Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.2.
   1/*
   2 *  linux/kernel/hrtimer.c
   3 *
   4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   7 *
   8 *  High-resolution kernel timers
   9 *
  10 *  In contrast to the low-resolution timeout API implemented in
  11 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
  12 *  depending on system configuration and capabilities.
  13 *
  14 *  These timers are currently used for:
  15 *   - itimers
  16 *   - POSIX timers
  17 *   - nanosleep
  18 *   - precise in-kernel timing
  19 *
  20 *  Started by: Thomas Gleixner and Ingo Molnar
  21 *
  22 *  Credits:
  23 *	based on kernel/timer.c
  24 *
  25 *	Help, testing, suggestions, bugfixes, improvements were
  26 *	provided by:
  27 *
  28 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
  29 *	et. al.
  30 *
  31 *  For licencing details see kernel-base/COPYING
  32 */
  33
  34#include <linux/cpu.h>
  35#include <linux/export.h>
  36#include <linux/percpu.h>
  37#include <linux/hrtimer.h>
  38#include <linux/notifier.h>
  39#include <linux/syscalls.h>
  40#include <linux/kallsyms.h>
  41#include <linux/interrupt.h>
  42#include <linux/tick.h>
  43#include <linux/seq_file.h>
  44#include <linux/err.h>
  45#include <linux/debugobjects.h>
  46#include <linux/sched.h>
  47#include <linux/sched/sysctl.h>
  48#include <linux/sched/rt.h>
  49#include <linux/sched/deadline.h>
  50#include <linux/timer.h>
  51#include <linux/freezer.h>
  52
  53#include <asm/uaccess.h>
  54
  55#include <trace/events/timer.h>
  56
  57/*
  58 * The timer bases:
  59 *
  60 * There are more clockids then hrtimer bases. Thus, we index
  61 * into the timer bases by the hrtimer_base_type enum. When trying
  62 * to reach a base using a clockid, hrtimer_clockid_to_base()
  63 * is used to convert from clockid to the proper hrtimer_base_type.
  64 */
  65DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
  66{
  67
  68	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
  69	.clock_base =
  70	{
  71		{
  72			.index = HRTIMER_BASE_MONOTONIC,
  73			.clockid = CLOCK_MONOTONIC,
  74			.get_time = &ktime_get,
  75			.resolution = KTIME_LOW_RES,
  76		},
  77		{
  78			.index = HRTIMER_BASE_REALTIME,
  79			.clockid = CLOCK_REALTIME,
  80			.get_time = &ktime_get_real,
  81			.resolution = KTIME_LOW_RES,
  82		},
  83		{
  84			.index = HRTIMER_BASE_BOOTTIME,
  85			.clockid = CLOCK_BOOTTIME,
  86			.get_time = &ktime_get_boottime,
  87			.resolution = KTIME_LOW_RES,
  88		},
  89		{
  90			.index = HRTIMER_BASE_TAI,
  91			.clockid = CLOCK_TAI,
  92			.get_time = &ktime_get_clocktai,
  93			.resolution = KTIME_LOW_RES,
  94		},
  95	}
  96};
  97
  98static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
  99	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
 100	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
 101	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
 102	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
 103};
 104
 105static inline int hrtimer_clockid_to_base(clockid_t clock_id)
 106{
 107	return hrtimer_clock_to_base_table[clock_id];
 108}
 109
 110
 111/*
 112 * Get the coarse grained time at the softirq based on xtime and
 113 * wall_to_monotonic.
 114 */
 115static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
 116{
 117	ktime_t xtim, mono, boot;
 118	struct timespec xts, tom, slp;
 119	s32 tai_offset;
 120
 121	get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
 122	tai_offset = timekeeping_get_tai_offset();
 123
 124	xtim = timespec_to_ktime(xts);
 125	mono = ktime_add(xtim, timespec_to_ktime(tom));
 126	boot = ktime_add(mono, timespec_to_ktime(slp));
 127	base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
 128	base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
 129	base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
 130	base->clock_base[HRTIMER_BASE_TAI].softirq_time =
 131				ktime_add(xtim,	ktime_set(tai_offset, 0));
 132}
 133
 134/*
 135 * Functions and macros which are different for UP/SMP systems are kept in a
 136 * single place
 137 */
 138#ifdef CONFIG_SMP
 139
 140/*
 141 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 142 * means that all timers which are tied to this base via timer->base are
 143 * locked, and the base itself is locked too.
 144 *
 145 * So __run_timers/migrate_timers can safely modify all timers which could
 146 * be found on the lists/queues.
 147 *
 148 * When the timer's base is locked, and the timer removed from list, it is
 149 * possible to set timer->base = NULL and drop the lock: the timer remains
 150 * locked.
 151 */
 152static
 153struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
 154					     unsigned long *flags)
 155{
 156	struct hrtimer_clock_base *base;
 157
 158	for (;;) {
 159		base = timer->base;
 160		if (likely(base != NULL)) {
 161			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 162			if (likely(base == timer->base))
 163				return base;
 164			/* The timer has migrated to another CPU: */
 165			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
 166		}
 167		cpu_relax();
 168	}
 169}
 170
 171/*
 172 * With HIGHRES=y we do not migrate the timer when it is expiring
 173 * before the next event on the target cpu because we cannot reprogram
 174 * the target cpu hardware and we would cause it to fire late.
 175 *
 176 * Called with cpu_base->lock of target cpu held.
 177 */
 178static int
 179hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
 180{
 181#ifdef CONFIG_HIGH_RES_TIMERS
 182	ktime_t expires;
 183
 184	if (!new_base->cpu_base->hres_active)
 185		return 0;
 186
 187	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
 188	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
 189#else
 190	return 0;
 191#endif
 192}
 193
 194/*
 195 * Switch the timer base to the current CPU when possible.
 196 */
 197static inline struct hrtimer_clock_base *
 198switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
 199		    int pinned)
 200{
 201	struct hrtimer_clock_base *new_base;
 202	struct hrtimer_cpu_base *new_cpu_base;
 203	int this_cpu = smp_processor_id();
 204	int cpu = get_nohz_timer_target(pinned);
 205	int basenum = base->index;
 206
 207again:
 208	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
 209	new_base = &new_cpu_base->clock_base[basenum];
 210
 211	if (base != new_base) {
 212		/*
 213		 * We are trying to move timer to new_base.
 214		 * However we can't change timer's base while it is running,
 215		 * so we keep it on the same CPU. No hassle vs. reprogramming
 216		 * the event source in the high resolution case. The softirq
 217		 * code will take care of this when the timer function has
 218		 * completed. There is no conflict as we hold the lock until
 219		 * the timer is enqueued.
 220		 */
 221		if (unlikely(hrtimer_callback_running(timer)))
 222			return base;
 223
 224		/* See the comment in lock_timer_base() */
 225		timer->base = NULL;
 226		raw_spin_unlock(&base->cpu_base->lock);
 227		raw_spin_lock(&new_base->cpu_base->lock);
 228
 229		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
 230			cpu = this_cpu;
 231			raw_spin_unlock(&new_base->cpu_base->lock);
 232			raw_spin_lock(&base->cpu_base->lock);
 233			timer->base = base;
 234			goto again;
 235		}
 236		timer->base = new_base;
 237	} else {
 238		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
 239			cpu = this_cpu;
 240			goto again;
 241		}
 242	}
 243	return new_base;
 244}
 245
 246#else /* CONFIG_SMP */
 247
 248static inline struct hrtimer_clock_base *
 249lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 250{
 251	struct hrtimer_clock_base *base = timer->base;
 252
 253	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 254
 255	return base;
 256}
 257
 258# define switch_hrtimer_base(t, b, p)	(b)
 259
 260#endif	/* !CONFIG_SMP */
 261
 262/*
 263 * Functions for the union type storage format of ktime_t which are
 264 * too large for inlining:
 265 */
 266#if BITS_PER_LONG < 64
 267# ifndef CONFIG_KTIME_SCALAR
 268/**
 269 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 270 * @kt:		addend
 271 * @nsec:	the scalar nsec value to add
 272 *
 273 * Returns the sum of kt and nsec in ktime_t format
 274 */
 275ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
 276{
 277	ktime_t tmp;
 278
 279	if (likely(nsec < NSEC_PER_SEC)) {
 280		tmp.tv64 = nsec;
 281	} else {
 282		unsigned long rem = do_div(nsec, NSEC_PER_SEC);
 283
 284		/* Make sure nsec fits into long */
 285		if (unlikely(nsec > KTIME_SEC_MAX))
 286			return (ktime_t){ .tv64 = KTIME_MAX };
 287
 288		tmp = ktime_set((long)nsec, rem);
 289	}
 290
 291	return ktime_add(kt, tmp);
 292}
 293
 294EXPORT_SYMBOL_GPL(ktime_add_ns);
 295
 296/**
 297 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 298 * @kt:		minuend
 299 * @nsec:	the scalar nsec value to subtract
 300 *
 301 * Returns the subtraction of @nsec from @kt in ktime_t format
 302 */
 303ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
 304{
 305	ktime_t tmp;
 306
 307	if (likely(nsec < NSEC_PER_SEC)) {
 308		tmp.tv64 = nsec;
 309	} else {
 310		unsigned long rem = do_div(nsec, NSEC_PER_SEC);
 311
 312		tmp = ktime_set((long)nsec, rem);
 313	}
 314
 315	return ktime_sub(kt, tmp);
 316}
 317
 318EXPORT_SYMBOL_GPL(ktime_sub_ns);
 319# endif /* !CONFIG_KTIME_SCALAR */
 320
 321/*
 322 * Divide a ktime value by a nanosecond value
 323 */
 324u64 ktime_divns(const ktime_t kt, s64 div)
 325{
 326	u64 dclc;
 327	int sft = 0;
 328
 329	dclc = ktime_to_ns(kt);
 330	/* Make sure the divisor is less than 2^32: */
 331	while (div >> 32) {
 332		sft++;
 333		div >>= 1;
 334	}
 335	dclc >>= sft;
 336	do_div(dclc, (unsigned long) div);
 337
 338	return dclc;
 339}
 340#endif /* BITS_PER_LONG >= 64 */
 341
 342/*
 343 * Add two ktime values and do a safety check for overflow:
 344 */
 345ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
 346{
 347	ktime_t res = ktime_add(lhs, rhs);
 348
 349	/*
 350	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
 351	 * return to user space in a timespec:
 352	 */
 353	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
 354		res = ktime_set(KTIME_SEC_MAX, 0);
 355
 356	return res;
 357}
 358
 359EXPORT_SYMBOL_GPL(ktime_add_safe);
 360
 361#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 362
 363static struct debug_obj_descr hrtimer_debug_descr;
 364
 365static void *hrtimer_debug_hint(void *addr)
 366{
 367	return ((struct hrtimer *) addr)->function;
 368}
 369
 370/*
 371 * fixup_init is called when:
 372 * - an active object is initialized
 373 */
 374static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
 375{
 376	struct hrtimer *timer = addr;
 377
 378	switch (state) {
 379	case ODEBUG_STATE_ACTIVE:
 380		hrtimer_cancel(timer);
 381		debug_object_init(timer, &hrtimer_debug_descr);
 382		return 1;
 383	default:
 384		return 0;
 385	}
 386}
 387
 388/*
 389 * fixup_activate is called when:
 390 * - an active object is activated
 391 * - an unknown object is activated (might be a statically initialized object)
 392 */
 393static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
 394{
 395	switch (state) {
 396
 397	case ODEBUG_STATE_NOTAVAILABLE:
 398		WARN_ON_ONCE(1);
 399		return 0;
 400
 401	case ODEBUG_STATE_ACTIVE:
 402		WARN_ON(1);
 403
 404	default:
 405		return 0;
 406	}
 407}
 408
 409/*
 410 * fixup_free is called when:
 411 * - an active object is freed
 412 */
 413static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
 414{
 415	struct hrtimer *timer = addr;
 416
 417	switch (state) {
 418	case ODEBUG_STATE_ACTIVE:
 419		hrtimer_cancel(timer);
 420		debug_object_free(timer, &hrtimer_debug_descr);
 421		return 1;
 422	default:
 423		return 0;
 424	}
 425}
 426
 427static struct debug_obj_descr hrtimer_debug_descr = {
 428	.name		= "hrtimer",
 429	.debug_hint	= hrtimer_debug_hint,
 430	.fixup_init	= hrtimer_fixup_init,
 431	.fixup_activate	= hrtimer_fixup_activate,
 432	.fixup_free	= hrtimer_fixup_free,
 433};
 434
 435static inline void debug_hrtimer_init(struct hrtimer *timer)
 436{
 437	debug_object_init(timer, &hrtimer_debug_descr);
 438}
 439
 440static inline void debug_hrtimer_activate(struct hrtimer *timer)
 441{
 442	debug_object_activate(timer, &hrtimer_debug_descr);
 443}
 444
 445static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
 446{
 447	debug_object_deactivate(timer, &hrtimer_debug_descr);
 448}
 449
 450static inline void debug_hrtimer_free(struct hrtimer *timer)
 451{
 452	debug_object_free(timer, &hrtimer_debug_descr);
 453}
 454
 455static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
 456			   enum hrtimer_mode mode);
 457
 458void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
 459			   enum hrtimer_mode mode)
 460{
 461	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
 462	__hrtimer_init(timer, clock_id, mode);
 463}
 464EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
 465
 466void destroy_hrtimer_on_stack(struct hrtimer *timer)
 467{
 468	debug_object_free(timer, &hrtimer_debug_descr);
 469}
 470
 471#else
 472static inline void debug_hrtimer_init(struct hrtimer *timer) { }
 473static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
 474static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
 475#endif
 476
 477static inline void
 478debug_init(struct hrtimer *timer, clockid_t clockid,
 479	   enum hrtimer_mode mode)
 480{
 481	debug_hrtimer_init(timer);
 482	trace_hrtimer_init(timer, clockid, mode);
 483}
 484
 485static inline void debug_activate(struct hrtimer *timer)
 486{
 487	debug_hrtimer_activate(timer);
 488	trace_hrtimer_start(timer);
 489}
 490
 491static inline void debug_deactivate(struct hrtimer *timer)
 492{
 493	debug_hrtimer_deactivate(timer);
 494	trace_hrtimer_cancel(timer);
 495}
 496
 497/* High resolution timer related functions */
 498#ifdef CONFIG_HIGH_RES_TIMERS
 499
 500/*
 501 * High resolution timer enabled ?
 502 */
 503static int hrtimer_hres_enabled __read_mostly  = 1;
 504
 505/*
 506 * Enable / Disable high resolution mode
 507 */
 508static int __init setup_hrtimer_hres(char *str)
 509{
 510	if (!strcmp(str, "off"))
 511		hrtimer_hres_enabled = 0;
 512	else if (!strcmp(str, "on"))
 513		hrtimer_hres_enabled = 1;
 514	else
 515		return 0;
 516	return 1;
 517}
 518
 519__setup("highres=", setup_hrtimer_hres);
 520
 521/*
 522 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 523 */
 524static inline int hrtimer_is_hres_enabled(void)
 525{
 526	return hrtimer_hres_enabled;
 527}
 528
 529/*
 530 * Is the high resolution mode active ?
 531 */
 532static inline int hrtimer_hres_active(void)
 533{
 534	return __this_cpu_read(hrtimer_bases.hres_active);
 535}
 536
 537/*
 538 * Reprogram the event source with checking both queues for the
 539 * next event
 540 * Called with interrupts disabled and base->lock held
 541 */
 542static void
 543hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
 544{
 545	int i;
 546	struct hrtimer_clock_base *base = cpu_base->clock_base;
 547	ktime_t expires, expires_next;
 548
 549	expires_next.tv64 = KTIME_MAX;
 550
 551	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
 552		struct hrtimer *timer;
 553		struct timerqueue_node *next;
 554
 555		next = timerqueue_getnext(&base->active);
 556		if (!next)
 557			continue;
 558		timer = container_of(next, struct hrtimer, node);
 559
 560		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 561		/*
 562		 * clock_was_set() has changed base->offset so the
 563		 * result might be negative. Fix it up to prevent a
 564		 * false positive in clockevents_program_event()
 565		 */
 566		if (expires.tv64 < 0)
 567			expires.tv64 = 0;
 568		if (expires.tv64 < expires_next.tv64)
 569			expires_next = expires;
 570	}
 571
 572	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
 573		return;
 574
 575	cpu_base->expires_next.tv64 = expires_next.tv64;
 576
 577	/*
 578	 * If a hang was detected in the last timer interrupt then we
 579	 * leave the hang delay active in the hardware. We want the
 580	 * system to make progress. That also prevents the following
 581	 * scenario:
 582	 * T1 expires 50ms from now
 583	 * T2 expires 5s from now
 584	 *
 585	 * T1 is removed, so this code is called and would reprogram
 586	 * the hardware to 5s from now. Any hrtimer_start after that
 587	 * will not reprogram the hardware due to hang_detected being
 588	 * set. So we'd effectivly block all timers until the T2 event
 589	 * fires.
 590	 */
 591	if (cpu_base->hang_detected)
 592		return;
 593
 594	if (cpu_base->expires_next.tv64 != KTIME_MAX)
 595		tick_program_event(cpu_base->expires_next, 1);
 596}
 597
 598/*
 599 * Shared reprogramming for clock_realtime and clock_monotonic
 600 *
 601 * When a timer is enqueued and expires earlier than the already enqueued
 602 * timers, we have to check, whether it expires earlier than the timer for
 603 * which the clock event device was armed.
 604 *
 605 * Called with interrupts disabled and base->cpu_base.lock held
 606 */
 607static int hrtimer_reprogram(struct hrtimer *timer,
 608			     struct hrtimer_clock_base *base)
 609{
 610	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
 611	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 612	int res;
 613
 614	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
 615
 616	/*
 617	 * When the callback is running, we do not reprogram the clock event
 618	 * device. The timer callback is either running on a different CPU or
 619	 * the callback is executed in the hrtimer_interrupt context. The
 620	 * reprogramming is handled either by the softirq, which called the
 621	 * callback or at the end of the hrtimer_interrupt.
 622	 */
 623	if (hrtimer_callback_running(timer))
 624		return 0;
 625
 626	/*
 627	 * CLOCK_REALTIME timer might be requested with an absolute
 628	 * expiry time which is less than base->offset. Nothing wrong
 629	 * about that, just avoid to call into the tick code, which
 630	 * has now objections against negative expiry values.
 631	 */
 632	if (expires.tv64 < 0)
 633		return -ETIME;
 634
 635	if (expires.tv64 >= cpu_base->expires_next.tv64)
 636		return 0;
 637
 638	/*
 639	 * If a hang was detected in the last timer interrupt then we
 640	 * do not schedule a timer which is earlier than the expiry
 641	 * which we enforced in the hang detection. We want the system
 642	 * to make progress.
 643	 */
 644	if (cpu_base->hang_detected)
 645		return 0;
 646
 647	/*
 648	 * Clockevents returns -ETIME, when the event was in the past.
 649	 */
 650	res = tick_program_event(expires, 0);
 651	if (!IS_ERR_VALUE(res))
 652		cpu_base->expires_next = expires;
 653	return res;
 654}
 655
 656/*
 657 * Initialize the high resolution related parts of cpu_base
 658 */
 659static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
 660{
 661	base->expires_next.tv64 = KTIME_MAX;
 662	base->hres_active = 0;
 663}
 664
 665/*
 666 * When High resolution timers are active, try to reprogram. Note, that in case
 667 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 668 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 669 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 670 */
 671static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
 672					    struct hrtimer_clock_base *base)
 673{
 674	return base->cpu_base->hres_active && hrtimer_reprogram(timer, base);
 675}
 676
 677static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
 678{
 679	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
 680	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
 681	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
 682
 683	return ktime_get_update_offsets(offs_real, offs_boot, offs_tai);
 684}
 685
 686/*
 687 * Retrigger next event is called after clock was set
 688 *
 689 * Called with interrupts disabled via on_each_cpu()
 690 */
 691static void retrigger_next_event(void *arg)
 692{
 693	struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
 694
 695	if (!hrtimer_hres_active())
 696		return;
 697
 698	raw_spin_lock(&base->lock);
 699	hrtimer_update_base(base);
 700	hrtimer_force_reprogram(base, 0);
 701	raw_spin_unlock(&base->lock);
 702}
 703
 704/*
 705 * Switch to high resolution mode
 706 */
 707static int hrtimer_switch_to_hres(void)
 708{
 709	int i, cpu = smp_processor_id();
 710	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
 711	unsigned long flags;
 712
 713	if (base->hres_active)
 714		return 1;
 715
 716	local_irq_save(flags);
 717
 718	if (tick_init_highres()) {
 719		local_irq_restore(flags);
 720		printk(KERN_WARNING "Could not switch to high resolution "
 721				    "mode on CPU %d\n", cpu);
 722		return 0;
 723	}
 724	base->hres_active = 1;
 725	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
 726		base->clock_base[i].resolution = KTIME_HIGH_RES;
 727
 728	tick_setup_sched_timer();
 729	/* "Retrigger" the interrupt to get things going */
 730	retrigger_next_event(NULL);
 731	local_irq_restore(flags);
 732	return 1;
 733}
 734
 735static void clock_was_set_work(struct work_struct *work)
 736{
 737	clock_was_set();
 738}
 739
 740static DECLARE_WORK(hrtimer_work, clock_was_set_work);
 741
 742/*
 743 * Called from timekeeping and resume code to reprogramm the hrtimer
 744 * interrupt device on all cpus.
 745 */
 746void clock_was_set_delayed(void)
 747{
 748	schedule_work(&hrtimer_work);
 749}
 750
 751#else
 752
 753static inline int hrtimer_hres_active(void) { return 0; }
 754static inline int hrtimer_is_hres_enabled(void) { return 0; }
 755static inline int hrtimer_switch_to_hres(void) { return 0; }
 756static inline void
 757hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
 758static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
 759					    struct hrtimer_clock_base *base)
 760{
 761	return 0;
 762}
 763static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
 764static inline void retrigger_next_event(void *arg) { }
 765
 766#endif /* CONFIG_HIGH_RES_TIMERS */
 767
 768/*
 769 * Clock realtime was set
 770 *
 771 * Change the offset of the realtime clock vs. the monotonic
 772 * clock.
 773 *
 774 * We might have to reprogram the high resolution timer interrupt. On
 775 * SMP we call the architecture specific code to retrigger _all_ high
 776 * resolution timer interrupts. On UP we just disable interrupts and
 777 * call the high resolution interrupt code.
 778 */
 779void clock_was_set(void)
 780{
 781#ifdef CONFIG_HIGH_RES_TIMERS
 782	/* Retrigger the CPU local events everywhere */
 783	on_each_cpu(retrigger_next_event, NULL, 1);
 784#endif
 785	timerfd_clock_was_set();
 786}
 787
 788/*
 789 * During resume we might have to reprogram the high resolution timer
 790 * interrupt on all online CPUs.  However, all other CPUs will be
 791 * stopped with IRQs interrupts disabled so the clock_was_set() call
 792 * must be deferred.
 793 */
 794void hrtimers_resume(void)
 795{
 796	WARN_ONCE(!irqs_disabled(),
 797		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");
 798
 799	/* Retrigger on the local CPU */
 800	retrigger_next_event(NULL);
 801	/* And schedule a retrigger for all others */
 802	clock_was_set_delayed();
 803}
 804
 805static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
 806{
 807#ifdef CONFIG_TIMER_STATS
 808	if (timer->start_site)
 809		return;
 810	timer->start_site = __builtin_return_address(0);
 811	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
 812	timer->start_pid = current->pid;
 813#endif
 814}
 815
 816static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
 817{
 818#ifdef CONFIG_TIMER_STATS
 819	timer->start_site = NULL;
 820#endif
 821}
 822
 823static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
 824{
 825#ifdef CONFIG_TIMER_STATS
 826	if (likely(!timer_stats_active))
 827		return;
 828	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
 829				 timer->function, timer->start_comm, 0);
 830#endif
 831}
 832
 833/*
 834 * Counterpart to lock_hrtimer_base above:
 835 */
 836static inline
 837void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 838{
 839	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
 840}
 841
 842/**
 843 * hrtimer_forward - forward the timer expiry
 844 * @timer:	hrtimer to forward
 845 * @now:	forward past this time
 846 * @interval:	the interval to forward
 847 *
 848 * Forward the timer expiry so it will expire in the future.
 849 * Returns the number of overruns.
 850 */
 851u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
 852{
 853	u64 orun = 1;
 854	ktime_t delta;
 855
 856	delta = ktime_sub(now, hrtimer_get_expires(timer));
 857
 858	if (delta.tv64 < 0)
 859		return 0;
 860
 861	if (interval.tv64 < timer->base->resolution.tv64)
 862		interval.tv64 = timer->base->resolution.tv64;
 863
 864	if (unlikely(delta.tv64 >= interval.tv64)) {
 865		s64 incr = ktime_to_ns(interval);
 866
 867		orun = ktime_divns(delta, incr);
 868		hrtimer_add_expires_ns(timer, incr * orun);
 869		if (hrtimer_get_expires_tv64(timer) > now.tv64)
 870			return orun;
 871		/*
 872		 * This (and the ktime_add() below) is the
 873		 * correction for exact:
 874		 */
 875		orun++;
 876	}
 877	hrtimer_add_expires(timer, interval);
 878
 879	return orun;
 880}
 881EXPORT_SYMBOL_GPL(hrtimer_forward);
 882
 883/*
 884 * enqueue_hrtimer - internal function to (re)start a timer
 885 *
 886 * The timer is inserted in expiry order. Insertion into the
 887 * red black tree is O(log(n)). Must hold the base lock.
 888 *
 889 * Returns 1 when the new timer is the leftmost timer in the tree.
 890 */
 891static int enqueue_hrtimer(struct hrtimer *timer,
 892			   struct hrtimer_clock_base *base)
 893{
 894	debug_activate(timer);
 895
 896	timerqueue_add(&base->active, &timer->node);
 897	base->cpu_base->active_bases |= 1 << base->index;
 898
 899	/*
 900	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
 901	 * state of a possibly running callback.
 902	 */
 903	timer->state |= HRTIMER_STATE_ENQUEUED;
 904
 905	return (&timer->node == base->active.next);
 906}
 907
 908/*
 909 * __remove_hrtimer - internal function to remove a timer
 910 *
 911 * Caller must hold the base lock.
 912 *
 913 * High resolution timer mode reprograms the clock event device when the
 914 * timer is the one which expires next. The caller can disable this by setting
 915 * reprogram to zero. This is useful, when the context does a reprogramming
 916 * anyway (e.g. timer interrupt)
 917 */
 918static void __remove_hrtimer(struct hrtimer *timer,
 919			     struct hrtimer_clock_base *base,
 920			     unsigned long newstate, int reprogram)
 921{
 922	struct timerqueue_node *next_timer;
 923	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
 924		goto out;
 925
 926	next_timer = timerqueue_getnext(&base->active);
 927	timerqueue_del(&base->active, &timer->node);
 928	if (&timer->node == next_timer) {
 929#ifdef CONFIG_HIGH_RES_TIMERS
 930		/* Reprogram the clock event device. if enabled */
 931		if (reprogram && hrtimer_hres_active()) {
 932			ktime_t expires;
 933
 934			expires = ktime_sub(hrtimer_get_expires(timer),
 935					    base->offset);
 936			if (base->cpu_base->expires_next.tv64 == expires.tv64)
 937				hrtimer_force_reprogram(base->cpu_base, 1);
 938		}
 939#endif
 940	}
 941	if (!timerqueue_getnext(&base->active))
 942		base->cpu_base->active_bases &= ~(1 << base->index);
 943out:
 944	timer->state = newstate;
 945}
 946
 947/*
 948 * remove hrtimer, called with base lock held
 949 */
 950static inline int
 951remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
 952{
 953	if (hrtimer_is_queued(timer)) {
 954		unsigned long state;
 955		int reprogram;
 956
 957		/*
 958		 * Remove the timer and force reprogramming when high
 959		 * resolution mode is active and the timer is on the current
 960		 * CPU. If we remove a timer on another CPU, reprogramming is
 961		 * skipped. The interrupt event on this CPU is fired and
 962		 * reprogramming happens in the interrupt handler. This is a
 963		 * rare case and less expensive than a smp call.
 964		 */
 965		debug_deactivate(timer);
 966		timer_stats_hrtimer_clear_start_info(timer);
 967		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
 968		/*
 969		 * We must preserve the CALLBACK state flag here,
 970		 * otherwise we could move the timer base in
 971		 * switch_hrtimer_base.
 972		 */
 973		state = timer->state & HRTIMER_STATE_CALLBACK;
 974		__remove_hrtimer(timer, base, state, reprogram);
 975		return 1;
 976	}
 977	return 0;
 978}
 979
 980int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
 981		unsigned long delta_ns, const enum hrtimer_mode mode,
 982		int wakeup)
 983{
 984	struct hrtimer_clock_base *base, *new_base;
 985	unsigned long flags;
 986	int ret, leftmost;
 987
 988	base = lock_hrtimer_base(timer, &flags);
 989
 990	/* Remove an active timer from the queue: */
 991	ret = remove_hrtimer(timer, base);
 992
 993	if (mode & HRTIMER_MODE_REL) {
 994		tim = ktime_add_safe(tim, base->get_time());
 995		/*
 996		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
 997		 * to signal that they simply return xtime in
 998		 * do_gettimeoffset(). In this case we want to round up by
 999		 * resolution when starting a relative timer, to avoid short
1000		 * timeouts. This will go away with the GTOD framework.
1001		 */
1002#ifdef CONFIG_TIME_LOW_RES
1003		tim = ktime_add_safe(tim, base->resolution);
1004#endif
1005	}
1006
1007	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1008
1009	/* Switch the timer base, if necessary: */
1010	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1011
1012	timer_stats_hrtimer_set_start_info(timer);
1013
1014	leftmost = enqueue_hrtimer(timer, new_base);
1015
1016	/*
1017	 * Only allow reprogramming if the new base is on this CPU.
1018	 * (it might still be on another CPU if the timer was pending)
1019	 *
1020	 * XXX send_remote_softirq() ?
1021	 */
1022	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases)
1023		&& hrtimer_enqueue_reprogram(timer, new_base)) {
1024		if (wakeup) {
1025			/*
1026			 * We need to drop cpu_base->lock to avoid a
1027			 * lock ordering issue vs. rq->lock.
1028			 */
1029			raw_spin_unlock(&new_base->cpu_base->lock);
1030			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1031			local_irq_restore(flags);
1032			return ret;
1033		} else {
1034			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1035		}
1036	}
1037
1038	unlock_hrtimer_base(timer, &flags);
1039
1040	return ret;
1041}
1042
1043/**
1044 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1045 * @timer:	the timer to be added
1046 * @tim:	expiry time
1047 * @delta_ns:	"slack" range for the timer
1048 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
1049 *		relative (HRTIMER_MODE_REL)
1050 *
1051 * Returns:
1052 *  0 on success
1053 *  1 when the timer was active
1054 */
1055int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1056		unsigned long delta_ns, const enum hrtimer_mode mode)
1057{
1058	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1059}
1060EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1061
1062/**
1063 * hrtimer_start - (re)start an hrtimer on the current CPU
1064 * @timer:	the timer to be added
1065 * @tim:	expiry time
1066 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
1067 *		relative (HRTIMER_MODE_REL)
1068 *
1069 * Returns:
1070 *  0 on success
1071 *  1 when the timer was active
1072 */
1073int
1074hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1075{
1076	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1077}
1078EXPORT_SYMBOL_GPL(hrtimer_start);
1079
1080
1081/**
1082 * hrtimer_try_to_cancel - try to deactivate a timer
1083 * @timer:	hrtimer to stop
1084 *
1085 * Returns:
1086 *  0 when the timer was not active
1087 *  1 when the timer was active
1088 * -1 when the timer is currently excuting the callback function and
1089 *    cannot be stopped
1090 */
1091int hrtimer_try_to_cancel(struct hrtimer *timer)
1092{
1093	struct hrtimer_clock_base *base;
1094	unsigned long flags;
1095	int ret = -1;
1096
1097	base = lock_hrtimer_base(timer, &flags);
1098
1099	if (!hrtimer_callback_running(timer))
1100		ret = remove_hrtimer(timer, base);
1101
1102	unlock_hrtimer_base(timer, &flags);
1103
1104	return ret;
1105
1106}
1107EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1108
1109/**
1110 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1111 * @timer:	the timer to be cancelled
1112 *
1113 * Returns:
1114 *  0 when the timer was not active
1115 *  1 when the timer was active
1116 */
1117int hrtimer_cancel(struct hrtimer *timer)
1118{
1119	for (;;) {
1120		int ret = hrtimer_try_to_cancel(timer);
1121
1122		if (ret >= 0)
1123			return ret;
1124		cpu_relax();
1125	}
1126}
1127EXPORT_SYMBOL_GPL(hrtimer_cancel);
1128
1129/**
1130 * hrtimer_get_remaining - get remaining time for the timer
1131 * @timer:	the timer to read
1132 */
1133ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1134{
1135	unsigned long flags;
1136	ktime_t rem;
1137
1138	lock_hrtimer_base(timer, &flags);
1139	rem = hrtimer_expires_remaining(timer);
1140	unlock_hrtimer_base(timer, &flags);
1141
1142	return rem;
1143}
1144EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1145
1146#ifdef CONFIG_NO_HZ_COMMON
1147/**
1148 * hrtimer_get_next_event - get the time until next expiry event
1149 *
1150 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1151 * is pending.
1152 */
1153ktime_t hrtimer_get_next_event(void)
1154{
1155	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1156	struct hrtimer_clock_base *base = cpu_base->clock_base;
1157	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1158	unsigned long flags;
1159	int i;
1160
1161	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1162
1163	if (!hrtimer_hres_active()) {
1164		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1165			struct hrtimer *timer;
1166			struct timerqueue_node *next;
1167
1168			next = timerqueue_getnext(&base->active);
1169			if (!next)
1170				continue;
1171
1172			timer = container_of(next, struct hrtimer, node);
1173			delta.tv64 = hrtimer_get_expires_tv64(timer);
1174			delta = ktime_sub(delta, base->get_time());
1175			if (delta.tv64 < mindelta.tv64)
1176				mindelta.tv64 = delta.tv64;
1177		}
1178	}
1179
1180	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1181
1182	if (mindelta.tv64 < 0)
1183		mindelta.tv64 = 0;
1184	return mindelta;
1185}
1186#endif
1187
1188static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1189			   enum hrtimer_mode mode)
1190{
1191	struct hrtimer_cpu_base *cpu_base;
1192	int base;
1193
1194	memset(timer, 0, sizeof(struct hrtimer));
1195
1196	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1197
1198	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1199		clock_id = CLOCK_MONOTONIC;
1200
1201	base = hrtimer_clockid_to_base(clock_id);
1202	timer->base = &cpu_base->clock_base[base];
1203	timerqueue_init(&timer->node);
1204
1205#ifdef CONFIG_TIMER_STATS
1206	timer->start_site = NULL;
1207	timer->start_pid = -1;
1208	memset(timer->start_comm, 0, TASK_COMM_LEN);
1209#endif
1210}
1211
1212/**
1213 * hrtimer_init - initialize a timer to the given clock
1214 * @timer:	the timer to be initialized
1215 * @clock_id:	the clock to be used
1216 * @mode:	timer mode abs/rel
1217 */
1218void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1219		  enum hrtimer_mode mode)
1220{
1221	debug_init(timer, clock_id, mode);
1222	__hrtimer_init(timer, clock_id, mode);
1223}
1224EXPORT_SYMBOL_GPL(hrtimer_init);
1225
1226/**
1227 * hrtimer_get_res - get the timer resolution for a clock
1228 * @which_clock: which clock to query
1229 * @tp:		 pointer to timespec variable to store the resolution
1230 *
1231 * Store the resolution of the clock selected by @which_clock in the
1232 * variable pointed to by @tp.
1233 */
1234int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1235{
1236	struct hrtimer_cpu_base *cpu_base;
1237	int base = hrtimer_clockid_to_base(which_clock);
1238
1239	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1240	*tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1241
1242	return 0;
1243}
1244EXPORT_SYMBOL_GPL(hrtimer_get_res);
1245
1246static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1247{
1248	struct hrtimer_clock_base *base = timer->base;
1249	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1250	enum hrtimer_restart (*fn)(struct hrtimer *);
1251	int restart;
1252
1253	WARN_ON(!irqs_disabled());
1254
1255	debug_deactivate(timer);
1256	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1257	timer_stats_account_hrtimer(timer);
1258	fn = timer->function;
1259
1260	/*
1261	 * Because we run timers from hardirq context, there is no chance
1262	 * they get migrated to another cpu, therefore its safe to unlock
1263	 * the timer base.
1264	 */
1265	raw_spin_unlock(&cpu_base->lock);
1266	trace_hrtimer_expire_entry(timer, now);
1267	restart = fn(timer);
1268	trace_hrtimer_expire_exit(timer);
1269	raw_spin_lock(&cpu_base->lock);
1270
1271	/*
1272	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1273	 * we do not reprogramm the event hardware. Happens either in
1274	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1275	 */
1276	if (restart != HRTIMER_NORESTART) {
1277		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1278		enqueue_hrtimer(timer, base);
1279	}
1280
1281	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1282
1283	timer->state &= ~HRTIMER_STATE_CALLBACK;
1284}
1285
1286#ifdef CONFIG_HIGH_RES_TIMERS
1287
1288/*
1289 * High resolution timer interrupt
1290 * Called with interrupts disabled
1291 */
1292void hrtimer_interrupt(struct clock_event_device *dev)
1293{
1294	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1295	ktime_t expires_next, now, entry_time, delta;
1296	int i, retries = 0;
1297
1298	BUG_ON(!cpu_base->hres_active);
1299	cpu_base->nr_events++;
1300	dev->next_event.tv64 = KTIME_MAX;
1301
1302	raw_spin_lock(&cpu_base->lock);
1303	entry_time = now = hrtimer_update_base(cpu_base);
1304retry:
1305	expires_next.tv64 = KTIME_MAX;
1306	/*
1307	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1308	 * held to prevent that a timer is enqueued in our queue via
1309	 * the migration code. This does not affect enqueueing of
1310	 * timers which run their callback and need to be requeued on
1311	 * this CPU.
1312	 */
1313	cpu_base->expires_next.tv64 = KTIME_MAX;
1314
1315	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1316		struct hrtimer_clock_base *base;
1317		struct timerqueue_node *node;
1318		ktime_t basenow;
1319
1320		if (!(cpu_base->active_bases & (1 << i)))
1321			continue;
1322
1323		base = cpu_base->clock_base + i;
1324		basenow = ktime_add(now, base->offset);
1325
1326		while ((node = timerqueue_getnext(&base->active))) {
1327			struct hrtimer *timer;
1328
1329			timer = container_of(node, struct hrtimer, node);
1330
1331			/*
1332			 * The immediate goal for using the softexpires is
1333			 * minimizing wakeups, not running timers at the
1334			 * earliest interrupt after their soft expiration.
1335			 * This allows us to avoid using a Priority Search
1336			 * Tree, which can answer a stabbing querry for
1337			 * overlapping intervals and instead use the simple
1338			 * BST we already have.
1339			 * We don't add extra wakeups by delaying timers that
1340			 * are right-of a not yet expired timer, because that
1341			 * timer will have to trigger a wakeup anyway.
1342			 */
1343
1344			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1345				ktime_t expires;
1346
1347				expires = ktime_sub(hrtimer_get_expires(timer),
1348						    base->offset);
1349				if (expires.tv64 < 0)
1350					expires.tv64 = KTIME_MAX;
1351				if (expires.tv64 < expires_next.tv64)
1352					expires_next = expires;
1353				break;
1354			}
1355
1356			__run_hrtimer(timer, &basenow);
1357		}
1358	}
1359
1360	/*
1361	 * Store the new expiry value so the migration code can verify
1362	 * against it.
1363	 */
1364	cpu_base->expires_next = expires_next;
1365	raw_spin_unlock(&cpu_base->lock);
1366
1367	/* Reprogramming necessary ? */
1368	if (expires_next.tv64 == KTIME_MAX ||
1369	    !tick_program_event(expires_next, 0)) {
1370		cpu_base->hang_detected = 0;
1371		return;
1372	}
1373
1374	/*
1375	 * The next timer was already expired due to:
1376	 * - tracing
1377	 * - long lasting callbacks
1378	 * - being scheduled away when running in a VM
1379	 *
1380	 * We need to prevent that we loop forever in the hrtimer
1381	 * interrupt routine. We give it 3 attempts to avoid
1382	 * overreacting on some spurious event.
1383	 *
1384	 * Acquire base lock for updating the offsets and retrieving
1385	 * the current time.
1386	 */
1387	raw_spin_lock(&cpu_base->lock);
1388	now = hrtimer_update_base(cpu_base);
1389	cpu_base->nr_retries++;
1390	if (++retries < 3)
1391		goto retry;
1392	/*
1393	 * Give the system a chance to do something else than looping
1394	 * here. We stored the entry time, so we know exactly how long
1395	 * we spent here. We schedule the next event this amount of
1396	 * time away.
1397	 */
1398	cpu_base->nr_hangs++;
1399	cpu_base->hang_detected = 1;
1400	raw_spin_unlock(&cpu_base->lock);
1401	delta = ktime_sub(now, entry_time);
1402	if (delta.tv64 > cpu_base->max_hang_time.tv64)
1403		cpu_base->max_hang_time = delta;
1404	/*
1405	 * Limit it to a sensible value as we enforce a longer
1406	 * delay. Give the CPU at least 100ms to catch up.
1407	 */
1408	if (delta.tv64 > 100 * NSEC_PER_MSEC)
1409		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1410	else
1411		expires_next = ktime_add(now, delta);
1412	tick_program_event(expires_next, 1);
1413	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1414		    ktime_to_ns(delta));
1415}
1416
1417/*
1418 * local version of hrtimer_peek_ahead_timers() called with interrupts
1419 * disabled.
1420 */
1421static void __hrtimer_peek_ahead_timers(void)
1422{
1423	struct tick_device *td;
1424
1425	if (!hrtimer_hres_active())
1426		return;
1427
1428	td = &__get_cpu_var(tick_cpu_device);
1429	if (td && td->evtdev)
1430		hrtimer_interrupt(td->evtdev);
1431}
1432
1433/**
1434 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1435 *
1436 * hrtimer_peek_ahead_timers will peek at the timer queue of
1437 * the current cpu and check if there are any timers for which
1438 * the soft expires time has passed. If any such timers exist,
1439 * they are run immediately and then removed from the timer queue.
1440 *
1441 */
1442void hrtimer_peek_ahead_timers(void)
1443{
1444	unsigned long flags;
1445
1446	local_irq_save(flags);
1447	__hrtimer_peek_ahead_timers();
1448	local_irq_restore(flags);
1449}
1450
1451static void run_hrtimer_softirq(struct softirq_action *h)
1452{
1453	hrtimer_peek_ahead_timers();
1454}
1455
1456#else /* CONFIG_HIGH_RES_TIMERS */
1457
1458static inline void __hrtimer_peek_ahead_timers(void) { }
1459
1460#endif	/* !CONFIG_HIGH_RES_TIMERS */
1461
1462/*
1463 * Called from timer softirq every jiffy, expire hrtimers:
1464 *
1465 * For HRT its the fall back code to run the softirq in the timer
1466 * softirq context in case the hrtimer initialization failed or has
1467 * not been done yet.
1468 */
1469void hrtimer_run_pending(void)
1470{
1471	if (hrtimer_hres_active())
1472		return;
1473
1474	/*
1475	 * This _is_ ugly: We have to check in the softirq context,
1476	 * whether we can switch to highres and / or nohz mode. The
1477	 * clocksource switch happens in the timer interrupt with
1478	 * xtime_lock held. Notification from there only sets the
1479	 * check bit in the tick_oneshot code, otherwise we might
1480	 * deadlock vs. xtime_lock.
1481	 */
1482	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1483		hrtimer_switch_to_hres();
1484}
1485
1486/*
1487 * Called from hardirq context every jiffy
1488 */
1489void hrtimer_run_queues(void)
1490{
1491	struct timerqueue_node *node;
1492	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1493	struct hrtimer_clock_base *base;
1494	int index, gettime = 1;
1495
1496	if (hrtimer_hres_active())
1497		return;
1498
1499	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1500		base = &cpu_base->clock_base[index];
1501		if (!timerqueue_getnext(&base->active))
1502			continue;
1503
1504		if (gettime) {
1505			hrtimer_get_softirq_time(cpu_base);
1506			gettime = 0;
1507		}
1508
1509		raw_spin_lock(&cpu_base->lock);
1510
1511		while ((node = timerqueue_getnext(&base->active))) {
1512			struct hrtimer *timer;
1513
1514			timer = container_of(node, struct hrtimer, node);
1515			if (base->softirq_time.tv64 <=
1516					hrtimer_get_expires_tv64(timer))
1517				break;
1518
1519			__run_hrtimer(timer, &base->softirq_time);
1520		}
1521		raw_spin_unlock(&cpu_base->lock);
1522	}
1523}
1524
1525/*
1526 * Sleep related functions:
1527 */
1528static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1529{
1530	struct hrtimer_sleeper *t =
1531		container_of(timer, struct hrtimer_sleeper, timer);
1532	struct task_struct *task = t->task;
1533
1534	t->task = NULL;
1535	if (task)
1536		wake_up_process(task);
1537
1538	return HRTIMER_NORESTART;
1539}
1540
1541void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1542{
1543	sl->timer.function = hrtimer_wakeup;
1544	sl->task = task;
1545}
1546EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1547
1548static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1549{
1550	hrtimer_init_sleeper(t, current);
1551
1552	do {
1553		set_current_state(TASK_INTERRUPTIBLE);
1554		hrtimer_start_expires(&t->timer, mode);
1555		if (!hrtimer_active(&t->timer))
1556			t->task = NULL;
1557
1558		if (likely(t->task))
1559			freezable_schedule();
1560
1561		hrtimer_cancel(&t->timer);
1562		mode = HRTIMER_MODE_ABS;
1563
1564	} while (t->task && !signal_pending(current));
1565
1566	__set_current_state(TASK_RUNNING);
1567
1568	return t->task == NULL;
1569}
1570
1571static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1572{
1573	struct timespec rmt;
1574	ktime_t rem;
1575
1576	rem = hrtimer_expires_remaining(timer);
1577	if (rem.tv64 <= 0)
1578		return 0;
1579	rmt = ktime_to_timespec(rem);
1580
1581	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1582		return -EFAULT;
1583
1584	return 1;
1585}
1586
1587long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1588{
1589	struct hrtimer_sleeper t;
1590	struct timespec __user  *rmtp;
1591	int ret = 0;
1592
1593	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1594				HRTIMER_MODE_ABS);
1595	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1596
1597	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1598		goto out;
1599
1600	rmtp = restart->nanosleep.rmtp;
1601	if (rmtp) {
1602		ret = update_rmtp(&t.timer, rmtp);
1603		if (ret <= 0)
1604			goto out;
1605	}
1606
1607	/* The other values in restart are already filled in */
1608	ret = -ERESTART_RESTARTBLOCK;
1609out:
1610	destroy_hrtimer_on_stack(&t.timer);
1611	return ret;
1612}
1613
1614long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1615		       const enum hrtimer_mode mode, const clockid_t clockid)
1616{
1617	struct restart_block *restart;
1618	struct hrtimer_sleeper t;
1619	int ret = 0;
1620	unsigned long slack;
1621
1622	slack = current->timer_slack_ns;
1623	if (dl_task(current) || rt_task(current))
1624		slack = 0;
1625
1626	hrtimer_init_on_stack(&t.timer, clockid, mode);
1627	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1628	if (do_nanosleep(&t, mode))
1629		goto out;
1630
1631	/* Absolute timers do not update the rmtp value and restart: */
1632	if (mode == HRTIMER_MODE_ABS) {
1633		ret = -ERESTARTNOHAND;
1634		goto out;
1635	}
1636
1637	if (rmtp) {
1638		ret = update_rmtp(&t.timer, rmtp);
1639		if (ret <= 0)
1640			goto out;
1641	}
1642
1643	restart = &current_thread_info()->restart_block;
1644	restart->fn = hrtimer_nanosleep_restart;
1645	restart->nanosleep.clockid = t.timer.base->clockid;
1646	restart->nanosleep.rmtp = rmtp;
1647	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1648
1649	ret = -ERESTART_RESTARTBLOCK;
1650out:
1651	destroy_hrtimer_on_stack(&t.timer);
1652	return ret;
1653}
1654
1655SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1656		struct timespec __user *, rmtp)
1657{
1658	struct timespec tu;
1659
1660	if (copy_from_user(&tu, rqtp, sizeof(tu)))
1661		return -EFAULT;
1662
1663	if (!timespec_valid(&tu))
1664		return -EINVAL;
1665
1666	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1667}
1668
1669/*
1670 * Functions related to boot-time initialization:
1671 */
1672static void init_hrtimers_cpu(int cpu)
1673{
1674	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1675	int i;
1676
1677	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1678		cpu_base->clock_base[i].cpu_base = cpu_base;
1679		timerqueue_init_head(&cpu_base->clock_base[i].active);
1680	}
1681
1682	hrtimer_init_hres(cpu_base);
1683}
1684
1685#ifdef CONFIG_HOTPLUG_CPU
1686
1687static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1688				struct hrtimer_clock_base *new_base)
1689{
1690	struct hrtimer *timer;
1691	struct timerqueue_node *node;
1692
1693	while ((node = timerqueue_getnext(&old_base->active))) {
1694		timer = container_of(node, struct hrtimer, node);
1695		BUG_ON(hrtimer_callback_running(timer));
1696		debug_deactivate(timer);
1697
1698		/*
1699		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1700		 * timer could be seen as !active and just vanish away
1701		 * under us on another CPU
1702		 */
1703		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1704		timer->base = new_base;
1705		/*
1706		 * Enqueue the timers on the new cpu. This does not
1707		 * reprogram the event device in case the timer
1708		 * expires before the earliest on this CPU, but we run
1709		 * hrtimer_interrupt after we migrated everything to
1710		 * sort out already expired timers and reprogram the
1711		 * event device.
1712		 */
1713		enqueue_hrtimer(timer, new_base);
1714
1715		/* Clear the migration state bit */
1716		timer->state &= ~HRTIMER_STATE_MIGRATE;
1717	}
1718}
1719
1720static void migrate_hrtimers(int scpu)
1721{
1722	struct hrtimer_cpu_base *old_base, *new_base;
1723	int i;
1724
1725	BUG_ON(cpu_online(scpu));
1726	tick_cancel_sched_timer(scpu);
1727
1728	local_irq_disable();
1729	old_base = &per_cpu(hrtimer_bases, scpu);
1730	new_base = &__get_cpu_var(hrtimer_bases);
1731	/*
1732	 * The caller is globally serialized and nobody else
1733	 * takes two locks at once, deadlock is not possible.
1734	 */
1735	raw_spin_lock(&new_base->lock);
1736	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1737
1738	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1739		migrate_hrtimer_list(&old_base->clock_base[i],
1740				     &new_base->clock_base[i]);
1741	}
1742
1743	raw_spin_unlock(&old_base->lock);
1744	raw_spin_unlock(&new_base->lock);
1745
1746	/* Check, if we got expired work to do */
1747	__hrtimer_peek_ahead_timers();
1748	local_irq_enable();
1749}
1750
1751#endif /* CONFIG_HOTPLUG_CPU */
1752
1753static int hrtimer_cpu_notify(struct notifier_block *self,
1754					unsigned long action, void *hcpu)
1755{
1756	int scpu = (long)hcpu;
1757
1758	switch (action) {
1759
1760	case CPU_UP_PREPARE:
1761	case CPU_UP_PREPARE_FROZEN:
1762		init_hrtimers_cpu(scpu);
1763		break;
1764
1765#ifdef CONFIG_HOTPLUG_CPU
1766	case CPU_DYING:
1767	case CPU_DYING_FROZEN:
1768		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1769		break;
1770	case CPU_DEAD:
1771	case CPU_DEAD_FROZEN:
1772	{
1773		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1774		migrate_hrtimers(scpu);
1775		break;
1776	}
1777#endif
1778
1779	default:
1780		break;
1781	}
1782
1783	return NOTIFY_OK;
1784}
1785
1786static struct notifier_block hrtimers_nb = {
1787	.notifier_call = hrtimer_cpu_notify,
1788};
1789
1790void __init hrtimers_init(void)
1791{
1792	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1793			  (void *)(long)smp_processor_id());
1794	register_cpu_notifier(&hrtimers_nb);
1795#ifdef CONFIG_HIGH_RES_TIMERS
1796	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1797#endif
1798}
1799
1800/**
1801 * schedule_hrtimeout_range_clock - sleep until timeout
1802 * @expires:	timeout value (ktime_t)
1803 * @delta:	slack in expires timeout (ktime_t)
1804 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1805 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1806 */
1807int __sched
1808schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1809			       const enum hrtimer_mode mode, int clock)
1810{
1811	struct hrtimer_sleeper t;
1812
1813	/*
1814	 * Optimize when a zero timeout value is given. It does not
1815	 * matter whether this is an absolute or a relative time.
1816	 */
1817	if (expires && !expires->tv64) {
1818		__set_current_state(TASK_RUNNING);
1819		return 0;
1820	}
1821
1822	/*
1823	 * A NULL parameter means "infinite"
1824	 */
1825	if (!expires) {
1826		schedule();
1827		__set_current_state(TASK_RUNNING);
1828		return -EINTR;
1829	}
1830
1831	hrtimer_init_on_stack(&t.timer, clock, mode);
1832	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1833
1834	hrtimer_init_sleeper(&t, current);
1835
1836	hrtimer_start_expires(&t.timer, mode);
1837	if (!hrtimer_active(&t.timer))
1838		t.task = NULL;
1839
1840	if (likely(t.task))
1841		schedule();
1842
1843	hrtimer_cancel(&t.timer);
1844	destroy_hrtimer_on_stack(&t.timer);
1845
1846	__set_current_state(TASK_RUNNING);
1847
1848	return !t.task ? 0 : -EINTR;
1849}
1850
1851/**
1852 * schedule_hrtimeout_range - sleep until timeout
1853 * @expires:	timeout value (ktime_t)
1854 * @delta:	slack in expires timeout (ktime_t)
1855 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1856 *
1857 * Make the current task sleep until the given expiry time has
1858 * elapsed. The routine will return immediately unless
1859 * the current task state has been set (see set_current_state()).
1860 *
1861 * The @delta argument gives the kernel the freedom to schedule the
1862 * actual wakeup to a time that is both power and performance friendly.
1863 * The kernel give the normal best effort behavior for "@expires+@delta",
1864 * but may decide to fire the timer earlier, but no earlier than @expires.
1865 *
1866 * You can set the task state as follows -
1867 *
1868 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1869 * pass before the routine returns.
1870 *
1871 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1872 * delivered to the current task.
1873 *
1874 * The current task state is guaranteed to be TASK_RUNNING when this
1875 * routine returns.
1876 *
1877 * Returns 0 when the timer has expired otherwise -EINTR
1878 */
1879int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1880				     const enum hrtimer_mode mode)
1881{
1882	return schedule_hrtimeout_range_clock(expires, delta, mode,
1883					      CLOCK_MONOTONIC);
1884}
1885EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1886
1887/**
1888 * schedule_hrtimeout - sleep until timeout
1889 * @expires:	timeout value (ktime_t)
1890 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1891 *
1892 * Make the current task sleep until the given expiry time has
1893 * elapsed. The routine will return immediately unless
1894 * the current task state has been set (see set_current_state()).
1895 *
1896 * You can set the task state as follows -
1897 *
1898 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1899 * pass before the routine returns.
1900 *
1901 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1902 * delivered to the current task.
1903 *
1904 * The current task state is guaranteed to be TASK_RUNNING when this
1905 * routine returns.
1906 *
1907 * Returns 0 when the timer has expired otherwise -EINTR
1908 */
1909int __sched schedule_hrtimeout(ktime_t *expires,
1910			       const enum hrtimer_mode mode)
1911{
1912	return schedule_hrtimeout_range(expires, 0, mode);
1913}
1914EXPORT_SYMBOL_GPL(schedule_hrtimeout);