seq_acked = con->in_seq;
1313
1314 con_out_kvec_reset(con);
1315
1316 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1317 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1318 &con->out_temp_ack);
1319
1320 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1321}
1322
1323/*
1324 * Prepare to write keepalive byte.
1325 */
1326static void prepare_write_keepalive(struct ceph_connection *con)
1327{
1328 dout("prepare_write_keepalive %p\n", con);
1329 con_out_kvec_reset(con);
1330 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1331 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1332}
1333
1334/*
1335 * Connection negotiation.
1336 */
1337
1338static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1339 int *auth_proto)
1340{
1341 struct ceph_auth_handshake *auth;
1342
1343 if (!con->ops->get_authorizer) {
1344 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1345 con->out_connect.authorizer_len = 0;
1346 return NULL;
1347 }
1348
1349 /* Can't hold the mutex while getting authorizer */
1350 mutex_unlock(&con->mutex);
1351 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1352 mutex_lock(&con->mutex);
1353
1354 if (IS_ERR(auth))
1355 return auth;
1356 if (con->state != CON_STATE_NEGOTIATING)
1357 return ERR_PTR(-EAGAIN);
1358
1359 con->auth_reply_buf = auth->authorizer_reply_buf;
1360 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1361 return auth;
1362}
1363
1364/*
1365 * We connected to a peer and are saying hello.
1366 */
1367static void prepare_write_banner(struct ceph_connection *con)
1368{
1369 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1370 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1371 &con->msgr->my_enc_addr);
1372
1373 con->out_more = 0;
1374 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1375}
1376
1377static int prepare_write_connect(struct ceph_connection *con)
1378{
1379 unsigned int global_seq = get_global_seq(con->msgr, 0);
1380 int proto;
1381 int auth_proto;
1382 struct ceph_auth_handshake *auth;
1383
1384 switch (con->peer_name.type) {
1385 case CEPH_ENTITY_TYPE_MON:
1386 proto = CEPH_MONC_PROTOCOL;
1387 break;
1388 case CEPH_ENTITY_TYPE_OSD:
1389 proto = CEPH_OSDC_PROTOCOL;
1390 break;
1391 case CEPH_ENTITY_TYPE_MDS:
1392 proto = CEPH_MDSC_PROTOCOL;
1393 break;
1394 default:
1395 BUG();
1396 }
1397
1398 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1399 con->connect_seq, global_seq, proto);
1400
1401 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1402 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1403 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1404 con->out_connect.global_seq = cpu_to_le32(global_seq);
1405 con->out_connect.protocol_version = cpu_to_le32(proto);
1406 con->out_connect.flags = 0;
1407
1408 auth_proto = CEPH_AUTH_UNKNOWN;
1409 auth = get_connect_authorizer(con, &auth_proto);
1410 if (IS_ERR(auth))
1411 return PTR_ERR(auth);
1412
1413 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1414 con->out_connect.authorizer_len = auth ?
1415 cpu_to_le32(auth->authorizer_buf_len) : 0;
1416
1417 con_out_kvec_add(con, sizeof (con->out_connect),
1418 &con->out_connect);
1419 if (auth && auth->authorizer_buf_len)
1420 con_out_kvec_add(con, auth->authorizer_buf_len,
1421 auth->authorizer_buf);
1422
1423 con->out_more = 0;
1424 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1425
1426 return 0;
1427}
1428
1429/*
1430 * write as much of pending kvecs to the socket as we can.
1431 * 1 -> done
1432 * 0 -> socket full, but more to do
1433 * <0 -> error
1434 */
1435static int write_partial_kvec(struct ceph_connection *con)
1436{
1437 int ret;
1438
1439 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1440 while (con->out_kvec_bytes > 0) {
1441 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1442 con->out_kvec_left, con->out_kvec_bytes,
1443 con->out_more);
1444 if (ret <= 0)
1445 goto out;
1446 con->out_kvec_bytes -= ret;
1447 if (con->out_kvec_bytes == 0)
1448 break; /* done */
1449
1450 /* account for full iov entries consumed */
1451 while (ret >= con->out_kvec_cur->iov_len) {
1452 BUG_ON(!con->out_kvec_left);
1453 ret -= con->out_kvec_cur->iov_len;
1454 con->out_kvec_cur++;
1455 con->out_kvec_left--;
1456 }
1457 /* and for a partially-consumed entry */
1458 if (ret) {
1459 con->out_kvec_cur->iov_len -= ret;
1460 con->out_kvec_cur->iov_base += ret;
1461 }
1462 }
1463 con->out_kvec_left = 0;
1464 con->out_kvec_is_msg = false;
1465 ret = 1;
1466out:
1467 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1468 con->out_kvec_bytes, con->out_kvec_left, ret);
1469 return ret; /* done! */
1470}
1471
1472static u32 ceph_crc32c_page(u32 crc, struct page *page,
1473 unsigned int page_offset,
1474 unsigned int length)
1475{
1476 char *kaddr;
1477
1478 kaddr = kmap(page);
1479 BUG_ON(kaddr == NULL);
1480 crc = crc32c(crc, kaddr + page_offset, length);
1481 kunmap(page);
1482
1483 return crc;
1484}
1485/*
1486 * Write as much message data payload as we can. If we finish, queue
1487 * up the footer.
1488 * 1 -> done, footer is now queued in out_kvec[].
1489 * 0 -> socket full, but more to do
1490 * <0 -> error
1491 */
1492static int write_partial_message_data(struct ceph_connection *con)
1493{
1494 struct ceph_msg *msg = con->out_msg;
1495 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1496 bool do_datacrc = !con->msgr->nocrc;
1497 u32 crc;
1498
1499 dout("%s %p msg %p\n", __func__, con, msg);
1500
1501 if (list_empty(&msg->data))
1502 return -EINVAL;
1503
1504 /*
1505 * Iterate through each page that contains data to be
1506 * written, and send as much as possible for each.
1507 *
1508 * If we are calculating the data crc (the default), we will
1509 * need to map the page. If we have no pages, they have
1510 * been revoked, so use the zero page.
1511 */
1512 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1513 while (cursor->resid) {
1514 struct page *page;
1515 size_t page_offset;
1516 size_t length;
1517 bool last_piece;
1518 bool need_crc;
1519 int ret;
1520
1521 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1522 &last_piece);
1523 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1524 length, last_piece);
1525 if (ret <= 0) {
1526 if (do_datacrc)
1527 msg->footer.data_crc = cpu_to_le32(crc);
1528
1529 return ret;
1530 }
1531 if (do_datacrc && cursor->need_crc)
1532 crc = ceph_crc32c_page(crc, page, page_offset, length);
1533 need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1534 }
1535
1536 dout("%s %p msg %p done\n", __func__, con, msg);
1537
1538 /* prepare and queue up footer, too */
1539 if (do_datacrc)
1540 msg->footer.data_crc = cpu_to_le32(crc);
1541 else
1542 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1543 con_out_kvec_reset(con);
1544 prepare_write_message_footer(con);
1545
1546 return 1; /* must return > 0 to indicate success */
1547}
1548
1549/*
1550 * write some zeros
1551 */
1552static int write_partial_skip(struct ceph_connection *con)
1553{
1554 int ret;
1555
1556 while (con->out_skip > 0) {
1557 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1558
1559 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1560 if (ret <= 0)
1561 goto out;
1562 con->out_skip -= ret;
1563 }
1564 ret = 1;
1565out:
1566 return ret;
1567}
1568
1569/*
1570 * Prepare to read connection handshake, or an ack.
1571 */
1572static void prepare_read_banner(struct ceph_connection *con)
1573{
1574 dout("prepare_read_banner %p\n", con);
1575 con->in_base_pos = 0;
1576}
1577
1578static void prepare_read_connect(struct ceph_connection *con)
1579{
1580 dout("prepare_read_connect %p\n", con);
1581 con->in_base_pos = 0;
1582}
1583
1584static void prepare_read_ack(struct ceph_connection *con)
1585{
1586 dout("prepare_read_ack %p\n", con);
1587 con->in_base_pos = 0;
1588}
1589
1590static void prepare_read_seq(struct ceph_connection *con)
1591{
1592 dout("prepare_read_seq %p\n", con);
1593 con->in_base_pos = 0;
1594 con->in_tag = CEPH_MSGR_TAG_SEQ;
1595}
1596
1597static void prepare_read_tag(struct ceph_connection *con)
1598{
1599 dout("prepare_read_tag %p\n", con);
1600 con->in_base_pos = 0;
1601 con->in_tag = CEPH_MSGR_TAG_READY;
1602}
1603
1604/*
1605 * Prepare to read a message.
1606 */
1607static int prepare_read_message(struct ceph_connection *con)
1608{
1609 dout("prepare_read_message %p\n", con);
1610 BUG_ON(con->in_msg != NULL);
1611 con->in_base_pos = 0;
1612 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1613 return 0;
1614}
1615
1616
1617static int read_partial(struct ceph_connection *con,
1618 int end, int size, void *object)
1619{
1620 while (con->in_base_pos < end) {
1621 int left = end - con->in_base_pos;
1622 int have = size - left;
1623 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1624 if (ret <= 0)
1625 return ret;
1626 con->in_base_pos += ret;
1627 }
1628 return 1;
1629}
1630
1631
1632/*
1633 * Read all or part of the connect-side handshake on a new connection
1634 */
1635static int read_partial_banner(struct ceph_connection *con)
1636{
1637 int size;
1638 int end;
1639 int ret;
1640
1641 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1642
1643 /* peer's banner */
1644 size = strlen(CEPH_BANNER);
1645 end = size;
1646 ret = read_partial(con, end, size, con->in_banner);
1647 if (ret <= 0)
1648 goto out;
1649
1650 size = sizeof (con->actual_peer_addr);
1651 end += size;
1652 ret = read_partial(con, end, size, &con->actual_peer_addr);
1653 if (ret <= 0)
1654 goto out;
1655
1656 size = sizeof (con->peer_addr_for_me);
1657 end += size;
1658 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1659 if (ret <= 0)
1660 goto out;
1661
1662out:
1663 return ret;
1664}
1665
1666static int read_partial_connect(struct ceph_connection *con)
1667{
1668 int size;
1669 int end;
1670 int ret;
1671
1672 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1673
1674 size = sizeof (con->in_reply);
1675 end = size;
1676 ret = read_partial(con, end, size, &con->in_reply);
1677 if (ret <= 0)
1678 goto out;
1679
1680 size = le32_to_cpu(con->in_reply.authorizer_len);
1681 end += size;
1682 ret = read_partial(con, end, size, con->auth_reply_buf);
1683 if (ret <= 0)
1684 goto out;
1685
1686 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1687 con, (int)con->in_reply.tag,
1688 le32_to_cpu(con->in_reply.connect_seq),
1689 le32_to_cpu(con->in_reply.global_seq));
1690out:
1691 return ret;
1692
1693}
1694
1695/*
1696 * Verify the hello banner looks okay.
1697 */
1698static int verify_hello(struct ceph_connection *con)
1699{
1700 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1701 pr_err("connect to %s got bad banner\n",
1702 ceph_pr_addr(&con->peer_addr.in_addr));
1703 con->error_msg = "protocol error, bad banner";
1704 return -1;
1705 }
1706 return 0;
1707}
1708
1709static bool addr_is_blank(struct sockaddr_storage *ss)
1710{
1711 switch (ss->ss_family) {
1712 case AF_INET:
1713 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1714 case AF_INET6:
1715 return
1716 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1717 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1718 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1719 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1720 }
1721 return false;
1722}
1723
1724static int addr_port(struct sockaddr_storage *ss)
1725{
1726 switch (ss->ss_family) {
1727 case AF_INET:
1728 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1729 case AF_INET6:
1730 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1731 }
1732 return 0;
1733}
1734
1735static void addr_set_port(struct sockaddr_storage *ss, int p)
1736{
1737 switch (ss->ss_family) {
1738 case AF_INET:
1739 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1740 break;
1741 case AF_INET6:
1742 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1743 break;
1744 }
1745}
1746
1747/*
1748 * Unlike other *_pton function semantics, zero indicates success.
1749 */
1750static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1751 char delim, const char **ipend)
1752{
1753 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1754 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1755
1756 memset(ss, 0, sizeof(*ss));
1757
1758 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1759 ss->ss_family = AF_INET;
1760 return 0;
1761 }
1762
1763 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1764 ss->ss_family = AF_INET6;
1765 return 0;
1766 }
1767
1768 return -EINVAL;
1769}
1770
1771/*
1772 * Extract hostname string and resolve using kernel DNS facility.
1773 */
1774#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1775static int ceph_dns_resolve_name(const char *name, size_t namelen,
1776 struct sockaddr_storage *ss, char delim, const char **ipend)
1777{
1778 const char *end, *delim_p;
1779 char *colon_p, *ip_addr = NULL;
1780 int ip_len, ret;
1781
1782 /*
1783 * The end of the hostname occurs immediately preceding the delimiter or
1784 * the port marker (':') where the delimiter takes precedence.
1785 */
1786 delim_p = memchr(name, delim, namelen);
1787 colon_p = memchr(name, ':', namelen);
1788
1789 if (delim_p && colon_p)
1790 end = delim_p < colon_p ? delim_p : colon_p;
1791 else if (!delim_p && colon_p)
1792 end = colon_p;
1793 else {
1794 end = delim_p;
1795 if (!end) /* case: hostname:/ */
1796 end = name + namelen;
1797 }
1798
1799 if (end <= name)
1800 return -EINVAL;
1801
1802 /* do dns_resolve upcall */
1803 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1804 if (ip_len > 0)
1805 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1806 else
1807 ret = -ESRCH;
1808
1809 kfree(ip_addr);
1810
1811 *ipend = end;
1812
1813 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1814 ret, ret ? "failed" : ceph_pr_addr(ss));
1815
1816 return ret;
1817}
1818#else
1819static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1820 struct sockaddr_storage *ss, char delim, const char **ipend)
1821{
1822 return -EINVAL;
1823}
1824#endif
1825
1826/*
1827 * Parse a server name (IP or hostname). If a valid IP address is not found
1828 * then try to extract a hostname to resolve using userspace DNS upcall.
1829 */
1830static int ceph_parse_server_name(const char *name, size_t namelen,
1831 struct sockaddr_storage *ss, char delim, const char **ipend)
1832{
1833 int ret;
1834
1835 ret = ceph_pton(name, namelen, ss, delim, ipend);
1836 if (ret)
1837 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1838
1839 return ret;
1840}
1841
1842/*
1843 * Parse an ip[:port] list into an addr array. Use the default
1844 * monitor port if a port isn't specified.
1845 */
1846int ceph_parse_ips(const char *c, const char *end,
1847 struct ceph_entity_addr *addr,
1848 int max_count, int *count)
1849{
1850 int i, ret = -EINVAL;
1851 const char *p = c;
1852
1853 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1854 for (i = 0; i < max_count; i++) {
1855 const char *ipend;
1856 struct sockaddr_storage *ss = &addr[i].in_addr;
1857 int port;
1858 char delim = ',';
1859
1860 if (*p == '[') {
1861 delim = ']';
1862 p++;
1863 }
1864
1865 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1866 if (ret)
1867 goto bad;
1868 ret = -EINVAL;
1869
1870 p = ipend;
1871
1872 if (delim == ']') {
1873 if (*p != ']') {
1874 dout("missing matching ']'\n");
1875 goto bad;
1876 }
1877 p++;
1878 }
1879
1880 /* port? */
1881 if (p < end && *p == ':') {
1882 port = 0;
1883 p++;
1884 while (p < end && *p >= '0' && *p <= '9') {
1885 port = (port * 10) + (*p - '0');
1886 p++;
1887 }
1888 if (port == 0)
1889 port = CEPH_MON_PORT;
1890 else if (port > 65535)
1891 goto bad;
1892 } else {
1893 port = CEPH_MON_PORT;
1894 }
1895
1896 addr_set_port(ss, port);
1897
1898 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1899
1900 if (p == end)
1901 break;
1902 if (*p != ',')
1903 goto bad;
1904 p++;
1905 }
1906
1907 if (p != end)
1908 goto bad;
1909
1910 if (count)
1911 *count = i + 1;
1912 return 0;
1913
1914bad:
1915 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1916 return ret;
1917}
1918EXPORT_SYMBOL(ceph_parse_ips);
1919
1920static int process_banner(struct ceph_connection *con)
1921{
1922 dout("process_banner on %p\n", con);
1923
1924 if (verify_hello(con) < 0)
1925 return -1;
1926
1927 ceph_decode_addr(&con->actual_peer_addr);
1928 ceph_decode_addr(&con->peer_addr_for_me);
1929
1930 /*
1931 * Make sure the other end is who we wanted. note that the other
1932 * end may not yet know their ip address, so if it's 0.0.0.0, give
1933 * them the benefit of the doubt.
1934 */
1935 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1936 sizeof(con->peer_addr)) != 0 &&
1937 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1938 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1939 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1940 ceph_pr_addr(&con->peer_addr.in_addr),
1941 (int)le32_to_cpu(con->peer_addr.nonce),
1942 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1943 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1944 con->error_msg = "wrong peer at address";
1945 return -1;
1946 }
1947
1948 /*
1949 * did we learn our address?
1950 */
1951 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1952 int port = addr_port(&con->msgr->inst.addr.in_addr);
1953
1954 memcpy(&con->msgr->inst.addr.in_addr,
1955 &con->peer_addr_for_me.in_addr,
1956 sizeof(con->peer_addr_for_me.in_addr));
1957 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1958 encode_my_addr(con->msgr);
1959 dout("process_banner learned my addr is %s\n",
1960 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1961 }
1962
1963 return 0;
1964}
1965
1966static int process_connect(struct ceph_connection *con)
1967{
1968 u64 sup_feat = con->msgr->supported_features;
1969 u64 req_feat = con->msgr->required_features;
1970 u64 server_feat = ceph_sanitize_features(
1971 le64_to_cpu(con->in_reply.features));
1972 int ret;
1973
1974 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1975
1976 switch (con->in_reply.tag) {
1977 case CEPH_MSGR_TAG_FEATURES:
1978 pr_err("%s%lld %s feature set mismatch,"
1979 " my %llx < server's %llx, missing %llx\n",
1980 ENTITY_NAME(con->peer_name),
1981 ceph_pr_addr(&con->peer_addr.in_addr),
1982 sup_feat, server_feat, server_feat & ~sup_feat);
1983 con->error_msg = "missing required protocol features";
1984 reset_connection(con);
1985 return -1;
1986
1987 case CEPH_MSGR_TAG_BADPROTOVER:
1988 pr_err("%s%lld %s protocol version mismatch,"
1989 " my %d != server's %d\n",
1990 ENTITY_NAME(con->peer_name),
1991 ceph_pr_addr(&con->peer_addr.in_addr),
1992 le32_to_cpu(con->out_connect.protocol_version),
1993 le32_to_cpu(con->in_reply.protocol_version));
1994 con->error_msg = "protocol version mismatch";
1995 reset_connection(con);
1996 return -1;
1997
1998 case CEPH_MSGR_TAG_BADAUTHORIZER:
1999 con->auth_retry++;
2000 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2001 con->auth_retry);
2002 if (con->auth_retry == 2) {
2003 con->error_msg = "connect authorization failure";
2004 return -1;
2005 }
2006 con_out_kvec_reset(con);
2007 ret = prepare_write_connect(con);
2008 if (ret < 0)
2009 return ret;
2010 prepare_read_connect(con);
2011 break;
2012
2013 case CEPH_MSGR_TAG_RESETSESSION:
2014 /*
2015 * If we connected with a large connect_seq but the peer
2016 * has no record of a session with us (no connection, or
2017 * connect_seq == 0), they will send RESETSESION to indicate
2018 * that they must have reset their session, and may have
2019 * dropped messages.
2020 */
2021 dout("process_connect got RESET peer seq %u\n",
2022 le32_to_cpu(con->in_reply.connect_seq));
2023 pr_err("%s%lld %s connection reset\n",
2024 ENTITY_NAME(con->peer_name),
2025 ceph_pr_addr(&con->peer_addr.in_addr));
2026 reset_connection(con);
2027 con_out_kvec_reset(con);
2028 ret = prepare_write_connect(con);
2029 if (ret < 0)
2030 return ret;
2031 prepare_read_connect(con);
2032
2033 /* Tell ceph about it. */
2034 mutex_unlock(&con->mutex);
2035 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2036 if (con->ops->peer_reset)
2037 con->ops->peer_reset(con);
2038 mutex_lock(&con->mutex);
2039 if (con->state != CON_STATE_NEGOTIATING)
2040 return -EAGAIN;
2041 break;
2042
2043 case CEPH_MSGR_TAG_RETRY_SESSION:
2044 /*
2045 * If we sent a smaller connect_seq than the peer has, try
2046 * again with a larger value.
2047 */
2048 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2049 le32_to_cpu(con->out_connect.connect_seq),
2050 le32_to_cpu(con->in_reply.connect_seq));
2051 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2052 con_out_kvec_reset(con);
2053 ret = prepare_write_connect(con);
2054 if (ret < 0)
2055 return ret;
2056 prepare_read_connect(con);
2057 break;
2058
2059 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2060 /*
2061 * If we sent a smaller global_seq than the peer has, try
2062 * again with a larger value.
2063 */
2064 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2065 con->peer_global_seq,
2066 le32_to_cpu(con->in_reply.global_seq));
2067 get_global_seq(con->msgr,
2068 le32_to_cpu(con->in_reply.global_seq));
2069 con_out_kvec_reset(con);
2070 ret = prepare_write_connect(con);
2071 if (ret < 0)
2072 return ret;
2073 prepare_read_connect(con);
2074 break;
2075
2076 case CEPH_MSGR_TAG_SEQ:
2077 case CEPH_MSGR_TAG_READY:
2078 if (req_feat & ~server_feat) {
2079 pr_err("%s%lld %s protocol feature mismatch,"
2080 " my required %llx > server's %llx, need %llx\n",
2081 ENTITY_NAME(con->peer_name),
2082 ceph_pr_addr(&con->peer_addr.in_addr),
2083 req_feat, server_feat, req_feat & ~server_feat);
2084 con->error_msg = "missing required protocol features";
2085 reset_connection(con);
2086 return -1;
2087 }
2088
2089 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2090 con->state = CON_STATE_OPEN;
2091 con->auth_retry = 0; /* we authenticated; clear flag */
2092 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2093 con->connect_seq++;
2094 con->peer_features = server_feat;
2095 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2096 con->peer_global_seq,
2097 le32_to_cpu(con->in_reply.connect_seq),
2098 con->connect_seq);
2099 WARN_ON(con->connect_seq !=
2100 le32_to_cpu(con->in_reply.connect_seq));
2101
2102 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2103 con_flag_set(con, CON_FLAG_LOSSYTX);
2104
2105 con->delay = 0; /* reset backoff memory */
2106
2107 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2108 prepare_write_seq(con);
2109 prepare_read_seq(con);
2110 } else {
2111 prepare_read_tag(con);
2112 }
2113 break;
2114
2115 case CEPH_MSGR_TAG_WAIT:
2116 /*
2117 * If there is a connection race (we are opening
2118 * connections to each other), one of us may just have
2119 * to WAIT. This shouldn't happen if we are the
2120 * client.
2121 */
2122 pr_err("process_connect got WAIT as client\n");
2123 con->error_msg = "protocol error, got WAIT as client";
2124 return -1;
2125
2126 default:
2127 pr_err("connect protocol error, will retry\n");
2128 con->error_msg = "protocol error, garbage tag during connect";
2129 return -1;
2130 }
2131 return 0;
2132}
2133
2134
2135/*
2136 * read (part of) an ack
2137 */
2138static int read_partial_ack(struct ceph_connection *con)
2139{
2140 int size = sizeof (con->in_temp_ack);
2141 int end = size;
2142
2143 return read_partial(con, end, size, &con->in_temp_ack);
2144}
2145
2146/*
2147 * We can finally discard anything that's been acked.
2148 */
2149static void process_ack(struct ceph_connection *con)
2150{
2151 struct ceph_msg *m;
2152 u64 ack = le64_to_cpu(con->in_temp_ack);
2153 u64 seq;
2154
2155 while (!list_empty(&con->out_sent)) {
2156 m = list_first_entry(&con->out_sent, struct ceph_msg,
2157 list_head);
2158 seq = le64_to_cpu(m->hdr.seq);
2159 if (seq > ack)
2160 break;
2161 dout("got ack for seq %llu type %d at %p\n", seq,
2162 le16_to_cpu(m->hdr.type), m);
2163 m->ack_stamp = jiffies;
2164 ceph_msg_remove(m);
2165 }
2166 prepare_read_tag(con);
2167}
2168
2169
2170static int read_partial_message_section(struct ceph_connection *con,
2171 struct kvec *section,
2172 unsigned int sec_len, u32 *crc)
2173{
2174 int ret, left;
2175
2176 BUG_ON(!section);
2177
2178 while (section->iov_len < sec_len) {
2179 BUG_ON(section->iov_base == NULL);
2180 left = sec_len - section->iov_len;
2181 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2182 section->iov_len, left);
2183 if (ret <= 0)
2184 return ret;
2185 section->iov_len += ret;
2186 }
2187 if (section->iov_len == sec_len)
2188 *crc = crc32c(0, section->iov_base, section->iov_len);
2189
2190 return 1;
2191}
2192
2193static int read_partial_msg_data(struct ceph_connection *con)
2194{
2195 struct ceph_msg *msg = con->in_msg;
2196 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2197 const bool do_datacrc = !con->msgr->nocrc;
2198 struct page *page;
2199 size_t page_offset;
2200 size_t length;
2201 u32 crc = 0;
2202 int ret;
2203
2204 BUG_ON(!msg);
2205 if (list_empty(&msg->data))
2206 return -EIO;
2207
2208 if (do_datacrc)
2209 crc = con->in_data_crc;
2210 while (cursor->resid) {
2211 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2212 NULL);
2213 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2214 if (ret <= 0) {
2215 if (do_datacrc)
2216 con->in_data_crc = crc;
2217
2218 return ret;
2219 }
2220
2221 if (do_datacrc)
2222 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2223 (void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2224 }
2225 if (do_datacrc)
2226 con->in_data_crc = crc;
2227
2228 return 1; /* must return > 0 to indicate success */
2229}
2230
2231/*
2232 * read (part of) a message.
2233 */
2234static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2235
2236static int read_partial_message(struct ceph_connection *con)
2237{
2238 struct ceph_msg *m = con->in_msg;
2239 int size;
2240 int end;
2241 int ret;
2242 unsigned int front_len, middle_len, data_len;
2243 bool do_datacrc = !con->msgr->nocrc;
2244 u64 seq;
2245 u32 crc;
2246
2247 dout("read_partial_message con %p msg %p\n", con, m);
2248
2249 /* header */
2250 size = sizeof (con->in_hdr);
2251 end = size;
2252 ret = read_partial(con, end, size, &con->in_hdr);
2253 if (ret <= 0)
2254 return ret;
2255
2256 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2257 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2258 pr_err("read_partial_message bad hdr "
2259 " crc %u != expected %u\n",
2260 crc, con->in_hdr.crc);
2261 return -EBADMSG;
2262 }
2263
2264 front_len = le32_to_cpu(con->in_hdr.front_len);
2265 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2266 return -EIO;
2267 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2268 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2269 return -EIO;
2270 data_len = le32_to_cpu(con->in_hdr.data_len);
2271 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2272 return -EIO;
2273
2274 /* verify seq# */
2275 seq = le64_to_cpu(con->in_hdr.seq);
2276 if ((s64)seq - (s64)con->in_seq < 1) {
2277 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2278 ENTITY_NAME(con->peer_name),
2279 ceph_pr_addr(&con->peer_addr.in_addr),
2280 seq, con->in_seq + 1);
2281 con->in_base_pos = -front_len - middle_len - data_len -
2282 sizeof(m->footer);
2283 con->in_tag = CEPH_MSGR_TAG_READY;
2284 return 0;
2285 } else if ((s64)seq - (s64)con->in_seq > 1) {
2286 pr_err("read_partial_message bad seq %lld expected %lld\n",
2287 seq, con->in_seq + 1);
2288 con->error_msg = "bad message sequence # for incoming message";
2289 return -EBADMSG;
2290 }
2291
2292 /* allocate message? */
2293 if (!con->in_msg) {
2294 int skip = 0;
2295
2296 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2297 front_len, data_len);
2298 ret = ceph_con_in_msg_alloc(con, &skip);
2299 if (ret < 0)
2300 return ret;
2301
2302 BUG_ON(!con->in_msg ^ skip);
2303 if (con->in_msg && data_len > con->in_msg->data_length) {
2304 pr_warning("%s skipping long message (%u > %zd)\n",
2305 __func__, data_len, con->in_msg->data_length);
2306 ceph_msg_put(con->in_msg);
2307 con->in_msg = NULL;
2308 skip = 1;
2309 }
2310 if (skip) {
2311 /* skip this message */
2312 dout("alloc_msg said skip message\n");
2313 con->in_base_pos = -front_len - middle_len - data_len -
2314 sizeof(m->footer);
2315 con->in_tag = CEPH_MSGR_TAG_READY;
2316 con->in_seq++;
2317 return 0;
2318 }
2319
2320 BUG_ON(!con->in_msg);
2321 BUG_ON(con->in_msg->con != con);
2322 m = con->in_msg;
2323 m->front.iov_len = 0; /* haven't read it yet */
2324 if (m->middle)
2325 m->middle->vec.iov_len = 0;
2326
2327 /* prepare for data payload, if any */
2328
2329 if (data_len)
2330 prepare_message_data(con->in_msg, data_len);
2331 }
2332
2333 /* front */
2334 ret = read_partial_message_section(con, &m->front, front_len,
2335 &con->in_front_crc);
2336 if (ret <= 0)
2337 return ret;
2338
2339 /* middle */
2340 if (m->middle) {
2341 ret = read_partial_message_section(con, &m->middle->vec,
2342 middle_len,
2343 &con->in_middle_crc);
2344 if (ret <= 0)
2345 return ret;
2346 }
2347
2348 /* (page) data */
2349 if (data_len) {
2350 ret = read_partial_msg_data(con);
2351 if (ret <= 0)
2352 return ret;
2353 }
2354
2355 /* footer */
2356 size = sizeof (m->footer);
2357 end += size;
2358 ret = read_partial(con, end, size, &m->footer);
2359 if (ret <= 0)
2360 return ret;
2361
2362 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2363 m, front_len, m->footer.front_crc, middle_len,
2364 m->footer.middle_crc, data_len, m->footer.data_crc);
2365
2366 /* crc ok? */
2367 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2368 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2369 m, con->in_front_crc, m->footer.front_crc);
2370 return -EBADMSG;
2371 }
2372 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2373 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2374 m, con->in_middle_crc, m->footer.middle_crc);
2375 return -EBADMSG;
2376 }
2377 if (do_datacrc &&
2378 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2379 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2380 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2381 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2382 return -EBADMSG;
2383 }
2384
2385 return 1; /* done! */
2386}
2387
2388/*
2389 * Process message. This happens in the worker thread. The callback should
2390 * be careful not to do anything that waits on other incoming messages or it
2391 * may deadlock.
2392 */
2393static void process_message(struct ceph_connection *con)
2394{
2395 struct ceph_msg *msg;
2396
2397 BUG_ON(con->in_msg->con != con);
2398 con->in_msg->con = NULL;
2399 msg = con->in_msg;
2400 con->in_msg = NULL;
2401 con->ops->put(con);
2402
2403 /* if first message, set peer_name */
2404 if (con->peer_name.type == 0)
2405 con->peer_name = msg->hdr.src;
2406
2407 con->in_seq++;
2408 mutex_unlock(&con->mutex);
2409
2410 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2411 msg, le64_to_cpu(msg->hdr.seq),
2412 ENTITY_NAME(msg->hdr.src),
2413 le16_to_cpu(msg->hdr.type),
2414 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2415 le32_to_cpu(msg->hdr.front_len),
2416 le32_to_cpu(msg->hdr.data_len),
2417 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2418 con->ops->dispatch(con, msg);
2419
2420 mutex_lock(&con->mutex);
2421}
2422
2423
2424/*
2425 * Write something to the socket. Called in a worker thread when the
2426 * socket appears to be writeable and we have something ready to send.
2427 */
2428static int try_write(struct ceph_connection *con)
2429{
2430 int ret = 1;
2431
2432 dout("try_write start %p state %lu\n", con, con->state);
2433
2434more:
2435 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2436
2437 /* open the socket first? */
2438 if (con->state == CON_STATE_PREOPEN) {
2439 BUG_ON(con->sock);
2440 con->state = CON_STATE_CONNECTING;
2441
2442 con_out_kvec_reset(con);
2443 prepare_write_banner(con);
2444 prepare_read_banner(con);
2445
2446 BUG_ON(con->in_msg);
2447 con->in_tag = CEPH_MSGR_TAG_READY;
2448 dout("try_write initiating connect on %p new state %lu\n",
2449 con, con->state);
2450 ret = ceph_tcp_connect(con);
2451 if (ret < 0) {
2452 con->error_msg = "connect error";
2453 goto out;
2454 }
2455 }
2456
2457more_kvec:
2458 /* kvec data queued? */
2459 if (con->out_skip) {
2460 ret = write_partial_skip(con);
2461 if (ret <= 0)
2462 goto out;
2463 }
2464 if (con->out_kvec_left) {
2465 ret = write_partial_kvec(con);
2466 if (ret <= 0)
2467 goto out;
2468 }
2469
2470 /* msg pages? */
2471 if (con->out_msg) {
2472 if (con->out_msg_done) {
2473 ceph_msg_put(con->out_msg);
2474 con->out_msg = NULL; /* we're done with this one */
2475 goto do_next;
2476 }
2477
2478 ret = write_partial_message_data(con);
2479 if (ret == 1)
2480 goto more_kvec; /* we need to send the footer, too! */
2481 if (ret == 0)
2482 goto out;
2483 if (ret < 0) {
2484 dout("try_write write_partial_message_data err %d\n",
2485 ret);
2486 goto out;
2487 }
2488 }
2489
2490do_next:
2491 if (con->state == CON_STATE_OPEN) {
2492 /* is anything else pending? */
2493 if (!list_empty(&con->out_queue)) {
2494 prepare_write_message(con);
2495 goto more;
2496 }
2497 if (con->in_seq > con->in_seq_acked) {
2498 prepare_write_ack(con);
2499 goto more;
2500 }
2501 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2502 prepare_write_keepalive(con);
2503 goto more;
2504 }
2505 }
2506
2507 /* Nothing to do! */
2508 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2509 dout("try_write nothing else to write.\n");
2510 ret = 0;
2511out:
2512 dout("try_write done on %p ret %d\n", con, ret);
2513 return ret;
2514}
2515
2516
2517
2518/*
2519 * Read what we can from the socket.
2520 */
2521static int try_read(struct ceph_connection *con)
2522{
2523 int ret = -1;
2524
2525more:
2526 dout("try_read start on %p state %lu\n", con, con->state);
2527 if (con->state != CON_STATE_CONNECTING &&
2528 con->state != CON_STATE_NEGOTIATING &&
2529 con->state != CON_STATE_OPEN)
2530 return 0;
2531
2532 BUG_ON(!con->sock);
2533
2534 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2535 con->in_base_pos);
2536
2537 if (con->state == CON_STATE_CONNECTING) {
2538 dout("try_read connecting\n");
2539 ret = read_partial_banner(con);
2540 if (ret <= 0)
2541 goto out;
2542 ret = process_banner(con);
2543 if (ret < 0)
2544 goto out;
2545
2546 con->state = CON_STATE_NEGOTIATING;
2547
2548 /*
2549 * Received banner is good, exchange connection info.
2550 * Do not reset out_kvec, as sending our banner raced
2551 * with receiving peer banner after connect completed.
2552 */
2553 ret = prepare_write_connect(con);
2554 if (ret < 0)
2555 goto out;
2556 prepare_read_connect(con);
2557
2558 /* Send connection info before awaiting response */
2559 goto out;
2560 }
2561
2562 if (con->state == CON_STATE_NEGOTIATING) {
2563 dout("try_read negotiating\n");
2564 ret = read_partial_connect(con);
2565 if (ret <= 0)
2566 goto out;
2567 ret = process_connect(con);
2568 if (ret < 0)
2569 goto out;
2570 goto more;
2571 }
2572
2573 WARN_ON(con->state != CON_STATE_OPEN);
2574
2575 if (con->in_base_pos < 0) {
2576 /*
2577 * skipping + discarding content.
2578 *
2579 * FIXME: there must be a better way to do this!
2580 */
2581 static char buf[SKIP_BUF_SIZE];
2582 int skip = min((int) sizeof (buf), -con->in_base_pos);
2583
2584 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2585 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2586 if (ret <= 0)
2587 goto out;
2588 con->in_base_pos += ret;
2589 if (con->in_base_pos)
2590 goto more;
2591 }
2592 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2593 /*
2594 * what's next?
2595 */
2596 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2597 if (ret <= 0)
2598 goto out;
2599 dout("try_read got tag %d\n", (int)con->in_tag);
2600 switch (con->in_tag) {
2601 case CEPH_MSGR_TAG_MSG:
2602 prepare_read_message(con);
2603 break;
2604 case CEPH_MSGR_TAG_ACK:
2605 prepare_read_ack(con);
2606 break;
2607 case CEPH_MSGR_TAG_CLOSE:
2608 con_close_socket(con);
2609 con->state = CON_STATE_CLOSED;
2610 goto out;
2611 default:
2612 goto bad_tag;
2613 }
2614 }
2615 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2616 ret = read_partial_message(con);
2617 if (ret <= 0) {
2618 switch (ret) {
2619 case -EBADMSG:
2620 con->error_msg = "bad crc";
2621 ret = -EIO;
2622 break;
2623 case -EIO:
2624 con->error_msg = "io error";
2625 break;
2626 }
2627 goto out;
2628 }
2629 if (con->in_tag == CEPH_MSGR_TAG_READY)
2630 goto more;
2631 process_message(con);
2632 if (con->state == CON_STATE_OPEN)
2633 prepare_read_tag(con);
2634 goto more;
2635 }
2636 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2637 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2638 /*
2639 * the final handshake seq exchange is semantically
2640 * equivalent to an ACK
2641 */
2642 ret = read_partial_ack(con);
2643 if (ret <= 0)
2644 goto out;
2645 process_ack(con);
2646 goto more;
2647 }
2648
2649out:
2650 dout("try_read done on %p ret %d\n", con, ret);
2651 return ret;
2652
2653bad_tag:
2654 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2655 con->error_msg = "protocol error, garbage tag";
2656 ret = -1;
2657 goto out;
2658}
2659
2660
2661/*
2662 * Atomically queue work on a connection after the specified delay.
2663 * Bump @con reference to avoid races with connection teardown.
2664 * Returns 0 if work was queued, or an error code otherwise.
2665 */
2666static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2667{
2668 if (!con->ops->get(con)) {
2669 dout("%s %p ref count 0\n", __func__, con);
2670
2671 return -ENOENT;
2672 }
2673
2674 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2675 dout("%s %p - already queued\n", __func__, con);
2676 con->ops->put(con);
2677
2678 return -EBUSY;
2679 }
2680
2681 dout("%s %p %lu\n", __func__, con, delay);
2682
2683 return 0;
2684}
2685
2686static void queue_con(struct ceph_connection *con)
2687{
2688 (void) queue_con_delay(con, 0);
2689}
2690
2691static bool con_sock_closed(struct ceph_connection *con)
2692{
2693 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2694 return false;
2695
2696#define CASE(x) \
2697 case CON_STATE_ ## x: \
2698 con->error_msg = "socket closed (con state " #x ")"; \
2699 break;
2700
2701 switch (con->state) {
2702 CASE(CLOSED);
2703 CASE(PREOPEN);
2704 CASE(CONNECTING);
2705 CASE(NEGOTIATING);
2706 CASE(OPEN);
2707 CASE(STANDBY);
2708 default:
2709 pr_warning("%s con %p unrecognized state %lu\n",
2710 __func__, con, con->state);
2711 con->error_msg = "unrecognized con state";
2712 BUG();
2713 break;
2714 }
2715#undef CASE
2716
2717 return true;
2718}
2719
2720static bool con_backoff(struct ceph_connection *con)
2721{
2722 int ret;
2723
2724 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2725 return false;
2726
2727 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2728 if (ret) {
2729 dout("%s: con %p FAILED to back off %lu\n", __func__,
2730 con, con->delay);
2731 BUG_ON(ret == -ENOENT);
2732 con_flag_set(con, CON_FLAG_BACKOFF);
2733 }
2734
2735 return true;
2736}
2737
2738/* Finish fault handling; con->mutex must *not* be held here */
2739
2740static void con_fault_finish(struct ceph_connection *con)
2741{
2742 /*
2743 * in case we faulted due to authentication, invalidate our
2744 * current tickets so that we can get new ones.
2745 */
2746 if (con->auth_retry && con->ops->invalidate_authorizer) {
2747 dout("calling invalidate_authorizer()\n");
2748 con->ops->invalidate_authorizer(con);
2749 }
2750
2751 if (con->ops->fault)
2752 con->ops->fault(con);
2753}
2754
2755/*
2756 * Do some work on a connection. Drop a connection ref when we're done.
2757 */
2758static void con_work(struct work_struct *work)
2759{
2760 struct ceph_connection *con = container_of(work, struct ceph_connection,
2761 work.work);
2762 bool fault;
2763
2764 mutex_lock(&con->mutex);
2765 while (true) {
2766 int ret;
2767
2768 if ((fault = con_sock_closed(con))) {
2769 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2770 break;
2771 }
2772 if (con_backoff(con)) {
2773 dout("%s: con %p BACKOFF\n", __func__, con);
2774 break;
2775 }
2776 if (con->state == CON_STATE_STANDBY) {
2777 dout("%s: con %p STANDBY\n", __func__, con);
2778 break;
2779 }
2780 if (con->state == CON_STATE_CLOSED) {
2781 dout("%s: con %p CLOSED\n", __func__, con);
2782 BUG_ON(con->sock);
2783 break;
2784 }
2785 if (con->state == CON_STATE_PREOPEN) {
2786 dout("%s: con %p PREOPEN\n", __func__, con);
2787 BUG_ON(con->sock);
2788 }
2789
2790 ret = try_read(con);
2791 if (ret < 0) {
2792 if (ret == -EAGAIN)
2793 continue;
2794 con->error_msg = "socket error on read";
2795 fault = true;
2796 break;
2797 }
2798
2799 ret = try_write(con);
2800 if (ret < 0) {
2801 if (ret == -EAGAIN)
2802 continue;
2803 con->error_msg = "socket error on write";
2804 fault = true;
2805 }
2806
2807 break; /* If we make it to here, we're done */
2808 }
2809 if (fault)
2810 con_fault(con);
2811 mutex_unlock(&con->mutex);
2812
2813 if (fault)
2814 con_fault_finish(con);
2815
2816 con->ops->put(con);
2817}
2818
2819/*
2820 * Generic error/fault handler. A retry mechanism is used with
2821 * exponential backoff
2822 */
2823static void con_fault(struct ceph_connection *con)
2824{
2825 pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2826 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2827 dout("fault %p state %lu to peer %s\n",
2828 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2829
2830 WARN_ON(con->state != CON_STATE_CONNECTING &&
2831 con->state != CON_STATE_NEGOTIATING &&
2832 con->state != CON_STATE_OPEN);
2833
2834 con_close_socket(con);
2835
2836 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2837 dout("fault on LOSSYTX channel, marking CLOSED\n");
2838 con->state = CON_STATE_CLOSED;
2839 return;
2840 }
2841
2842 if (con->in_msg) {
2843 BUG_ON(con->in_msg->con != con);
2844 con->in_msg->con = NULL;
2845 ceph_msg_put(con->in_msg);
2846 con->in_msg = NULL;
2847 con->ops->put(con);
2848 }
2849
2850 /* Requeue anything that hasn't been acked */
2851 list_splice_init(&con->out_sent, &con->out_queue);
2852
2853 /* If there are no messages queued or keepalive pending, place
2854 * the connection in a STANDBY state */
2855 if (list_empty(&con->out_queue) &&
2856 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2857 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2858 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2859 con->state = CON_STATE_STANDBY;
2860 } else {
2861 /* retry after a delay. */
2862 con->state = CON_STATE_PREOPEN;
2863 if (con->delay == 0)
2864 con->delay = BASE_DELAY_INTERVAL;
2865 else if (con->delay < MAX_DELAY_INTERVAL)
2866 con->delay *= 2;
2867 con_flag_set(con, CON_FLAG_BACKOFF);
2868 queue_con(con);
2869 }
2870}
2871
2872
2873
2874/*
2875 * initialize a new messenger instance
2876 */
2877void ceph_messenger_init(struct ceph_messenger *msgr,
2878 struct ceph_entity_addr *myaddr,
2879 u64 supported_features,
2880 u64 required_features,
2881 bool nocrc)
2882{
2883 msgr->supported_features = supported_features;
2884 msgr->required_features = required_features;
2885
2886 spin_lock_init(&msgr->global_seq_lock);
2887
2888 if (myaddr)
2889 msgr->inst.addr = *myaddr;
2890
2891 /* select a random nonce */
2892 msgr->inst.addr.type = 0;
2893 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2894 encode_my_addr(msgr);
2895 msgr->nocrc = nocrc;
2896
2897 atomic_set(&msgr->stopping, 0);
2898
2899 dout("%s %p\n", __func__, msgr);
2900}
2901EXPORT_SYMBOL(ceph_messenger_init);
2902
2903static void clear_standby(struct ceph_connection *con)
2904{
2905 /* come back from STANDBY? */
2906 if (con->state == CON_STATE_STANDBY) {
2907 dout("clear_standby %p and ++connect_seq\n", con);
2908 con->state = CON_STATE_PREOPEN;
2909 con->connect_seq++;
2910 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2911 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2912 }
2913}
2914
2915/*
2916 * Queue up an outgoing message on the given connection.
2917 */
2918void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2919{
2920 /* set src+dst */
2921 msg->hdr.src = con->msgr->inst.name;
2922 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2923 msg->needs_out_seq = true;
2924
2925 mutex_lock(&con->mutex);
2926
2927 if (con->state == CON_STATE_CLOSED) {
2928 dout("con_send %p closed, dropping %p\n", con, msg);
2929 ceph_msg_put(msg);
2930 mutex_unlock(&con->mutex);
2931 return;
2932 }
2933
2934 BUG_ON(msg->con != NULL);
2935 msg->con = con->ops->get(con);
2936 BUG_ON(msg->con == NULL);
2937
2938 BUG_ON(!list_empty(&msg->list_head));
2939 list_add_tail(&msg->list_head, &con->out_queue);
2940 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2941 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2942 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2943 le32_to_cpu(msg->hdr.front_len),
2944 le32_to_cpu(msg->hdr.middle_len),
2945 le32_to_cpu(msg->hdr.data_len));
2946
2947 clear_standby(con);
2948 mutex_unlock(&con->mutex);
2949
2950 /* if there wasn't anything waiting to send before, queue
2951 * new work */
2952 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2953 queue_con(con);
2954}
2955EXPORT_SYMBOL(ceph_con_send);
2956
2957/*
2958 * Revoke a message that was previously queued for send
2959 */
2960void ceph_msg_revoke(struct ceph_msg *msg)
2961{
2962 struct ceph_connection *con = msg->con;
2963
2964 if (!con)
2965 return; /* Message not in our possession */
2966
2967 mutex_lock(&con->mutex);
2968 if (!list_empty(&msg->list_head)) {
2969 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2970 list_del_init(&msg->list_head);
2971 BUG_ON(msg->con == NULL);
2972 msg->con->ops->put(msg->con);
2973 msg->con = NULL;
2974 msg->hdr.seq = 0;
2975
2976 ceph_msg_put(msg);
2977 }
2978 if (con->out_msg == msg) {
2979 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2980 con->out_msg = NULL;
2981 if (con->out_kvec_is_msg) {
2982 con->out_skip = con->out_kvec_bytes;
2983 con->out_kvec_is_msg = false;
2984 }
2985 msg->hdr.seq = 0;
2986
2987 ceph_msg_put(msg);
2988 }
2989 mutex_unlock(&con->mutex);
2990}
2991
2992/*
2993 * Revoke a message that we may be reading data into
2994 */
2995void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2996{
2997 struct ceph_connection *con;
2998
2999 BUG_ON(msg == NULL);
3000 if (!msg->con) {
3001 dout("%s msg %p null con\n", __func__, msg);
3002
3003 return; /* Message not in our possession */
3004 }
3005
3006 con = msg->con;
3007 mutex_lock(&con->mutex);
3008 if (con->in_msg == msg) {
3009 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3010 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3011 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3012
3013 /* skip rest of message */
3014 dout("%s %p msg %p revoked\n", __func__, con, msg);
3015 con->in_base_pos = con->in_base_pos -
3016 sizeof(struct ceph_msg_header) -
3017 front_len -
3018 middle_len -
3019 data_len -
3020 sizeof(struct ceph_msg_footer);
3021 ceph_msg_put(con->in_msg);
3022 con->in_msg = NULL;
3023 con->in_tag = CEPH_MSGR_TAG_READY;
3024 con->in_seq++;
3025 } else {
3026 dout("%s %p in_msg %p msg %p no-op\n",
3027 __func__, con, con->in_msg, msg);
3028 }
3029 mutex_unlock(&con->mutex);
3030}
3031
3032/*
3033 * Queue a keepalive byte to ensure the tcp connection is alive.
3034 */
3035void ceph_con_keepalive(struct ceph_connection *con)
3036{
3037 dout("con_keepalive %p\n", con);
3038 mutex_lock(&con->mutex);
3039 clear_standby(con);
3040 mutex_unlock(&con->mutex);
3041 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3042 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3043 queue_con(con);
3044}
3045EXPORT_SYMBOL(ceph_con_keepalive);
3046
3047static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3048{
3049 struct ceph_msg_data *data;
3050
3051 if (WARN_ON(!ceph_msg_data_type_valid(type)))
3052 return NULL;
3053
3054 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3055 if (data)
3056 data->type = type;
3057 INIT_LIST_HEAD(&data->links);
3058
3059 return data;
3060}
3061
3062static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3063{
3064 if (!data)
3065 return;
3066
3067 WARN_ON(!list_empty(&data->links));
3068 if (data->type == CEPH_MSG_DATA_PAGELIST) {
3069 ceph_pagelist_release(data->pagelist);
3070 kfree(data->pagelist);
3071 }
3072 kmem_cache_free(ceph_msg_data_cache, data);
3073}
3074
3075void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3076 size_t length, size_t alignment)
3077{
3078 struct ceph_msg_data *data;
3079
3080 BUG_ON(!pages);
3081 BUG_ON(!length);
3082
3083 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3084 BUG_ON(!data);
3085 data->pages = pages;
3086 data->length = length;
3087 data->alignment = alignment & ~PAGE_MASK;
3088
3089 list_add_tail(&data->links, &msg->data);
3090 msg->data_length += length;
3091}
3092EXPORT_SYMBOL(ceph_msg_data_add_pages);
3093
3094void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3095 struct ceph_pagelist *pagelist)
3096{
3097 struct ceph_msg_data *data;
3098
3099 BUG_ON(!pagelist);
3100 BUG_ON(!pagelist->length);
3101
3102 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3103 BUG_ON(!data);
3104 data->pagelist = pagelist;
3105
3106 list_add_tail(&data->links, &msg->data);
3107 msg->data_length += pagelist->length;
3108}
3109EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3110
3111#ifdef CONFIG_BLOCK
3112void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3113 size_t length)
3114{
3115 struct ceph_msg_data *data;
3116
3117 BUG_ON(!bio);
3118
3119 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3120 BUG_ON(!data);
3121 data->bio = bio;
3122 data->bio_length = length;
3123
3124 list_add_tail(&data->links, &msg->data);
3125 msg->data_length += length;
3126}
3127EXPORT_SYMBOL(ceph_msg_data_add_bio);
3128#endif /* CONFIG_BLOCK */
3129
3130/*
3131 * construct a new message with given type, size
3132 * the new msg has a ref count of 1.
3133 */
3134struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3135 bool can_fail)
3136{
3137 struct ceph_msg *m;
3138
3139 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3140 if (m == NULL)
3141 goto out;
3142
3143 m->hdr.type = cpu_to_le16(type);
3144 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3145 m->hdr.front_len = cpu_to_le32(front_len);
3146
3147 INIT_LIST_HEAD(&m->list_head);
3148 kref_init(&m->kref);
3149 INIT_LIST_HEAD(&m->data);
3150
3151 /* front */
3152 if (front_len) {
3153 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3154 if (m->front.iov_base == NULL) {
3155 dout("ceph_msg_new can't allocate %d bytes\n",
3156 front_len);
3157 goto out2;
3158 }
3159 } else {
3160 m->front.iov_base = NULL;
3161 }
3162 m->front_alloc_len = m->front.iov_len = front_len;
3163
3164 dout("ceph_msg_new %p front %d\n", m, front_len);
3165 return m;
3166
3167out2:
3168 ceph_msg_put(m);
3169out:
3170 if (!can_fail) {
3171 pr_err("msg_new can't create type %d front %d\n", type,
3172 front_len);
3173 WARN_ON(1);
3174 } else {
3175 dout("msg_new can't create type %d front %d\n", type,
3176 front_len);
3177 }
3178 return NULL;
3179}
3180EXPORT_SYMBOL(ceph_msg_new);
3181
3182/*
3183 * Allocate "middle" portion of a message, if it is needed and wasn't
3184 * allocated by alloc_msg. This allows us to read a small fixed-size
3185 * per-type header in the front and then gracefully fail (i.e.,
3186 * propagate the error to the caller based on info in the front) when
3187 * the middle is too large.
3188 */
3189static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3190{
3191 int type = le16_to_cpu(msg->hdr.type);
3192 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3193
3194 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3195 ceph_msg_type_name(type), middle_len);
3196 BUG_ON(!middle_len);
3197 BUG_ON(msg->middle);
3198
3199 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3200 if (!msg->middle)
3201 return -ENOMEM;
3202 return 0;
3203}
3204
3205/*
3206 * Allocate a message for receiving an incoming message on a
3207 * connection, and save the result in con->in_msg. Uses the
3208 * connection's private alloc_msg op if available.
3209 *
3210 * Returns 0 on success, or a negative error code.
3211 *
3212 * On success, if we set *skip = 1:
3213 * - the next message should be skipped and ignored.
3214 * - con->in_msg == NULL
3215 * or if we set *skip = 0:
3216 * - con->in_msg is non-null.
3217 * On error (ENOMEM, EAGAIN, ...),
3218 * - con->in_msg == NULL
3219 */
3220static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3221{
3222 struct ceph_msg_header *hdr = &con->in_hdr;
3223 int middle_len = le32_to_cpu(hdr->middle_len);
3224 struct ceph_msg *msg;
3225 int ret = 0;
3226
3227 BUG_ON(con->in_msg != NULL);
3228 BUG_ON(!con->ops->alloc_msg);
3229
3230 mutex_unlock(&con->mutex);
3231 msg = con->ops->alloc_msg(con, hdr, skip);
3232 mutex_lock(&con->mutex);
3233 if (con->state != CON_STATE_OPEN) {
3234 if (msg)
3235 ceph_msg_put(msg);
3236 return -EAGAIN;
3237 }
3238 if (msg) {
3239 BUG_ON(*skip);
3240 con->in_msg = msg;
3241 con->in_msg->con = con->ops->get(con);
3242 BUG_ON(con->in_msg->con == NULL);
3243 } else {
3244 /*
3245 * Null message pointer means either we should skip
3246 * this message or we couldn't allocate memory. The
3247 * former is not an error.
3248 */
3249 if (*skip)
3250 return 0;
3251 con->error_msg = "error allocating memory for incoming message";
3252
3253 return -ENOMEM;
3254 }
3255 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3256
3257 if (middle_len && !con->in_msg->middle) {
3258 ret = ceph_alloc_middle(con, con->in_msg);
3259 if (ret < 0) {
3260 ceph_msg_put(con->in_msg);
3261 con->in_msg = NULL;
3262 }
3263 }
3264
3265 return ret;
3266}
3267
3268
3269/*
3270 * Free a generically kmalloc'd message.
3271 */
3272void ceph_msg_kfree(struct ceph_msg *m)
3273{
3274 dout("msg_kfree %p\n", m);
3275 ceph_kvfree(m->front.iov_base);
3276 kmem_cache_free(ceph_msg_cache, m);
3277}
3278
3279/*
3280 * Drop a msg ref. Destroy as needed.
3281 */
3282void ceph_msg_last_put(struct kref *kref)
3283{
3284 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3285 LIST_HEAD(data);
3286 struct list_head *links;
3287 struct list_head *next;
3288
3289 dout("ceph_msg_put last one on %p\n", m);
3290 WARN_ON(!list_empty(&m->list_head));
3291
3292 /* drop middle, data, if any */
3293 if (m->middle) {
3294 ceph_buffer_put(m->middle);
3295 m->middle = NULL;
3296 }
3297
3298 list_splice_init(&m->data, &data);
3299 list_for_each_safe(links, next, &data) {
3300 struct ceph_msg_data *data;
3301
3302 data = list_entry(links, struct ceph_msg_data, links);
3303 list_del_init(links);
3304 ceph_msg_data_destroy(data);
3305 }
3306 m->data_length = 0;
3307
3308 if (m->pool)
3309 ceph_msgpool_put(m->pool, m);
3310 else
3311 ceph_msg_kfree(m);
3312}
3313EXPORT_SYMBOL(ceph_msg_last_put);
3314
3315void ceph_msg_dump(struct ceph_msg *msg)
3316{
3317 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3318 msg->front_alloc_len, msg->data_length);
3319 print_hex_dump(KERN_DEBUG, "header: ",
3320 DUMP_PREFIX_OFFSET, 16, 1,
3321 &msg->hdr, sizeof(msg->hdr), true);
3322 print_hex_dump(KERN_DEBUG, " front: ",
3323 DUMP_PREFIX_OFFSET, 16, 1,
3324 msg->front.iov_base, msg->front.iov_len, true);
3325 if (msg->middle)
3326 print_hex_dump(KERN_DEBUG, "middle: ",
3327 DUMP_PREFIX_OFFSET, 16, 1,
3328 msg->middle->vec.iov_base,
3329 msg->middle->vec.iov_len, true);
3330 print_hex_dump(KERN_DEBUG, "footer: ",
3331 DUMP_PREFIX_OFFSET, 16, 1,
3332 &msg->footer, sizeof(msg->footer), true);
3333}
3334EXPORT_SYMBOL(ceph_msg_dump);