Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/ceph/ceph_debug.h>
   3
   4#include <linux/crc32c.h>
   5#include <linux/ctype.h>
   6#include <linux/highmem.h>
   7#include <linux/inet.h>
   8#include <linux/kthread.h>
   9#include <linux/net.h>
  10#include <linux/nsproxy.h>
  11#include <linux/sched/mm.h>
  12#include <linux/slab.h>
  13#include <linux/socket.h>
  14#include <linux/string.h>
  15#ifdef	CONFIG_BLOCK
  16#include <linux/bio.h>
  17#endif	/* CONFIG_BLOCK */
  18#include <linux/dns_resolver.h>
  19#include <net/tcp.h>
  20
  21#include <linux/ceph/ceph_features.h>
  22#include <linux/ceph/libceph.h>
  23#include <linux/ceph/messenger.h>
  24#include <linux/ceph/decode.h>
  25#include <linux/ceph/pagelist.h>
  26#include <linux/export.h>
  27
 
 
 
  28/*
  29 * Ceph uses the messenger to exchange ceph_msg messages with other
  30 * hosts in the system.  The messenger provides ordered and reliable
  31 * delivery.  We tolerate TCP disconnects by reconnecting (with
  32 * exponential backoff) in the case of a fault (disconnection, bad
  33 * crc, protocol error).  Acks allow sent messages to be discarded by
  34 * the sender.
  35 */
  36
  37/*
  38 * We track the state of the socket on a given connection using
  39 * values defined below.  The transition to a new socket state is
  40 * handled by a function which verifies we aren't coming from an
  41 * unexpected state.
  42 *
  43 *      --------
  44 *      | NEW* |  transient initial state
  45 *      --------
  46 *          | con_sock_state_init()
  47 *          v
  48 *      ----------
  49 *      | CLOSED |  initialized, but no socket (and no
  50 *      ----------  TCP connection)
  51 *       ^      \
  52 *       |       \ con_sock_state_connecting()
  53 *       |        ----------------------
  54 *       |                              \
  55 *       + con_sock_state_closed()       \
  56 *       |+---------------------------    \
  57 *       | \                          \    \
  58 *       |  -----------                \    \
  59 *       |  | CLOSING |  socket event;  \    \
  60 *       |  -----------  await close     \    \
  61 *       |       ^                        \   |
  62 *       |       |                         \  |
  63 *       |       + con_sock_state_closing() \ |
  64 *       |      / \                         | |
  65 *       |     /   ---------------          | |
  66 *       |    /                   \         v v
  67 *       |   /                    --------------
  68 *       |  /    -----------------| CONNECTING |  socket created, TCP
  69 *       |  |   /                 --------------  connect initiated
  70 *       |  |   | con_sock_state_connected()
  71 *       |  |   v
  72 *      -------------
  73 *      | CONNECTED |  TCP connection established
  74 *      -------------
  75 *
  76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
  77 */
  78
  79#define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
  80#define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
  81#define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
  82#define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
  83#define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
  84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  85static bool con_flag_valid(unsigned long con_flag)
  86{
  87	switch (con_flag) {
  88	case CEPH_CON_F_LOSSYTX:
  89	case CEPH_CON_F_KEEPALIVE_PENDING:
  90	case CEPH_CON_F_WRITE_PENDING:
  91	case CEPH_CON_F_SOCK_CLOSED:
  92	case CEPH_CON_F_BACKOFF:
  93		return true;
  94	default:
  95		return false;
  96	}
  97}
  98
  99void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
 100{
 101	BUG_ON(!con_flag_valid(con_flag));
 102
 103	clear_bit(con_flag, &con->flags);
 104}
 105
 106void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag)
 107{
 108	BUG_ON(!con_flag_valid(con_flag));
 109
 110	set_bit(con_flag, &con->flags);
 111}
 112
 113bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag)
 114{
 115	BUG_ON(!con_flag_valid(con_flag));
 116
 117	return test_bit(con_flag, &con->flags);
 118}
 119
 120bool ceph_con_flag_test_and_clear(struct ceph_connection *con,
 121				  unsigned long con_flag)
 122{
 123	BUG_ON(!con_flag_valid(con_flag));
 124
 125	return test_and_clear_bit(con_flag, &con->flags);
 126}
 127
 128bool ceph_con_flag_test_and_set(struct ceph_connection *con,
 129				unsigned long con_flag)
 130{
 131	BUG_ON(!con_flag_valid(con_flag));
 132
 133	return test_and_set_bit(con_flag, &con->flags);
 134}
 135
 136/* Slab caches for frequently-allocated structures */
 137
 138static struct kmem_cache	*ceph_msg_cache;
 
 
 
 
 
 
 139
 140#ifdef CONFIG_LOCKDEP
 141static struct lock_class_key socket_class;
 142#endif
 143
 
 
 
 
 
 
 144static void queue_con(struct ceph_connection *con);
 145static void cancel_con(struct ceph_connection *con);
 146static void ceph_con_workfn(struct work_struct *);
 147static void con_fault(struct ceph_connection *con);
 148
 149/*
 150 * Nicely render a sockaddr as a string.  An array of formatted
 151 * strings is used, to approximate reentrancy.
 152 */
 153#define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
 154#define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
 155#define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
 156#define MAX_ADDR_STR_LEN	64	/* 54 is enough */
 157
 158static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
 159static atomic_t addr_str_seq = ATOMIC_INIT(0);
 160
 161struct page *ceph_zero_page;		/* used in certain error cases */
 162
 163const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
 164{
 165	int i;
 166	char *s;
 167	struct sockaddr_storage ss = addr->in_addr; /* align */
 168	struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
 169	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
 170
 171	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
 172	s = addr_str[i];
 173
 174	switch (ss.ss_family) {
 175	case AF_INET:
 176		snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
 177			 le32_to_cpu(addr->type), &in4->sin_addr,
 178			 ntohs(in4->sin_port));
 179		break;
 180
 181	case AF_INET6:
 182		snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
 183			 le32_to_cpu(addr->type), &in6->sin6_addr,
 184			 ntohs(in6->sin6_port));
 185		break;
 186
 187	default:
 188		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
 189			 ss.ss_family);
 190	}
 191
 192	return s;
 193}
 194EXPORT_SYMBOL(ceph_pr_addr);
 195
 196void ceph_encode_my_addr(struct ceph_messenger *msgr)
 197{
 198	if (!ceph_msgr2(from_msgr(msgr))) {
 199		memcpy(&msgr->my_enc_addr, &msgr->inst.addr,
 200		       sizeof(msgr->my_enc_addr));
 201		ceph_encode_banner_addr(&msgr->my_enc_addr);
 202	}
 203}
 204
 205/*
 206 * work queue for all reading and writing to/from the socket.
 207 */
 208static struct workqueue_struct *ceph_msgr_wq;
 209
 210static int ceph_msgr_slab_init(void)
 211{
 212	BUG_ON(ceph_msg_cache);
 213	ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
 
 
 
 214	if (!ceph_msg_cache)
 215		return -ENOMEM;
 216
 217	return 0;
 
 
 
 
 
 
 
 
 
 
 
 218}
 219
 220static void ceph_msgr_slab_exit(void)
 221{
 
 
 
 
 222	BUG_ON(!ceph_msg_cache);
 223	kmem_cache_destroy(ceph_msg_cache);
 224	ceph_msg_cache = NULL;
 225}
 226
 227static void _ceph_msgr_exit(void)
 228{
 229	if (ceph_msgr_wq) {
 230		destroy_workqueue(ceph_msgr_wq);
 231		ceph_msgr_wq = NULL;
 232	}
 233
 234	BUG_ON(!ceph_zero_page);
 235	put_page(ceph_zero_page);
 236	ceph_zero_page = NULL;
 237
 238	ceph_msgr_slab_exit();
 
 
 
 
 
 239}
 240
 241int __init ceph_msgr_init(void)
 242{
 
 
 
 
 243	if (ceph_msgr_slab_init())
 244		return -ENOMEM;
 245
 246	BUG_ON(ceph_zero_page);
 247	ceph_zero_page = ZERO_PAGE(0);
 248	get_page(ceph_zero_page);
 249
 250	/*
 251	 * The number of active work items is limited by the number of
 252	 * connections, so leave @max_active at default.
 253	 */
 254	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
 255	if (ceph_msgr_wq)
 256		return 0;
 257
 258	pr_err("msgr_init failed to create workqueue\n");
 259	_ceph_msgr_exit();
 260
 261	return -ENOMEM;
 262}
 
 263
 264void ceph_msgr_exit(void)
 265{
 266	BUG_ON(ceph_msgr_wq == NULL);
 267
 268	_ceph_msgr_exit();
 269}
 
 270
 271void ceph_msgr_flush(void)
 272{
 273	flush_workqueue(ceph_msgr_wq);
 274}
 275EXPORT_SYMBOL(ceph_msgr_flush);
 276
 277/* Connection socket state transition functions */
 278
 279static void con_sock_state_init(struct ceph_connection *con)
 280{
 281	int old_state;
 282
 283	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 284	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
 285		printk("%s: unexpected old state %d\n", __func__, old_state);
 286	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 287	     CON_SOCK_STATE_CLOSED);
 288}
 289
 290static void con_sock_state_connecting(struct ceph_connection *con)
 291{
 292	int old_state;
 293
 294	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
 295	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
 296		printk("%s: unexpected old state %d\n", __func__, old_state);
 297	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 298	     CON_SOCK_STATE_CONNECTING);
 299}
 300
 301static void con_sock_state_connected(struct ceph_connection *con)
 302{
 303	int old_state;
 304
 305	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
 306	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
 307		printk("%s: unexpected old state %d\n", __func__, old_state);
 308	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 309	     CON_SOCK_STATE_CONNECTED);
 310}
 311
 312static void con_sock_state_closing(struct ceph_connection *con)
 313{
 314	int old_state;
 315
 316	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
 317	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
 318			old_state != CON_SOCK_STATE_CONNECTED &&
 319			old_state != CON_SOCK_STATE_CLOSING))
 320		printk("%s: unexpected old state %d\n", __func__, old_state);
 321	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 322	     CON_SOCK_STATE_CLOSING);
 323}
 324
 325static void con_sock_state_closed(struct ceph_connection *con)
 326{
 327	int old_state;
 328
 329	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 330	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
 331		    old_state != CON_SOCK_STATE_CLOSING &&
 332		    old_state != CON_SOCK_STATE_CONNECTING &&
 333		    old_state != CON_SOCK_STATE_CLOSED))
 334		printk("%s: unexpected old state %d\n", __func__, old_state);
 335	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 336	     CON_SOCK_STATE_CLOSED);
 337}
 338
 339/*
 340 * socket callback functions
 341 */
 342
 343/* data available on socket, or listen socket received a connect */
 344static void ceph_sock_data_ready(struct sock *sk)
 345{
 346	struct ceph_connection *con = sk->sk_user_data;
 347	if (atomic_read(&con->msgr->stopping)) {
 348		return;
 349	}
 350
 351	if (sk->sk_state != TCP_CLOSE_WAIT) {
 352		dout("%s %p state = %d, queueing work\n", __func__,
 353		     con, con->state);
 354		queue_con(con);
 355	}
 356}
 357
 358/* socket has buffer space for writing */
 359static void ceph_sock_write_space(struct sock *sk)
 360{
 361	struct ceph_connection *con = sk->sk_user_data;
 362
 363	/* only queue to workqueue if there is data we want to write,
 364	 * and there is sufficient space in the socket buffer to accept
 365	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
 366	 * doesn't get called again until try_write() fills the socket
 367	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
 368	 * and net/core/stream.c:sk_stream_write_space().
 369	 */
 370	if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) {
 371		if (sk_stream_is_writeable(sk)) {
 372			dout("%s %p queueing write work\n", __func__, con);
 373			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 374			queue_con(con);
 375		}
 376	} else {
 377		dout("%s %p nothing to write\n", __func__, con);
 378	}
 379}
 380
 381/* socket's state has changed */
 382static void ceph_sock_state_change(struct sock *sk)
 383{
 384	struct ceph_connection *con = sk->sk_user_data;
 385
 386	dout("%s %p state = %d sk_state = %u\n", __func__,
 387	     con, con->state, sk->sk_state);
 388
 389	switch (sk->sk_state) {
 390	case TCP_CLOSE:
 391		dout("%s TCP_CLOSE\n", __func__);
 392		fallthrough;
 393	case TCP_CLOSE_WAIT:
 394		dout("%s TCP_CLOSE_WAIT\n", __func__);
 395		con_sock_state_closing(con);
 396		ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED);
 397		queue_con(con);
 398		break;
 399	case TCP_ESTABLISHED:
 400		dout("%s TCP_ESTABLISHED\n", __func__);
 401		con_sock_state_connected(con);
 402		queue_con(con);
 403		break;
 404	default:	/* Everything else is uninteresting */
 405		break;
 406	}
 407}
 408
 409/*
 410 * set up socket callbacks
 411 */
 412static void set_sock_callbacks(struct socket *sock,
 413			       struct ceph_connection *con)
 414{
 415	struct sock *sk = sock->sk;
 416	sk->sk_user_data = con;
 417	sk->sk_data_ready = ceph_sock_data_ready;
 418	sk->sk_write_space = ceph_sock_write_space;
 419	sk->sk_state_change = ceph_sock_state_change;
 420}
 421
 422
 423/*
 424 * socket helpers
 425 */
 426
 427/*
 428 * initiate connection to a remote socket.
 429 */
 430int ceph_tcp_connect(struct ceph_connection *con)
 431{
 432	struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
 433	struct socket *sock;
 434	unsigned int noio_flag;
 435	int ret;
 436
 437	dout("%s con %p peer_addr %s\n", __func__, con,
 438	     ceph_pr_addr(&con->peer_addr));
 439	BUG_ON(con->sock);
 440
 441	/* sock_create_kern() allocates with GFP_KERNEL */
 442	noio_flag = memalloc_noio_save();
 443	ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
 444			       SOCK_STREAM, IPPROTO_TCP, &sock);
 445	memalloc_noio_restore(noio_flag);
 446	if (ret)
 447		return ret;
 448	sock->sk->sk_allocation = GFP_NOFS;
 449	sock->sk->sk_use_task_frag = false;
 450
 451#ifdef CONFIG_LOCKDEP
 452	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
 453#endif
 454
 455	set_sock_callbacks(sock, con);
 456
 
 
 457	con_sock_state_connecting(con);
 458	ret = sock->ops->connect(sock, (struct sockaddr *)&ss, sizeof(ss),
 459				 O_NONBLOCK);
 460	if (ret == -EINPROGRESS) {
 461		dout("connect %s EINPROGRESS sk_state = %u\n",
 462		     ceph_pr_addr(&con->peer_addr),
 463		     sock->sk->sk_state);
 464	} else if (ret < 0) {
 465		pr_err("connect %s error %d\n",
 466		       ceph_pr_addr(&con->peer_addr), ret);
 467		sock_release(sock);
 
 
 468		return ret;
 469	}
 470
 471	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
 472		tcp_sock_set_nodelay(sock->sk);
 473
 474	con->sock = sock;
 475	return 0;
 476}
 477
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 478/*
 479 * Shutdown/close the socket for the given connection.
 480 */
 481int ceph_con_close_socket(struct ceph_connection *con)
 482{
 483	int rc = 0;
 484
 485	dout("%s con %p sock %p\n", __func__, con, con->sock);
 486	if (con->sock) {
 487		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
 488		sock_release(con->sock);
 489		con->sock = NULL;
 490	}
 491
 492	/*
 493	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
 494	 * independent of the connection mutex, and we could have
 495	 * received a socket close event before we had the chance to
 496	 * shut the socket down.
 497	 */
 498	ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED);
 499
 500	con_sock_state_closed(con);
 501	return rc;
 502}
 503
 504static void ceph_con_reset_protocol(struct ceph_connection *con)
 505{
 506	dout("%s con %p\n", __func__, con);
 507
 508	ceph_con_close_socket(con);
 509	if (con->in_msg) {
 510		WARN_ON(con->in_msg->con != con);
 511		ceph_msg_put(con->in_msg);
 512		con->in_msg = NULL;
 513	}
 514	if (con->out_msg) {
 515		WARN_ON(con->out_msg->con != con);
 516		ceph_msg_put(con->out_msg);
 517		con->out_msg = NULL;
 518	}
 519	if (con->bounce_page) {
 520		__free_page(con->bounce_page);
 521		con->bounce_page = NULL;
 522	}
 523
 524	if (ceph_msgr2(from_msgr(con->msgr)))
 525		ceph_con_v2_reset_protocol(con);
 526	else
 527		ceph_con_v1_reset_protocol(con);
 528}
 529
 530/*
 531 * Reset a connection.  Discard all incoming and outgoing messages
 532 * and clear *_seq state.
 533 */
 534static void ceph_msg_remove(struct ceph_msg *msg)
 535{
 536	list_del_init(&msg->list_head);
 
 
 
 537
 538	ceph_msg_put(msg);
 539}
 540
 541static void ceph_msg_remove_list(struct list_head *head)
 542{
 543	while (!list_empty(head)) {
 544		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
 545							list_head);
 546		ceph_msg_remove(msg);
 547	}
 548}
 549
 550void ceph_con_reset_session(struct ceph_connection *con)
 551{
 552	dout("%s con %p\n", __func__, con);
 553
 554	WARN_ON(con->in_msg);
 555	WARN_ON(con->out_msg);
 556	ceph_msg_remove_list(&con->out_queue);
 557	ceph_msg_remove_list(&con->out_sent);
 
 
 
 
 
 
 
 
 
 
 558	con->out_seq = 0;
 
 
 
 
 559	con->in_seq = 0;
 560	con->in_seq_acked = 0;
 561
 562	if (ceph_msgr2(from_msgr(con->msgr)))
 563		ceph_con_v2_reset_session(con);
 564	else
 565		ceph_con_v1_reset_session(con);
 566}
 567
 568/*
 569 * mark a peer down.  drop any open connections.
 570 */
 571void ceph_con_close(struct ceph_connection *con)
 572{
 573	mutex_lock(&con->mutex);
 574	dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
 575	con->state = CEPH_CON_S_CLOSED;
 576
 577	ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX);  /* so we retry next
 578							  connect */
 579	ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING);
 580	ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
 581	ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF);
 582
 583	ceph_con_reset_protocol(con);
 584	ceph_con_reset_session(con);
 585	cancel_con(con);
 
 586	mutex_unlock(&con->mutex);
 587}
 588EXPORT_SYMBOL(ceph_con_close);
 589
 590/*
 591 * Reopen a closed connection, with a new peer address.
 592 */
 593void ceph_con_open(struct ceph_connection *con,
 594		   __u8 entity_type, __u64 entity_num,
 595		   struct ceph_entity_addr *addr)
 596{
 597	mutex_lock(&con->mutex);
 598	dout("con_open %p %s\n", con, ceph_pr_addr(addr));
 599
 600	WARN_ON(con->state != CEPH_CON_S_CLOSED);
 601	con->state = CEPH_CON_S_PREOPEN;
 602
 603	con->peer_name.type = (__u8) entity_type;
 604	con->peer_name.num = cpu_to_le64(entity_num);
 605
 606	memcpy(&con->peer_addr, addr, sizeof(*addr));
 607	con->delay = 0;      /* reset backoff memory */
 608	mutex_unlock(&con->mutex);
 609	queue_con(con);
 610}
 611EXPORT_SYMBOL(ceph_con_open);
 612
 613/*
 614 * return true if this connection ever successfully opened
 615 */
 616bool ceph_con_opened(struct ceph_connection *con)
 617{
 618	if (ceph_msgr2(from_msgr(con->msgr)))
 619		return ceph_con_v2_opened(con);
 620
 621	return ceph_con_v1_opened(con);
 622}
 623
 624/*
 625 * initialize a new connection.
 626 */
 627void ceph_con_init(struct ceph_connection *con, void *private,
 628	const struct ceph_connection_operations *ops,
 629	struct ceph_messenger *msgr)
 630{
 631	dout("con_init %p\n", con);
 632	memset(con, 0, sizeof(*con));
 633	con->private = private;
 634	con->ops = ops;
 635	con->msgr = msgr;
 636
 637	con_sock_state_init(con);
 638
 639	mutex_init(&con->mutex);
 640	INIT_LIST_HEAD(&con->out_queue);
 641	INIT_LIST_HEAD(&con->out_sent);
 642	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
 643
 644	con->state = CEPH_CON_S_CLOSED;
 645}
 646EXPORT_SYMBOL(ceph_con_init);
 647
 
 648/*
 649 * We maintain a global counter to order connection attempts.  Get
 650 * a unique seq greater than @gt.
 651 */
 652u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt)
 653{
 654	u32 ret;
 655
 656	spin_lock(&msgr->global_seq_lock);
 657	if (msgr->global_seq < gt)
 658		msgr->global_seq = gt;
 659	ret = ++msgr->global_seq;
 660	spin_unlock(&msgr->global_seq_lock);
 661	return ret;
 662}
 663
 664/*
 665 * Discard messages that have been acked by the server.
 666 */
 667void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq)
 668{
 669	struct ceph_msg *msg;
 670	u64 seq;
 671
 672	dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq);
 673	while (!list_empty(&con->out_sent)) {
 674		msg = list_first_entry(&con->out_sent, struct ceph_msg,
 675				       list_head);
 676		WARN_ON(msg->needs_out_seq);
 677		seq = le64_to_cpu(msg->hdr.seq);
 678		if (seq > ack_seq)
 679			break;
 680
 681		dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
 682		     msg, seq);
 683		ceph_msg_remove(msg);
 684	}
 685}
 686
 687/*
 688 * Discard messages that have been requeued in con_fault(), up to
 689 * reconnect_seq.  This avoids gratuitously resending messages that
 690 * the server had received and handled prior to reconnect.
 691 */
 692void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq)
 693{
 694	struct ceph_msg *msg;
 695	u64 seq;
 696
 697	dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq);
 698	while (!list_empty(&con->out_queue)) {
 699		msg = list_first_entry(&con->out_queue, struct ceph_msg,
 700				       list_head);
 701		if (msg->needs_out_seq)
 702			break;
 703		seq = le64_to_cpu(msg->hdr.seq);
 704		if (seq > reconnect_seq)
 705			break;
 706
 707		dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
 708		     msg, seq);
 709		ceph_msg_remove(msg);
 710	}
 711}
 712
 713#ifdef CONFIG_BLOCK
 714
 715/*
 716 * For a bio data item, a piece is whatever remains of the next
 717 * entry in the current bio iovec, or the first entry in the next
 718 * bio in the list.
 719 */
 720static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
 721					size_t length)
 722{
 723	struct ceph_msg_data *data = cursor->data;
 724	struct ceph_bio_iter *it = &cursor->bio_iter;
 725
 726	cursor->resid = min_t(size_t, length, data->bio_length);
 727	*it = data->bio_pos;
 728	if (cursor->resid < it->iter.bi_size)
 729		it->iter.bi_size = cursor->resid;
 730
 731	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
 
 
 
 
 
 
 
 732}
 733
 734static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
 735						size_t *page_offset,
 736						size_t *length)
 737{
 738	struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
 739					   cursor->bio_iter.iter);
 740
 741	*page_offset = bv.bv_offset;
 742	*length = bv.bv_len;
 743	return bv.bv_page;
 744}
 745
 746static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
 747					size_t bytes)
 748{
 749	struct ceph_bio_iter *it = &cursor->bio_iter;
 750	struct page *page = bio_iter_page(it->bio, it->iter);
 751
 752	BUG_ON(bytes > cursor->resid);
 753	BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
 754	cursor->resid -= bytes;
 755	bio_advance_iter(it->bio, &it->iter, bytes);
 756
 757	if (!cursor->resid)
 758		return false;   /* no more data */
 759
 760	if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
 761		       page == bio_iter_page(it->bio, it->iter)))
 762		return false;	/* more bytes to process in this segment */
 763
 764	if (!it->iter.bi_size) {
 765		it->bio = it->bio->bi_next;
 766		it->iter = it->bio->bi_iter;
 767		if (cursor->resid < it->iter.bi_size)
 768			it->iter.bi_size = cursor->resid;
 769	}
 770
 771	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
 772	return true;
 773}
 774#endif /* CONFIG_BLOCK */
 775
 776static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
 777					size_t length)
 778{
 779	struct ceph_msg_data *data = cursor->data;
 780	struct bio_vec *bvecs = data->bvec_pos.bvecs;
 781
 782	cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
 783	cursor->bvec_iter = data->bvec_pos.iter;
 784	cursor->bvec_iter.bi_size = cursor->resid;
 785
 786	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
 787}
 788
 789static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
 790						size_t *page_offset,
 791						size_t *length)
 792{
 793	struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
 794					   cursor->bvec_iter);
 795
 796	*page_offset = bv.bv_offset;
 797	*length = bv.bv_len;
 798	return bv.bv_page;
 799}
 800
 801static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
 802					size_t bytes)
 803{
 804	struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
 805	struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
 806
 807	BUG_ON(bytes > cursor->resid);
 808	BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
 809	cursor->resid -= bytes;
 810	bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
 811
 812	if (!cursor->resid)
 813		return false;   /* no more data */
 814
 815	if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
 816		       page == bvec_iter_page(bvecs, cursor->bvec_iter)))
 817		return false;	/* more bytes to process in this segment */
 818
 819	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 820	return true;
 821}
 
 822
 823/*
 824 * For a page array, a piece comes from the first page in the array
 825 * that has not already been fully consumed.
 826 */
 827static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
 828					size_t length)
 829{
 830	struct ceph_msg_data *data = cursor->data;
 831	int page_count;
 832
 833	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 834
 835	BUG_ON(!data->pages);
 836	BUG_ON(!data->length);
 837
 838	cursor->resid = min(length, data->length);
 839	page_count = calc_pages_for(data->alignment, (u64)data->length);
 840	cursor->page_offset = data->alignment & ~PAGE_MASK;
 841	cursor->page_index = 0;
 842	BUG_ON(page_count > (int)USHRT_MAX);
 843	cursor->page_count = (unsigned short)page_count;
 844	BUG_ON(length > SIZE_MAX - cursor->page_offset);
 
 845}
 846
 847static struct page *
 848ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
 849					size_t *page_offset, size_t *length)
 850{
 851	struct ceph_msg_data *data = cursor->data;
 852
 853	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 854
 855	BUG_ON(cursor->page_index >= cursor->page_count);
 856	BUG_ON(cursor->page_offset >= PAGE_SIZE);
 857
 858	*page_offset = cursor->page_offset;
 859	*length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
 
 
 
 
 860	return data->pages[cursor->page_index];
 861}
 862
 863static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
 864						size_t bytes)
 865{
 866	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
 867
 868	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
 869
 870	/* Advance the cursor page offset */
 871
 872	cursor->resid -= bytes;
 873	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
 874	if (!bytes || cursor->page_offset)
 875		return false;	/* more bytes to process in the current page */
 876
 877	if (!cursor->resid)
 878		return false;   /* no more data */
 879
 880	/* Move on to the next page; offset is already at 0 */
 881
 882	BUG_ON(cursor->page_index >= cursor->page_count);
 883	cursor->page_index++;
 
 
 884	return true;
 885}
 886
 887/*
 888 * For a pagelist, a piece is whatever remains to be consumed in the
 889 * first page in the list, or the front of the next page.
 890 */
 891static void
 892ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
 893					size_t length)
 894{
 895	struct ceph_msg_data *data = cursor->data;
 896	struct ceph_pagelist *pagelist;
 897	struct page *page;
 898
 899	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
 900
 901	pagelist = data->pagelist;
 902	BUG_ON(!pagelist);
 903
 904	if (!length)
 905		return;		/* pagelist can be assigned but empty */
 906
 907	BUG_ON(list_empty(&pagelist->head));
 908	page = list_first_entry(&pagelist->head, struct page, lru);
 909
 910	cursor->resid = min(length, pagelist->length);
 911	cursor->page = page;
 912	cursor->offset = 0;
 
 913}
 914
 915static struct page *
 916ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
 917				size_t *page_offset, size_t *length)
 918{
 919	struct ceph_msg_data *data = cursor->data;
 920	struct ceph_pagelist *pagelist;
 921
 922	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
 923
 924	pagelist = data->pagelist;
 925	BUG_ON(!pagelist);
 926
 927	BUG_ON(!cursor->page);
 928	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
 929
 930	/* offset of first page in pagelist is always 0 */
 931	*page_offset = cursor->offset & ~PAGE_MASK;
 932	*length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
 
 
 
 
 933	return cursor->page;
 934}
 935
 936static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
 937						size_t bytes)
 938{
 939	struct ceph_msg_data *data = cursor->data;
 940	struct ceph_pagelist *pagelist;
 941
 942	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
 943
 944	pagelist = data->pagelist;
 945	BUG_ON(!pagelist);
 946
 947	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
 948	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
 949
 950	/* Advance the cursor offset */
 951
 952	cursor->resid -= bytes;
 953	cursor->offset += bytes;
 954	/* offset of first page in pagelist is always 0 */
 955	if (!bytes || cursor->offset & ~PAGE_MASK)
 956		return false;	/* more bytes to process in the current page */
 957
 958	if (!cursor->resid)
 959		return false;   /* no more data */
 960
 961	/* Move on to the next page */
 962
 963	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
 964	cursor->page = list_next_entry(cursor->page, lru);
 
 
 965	return true;
 966}
 967
 968/*
 969 * Message data is handled (sent or received) in pieces, where each
 970 * piece resides on a single page.  The network layer might not
 971 * consume an entire piece at once.  A data item's cursor keeps
 972 * track of which piece is next to process and how much remains to
 973 * be processed in that piece.  It also tracks whether the current
 974 * piece is the last one in the data item.
 975 */
 976static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
 977{
 978	size_t length = cursor->total_resid;
 979
 980	switch (cursor->data->type) {
 981	case CEPH_MSG_DATA_PAGELIST:
 982		ceph_msg_data_pagelist_cursor_init(cursor, length);
 983		break;
 984	case CEPH_MSG_DATA_PAGES:
 985		ceph_msg_data_pages_cursor_init(cursor, length);
 986		break;
 987#ifdef CONFIG_BLOCK
 988	case CEPH_MSG_DATA_BIO:
 989		ceph_msg_data_bio_cursor_init(cursor, length);
 990		break;
 991#endif /* CONFIG_BLOCK */
 992	case CEPH_MSG_DATA_BVECS:
 993		ceph_msg_data_bvecs_cursor_init(cursor, length);
 994		break;
 995	case CEPH_MSG_DATA_NONE:
 996	default:
 997		/* BUG(); */
 998		break;
 999	}
1000	cursor->need_crc = true;
1001}
1002
1003void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor,
1004			       struct ceph_msg *msg, size_t length)
1005{
 
 
 
1006	BUG_ON(!length);
1007	BUG_ON(length > msg->data_length);
1008	BUG_ON(!msg->num_data_items);
1009
 
1010	cursor->total_resid = length;
1011	cursor->data = msg->data;
 
1012
1013	__ceph_msg_data_cursor_init(cursor);
1014}
1015
1016/*
1017 * Return the page containing the next piece to process for a given
1018 * data item, and supply the page offset and length of that piece.
1019 * Indicate whether this is the last piece in this data item.
1020 */
1021struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1022				size_t *page_offset, size_t *length)
 
1023{
1024	struct page *page;
1025
1026	switch (cursor->data->type) {
1027	case CEPH_MSG_DATA_PAGELIST:
1028		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1029		break;
1030	case CEPH_MSG_DATA_PAGES:
1031		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1032		break;
1033#ifdef CONFIG_BLOCK
1034	case CEPH_MSG_DATA_BIO:
1035		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1036		break;
1037#endif /* CONFIG_BLOCK */
1038	case CEPH_MSG_DATA_BVECS:
1039		page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1040		break;
1041	case CEPH_MSG_DATA_NONE:
1042	default:
1043		page = NULL;
1044		break;
1045	}
1046
1047	BUG_ON(!page);
1048	BUG_ON(*page_offset + *length > PAGE_SIZE);
1049	BUG_ON(!*length);
1050	BUG_ON(*length > cursor->resid);
 
1051
1052	return page;
1053}
1054
1055/*
1056 * Returns true if the result moves the cursor on to the next piece
1057 * of the data item.
1058 */
1059void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes)
 
1060{
1061	bool new_piece;
1062
1063	BUG_ON(bytes > cursor->resid);
1064	switch (cursor->data->type) {
1065	case CEPH_MSG_DATA_PAGELIST:
1066		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1067		break;
1068	case CEPH_MSG_DATA_PAGES:
1069		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1070		break;
1071#ifdef CONFIG_BLOCK
1072	case CEPH_MSG_DATA_BIO:
1073		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1074		break;
1075#endif /* CONFIG_BLOCK */
1076	case CEPH_MSG_DATA_BVECS:
1077		new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1078		break;
1079	case CEPH_MSG_DATA_NONE:
1080	default:
1081		BUG();
1082		break;
1083	}
1084	cursor->total_resid -= bytes;
1085
1086	if (!cursor->resid && cursor->total_resid) {
1087		cursor->data++;
 
 
1088		__ceph_msg_data_cursor_init(cursor);
1089		new_piece = true;
1090	}
1091	cursor->need_crc = new_piece;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1092}
1093
1094u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset,
1095		     unsigned int length)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1096{
1097	char *kaddr;
1098
1099	kaddr = kmap(page);
1100	BUG_ON(kaddr == NULL);
1101	crc = crc32c(crc, kaddr + page_offset, length);
1102	kunmap(page);
1103
1104	return crc;
1105}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1106
1107bool ceph_addr_is_blank(const struct ceph_entity_addr *addr)
 
 
 
1108{
1109	struct sockaddr_storage ss = addr->in_addr; /* align */
1110	struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1111	struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
 
 
 
 
 
1112
1113	switch (ss.ss_family) {
 
 
1114	case AF_INET:
1115		return addr4->s_addr == htonl(INADDR_ANY);
1116	case AF_INET6:
1117		return ipv6_addr_any(addr6);
1118	default:
1119		return true;
 
 
1120	}
 
1121}
1122
1123int ceph_addr_port(const struct ceph_entity_addr *addr)
1124{
1125	switch (get_unaligned(&addr->in_addr.ss_family)) {
1126	case AF_INET:
1127		return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1128	case AF_INET6:
1129		return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1130	}
1131	return 0;
1132}
1133
1134void ceph_addr_set_port(struct ceph_entity_addr *addr, int p)
1135{
1136	switch (get_unaligned(&addr->in_addr.ss_family)) {
1137	case AF_INET:
1138		put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1139		break;
1140	case AF_INET6:
1141		put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1142		break;
1143	}
1144}
1145
1146/*
1147 * Unlike other *_pton function semantics, zero indicates success.
1148 */
1149static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1150		char delim, const char **ipend)
1151{
1152	memset(&addr->in_addr, 0, sizeof(addr->in_addr));
 
1153
1154	if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1155		put_unaligned(AF_INET, &addr->in_addr.ss_family);
 
 
1156		return 0;
1157	}
1158
1159	if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1160		put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1161		return 0;
1162	}
1163
1164	return -EINVAL;
1165}
1166
1167/*
1168 * Extract hostname string and resolve using kernel DNS facility.
1169 */
1170#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1171static int ceph_dns_resolve_name(const char *name, size_t namelen,
1172		struct ceph_entity_addr *addr, char delim, const char **ipend)
1173{
1174	const char *end, *delim_p;
1175	char *colon_p, *ip_addr = NULL;
1176	int ip_len, ret;
1177
1178	/*
1179	 * The end of the hostname occurs immediately preceding the delimiter or
1180	 * the port marker (':') where the delimiter takes precedence.
1181	 */
1182	delim_p = memchr(name, delim, namelen);
1183	colon_p = memchr(name, ':', namelen);
1184
1185	if (delim_p && colon_p)
1186		end = delim_p < colon_p ? delim_p : colon_p;
1187	else if (!delim_p && colon_p)
1188		end = colon_p;
1189	else {
1190		end = delim_p;
1191		if (!end) /* case: hostname:/ */
1192			end = name + namelen;
1193	}
1194
1195	if (end <= name)
1196		return -EINVAL;
1197
1198	/* do dns_resolve upcall */
1199	ip_len = dns_query(current->nsproxy->net_ns,
1200			   NULL, name, end - name, NULL, &ip_addr, NULL, false);
1201	if (ip_len > 0)
1202		ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1203	else
1204		ret = -ESRCH;
1205
1206	kfree(ip_addr);
1207
1208	*ipend = end;
1209
1210	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1211			ret, ret ? "failed" : ceph_pr_addr(addr));
1212
1213	return ret;
1214}
1215#else
1216static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1217		struct ceph_entity_addr *addr, char delim, const char **ipend)
1218{
1219	return -EINVAL;
1220}
1221#endif
1222
1223/*
1224 * Parse a server name (IP or hostname). If a valid IP address is not found
1225 * then try to extract a hostname to resolve using userspace DNS upcall.
1226 */
1227static int ceph_parse_server_name(const char *name, size_t namelen,
1228		struct ceph_entity_addr *addr, char delim, const char **ipend)
1229{
1230	int ret;
1231
1232	ret = ceph_pton(name, namelen, addr, delim, ipend);
1233	if (ret)
1234		ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1235
1236	return ret;
1237}
1238
1239/*
1240 * Parse an ip[:port] list into an addr array.  Use the default
1241 * monitor port if a port isn't specified.
1242 */
1243int ceph_parse_ips(const char *c, const char *end,
1244		   struct ceph_entity_addr *addr,
1245		   int max_count, int *count, char delim)
1246{
1247	int i, ret = -EINVAL;
1248	const char *p = c;
1249
1250	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1251	for (i = 0; i < max_count; i++) {
1252		char cur_delim = delim;
1253		const char *ipend;
 
1254		int port;
 
1255
1256		if (*p == '[') {
1257			cur_delim = ']';
1258			p++;
1259		}
1260
1261		ret = ceph_parse_server_name(p, end - p, &addr[i], cur_delim,
1262					     &ipend);
1263		if (ret)
1264			goto bad;
1265		ret = -EINVAL;
1266
1267		p = ipend;
1268
1269		if (cur_delim == ']') {
1270			if (*p != ']') {
1271				dout("missing matching ']'\n");
1272				goto bad;
1273			}
1274			p++;
1275		}
1276
1277		/* port? */
1278		if (p < end && *p == ':') {
1279			port = 0;
1280			p++;
1281			while (p < end && *p >= '0' && *p <= '9') {
1282				port = (port * 10) + (*p - '0');
1283				p++;
1284			}
1285			if (port == 0)
1286				port = CEPH_MON_PORT;
1287			else if (port > 65535)
1288				goto bad;
1289		} else {
1290			port = CEPH_MON_PORT;
1291		}
1292
1293		ceph_addr_set_port(&addr[i], port);
1294		/*
1295		 * We want the type to be set according to ms_mode
1296		 * option, but options are normally parsed after mon
1297		 * addresses.  Rather than complicating parsing, set
1298		 * to LEGACY and override in build_initial_monmap()
1299		 * for mon addresses and ceph_messenger_init() for
1300		 * ip option.
1301		 */
1302		addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
1303		addr[i].nonce = 0;
1304
1305		dout("%s got %s\n", __func__, ceph_pr_addr(&addr[i]));
1306
1307		if (p == end)
1308			break;
1309		if (*p != delim)
1310			goto bad;
1311		p++;
1312	}
1313
1314	if (p != end)
1315		goto bad;
1316
1317	if (count)
1318		*count = i + 1;
1319	return 0;
1320
1321bad:
 
1322	return ret;
1323}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1324
1325/*
1326 * Process message.  This happens in the worker thread.  The callback should
1327 * be careful not to do anything that waits on other incoming messages or it
1328 * may deadlock.
1329 */
1330void ceph_con_process_message(struct ceph_connection *con)
1331{
1332	struct ceph_msg *msg = con->in_msg;
1333
1334	BUG_ON(con->in_msg->con != con);
 
 
1335	con->in_msg = NULL;
 
1336
1337	/* if first message, set peer_name */
1338	if (con->peer_name.type == 0)
1339		con->peer_name = msg->hdr.src;
1340
1341	con->in_seq++;
1342	mutex_unlock(&con->mutex);
1343
1344	dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n",
1345	     msg, le64_to_cpu(msg->hdr.seq),
1346	     ENTITY_NAME(msg->hdr.src),
1347	     le16_to_cpu(msg->hdr.type),
1348	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1349	     le32_to_cpu(msg->hdr.front_len),
1350	     le32_to_cpu(msg->hdr.middle_len),
1351	     le32_to_cpu(msg->hdr.data_len),
1352	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1353	con->ops->dispatch(con, msg);
1354
1355	mutex_lock(&con->mutex);
1356}
1357
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1358/*
1359 * Atomically queue work on a connection after the specified delay.
1360 * Bump @con reference to avoid races with connection teardown.
1361 * Returns 0 if work was queued, or an error code otherwise.
1362 */
1363static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
1364{
1365	if (!con->ops->get(con)) {
1366		dout("%s %p ref count 0\n", __func__, con);
 
1367		return -ENOENT;
1368	}
1369
1370	if (delay >= HZ)
1371		delay = round_jiffies_relative(delay);
1372
1373	dout("%s %p %lu\n", __func__, con, delay);
1374	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
1375		dout("%s %p - already queued\n", __func__, con);
1376		con->ops->put(con);
 
1377		return -EBUSY;
1378	}
1379
 
 
1380	return 0;
1381}
1382
1383static void queue_con(struct ceph_connection *con)
1384{
1385	(void) queue_con_delay(con, 0);
1386}
1387
1388static void cancel_con(struct ceph_connection *con)
1389{
1390	if (cancel_delayed_work(&con->work)) {
1391		dout("%s %p\n", __func__, con);
1392		con->ops->put(con);
1393	}
1394}
1395
1396static bool con_sock_closed(struct ceph_connection *con)
1397{
1398	if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED))
1399		return false;
1400
1401#define CASE(x)								\
1402	case CEPH_CON_S_ ## x:						\
1403		con->error_msg = "socket closed (con state " #x ")";	\
1404		break;
1405
1406	switch (con->state) {
1407	CASE(CLOSED);
1408	CASE(PREOPEN);
1409	CASE(V1_BANNER);
1410	CASE(V1_CONNECT_MSG);
1411	CASE(V2_BANNER_PREFIX);
1412	CASE(V2_BANNER_PAYLOAD);
1413	CASE(V2_HELLO);
1414	CASE(V2_AUTH);
1415	CASE(V2_AUTH_SIGNATURE);
1416	CASE(V2_SESSION_CONNECT);
1417	CASE(V2_SESSION_RECONNECT);
1418	CASE(OPEN);
1419	CASE(STANDBY);
1420	default:
 
 
 
1421		BUG();
 
1422	}
1423#undef CASE
1424
1425	return true;
1426}
1427
1428static bool con_backoff(struct ceph_connection *con)
1429{
1430	int ret;
1431
1432	if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF))
1433		return false;
1434
1435	ret = queue_con_delay(con, con->delay);
1436	if (ret) {
1437		dout("%s: con %p FAILED to back off %lu\n", __func__,
1438			con, con->delay);
1439		BUG_ON(ret == -ENOENT);
1440		ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1441	}
1442
1443	return true;
1444}
1445
1446/* Finish fault handling; con->mutex must *not* be held here */
1447
1448static void con_fault_finish(struct ceph_connection *con)
1449{
1450	dout("%s %p\n", __func__, con);
1451
1452	/*
1453	 * in case we faulted due to authentication, invalidate our
1454	 * current tickets so that we can get new ones.
1455	 */
1456	if (con->v1.auth_retry) {
1457		dout("auth_retry %d, invalidating\n", con->v1.auth_retry);
1458		if (con->ops->invalidate_authorizer)
1459			con->ops->invalidate_authorizer(con);
1460		con->v1.auth_retry = 0;
1461	}
1462
1463	if (con->ops->fault)
1464		con->ops->fault(con);
1465}
1466
1467/*
1468 * Do some work on a connection.  Drop a connection ref when we're done.
1469 */
1470static void ceph_con_workfn(struct work_struct *work)
1471{
1472	struct ceph_connection *con = container_of(work, struct ceph_connection,
1473						   work.work);
1474	bool fault;
1475
1476	mutex_lock(&con->mutex);
1477	while (true) {
1478		int ret;
1479
1480		if ((fault = con_sock_closed(con))) {
1481			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
1482			break;
1483		}
1484		if (con_backoff(con)) {
1485			dout("%s: con %p BACKOFF\n", __func__, con);
1486			break;
1487		}
1488		if (con->state == CEPH_CON_S_STANDBY) {
1489			dout("%s: con %p STANDBY\n", __func__, con);
1490			break;
1491		}
1492		if (con->state == CEPH_CON_S_CLOSED) {
1493			dout("%s: con %p CLOSED\n", __func__, con);
1494			BUG_ON(con->sock);
1495			break;
1496		}
1497		if (con->state == CEPH_CON_S_PREOPEN) {
1498			dout("%s: con %p PREOPEN\n", __func__, con);
1499			BUG_ON(con->sock);
1500		}
1501
1502		if (ceph_msgr2(from_msgr(con->msgr)))
1503			ret = ceph_con_v2_try_read(con);
1504		else
1505			ret = ceph_con_v1_try_read(con);
1506		if (ret < 0) {
1507			if (ret == -EAGAIN)
1508				continue;
1509			if (!con->error_msg)
1510				con->error_msg = "socket error on read";
1511			fault = true;
1512			break;
1513		}
1514
1515		if (ceph_msgr2(from_msgr(con->msgr)))
1516			ret = ceph_con_v2_try_write(con);
1517		else
1518			ret = ceph_con_v1_try_write(con);
1519		if (ret < 0) {
1520			if (ret == -EAGAIN)
1521				continue;
1522			if (!con->error_msg)
1523				con->error_msg = "socket error on write";
1524			fault = true;
1525		}
1526
1527		break;	/* If we make it to here, we're done */
1528	}
1529	if (fault)
1530		con_fault(con);
1531	mutex_unlock(&con->mutex);
1532
1533	if (fault)
1534		con_fault_finish(con);
1535
1536	con->ops->put(con);
1537}
1538
1539/*
1540 * Generic error/fault handler.  A retry mechanism is used with
1541 * exponential backoff
1542 */
1543static void con_fault(struct ceph_connection *con)
1544{
1545	dout("fault %p state %d to peer %s\n",
1546	     con, con->state, ceph_pr_addr(&con->peer_addr));
1547
1548	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1549		ceph_pr_addr(&con->peer_addr), con->error_msg);
1550	con->error_msg = NULL;
 
 
1551
1552	WARN_ON(con->state == CEPH_CON_S_STANDBY ||
1553		con->state == CEPH_CON_S_CLOSED);
1554
1555	ceph_con_reset_protocol(con);
1556
1557	if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) {
1558		dout("fault on LOSSYTX channel, marking CLOSED\n");
1559		con->state = CEPH_CON_S_CLOSED;
1560		return;
1561	}
1562
 
 
 
 
 
 
 
 
1563	/* Requeue anything that hasn't been acked */
1564	list_splice_init(&con->out_sent, &con->out_queue);
1565
1566	/* If there are no messages queued or keepalive pending, place
1567	 * the connection in a STANDBY state */
1568	if (list_empty(&con->out_queue) &&
1569	    !ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
1570		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
1571		ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
1572		con->state = CEPH_CON_S_STANDBY;
1573	} else {
1574		/* retry after a delay. */
1575		con->state = CEPH_CON_S_PREOPEN;
1576		if (!con->delay) {
1577			con->delay = BASE_DELAY_INTERVAL;
1578		} else if (con->delay < MAX_DELAY_INTERVAL) {
1579			con->delay *= 2;
1580			if (con->delay > MAX_DELAY_INTERVAL)
1581				con->delay = MAX_DELAY_INTERVAL;
1582		}
1583		ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1584		queue_con(con);
1585	}
1586}
1587
1588void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
1589{
1590	u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
1591	msgr->inst.addr.nonce = cpu_to_le32(nonce);
1592	ceph_encode_my_addr(msgr);
1593}
1594
1595/*
1596 * initialize a new messenger instance
1597 */
1598void ceph_messenger_init(struct ceph_messenger *msgr,
1599			 struct ceph_entity_addr *myaddr)
 
 
 
1600{
 
 
 
1601	spin_lock_init(&msgr->global_seq_lock);
1602
1603	if (myaddr) {
1604		memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr,
1605		       sizeof(msgr->inst.addr.in_addr));
1606		ceph_addr_set_port(&msgr->inst.addr, 0);
1607	}
1608
1609	/*
1610	 * Since nautilus, clients are identified using type ANY.
1611	 * For msgr1, ceph_encode_banner_addr() munges it to NONE.
1612	 */
1613	msgr->inst.addr.type = CEPH_ENTITY_ADDR_TYPE_ANY;
1614
1615	/* generate a random non-zero nonce */
1616	do {
1617		get_random_bytes(&msgr->inst.addr.nonce,
1618				 sizeof(msgr->inst.addr.nonce));
1619	} while (!msgr->inst.addr.nonce);
1620	ceph_encode_my_addr(msgr);
1621
1622	atomic_set(&msgr->stopping, 0);
1623	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
1624
1625	dout("%s %p\n", __func__, msgr);
1626}
1627
1628void ceph_messenger_fini(struct ceph_messenger *msgr)
1629{
1630	put_net(read_pnet(&msgr->net));
1631}
1632
1633static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
1634{
1635	if (msg->con)
1636		msg->con->ops->put(msg->con);
1637
1638	msg->con = con ? con->ops->get(con) : NULL;
1639	BUG_ON(msg->con != con);
1640}
1641
1642static void clear_standby(struct ceph_connection *con)
1643{
1644	/* come back from STANDBY? */
1645	if (con->state == CEPH_CON_S_STANDBY) {
1646		dout("clear_standby %p and ++connect_seq\n", con);
1647		con->state = CEPH_CON_S_PREOPEN;
1648		con->v1.connect_seq++;
1649		WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING));
1650		WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING));
1651	}
1652}
1653
1654/*
1655 * Queue up an outgoing message on the given connection.
1656 *
1657 * Consumes a ref on @msg.
1658 */
1659void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1660{
1661	/* set src+dst */
1662	msg->hdr.src = con->msgr->inst.name;
1663	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1664	msg->needs_out_seq = true;
1665
1666	mutex_lock(&con->mutex);
1667
1668	if (con->state == CEPH_CON_S_CLOSED) {
1669		dout("con_send %p closed, dropping %p\n", con, msg);
1670		ceph_msg_put(msg);
1671		mutex_unlock(&con->mutex);
1672		return;
1673	}
1674
1675	msg_con_set(msg, con);
 
 
1676
1677	BUG_ON(!list_empty(&msg->list_head));
1678	list_add_tail(&msg->list_head, &con->out_queue);
1679	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1680	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1681	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1682	     le32_to_cpu(msg->hdr.front_len),
1683	     le32_to_cpu(msg->hdr.middle_len),
1684	     le32_to_cpu(msg->hdr.data_len));
1685
1686	clear_standby(con);
1687	mutex_unlock(&con->mutex);
1688
1689	/* if there wasn't anything waiting to send before, queue
1690	 * new work */
1691	if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1692		queue_con(con);
1693}
1694EXPORT_SYMBOL(ceph_con_send);
1695
1696/*
1697 * Revoke a message that was previously queued for send
1698 */
1699void ceph_msg_revoke(struct ceph_msg *msg)
1700{
1701	struct ceph_connection *con = msg->con;
1702
1703	if (!con) {
1704		dout("%s msg %p null con\n", __func__, msg);
1705		return;		/* Message not in our possession */
1706	}
1707
1708	mutex_lock(&con->mutex);
1709	if (list_empty(&msg->list_head)) {
1710		WARN_ON(con->out_msg == msg);
1711		dout("%s con %p msg %p not linked\n", __func__, con, msg);
1712		mutex_unlock(&con->mutex);
1713		return;
1714	}
1715
1716	dout("%s con %p msg %p was linked\n", __func__, con, msg);
1717	msg->hdr.seq = 0;
1718	ceph_msg_remove(msg);
1719
 
 
1720	if (con->out_msg == msg) {
1721		WARN_ON(con->state != CEPH_CON_S_OPEN);
1722		dout("%s con %p msg %p was sending\n", __func__, con, msg);
1723		if (ceph_msgr2(from_msgr(con->msgr)))
1724			ceph_con_v2_revoke(con);
1725		else
1726			ceph_con_v1_revoke(con);
1727		ceph_msg_put(con->out_msg);
1728		con->out_msg = NULL;
1729	} else {
1730		dout("%s con %p msg %p not current, out_msg %p\n", __func__,
1731		     con, msg, con->out_msg);
 
 
 
 
1732	}
1733	mutex_unlock(&con->mutex);
1734}
1735
1736/*
1737 * Revoke a message that we may be reading data into
1738 */
1739void ceph_msg_revoke_incoming(struct ceph_msg *msg)
1740{
1741	struct ceph_connection *con = msg->con;
1742
1743	if (!con) {
 
1744		dout("%s msg %p null con\n", __func__, msg);
 
1745		return;		/* Message not in our possession */
1746	}
1747
 
1748	mutex_lock(&con->mutex);
1749	if (con->in_msg == msg) {
1750		WARN_ON(con->state != CEPH_CON_S_OPEN);
1751		dout("%s con %p msg %p was recving\n", __func__, con, msg);
1752		if (ceph_msgr2(from_msgr(con->msgr)))
1753			ceph_con_v2_revoke_incoming(con);
1754		else
1755			ceph_con_v1_revoke_incoming(con);
 
 
 
 
 
 
1756		ceph_msg_put(con->in_msg);
1757		con->in_msg = NULL;
 
 
1758	} else {
1759		dout("%s con %p msg %p not current, in_msg %p\n", __func__,
1760		     con, msg, con->in_msg);
1761	}
1762	mutex_unlock(&con->mutex);
1763}
1764
1765/*
1766 * Queue a keepalive byte to ensure the tcp connection is alive.
1767 */
1768void ceph_con_keepalive(struct ceph_connection *con)
1769{
1770	dout("con_keepalive %p\n", con);
1771	mutex_lock(&con->mutex);
1772	clear_standby(con);
1773	ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING);
1774	mutex_unlock(&con->mutex);
1775
1776	if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1777		queue_con(con);
1778}
1779EXPORT_SYMBOL(ceph_con_keepalive);
1780
1781bool ceph_con_keepalive_expired(struct ceph_connection *con,
1782			       unsigned long interval)
1783{
1784	if (interval > 0 &&
1785	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
1786		struct timespec64 now;
1787		struct timespec64 ts;
1788		ktime_get_real_ts64(&now);
1789		jiffies_to_timespec64(interval, &ts);
1790		ts = timespec64_add(con->last_keepalive_ack, ts);
1791		return timespec64_compare(&now, &ts) >= 0;
1792	}
1793	return false;
1794}
1795
1796static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
1797{
1798	BUG_ON(msg->num_data_items >= msg->max_data_items);
1799	return &msg->data[msg->num_data_items++];
 
 
 
 
 
1800}
1801
1802static void ceph_msg_data_destroy(struct ceph_msg_data *data)
1803{
1804	if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
1805		int num_pages = calc_pages_for(data->alignment, data->length);
1806		ceph_release_page_vector(data->pages, num_pages);
1807	} else if (data->type == CEPH_MSG_DATA_PAGELIST) {
 
1808		ceph_pagelist_release(data->pagelist);
 
1809	}
 
1810}
1811
1812void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
1813			     size_t length, size_t alignment, bool own_pages)
1814{
1815	struct ceph_msg_data *data;
1816
1817	BUG_ON(!pages);
1818	BUG_ON(!length);
1819
1820	data = ceph_msg_data_add(msg);
1821	data->type = CEPH_MSG_DATA_PAGES;
1822	data->pages = pages;
1823	data->length = length;
1824	data->alignment = alignment & ~PAGE_MASK;
1825	data->own_pages = own_pages;
1826
 
1827	msg->data_length += length;
1828}
1829EXPORT_SYMBOL(ceph_msg_data_add_pages);
1830
1831void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
1832				struct ceph_pagelist *pagelist)
1833{
1834	struct ceph_msg_data *data;
1835
1836	BUG_ON(!pagelist);
1837	BUG_ON(!pagelist->length);
1838
1839	data = ceph_msg_data_add(msg);
1840	data->type = CEPH_MSG_DATA_PAGELIST;
1841	refcount_inc(&pagelist->refcnt);
1842	data->pagelist = pagelist;
1843
 
1844	msg->data_length += pagelist->length;
1845}
1846EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
1847
1848#ifdef	CONFIG_BLOCK
1849void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
1850			   u32 length)
1851{
1852	struct ceph_msg_data *data;
1853
1854	data = ceph_msg_data_add(msg);
1855	data->type = CEPH_MSG_DATA_BIO;
1856	data->bio_pos = *bio_pos;
 
 
1857	data->bio_length = length;
1858
 
1859	msg->data_length += length;
1860}
1861EXPORT_SYMBOL(ceph_msg_data_add_bio);
1862#endif	/* CONFIG_BLOCK */
1863
1864void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
1865			     struct ceph_bvec_iter *bvec_pos)
1866{
1867	struct ceph_msg_data *data;
1868
1869	data = ceph_msg_data_add(msg);
1870	data->type = CEPH_MSG_DATA_BVECS;
1871	data->bvec_pos = *bvec_pos;
1872
1873	msg->data_length += bvec_pos->iter.bi_size;
1874}
1875EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
1876
1877/*
1878 * construct a new message with given type, size
1879 * the new msg has a ref count of 1.
1880 */
1881struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
1882			       gfp_t flags, bool can_fail)
1883{
1884	struct ceph_msg *m;
1885
1886	m = kmem_cache_zalloc(ceph_msg_cache, flags);
1887	if (m == NULL)
1888		goto out;
1889
1890	m->hdr.type = cpu_to_le16(type);
1891	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
1892	m->hdr.front_len = cpu_to_le32(front_len);
1893
1894	INIT_LIST_HEAD(&m->list_head);
1895	kref_init(&m->kref);
 
1896
1897	/* front */
1898	if (front_len) {
1899		m->front.iov_base = kvmalloc(front_len, flags);
1900		if (m->front.iov_base == NULL) {
1901			dout("ceph_msg_new can't allocate %d bytes\n",
1902			     front_len);
1903			goto out2;
1904		}
1905	} else {
1906		m->front.iov_base = NULL;
1907	}
1908	m->front_alloc_len = m->front.iov_len = front_len;
1909
1910	if (max_data_items) {
1911		m->data = kmalloc_array(max_data_items, sizeof(*m->data),
1912					flags);
1913		if (!m->data)
1914			goto out2;
1915
1916		m->max_data_items = max_data_items;
1917	}
1918
1919	dout("ceph_msg_new %p front %d\n", m, front_len);
1920	return m;
1921
1922out2:
1923	ceph_msg_put(m);
1924out:
1925	if (!can_fail) {
1926		pr_err("msg_new can't create type %d front %d\n", type,
1927		       front_len);
1928		WARN_ON(1);
1929	} else {
1930		dout("msg_new can't create type %d front %d\n", type,
1931		     front_len);
1932	}
1933	return NULL;
1934}
1935EXPORT_SYMBOL(ceph_msg_new2);
1936
1937struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
1938			      bool can_fail)
1939{
1940	return ceph_msg_new2(type, front_len, 0, flags, can_fail);
1941}
1942EXPORT_SYMBOL(ceph_msg_new);
1943
1944/*
1945 * Allocate "middle" portion of a message, if it is needed and wasn't
1946 * allocated by alloc_msg.  This allows us to read a small fixed-size
1947 * per-type header in the front and then gracefully fail (i.e.,
1948 * propagate the error to the caller based on info in the front) when
1949 * the middle is too large.
1950 */
1951static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
1952{
1953	int type = le16_to_cpu(msg->hdr.type);
1954	int middle_len = le32_to_cpu(msg->hdr.middle_len);
1955
1956	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
1957	     ceph_msg_type_name(type), middle_len);
1958	BUG_ON(!middle_len);
1959	BUG_ON(msg->middle);
1960
1961	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
1962	if (!msg->middle)
1963		return -ENOMEM;
1964	return 0;
1965}
1966
1967/*
1968 * Allocate a message for receiving an incoming message on a
1969 * connection, and save the result in con->in_msg.  Uses the
1970 * connection's private alloc_msg op if available.
1971 *
1972 * Returns 0 on success, or a negative error code.
1973 *
1974 * On success, if we set *skip = 1:
1975 *  - the next message should be skipped and ignored.
1976 *  - con->in_msg == NULL
1977 * or if we set *skip = 0:
1978 *  - con->in_msg is non-null.
1979 * On error (ENOMEM, EAGAIN, ...),
1980 *  - con->in_msg == NULL
1981 */
1982int ceph_con_in_msg_alloc(struct ceph_connection *con,
1983			  struct ceph_msg_header *hdr, int *skip)
1984{
 
1985	int middle_len = le32_to_cpu(hdr->middle_len);
1986	struct ceph_msg *msg;
1987	int ret = 0;
1988
1989	BUG_ON(con->in_msg != NULL);
1990	BUG_ON(!con->ops->alloc_msg);
1991
1992	mutex_unlock(&con->mutex);
1993	msg = con->ops->alloc_msg(con, hdr, skip);
1994	mutex_lock(&con->mutex);
1995	if (con->state != CEPH_CON_S_OPEN) {
1996		if (msg)
1997			ceph_msg_put(msg);
1998		return -EAGAIN;
1999	}
2000	if (msg) {
2001		BUG_ON(*skip);
2002		msg_con_set(msg, con);
2003		con->in_msg = msg;
 
 
2004	} else {
2005		/*
2006		 * Null message pointer means either we should skip
2007		 * this message or we couldn't allocate memory.  The
2008		 * former is not an error.
2009		 */
2010		if (*skip)
2011			return 0;
2012
2013		con->error_msg = "error allocating memory for incoming message";
 
2014		return -ENOMEM;
2015	}
2016	memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr));
2017
2018	if (middle_len && !con->in_msg->middle) {
2019		ret = ceph_alloc_middle(con, con->in_msg);
2020		if (ret < 0) {
2021			ceph_msg_put(con->in_msg);
2022			con->in_msg = NULL;
2023		}
2024	}
2025
2026	return ret;
2027}
2028
2029void ceph_con_get_out_msg(struct ceph_connection *con)
2030{
2031	struct ceph_msg *msg;
2032
2033	BUG_ON(list_empty(&con->out_queue));
2034	msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
2035	WARN_ON(msg->con != con);
2036
2037	/*
2038	 * Put the message on "sent" list using a ref from ceph_con_send().
2039	 * It is put when the message is acked or revoked.
2040	 */
2041	list_move_tail(&msg->list_head, &con->out_sent);
2042
2043	/*
2044	 * Only assign outgoing seq # if we haven't sent this message
2045	 * yet.  If it is requeued, resend with it's original seq.
2046	 */
2047	if (msg->needs_out_seq) {
2048		msg->hdr.seq = cpu_to_le64(++con->out_seq);
2049		msg->needs_out_seq = false;
2050
2051		if (con->ops->reencode_message)
2052			con->ops->reencode_message(msg);
2053	}
2054
2055	/*
2056	 * Get a ref for out_msg.  It is put when we are done sending the
2057	 * message or in case of a fault.
2058	 */
2059	WARN_ON(con->out_msg);
2060	con->out_msg = ceph_msg_get(msg);
2061}
2062
2063/*
2064 * Free a generically kmalloc'd message.
2065 */
2066static void ceph_msg_free(struct ceph_msg *m)
2067{
2068	dout("%s %p\n", __func__, m);
2069	kvfree(m->front.iov_base);
2070	kfree(m->data);
2071	kmem_cache_free(ceph_msg_cache, m);
2072}
2073
2074static void ceph_msg_release(struct kref *kref)
 
 
 
2075{
2076	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2077	int i;
 
 
2078
2079	dout("%s %p\n", __func__, m);
2080	WARN_ON(!list_empty(&m->list_head));
2081
2082	msg_con_set(m, NULL);
2083
2084	/* drop middle, data, if any */
2085	if (m->middle) {
2086		ceph_buffer_put(m->middle);
2087		m->middle = NULL;
2088	}
2089
2090	for (i = 0; i < m->num_data_items; i++)
2091		ceph_msg_data_destroy(&m->data[i]);
 
 
 
 
 
 
 
2092
2093	if (m->pool)
2094		ceph_msgpool_put(m->pool, m);
2095	else
2096		ceph_msg_free(m);
2097}
2098
2099struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
2100{
2101	dout("%s %p (was %d)\n", __func__, msg,
2102	     kref_read(&msg->kref));
2103	kref_get(&msg->kref);
2104	return msg;
2105}
2106EXPORT_SYMBOL(ceph_msg_get);
2107
2108void ceph_msg_put(struct ceph_msg *msg)
2109{
2110	dout("%s %p (was %d)\n", __func__, msg,
2111	     kref_read(&msg->kref));
2112	kref_put(&msg->kref, ceph_msg_release);
2113}
2114EXPORT_SYMBOL(ceph_msg_put);
2115
2116void ceph_msg_dump(struct ceph_msg *msg)
2117{
2118	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
2119		 msg->front_alloc_len, msg->data_length);
2120	print_hex_dump(KERN_DEBUG, "header: ",
2121		       DUMP_PREFIX_OFFSET, 16, 1,
2122		       &msg->hdr, sizeof(msg->hdr), true);
2123	print_hex_dump(KERN_DEBUG, " front: ",
2124		       DUMP_PREFIX_OFFSET, 16, 1,
2125		       msg->front.iov_base, msg->front.iov_len, true);
2126	if (msg->middle)
2127		print_hex_dump(KERN_DEBUG, "middle: ",
2128			       DUMP_PREFIX_OFFSET, 16, 1,
2129			       msg->middle->vec.iov_base,
2130			       msg->middle->vec.iov_len, true);
2131	print_hex_dump(KERN_DEBUG, "footer: ",
2132		       DUMP_PREFIX_OFFSET, 16, 1,
2133		       &msg->footer, sizeof(msg->footer), true);
2134}
2135EXPORT_SYMBOL(ceph_msg_dump);
v3.15
 
   1#include <linux/ceph/ceph_debug.h>
   2
   3#include <linux/crc32c.h>
   4#include <linux/ctype.h>
   5#include <linux/highmem.h>
   6#include <linux/inet.h>
   7#include <linux/kthread.h>
   8#include <linux/net.h>
 
 
   9#include <linux/slab.h>
  10#include <linux/socket.h>
  11#include <linux/string.h>
  12#ifdef	CONFIG_BLOCK
  13#include <linux/bio.h>
  14#endif	/* CONFIG_BLOCK */
  15#include <linux/dns_resolver.h>
  16#include <net/tcp.h>
  17
  18#include <linux/ceph/ceph_features.h>
  19#include <linux/ceph/libceph.h>
  20#include <linux/ceph/messenger.h>
  21#include <linux/ceph/decode.h>
  22#include <linux/ceph/pagelist.h>
  23#include <linux/export.h>
  24
  25#define list_entry_next(pos, member)					\
  26	list_entry(pos->member.next, typeof(*pos), member)
  27
  28/*
  29 * Ceph uses the messenger to exchange ceph_msg messages with other
  30 * hosts in the system.  The messenger provides ordered and reliable
  31 * delivery.  We tolerate TCP disconnects by reconnecting (with
  32 * exponential backoff) in the case of a fault (disconnection, bad
  33 * crc, protocol error).  Acks allow sent messages to be discarded by
  34 * the sender.
  35 */
  36
  37/*
  38 * We track the state of the socket on a given connection using
  39 * values defined below.  The transition to a new socket state is
  40 * handled by a function which verifies we aren't coming from an
  41 * unexpected state.
  42 *
  43 *      --------
  44 *      | NEW* |  transient initial state
  45 *      --------
  46 *          | con_sock_state_init()
  47 *          v
  48 *      ----------
  49 *      | CLOSED |  initialized, but no socket (and no
  50 *      ----------  TCP connection)
  51 *       ^      \
  52 *       |       \ con_sock_state_connecting()
  53 *       |        ----------------------
  54 *       |                              \
  55 *       + con_sock_state_closed()       \
  56 *       |+---------------------------    \
  57 *       | \                          \    \
  58 *       |  -----------                \    \
  59 *       |  | CLOSING |  socket event;  \    \
  60 *       |  -----------  await close     \    \
  61 *       |       ^                        \   |
  62 *       |       |                         \  |
  63 *       |       + con_sock_state_closing() \ |
  64 *       |      / \                         | |
  65 *       |     /   ---------------          | |
  66 *       |    /                   \         v v
  67 *       |   /                    --------------
  68 *       |  /    -----------------| CONNECTING |  socket created, TCP
  69 *       |  |   /                 --------------  connect initiated
  70 *       |  |   | con_sock_state_connected()
  71 *       |  |   v
  72 *      -------------
  73 *      | CONNECTED |  TCP connection established
  74 *      -------------
  75 *
  76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
  77 */
  78
  79#define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
  80#define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
  81#define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
  82#define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
  83#define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
  84
  85/*
  86 * connection states
  87 */
  88#define CON_STATE_CLOSED        1  /* -> PREOPEN */
  89#define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
  90#define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
  91#define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
  92#define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
  93#define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
  94
  95/*
  96 * ceph_connection flag bits
  97 */
  98#define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
  99				       * messages on errors */
 100#define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
 101#define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
 102#define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
 103#define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
 104
 105static bool con_flag_valid(unsigned long con_flag)
 106{
 107	switch (con_flag) {
 108	case CON_FLAG_LOSSYTX:
 109	case CON_FLAG_KEEPALIVE_PENDING:
 110	case CON_FLAG_WRITE_PENDING:
 111	case CON_FLAG_SOCK_CLOSED:
 112	case CON_FLAG_BACKOFF:
 113		return true;
 114	default:
 115		return false;
 116	}
 117}
 118
 119static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
 120{
 121	BUG_ON(!con_flag_valid(con_flag));
 122
 123	clear_bit(con_flag, &con->flags);
 124}
 125
 126static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
 127{
 128	BUG_ON(!con_flag_valid(con_flag));
 129
 130	set_bit(con_flag, &con->flags);
 131}
 132
 133static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
 134{
 135	BUG_ON(!con_flag_valid(con_flag));
 136
 137	return test_bit(con_flag, &con->flags);
 138}
 139
 140static bool con_flag_test_and_clear(struct ceph_connection *con,
 141					unsigned long con_flag)
 142{
 143	BUG_ON(!con_flag_valid(con_flag));
 144
 145	return test_and_clear_bit(con_flag, &con->flags);
 146}
 147
 148static bool con_flag_test_and_set(struct ceph_connection *con,
 149					unsigned long con_flag)
 150{
 151	BUG_ON(!con_flag_valid(con_flag));
 152
 153	return test_and_set_bit(con_flag, &con->flags);
 154}
 155
 156/* Slab caches for frequently-allocated structures */
 157
 158static struct kmem_cache	*ceph_msg_cache;
 159static struct kmem_cache	*ceph_msg_data_cache;
 160
 161/* static tag bytes (protocol control messages) */
 162static char tag_msg = CEPH_MSGR_TAG_MSG;
 163static char tag_ack = CEPH_MSGR_TAG_ACK;
 164static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
 165
 166#ifdef CONFIG_LOCKDEP
 167static struct lock_class_key socket_class;
 168#endif
 169
 170/*
 171 * When skipping (ignoring) a block of input we read it into a "skip
 172 * buffer," which is this many bytes in size.
 173 */
 174#define SKIP_BUF_SIZE	1024
 175
 176static void queue_con(struct ceph_connection *con);
 177static void con_work(struct work_struct *);
 
 178static void con_fault(struct ceph_connection *con);
 179
 180/*
 181 * Nicely render a sockaddr as a string.  An array of formatted
 182 * strings is used, to approximate reentrancy.
 183 */
 184#define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
 185#define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
 186#define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
 187#define MAX_ADDR_STR_LEN	64	/* 54 is enough */
 188
 189static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
 190static atomic_t addr_str_seq = ATOMIC_INIT(0);
 191
 192static struct page *zero_page;		/* used in certain error cases */
 193
 194const char *ceph_pr_addr(const struct sockaddr_storage *ss)
 195{
 196	int i;
 197	char *s;
 198	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
 199	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
 
 200
 201	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
 202	s = addr_str[i];
 203
 204	switch (ss->ss_family) {
 205	case AF_INET:
 206		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
 
 207			 ntohs(in4->sin_port));
 208		break;
 209
 210	case AF_INET6:
 211		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
 
 212			 ntohs(in6->sin6_port));
 213		break;
 214
 215	default:
 216		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
 217			 ss->ss_family);
 218	}
 219
 220	return s;
 221}
 222EXPORT_SYMBOL(ceph_pr_addr);
 223
 224static void encode_my_addr(struct ceph_messenger *msgr)
 225{
 226	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
 227	ceph_encode_addr(&msgr->my_enc_addr);
 
 
 
 228}
 229
 230/*
 231 * work queue for all reading and writing to/from the socket.
 232 */
 233static struct workqueue_struct *ceph_msgr_wq;
 234
 235static int ceph_msgr_slab_init(void)
 236{
 237	BUG_ON(ceph_msg_cache);
 238	ceph_msg_cache = kmem_cache_create("ceph_msg",
 239					sizeof (struct ceph_msg),
 240					__alignof__(struct ceph_msg), 0, NULL);
 241
 242	if (!ceph_msg_cache)
 243		return -ENOMEM;
 244
 245	BUG_ON(ceph_msg_data_cache);
 246	ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
 247					sizeof (struct ceph_msg_data),
 248					__alignof__(struct ceph_msg_data),
 249					0, NULL);
 250	if (ceph_msg_data_cache)
 251		return 0;
 252
 253	kmem_cache_destroy(ceph_msg_cache);
 254	ceph_msg_cache = NULL;
 255
 256	return -ENOMEM;
 257}
 258
 259static void ceph_msgr_slab_exit(void)
 260{
 261	BUG_ON(!ceph_msg_data_cache);
 262	kmem_cache_destroy(ceph_msg_data_cache);
 263	ceph_msg_data_cache = NULL;
 264
 265	BUG_ON(!ceph_msg_cache);
 266	kmem_cache_destroy(ceph_msg_cache);
 267	ceph_msg_cache = NULL;
 268}
 269
 270static void _ceph_msgr_exit(void)
 271{
 272	if (ceph_msgr_wq) {
 273		destroy_workqueue(ceph_msgr_wq);
 274		ceph_msgr_wq = NULL;
 275	}
 276
 
 
 
 
 277	ceph_msgr_slab_exit();
 278
 279	BUG_ON(zero_page == NULL);
 280	kunmap(zero_page);
 281	page_cache_release(zero_page);
 282	zero_page = NULL;
 283}
 284
 285int ceph_msgr_init(void)
 286{
 287	BUG_ON(zero_page != NULL);
 288	zero_page = ZERO_PAGE(0);
 289	page_cache_get(zero_page);
 290
 291	if (ceph_msgr_slab_init())
 292		return -ENOMEM;
 293
 294	ceph_msgr_wq = alloc_workqueue("ceph-msgr", 0, 0);
 
 
 
 
 
 
 
 
 295	if (ceph_msgr_wq)
 296		return 0;
 297
 298	pr_err("msgr_init failed to create workqueue\n");
 299	_ceph_msgr_exit();
 300
 301	return -ENOMEM;
 302}
 303EXPORT_SYMBOL(ceph_msgr_init);
 304
 305void ceph_msgr_exit(void)
 306{
 307	BUG_ON(ceph_msgr_wq == NULL);
 308
 309	_ceph_msgr_exit();
 310}
 311EXPORT_SYMBOL(ceph_msgr_exit);
 312
 313void ceph_msgr_flush(void)
 314{
 315	flush_workqueue(ceph_msgr_wq);
 316}
 317EXPORT_SYMBOL(ceph_msgr_flush);
 318
 319/* Connection socket state transition functions */
 320
 321static void con_sock_state_init(struct ceph_connection *con)
 322{
 323	int old_state;
 324
 325	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 326	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
 327		printk("%s: unexpected old state %d\n", __func__, old_state);
 328	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 329	     CON_SOCK_STATE_CLOSED);
 330}
 331
 332static void con_sock_state_connecting(struct ceph_connection *con)
 333{
 334	int old_state;
 335
 336	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
 337	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
 338		printk("%s: unexpected old state %d\n", __func__, old_state);
 339	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 340	     CON_SOCK_STATE_CONNECTING);
 341}
 342
 343static void con_sock_state_connected(struct ceph_connection *con)
 344{
 345	int old_state;
 346
 347	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
 348	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
 349		printk("%s: unexpected old state %d\n", __func__, old_state);
 350	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 351	     CON_SOCK_STATE_CONNECTED);
 352}
 353
 354static void con_sock_state_closing(struct ceph_connection *con)
 355{
 356	int old_state;
 357
 358	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
 359	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
 360			old_state != CON_SOCK_STATE_CONNECTED &&
 361			old_state != CON_SOCK_STATE_CLOSING))
 362		printk("%s: unexpected old state %d\n", __func__, old_state);
 363	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 364	     CON_SOCK_STATE_CLOSING);
 365}
 366
 367static void con_sock_state_closed(struct ceph_connection *con)
 368{
 369	int old_state;
 370
 371	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 372	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
 373		    old_state != CON_SOCK_STATE_CLOSING &&
 374		    old_state != CON_SOCK_STATE_CONNECTING &&
 375		    old_state != CON_SOCK_STATE_CLOSED))
 376		printk("%s: unexpected old state %d\n", __func__, old_state);
 377	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 378	     CON_SOCK_STATE_CLOSED);
 379}
 380
 381/*
 382 * socket callback functions
 383 */
 384
 385/* data available on socket, or listen socket received a connect */
 386static void ceph_sock_data_ready(struct sock *sk)
 387{
 388	struct ceph_connection *con = sk->sk_user_data;
 389	if (atomic_read(&con->msgr->stopping)) {
 390		return;
 391	}
 392
 393	if (sk->sk_state != TCP_CLOSE_WAIT) {
 394		dout("%s on %p state = %lu, queueing work\n", __func__,
 395		     con, con->state);
 396		queue_con(con);
 397	}
 398}
 399
 400/* socket has buffer space for writing */
 401static void ceph_sock_write_space(struct sock *sk)
 402{
 403	struct ceph_connection *con = sk->sk_user_data;
 404
 405	/* only queue to workqueue if there is data we want to write,
 406	 * and there is sufficient space in the socket buffer to accept
 407	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
 408	 * doesn't get called again until try_write() fills the socket
 409	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
 410	 * and net/core/stream.c:sk_stream_write_space().
 411	 */
 412	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
 413		if (sk_stream_is_writeable(sk)) {
 414			dout("%s %p queueing write work\n", __func__, con);
 415			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 416			queue_con(con);
 417		}
 418	} else {
 419		dout("%s %p nothing to write\n", __func__, con);
 420	}
 421}
 422
 423/* socket's state has changed */
 424static void ceph_sock_state_change(struct sock *sk)
 425{
 426	struct ceph_connection *con = sk->sk_user_data;
 427
 428	dout("%s %p state = %lu sk_state = %u\n", __func__,
 429	     con, con->state, sk->sk_state);
 430
 431	switch (sk->sk_state) {
 432	case TCP_CLOSE:
 433		dout("%s TCP_CLOSE\n", __func__);
 
 434	case TCP_CLOSE_WAIT:
 435		dout("%s TCP_CLOSE_WAIT\n", __func__);
 436		con_sock_state_closing(con);
 437		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
 438		queue_con(con);
 439		break;
 440	case TCP_ESTABLISHED:
 441		dout("%s TCP_ESTABLISHED\n", __func__);
 442		con_sock_state_connected(con);
 443		queue_con(con);
 444		break;
 445	default:	/* Everything else is uninteresting */
 446		break;
 447	}
 448}
 449
 450/*
 451 * set up socket callbacks
 452 */
 453static void set_sock_callbacks(struct socket *sock,
 454			       struct ceph_connection *con)
 455{
 456	struct sock *sk = sock->sk;
 457	sk->sk_user_data = con;
 458	sk->sk_data_ready = ceph_sock_data_ready;
 459	sk->sk_write_space = ceph_sock_write_space;
 460	sk->sk_state_change = ceph_sock_state_change;
 461}
 462
 463
 464/*
 465 * socket helpers
 466 */
 467
 468/*
 469 * initiate connection to a remote socket.
 470 */
 471static int ceph_tcp_connect(struct ceph_connection *con)
 472{
 473	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
 474	struct socket *sock;
 
 475	int ret;
 476
 
 
 477	BUG_ON(con->sock);
 478	ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
 479			       IPPROTO_TCP, &sock);
 
 
 
 
 480	if (ret)
 481		return ret;
 482	sock->sk->sk_allocation = GFP_NOFS;
 
 483
 484#ifdef CONFIG_LOCKDEP
 485	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
 486#endif
 487
 488	set_sock_callbacks(sock, con);
 489
 490	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
 491
 492	con_sock_state_connecting(con);
 493	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
 494				 O_NONBLOCK);
 495	if (ret == -EINPROGRESS) {
 496		dout("connect %s EINPROGRESS sk_state = %u\n",
 497		     ceph_pr_addr(&con->peer_addr.in_addr),
 498		     sock->sk->sk_state);
 499	} else if (ret < 0) {
 500		pr_err("connect %s error %d\n",
 501		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
 502		sock_release(sock);
 503		con->error_msg = "connect error";
 504
 505		return ret;
 506	}
 
 
 
 
 507	con->sock = sock;
 508	return 0;
 509}
 510
 511static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
 512{
 513	struct kvec iov = {buf, len};
 514	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 515	int r;
 516
 517	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
 518	if (r == -EAGAIN)
 519		r = 0;
 520	return r;
 521}
 522
 523static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
 524		     int page_offset, size_t length)
 525{
 526	void *kaddr;
 527	int ret;
 528
 529	BUG_ON(page_offset + length > PAGE_SIZE);
 530
 531	kaddr = kmap(page);
 532	BUG_ON(!kaddr);
 533	ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
 534	kunmap(page);
 535
 536	return ret;
 537}
 538
 539/*
 540 * write something.  @more is true if caller will be sending more data
 541 * shortly.
 542 */
 543static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
 544		     size_t kvlen, size_t len, int more)
 545{
 546	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 547	int r;
 548
 549	if (more)
 550		msg.msg_flags |= MSG_MORE;
 551	else
 552		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
 553
 554	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
 555	if (r == -EAGAIN)
 556		r = 0;
 557	return r;
 558}
 559
 560static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
 561		     int offset, size_t size, bool more)
 562{
 563	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
 564	int ret;
 565
 566	ret = kernel_sendpage(sock, page, offset, size, flags);
 567	if (ret == -EAGAIN)
 568		ret = 0;
 569
 570	return ret;
 571}
 572
 573static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
 574		     int offset, size_t size, bool more)
 575{
 576	int ret;
 577	struct kvec iov;
 578
 579	/* sendpage cannot properly handle pages with page_count == 0,
 580	 * we need to fallback to sendmsg if that's the case */
 581	if (page_count(page) >= 1)
 582		return __ceph_tcp_sendpage(sock, page, offset, size, more);
 583
 584	iov.iov_base = kmap(page) + offset;
 585	iov.iov_len = size;
 586	ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
 587	kunmap(page);
 588
 589	return ret;
 590}
 591
 592/*
 593 * Shutdown/close the socket for the given connection.
 594 */
 595static int con_close_socket(struct ceph_connection *con)
 596{
 597	int rc = 0;
 598
 599	dout("con_close_socket on %p sock %p\n", con, con->sock);
 600	if (con->sock) {
 601		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
 602		sock_release(con->sock);
 603		con->sock = NULL;
 604	}
 605
 606	/*
 607	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
 608	 * independent of the connection mutex, and we could have
 609	 * received a socket close event before we had the chance to
 610	 * shut the socket down.
 611	 */
 612	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
 613
 614	con_sock_state_closed(con);
 615	return rc;
 616}
 617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 618/*
 619 * Reset a connection.  Discard all incoming and outgoing messages
 620 * and clear *_seq state.
 621 */
 622static void ceph_msg_remove(struct ceph_msg *msg)
 623{
 624	list_del_init(&msg->list_head);
 625	BUG_ON(msg->con == NULL);
 626	msg->con->ops->put(msg->con);
 627	msg->con = NULL;
 628
 629	ceph_msg_put(msg);
 630}
 
 631static void ceph_msg_remove_list(struct list_head *head)
 632{
 633	while (!list_empty(head)) {
 634		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
 635							list_head);
 636		ceph_msg_remove(msg);
 637	}
 638}
 639
 640static void reset_connection(struct ceph_connection *con)
 641{
 642	/* reset connection, out_queue, msg_ and connect_seq */
 643	/* discard existing out_queue and msg_seq */
 644	dout("reset_connection %p\n", con);
 
 645	ceph_msg_remove_list(&con->out_queue);
 646	ceph_msg_remove_list(&con->out_sent);
 647
 648	if (con->in_msg) {
 649		BUG_ON(con->in_msg->con != con);
 650		con->in_msg->con = NULL;
 651		ceph_msg_put(con->in_msg);
 652		con->in_msg = NULL;
 653		con->ops->put(con);
 654	}
 655
 656	con->connect_seq = 0;
 657	con->out_seq = 0;
 658	if (con->out_msg) {
 659		ceph_msg_put(con->out_msg);
 660		con->out_msg = NULL;
 661	}
 662	con->in_seq = 0;
 663	con->in_seq_acked = 0;
 
 
 
 
 
 664}
 665
 666/*
 667 * mark a peer down.  drop any open connections.
 668 */
 669void ceph_con_close(struct ceph_connection *con)
 670{
 671	mutex_lock(&con->mutex);
 672	dout("con_close %p peer %s\n", con,
 673	     ceph_pr_addr(&con->peer_addr.in_addr));
 674	con->state = CON_STATE_CLOSED;
 675
 676	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
 677	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
 678	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
 679	con_flag_clear(con, CON_FLAG_BACKOFF);
 680
 681	reset_connection(con);
 682	con->peer_global_seq = 0;
 683	cancel_delayed_work(&con->work);
 684	con_close_socket(con);
 685	mutex_unlock(&con->mutex);
 686}
 687EXPORT_SYMBOL(ceph_con_close);
 688
 689/*
 690 * Reopen a closed connection, with a new peer address.
 691 */
 692void ceph_con_open(struct ceph_connection *con,
 693		   __u8 entity_type, __u64 entity_num,
 694		   struct ceph_entity_addr *addr)
 695{
 696	mutex_lock(&con->mutex);
 697	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
 698
 699	WARN_ON(con->state != CON_STATE_CLOSED);
 700	con->state = CON_STATE_PREOPEN;
 701
 702	con->peer_name.type = (__u8) entity_type;
 703	con->peer_name.num = cpu_to_le64(entity_num);
 704
 705	memcpy(&con->peer_addr, addr, sizeof(*addr));
 706	con->delay = 0;      /* reset backoff memory */
 707	mutex_unlock(&con->mutex);
 708	queue_con(con);
 709}
 710EXPORT_SYMBOL(ceph_con_open);
 711
 712/*
 713 * return true if this connection ever successfully opened
 714 */
 715bool ceph_con_opened(struct ceph_connection *con)
 716{
 717	return con->connect_seq > 0;
 
 
 
 718}
 719
 720/*
 721 * initialize a new connection.
 722 */
 723void ceph_con_init(struct ceph_connection *con, void *private,
 724	const struct ceph_connection_operations *ops,
 725	struct ceph_messenger *msgr)
 726{
 727	dout("con_init %p\n", con);
 728	memset(con, 0, sizeof(*con));
 729	con->private = private;
 730	con->ops = ops;
 731	con->msgr = msgr;
 732
 733	con_sock_state_init(con);
 734
 735	mutex_init(&con->mutex);
 736	INIT_LIST_HEAD(&con->out_queue);
 737	INIT_LIST_HEAD(&con->out_sent);
 738	INIT_DELAYED_WORK(&con->work, con_work);
 739
 740	con->state = CON_STATE_CLOSED;
 741}
 742EXPORT_SYMBOL(ceph_con_init);
 743
 744
 745/*
 746 * We maintain a global counter to order connection attempts.  Get
 747 * a unique seq greater than @gt.
 748 */
 749static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
 750{
 751	u32 ret;
 752
 753	spin_lock(&msgr->global_seq_lock);
 754	if (msgr->global_seq < gt)
 755		msgr->global_seq = gt;
 756	ret = ++msgr->global_seq;
 757	spin_unlock(&msgr->global_seq_lock);
 758	return ret;
 759}
 760
 761static void con_out_kvec_reset(struct ceph_connection *con)
 
 
 
 762{
 763	con->out_kvec_left = 0;
 764	con->out_kvec_bytes = 0;
 765	con->out_kvec_cur = &con->out_kvec[0];
 
 
 
 
 
 
 
 
 
 
 
 
 
 766}
 767
 768static void con_out_kvec_add(struct ceph_connection *con,
 769				size_t size, void *data)
 
 
 
 
 770{
 771	int index;
 
 772
 773	index = con->out_kvec_left;
 774	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
 
 
 
 
 
 
 
 775
 776	con->out_kvec[index].iov_len = size;
 777	con->out_kvec[index].iov_base = data;
 778	con->out_kvec_left++;
 779	con->out_kvec_bytes += size;
 780}
 781
 782#ifdef CONFIG_BLOCK
 783
 784/*
 785 * For a bio data item, a piece is whatever remains of the next
 786 * entry in the current bio iovec, or the first entry in the next
 787 * bio in the list.
 788 */
 789static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
 790					size_t length)
 791{
 792	struct ceph_msg_data *data = cursor->data;
 793	struct bio *bio;
 794
 795	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
 
 
 
 796
 797	bio = data->bio;
 798	BUG_ON(!bio);
 799
 800	cursor->resid = min(length, data->bio_length);
 801	cursor->bio = bio;
 802	cursor->bvec_iter = bio->bi_iter;
 803	cursor->last_piece =
 804		cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
 805}
 806
 807static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
 808						size_t *page_offset,
 809						size_t *length)
 810{
 811	struct ceph_msg_data *data = cursor->data;
 812	struct bio *bio;
 813	struct bio_vec bio_vec;
 
 
 
 
 814
 815	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
 
 
 
 
 816
 817	bio = cursor->bio;
 818	BUG_ON(!bio);
 
 
 819
 820	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
 
 821
 822	*page_offset = (size_t) bio_vec.bv_offset;
 823	BUG_ON(*page_offset >= PAGE_SIZE);
 824	if (cursor->last_piece) /* pagelist offset is always 0 */
 825		*length = cursor->resid;
 826	else
 827		*length = (size_t) bio_vec.bv_len;
 828	BUG_ON(*length > cursor->resid);
 829	BUG_ON(*page_offset + *length > PAGE_SIZE);
 
 
 830
 831	return bio_vec.bv_page;
 
 832}
 
 833
 834static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
 835					size_t bytes)
 836{
 837	struct bio *bio;
 838	struct bio_vec bio_vec;
 839
 840	BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
 
 
 841
 842	bio = cursor->bio;
 843	BUG_ON(!bio);
 
 
 
 
 
 
 
 844
 845	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
 
 
 
 846
 847	/* Advance the cursor offset */
 
 
 
 
 848
 849	BUG_ON(cursor->resid < bytes);
 
 850	cursor->resid -= bytes;
 
 851
 852	bio_advance_iter(bio, &cursor->bvec_iter, bytes);
 
 853
 854	if (bytes < bio_vec.bv_len)
 
 855		return false;	/* more bytes to process in this segment */
 856
 857	/* Move on to the next segment, and possibly the next bio */
 858
 859	if (!cursor->bvec_iter.bi_size) {
 860		bio = bio->bi_next;
 861		cursor->bio = bio;
 862		if (bio)
 863			cursor->bvec_iter = bio->bi_iter;
 864		else
 865			memset(&cursor->bvec_iter, 0,
 866			       sizeof(cursor->bvec_iter));
 867	}
 868
 869	if (!cursor->last_piece) {
 870		BUG_ON(!cursor->resid);
 871		BUG_ON(!bio);
 872		/* A short read is OK, so use <= rather than == */
 873		if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
 874			cursor->last_piece = true;
 875	}
 876
 877	return true;
 878}
 879#endif /* CONFIG_BLOCK */
 880
 881/*
 882 * For a page array, a piece comes from the first page in the array
 883 * that has not already been fully consumed.
 884 */
 885static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
 886					size_t length)
 887{
 888	struct ceph_msg_data *data = cursor->data;
 889	int page_count;
 890
 891	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 892
 893	BUG_ON(!data->pages);
 894	BUG_ON(!data->length);
 895
 896	cursor->resid = min(length, data->length);
 897	page_count = calc_pages_for(data->alignment, (u64)data->length);
 898	cursor->page_offset = data->alignment & ~PAGE_MASK;
 899	cursor->page_index = 0;
 900	BUG_ON(page_count > (int)USHRT_MAX);
 901	cursor->page_count = (unsigned short)page_count;
 902	BUG_ON(length > SIZE_MAX - cursor->page_offset);
 903	cursor->last_piece = (size_t)cursor->page_offset + length <= PAGE_SIZE;
 904}
 905
 906static struct page *
 907ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
 908					size_t *page_offset, size_t *length)
 909{
 910	struct ceph_msg_data *data = cursor->data;
 911
 912	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 913
 914	BUG_ON(cursor->page_index >= cursor->page_count);
 915	BUG_ON(cursor->page_offset >= PAGE_SIZE);
 916
 917	*page_offset = cursor->page_offset;
 918	if (cursor->last_piece)
 919		*length = cursor->resid;
 920	else
 921		*length = PAGE_SIZE - *page_offset;
 922
 923	return data->pages[cursor->page_index];
 924}
 925
 926static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
 927						size_t bytes)
 928{
 929	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
 930
 931	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
 932
 933	/* Advance the cursor page offset */
 934
 935	cursor->resid -= bytes;
 936	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
 937	if (!bytes || cursor->page_offset)
 938		return false;	/* more bytes to process in the current page */
 939
 940	if (!cursor->resid)
 941		return false;   /* no more data */
 942
 943	/* Move on to the next page; offset is already at 0 */
 944
 945	BUG_ON(cursor->page_index >= cursor->page_count);
 946	cursor->page_index++;
 947	cursor->last_piece = cursor->resid <= PAGE_SIZE;
 948
 949	return true;
 950}
 951
 952/*
 953 * For a pagelist, a piece is whatever remains to be consumed in the
 954 * first page in the list, or the front of the next page.
 955 */
 956static void
 957ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
 958					size_t length)
 959{
 960	struct ceph_msg_data *data = cursor->data;
 961	struct ceph_pagelist *pagelist;
 962	struct page *page;
 963
 964	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
 965
 966	pagelist = data->pagelist;
 967	BUG_ON(!pagelist);
 968
 969	if (!length)
 970		return;		/* pagelist can be assigned but empty */
 971
 972	BUG_ON(list_empty(&pagelist->head));
 973	page = list_first_entry(&pagelist->head, struct page, lru);
 974
 975	cursor->resid = min(length, pagelist->length);
 976	cursor->page = page;
 977	cursor->offset = 0;
 978	cursor->last_piece = cursor->resid <= PAGE_SIZE;
 979}
 980
 981static struct page *
 982ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
 983				size_t *page_offset, size_t *length)
 984{
 985	struct ceph_msg_data *data = cursor->data;
 986	struct ceph_pagelist *pagelist;
 987
 988	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
 989
 990	pagelist = data->pagelist;
 991	BUG_ON(!pagelist);
 992
 993	BUG_ON(!cursor->page);
 994	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
 995
 996	/* offset of first page in pagelist is always 0 */
 997	*page_offset = cursor->offset & ~PAGE_MASK;
 998	if (cursor->last_piece)
 999		*length = cursor->resid;
1000	else
1001		*length = PAGE_SIZE - *page_offset;
1002
1003	return cursor->page;
1004}
1005
1006static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1007						size_t bytes)
1008{
1009	struct ceph_msg_data *data = cursor->data;
1010	struct ceph_pagelist *pagelist;
1011
1012	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1013
1014	pagelist = data->pagelist;
1015	BUG_ON(!pagelist);
1016
1017	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1018	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1019
1020	/* Advance the cursor offset */
1021
1022	cursor->resid -= bytes;
1023	cursor->offset += bytes;
1024	/* offset of first page in pagelist is always 0 */
1025	if (!bytes || cursor->offset & ~PAGE_MASK)
1026		return false;	/* more bytes to process in the current page */
1027
1028	if (!cursor->resid)
1029		return false;   /* no more data */
1030
1031	/* Move on to the next page */
1032
1033	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1034	cursor->page = list_entry_next(cursor->page, lru);
1035	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1036
1037	return true;
1038}
1039
1040/*
1041 * Message data is handled (sent or received) in pieces, where each
1042 * piece resides on a single page.  The network layer might not
1043 * consume an entire piece at once.  A data item's cursor keeps
1044 * track of which piece is next to process and how much remains to
1045 * be processed in that piece.  It also tracks whether the current
1046 * piece is the last one in the data item.
1047 */
1048static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1049{
1050	size_t length = cursor->total_resid;
1051
1052	switch (cursor->data->type) {
1053	case CEPH_MSG_DATA_PAGELIST:
1054		ceph_msg_data_pagelist_cursor_init(cursor, length);
1055		break;
1056	case CEPH_MSG_DATA_PAGES:
1057		ceph_msg_data_pages_cursor_init(cursor, length);
1058		break;
1059#ifdef CONFIG_BLOCK
1060	case CEPH_MSG_DATA_BIO:
1061		ceph_msg_data_bio_cursor_init(cursor, length);
1062		break;
1063#endif /* CONFIG_BLOCK */
 
 
 
1064	case CEPH_MSG_DATA_NONE:
1065	default:
1066		/* BUG(); */
1067		break;
1068	}
1069	cursor->need_crc = true;
1070}
1071
1072static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
 
1073{
1074	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1075	struct ceph_msg_data *data;
1076
1077	BUG_ON(!length);
1078	BUG_ON(length > msg->data_length);
1079	BUG_ON(list_empty(&msg->data));
1080
1081	cursor->data_head = &msg->data;
1082	cursor->total_resid = length;
1083	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1084	cursor->data = data;
1085
1086	__ceph_msg_data_cursor_init(cursor);
1087}
1088
1089/*
1090 * Return the page containing the next piece to process for a given
1091 * data item, and supply the page offset and length of that piece.
1092 * Indicate whether this is the last piece in this data item.
1093 */
1094static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1095					size_t *page_offset, size_t *length,
1096					bool *last_piece)
1097{
1098	struct page *page;
1099
1100	switch (cursor->data->type) {
1101	case CEPH_MSG_DATA_PAGELIST:
1102		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1103		break;
1104	case CEPH_MSG_DATA_PAGES:
1105		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1106		break;
1107#ifdef CONFIG_BLOCK
1108	case CEPH_MSG_DATA_BIO:
1109		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1110		break;
1111#endif /* CONFIG_BLOCK */
 
 
 
1112	case CEPH_MSG_DATA_NONE:
1113	default:
1114		page = NULL;
1115		break;
1116	}
 
1117	BUG_ON(!page);
1118	BUG_ON(*page_offset + *length > PAGE_SIZE);
1119	BUG_ON(!*length);
1120	if (last_piece)
1121		*last_piece = cursor->last_piece;
1122
1123	return page;
1124}
1125
1126/*
1127 * Returns true if the result moves the cursor on to the next piece
1128 * of the data item.
1129 */
1130static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1131				size_t bytes)
1132{
1133	bool new_piece;
1134
1135	BUG_ON(bytes > cursor->resid);
1136	switch (cursor->data->type) {
1137	case CEPH_MSG_DATA_PAGELIST:
1138		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1139		break;
1140	case CEPH_MSG_DATA_PAGES:
1141		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1142		break;
1143#ifdef CONFIG_BLOCK
1144	case CEPH_MSG_DATA_BIO:
1145		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1146		break;
1147#endif /* CONFIG_BLOCK */
 
 
 
1148	case CEPH_MSG_DATA_NONE:
1149	default:
1150		BUG();
1151		break;
1152	}
1153	cursor->total_resid -= bytes;
1154
1155	if (!cursor->resid && cursor->total_resid) {
1156		WARN_ON(!cursor->last_piece);
1157		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1158		cursor->data = list_entry_next(cursor->data, links);
1159		__ceph_msg_data_cursor_init(cursor);
1160		new_piece = true;
1161	}
1162	cursor->need_crc = new_piece;
1163
1164	return new_piece;
1165}
1166
1167static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1168{
1169	BUG_ON(!msg);
1170	BUG_ON(!data_len);
1171
1172	/* Initialize data cursor */
1173
1174	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1175}
1176
1177/*
1178 * Prepare footer for currently outgoing message, and finish things
1179 * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1180 */
1181static void prepare_write_message_footer(struct ceph_connection *con)
1182{
1183	struct ceph_msg *m = con->out_msg;
1184	int v = con->out_kvec_left;
1185
1186	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1187
1188	dout("prepare_write_message_footer %p\n", con);
1189	con->out_kvec_is_msg = true;
1190	con->out_kvec[v].iov_base = &m->footer;
1191	con->out_kvec[v].iov_len = sizeof(m->footer);
1192	con->out_kvec_bytes += sizeof(m->footer);
1193	con->out_kvec_left++;
1194	con->out_more = m->more_to_follow;
1195	con->out_msg_done = true;
1196}
1197
1198/*
1199 * Prepare headers for the next outgoing message.
1200 */
1201static void prepare_write_message(struct ceph_connection *con)
1202{
1203	struct ceph_msg *m;
1204	u32 crc;
1205
1206	con_out_kvec_reset(con);
1207	con->out_kvec_is_msg = true;
1208	con->out_msg_done = false;
1209
1210	/* Sneak an ack in there first?  If we can get it into the same
1211	 * TCP packet that's a good thing. */
1212	if (con->in_seq > con->in_seq_acked) {
1213		con->in_seq_acked = con->in_seq;
1214		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1215		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1216		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1217			&con->out_temp_ack);
1218	}
1219
1220	BUG_ON(list_empty(&con->out_queue));
1221	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1222	con->out_msg = m;
1223	BUG_ON(m->con != con);
1224
1225	/* put message on sent list */
1226	ceph_msg_get(m);
1227	list_move_tail(&m->list_head, &con->out_sent);
1228
1229	/*
1230	 * only assign outgoing seq # if we haven't sent this message
1231	 * yet.  if it is requeued, resend with it's original seq.
1232	 */
1233	if (m->needs_out_seq) {
1234		m->hdr.seq = cpu_to_le64(++con->out_seq);
1235		m->needs_out_seq = false;
1236	}
1237	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1238
1239	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1240	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1241	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1242	     m->data_length);
1243	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1244
1245	/* tag + hdr + front + middle */
1246	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1247	con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1248	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1249
1250	if (m->middle)
1251		con_out_kvec_add(con, m->middle->vec.iov_len,
1252			m->middle->vec.iov_base);
1253
1254	/* fill in crc (except data pages), footer */
1255	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1256	con->out_msg->hdr.crc = cpu_to_le32(crc);
1257	con->out_msg->footer.flags = 0;
1258
1259	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1260	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1261	if (m->middle) {
1262		crc = crc32c(0, m->middle->vec.iov_base,
1263				m->middle->vec.iov_len);
1264		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1265	} else
1266		con->out_msg->footer.middle_crc = 0;
1267	dout("%s front_crc %u middle_crc %u\n", __func__,
1268	     le32_to_cpu(con->out_msg->footer.front_crc),
1269	     le32_to_cpu(con->out_msg->footer.middle_crc));
1270
1271	/* is there a data payload? */
1272	con->out_msg->footer.data_crc = 0;
1273	if (m->data_length) {
1274		prepare_message_data(con->out_msg, m->data_length);
1275		con->out_more = 1;  /* data + footer will follow */
1276	} else {
1277		/* no, queue up footer too and be done */
1278		prepare_write_message_footer(con);
1279	}
1280
1281	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1282}
1283
1284/*
1285 * Prepare an ack.
1286 */
1287static void prepare_write_ack(struct ceph_connection *con)
1288{
1289	dout("prepare_write_ack %p %llu -> %llu\n", con,
1290	     con->in_seq_acked, con->in_seq);
1291	con->in_seq_acked = con->in_seq;
1292
1293	con_out_kvec_reset(con);
1294
1295	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1296
1297	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1298	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1299				&con->out_temp_ack);
1300
1301	con->out_more = 1;  /* more will follow.. eventually.. */
1302	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1303}
1304
1305/*
1306 * Prepare to share the seq during handshake
1307 */
1308static void prepare_write_seq(struct ceph_connection *con)
1309{
1310	dout("prepare_write_seq %p %llu -> %llu\n", con,
1311	     con->in_seq_acked, con->in_seq);
1312	con->in_seq_acked = con->in_seq;
1313
1314	con_out_kvec_reset(con);
1315
1316	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1317	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1318			 &con->out_temp_ack);
1319
1320	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1321}
1322
1323/*
1324 * Prepare to write keepalive byte.
1325 */
1326static void prepare_write_keepalive(struct ceph_connection *con)
1327{
1328	dout("prepare_write_keepalive %p\n", con);
1329	con_out_kvec_reset(con);
1330	con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1331	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1332}
1333
1334/*
1335 * Connection negotiation.
1336 */
1337
1338static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1339						int *auth_proto)
1340{
1341	struct ceph_auth_handshake *auth;
1342
1343	if (!con->ops->get_authorizer) {
1344		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1345		con->out_connect.authorizer_len = 0;
1346		return NULL;
1347	}
1348
1349	/* Can't hold the mutex while getting authorizer */
1350	mutex_unlock(&con->mutex);
1351	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1352	mutex_lock(&con->mutex);
1353
1354	if (IS_ERR(auth))
1355		return auth;
1356	if (con->state != CON_STATE_NEGOTIATING)
1357		return ERR_PTR(-EAGAIN);
1358
1359	con->auth_reply_buf = auth->authorizer_reply_buf;
1360	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1361	return auth;
1362}
1363
1364/*
1365 * We connected to a peer and are saying hello.
1366 */
1367static void prepare_write_banner(struct ceph_connection *con)
1368{
1369	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1370	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1371					&con->msgr->my_enc_addr);
1372
1373	con->out_more = 0;
1374	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1375}
1376
1377static int prepare_write_connect(struct ceph_connection *con)
1378{
1379	unsigned int global_seq = get_global_seq(con->msgr, 0);
1380	int proto;
1381	int auth_proto;
1382	struct ceph_auth_handshake *auth;
1383
1384	switch (con->peer_name.type) {
1385	case CEPH_ENTITY_TYPE_MON:
1386		proto = CEPH_MONC_PROTOCOL;
1387		break;
1388	case CEPH_ENTITY_TYPE_OSD:
1389		proto = CEPH_OSDC_PROTOCOL;
1390		break;
1391	case CEPH_ENTITY_TYPE_MDS:
1392		proto = CEPH_MDSC_PROTOCOL;
1393		break;
1394	default:
1395		BUG();
1396	}
1397
1398	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1399	     con->connect_seq, global_seq, proto);
1400
1401	con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1402	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1403	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1404	con->out_connect.global_seq = cpu_to_le32(global_seq);
1405	con->out_connect.protocol_version = cpu_to_le32(proto);
1406	con->out_connect.flags = 0;
1407
1408	auth_proto = CEPH_AUTH_UNKNOWN;
1409	auth = get_connect_authorizer(con, &auth_proto);
1410	if (IS_ERR(auth))
1411		return PTR_ERR(auth);
1412
1413	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1414	con->out_connect.authorizer_len = auth ?
1415		cpu_to_le32(auth->authorizer_buf_len) : 0;
1416
1417	con_out_kvec_add(con, sizeof (con->out_connect),
1418					&con->out_connect);
1419	if (auth && auth->authorizer_buf_len)
1420		con_out_kvec_add(con, auth->authorizer_buf_len,
1421					auth->authorizer_buf);
1422
1423	con->out_more = 0;
1424	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1425
1426	return 0;
1427}
1428
1429/*
1430 * write as much of pending kvecs to the socket as we can.
1431 *  1 -> done
1432 *  0 -> socket full, but more to do
1433 * <0 -> error
1434 */
1435static int write_partial_kvec(struct ceph_connection *con)
1436{
1437	int ret;
1438
1439	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1440	while (con->out_kvec_bytes > 0) {
1441		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1442				       con->out_kvec_left, con->out_kvec_bytes,
1443				       con->out_more);
1444		if (ret <= 0)
1445			goto out;
1446		con->out_kvec_bytes -= ret;
1447		if (con->out_kvec_bytes == 0)
1448			break;            /* done */
1449
1450		/* account for full iov entries consumed */
1451		while (ret >= con->out_kvec_cur->iov_len) {
1452			BUG_ON(!con->out_kvec_left);
1453			ret -= con->out_kvec_cur->iov_len;
1454			con->out_kvec_cur++;
1455			con->out_kvec_left--;
1456		}
1457		/* and for a partially-consumed entry */
1458		if (ret) {
1459			con->out_kvec_cur->iov_len -= ret;
1460			con->out_kvec_cur->iov_base += ret;
1461		}
1462	}
1463	con->out_kvec_left = 0;
1464	con->out_kvec_is_msg = false;
1465	ret = 1;
1466out:
1467	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1468	     con->out_kvec_bytes, con->out_kvec_left, ret);
1469	return ret;  /* done! */
1470}
1471
1472static u32 ceph_crc32c_page(u32 crc, struct page *page,
1473				unsigned int page_offset,
1474				unsigned int length)
1475{
1476	char *kaddr;
1477
1478	kaddr = kmap(page);
1479	BUG_ON(kaddr == NULL);
1480	crc = crc32c(crc, kaddr + page_offset, length);
1481	kunmap(page);
1482
1483	return crc;
1484}
1485/*
1486 * Write as much message data payload as we can.  If we finish, queue
1487 * up the footer.
1488 *  1 -> done, footer is now queued in out_kvec[].
1489 *  0 -> socket full, but more to do
1490 * <0 -> error
1491 */
1492static int write_partial_message_data(struct ceph_connection *con)
1493{
1494	struct ceph_msg *msg = con->out_msg;
1495	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1496	bool do_datacrc = !con->msgr->nocrc;
1497	u32 crc;
1498
1499	dout("%s %p msg %p\n", __func__, con, msg);
1500
1501	if (list_empty(&msg->data))
1502		return -EINVAL;
1503
1504	/*
1505	 * Iterate through each page that contains data to be
1506	 * written, and send as much as possible for each.
1507	 *
1508	 * If we are calculating the data crc (the default), we will
1509	 * need to map the page.  If we have no pages, they have
1510	 * been revoked, so use the zero page.
1511	 */
1512	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1513	while (cursor->resid) {
1514		struct page *page;
1515		size_t page_offset;
1516		size_t length;
1517		bool last_piece;
1518		bool need_crc;
1519		int ret;
1520
1521		page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1522							&last_piece);
1523		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1524				      length, last_piece);
1525		if (ret <= 0) {
1526			if (do_datacrc)
1527				msg->footer.data_crc = cpu_to_le32(crc);
1528
1529			return ret;
1530		}
1531		if (do_datacrc && cursor->need_crc)
1532			crc = ceph_crc32c_page(crc, page, page_offset, length);
1533		need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1534	}
1535
1536	dout("%s %p msg %p done\n", __func__, con, msg);
1537
1538	/* prepare and queue up footer, too */
1539	if (do_datacrc)
1540		msg->footer.data_crc = cpu_to_le32(crc);
1541	else
1542		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1543	con_out_kvec_reset(con);
1544	prepare_write_message_footer(con);
1545
1546	return 1;	/* must return > 0 to indicate success */
1547}
1548
1549/*
1550 * write some zeros
1551 */
1552static int write_partial_skip(struct ceph_connection *con)
1553{
1554	int ret;
1555
1556	while (con->out_skip > 0) {
1557		size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1558
1559		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1560		if (ret <= 0)
1561			goto out;
1562		con->out_skip -= ret;
1563	}
1564	ret = 1;
1565out:
1566	return ret;
1567}
1568
1569/*
1570 * Prepare to read connection handshake, or an ack.
1571 */
1572static void prepare_read_banner(struct ceph_connection *con)
1573{
1574	dout("prepare_read_banner %p\n", con);
1575	con->in_base_pos = 0;
1576}
1577
1578static void prepare_read_connect(struct ceph_connection *con)
1579{
1580	dout("prepare_read_connect %p\n", con);
1581	con->in_base_pos = 0;
1582}
1583
1584static void prepare_read_ack(struct ceph_connection *con)
1585{
1586	dout("prepare_read_ack %p\n", con);
1587	con->in_base_pos = 0;
1588}
1589
1590static void prepare_read_seq(struct ceph_connection *con)
1591{
1592	dout("prepare_read_seq %p\n", con);
1593	con->in_base_pos = 0;
1594	con->in_tag = CEPH_MSGR_TAG_SEQ;
1595}
1596
1597static void prepare_read_tag(struct ceph_connection *con)
1598{
1599	dout("prepare_read_tag %p\n", con);
1600	con->in_base_pos = 0;
1601	con->in_tag = CEPH_MSGR_TAG_READY;
1602}
1603
1604/*
1605 * Prepare to read a message.
1606 */
1607static int prepare_read_message(struct ceph_connection *con)
1608{
1609	dout("prepare_read_message %p\n", con);
1610	BUG_ON(con->in_msg != NULL);
1611	con->in_base_pos = 0;
1612	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1613	return 0;
1614}
1615
1616
1617static int read_partial(struct ceph_connection *con,
1618			int end, int size, void *object)
1619{
1620	while (con->in_base_pos < end) {
1621		int left = end - con->in_base_pos;
1622		int have = size - left;
1623		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1624		if (ret <= 0)
1625			return ret;
1626		con->in_base_pos += ret;
1627	}
1628	return 1;
1629}
1630
1631
1632/*
1633 * Read all or part of the connect-side handshake on a new connection
1634 */
1635static int read_partial_banner(struct ceph_connection *con)
1636{
1637	int size;
1638	int end;
1639	int ret;
1640
1641	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1642
1643	/* peer's banner */
1644	size = strlen(CEPH_BANNER);
1645	end = size;
1646	ret = read_partial(con, end, size, con->in_banner);
1647	if (ret <= 0)
1648		goto out;
1649
1650	size = sizeof (con->actual_peer_addr);
1651	end += size;
1652	ret = read_partial(con, end, size, &con->actual_peer_addr);
1653	if (ret <= 0)
1654		goto out;
1655
1656	size = sizeof (con->peer_addr_for_me);
1657	end += size;
1658	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1659	if (ret <= 0)
1660		goto out;
1661
1662out:
1663	return ret;
1664}
1665
1666static int read_partial_connect(struct ceph_connection *con)
1667{
1668	int size;
1669	int end;
1670	int ret;
1671
1672	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1673
1674	size = sizeof (con->in_reply);
1675	end = size;
1676	ret = read_partial(con, end, size, &con->in_reply);
1677	if (ret <= 0)
1678		goto out;
1679
1680	size = le32_to_cpu(con->in_reply.authorizer_len);
1681	end += size;
1682	ret = read_partial(con, end, size, con->auth_reply_buf);
1683	if (ret <= 0)
1684		goto out;
1685
1686	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1687	     con, (int)con->in_reply.tag,
1688	     le32_to_cpu(con->in_reply.connect_seq),
1689	     le32_to_cpu(con->in_reply.global_seq));
1690out:
1691	return ret;
1692
1693}
1694
1695/*
1696 * Verify the hello banner looks okay.
1697 */
1698static int verify_hello(struct ceph_connection *con)
1699{
1700	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1701		pr_err("connect to %s got bad banner\n",
1702		       ceph_pr_addr(&con->peer_addr.in_addr));
1703		con->error_msg = "protocol error, bad banner";
1704		return -1;
1705	}
1706	return 0;
1707}
1708
1709static bool addr_is_blank(struct sockaddr_storage *ss)
1710{
1711	switch (ss->ss_family) {
1712	case AF_INET:
1713		return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1714	case AF_INET6:
1715		return
1716		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1717		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1718		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1719		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1720	}
1721	return false;
1722}
1723
1724static int addr_port(struct sockaddr_storage *ss)
1725{
1726	switch (ss->ss_family) {
1727	case AF_INET:
1728		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1729	case AF_INET6:
1730		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1731	}
1732	return 0;
1733}
1734
1735static void addr_set_port(struct sockaddr_storage *ss, int p)
1736{
1737	switch (ss->ss_family) {
1738	case AF_INET:
1739		((struct sockaddr_in *)ss)->sin_port = htons(p);
1740		break;
1741	case AF_INET6:
1742		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1743		break;
1744	}
1745}
1746
1747/*
1748 * Unlike other *_pton function semantics, zero indicates success.
1749 */
1750static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1751		char delim, const char **ipend)
1752{
1753	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1754	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1755
1756	memset(ss, 0, sizeof(*ss));
1757
1758	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1759		ss->ss_family = AF_INET;
1760		return 0;
1761	}
1762
1763	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1764		ss->ss_family = AF_INET6;
1765		return 0;
1766	}
1767
1768	return -EINVAL;
1769}
1770
1771/*
1772 * Extract hostname string and resolve using kernel DNS facility.
1773 */
1774#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1775static int ceph_dns_resolve_name(const char *name, size_t namelen,
1776		struct sockaddr_storage *ss, char delim, const char **ipend)
1777{
1778	const char *end, *delim_p;
1779	char *colon_p, *ip_addr = NULL;
1780	int ip_len, ret;
1781
1782	/*
1783	 * The end of the hostname occurs immediately preceding the delimiter or
1784	 * the port marker (':') where the delimiter takes precedence.
1785	 */
1786	delim_p = memchr(name, delim, namelen);
1787	colon_p = memchr(name, ':', namelen);
1788
1789	if (delim_p && colon_p)
1790		end = delim_p < colon_p ? delim_p : colon_p;
1791	else if (!delim_p && colon_p)
1792		end = colon_p;
1793	else {
1794		end = delim_p;
1795		if (!end) /* case: hostname:/ */
1796			end = name + namelen;
1797	}
1798
1799	if (end <= name)
1800		return -EINVAL;
1801
1802	/* do dns_resolve upcall */
1803	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
 
1804	if (ip_len > 0)
1805		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1806	else
1807		ret = -ESRCH;
1808
1809	kfree(ip_addr);
1810
1811	*ipend = end;
1812
1813	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1814			ret, ret ? "failed" : ceph_pr_addr(ss));
1815
1816	return ret;
1817}
1818#else
1819static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1820		struct sockaddr_storage *ss, char delim, const char **ipend)
1821{
1822	return -EINVAL;
1823}
1824#endif
1825
1826/*
1827 * Parse a server name (IP or hostname). If a valid IP address is not found
1828 * then try to extract a hostname to resolve using userspace DNS upcall.
1829 */
1830static int ceph_parse_server_name(const char *name, size_t namelen,
1831			struct sockaddr_storage *ss, char delim, const char **ipend)
1832{
1833	int ret;
1834
1835	ret = ceph_pton(name, namelen, ss, delim, ipend);
1836	if (ret)
1837		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1838
1839	return ret;
1840}
1841
1842/*
1843 * Parse an ip[:port] list into an addr array.  Use the default
1844 * monitor port if a port isn't specified.
1845 */
1846int ceph_parse_ips(const char *c, const char *end,
1847		   struct ceph_entity_addr *addr,
1848		   int max_count, int *count)
1849{
1850	int i, ret = -EINVAL;
1851	const char *p = c;
1852
1853	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1854	for (i = 0; i < max_count; i++) {
 
1855		const char *ipend;
1856		struct sockaddr_storage *ss = &addr[i].in_addr;
1857		int port;
1858		char delim = ',';
1859
1860		if (*p == '[') {
1861			delim = ']';
1862			p++;
1863		}
1864
1865		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
 
1866		if (ret)
1867			goto bad;
1868		ret = -EINVAL;
1869
1870		p = ipend;
1871
1872		if (delim == ']') {
1873			if (*p != ']') {
1874				dout("missing matching ']'\n");
1875				goto bad;
1876			}
1877			p++;
1878		}
1879
1880		/* port? */
1881		if (p < end && *p == ':') {
1882			port = 0;
1883			p++;
1884			while (p < end && *p >= '0' && *p <= '9') {
1885				port = (port * 10) + (*p - '0');
1886				p++;
1887			}
1888			if (port == 0)
1889				port = CEPH_MON_PORT;
1890			else if (port > 65535)
1891				goto bad;
1892		} else {
1893			port = CEPH_MON_PORT;
1894		}
1895
1896		addr_set_port(ss, port);
 
 
 
 
 
 
 
 
 
 
1897
1898		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1899
1900		if (p == end)
1901			break;
1902		if (*p != ',')
1903			goto bad;
1904		p++;
1905	}
1906
1907	if (p != end)
1908		goto bad;
1909
1910	if (count)
1911		*count = i + 1;
1912	return 0;
1913
1914bad:
1915	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1916	return ret;
1917}
1918EXPORT_SYMBOL(ceph_parse_ips);
1919
1920static int process_banner(struct ceph_connection *con)
1921{
1922	dout("process_banner on %p\n", con);
1923
1924	if (verify_hello(con) < 0)
1925		return -1;
1926
1927	ceph_decode_addr(&con->actual_peer_addr);
1928	ceph_decode_addr(&con->peer_addr_for_me);
1929
1930	/*
1931	 * Make sure the other end is who we wanted.  note that the other
1932	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1933	 * them the benefit of the doubt.
1934	 */
1935	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1936		   sizeof(con->peer_addr)) != 0 &&
1937	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1938	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1939		pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1940			   ceph_pr_addr(&con->peer_addr.in_addr),
1941			   (int)le32_to_cpu(con->peer_addr.nonce),
1942			   ceph_pr_addr(&con->actual_peer_addr.in_addr),
1943			   (int)le32_to_cpu(con->actual_peer_addr.nonce));
1944		con->error_msg = "wrong peer at address";
1945		return -1;
1946	}
1947
1948	/*
1949	 * did we learn our address?
1950	 */
1951	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1952		int port = addr_port(&con->msgr->inst.addr.in_addr);
1953
1954		memcpy(&con->msgr->inst.addr.in_addr,
1955		       &con->peer_addr_for_me.in_addr,
1956		       sizeof(con->peer_addr_for_me.in_addr));
1957		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1958		encode_my_addr(con->msgr);
1959		dout("process_banner learned my addr is %s\n",
1960		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1961	}
1962
1963	return 0;
1964}
1965
1966static int process_connect(struct ceph_connection *con)
1967{
1968	u64 sup_feat = con->msgr->supported_features;
1969	u64 req_feat = con->msgr->required_features;
1970	u64 server_feat = ceph_sanitize_features(
1971				le64_to_cpu(con->in_reply.features));
1972	int ret;
1973
1974	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1975
1976	switch (con->in_reply.tag) {
1977	case CEPH_MSGR_TAG_FEATURES:
1978		pr_err("%s%lld %s feature set mismatch,"
1979		       " my %llx < server's %llx, missing %llx\n",
1980		       ENTITY_NAME(con->peer_name),
1981		       ceph_pr_addr(&con->peer_addr.in_addr),
1982		       sup_feat, server_feat, server_feat & ~sup_feat);
1983		con->error_msg = "missing required protocol features";
1984		reset_connection(con);
1985		return -1;
1986
1987	case CEPH_MSGR_TAG_BADPROTOVER:
1988		pr_err("%s%lld %s protocol version mismatch,"
1989		       " my %d != server's %d\n",
1990		       ENTITY_NAME(con->peer_name),
1991		       ceph_pr_addr(&con->peer_addr.in_addr),
1992		       le32_to_cpu(con->out_connect.protocol_version),
1993		       le32_to_cpu(con->in_reply.protocol_version));
1994		con->error_msg = "protocol version mismatch";
1995		reset_connection(con);
1996		return -1;
1997
1998	case CEPH_MSGR_TAG_BADAUTHORIZER:
1999		con->auth_retry++;
2000		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2001		     con->auth_retry);
2002		if (con->auth_retry == 2) {
2003			con->error_msg = "connect authorization failure";
2004			return -1;
2005		}
2006		con_out_kvec_reset(con);
2007		ret = prepare_write_connect(con);
2008		if (ret < 0)
2009			return ret;
2010		prepare_read_connect(con);
2011		break;
2012
2013	case CEPH_MSGR_TAG_RESETSESSION:
2014		/*
2015		 * If we connected with a large connect_seq but the peer
2016		 * has no record of a session with us (no connection, or
2017		 * connect_seq == 0), they will send RESETSESION to indicate
2018		 * that they must have reset their session, and may have
2019		 * dropped messages.
2020		 */
2021		dout("process_connect got RESET peer seq %u\n",
2022		     le32_to_cpu(con->in_reply.connect_seq));
2023		pr_err("%s%lld %s connection reset\n",
2024		       ENTITY_NAME(con->peer_name),
2025		       ceph_pr_addr(&con->peer_addr.in_addr));
2026		reset_connection(con);
2027		con_out_kvec_reset(con);
2028		ret = prepare_write_connect(con);
2029		if (ret < 0)
2030			return ret;
2031		prepare_read_connect(con);
2032
2033		/* Tell ceph about it. */
2034		mutex_unlock(&con->mutex);
2035		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2036		if (con->ops->peer_reset)
2037			con->ops->peer_reset(con);
2038		mutex_lock(&con->mutex);
2039		if (con->state != CON_STATE_NEGOTIATING)
2040			return -EAGAIN;
2041		break;
2042
2043	case CEPH_MSGR_TAG_RETRY_SESSION:
2044		/*
2045		 * If we sent a smaller connect_seq than the peer has, try
2046		 * again with a larger value.
2047		 */
2048		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2049		     le32_to_cpu(con->out_connect.connect_seq),
2050		     le32_to_cpu(con->in_reply.connect_seq));
2051		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2052		con_out_kvec_reset(con);
2053		ret = prepare_write_connect(con);
2054		if (ret < 0)
2055			return ret;
2056		prepare_read_connect(con);
2057		break;
2058
2059	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2060		/*
2061		 * If we sent a smaller global_seq than the peer has, try
2062		 * again with a larger value.
2063		 */
2064		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2065		     con->peer_global_seq,
2066		     le32_to_cpu(con->in_reply.global_seq));
2067		get_global_seq(con->msgr,
2068			       le32_to_cpu(con->in_reply.global_seq));
2069		con_out_kvec_reset(con);
2070		ret = prepare_write_connect(con);
2071		if (ret < 0)
2072			return ret;
2073		prepare_read_connect(con);
2074		break;
2075
2076	case CEPH_MSGR_TAG_SEQ:
2077	case CEPH_MSGR_TAG_READY:
2078		if (req_feat & ~server_feat) {
2079			pr_err("%s%lld %s protocol feature mismatch,"
2080			       " my required %llx > server's %llx, need %llx\n",
2081			       ENTITY_NAME(con->peer_name),
2082			       ceph_pr_addr(&con->peer_addr.in_addr),
2083			       req_feat, server_feat, req_feat & ~server_feat);
2084			con->error_msg = "missing required protocol features";
2085			reset_connection(con);
2086			return -1;
2087		}
2088
2089		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2090		con->state = CON_STATE_OPEN;
2091		con->auth_retry = 0;    /* we authenticated; clear flag */
2092		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2093		con->connect_seq++;
2094		con->peer_features = server_feat;
2095		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2096		     con->peer_global_seq,
2097		     le32_to_cpu(con->in_reply.connect_seq),
2098		     con->connect_seq);
2099		WARN_ON(con->connect_seq !=
2100			le32_to_cpu(con->in_reply.connect_seq));
2101
2102		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2103			con_flag_set(con, CON_FLAG_LOSSYTX);
2104
2105		con->delay = 0;      /* reset backoff memory */
2106
2107		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2108			prepare_write_seq(con);
2109			prepare_read_seq(con);
2110		} else {
2111			prepare_read_tag(con);
2112		}
2113		break;
2114
2115	case CEPH_MSGR_TAG_WAIT:
2116		/*
2117		 * If there is a connection race (we are opening
2118		 * connections to each other), one of us may just have
2119		 * to WAIT.  This shouldn't happen if we are the
2120		 * client.
2121		 */
2122		pr_err("process_connect got WAIT as client\n");
2123		con->error_msg = "protocol error, got WAIT as client";
2124		return -1;
2125
2126	default:
2127		pr_err("connect protocol error, will retry\n");
2128		con->error_msg = "protocol error, garbage tag during connect";
2129		return -1;
2130	}
2131	return 0;
2132}
2133
2134
2135/*
2136 * read (part of) an ack
2137 */
2138static int read_partial_ack(struct ceph_connection *con)
2139{
2140	int size = sizeof (con->in_temp_ack);
2141	int end = size;
2142
2143	return read_partial(con, end, size, &con->in_temp_ack);
2144}
2145
2146/*
2147 * We can finally discard anything that's been acked.
2148 */
2149static void process_ack(struct ceph_connection *con)
2150{
2151	struct ceph_msg *m;
2152	u64 ack = le64_to_cpu(con->in_temp_ack);
2153	u64 seq;
2154
2155	while (!list_empty(&con->out_sent)) {
2156		m = list_first_entry(&con->out_sent, struct ceph_msg,
2157				     list_head);
2158		seq = le64_to_cpu(m->hdr.seq);
2159		if (seq > ack)
2160			break;
2161		dout("got ack for seq %llu type %d at %p\n", seq,
2162		     le16_to_cpu(m->hdr.type), m);
2163		m->ack_stamp = jiffies;
2164		ceph_msg_remove(m);
2165	}
2166	prepare_read_tag(con);
2167}
2168
2169
2170static int read_partial_message_section(struct ceph_connection *con,
2171					struct kvec *section,
2172					unsigned int sec_len, u32 *crc)
2173{
2174	int ret, left;
2175
2176	BUG_ON(!section);
2177
2178	while (section->iov_len < sec_len) {
2179		BUG_ON(section->iov_base == NULL);
2180		left = sec_len - section->iov_len;
2181		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2182				       section->iov_len, left);
2183		if (ret <= 0)
2184			return ret;
2185		section->iov_len += ret;
2186	}
2187	if (section->iov_len == sec_len)
2188		*crc = crc32c(0, section->iov_base, section->iov_len);
2189
2190	return 1;
2191}
2192
2193static int read_partial_msg_data(struct ceph_connection *con)
2194{
2195	struct ceph_msg *msg = con->in_msg;
2196	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2197	const bool do_datacrc = !con->msgr->nocrc;
2198	struct page *page;
2199	size_t page_offset;
2200	size_t length;
2201	u32 crc = 0;
2202	int ret;
2203
2204	BUG_ON(!msg);
2205	if (list_empty(&msg->data))
2206		return -EIO;
2207
2208	if (do_datacrc)
2209		crc = con->in_data_crc;
2210	while (cursor->resid) {
2211		page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2212							NULL);
2213		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2214		if (ret <= 0) {
2215			if (do_datacrc)
2216				con->in_data_crc = crc;
2217
2218			return ret;
2219		}
2220
2221		if (do_datacrc)
2222			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2223		(void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2224	}
2225	if (do_datacrc)
2226		con->in_data_crc = crc;
2227
2228	return 1;	/* must return > 0 to indicate success */
2229}
2230
2231/*
2232 * read (part of) a message.
2233 */
2234static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2235
2236static int read_partial_message(struct ceph_connection *con)
2237{
2238	struct ceph_msg *m = con->in_msg;
2239	int size;
2240	int end;
2241	int ret;
2242	unsigned int front_len, middle_len, data_len;
2243	bool do_datacrc = !con->msgr->nocrc;
2244	u64 seq;
2245	u32 crc;
2246
2247	dout("read_partial_message con %p msg %p\n", con, m);
2248
2249	/* header */
2250	size = sizeof (con->in_hdr);
2251	end = size;
2252	ret = read_partial(con, end, size, &con->in_hdr);
2253	if (ret <= 0)
2254		return ret;
2255
2256	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2257	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2258		pr_err("read_partial_message bad hdr "
2259		       " crc %u != expected %u\n",
2260		       crc, con->in_hdr.crc);
2261		return -EBADMSG;
2262	}
2263
2264	front_len = le32_to_cpu(con->in_hdr.front_len);
2265	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2266		return -EIO;
2267	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2268	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2269		return -EIO;
2270	data_len = le32_to_cpu(con->in_hdr.data_len);
2271	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2272		return -EIO;
2273
2274	/* verify seq# */
2275	seq = le64_to_cpu(con->in_hdr.seq);
2276	if ((s64)seq - (s64)con->in_seq < 1) {
2277		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2278			ENTITY_NAME(con->peer_name),
2279			ceph_pr_addr(&con->peer_addr.in_addr),
2280			seq, con->in_seq + 1);
2281		con->in_base_pos = -front_len - middle_len - data_len -
2282			sizeof(m->footer);
2283		con->in_tag = CEPH_MSGR_TAG_READY;
2284		return 0;
2285	} else if ((s64)seq - (s64)con->in_seq > 1) {
2286		pr_err("read_partial_message bad seq %lld expected %lld\n",
2287		       seq, con->in_seq + 1);
2288		con->error_msg = "bad message sequence # for incoming message";
2289		return -EBADMSG;
2290	}
2291
2292	/* allocate message? */
2293	if (!con->in_msg) {
2294		int skip = 0;
2295
2296		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2297		     front_len, data_len);
2298		ret = ceph_con_in_msg_alloc(con, &skip);
2299		if (ret < 0)
2300			return ret;
2301
2302		BUG_ON(!con->in_msg ^ skip);
2303		if (con->in_msg && data_len > con->in_msg->data_length) {
2304			pr_warning("%s skipping long message (%u > %zd)\n",
2305				__func__, data_len, con->in_msg->data_length);
2306			ceph_msg_put(con->in_msg);
2307			con->in_msg = NULL;
2308			skip = 1;
2309		}
2310		if (skip) {
2311			/* skip this message */
2312			dout("alloc_msg said skip message\n");
2313			con->in_base_pos = -front_len - middle_len - data_len -
2314				sizeof(m->footer);
2315			con->in_tag = CEPH_MSGR_TAG_READY;
2316			con->in_seq++;
2317			return 0;
2318		}
2319
2320		BUG_ON(!con->in_msg);
2321		BUG_ON(con->in_msg->con != con);
2322		m = con->in_msg;
2323		m->front.iov_len = 0;    /* haven't read it yet */
2324		if (m->middle)
2325			m->middle->vec.iov_len = 0;
2326
2327		/* prepare for data payload, if any */
2328
2329		if (data_len)
2330			prepare_message_data(con->in_msg, data_len);
2331	}
2332
2333	/* front */
2334	ret = read_partial_message_section(con, &m->front, front_len,
2335					   &con->in_front_crc);
2336	if (ret <= 0)
2337		return ret;
2338
2339	/* middle */
2340	if (m->middle) {
2341		ret = read_partial_message_section(con, &m->middle->vec,
2342						   middle_len,
2343						   &con->in_middle_crc);
2344		if (ret <= 0)
2345			return ret;
2346	}
2347
2348	/* (page) data */
2349	if (data_len) {
2350		ret = read_partial_msg_data(con);
2351		if (ret <= 0)
2352			return ret;
2353	}
2354
2355	/* footer */
2356	size = sizeof (m->footer);
2357	end += size;
2358	ret = read_partial(con, end, size, &m->footer);
2359	if (ret <= 0)
2360		return ret;
2361
2362	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2363	     m, front_len, m->footer.front_crc, middle_len,
2364	     m->footer.middle_crc, data_len, m->footer.data_crc);
2365
2366	/* crc ok? */
2367	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2368		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2369		       m, con->in_front_crc, m->footer.front_crc);
2370		return -EBADMSG;
2371	}
2372	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2373		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2374		       m, con->in_middle_crc, m->footer.middle_crc);
2375		return -EBADMSG;
2376	}
2377	if (do_datacrc &&
2378	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2379	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2380		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2381		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2382		return -EBADMSG;
2383	}
2384
2385	return 1; /* done! */
2386}
2387
2388/*
2389 * Process message.  This happens in the worker thread.  The callback should
2390 * be careful not to do anything that waits on other incoming messages or it
2391 * may deadlock.
2392 */
2393static void process_message(struct ceph_connection *con)
2394{
2395	struct ceph_msg *msg;
2396
2397	BUG_ON(con->in_msg->con != con);
2398	con->in_msg->con = NULL;
2399	msg = con->in_msg;
2400	con->in_msg = NULL;
2401	con->ops->put(con);
2402
2403	/* if first message, set peer_name */
2404	if (con->peer_name.type == 0)
2405		con->peer_name = msg->hdr.src;
2406
2407	con->in_seq++;
2408	mutex_unlock(&con->mutex);
2409
2410	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2411	     msg, le64_to_cpu(msg->hdr.seq),
2412	     ENTITY_NAME(msg->hdr.src),
2413	     le16_to_cpu(msg->hdr.type),
2414	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2415	     le32_to_cpu(msg->hdr.front_len),
 
2416	     le32_to_cpu(msg->hdr.data_len),
2417	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2418	con->ops->dispatch(con, msg);
2419
2420	mutex_lock(&con->mutex);
2421}
2422
2423
2424/*
2425 * Write something to the socket.  Called in a worker thread when the
2426 * socket appears to be writeable and we have something ready to send.
2427 */
2428static int try_write(struct ceph_connection *con)
2429{
2430	int ret = 1;
2431
2432	dout("try_write start %p state %lu\n", con, con->state);
2433
2434more:
2435	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2436
2437	/* open the socket first? */
2438	if (con->state == CON_STATE_PREOPEN) {
2439		BUG_ON(con->sock);
2440		con->state = CON_STATE_CONNECTING;
2441
2442		con_out_kvec_reset(con);
2443		prepare_write_banner(con);
2444		prepare_read_banner(con);
2445
2446		BUG_ON(con->in_msg);
2447		con->in_tag = CEPH_MSGR_TAG_READY;
2448		dout("try_write initiating connect on %p new state %lu\n",
2449		     con, con->state);
2450		ret = ceph_tcp_connect(con);
2451		if (ret < 0) {
2452			con->error_msg = "connect error";
2453			goto out;
2454		}
2455	}
2456
2457more_kvec:
2458	/* kvec data queued? */
2459	if (con->out_skip) {
2460		ret = write_partial_skip(con);
2461		if (ret <= 0)
2462			goto out;
2463	}
2464	if (con->out_kvec_left) {
2465		ret = write_partial_kvec(con);
2466		if (ret <= 0)
2467			goto out;
2468	}
2469
2470	/* msg pages? */
2471	if (con->out_msg) {
2472		if (con->out_msg_done) {
2473			ceph_msg_put(con->out_msg);
2474			con->out_msg = NULL;   /* we're done with this one */
2475			goto do_next;
2476		}
2477
2478		ret = write_partial_message_data(con);
2479		if (ret == 1)
2480			goto more_kvec;  /* we need to send the footer, too! */
2481		if (ret == 0)
2482			goto out;
2483		if (ret < 0) {
2484			dout("try_write write_partial_message_data err %d\n",
2485			     ret);
2486			goto out;
2487		}
2488	}
2489
2490do_next:
2491	if (con->state == CON_STATE_OPEN) {
2492		/* is anything else pending? */
2493		if (!list_empty(&con->out_queue)) {
2494			prepare_write_message(con);
2495			goto more;
2496		}
2497		if (con->in_seq > con->in_seq_acked) {
2498			prepare_write_ack(con);
2499			goto more;
2500		}
2501		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2502			prepare_write_keepalive(con);
2503			goto more;
2504		}
2505	}
2506
2507	/* Nothing to do! */
2508	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2509	dout("try_write nothing else to write.\n");
2510	ret = 0;
2511out:
2512	dout("try_write done on %p ret %d\n", con, ret);
2513	return ret;
2514}
2515
2516
2517
2518/*
2519 * Read what we can from the socket.
2520 */
2521static int try_read(struct ceph_connection *con)
2522{
2523	int ret = -1;
2524
2525more:
2526	dout("try_read start on %p state %lu\n", con, con->state);
2527	if (con->state != CON_STATE_CONNECTING &&
2528	    con->state != CON_STATE_NEGOTIATING &&
2529	    con->state != CON_STATE_OPEN)
2530		return 0;
2531
2532	BUG_ON(!con->sock);
2533
2534	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2535	     con->in_base_pos);
2536
2537	if (con->state == CON_STATE_CONNECTING) {
2538		dout("try_read connecting\n");
2539		ret = read_partial_banner(con);
2540		if (ret <= 0)
2541			goto out;
2542		ret = process_banner(con);
2543		if (ret < 0)
2544			goto out;
2545
2546		con->state = CON_STATE_NEGOTIATING;
2547
2548		/*
2549		 * Received banner is good, exchange connection info.
2550		 * Do not reset out_kvec, as sending our banner raced
2551		 * with receiving peer banner after connect completed.
2552		 */
2553		ret = prepare_write_connect(con);
2554		if (ret < 0)
2555			goto out;
2556		prepare_read_connect(con);
2557
2558		/* Send connection info before awaiting response */
2559		goto out;
2560	}
2561
2562	if (con->state == CON_STATE_NEGOTIATING) {
2563		dout("try_read negotiating\n");
2564		ret = read_partial_connect(con);
2565		if (ret <= 0)
2566			goto out;
2567		ret = process_connect(con);
2568		if (ret < 0)
2569			goto out;
2570		goto more;
2571	}
2572
2573	WARN_ON(con->state != CON_STATE_OPEN);
2574
2575	if (con->in_base_pos < 0) {
2576		/*
2577		 * skipping + discarding content.
2578		 *
2579		 * FIXME: there must be a better way to do this!
2580		 */
2581		static char buf[SKIP_BUF_SIZE];
2582		int skip = min((int) sizeof (buf), -con->in_base_pos);
2583
2584		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2585		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2586		if (ret <= 0)
2587			goto out;
2588		con->in_base_pos += ret;
2589		if (con->in_base_pos)
2590			goto more;
2591	}
2592	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2593		/*
2594		 * what's next?
2595		 */
2596		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2597		if (ret <= 0)
2598			goto out;
2599		dout("try_read got tag %d\n", (int)con->in_tag);
2600		switch (con->in_tag) {
2601		case CEPH_MSGR_TAG_MSG:
2602			prepare_read_message(con);
2603			break;
2604		case CEPH_MSGR_TAG_ACK:
2605			prepare_read_ack(con);
2606			break;
2607		case CEPH_MSGR_TAG_CLOSE:
2608			con_close_socket(con);
2609			con->state = CON_STATE_CLOSED;
2610			goto out;
2611		default:
2612			goto bad_tag;
2613		}
2614	}
2615	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2616		ret = read_partial_message(con);
2617		if (ret <= 0) {
2618			switch (ret) {
2619			case -EBADMSG:
2620				con->error_msg = "bad crc";
2621				ret = -EIO;
2622				break;
2623			case -EIO:
2624				con->error_msg = "io error";
2625				break;
2626			}
2627			goto out;
2628		}
2629		if (con->in_tag == CEPH_MSGR_TAG_READY)
2630			goto more;
2631		process_message(con);
2632		if (con->state == CON_STATE_OPEN)
2633			prepare_read_tag(con);
2634		goto more;
2635	}
2636	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2637	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2638		/*
2639		 * the final handshake seq exchange is semantically
2640		 * equivalent to an ACK
2641		 */
2642		ret = read_partial_ack(con);
2643		if (ret <= 0)
2644			goto out;
2645		process_ack(con);
2646		goto more;
2647	}
2648
2649out:
2650	dout("try_read done on %p ret %d\n", con, ret);
2651	return ret;
2652
2653bad_tag:
2654	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2655	con->error_msg = "protocol error, garbage tag";
2656	ret = -1;
2657	goto out;
2658}
2659
2660
2661/*
2662 * Atomically queue work on a connection after the specified delay.
2663 * Bump @con reference to avoid races with connection teardown.
2664 * Returns 0 if work was queued, or an error code otherwise.
2665 */
2666static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2667{
2668	if (!con->ops->get(con)) {
2669		dout("%s %p ref count 0\n", __func__, con);
2670
2671		return -ENOENT;
2672	}
2673
 
 
 
 
2674	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2675		dout("%s %p - already queued\n", __func__, con);
2676		con->ops->put(con);
2677
2678		return -EBUSY;
2679	}
2680
2681	dout("%s %p %lu\n", __func__, con, delay);
2682
2683	return 0;
2684}
2685
2686static void queue_con(struct ceph_connection *con)
2687{
2688	(void) queue_con_delay(con, 0);
2689}
2690
 
 
 
 
 
 
 
 
2691static bool con_sock_closed(struct ceph_connection *con)
2692{
2693	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2694		return false;
2695
2696#define CASE(x)								\
2697	case CON_STATE_ ## x:						\
2698		con->error_msg = "socket closed (con state " #x ")";	\
2699		break;
2700
2701	switch (con->state) {
2702	CASE(CLOSED);
2703	CASE(PREOPEN);
2704	CASE(CONNECTING);
2705	CASE(NEGOTIATING);
 
 
 
 
 
 
 
2706	CASE(OPEN);
2707	CASE(STANDBY);
2708	default:
2709		pr_warning("%s con %p unrecognized state %lu\n",
2710			__func__, con, con->state);
2711		con->error_msg = "unrecognized con state";
2712		BUG();
2713		break;
2714	}
2715#undef CASE
2716
2717	return true;
2718}
2719
2720static bool con_backoff(struct ceph_connection *con)
2721{
2722	int ret;
2723
2724	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2725		return false;
2726
2727	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2728	if (ret) {
2729		dout("%s: con %p FAILED to back off %lu\n", __func__,
2730			con, con->delay);
2731		BUG_ON(ret == -ENOENT);
2732		con_flag_set(con, CON_FLAG_BACKOFF);
2733	}
2734
2735	return true;
2736}
2737
2738/* Finish fault handling; con->mutex must *not* be held here */
2739
2740static void con_fault_finish(struct ceph_connection *con)
2741{
 
 
2742	/*
2743	 * in case we faulted due to authentication, invalidate our
2744	 * current tickets so that we can get new ones.
2745	 */
2746	if (con->auth_retry && con->ops->invalidate_authorizer) {
2747		dout("calling invalidate_authorizer()\n");
2748		con->ops->invalidate_authorizer(con);
 
 
2749	}
2750
2751	if (con->ops->fault)
2752		con->ops->fault(con);
2753}
2754
2755/*
2756 * Do some work on a connection.  Drop a connection ref when we're done.
2757 */
2758static void con_work(struct work_struct *work)
2759{
2760	struct ceph_connection *con = container_of(work, struct ceph_connection,
2761						   work.work);
2762	bool fault;
2763
2764	mutex_lock(&con->mutex);
2765	while (true) {
2766		int ret;
2767
2768		if ((fault = con_sock_closed(con))) {
2769			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2770			break;
2771		}
2772		if (con_backoff(con)) {
2773			dout("%s: con %p BACKOFF\n", __func__, con);
2774			break;
2775		}
2776		if (con->state == CON_STATE_STANDBY) {
2777			dout("%s: con %p STANDBY\n", __func__, con);
2778			break;
2779		}
2780		if (con->state == CON_STATE_CLOSED) {
2781			dout("%s: con %p CLOSED\n", __func__, con);
2782			BUG_ON(con->sock);
2783			break;
2784		}
2785		if (con->state == CON_STATE_PREOPEN) {
2786			dout("%s: con %p PREOPEN\n", __func__, con);
2787			BUG_ON(con->sock);
2788		}
2789
2790		ret = try_read(con);
 
 
 
2791		if (ret < 0) {
2792			if (ret == -EAGAIN)
2793				continue;
2794			con->error_msg = "socket error on read";
 
2795			fault = true;
2796			break;
2797		}
2798
2799		ret = try_write(con);
 
 
 
2800		if (ret < 0) {
2801			if (ret == -EAGAIN)
2802				continue;
2803			con->error_msg = "socket error on write";
 
2804			fault = true;
2805		}
2806
2807		break;	/* If we make it to here, we're done */
2808	}
2809	if (fault)
2810		con_fault(con);
2811	mutex_unlock(&con->mutex);
2812
2813	if (fault)
2814		con_fault_finish(con);
2815
2816	con->ops->put(con);
2817}
2818
2819/*
2820 * Generic error/fault handler.  A retry mechanism is used with
2821 * exponential backoff
2822 */
2823static void con_fault(struct ceph_connection *con)
2824{
2825	pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2826	       ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2827	dout("fault %p state %lu to peer %s\n",
2828	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2829
2830	WARN_ON(con->state != CON_STATE_CONNECTING &&
2831	       con->state != CON_STATE_NEGOTIATING &&
2832	       con->state != CON_STATE_OPEN);
2833
2834	con_close_socket(con);
 
2835
2836	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
 
 
2837		dout("fault on LOSSYTX channel, marking CLOSED\n");
2838		con->state = CON_STATE_CLOSED;
2839		return;
2840	}
2841
2842	if (con->in_msg) {
2843		BUG_ON(con->in_msg->con != con);
2844		con->in_msg->con = NULL;
2845		ceph_msg_put(con->in_msg);
2846		con->in_msg = NULL;
2847		con->ops->put(con);
2848	}
2849
2850	/* Requeue anything that hasn't been acked */
2851	list_splice_init(&con->out_sent, &con->out_queue);
2852
2853	/* If there are no messages queued or keepalive pending, place
2854	 * the connection in a STANDBY state */
2855	if (list_empty(&con->out_queue) &&
2856	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2857		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2858		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2859		con->state = CON_STATE_STANDBY;
2860	} else {
2861		/* retry after a delay. */
2862		con->state = CON_STATE_PREOPEN;
2863		if (con->delay == 0)
2864			con->delay = BASE_DELAY_INTERVAL;
2865		else if (con->delay < MAX_DELAY_INTERVAL)
2866			con->delay *= 2;
2867		con_flag_set(con, CON_FLAG_BACKOFF);
 
 
 
2868		queue_con(con);
2869	}
2870}
2871
2872
 
 
 
 
 
2873
2874/*
2875 * initialize a new messenger instance
2876 */
2877void ceph_messenger_init(struct ceph_messenger *msgr,
2878			struct ceph_entity_addr *myaddr,
2879			u64 supported_features,
2880			u64 required_features,
2881			bool nocrc)
2882{
2883	msgr->supported_features = supported_features;
2884	msgr->required_features = required_features;
2885
2886	spin_lock_init(&msgr->global_seq_lock);
2887
2888	if (myaddr)
2889		msgr->inst.addr = *myaddr;
 
 
 
2890
2891	/* select a random nonce */
2892	msgr->inst.addr.type = 0;
2893	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2894	encode_my_addr(msgr);
2895	msgr->nocrc = nocrc;
 
 
 
 
 
 
 
2896
2897	atomic_set(&msgr->stopping, 0);
 
2898
2899	dout("%s %p\n", __func__, msgr);
2900}
2901EXPORT_SYMBOL(ceph_messenger_init);
 
 
 
 
 
 
 
 
 
 
 
 
 
2902
2903static void clear_standby(struct ceph_connection *con)
2904{
2905	/* come back from STANDBY? */
2906	if (con->state == CON_STATE_STANDBY) {
2907		dout("clear_standby %p and ++connect_seq\n", con);
2908		con->state = CON_STATE_PREOPEN;
2909		con->connect_seq++;
2910		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2911		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2912	}
2913}
2914
2915/*
2916 * Queue up an outgoing message on the given connection.
 
 
2917 */
2918void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2919{
2920	/* set src+dst */
2921	msg->hdr.src = con->msgr->inst.name;
2922	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2923	msg->needs_out_seq = true;
2924
2925	mutex_lock(&con->mutex);
2926
2927	if (con->state == CON_STATE_CLOSED) {
2928		dout("con_send %p closed, dropping %p\n", con, msg);
2929		ceph_msg_put(msg);
2930		mutex_unlock(&con->mutex);
2931		return;
2932	}
2933
2934	BUG_ON(msg->con != NULL);
2935	msg->con = con->ops->get(con);
2936	BUG_ON(msg->con == NULL);
2937
2938	BUG_ON(!list_empty(&msg->list_head));
2939	list_add_tail(&msg->list_head, &con->out_queue);
2940	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2941	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2942	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2943	     le32_to_cpu(msg->hdr.front_len),
2944	     le32_to_cpu(msg->hdr.middle_len),
2945	     le32_to_cpu(msg->hdr.data_len));
2946
2947	clear_standby(con);
2948	mutex_unlock(&con->mutex);
2949
2950	/* if there wasn't anything waiting to send before, queue
2951	 * new work */
2952	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2953		queue_con(con);
2954}
2955EXPORT_SYMBOL(ceph_con_send);
2956
2957/*
2958 * Revoke a message that was previously queued for send
2959 */
2960void ceph_msg_revoke(struct ceph_msg *msg)
2961{
2962	struct ceph_connection *con = msg->con;
2963
2964	if (!con)
 
2965		return;		/* Message not in our possession */
 
2966
2967	mutex_lock(&con->mutex);
2968	if (!list_empty(&msg->list_head)) {
2969		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2970		list_del_init(&msg->list_head);
2971		BUG_ON(msg->con == NULL);
2972		msg->con->ops->put(msg->con);
2973		msg->con = NULL;
2974		msg->hdr.seq = 0;
 
 
 
2975
2976		ceph_msg_put(msg);
2977	}
2978	if (con->out_msg == msg) {
2979		dout("%s %p msg %p - was sending\n", __func__, con, msg);
 
 
 
 
 
 
2980		con->out_msg = NULL;
2981		if (con->out_kvec_is_msg) {
2982			con->out_skip = con->out_kvec_bytes;
2983			con->out_kvec_is_msg = false;
2984		}
2985		msg->hdr.seq = 0;
2986
2987		ceph_msg_put(msg);
2988	}
2989	mutex_unlock(&con->mutex);
2990}
2991
2992/*
2993 * Revoke a message that we may be reading data into
2994 */
2995void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2996{
2997	struct ceph_connection *con;
2998
2999	BUG_ON(msg == NULL);
3000	if (!msg->con) {
3001		dout("%s msg %p null con\n", __func__, msg);
3002
3003		return;		/* Message not in our possession */
3004	}
3005
3006	con = msg->con;
3007	mutex_lock(&con->mutex);
3008	if (con->in_msg == msg) {
3009		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3010		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3011		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3012
3013		/* skip rest of message */
3014		dout("%s %p msg %p revoked\n", __func__, con, msg);
3015		con->in_base_pos = con->in_base_pos -
3016				sizeof(struct ceph_msg_header) -
3017				front_len -
3018				middle_len -
3019				data_len -
3020				sizeof(struct ceph_msg_footer);
3021		ceph_msg_put(con->in_msg);
3022		con->in_msg = NULL;
3023		con->in_tag = CEPH_MSGR_TAG_READY;
3024		con->in_seq++;
3025	} else {
3026		dout("%s %p in_msg %p msg %p no-op\n",
3027		     __func__, con, con->in_msg, msg);
3028	}
3029	mutex_unlock(&con->mutex);
3030}
3031
3032/*
3033 * Queue a keepalive byte to ensure the tcp connection is alive.
3034 */
3035void ceph_con_keepalive(struct ceph_connection *con)
3036{
3037	dout("con_keepalive %p\n", con);
3038	mutex_lock(&con->mutex);
3039	clear_standby(con);
 
3040	mutex_unlock(&con->mutex);
3041	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3042	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3043		queue_con(con);
3044}
3045EXPORT_SYMBOL(ceph_con_keepalive);
3046
3047static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
 
3048{
3049	struct ceph_msg_data *data;
 
 
 
 
 
 
 
 
 
 
3050
3051	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3052		return NULL;
3053
3054	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3055	if (data)
3056		data->type = type;
3057	INIT_LIST_HEAD(&data->links);
3058
3059	return data;
3060}
3061
3062static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3063{
3064	if (!data)
3065		return;
3066
3067	WARN_ON(!list_empty(&data->links));
3068	if (data->type == CEPH_MSG_DATA_PAGELIST) {
3069		ceph_pagelist_release(data->pagelist);
3070		kfree(data->pagelist);
3071	}
3072	kmem_cache_free(ceph_msg_data_cache, data);
3073}
3074
3075void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3076		size_t length, size_t alignment)
3077{
3078	struct ceph_msg_data *data;
3079
3080	BUG_ON(!pages);
3081	BUG_ON(!length);
3082
3083	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3084	BUG_ON(!data);
3085	data->pages = pages;
3086	data->length = length;
3087	data->alignment = alignment & ~PAGE_MASK;
 
3088
3089	list_add_tail(&data->links, &msg->data);
3090	msg->data_length += length;
3091}
3092EXPORT_SYMBOL(ceph_msg_data_add_pages);
3093
3094void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3095				struct ceph_pagelist *pagelist)
3096{
3097	struct ceph_msg_data *data;
3098
3099	BUG_ON(!pagelist);
3100	BUG_ON(!pagelist->length);
3101
3102	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3103	BUG_ON(!data);
 
3104	data->pagelist = pagelist;
3105
3106	list_add_tail(&data->links, &msg->data);
3107	msg->data_length += pagelist->length;
3108}
3109EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3110
3111#ifdef	CONFIG_BLOCK
3112void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3113		size_t length)
3114{
3115	struct ceph_msg_data *data;
3116
3117	BUG_ON(!bio);
3118
3119	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3120	BUG_ON(!data);
3121	data->bio = bio;
3122	data->bio_length = length;
3123
3124	list_add_tail(&data->links, &msg->data);
3125	msg->data_length += length;
3126}
3127EXPORT_SYMBOL(ceph_msg_data_add_bio);
3128#endif	/* CONFIG_BLOCK */
3129
 
 
 
 
 
 
 
 
 
 
 
 
 
3130/*
3131 * construct a new message with given type, size
3132 * the new msg has a ref count of 1.
3133 */
3134struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3135			      bool can_fail)
3136{
3137	struct ceph_msg *m;
3138
3139	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3140	if (m == NULL)
3141		goto out;
3142
3143	m->hdr.type = cpu_to_le16(type);
3144	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3145	m->hdr.front_len = cpu_to_le32(front_len);
3146
3147	INIT_LIST_HEAD(&m->list_head);
3148	kref_init(&m->kref);
3149	INIT_LIST_HEAD(&m->data);
3150
3151	/* front */
3152	if (front_len) {
3153		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3154		if (m->front.iov_base == NULL) {
3155			dout("ceph_msg_new can't allocate %d bytes\n",
3156			     front_len);
3157			goto out2;
3158		}
3159	} else {
3160		m->front.iov_base = NULL;
3161	}
3162	m->front_alloc_len = m->front.iov_len = front_len;
3163
 
 
 
 
 
 
 
 
 
3164	dout("ceph_msg_new %p front %d\n", m, front_len);
3165	return m;
3166
3167out2:
3168	ceph_msg_put(m);
3169out:
3170	if (!can_fail) {
3171		pr_err("msg_new can't create type %d front %d\n", type,
3172		       front_len);
3173		WARN_ON(1);
3174	} else {
3175		dout("msg_new can't create type %d front %d\n", type,
3176		     front_len);
3177	}
3178	return NULL;
3179}
 
 
 
 
 
 
 
3180EXPORT_SYMBOL(ceph_msg_new);
3181
3182/*
3183 * Allocate "middle" portion of a message, if it is needed and wasn't
3184 * allocated by alloc_msg.  This allows us to read a small fixed-size
3185 * per-type header in the front and then gracefully fail (i.e.,
3186 * propagate the error to the caller based on info in the front) when
3187 * the middle is too large.
3188 */
3189static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3190{
3191	int type = le16_to_cpu(msg->hdr.type);
3192	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3193
3194	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3195	     ceph_msg_type_name(type), middle_len);
3196	BUG_ON(!middle_len);
3197	BUG_ON(msg->middle);
3198
3199	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3200	if (!msg->middle)
3201		return -ENOMEM;
3202	return 0;
3203}
3204
3205/*
3206 * Allocate a message for receiving an incoming message on a
3207 * connection, and save the result in con->in_msg.  Uses the
3208 * connection's private alloc_msg op if available.
3209 *
3210 * Returns 0 on success, or a negative error code.
3211 *
3212 * On success, if we set *skip = 1:
3213 *  - the next message should be skipped and ignored.
3214 *  - con->in_msg == NULL
3215 * or if we set *skip = 0:
3216 *  - con->in_msg is non-null.
3217 * On error (ENOMEM, EAGAIN, ...),
3218 *  - con->in_msg == NULL
3219 */
3220static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
 
3221{
3222	struct ceph_msg_header *hdr = &con->in_hdr;
3223	int middle_len = le32_to_cpu(hdr->middle_len);
3224	struct ceph_msg *msg;
3225	int ret = 0;
3226
3227	BUG_ON(con->in_msg != NULL);
3228	BUG_ON(!con->ops->alloc_msg);
3229
3230	mutex_unlock(&con->mutex);
3231	msg = con->ops->alloc_msg(con, hdr, skip);
3232	mutex_lock(&con->mutex);
3233	if (con->state != CON_STATE_OPEN) {
3234		if (msg)
3235			ceph_msg_put(msg);
3236		return -EAGAIN;
3237	}
3238	if (msg) {
3239		BUG_ON(*skip);
 
3240		con->in_msg = msg;
3241		con->in_msg->con = con->ops->get(con);
3242		BUG_ON(con->in_msg->con == NULL);
3243	} else {
3244		/*
3245		 * Null message pointer means either we should skip
3246		 * this message or we couldn't allocate memory.  The
3247		 * former is not an error.
3248		 */
3249		if (*skip)
3250			return 0;
 
3251		con->error_msg = "error allocating memory for incoming message";
3252
3253		return -ENOMEM;
3254	}
3255	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3256
3257	if (middle_len && !con->in_msg->middle) {
3258		ret = ceph_alloc_middle(con, con->in_msg);
3259		if (ret < 0) {
3260			ceph_msg_put(con->in_msg);
3261			con->in_msg = NULL;
3262		}
3263	}
3264
3265	return ret;
3266}
3267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3268
3269/*
3270 * Free a generically kmalloc'd message.
3271 */
3272void ceph_msg_kfree(struct ceph_msg *m)
3273{
3274	dout("msg_kfree %p\n", m);
3275	ceph_kvfree(m->front.iov_base);
 
3276	kmem_cache_free(ceph_msg_cache, m);
3277}
3278
3279/*
3280 * Drop a msg ref.  Destroy as needed.
3281 */
3282void ceph_msg_last_put(struct kref *kref)
3283{
3284	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3285	LIST_HEAD(data);
3286	struct list_head *links;
3287	struct list_head *next;
3288
3289	dout("ceph_msg_put last one on %p\n", m);
3290	WARN_ON(!list_empty(&m->list_head));
3291
 
 
3292	/* drop middle, data, if any */
3293	if (m->middle) {
3294		ceph_buffer_put(m->middle);
3295		m->middle = NULL;
3296	}
3297
3298	list_splice_init(&m->data, &data);
3299	list_for_each_safe(links, next, &data) {
3300		struct ceph_msg_data *data;
3301
3302		data = list_entry(links, struct ceph_msg_data, links);
3303		list_del_init(links);
3304		ceph_msg_data_destroy(data);
3305	}
3306	m->data_length = 0;
3307
3308	if (m->pool)
3309		ceph_msgpool_put(m->pool, m);
3310	else
3311		ceph_msg_kfree(m);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3312}
3313EXPORT_SYMBOL(ceph_msg_last_put);
3314
3315void ceph_msg_dump(struct ceph_msg *msg)
3316{
3317	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3318		 msg->front_alloc_len, msg->data_length);
3319	print_hex_dump(KERN_DEBUG, "header: ",
3320		       DUMP_PREFIX_OFFSET, 16, 1,
3321		       &msg->hdr, sizeof(msg->hdr), true);
3322	print_hex_dump(KERN_DEBUG, " front: ",
3323		       DUMP_PREFIX_OFFSET, 16, 1,
3324		       msg->front.iov_base, msg->front.iov_len, true);
3325	if (msg->middle)
3326		print_hex_dump(KERN_DEBUG, "middle: ",
3327			       DUMP_PREFIX_OFFSET, 16, 1,
3328			       msg->middle->vec.iov_base,
3329			       msg->middle->vec.iov_len, true);
3330	print_hex_dump(KERN_DEBUG, "footer: ",
3331		       DUMP_PREFIX_OFFSET, 16, 1,
3332		       &msg->footer, sizeof(msg->footer), true);
3333}
3334EXPORT_SYMBOL(ceph_msg_dump);