Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.2.
   1/*
   2 *  linux/kernel/hrtimer.c
   3 *
   4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   7 *
   8 *  High-resolution kernel timers
   9 *
  10 *  In contrast to the low-resolution timeout API implemented in
  11 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
  12 *  depending on system configuration and capabilities.
  13 *
  14 *  These timers are currently used for:
  15 *   - itimers
  16 *   - POSIX timers
  17 *   - nanosleep
  18 *   - precise in-kernel timing
  19 *
  20 *  Started by: Thomas Gleixner and Ingo Molnar
  21 *
  22 *  Credits:
  23 *	based on kernel/timer.c
  24 *
  25 *	Help, testing, suggestions, bugfixes, improvements were
  26 *	provided by:
  27 *
  28 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
  29 *	et. al.
  30 *
  31 *  For licencing details see kernel-base/COPYING
  32 */
  33
  34#include <linux/cpu.h>
  35#include <linux/module.h>
  36#include <linux/percpu.h>
  37#include <linux/hrtimer.h>
  38#include <linux/notifier.h>
  39#include <linux/syscalls.h>
  40#include <linux/kallsyms.h>
  41#include <linux/interrupt.h>
  42#include <linux/tick.h>
  43#include <linux/seq_file.h>
  44#include <linux/err.h>
  45#include <linux/debugobjects.h>
  46#include <linux/sched.h>
  47#include <linux/timer.h>
  48
  49#include <asm/uaccess.h>
  50
  51#include <trace/events/timer.h>
  52
  53/*
  54 * The timer bases:
  55 *
  56 * There are more clockids then hrtimer bases. Thus, we index
  57 * into the timer bases by the hrtimer_base_type enum. When trying
  58 * to reach a base using a clockid, hrtimer_clockid_to_base()
  59 * is used to convert from clockid to the proper hrtimer_base_type.
  60 */
  61DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
  62{
  63
  64	.clock_base =
  65	{
  66		{
  67			.index = HRTIMER_BASE_MONOTONIC,
  68			.clockid = CLOCK_MONOTONIC,
  69			.get_time = &ktime_get,
  70			.resolution = KTIME_LOW_RES,
  71		},
  72		{
  73			.index = HRTIMER_BASE_REALTIME,
  74			.clockid = CLOCK_REALTIME,
  75			.get_time = &ktime_get_real,
  76			.resolution = KTIME_LOW_RES,
  77		},
  78		{
  79			.index = HRTIMER_BASE_BOOTTIME,
  80			.clockid = CLOCK_BOOTTIME,
  81			.get_time = &ktime_get_boottime,
  82			.resolution = KTIME_LOW_RES,
  83		},
  84	}
  85};
  86
  87static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
  88	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
  89	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
  90	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
  91};
  92
  93static inline int hrtimer_clockid_to_base(clockid_t clock_id)
  94{
  95	return hrtimer_clock_to_base_table[clock_id];
  96}
  97
  98
  99/*
 100 * Get the coarse grained time at the softirq based on xtime and
 101 * wall_to_monotonic.
 102 */
 103static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
 104{
 105	ktime_t xtim, mono, boot;
 106	struct timespec xts, tom, slp;
 107
 108	get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
 109
 110	xtim = timespec_to_ktime(xts);
 111	mono = ktime_add(xtim, timespec_to_ktime(tom));
 112	boot = ktime_add(mono, timespec_to_ktime(slp));
 113	base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
 114	base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
 115	base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
 116}
 117
 118/*
 119 * Functions and macros which are different for UP/SMP systems are kept in a
 120 * single place
 121 */
 122#ifdef CONFIG_SMP
 123
 124/*
 125 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 126 * means that all timers which are tied to this base via timer->base are
 127 * locked, and the base itself is locked too.
 128 *
 129 * So __run_timers/migrate_timers can safely modify all timers which could
 130 * be found on the lists/queues.
 131 *
 132 * When the timer's base is locked, and the timer removed from list, it is
 133 * possible to set timer->base = NULL and drop the lock: the timer remains
 134 * locked.
 135 */
 136static
 137struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
 138					     unsigned long *flags)
 139{
 140	struct hrtimer_clock_base *base;
 141
 142	for (;;) {
 143		base = timer->base;
 144		if (likely(base != NULL)) {
 145			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 146			if (likely(base == timer->base))
 147				return base;
 148			/* The timer has migrated to another CPU: */
 149			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
 150		}
 151		cpu_relax();
 152	}
 153}
 154
 155
 156/*
 157 * Get the preferred target CPU for NOHZ
 158 */
 159static int hrtimer_get_target(int this_cpu, int pinned)
 160{
 161#ifdef CONFIG_NO_HZ
 162	if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
 163		return get_nohz_timer_target();
 164#endif
 165	return this_cpu;
 166}
 167
 168/*
 169 * With HIGHRES=y we do not migrate the timer when it is expiring
 170 * before the next event on the target cpu because we cannot reprogram
 171 * the target cpu hardware and we would cause it to fire late.
 172 *
 173 * Called with cpu_base->lock of target cpu held.
 174 */
 175static int
 176hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
 177{
 178#ifdef CONFIG_HIGH_RES_TIMERS
 179	ktime_t expires;
 180
 181	if (!new_base->cpu_base->hres_active)
 182		return 0;
 183
 184	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
 185	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
 186#else
 187	return 0;
 188#endif
 189}
 190
 191/*
 192 * Switch the timer base to the current CPU when possible.
 193 */
 194static inline struct hrtimer_clock_base *
 195switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
 196		    int pinned)
 197{
 198	struct hrtimer_clock_base *new_base;
 199	struct hrtimer_cpu_base *new_cpu_base;
 200	int this_cpu = smp_processor_id();
 201	int cpu = hrtimer_get_target(this_cpu, pinned);
 202	int basenum = base->index;
 203
 204again:
 205	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
 206	new_base = &new_cpu_base->clock_base[basenum];
 207
 208	if (base != new_base) {
 209		/*
 210		 * We are trying to move timer to new_base.
 211		 * However we can't change timer's base while it is running,
 212		 * so we keep it on the same CPU. No hassle vs. reprogramming
 213		 * the event source in the high resolution case. The softirq
 214		 * code will take care of this when the timer function has
 215		 * completed. There is no conflict as we hold the lock until
 216		 * the timer is enqueued.
 217		 */
 218		if (unlikely(hrtimer_callback_running(timer)))
 219			return base;
 220
 221		/* See the comment in lock_timer_base() */
 222		timer->base = NULL;
 223		raw_spin_unlock(&base->cpu_base->lock);
 224		raw_spin_lock(&new_base->cpu_base->lock);
 225
 226		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
 227			cpu = this_cpu;
 228			raw_spin_unlock(&new_base->cpu_base->lock);
 229			raw_spin_lock(&base->cpu_base->lock);
 230			timer->base = base;
 231			goto again;
 232		}
 233		timer->base = new_base;
 234	}
 235	return new_base;
 236}
 237
 238#else /* CONFIG_SMP */
 239
 240static inline struct hrtimer_clock_base *
 241lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 242{
 243	struct hrtimer_clock_base *base = timer->base;
 244
 245	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 246
 247	return base;
 248}
 249
 250# define switch_hrtimer_base(t, b, p)	(b)
 251
 252#endif	/* !CONFIG_SMP */
 253
 254/*
 255 * Functions for the union type storage format of ktime_t which are
 256 * too large for inlining:
 257 */
 258#if BITS_PER_LONG < 64
 259# ifndef CONFIG_KTIME_SCALAR
 260/**
 261 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 262 * @kt:		addend
 263 * @nsec:	the scalar nsec value to add
 264 *
 265 * Returns the sum of kt and nsec in ktime_t format
 266 */
 267ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
 268{
 269	ktime_t tmp;
 270
 271	if (likely(nsec < NSEC_PER_SEC)) {
 272		tmp.tv64 = nsec;
 273	} else {
 274		unsigned long rem = do_div(nsec, NSEC_PER_SEC);
 275
 276		tmp = ktime_set((long)nsec, rem);
 277	}
 278
 279	return ktime_add(kt, tmp);
 280}
 281
 282EXPORT_SYMBOL_GPL(ktime_add_ns);
 283
 284/**
 285 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 286 * @kt:		minuend
 287 * @nsec:	the scalar nsec value to subtract
 288 *
 289 * Returns the subtraction of @nsec from @kt in ktime_t format
 290 */
 291ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
 292{
 293	ktime_t tmp;
 294
 295	if (likely(nsec < NSEC_PER_SEC)) {
 296		tmp.tv64 = nsec;
 297	} else {
 298		unsigned long rem = do_div(nsec, NSEC_PER_SEC);
 299
 300		tmp = ktime_set((long)nsec, rem);
 301	}
 302
 303	return ktime_sub(kt, tmp);
 304}
 305
 306EXPORT_SYMBOL_GPL(ktime_sub_ns);
 307# endif /* !CONFIG_KTIME_SCALAR */
 308
 309/*
 310 * Divide a ktime value by a nanosecond value
 311 */
 312u64 ktime_divns(const ktime_t kt, s64 div)
 313{
 314	u64 dclc;
 315	int sft = 0;
 316
 317	dclc = ktime_to_ns(kt);
 318	/* Make sure the divisor is less than 2^32: */
 319	while (div >> 32) {
 320		sft++;
 321		div >>= 1;
 322	}
 323	dclc >>= sft;
 324	do_div(dclc, (unsigned long) div);
 325
 326	return dclc;
 327}
 328#endif /* BITS_PER_LONG >= 64 */
 329
 330/*
 331 * Add two ktime values and do a safety check for overflow:
 332 */
 333ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
 334{
 335	ktime_t res = ktime_add(lhs, rhs);
 336
 337	/*
 338	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
 339	 * return to user space in a timespec:
 340	 */
 341	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
 342		res = ktime_set(KTIME_SEC_MAX, 0);
 343
 344	return res;
 345}
 346
 347EXPORT_SYMBOL_GPL(ktime_add_safe);
 348
 349#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 350
 351static struct debug_obj_descr hrtimer_debug_descr;
 352
 353static void *hrtimer_debug_hint(void *addr)
 354{
 355	return ((struct hrtimer *) addr)->function;
 356}
 357
 358/*
 359 * fixup_init is called when:
 360 * - an active object is initialized
 361 */
 362static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
 363{
 364	struct hrtimer *timer = addr;
 365
 366	switch (state) {
 367	case ODEBUG_STATE_ACTIVE:
 368		hrtimer_cancel(timer);
 369		debug_object_init(timer, &hrtimer_debug_descr);
 370		return 1;
 371	default:
 372		return 0;
 373	}
 374}
 375
 376/*
 377 * fixup_activate is called when:
 378 * - an active object is activated
 379 * - an unknown object is activated (might be a statically initialized object)
 380 */
 381static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
 382{
 383	switch (state) {
 384
 385	case ODEBUG_STATE_NOTAVAILABLE:
 386		WARN_ON_ONCE(1);
 387		return 0;
 388
 389	case ODEBUG_STATE_ACTIVE:
 390		WARN_ON(1);
 391
 392	default:
 393		return 0;
 394	}
 395}
 396
 397/*
 398 * fixup_free is called when:
 399 * - an active object is freed
 400 */
 401static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
 402{
 403	struct hrtimer *timer = addr;
 404
 405	switch (state) {
 406	case ODEBUG_STATE_ACTIVE:
 407		hrtimer_cancel(timer);
 408		debug_object_free(timer, &hrtimer_debug_descr);
 409		return 1;
 410	default:
 411		return 0;
 412	}
 413}
 414
 415static struct debug_obj_descr hrtimer_debug_descr = {
 416	.name		= "hrtimer",
 417	.debug_hint	= hrtimer_debug_hint,
 418	.fixup_init	= hrtimer_fixup_init,
 419	.fixup_activate	= hrtimer_fixup_activate,
 420	.fixup_free	= hrtimer_fixup_free,
 421};
 422
 423static inline void debug_hrtimer_init(struct hrtimer *timer)
 424{
 425	debug_object_init(timer, &hrtimer_debug_descr);
 426}
 427
 428static inline void debug_hrtimer_activate(struct hrtimer *timer)
 429{
 430	debug_object_activate(timer, &hrtimer_debug_descr);
 431}
 432
 433static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
 434{
 435	debug_object_deactivate(timer, &hrtimer_debug_descr);
 436}
 437
 438static inline void debug_hrtimer_free(struct hrtimer *timer)
 439{
 440	debug_object_free(timer, &hrtimer_debug_descr);
 441}
 442
 443static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
 444			   enum hrtimer_mode mode);
 445
 446void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
 447			   enum hrtimer_mode mode)
 448{
 449	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
 450	__hrtimer_init(timer, clock_id, mode);
 451}
 452EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
 453
 454void destroy_hrtimer_on_stack(struct hrtimer *timer)
 455{
 456	debug_object_free(timer, &hrtimer_debug_descr);
 457}
 458
 459#else
 460static inline void debug_hrtimer_init(struct hrtimer *timer) { }
 461static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
 462static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
 463#endif
 464
 465static inline void
 466debug_init(struct hrtimer *timer, clockid_t clockid,
 467	   enum hrtimer_mode mode)
 468{
 469	debug_hrtimer_init(timer);
 470	trace_hrtimer_init(timer, clockid, mode);
 471}
 472
 473static inline void debug_activate(struct hrtimer *timer)
 474{
 475	debug_hrtimer_activate(timer);
 476	trace_hrtimer_start(timer);
 477}
 478
 479static inline void debug_deactivate(struct hrtimer *timer)
 480{
 481	debug_hrtimer_deactivate(timer);
 482	trace_hrtimer_cancel(timer);
 483}
 484
 485/* High resolution timer related functions */
 486#ifdef CONFIG_HIGH_RES_TIMERS
 487
 488/*
 489 * High resolution timer enabled ?
 490 */
 491static int hrtimer_hres_enabled __read_mostly  = 1;
 492
 493/*
 494 * Enable / Disable high resolution mode
 495 */
 496static int __init setup_hrtimer_hres(char *str)
 497{
 498	if (!strcmp(str, "off"))
 499		hrtimer_hres_enabled = 0;
 500	else if (!strcmp(str, "on"))
 501		hrtimer_hres_enabled = 1;
 502	else
 503		return 0;
 504	return 1;
 505}
 506
 507__setup("highres=", setup_hrtimer_hres);
 508
 509/*
 510 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 511 */
 512static inline int hrtimer_is_hres_enabled(void)
 513{
 514	return hrtimer_hres_enabled;
 515}
 516
 517/*
 518 * Is the high resolution mode active ?
 519 */
 520static inline int hrtimer_hres_active(void)
 521{
 522	return __this_cpu_read(hrtimer_bases.hres_active);
 523}
 524
 525/*
 526 * Reprogram the event source with checking both queues for the
 527 * next event
 528 * Called with interrupts disabled and base->lock held
 529 */
 530static void
 531hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
 532{
 533	int i;
 534	struct hrtimer_clock_base *base = cpu_base->clock_base;
 535	ktime_t expires, expires_next;
 536
 537	expires_next.tv64 = KTIME_MAX;
 538
 539	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
 540		struct hrtimer *timer;
 541		struct timerqueue_node *next;
 542
 543		next = timerqueue_getnext(&base->active);
 544		if (!next)
 545			continue;
 546		timer = container_of(next, struct hrtimer, node);
 547
 548		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 549		/*
 550		 * clock_was_set() has changed base->offset so the
 551		 * result might be negative. Fix it up to prevent a
 552		 * false positive in clockevents_program_event()
 553		 */
 554		if (expires.tv64 < 0)
 555			expires.tv64 = 0;
 556		if (expires.tv64 < expires_next.tv64)
 557			expires_next = expires;
 558	}
 559
 560	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
 561		return;
 562
 563	cpu_base->expires_next.tv64 = expires_next.tv64;
 564
 565	if (cpu_base->expires_next.tv64 != KTIME_MAX)
 566		tick_program_event(cpu_base->expires_next, 1);
 567}
 568
 569/*
 570 * Shared reprogramming for clock_realtime and clock_monotonic
 571 *
 572 * When a timer is enqueued and expires earlier than the already enqueued
 573 * timers, we have to check, whether it expires earlier than the timer for
 574 * which the clock event device was armed.
 575 *
 576 * Called with interrupts disabled and base->cpu_base.lock held
 577 */
 578static int hrtimer_reprogram(struct hrtimer *timer,
 579			     struct hrtimer_clock_base *base)
 580{
 581	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
 582	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 583	int res;
 584
 585	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
 586
 587	/*
 588	 * When the callback is running, we do not reprogram the clock event
 589	 * device. The timer callback is either running on a different CPU or
 590	 * the callback is executed in the hrtimer_interrupt context. The
 591	 * reprogramming is handled either by the softirq, which called the
 592	 * callback or at the end of the hrtimer_interrupt.
 593	 */
 594	if (hrtimer_callback_running(timer))
 595		return 0;
 596
 597	/*
 598	 * CLOCK_REALTIME timer might be requested with an absolute
 599	 * expiry time which is less than base->offset. Nothing wrong
 600	 * about that, just avoid to call into the tick code, which
 601	 * has now objections against negative expiry values.
 602	 */
 603	if (expires.tv64 < 0)
 604		return -ETIME;
 605
 606	if (expires.tv64 >= cpu_base->expires_next.tv64)
 607		return 0;
 608
 609	/*
 610	 * If a hang was detected in the last timer interrupt then we
 611	 * do not schedule a timer which is earlier than the expiry
 612	 * which we enforced in the hang detection. We want the system
 613	 * to make progress.
 614	 */
 615	if (cpu_base->hang_detected)
 616		return 0;
 617
 618	/*
 619	 * Clockevents returns -ETIME, when the event was in the past.
 620	 */
 621	res = tick_program_event(expires, 0);
 622	if (!IS_ERR_VALUE(res))
 623		cpu_base->expires_next = expires;
 624	return res;
 625}
 626
 627/*
 628 * Initialize the high resolution related parts of cpu_base
 629 */
 630static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
 631{
 632	base->expires_next.tv64 = KTIME_MAX;
 633	base->hres_active = 0;
 634}
 635
 636/*
 637 * When High resolution timers are active, try to reprogram. Note, that in case
 638 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 639 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 640 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 641 */
 642static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
 643					    struct hrtimer_clock_base *base,
 644					    int wakeup)
 645{
 646	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
 647		if (wakeup) {
 648			raw_spin_unlock(&base->cpu_base->lock);
 649			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
 650			raw_spin_lock(&base->cpu_base->lock);
 651		} else
 652			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);
 653
 654		return 1;
 655	}
 656
 657	return 0;
 658}
 659
 660/*
 661 * Retrigger next event is called after clock was set
 662 *
 663 * Called with interrupts disabled via on_each_cpu()
 664 */
 665static void retrigger_next_event(void *arg)
 666{
 667	struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
 668	struct timespec realtime_offset, xtim, wtm, sleep;
 669
 670	if (!hrtimer_hres_active())
 671		return;
 672
 673	/* Optimized out for !HIGH_RES */
 674	get_xtime_and_monotonic_and_sleep_offset(&xtim, &wtm, &sleep);
 675	set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec);
 676
 677	/* Adjust CLOCK_REALTIME offset */
 678	raw_spin_lock(&base->lock);
 679	base->clock_base[HRTIMER_BASE_REALTIME].offset =
 680		timespec_to_ktime(realtime_offset);
 681	base->clock_base[HRTIMER_BASE_BOOTTIME].offset =
 682		timespec_to_ktime(sleep);
 683
 684	hrtimer_force_reprogram(base, 0);
 685	raw_spin_unlock(&base->lock);
 686}
 687
 688/*
 689 * Switch to high resolution mode
 690 */
 691static int hrtimer_switch_to_hres(void)
 692{
 693	int i, cpu = smp_processor_id();
 694	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
 695	unsigned long flags;
 696
 697	if (base->hres_active)
 698		return 1;
 699
 700	local_irq_save(flags);
 701
 702	if (tick_init_highres()) {
 703		local_irq_restore(flags);
 704		printk(KERN_WARNING "Could not switch to high resolution "
 705				    "mode on CPU %d\n", cpu);
 706		return 0;
 707	}
 708	base->hres_active = 1;
 709	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
 710		base->clock_base[i].resolution = KTIME_HIGH_RES;
 711
 712	tick_setup_sched_timer();
 713
 714	/* "Retrigger" the interrupt to get things going */
 715	retrigger_next_event(NULL);
 716	local_irq_restore(flags);
 717	return 1;
 718}
 719
 720#else
 721
 722static inline int hrtimer_hres_active(void) { return 0; }
 723static inline int hrtimer_is_hres_enabled(void) { return 0; }
 724static inline int hrtimer_switch_to_hres(void) { return 0; }
 725static inline void
 726hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
 727static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
 728					    struct hrtimer_clock_base *base,
 729					    int wakeup)
 730{
 731	return 0;
 732}
 733static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
 734static inline void retrigger_next_event(void *arg) { }
 735
 736#endif /* CONFIG_HIGH_RES_TIMERS */
 737
 738/*
 739 * Clock realtime was set
 740 *
 741 * Change the offset of the realtime clock vs. the monotonic
 742 * clock.
 743 *
 744 * We might have to reprogram the high resolution timer interrupt. On
 745 * SMP we call the architecture specific code to retrigger _all_ high
 746 * resolution timer interrupts. On UP we just disable interrupts and
 747 * call the high resolution interrupt code.
 748 */
 749void clock_was_set(void)
 750{
 751#ifdef CONFIG_HIGH_RES_TIMERS
 752	/* Retrigger the CPU local events everywhere */
 753	on_each_cpu(retrigger_next_event, NULL, 1);
 754#endif
 755	timerfd_clock_was_set();
 756}
 757
 758/*
 759 * During resume we might have to reprogram the high resolution timer
 760 * interrupt (on the local CPU):
 761 */
 762void hrtimers_resume(void)
 763{
 764	WARN_ONCE(!irqs_disabled(),
 765		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");
 766
 767	retrigger_next_event(NULL);
 768	timerfd_clock_was_set();
 769}
 770
 771static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
 772{
 773#ifdef CONFIG_TIMER_STATS
 774	if (timer->start_site)
 775		return;
 776	timer->start_site = __builtin_return_address(0);
 777	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
 778	timer->start_pid = current->pid;
 779#endif
 780}
 781
 782static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
 783{
 784#ifdef CONFIG_TIMER_STATS
 785	timer->start_site = NULL;
 786#endif
 787}
 788
 789static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
 790{
 791#ifdef CONFIG_TIMER_STATS
 792	if (likely(!timer_stats_active))
 793		return;
 794	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
 795				 timer->function, timer->start_comm, 0);
 796#endif
 797}
 798
 799/*
 800 * Counterpart to lock_hrtimer_base above:
 801 */
 802static inline
 803void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 804{
 805	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
 806}
 807
 808/**
 809 * hrtimer_forward - forward the timer expiry
 810 * @timer:	hrtimer to forward
 811 * @now:	forward past this time
 812 * @interval:	the interval to forward
 813 *
 814 * Forward the timer expiry so it will expire in the future.
 815 * Returns the number of overruns.
 816 */
 817u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
 818{
 819	u64 orun = 1;
 820	ktime_t delta;
 821
 822	delta = ktime_sub(now, hrtimer_get_expires(timer));
 823
 824	if (delta.tv64 < 0)
 825		return 0;
 826
 827	if (interval.tv64 < timer->base->resolution.tv64)
 828		interval.tv64 = timer->base->resolution.tv64;
 829
 830	if (unlikely(delta.tv64 >= interval.tv64)) {
 831		s64 incr = ktime_to_ns(interval);
 832
 833		orun = ktime_divns(delta, incr);
 834		hrtimer_add_expires_ns(timer, incr * orun);
 835		if (hrtimer_get_expires_tv64(timer) > now.tv64)
 836			return orun;
 837		/*
 838		 * This (and the ktime_add() below) is the
 839		 * correction for exact:
 840		 */
 841		orun++;
 842	}
 843	hrtimer_add_expires(timer, interval);
 844
 845	return orun;
 846}
 847EXPORT_SYMBOL_GPL(hrtimer_forward);
 848
 849/*
 850 * enqueue_hrtimer - internal function to (re)start a timer
 851 *
 852 * The timer is inserted in expiry order. Insertion into the
 853 * red black tree is O(log(n)). Must hold the base lock.
 854 *
 855 * Returns 1 when the new timer is the leftmost timer in the tree.
 856 */
 857static int enqueue_hrtimer(struct hrtimer *timer,
 858			   struct hrtimer_clock_base *base)
 859{
 860	debug_activate(timer);
 861
 862	timerqueue_add(&base->active, &timer->node);
 863	base->cpu_base->active_bases |= 1 << base->index;
 864
 865	/*
 866	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
 867	 * state of a possibly running callback.
 868	 */
 869	timer->state |= HRTIMER_STATE_ENQUEUED;
 870
 871	return (&timer->node == base->active.next);
 872}
 873
 874/*
 875 * __remove_hrtimer - internal function to remove a timer
 876 *
 877 * Caller must hold the base lock.
 878 *
 879 * High resolution timer mode reprograms the clock event device when the
 880 * timer is the one which expires next. The caller can disable this by setting
 881 * reprogram to zero. This is useful, when the context does a reprogramming
 882 * anyway (e.g. timer interrupt)
 883 */
 884static void __remove_hrtimer(struct hrtimer *timer,
 885			     struct hrtimer_clock_base *base,
 886			     unsigned long newstate, int reprogram)
 887{
 888	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
 889		goto out;
 890
 891	if (&timer->node == timerqueue_getnext(&base->active)) {
 892#ifdef CONFIG_HIGH_RES_TIMERS
 893		/* Reprogram the clock event device. if enabled */
 894		if (reprogram && hrtimer_hres_active()) {
 895			ktime_t expires;
 896
 897			expires = ktime_sub(hrtimer_get_expires(timer),
 898					    base->offset);
 899			if (base->cpu_base->expires_next.tv64 == expires.tv64)
 900				hrtimer_force_reprogram(base->cpu_base, 1);
 901		}
 902#endif
 903	}
 904	timerqueue_del(&base->active, &timer->node);
 905	if (!timerqueue_getnext(&base->active))
 906		base->cpu_base->active_bases &= ~(1 << base->index);
 907out:
 908	timer->state = newstate;
 909}
 910
 911/*
 912 * remove hrtimer, called with base lock held
 913 */
 914static inline int
 915remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
 916{
 917	if (hrtimer_is_queued(timer)) {
 918		unsigned long state;
 919		int reprogram;
 920
 921		/*
 922		 * Remove the timer and force reprogramming when high
 923		 * resolution mode is active and the timer is on the current
 924		 * CPU. If we remove a timer on another CPU, reprogramming is
 925		 * skipped. The interrupt event on this CPU is fired and
 926		 * reprogramming happens in the interrupt handler. This is a
 927		 * rare case and less expensive than a smp call.
 928		 */
 929		debug_deactivate(timer);
 930		timer_stats_hrtimer_clear_start_info(timer);
 931		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
 932		/*
 933		 * We must preserve the CALLBACK state flag here,
 934		 * otherwise we could move the timer base in
 935		 * switch_hrtimer_base.
 936		 */
 937		state = timer->state & HRTIMER_STATE_CALLBACK;
 938		__remove_hrtimer(timer, base, state, reprogram);
 939		return 1;
 940	}
 941	return 0;
 942}
 943
 944int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
 945		unsigned long delta_ns, const enum hrtimer_mode mode,
 946		int wakeup)
 947{
 948	struct hrtimer_clock_base *base, *new_base;
 949	unsigned long flags;
 950	int ret, leftmost;
 951
 952	base = lock_hrtimer_base(timer, &flags);
 953
 954	/* Remove an active timer from the queue: */
 955	ret = remove_hrtimer(timer, base);
 956
 957	/* Switch the timer base, if necessary: */
 958	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
 959
 960	if (mode & HRTIMER_MODE_REL) {
 961		tim = ktime_add_safe(tim, new_base->get_time());
 962		/*
 963		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
 964		 * to signal that they simply return xtime in
 965		 * do_gettimeoffset(). In this case we want to round up by
 966		 * resolution when starting a relative timer, to avoid short
 967		 * timeouts. This will go away with the GTOD framework.
 968		 */
 969#ifdef CONFIG_TIME_LOW_RES
 970		tim = ktime_add_safe(tim, base->resolution);
 971#endif
 972	}
 973
 974	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
 975
 976	timer_stats_hrtimer_set_start_info(timer);
 977
 978	leftmost = enqueue_hrtimer(timer, new_base);
 979
 980	/*
 981	 * Only allow reprogramming if the new base is on this CPU.
 982	 * (it might still be on another CPU if the timer was pending)
 983	 *
 984	 * XXX send_remote_softirq() ?
 985	 */
 986	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
 987		hrtimer_enqueue_reprogram(timer, new_base, wakeup);
 988
 989	unlock_hrtimer_base(timer, &flags);
 990
 991	return ret;
 992}
 993
 994/**
 995 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 996 * @timer:	the timer to be added
 997 * @tim:	expiry time
 998 * @delta_ns:	"slack" range for the timer
 999 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1000 *
1001 * Returns:
1002 *  0 on success
1003 *  1 when the timer was active
1004 */
1005int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1006		unsigned long delta_ns, const enum hrtimer_mode mode)
1007{
1008	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1009}
1010EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1011
1012/**
1013 * hrtimer_start - (re)start an hrtimer on the current CPU
1014 * @timer:	the timer to be added
1015 * @tim:	expiry time
1016 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1017 *
1018 * Returns:
1019 *  0 on success
1020 *  1 when the timer was active
1021 */
1022int
1023hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1024{
1025	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1026}
1027EXPORT_SYMBOL_GPL(hrtimer_start);
1028
1029
1030/**
1031 * hrtimer_try_to_cancel - try to deactivate a timer
1032 * @timer:	hrtimer to stop
1033 *
1034 * Returns:
1035 *  0 when the timer was not active
1036 *  1 when the timer was active
1037 * -1 when the timer is currently excuting the callback function and
1038 *    cannot be stopped
1039 */
1040int hrtimer_try_to_cancel(struct hrtimer *timer)
1041{
1042	struct hrtimer_clock_base *base;
1043	unsigned long flags;
1044	int ret = -1;
1045
1046	base = lock_hrtimer_base(timer, &flags);
1047
1048	if (!hrtimer_callback_running(timer))
1049		ret = remove_hrtimer(timer, base);
1050
1051	unlock_hrtimer_base(timer, &flags);
1052
1053	return ret;
1054
1055}
1056EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1057
1058/**
1059 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1060 * @timer:	the timer to be cancelled
1061 *
1062 * Returns:
1063 *  0 when the timer was not active
1064 *  1 when the timer was active
1065 */
1066int hrtimer_cancel(struct hrtimer *timer)
1067{
1068	for (;;) {
1069		int ret = hrtimer_try_to_cancel(timer);
1070
1071		if (ret >= 0)
1072			return ret;
1073		cpu_relax();
1074	}
1075}
1076EXPORT_SYMBOL_GPL(hrtimer_cancel);
1077
1078/**
1079 * hrtimer_get_remaining - get remaining time for the timer
1080 * @timer:	the timer to read
1081 */
1082ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1083{
1084	unsigned long flags;
1085	ktime_t rem;
1086
1087	lock_hrtimer_base(timer, &flags);
1088	rem = hrtimer_expires_remaining(timer);
1089	unlock_hrtimer_base(timer, &flags);
1090
1091	return rem;
1092}
1093EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1094
1095#ifdef CONFIG_NO_HZ
1096/**
1097 * hrtimer_get_next_event - get the time until next expiry event
1098 *
1099 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1100 * is pending.
1101 */
1102ktime_t hrtimer_get_next_event(void)
1103{
1104	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1105	struct hrtimer_clock_base *base = cpu_base->clock_base;
1106	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1107	unsigned long flags;
1108	int i;
1109
1110	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1111
1112	if (!hrtimer_hres_active()) {
1113		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1114			struct hrtimer *timer;
1115			struct timerqueue_node *next;
1116
1117			next = timerqueue_getnext(&base->active);
1118			if (!next)
1119				continue;
1120
1121			timer = container_of(next, struct hrtimer, node);
1122			delta.tv64 = hrtimer_get_expires_tv64(timer);
1123			delta = ktime_sub(delta, base->get_time());
1124			if (delta.tv64 < mindelta.tv64)
1125				mindelta.tv64 = delta.tv64;
1126		}
1127	}
1128
1129	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1130
1131	if (mindelta.tv64 < 0)
1132		mindelta.tv64 = 0;
1133	return mindelta;
1134}
1135#endif
1136
1137static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1138			   enum hrtimer_mode mode)
1139{
1140	struct hrtimer_cpu_base *cpu_base;
1141	int base;
1142
1143	memset(timer, 0, sizeof(struct hrtimer));
1144
1145	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1146
1147	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1148		clock_id = CLOCK_MONOTONIC;
1149
1150	base = hrtimer_clockid_to_base(clock_id);
1151	timer->base = &cpu_base->clock_base[base];
1152	timerqueue_init(&timer->node);
1153
1154#ifdef CONFIG_TIMER_STATS
1155	timer->start_site = NULL;
1156	timer->start_pid = -1;
1157	memset(timer->start_comm, 0, TASK_COMM_LEN);
1158#endif
1159}
1160
1161/**
1162 * hrtimer_init - initialize a timer to the given clock
1163 * @timer:	the timer to be initialized
1164 * @clock_id:	the clock to be used
1165 * @mode:	timer mode abs/rel
1166 */
1167void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1168		  enum hrtimer_mode mode)
1169{
1170	debug_init(timer, clock_id, mode);
1171	__hrtimer_init(timer, clock_id, mode);
1172}
1173EXPORT_SYMBOL_GPL(hrtimer_init);
1174
1175/**
1176 * hrtimer_get_res - get the timer resolution for a clock
1177 * @which_clock: which clock to query
1178 * @tp:		 pointer to timespec variable to store the resolution
1179 *
1180 * Store the resolution of the clock selected by @which_clock in the
1181 * variable pointed to by @tp.
1182 */
1183int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1184{
1185	struct hrtimer_cpu_base *cpu_base;
1186	int base = hrtimer_clockid_to_base(which_clock);
1187
1188	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1189	*tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1190
1191	return 0;
1192}
1193EXPORT_SYMBOL_GPL(hrtimer_get_res);
1194
1195static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1196{
1197	struct hrtimer_clock_base *base = timer->base;
1198	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1199	enum hrtimer_restart (*fn)(struct hrtimer *);
1200	int restart;
1201
1202	WARN_ON(!irqs_disabled());
1203
1204	debug_deactivate(timer);
1205	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1206	timer_stats_account_hrtimer(timer);
1207	fn = timer->function;
1208
1209	/*
1210	 * Because we run timers from hardirq context, there is no chance
1211	 * they get migrated to another cpu, therefore its safe to unlock
1212	 * the timer base.
1213	 */
1214	raw_spin_unlock(&cpu_base->lock);
1215	trace_hrtimer_expire_entry(timer, now);
1216	restart = fn(timer);
1217	trace_hrtimer_expire_exit(timer);
1218	raw_spin_lock(&cpu_base->lock);
1219
1220	/*
1221	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1222	 * we do not reprogramm the event hardware. Happens either in
1223	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1224	 */
1225	if (restart != HRTIMER_NORESTART) {
1226		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1227		enqueue_hrtimer(timer, base);
1228	}
1229
1230	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1231
1232	timer->state &= ~HRTIMER_STATE_CALLBACK;
1233}
1234
1235#ifdef CONFIG_HIGH_RES_TIMERS
1236
1237/*
1238 * High resolution timer interrupt
1239 * Called with interrupts disabled
1240 */
1241void hrtimer_interrupt(struct clock_event_device *dev)
1242{
1243	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1244	ktime_t expires_next, now, entry_time, delta;
1245	int i, retries = 0;
1246
1247	BUG_ON(!cpu_base->hres_active);
1248	cpu_base->nr_events++;
1249	dev->next_event.tv64 = KTIME_MAX;
1250
1251	entry_time = now = ktime_get();
1252retry:
1253	expires_next.tv64 = KTIME_MAX;
1254
1255	raw_spin_lock(&cpu_base->lock);
1256	/*
1257	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1258	 * held to prevent that a timer is enqueued in our queue via
1259	 * the migration code. This does not affect enqueueing of
1260	 * timers which run their callback and need to be requeued on
1261	 * this CPU.
1262	 */
1263	cpu_base->expires_next.tv64 = KTIME_MAX;
1264
1265	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1266		struct hrtimer_clock_base *base;
1267		struct timerqueue_node *node;
1268		ktime_t basenow;
1269
1270		if (!(cpu_base->active_bases & (1 << i)))
1271			continue;
1272
1273		base = cpu_base->clock_base + i;
1274		basenow = ktime_add(now, base->offset);
1275
1276		while ((node = timerqueue_getnext(&base->active))) {
1277			struct hrtimer *timer;
1278
1279			timer = container_of(node, struct hrtimer, node);
1280
1281			/*
1282			 * The immediate goal for using the softexpires is
1283			 * minimizing wakeups, not running timers at the
1284			 * earliest interrupt after their soft expiration.
1285			 * This allows us to avoid using a Priority Search
1286			 * Tree, which can answer a stabbing querry for
1287			 * overlapping intervals and instead use the simple
1288			 * BST we already have.
1289			 * We don't add extra wakeups by delaying timers that
1290			 * are right-of a not yet expired timer, because that
1291			 * timer will have to trigger a wakeup anyway.
1292			 */
1293
1294			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1295				ktime_t expires;
1296
1297				expires = ktime_sub(hrtimer_get_expires(timer),
1298						    base->offset);
1299				if (expires.tv64 < expires_next.tv64)
1300					expires_next = expires;
1301				break;
1302			}
1303
1304			__run_hrtimer(timer, &basenow);
1305		}
1306	}
1307
1308	/*
1309	 * Store the new expiry value so the migration code can verify
1310	 * against it.
1311	 */
1312	cpu_base->expires_next = expires_next;
1313	raw_spin_unlock(&cpu_base->lock);
1314
1315	/* Reprogramming necessary ? */
1316	if (expires_next.tv64 == KTIME_MAX ||
1317	    !tick_program_event(expires_next, 0)) {
1318		cpu_base->hang_detected = 0;
1319		return;
1320	}
1321
1322	/*
1323	 * The next timer was already expired due to:
1324	 * - tracing
1325	 * - long lasting callbacks
1326	 * - being scheduled away when running in a VM
1327	 *
1328	 * We need to prevent that we loop forever in the hrtimer
1329	 * interrupt routine. We give it 3 attempts to avoid
1330	 * overreacting on some spurious event.
1331	 */
1332	now = ktime_get();
1333	cpu_base->nr_retries++;
1334	if (++retries < 3)
1335		goto retry;
1336	/*
1337	 * Give the system a chance to do something else than looping
1338	 * here. We stored the entry time, so we know exactly how long
1339	 * we spent here. We schedule the next event this amount of
1340	 * time away.
1341	 */
1342	cpu_base->nr_hangs++;
1343	cpu_base->hang_detected = 1;
1344	delta = ktime_sub(now, entry_time);
1345	if (delta.tv64 > cpu_base->max_hang_time.tv64)
1346		cpu_base->max_hang_time = delta;
1347	/*
1348	 * Limit it to a sensible value as we enforce a longer
1349	 * delay. Give the CPU at least 100ms to catch up.
1350	 */
1351	if (delta.tv64 > 100 * NSEC_PER_MSEC)
1352		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1353	else
1354		expires_next = ktime_add(now, delta);
1355	tick_program_event(expires_next, 1);
1356	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1357		    ktime_to_ns(delta));
1358}
1359
1360/*
1361 * local version of hrtimer_peek_ahead_timers() called with interrupts
1362 * disabled.
1363 */
1364static void __hrtimer_peek_ahead_timers(void)
1365{
1366	struct tick_device *td;
1367
1368	if (!hrtimer_hres_active())
1369		return;
1370
1371	td = &__get_cpu_var(tick_cpu_device);
1372	if (td && td->evtdev)
1373		hrtimer_interrupt(td->evtdev);
1374}
1375
1376/**
1377 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1378 *
1379 * hrtimer_peek_ahead_timers will peek at the timer queue of
1380 * the current cpu and check if there are any timers for which
1381 * the soft expires time has passed. If any such timers exist,
1382 * they are run immediately and then removed from the timer queue.
1383 *
1384 */
1385void hrtimer_peek_ahead_timers(void)
1386{
1387	unsigned long flags;
1388
1389	local_irq_save(flags);
1390	__hrtimer_peek_ahead_timers();
1391	local_irq_restore(flags);
1392}
1393
1394static void run_hrtimer_softirq(struct softirq_action *h)
1395{
1396	hrtimer_peek_ahead_timers();
1397}
1398
1399#else /* CONFIG_HIGH_RES_TIMERS */
1400
1401static inline void __hrtimer_peek_ahead_timers(void) { }
1402
1403#endif	/* !CONFIG_HIGH_RES_TIMERS */
1404
1405/*
1406 * Called from timer softirq every jiffy, expire hrtimers:
1407 *
1408 * For HRT its the fall back code to run the softirq in the timer
1409 * softirq context in case the hrtimer initialization failed or has
1410 * not been done yet.
1411 */
1412void hrtimer_run_pending(void)
1413{
1414	if (hrtimer_hres_active())
1415		return;
1416
1417	/*
1418	 * This _is_ ugly: We have to check in the softirq context,
1419	 * whether we can switch to highres and / or nohz mode. The
1420	 * clocksource switch happens in the timer interrupt with
1421	 * xtime_lock held. Notification from there only sets the
1422	 * check bit in the tick_oneshot code, otherwise we might
1423	 * deadlock vs. xtime_lock.
1424	 */
1425	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1426		hrtimer_switch_to_hres();
1427}
1428
1429/*
1430 * Called from hardirq context every jiffy
1431 */
1432void hrtimer_run_queues(void)
1433{
1434	struct timerqueue_node *node;
1435	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1436	struct hrtimer_clock_base *base;
1437	int index, gettime = 1;
1438
1439	if (hrtimer_hres_active())
1440		return;
1441
1442	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1443		base = &cpu_base->clock_base[index];
1444		if (!timerqueue_getnext(&base->active))
1445			continue;
1446
1447		if (gettime) {
1448			hrtimer_get_softirq_time(cpu_base);
1449			gettime = 0;
1450		}
1451
1452		raw_spin_lock(&cpu_base->lock);
1453
1454		while ((node = timerqueue_getnext(&base->active))) {
1455			struct hrtimer *timer;
1456
1457			timer = container_of(node, struct hrtimer, node);
1458			if (base->softirq_time.tv64 <=
1459					hrtimer_get_expires_tv64(timer))
1460				break;
1461
1462			__run_hrtimer(timer, &base->softirq_time);
1463		}
1464		raw_spin_unlock(&cpu_base->lock);
1465	}
1466}
1467
1468/*
1469 * Sleep related functions:
1470 */
1471static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1472{
1473	struct hrtimer_sleeper *t =
1474		container_of(timer, struct hrtimer_sleeper, timer);
1475	struct task_struct *task = t->task;
1476
1477	t->task = NULL;
1478	if (task)
1479		wake_up_process(task);
1480
1481	return HRTIMER_NORESTART;
1482}
1483
1484void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1485{
1486	sl->timer.function = hrtimer_wakeup;
1487	sl->task = task;
1488}
1489EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1490
1491static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1492{
1493	hrtimer_init_sleeper(t, current);
1494
1495	do {
1496		set_current_state(TASK_INTERRUPTIBLE);
1497		hrtimer_start_expires(&t->timer, mode);
1498		if (!hrtimer_active(&t->timer))
1499			t->task = NULL;
1500
1501		if (likely(t->task))
1502			schedule();
1503
1504		hrtimer_cancel(&t->timer);
1505		mode = HRTIMER_MODE_ABS;
1506
1507	} while (t->task && !signal_pending(current));
1508
1509	__set_current_state(TASK_RUNNING);
1510
1511	return t->task == NULL;
1512}
1513
1514static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1515{
1516	struct timespec rmt;
1517	ktime_t rem;
1518
1519	rem = hrtimer_expires_remaining(timer);
1520	if (rem.tv64 <= 0)
1521		return 0;
1522	rmt = ktime_to_timespec(rem);
1523
1524	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1525		return -EFAULT;
1526
1527	return 1;
1528}
1529
1530long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1531{
1532	struct hrtimer_sleeper t;
1533	struct timespec __user  *rmtp;
1534	int ret = 0;
1535
1536	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1537				HRTIMER_MODE_ABS);
1538	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1539
1540	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1541		goto out;
1542
1543	rmtp = restart->nanosleep.rmtp;
1544	if (rmtp) {
1545		ret = update_rmtp(&t.timer, rmtp);
1546		if (ret <= 0)
1547			goto out;
1548	}
1549
1550	/* The other values in restart are already filled in */
1551	ret = -ERESTART_RESTARTBLOCK;
1552out:
1553	destroy_hrtimer_on_stack(&t.timer);
1554	return ret;
1555}
1556
1557long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1558		       const enum hrtimer_mode mode, const clockid_t clockid)
1559{
1560	struct restart_block *restart;
1561	struct hrtimer_sleeper t;
1562	int ret = 0;
1563	unsigned long slack;
1564
1565	slack = current->timer_slack_ns;
1566	if (rt_task(current))
1567		slack = 0;
1568
1569	hrtimer_init_on_stack(&t.timer, clockid, mode);
1570	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1571	if (do_nanosleep(&t, mode))
1572		goto out;
1573
1574	/* Absolute timers do not update the rmtp value and restart: */
1575	if (mode == HRTIMER_MODE_ABS) {
1576		ret = -ERESTARTNOHAND;
1577		goto out;
1578	}
1579
1580	if (rmtp) {
1581		ret = update_rmtp(&t.timer, rmtp);
1582		if (ret <= 0)
1583			goto out;
1584	}
1585
1586	restart = &current_thread_info()->restart_block;
1587	restart->fn = hrtimer_nanosleep_restart;
1588	restart->nanosleep.clockid = t.timer.base->clockid;
1589	restart->nanosleep.rmtp = rmtp;
1590	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1591
1592	ret = -ERESTART_RESTARTBLOCK;
1593out:
1594	destroy_hrtimer_on_stack(&t.timer);
1595	return ret;
1596}
1597
1598SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1599		struct timespec __user *, rmtp)
1600{
1601	struct timespec tu;
1602
1603	if (copy_from_user(&tu, rqtp, sizeof(tu)))
1604		return -EFAULT;
1605
1606	if (!timespec_valid(&tu))
1607		return -EINVAL;
1608
1609	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1610}
1611
1612/*
1613 * Functions related to boot-time initialization:
1614 */
1615static void __cpuinit init_hrtimers_cpu(int cpu)
1616{
1617	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1618	int i;
1619
1620	raw_spin_lock_init(&cpu_base->lock);
1621
1622	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1623		cpu_base->clock_base[i].cpu_base = cpu_base;
1624		timerqueue_init_head(&cpu_base->clock_base[i].active);
1625	}
1626
1627	hrtimer_init_hres(cpu_base);
1628}
1629
1630#ifdef CONFIG_HOTPLUG_CPU
1631
1632static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1633				struct hrtimer_clock_base *new_base)
1634{
1635	struct hrtimer *timer;
1636	struct timerqueue_node *node;
1637
1638	while ((node = timerqueue_getnext(&old_base->active))) {
1639		timer = container_of(node, struct hrtimer, node);
1640		BUG_ON(hrtimer_callback_running(timer));
1641		debug_deactivate(timer);
1642
1643		/*
1644		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1645		 * timer could be seen as !active and just vanish away
1646		 * under us on another CPU
1647		 */
1648		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1649		timer->base = new_base;
1650		/*
1651		 * Enqueue the timers on the new cpu. This does not
1652		 * reprogram the event device in case the timer
1653		 * expires before the earliest on this CPU, but we run
1654		 * hrtimer_interrupt after we migrated everything to
1655		 * sort out already expired timers and reprogram the
1656		 * event device.
1657		 */
1658		enqueue_hrtimer(timer, new_base);
1659
1660		/* Clear the migration state bit */
1661		timer->state &= ~HRTIMER_STATE_MIGRATE;
1662	}
1663}
1664
1665static void migrate_hrtimers(int scpu)
1666{
1667	struct hrtimer_cpu_base *old_base, *new_base;
1668	int i;
1669
1670	BUG_ON(cpu_online(scpu));
1671	tick_cancel_sched_timer(scpu);
1672
1673	local_irq_disable();
1674	old_base = &per_cpu(hrtimer_bases, scpu);
1675	new_base = &__get_cpu_var(hrtimer_bases);
1676	/*
1677	 * The caller is globally serialized and nobody else
1678	 * takes two locks at once, deadlock is not possible.
1679	 */
1680	raw_spin_lock(&new_base->lock);
1681	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1682
1683	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1684		migrate_hrtimer_list(&old_base->clock_base[i],
1685				     &new_base->clock_base[i]);
1686	}
1687
1688	raw_spin_unlock(&old_base->lock);
1689	raw_spin_unlock(&new_base->lock);
1690
1691	/* Check, if we got expired work to do */
1692	__hrtimer_peek_ahead_timers();
1693	local_irq_enable();
1694}
1695
1696#endif /* CONFIG_HOTPLUG_CPU */
1697
1698static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1699					unsigned long action, void *hcpu)
1700{
1701	int scpu = (long)hcpu;
1702
1703	switch (action) {
1704
1705	case CPU_UP_PREPARE:
1706	case CPU_UP_PREPARE_FROZEN:
1707		init_hrtimers_cpu(scpu);
1708		break;
1709
1710#ifdef CONFIG_HOTPLUG_CPU
1711	case CPU_DYING:
1712	case CPU_DYING_FROZEN:
1713		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1714		break;
1715	case CPU_DEAD:
1716	case CPU_DEAD_FROZEN:
1717	{
1718		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1719		migrate_hrtimers(scpu);
1720		break;
1721	}
1722#endif
1723
1724	default:
1725		break;
1726	}
1727
1728	return NOTIFY_OK;
1729}
1730
1731static struct notifier_block __cpuinitdata hrtimers_nb = {
1732	.notifier_call = hrtimer_cpu_notify,
1733};
1734
1735void __init hrtimers_init(void)
1736{
1737	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1738			  (void *)(long)smp_processor_id());
1739	register_cpu_notifier(&hrtimers_nb);
1740#ifdef CONFIG_HIGH_RES_TIMERS
1741	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1742#endif
1743}
1744
1745/**
1746 * schedule_hrtimeout_range_clock - sleep until timeout
1747 * @expires:	timeout value (ktime_t)
1748 * @delta:	slack in expires timeout (ktime_t)
1749 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1750 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1751 */
1752int __sched
1753schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1754			       const enum hrtimer_mode mode, int clock)
1755{
1756	struct hrtimer_sleeper t;
1757
1758	/*
1759	 * Optimize when a zero timeout value is given. It does not
1760	 * matter whether this is an absolute or a relative time.
1761	 */
1762	if (expires && !expires->tv64) {
1763		__set_current_state(TASK_RUNNING);
1764		return 0;
1765	}
1766
1767	/*
1768	 * A NULL parameter means "infinite"
1769	 */
1770	if (!expires) {
1771		schedule();
1772		__set_current_state(TASK_RUNNING);
1773		return -EINTR;
1774	}
1775
1776	hrtimer_init_on_stack(&t.timer, clock, mode);
1777	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1778
1779	hrtimer_init_sleeper(&t, current);
1780
1781	hrtimer_start_expires(&t.timer, mode);
1782	if (!hrtimer_active(&t.timer))
1783		t.task = NULL;
1784
1785	if (likely(t.task))
1786		schedule();
1787
1788	hrtimer_cancel(&t.timer);
1789	destroy_hrtimer_on_stack(&t.timer);
1790
1791	__set_current_state(TASK_RUNNING);
1792
1793	return !t.task ? 0 : -EINTR;
1794}
1795
1796/**
1797 * schedule_hrtimeout_range - sleep until timeout
1798 * @expires:	timeout value (ktime_t)
1799 * @delta:	slack in expires timeout (ktime_t)
1800 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1801 *
1802 * Make the current task sleep until the given expiry time has
1803 * elapsed. The routine will return immediately unless
1804 * the current task state has been set (see set_current_state()).
1805 *
1806 * The @delta argument gives the kernel the freedom to schedule the
1807 * actual wakeup to a time that is both power and performance friendly.
1808 * The kernel give the normal best effort behavior for "@expires+@delta",
1809 * but may decide to fire the timer earlier, but no earlier than @expires.
1810 *
1811 * You can set the task state as follows -
1812 *
1813 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1814 * pass before the routine returns.
1815 *
1816 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1817 * delivered to the current task.
1818 *
1819 * The current task state is guaranteed to be TASK_RUNNING when this
1820 * routine returns.
1821 *
1822 * Returns 0 when the timer has expired otherwise -EINTR
1823 */
1824int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1825				     const enum hrtimer_mode mode)
1826{
1827	return schedule_hrtimeout_range_clock(expires, delta, mode,
1828					      CLOCK_MONOTONIC);
1829}
1830EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1831
1832/**
1833 * schedule_hrtimeout - sleep until timeout
1834 * @expires:	timeout value (ktime_t)
1835 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1836 *
1837 * Make the current task sleep until the given expiry time has
1838 * elapsed. The routine will return immediately unless
1839 * the current task state has been set (see set_current_state()).
1840 *
1841 * You can set the task state as follows -
1842 *
1843 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1844 * pass before the routine returns.
1845 *
1846 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1847 * delivered to the current task.
1848 *
1849 * The current task state is guaranteed to be TASK_RUNNING when this
1850 * routine returns.
1851 *
1852 * Returns 0 when the timer has expired otherwise -EINTR
1853 */
1854int __sched schedule_hrtimeout(ktime_t *expires,
1855			       const enum hrtimer_mode mode)
1856{
1857	return schedule_hrtimeout_range(expires, 0, mode);
1858}
1859EXPORT_SYMBOL_GPL(schedule_hrtimeout);