Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * MMCIF eMMC driver.
   4 *
   5 * Copyright (C) 2010 Renesas Solutions Corp.
   6 * Yusuke Goda <yusuke.goda.sx@renesas.com>
 
 
 
 
 
 
 
 
 
 
 
   7 */
   8
   9/*
  10 * The MMCIF driver is now processing MMC requests asynchronously, according
  11 * to the Linux MMC API requirement.
  12 *
  13 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
  14 * data, and optional stop. To achieve asynchronous processing each of these
  15 * stages is split into two halves: a top and a bottom half. The top half
  16 * initialises the hardware, installs a timeout handler to handle completion
  17 * timeouts, and returns. In case of the command stage this immediately returns
  18 * control to the caller, leaving all further processing to run asynchronously.
  19 * All further request processing is performed by the bottom halves.
  20 *
  21 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
  22 * thread, a DMA completion callback, if DMA is used, a timeout work, and
  23 * request- and stage-specific handler methods.
  24 *
  25 * Each bottom half run begins with either a hardware interrupt, a DMA callback
  26 * invocation, or a timeout work run. In case of an error or a successful
  27 * processing completion, the MMC core is informed and the request processing is
  28 * finished. In case processing has to continue, i.e., if data has to be read
  29 * from or written to the card, or if a stop command has to be sent, the next
  30 * top half is called, which performs the necessary hardware handling and
  31 * reschedules the timeout work. This returns the driver state machine into the
  32 * bottom half waiting state.
  33 */
  34
  35#include <linux/bitops.h>
  36#include <linux/clk.h>
  37#include <linux/completion.h>
  38#include <linux/delay.h>
  39#include <linux/dma-mapping.h>
  40#include <linux/dmaengine.h>
  41#include <linux/mmc/card.h>
  42#include <linux/mmc/core.h>
  43#include <linux/mmc/host.h>
  44#include <linux/mmc/mmc.h>
  45#include <linux/mmc/sdio.h>
 
  46#include <linux/mmc/slot-gpio.h>
  47#include <linux/mod_devicetable.h>
  48#include <linux/mutex.h>
  49#include <linux/of_device.h>
  50#include <linux/pagemap.h>
  51#include <linux/platform_data/sh_mmcif.h>
  52#include <linux/platform_device.h>
  53#include <linux/pm_qos.h>
  54#include <linux/pm_runtime.h>
  55#include <linux/sh_dma.h>
  56#include <linux/spinlock.h>
  57#include <linux/module.h>
  58
  59#define DRIVER_NAME	"sh_mmcif"
 
  60
  61/* CE_CMD_SET */
  62#define CMD_MASK		0x3f000000
  63#define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
  64#define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
  65#define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
  66#define CMD_SET_RBSY		(1 << 21) /* R1b */
  67#define CMD_SET_CCSEN		(1 << 20)
  68#define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
  69#define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
  70#define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
  71#define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
  72#define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
  73#define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
  74#define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
  75#define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
  76#define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
  77#define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
  78#define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
  79#define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
  80#define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
  81#define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
  82#define CMD_SET_CCSH		(1 << 5)
  83#define CMD_SET_DARS		(1 << 2) /* Dual Data Rate */
  84#define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
  85#define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
  86#define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
  87
  88/* CE_CMD_CTRL */
  89#define CMD_CTRL_BREAK		(1 << 0)
  90
  91/* CE_BLOCK_SET */
  92#define BLOCK_SIZE_MASK		0x0000ffff
  93
  94/* CE_INT */
  95#define INT_CCSDE		(1 << 29)
  96#define INT_CMD12DRE		(1 << 26)
  97#define INT_CMD12RBE		(1 << 25)
  98#define INT_CMD12CRE		(1 << 24)
  99#define INT_DTRANE		(1 << 23)
 100#define INT_BUFRE		(1 << 22)
 101#define INT_BUFWEN		(1 << 21)
 102#define INT_BUFREN		(1 << 20)
 103#define INT_CCSRCV		(1 << 19)
 104#define INT_RBSYE		(1 << 17)
 105#define INT_CRSPE		(1 << 16)
 106#define INT_CMDVIO		(1 << 15)
 107#define INT_BUFVIO		(1 << 14)
 108#define INT_WDATERR		(1 << 11)
 109#define INT_RDATERR		(1 << 10)
 110#define INT_RIDXERR		(1 << 9)
 111#define INT_RSPERR		(1 << 8)
 112#define INT_CCSTO		(1 << 5)
 113#define INT_CRCSTO		(1 << 4)
 114#define INT_WDATTO		(1 << 3)
 115#define INT_RDATTO		(1 << 2)
 116#define INT_RBSYTO		(1 << 1)
 117#define INT_RSPTO		(1 << 0)
 118#define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
 119				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
 120				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
 121				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
 122
 123#define INT_ALL			(INT_RBSYE | INT_CRSPE | INT_BUFREN |	 \
 124				 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
 125				 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
 126
 127#define INT_CCS			(INT_CCSTO | INT_CCSRCV | INT_CCSDE)
 128
 129/* CE_INT_MASK */
 130#define MASK_ALL		0x00000000
 131#define MASK_MCCSDE		(1 << 29)
 132#define MASK_MCMD12DRE		(1 << 26)
 133#define MASK_MCMD12RBE		(1 << 25)
 134#define MASK_MCMD12CRE		(1 << 24)
 135#define MASK_MDTRANE		(1 << 23)
 136#define MASK_MBUFRE		(1 << 22)
 137#define MASK_MBUFWEN		(1 << 21)
 138#define MASK_MBUFREN		(1 << 20)
 139#define MASK_MCCSRCV		(1 << 19)
 140#define MASK_MRBSYE		(1 << 17)
 141#define MASK_MCRSPE		(1 << 16)
 142#define MASK_MCMDVIO		(1 << 15)
 143#define MASK_MBUFVIO		(1 << 14)
 144#define MASK_MWDATERR		(1 << 11)
 145#define MASK_MRDATERR		(1 << 10)
 146#define MASK_MRIDXERR		(1 << 9)
 147#define MASK_MRSPERR		(1 << 8)
 148#define MASK_MCCSTO		(1 << 5)
 149#define MASK_MCRCSTO		(1 << 4)
 150#define MASK_MWDATTO		(1 << 3)
 151#define MASK_MRDATTO		(1 << 2)
 152#define MASK_MRBSYTO		(1 << 1)
 153#define MASK_MRSPTO		(1 << 0)
 154
 155#define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
 156				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
 157				 MASK_MCRCSTO | MASK_MWDATTO | \
 158				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
 159
 160#define MASK_CLEAN		(INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |	\
 161				 MASK_MBUFREN | MASK_MBUFWEN |			\
 162				 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |	\
 163				 MASK_MCMD12RBE | MASK_MCMD12CRE)
 164
 165/* CE_HOST_STS1 */
 166#define STS1_CMDSEQ		(1 << 31)
 167
 168/* CE_HOST_STS2 */
 169#define STS2_CRCSTE		(1 << 31)
 170#define STS2_CRC16E		(1 << 30)
 171#define STS2_AC12CRCE		(1 << 29)
 172#define STS2_RSPCRC7E		(1 << 28)
 173#define STS2_CRCSTEBE		(1 << 27)
 174#define STS2_RDATEBE		(1 << 26)
 175#define STS2_AC12REBE		(1 << 25)
 176#define STS2_RSPEBE		(1 << 24)
 177#define STS2_AC12IDXE		(1 << 23)
 178#define STS2_RSPIDXE		(1 << 22)
 179#define STS2_CCSTO		(1 << 15)
 180#define STS2_RDATTO		(1 << 14)
 181#define STS2_DATBSYTO		(1 << 13)
 182#define STS2_CRCSTTO		(1 << 12)
 183#define STS2_AC12BSYTO		(1 << 11)
 184#define STS2_RSPBSYTO		(1 << 10)
 185#define STS2_AC12RSPTO		(1 << 9)
 186#define STS2_RSPTO		(1 << 8)
 187#define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
 188				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
 189#define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
 190				 STS2_DATBSYTO | STS2_CRCSTTO |		\
 191				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
 192				 STS2_AC12RSPTO | STS2_RSPTO)
 193
 194#define CLKDEV_EMMC_DATA	52000000 /* 52 MHz */
 195#define CLKDEV_MMC_DATA		20000000 /* 20 MHz */
 196#define CLKDEV_INIT		400000   /* 400 kHz */
 197
 198enum sh_mmcif_state {
 199	STATE_IDLE,
 200	STATE_REQUEST,
 201	STATE_IOS,
 202	STATE_TIMEOUT,
 203};
 204
 205enum sh_mmcif_wait_for {
 206	MMCIF_WAIT_FOR_REQUEST,
 207	MMCIF_WAIT_FOR_CMD,
 208	MMCIF_WAIT_FOR_MREAD,
 209	MMCIF_WAIT_FOR_MWRITE,
 210	MMCIF_WAIT_FOR_READ,
 211	MMCIF_WAIT_FOR_WRITE,
 212	MMCIF_WAIT_FOR_READ_END,
 213	MMCIF_WAIT_FOR_WRITE_END,
 214	MMCIF_WAIT_FOR_STOP,
 215};
 216
 217/*
 218 * difference for each SoC
 219 */
 220struct sh_mmcif_host {
 221	struct mmc_host *mmc;
 222	struct mmc_request *mrq;
 223	struct platform_device *pd;
 224	struct clk *clk;
 
 225	int bus_width;
 226	unsigned char timing;
 227	bool sd_error;
 228	bool dying;
 229	long timeout;
 230	void __iomem *addr;
 231	u32 *pio_ptr;
 232	spinlock_t lock;		/* protect sh_mmcif_host::state */
 233	enum sh_mmcif_state state;
 234	enum sh_mmcif_wait_for wait_for;
 235	struct delayed_work timeout_work;
 236	size_t blocksize;
 237	int sg_idx;
 238	int sg_blkidx;
 239	bool power;
 
 240	bool ccs_enable;		/* Command Completion Signal support */
 241	bool clk_ctrl2_enable;
 242	struct mutex thread_lock;
 243	u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */
 244
 245	/* DMA support */
 246	struct dma_chan		*chan_rx;
 247	struct dma_chan		*chan_tx;
 248	struct completion	dma_complete;
 249	bool			dma_active;
 250};
 251
 252static const struct of_device_id sh_mmcif_of_match[] = {
 253	{ .compatible = "renesas,sh-mmcif" },
 254	{ }
 255};
 256MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
 257
 258#define sh_mmcif_host_to_dev(host) (&host->pd->dev)
 259
 260static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
 261					unsigned int reg, u32 val)
 262{
 263	writel(val | readl(host->addr + reg), host->addr + reg);
 264}
 265
 266static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
 267					unsigned int reg, u32 val)
 268{
 269	writel(~val & readl(host->addr + reg), host->addr + reg);
 270}
 271
 272static void sh_mmcif_dma_complete(void *arg)
 273{
 274	struct sh_mmcif_host *host = arg;
 275	struct mmc_request *mrq = host->mrq;
 276	struct device *dev = sh_mmcif_host_to_dev(host);
 277
 278	dev_dbg(dev, "Command completed\n");
 279
 280	if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
 281		 dev_name(dev)))
 282		return;
 283
 284	complete(&host->dma_complete);
 285}
 286
 287static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
 288{
 289	struct mmc_data *data = host->mrq->data;
 290	struct scatterlist *sg = data->sg;
 291	struct dma_async_tx_descriptor *desc = NULL;
 292	struct dma_chan *chan = host->chan_rx;
 293	struct device *dev = sh_mmcif_host_to_dev(host);
 294	dma_cookie_t cookie = -EINVAL;
 295	int ret;
 296
 297	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 298			 DMA_FROM_DEVICE);
 299	if (ret > 0) {
 300		host->dma_active = true;
 301		desc = dmaengine_prep_slave_sg(chan, sg, ret,
 302			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 303	}
 304
 305	if (desc) {
 306		desc->callback = sh_mmcif_dma_complete;
 307		desc->callback_param = host;
 308		cookie = dmaengine_submit(desc);
 309		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
 310		dma_async_issue_pending(chan);
 311	}
 312	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
 313		__func__, data->sg_len, ret, cookie);
 314
 315	if (!desc) {
 316		/* DMA failed, fall back to PIO */
 317		if (ret >= 0)
 318			ret = -EIO;
 319		host->chan_rx = NULL;
 320		host->dma_active = false;
 321		dma_release_channel(chan);
 322		/* Free the Tx channel too */
 323		chan = host->chan_tx;
 324		if (chan) {
 325			host->chan_tx = NULL;
 326			dma_release_channel(chan);
 327		}
 328		dev_warn(dev,
 329			 "DMA failed: %d, falling back to PIO\n", ret);
 330		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 331	}
 332
 333	dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
 334		desc, cookie, data->sg_len);
 335}
 336
 337static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
 338{
 339	struct mmc_data *data = host->mrq->data;
 340	struct scatterlist *sg = data->sg;
 341	struct dma_async_tx_descriptor *desc = NULL;
 342	struct dma_chan *chan = host->chan_tx;
 343	struct device *dev = sh_mmcif_host_to_dev(host);
 344	dma_cookie_t cookie = -EINVAL;
 345	int ret;
 346
 347	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 348			 DMA_TO_DEVICE);
 349	if (ret > 0) {
 350		host->dma_active = true;
 351		desc = dmaengine_prep_slave_sg(chan, sg, ret,
 352			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 353	}
 354
 355	if (desc) {
 356		desc->callback = sh_mmcif_dma_complete;
 357		desc->callback_param = host;
 358		cookie = dmaengine_submit(desc);
 359		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
 360		dma_async_issue_pending(chan);
 361	}
 362	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
 363		__func__, data->sg_len, ret, cookie);
 364
 365	if (!desc) {
 366		/* DMA failed, fall back to PIO */
 367		if (ret >= 0)
 368			ret = -EIO;
 369		host->chan_tx = NULL;
 370		host->dma_active = false;
 371		dma_release_channel(chan);
 372		/* Free the Rx channel too */
 373		chan = host->chan_rx;
 374		if (chan) {
 375			host->chan_rx = NULL;
 376			dma_release_channel(chan);
 377		}
 378		dev_warn(dev,
 379			 "DMA failed: %d, falling back to PIO\n", ret);
 380		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 381	}
 382
 383	dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
 384		desc, cookie);
 385}
 386
 387static struct dma_chan *
 388sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
 389{
 
 
 
 
 
 
 390	dma_cap_mask_t mask;
 
 391
 392	dma_cap_zero(mask);
 393	dma_cap_set(DMA_SLAVE, mask);
 394	if (slave_id <= 0)
 395		return NULL;
 396
 397	return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
 398}
 
 
 
 399
 400static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
 401				     struct dma_chan *chan,
 402				     enum dma_transfer_direction direction)
 403{
 404	struct resource *res;
 405	struct dma_slave_config cfg = { 0, };
 
 
 
 406
 407	res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
 408	if (!res)
 409		return -EINVAL;
 410
 
 
 411	cfg.direction = direction;
 412
 413	if (direction == DMA_DEV_TO_MEM) {
 414		cfg.src_addr = res->start + MMCIF_CE_DATA;
 415		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 416	} else {
 417		cfg.dst_addr = res->start + MMCIF_CE_DATA;
 418		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 419	}
 420
 421	return dmaengine_slave_config(chan, &cfg);
 422}
 423
 424static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
 
 425{
 426	struct device *dev = sh_mmcif_host_to_dev(host);
 427	host->dma_active = false;
 428
 429	/* We can only either use DMA for both Tx and Rx or not use it at all */
 430	if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
 431		struct sh_mmcif_plat_data *pdata = dev->platform_data;
 432
 433		host->chan_tx = sh_mmcif_request_dma_pdata(host,
 434							pdata->slave_id_tx);
 435		host->chan_rx = sh_mmcif_request_dma_pdata(host,
 436							pdata->slave_id_rx);
 437	} else {
 438		host->chan_tx = dma_request_chan(dev, "tx");
 439		if (IS_ERR(host->chan_tx))
 440			host->chan_tx = NULL;
 441		host->chan_rx = dma_request_chan(dev, "rx");
 442		if (IS_ERR(host->chan_rx))
 443			host->chan_rx = NULL;
 444	}
 445	dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
 446		host->chan_rx);
 447
 448	if (!host->chan_tx || !host->chan_rx ||
 449	    sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
 450	    sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
 451		goto error;
 452
 453	return;
 454
 455error:
 456	if (host->chan_tx)
 457		dma_release_channel(host->chan_tx);
 458	if (host->chan_rx)
 459		dma_release_channel(host->chan_rx);
 460	host->chan_tx = host->chan_rx = NULL;
 461}
 462
 463static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
 464{
 465	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 466	/* Descriptors are freed automatically */
 467	if (host->chan_tx) {
 468		struct dma_chan *chan = host->chan_tx;
 469		host->chan_tx = NULL;
 470		dma_release_channel(chan);
 471	}
 472	if (host->chan_rx) {
 473		struct dma_chan *chan = host->chan_rx;
 474		host->chan_rx = NULL;
 475		dma_release_channel(chan);
 476	}
 477
 478	host->dma_active = false;
 479}
 480
 481static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
 482{
 483	struct device *dev = sh_mmcif_host_to_dev(host);
 484	struct sh_mmcif_plat_data *p = dev->platform_data;
 485	bool sup_pclk = p ? p->sup_pclk : false;
 486	unsigned int current_clk = clk_get_rate(host->clk);
 487	unsigned int clkdiv;
 488
 489	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 490	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
 491
 492	if (!clk)
 493		return;
 
 
 
 
 
 
 494
 495	if (host->clkdiv_map) {
 496		unsigned int freq, best_freq, myclk, div, diff_min, diff;
 497		int i;
 498
 499		clkdiv = 0;
 500		diff_min = ~0;
 501		best_freq = 0;
 502		for (i = 31; i >= 0; i--) {
 503			if (!((1 << i) & host->clkdiv_map))
 504				continue;
 505
 506			/*
 507			 * clk = parent_freq / div
 508			 * -> parent_freq = clk x div
 509			 */
 510
 511			div = 1 << (i + 1);
 512			freq = clk_round_rate(host->clk, clk * div);
 513			myclk = freq / div;
 514			diff = (myclk > clk) ? myclk - clk : clk - myclk;
 515
 516			if (diff <= diff_min) {
 517				best_freq = freq;
 518				clkdiv = i;
 519				diff_min = diff;
 520			}
 521		}
 522
 523		dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
 524			(best_freq >> (clkdiv + 1)), clk, best_freq, clkdiv);
 525
 526		clk_set_rate(host->clk, best_freq);
 527		clkdiv = clkdiv << 16;
 528	} else if (sup_pclk && clk == current_clk) {
 529		clkdiv = CLK_SUP_PCLK;
 530	} else {
 531		clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
 532	}
 533
 534	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
 535	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 536}
 537
 538static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
 539{
 540	u32 tmp;
 541
 542	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
 543
 544	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
 545	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
 546	if (host->ccs_enable)
 547		tmp |= SCCSTO_29;
 548	if (host->clk_ctrl2_enable)
 549		sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
 550	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
 551		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
 552	/* byte swap on */
 553	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
 554}
 555
 556static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
 557{
 558	struct device *dev = sh_mmcif_host_to_dev(host);
 559	u32 state1, state2;
 560	int ret, timeout;
 561
 562	host->sd_error = false;
 563
 564	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
 565	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
 566	dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
 567	dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
 568
 569	if (state1 & STS1_CMDSEQ) {
 570		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
 571		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
 572		for (timeout = 10000; timeout; timeout--) {
 573			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
 574			      & STS1_CMDSEQ))
 575				break;
 576			mdelay(1);
 577		}
 578		if (!timeout) {
 579			dev_err(dev,
 580				"Forced end of command sequence timeout err\n");
 581			return -EIO;
 582		}
 583		sh_mmcif_sync_reset(host);
 584		dev_dbg(dev, "Forced end of command sequence\n");
 585		return -EIO;
 586	}
 587
 588	if (state2 & STS2_CRC_ERR) {
 589		dev_err(dev, " CRC error: state %u, wait %u\n",
 590			host->state, host->wait_for);
 591		ret = -EIO;
 592	} else if (state2 & STS2_TIMEOUT_ERR) {
 593		dev_err(dev, " Timeout: state %u, wait %u\n",
 594			host->state, host->wait_for);
 595		ret = -ETIMEDOUT;
 596	} else {
 597		dev_dbg(dev, " End/Index error: state %u, wait %u\n",
 598			host->state, host->wait_for);
 599		ret = -EIO;
 600	}
 601	return ret;
 602}
 603
 604static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
 605{
 606	struct mmc_data *data = host->mrq->data;
 607
 608	host->sg_blkidx += host->blocksize;
 609
 610	/* data->sg->length must be a multiple of host->blocksize? */
 611	BUG_ON(host->sg_blkidx > data->sg->length);
 612
 613	if (host->sg_blkidx == data->sg->length) {
 614		host->sg_blkidx = 0;
 615		if (++host->sg_idx < data->sg_len)
 616			host->pio_ptr = sg_virt(++data->sg);
 617	} else {
 618		host->pio_ptr = p;
 619	}
 620
 621	return host->sg_idx != data->sg_len;
 622}
 623
 624static void sh_mmcif_single_read(struct sh_mmcif_host *host,
 625				 struct mmc_request *mrq)
 626{
 627	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 628			   BLOCK_SIZE_MASK) + 3;
 629
 630	host->wait_for = MMCIF_WAIT_FOR_READ;
 631
 632	/* buf read enable */
 633	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 634}
 635
 636static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
 637{
 638	struct device *dev = sh_mmcif_host_to_dev(host);
 639	struct mmc_data *data = host->mrq->data;
 640	u32 *p = sg_virt(data->sg);
 641	int i;
 642
 643	if (host->sd_error) {
 644		data->error = sh_mmcif_error_manage(host);
 645		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 646		return false;
 647	}
 648
 649	for (i = 0; i < host->blocksize / 4; i++)
 650		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 651
 652	/* buffer read end */
 653	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
 654	host->wait_for = MMCIF_WAIT_FOR_READ_END;
 655
 656	return true;
 657}
 658
 659static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
 660				struct mmc_request *mrq)
 661{
 662	struct mmc_data *data = mrq->data;
 663
 664	if (!data->sg_len || !data->sg->length)
 665		return;
 666
 667	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 668		BLOCK_SIZE_MASK;
 669
 670	host->wait_for = MMCIF_WAIT_FOR_MREAD;
 671	host->sg_idx = 0;
 672	host->sg_blkidx = 0;
 673	host->pio_ptr = sg_virt(data->sg);
 674
 675	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 676}
 677
 678static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
 679{
 680	struct device *dev = sh_mmcif_host_to_dev(host);
 681	struct mmc_data *data = host->mrq->data;
 682	u32 *p = host->pio_ptr;
 683	int i;
 684
 685	if (host->sd_error) {
 686		data->error = sh_mmcif_error_manage(host);
 687		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 688		return false;
 689	}
 690
 691	BUG_ON(!data->sg->length);
 692
 693	for (i = 0; i < host->blocksize / 4; i++)
 694		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 695
 696	if (!sh_mmcif_next_block(host, p))
 697		return false;
 698
 699	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 700
 701	return true;
 702}
 703
 704static void sh_mmcif_single_write(struct sh_mmcif_host *host,
 705					struct mmc_request *mrq)
 706{
 707	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 708			   BLOCK_SIZE_MASK) + 3;
 709
 710	host->wait_for = MMCIF_WAIT_FOR_WRITE;
 711
 712	/* buf write enable */
 713	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 714}
 715
 716static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
 717{
 718	struct device *dev = sh_mmcif_host_to_dev(host);
 719	struct mmc_data *data = host->mrq->data;
 720	u32 *p = sg_virt(data->sg);
 721	int i;
 722
 723	if (host->sd_error) {
 724		data->error = sh_mmcif_error_manage(host);
 725		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 726		return false;
 727	}
 728
 729	for (i = 0; i < host->blocksize / 4; i++)
 730		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 731
 732	/* buffer write end */
 733	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
 734	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
 735
 736	return true;
 737}
 738
 739static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
 740				struct mmc_request *mrq)
 741{
 742	struct mmc_data *data = mrq->data;
 743
 744	if (!data->sg_len || !data->sg->length)
 745		return;
 746
 747	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 748		BLOCK_SIZE_MASK;
 749
 750	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
 751	host->sg_idx = 0;
 752	host->sg_blkidx = 0;
 753	host->pio_ptr = sg_virt(data->sg);
 754
 755	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 756}
 757
 758static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
 759{
 760	struct device *dev = sh_mmcif_host_to_dev(host);
 761	struct mmc_data *data = host->mrq->data;
 762	u32 *p = host->pio_ptr;
 763	int i;
 764
 765	if (host->sd_error) {
 766		data->error = sh_mmcif_error_manage(host);
 767		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 768		return false;
 769	}
 770
 771	BUG_ON(!data->sg->length);
 772
 773	for (i = 0; i < host->blocksize / 4; i++)
 774		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 775
 776	if (!sh_mmcif_next_block(host, p))
 777		return false;
 778
 779	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 780
 781	return true;
 782}
 783
 784static void sh_mmcif_get_response(struct sh_mmcif_host *host,
 785						struct mmc_command *cmd)
 786{
 787	if (cmd->flags & MMC_RSP_136) {
 788		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
 789		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
 790		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
 791		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 792	} else
 793		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 794}
 795
 796static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
 797						struct mmc_command *cmd)
 798{
 799	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
 800}
 801
 802static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
 803			    struct mmc_request *mrq)
 804{
 805	struct device *dev = sh_mmcif_host_to_dev(host);
 806	struct mmc_data *data = mrq->data;
 807	struct mmc_command *cmd = mrq->cmd;
 808	u32 opc = cmd->opcode;
 809	u32 tmp = 0;
 810
 811	/* Response Type check */
 812	switch (mmc_resp_type(cmd)) {
 813	case MMC_RSP_NONE:
 814		tmp |= CMD_SET_RTYP_NO;
 815		break;
 816	case MMC_RSP_R1:
 
 817	case MMC_RSP_R3:
 818		tmp |= CMD_SET_RTYP_6B;
 819		break;
 820	case MMC_RSP_R1B:
 821		tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
 822		break;
 823	case MMC_RSP_R2:
 824		tmp |= CMD_SET_RTYP_17B;
 825		break;
 826	default:
 827		dev_err(dev, "Unsupported response type.\n");
 
 
 
 
 
 
 
 
 
 
 
 828		break;
 829	}
 830
 831	/* WDAT / DATW */
 832	if (data) {
 833		tmp |= CMD_SET_WDAT;
 834		switch (host->bus_width) {
 835		case MMC_BUS_WIDTH_1:
 836			tmp |= CMD_SET_DATW_1;
 837			break;
 838		case MMC_BUS_WIDTH_4:
 839			tmp |= CMD_SET_DATW_4;
 840			break;
 841		case MMC_BUS_WIDTH_8:
 842			tmp |= CMD_SET_DATW_8;
 843			break;
 844		default:
 845			dev_err(dev, "Unsupported bus width.\n");
 846			break;
 847		}
 848		switch (host->timing) {
 849		case MMC_TIMING_MMC_DDR52:
 850			/*
 851			 * MMC core will only set this timing, if the host
 852			 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
 853			 * capability. MMCIF implementations with this
 854			 * capability, e.g. sh73a0, will have to set it
 855			 * in their platform data.
 856			 */
 857			tmp |= CMD_SET_DARS;
 858			break;
 859		}
 860	}
 861	/* DWEN */
 862	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
 863		tmp |= CMD_SET_DWEN;
 864	/* CMLTE/CMD12EN */
 865	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
 866		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
 867		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
 868				data->blocks << 16);
 869	}
 870	/* RIDXC[1:0] check bits */
 871	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
 872	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 873		tmp |= CMD_SET_RIDXC_BITS;
 874	/* RCRC7C[1:0] check bits */
 875	if (opc == MMC_SEND_OP_COND)
 876		tmp |= CMD_SET_CRC7C_BITS;
 877	/* RCRC7C[1:0] internal CRC7 */
 878	if (opc == MMC_ALL_SEND_CID ||
 879		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 880		tmp |= CMD_SET_CRC7C_INTERNAL;
 881
 882	return (opc << 24) | tmp;
 883}
 884
 885static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
 886			       struct mmc_request *mrq, u32 opc)
 887{
 888	struct device *dev = sh_mmcif_host_to_dev(host);
 889
 890	switch (opc) {
 891	case MMC_READ_MULTIPLE_BLOCK:
 892		sh_mmcif_multi_read(host, mrq);
 893		return 0;
 894	case MMC_WRITE_MULTIPLE_BLOCK:
 895		sh_mmcif_multi_write(host, mrq);
 896		return 0;
 897	case MMC_WRITE_BLOCK:
 898		sh_mmcif_single_write(host, mrq);
 899		return 0;
 900	case MMC_READ_SINGLE_BLOCK:
 901	case MMC_SEND_EXT_CSD:
 902		sh_mmcif_single_read(host, mrq);
 903		return 0;
 904	default:
 905		dev_err(dev, "Unsupported CMD%d\n", opc);
 906		return -EINVAL;
 907	}
 908}
 909
 910static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
 911			       struct mmc_request *mrq)
 912{
 913	struct mmc_command *cmd = mrq->cmd;
 914	u32 opc;
 915	u32 mask = 0;
 916	unsigned long flags;
 917
 918	if (cmd->flags & MMC_RSP_BUSY)
 
 
 
 
 
 
 
 919		mask = MASK_START_CMD | MASK_MRBSYE;
 920	else
 
 921		mask = MASK_START_CMD | MASK_MCRSPE;
 
 
 922
 923	if (host->ccs_enable)
 924		mask |= MASK_MCCSTO;
 925
 926	if (mrq->data) {
 927		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
 928		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
 929				mrq->data->blksz);
 930	}
 931	opc = sh_mmcif_set_cmd(host, mrq);
 932
 933	if (host->ccs_enable)
 934		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
 935	else
 936		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
 937	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
 938	/* set arg */
 939	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
 940	/* set cmd */
 941	spin_lock_irqsave(&host->lock, flags);
 942	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
 943
 944	host->wait_for = MMCIF_WAIT_FOR_CMD;
 945	schedule_delayed_work(&host->timeout_work, host->timeout);
 946	spin_unlock_irqrestore(&host->lock, flags);
 947}
 948
 949static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
 950			      struct mmc_request *mrq)
 951{
 952	struct device *dev = sh_mmcif_host_to_dev(host);
 953
 954	switch (mrq->cmd->opcode) {
 955	case MMC_READ_MULTIPLE_BLOCK:
 956		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
 957		break;
 958	case MMC_WRITE_MULTIPLE_BLOCK:
 959		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
 960		break;
 961	default:
 962		dev_err(dev, "unsupported stop cmd\n");
 963		mrq->stop->error = sh_mmcif_error_manage(host);
 964		return;
 965	}
 966
 967	host->wait_for = MMCIF_WAIT_FOR_STOP;
 968}
 969
 970static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
 971{
 972	struct sh_mmcif_host *host = mmc_priv(mmc);
 973	struct device *dev = sh_mmcif_host_to_dev(host);
 974	unsigned long flags;
 975
 976	spin_lock_irqsave(&host->lock, flags);
 977	if (host->state != STATE_IDLE) {
 978		dev_dbg(dev, "%s() rejected, state %u\n",
 979			__func__, host->state);
 980		spin_unlock_irqrestore(&host->lock, flags);
 981		mrq->cmd->error = -EAGAIN;
 982		mmc_request_done(mmc, mrq);
 983		return;
 984	}
 985
 986	host->state = STATE_REQUEST;
 987	spin_unlock_irqrestore(&host->lock, flags);
 988
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 989	host->mrq = mrq;
 990
 991	sh_mmcif_start_cmd(host, mrq);
 992}
 993
 994static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
 995{
 996	struct device *dev = sh_mmcif_host_to_dev(host);
 997
 998	if (host->mmc->f_max) {
 999		unsigned int f_max, f_min = 0, f_min_old;
1000
1001		f_max = host->mmc->f_max;
1002		for (f_min_old = f_max; f_min_old > 2;) {
1003			f_min = clk_round_rate(host->clk, f_min_old / 2);
1004			if (f_min == f_min_old)
1005				break;
1006			f_min_old = f_min;
1007		}
1008
1009		/*
1010		 * This driver assumes this SoC is R-Car Gen2 or later
1011		 */
1012		host->clkdiv_map = 0x3ff;
 
1013
1014		host->mmc->f_max = f_max >> ffs(host->clkdiv_map);
1015		host->mmc->f_min = f_min >> fls(host->clkdiv_map);
1016	} else {
1017		unsigned int clk = clk_get_rate(host->clk);
1018
1019		host->mmc->f_max = clk / 2;
1020		host->mmc->f_min = clk / 512;
1021	}
1022
1023	dev_dbg(dev, "clk max/min = %d/%d\n",
1024		host->mmc->f_max, host->mmc->f_min);
 
 
1025}
1026
1027static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1028{
1029	struct sh_mmcif_host *host = mmc_priv(mmc);
1030	struct device *dev = sh_mmcif_host_to_dev(host);
1031	unsigned long flags;
1032
1033	spin_lock_irqsave(&host->lock, flags);
1034	if (host->state != STATE_IDLE) {
1035		dev_dbg(dev, "%s() rejected, state %u\n",
1036			__func__, host->state);
1037		spin_unlock_irqrestore(&host->lock, flags);
1038		return;
1039	}
1040
1041	host->state = STATE_IOS;
1042	spin_unlock_irqrestore(&host->lock, flags);
1043
1044	switch (ios->power_mode) {
1045	case MMC_POWER_UP:
1046		if (!IS_ERR(mmc->supply.vmmc))
1047			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1048		if (!host->power) {
1049			clk_prepare_enable(host->clk);
1050			pm_runtime_get_sync(dev);
1051			sh_mmcif_sync_reset(host);
1052			sh_mmcif_request_dma(host);
1053			host->power = true;
 
 
 
 
 
1054		}
1055		break;
1056	case MMC_POWER_OFF:
1057		if (!IS_ERR(mmc->supply.vmmc))
1058			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1059		if (host->power) {
1060			sh_mmcif_clock_control(host, 0);
1061			sh_mmcif_release_dma(host);
1062			pm_runtime_put(dev);
1063			clk_disable_unprepare(host->clk);
1064			host->power = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
1065		}
1066		break;
1067	case MMC_POWER_ON:
1068		sh_mmcif_clock_control(host, ios->clock);
1069		break;
1070	}
1071
1072	host->timing = ios->timing;
1073	host->bus_width = ios->bus_width;
1074	host->state = STATE_IDLE;
1075}
1076
1077static const struct mmc_host_ops sh_mmcif_ops = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078	.request	= sh_mmcif_request,
1079	.set_ios	= sh_mmcif_set_ios,
1080	.get_cd		= mmc_gpio_get_cd,
1081};
1082
1083static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1084{
1085	struct mmc_command *cmd = host->mrq->cmd;
1086	struct mmc_data *data = host->mrq->data;
1087	struct device *dev = sh_mmcif_host_to_dev(host);
1088	long time;
1089
1090	if (host->sd_error) {
1091		switch (cmd->opcode) {
1092		case MMC_ALL_SEND_CID:
1093		case MMC_SELECT_CARD:
1094		case MMC_APP_CMD:
1095			cmd->error = -ETIMEDOUT;
1096			break;
1097		default:
1098			cmd->error = sh_mmcif_error_manage(host);
1099			break;
1100		}
1101		dev_dbg(dev, "CMD%d error %d\n",
1102			cmd->opcode, cmd->error);
1103		host->sd_error = false;
1104		return false;
1105	}
1106	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1107		cmd->error = 0;
1108		return false;
1109	}
1110
1111	sh_mmcif_get_response(host, cmd);
1112
1113	if (!data)
1114		return false;
1115
1116	/*
1117	 * Completion can be signalled from DMA callback and error, so, have to
1118	 * reset here, before setting .dma_active
1119	 */
1120	init_completion(&host->dma_complete);
1121
1122	if (data->flags & MMC_DATA_READ) {
1123		if (host->chan_rx)
1124			sh_mmcif_start_dma_rx(host);
1125	} else {
1126		if (host->chan_tx)
1127			sh_mmcif_start_dma_tx(host);
1128	}
1129
1130	if (!host->dma_active) {
1131		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1132		return !data->error;
1133	}
1134
1135	/* Running in the IRQ thread, can sleep */
1136	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1137							 host->timeout);
1138
1139	if (data->flags & MMC_DATA_READ)
1140		dma_unmap_sg(host->chan_rx->device->dev,
1141			     data->sg, data->sg_len,
1142			     DMA_FROM_DEVICE);
1143	else
1144		dma_unmap_sg(host->chan_tx->device->dev,
1145			     data->sg, data->sg_len,
1146			     DMA_TO_DEVICE);
1147
1148	if (host->sd_error) {
1149		dev_err(host->mmc->parent,
1150			"Error IRQ while waiting for DMA completion!\n");
1151		/* Woken up by an error IRQ: abort DMA */
1152		data->error = sh_mmcif_error_manage(host);
1153	} else if (!time) {
1154		dev_err(host->mmc->parent, "DMA timeout!\n");
1155		data->error = -ETIMEDOUT;
1156	} else if (time < 0) {
1157		dev_err(host->mmc->parent,
1158			"wait_for_completion_...() error %ld!\n", time);
1159		data->error = time;
1160	}
1161	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1162			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1163	host->dma_active = false;
1164
1165	if (data->error) {
1166		data->bytes_xfered = 0;
1167		/* Abort DMA */
1168		if (data->flags & MMC_DATA_READ)
1169			dmaengine_terminate_sync(host->chan_rx);
1170		else
1171			dmaengine_terminate_sync(host->chan_tx);
1172	}
1173
1174	return false;
1175}
1176
1177static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1178{
1179	struct sh_mmcif_host *host = dev_id;
1180	struct mmc_request *mrq;
1181	struct device *dev = sh_mmcif_host_to_dev(host);
1182	bool wait = false;
1183	unsigned long flags;
1184	int wait_work;
1185
1186	spin_lock_irqsave(&host->lock, flags);
1187	wait_work = host->wait_for;
1188	spin_unlock_irqrestore(&host->lock, flags);
1189
1190	cancel_delayed_work_sync(&host->timeout_work);
1191
1192	mutex_lock(&host->thread_lock);
1193
1194	mrq = host->mrq;
1195	if (!mrq) {
1196		dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1197			host->state, host->wait_for);
1198		mutex_unlock(&host->thread_lock);
1199		return IRQ_HANDLED;
1200	}
1201
1202	/*
1203	 * All handlers return true, if processing continues, and false, if the
1204	 * request has to be completed - successfully or not
1205	 */
1206	switch (wait_work) {
1207	case MMCIF_WAIT_FOR_REQUEST:
1208		/* We're too late, the timeout has already kicked in */
1209		mutex_unlock(&host->thread_lock);
1210		return IRQ_HANDLED;
1211	case MMCIF_WAIT_FOR_CMD:
1212		/* Wait for data? */
1213		wait = sh_mmcif_end_cmd(host);
1214		break;
1215	case MMCIF_WAIT_FOR_MREAD:
1216		/* Wait for more data? */
1217		wait = sh_mmcif_mread_block(host);
1218		break;
1219	case MMCIF_WAIT_FOR_READ:
1220		/* Wait for data end? */
1221		wait = sh_mmcif_read_block(host);
1222		break;
1223	case MMCIF_WAIT_FOR_MWRITE:
1224		/* Wait data to write? */
1225		wait = sh_mmcif_mwrite_block(host);
1226		break;
1227	case MMCIF_WAIT_FOR_WRITE:
1228		/* Wait for data end? */
1229		wait = sh_mmcif_write_block(host);
1230		break;
1231	case MMCIF_WAIT_FOR_STOP:
1232		if (host->sd_error) {
1233			mrq->stop->error = sh_mmcif_error_manage(host);
1234			dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1235			break;
1236		}
1237		sh_mmcif_get_cmd12response(host, mrq->stop);
1238		mrq->stop->error = 0;
1239		break;
1240	case MMCIF_WAIT_FOR_READ_END:
1241	case MMCIF_WAIT_FOR_WRITE_END:
1242		if (host->sd_error) {
1243			mrq->data->error = sh_mmcif_error_manage(host);
1244			dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1245		}
1246		break;
1247	default:
1248		BUG();
1249	}
1250
1251	if (wait) {
1252		schedule_delayed_work(&host->timeout_work, host->timeout);
1253		/* Wait for more data */
1254		mutex_unlock(&host->thread_lock);
1255		return IRQ_HANDLED;
1256	}
1257
1258	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1259		struct mmc_data *data = mrq->data;
1260		if (!mrq->cmd->error && data && !data->error)
1261			data->bytes_xfered =
1262				data->blocks * data->blksz;
1263
1264		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1265			sh_mmcif_stop_cmd(host, mrq);
1266			if (!mrq->stop->error) {
1267				schedule_delayed_work(&host->timeout_work, host->timeout);
1268				mutex_unlock(&host->thread_lock);
1269				return IRQ_HANDLED;
1270			}
1271		}
1272	}
1273
1274	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1275	host->state = STATE_IDLE;
1276	host->mrq = NULL;
1277	mmc_request_done(host->mmc, mrq);
1278
1279	mutex_unlock(&host->thread_lock);
1280
1281	return IRQ_HANDLED;
1282}
1283
1284static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1285{
1286	struct sh_mmcif_host *host = dev_id;
1287	struct device *dev = sh_mmcif_host_to_dev(host);
1288	u32 state, mask;
1289
1290	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1291	mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1292	if (host->ccs_enable)
1293		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1294	else
1295		sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1296	sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1297
1298	if (state & ~MASK_CLEAN)
1299		dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1300			state);
1301
1302	if (state & INT_ERR_STS || state & ~INT_ALL) {
1303		host->sd_error = true;
1304		dev_dbg(dev, "int err state = 0x%08x\n", state);
1305	}
1306	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1307		if (!host->mrq)
1308			dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1309		if (!host->dma_active)
1310			return IRQ_WAKE_THREAD;
1311		else if (host->sd_error)
1312			sh_mmcif_dma_complete(host);
1313	} else {
1314		dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1315	}
1316
1317	return IRQ_HANDLED;
1318}
1319
1320static void sh_mmcif_timeout_work(struct work_struct *work)
1321{
1322	struct delayed_work *d = to_delayed_work(work);
1323	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1324	struct mmc_request *mrq = host->mrq;
1325	struct device *dev = sh_mmcif_host_to_dev(host);
1326	unsigned long flags;
1327
1328	if (host->dying)
1329		/* Don't run after mmc_remove_host() */
1330		return;
1331
 
 
 
1332	spin_lock_irqsave(&host->lock, flags);
1333	if (host->state == STATE_IDLE) {
1334		spin_unlock_irqrestore(&host->lock, flags);
1335		return;
1336	}
1337
1338	dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1339		host->wait_for, mrq->cmd->opcode);
1340
1341	host->state = STATE_TIMEOUT;
1342	spin_unlock_irqrestore(&host->lock, flags);
1343
1344	/*
1345	 * Handle races with cancel_delayed_work(), unless
1346	 * cancel_delayed_work_sync() is used
1347	 */
1348	switch (host->wait_for) {
1349	case MMCIF_WAIT_FOR_CMD:
1350		mrq->cmd->error = sh_mmcif_error_manage(host);
1351		break;
1352	case MMCIF_WAIT_FOR_STOP:
1353		mrq->stop->error = sh_mmcif_error_manage(host);
1354		break;
1355	case MMCIF_WAIT_FOR_MREAD:
1356	case MMCIF_WAIT_FOR_MWRITE:
1357	case MMCIF_WAIT_FOR_READ:
1358	case MMCIF_WAIT_FOR_WRITE:
1359	case MMCIF_WAIT_FOR_READ_END:
1360	case MMCIF_WAIT_FOR_WRITE_END:
1361		mrq->data->error = sh_mmcif_error_manage(host);
1362		break;
1363	default:
1364		BUG();
1365	}
1366
1367	host->state = STATE_IDLE;
1368	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1369	host->mrq = NULL;
1370	mmc_request_done(host->mmc, mrq);
1371}
1372
1373static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1374{
1375	struct device *dev = sh_mmcif_host_to_dev(host);
1376	struct sh_mmcif_plat_data *pd = dev->platform_data;
1377	struct mmc_host *mmc = host->mmc;
1378
1379	mmc_regulator_get_supply(mmc);
1380
1381	if (!pd)
1382		return;
1383
1384	if (!mmc->ocr_avail)
1385		mmc->ocr_avail = pd->ocr;
1386	else if (pd->ocr)
1387		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1388}
1389
1390static int sh_mmcif_probe(struct platform_device *pdev)
1391{
1392	int ret = 0, irq[2];
1393	struct mmc_host *mmc;
1394	struct sh_mmcif_host *host;
1395	struct device *dev = &pdev->dev;
1396	struct sh_mmcif_plat_data *pd = dev->platform_data;
1397	void __iomem *reg;
1398	const char *name;
1399
1400	irq[0] = platform_get_irq(pdev, 0);
1401	irq[1] = platform_get_irq_optional(pdev, 1);
1402	if (irq[0] < 0)
 
1403		return -ENXIO;
1404
1405	reg = devm_platform_ioremap_resource(pdev, 0);
1406	if (IS_ERR(reg))
1407		return PTR_ERR(reg);
1408
1409	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1410	if (!mmc)
 
 
1411		return -ENOMEM;
 
 
 
 
 
 
 
1412
1413	ret = mmc_of_parse(mmc);
1414	if (ret < 0)
1415		goto err_host;
1416
1417	host		= mmc_priv(mmc);
1418	host->mmc	= mmc;
1419	host->addr	= reg;
1420	host->timeout	= msecs_to_jiffies(10000);
1421	host->ccs_enable = true;
1422	host->clk_ctrl2_enable = false;
1423
1424	host->pd = pdev;
1425
1426	spin_lock_init(&host->lock);
1427
1428	mmc->ops = &sh_mmcif_ops;
1429	sh_mmcif_init_ocr(host);
1430
1431	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1432	mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1433	mmc->max_busy_timeout = 10000;
1434
1435	if (pd && pd->caps)
1436		mmc->caps |= pd->caps;
1437	mmc->max_segs = 32;
1438	mmc->max_blk_size = 512;
1439	mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1440	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1441	mmc->max_seg_size = mmc->max_req_size;
1442
1443	platform_set_drvdata(pdev, host);
1444
1445	host->clk = devm_clk_get(dev, NULL);
1446	if (IS_ERR(host->clk)) {
1447		ret = PTR_ERR(host->clk);
1448		dev_err(dev, "cannot get clock: %d\n", ret);
1449		goto err_host;
1450	}
1451
1452	ret = clk_prepare_enable(host->clk);
 
 
 
 
 
 
1453	if (ret < 0)
1454		goto err_host;
1455
1456	sh_mmcif_clk_setup(host);
1457
1458	pm_runtime_enable(dev);
1459	host->power = false;
1460
1461	ret = pm_runtime_get_sync(dev);
1462	if (ret < 0)
1463		goto err_clk;
1464
1465	INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1466
1467	sh_mmcif_sync_reset(host);
1468	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1469
1470	name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1471	ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1472					sh_mmcif_irqt, 0, name, host);
1473	if (ret) {
1474		dev_err(dev, "request_irq error (%s)\n", name);
1475		goto err_clk;
1476	}
1477	if (irq[1] >= 0) {
1478		ret = devm_request_threaded_irq(dev, irq[1],
1479						sh_mmcif_intr, sh_mmcif_irqt,
1480						0, "sh_mmc:int", host);
1481		if (ret) {
1482			dev_err(dev, "request_irq error (sh_mmc:int)\n");
1483			goto err_clk;
1484		}
1485	}
1486
 
 
 
 
 
 
1487	mutex_init(&host->thread_lock);
1488
 
1489	ret = mmc_add_host(mmc);
1490	if (ret < 0)
1491		goto err_clk;
1492
1493	dev_pm_qos_expose_latency_limit(dev, 100);
1494
1495	dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1496		 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1497		 clk_get_rate(host->clk) / 1000000UL);
1498
1499	pm_runtime_put(dev);
1500	clk_disable_unprepare(host->clk);
 
1501	return ret;
1502
1503err_clk:
1504	clk_disable_unprepare(host->clk);
1505	pm_runtime_put_sync(dev);
1506	pm_runtime_disable(dev);
1507err_host:
 
 
 
 
 
 
 
 
 
 
1508	mmc_free_host(mmc);
 
 
1509	return ret;
1510}
1511
1512static int sh_mmcif_remove(struct platform_device *pdev)
1513{
1514	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
 
1515
1516	host->dying = true;
1517	clk_prepare_enable(host->clk);
1518	pm_runtime_get_sync(&pdev->dev);
1519
1520	dev_pm_qos_hide_latency_limit(&pdev->dev);
1521
1522	mmc_remove_host(host->mmc);
1523	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1524
1525	/*
1526	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1527	 * mmc_remove_host() call above. But swapping order doesn't help either
1528	 * (a query on the linux-mmc mailing list didn't bring any replies).
1529	 */
1530	cancel_delayed_work_sync(&host->timeout_work);
1531
1532	clk_disable_unprepare(host->clk);
 
 
 
 
 
 
 
 
 
 
1533	mmc_free_host(host->mmc);
1534	pm_runtime_put_sync(&pdev->dev);
1535	pm_runtime_disable(&pdev->dev);
1536
1537	return 0;
1538}
1539
1540#ifdef CONFIG_PM_SLEEP
1541static int sh_mmcif_suspend(struct device *dev)
1542{
1543	struct sh_mmcif_host *host = dev_get_drvdata(dev);
1544
1545	pm_runtime_get_sync(dev);
1546	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1547	pm_runtime_put(dev);
1548
1549	return 0;
1550}
1551
1552static int sh_mmcif_resume(struct device *dev)
1553{
1554	return 0;
1555}
1556#endif
1557
 
 
 
 
 
 
1558static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1559	SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1560};
1561
1562static struct platform_driver sh_mmcif_driver = {
1563	.probe		= sh_mmcif_probe,
1564	.remove		= sh_mmcif_remove,
1565	.driver		= {
1566		.name	= DRIVER_NAME,
1567		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1568		.pm	= &sh_mmcif_dev_pm_ops,
1569		.of_match_table = sh_mmcif_of_match,
 
1570	},
1571};
1572
1573module_platform_driver(sh_mmcif_driver);
1574
1575MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1576MODULE_LICENSE("GPL v2");
1577MODULE_ALIAS("platform:" DRIVER_NAME);
1578MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
v3.15
 
   1/*
   2 * MMCIF eMMC driver.
   3 *
   4 * Copyright (C) 2010 Renesas Solutions Corp.
   5 * Yusuke Goda <yusuke.goda.sx@renesas.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License.
  10 *
  11 *
  12 * TODO
  13 *  1. DMA
  14 *  2. Power management
  15 *  3. Handle MMC errors better
  16 *
  17 */
  18
  19/*
  20 * The MMCIF driver is now processing MMC requests asynchronously, according
  21 * to the Linux MMC API requirement.
  22 *
  23 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
  24 * data, and optional stop. To achieve asynchronous processing each of these
  25 * stages is split into two halves: a top and a bottom half. The top half
  26 * initialises the hardware, installs a timeout handler to handle completion
  27 * timeouts, and returns. In case of the command stage this immediately returns
  28 * control to the caller, leaving all further processing to run asynchronously.
  29 * All further request processing is performed by the bottom halves.
  30 *
  31 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
  32 * thread, a DMA completion callback, if DMA is used, a timeout work, and
  33 * request- and stage-specific handler methods.
  34 *
  35 * Each bottom half run begins with either a hardware interrupt, a DMA callback
  36 * invocation, or a timeout work run. In case of an error or a successful
  37 * processing completion, the MMC core is informed and the request processing is
  38 * finished. In case processing has to continue, i.e., if data has to be read
  39 * from or written to the card, or if a stop command has to be sent, the next
  40 * top half is called, which performs the necessary hardware handling and
  41 * reschedules the timeout work. This returns the driver state machine into the
  42 * bottom half waiting state.
  43 */
  44
  45#include <linux/bitops.h>
  46#include <linux/clk.h>
  47#include <linux/completion.h>
  48#include <linux/delay.h>
  49#include <linux/dma-mapping.h>
  50#include <linux/dmaengine.h>
  51#include <linux/mmc/card.h>
  52#include <linux/mmc/core.h>
  53#include <linux/mmc/host.h>
  54#include <linux/mmc/mmc.h>
  55#include <linux/mmc/sdio.h>
  56#include <linux/mmc/sh_mmcif.h>
  57#include <linux/mmc/slot-gpio.h>
  58#include <linux/mod_devicetable.h>
  59#include <linux/mutex.h>
 
  60#include <linux/pagemap.h>
 
  61#include <linux/platform_device.h>
  62#include <linux/pm_qos.h>
  63#include <linux/pm_runtime.h>
  64#include <linux/sh_dma.h>
  65#include <linux/spinlock.h>
  66#include <linux/module.h>
  67
  68#define DRIVER_NAME	"sh_mmcif"
  69#define DRIVER_VERSION	"2010-04-28"
  70
  71/* CE_CMD_SET */
  72#define CMD_MASK		0x3f000000
  73#define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
  74#define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
  75#define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
  76#define CMD_SET_RBSY		(1 << 21) /* R1b */
  77#define CMD_SET_CCSEN		(1 << 20)
  78#define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
  79#define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
  80#define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
  81#define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
  82#define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
  83#define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
  84#define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
  85#define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
  86#define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
  87#define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
  88#define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
  89#define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
  90#define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
  91#define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
  92#define CMD_SET_CCSH		(1 << 5)
  93#define CMD_SET_DARS		(1 << 2) /* Dual Data Rate */
  94#define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
  95#define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
  96#define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
  97
  98/* CE_CMD_CTRL */
  99#define CMD_CTRL_BREAK		(1 << 0)
 100
 101/* CE_BLOCK_SET */
 102#define BLOCK_SIZE_MASK		0x0000ffff
 103
 104/* CE_INT */
 105#define INT_CCSDE		(1 << 29)
 106#define INT_CMD12DRE		(1 << 26)
 107#define INT_CMD12RBE		(1 << 25)
 108#define INT_CMD12CRE		(1 << 24)
 109#define INT_DTRANE		(1 << 23)
 110#define INT_BUFRE		(1 << 22)
 111#define INT_BUFWEN		(1 << 21)
 112#define INT_BUFREN		(1 << 20)
 113#define INT_CCSRCV		(1 << 19)
 114#define INT_RBSYE		(1 << 17)
 115#define INT_CRSPE		(1 << 16)
 116#define INT_CMDVIO		(1 << 15)
 117#define INT_BUFVIO		(1 << 14)
 118#define INT_WDATERR		(1 << 11)
 119#define INT_RDATERR		(1 << 10)
 120#define INT_RIDXERR		(1 << 9)
 121#define INT_RSPERR		(1 << 8)
 122#define INT_CCSTO		(1 << 5)
 123#define INT_CRCSTO		(1 << 4)
 124#define INT_WDATTO		(1 << 3)
 125#define INT_RDATTO		(1 << 2)
 126#define INT_RBSYTO		(1 << 1)
 127#define INT_RSPTO		(1 << 0)
 128#define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
 129				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
 130				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
 131				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
 132
 133#define INT_ALL			(INT_RBSYE | INT_CRSPE | INT_BUFREN |	 \
 134				 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
 135				 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
 136
 137#define INT_CCS			(INT_CCSTO | INT_CCSRCV | INT_CCSDE)
 138
 139/* CE_INT_MASK */
 140#define MASK_ALL		0x00000000
 141#define MASK_MCCSDE		(1 << 29)
 142#define MASK_MCMD12DRE		(1 << 26)
 143#define MASK_MCMD12RBE		(1 << 25)
 144#define MASK_MCMD12CRE		(1 << 24)
 145#define MASK_MDTRANE		(1 << 23)
 146#define MASK_MBUFRE		(1 << 22)
 147#define MASK_MBUFWEN		(1 << 21)
 148#define MASK_MBUFREN		(1 << 20)
 149#define MASK_MCCSRCV		(1 << 19)
 150#define MASK_MRBSYE		(1 << 17)
 151#define MASK_MCRSPE		(1 << 16)
 152#define MASK_MCMDVIO		(1 << 15)
 153#define MASK_MBUFVIO		(1 << 14)
 154#define MASK_MWDATERR		(1 << 11)
 155#define MASK_MRDATERR		(1 << 10)
 156#define MASK_MRIDXERR		(1 << 9)
 157#define MASK_MRSPERR		(1 << 8)
 158#define MASK_MCCSTO		(1 << 5)
 159#define MASK_MCRCSTO		(1 << 4)
 160#define MASK_MWDATTO		(1 << 3)
 161#define MASK_MRDATTO		(1 << 2)
 162#define MASK_MRBSYTO		(1 << 1)
 163#define MASK_MRSPTO		(1 << 0)
 164
 165#define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
 166				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
 167				 MASK_MCRCSTO | MASK_MWDATTO | \
 168				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
 169
 170#define MASK_CLEAN		(INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |	\
 171				 MASK_MBUFREN | MASK_MBUFWEN |			\
 172				 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |	\
 173				 MASK_MCMD12RBE | MASK_MCMD12CRE)
 174
 175/* CE_HOST_STS1 */
 176#define STS1_CMDSEQ		(1 << 31)
 177
 178/* CE_HOST_STS2 */
 179#define STS2_CRCSTE		(1 << 31)
 180#define STS2_CRC16E		(1 << 30)
 181#define STS2_AC12CRCE		(1 << 29)
 182#define STS2_RSPCRC7E		(1 << 28)
 183#define STS2_CRCSTEBE		(1 << 27)
 184#define STS2_RDATEBE		(1 << 26)
 185#define STS2_AC12REBE		(1 << 25)
 186#define STS2_RSPEBE		(1 << 24)
 187#define STS2_AC12IDXE		(1 << 23)
 188#define STS2_RSPIDXE		(1 << 22)
 189#define STS2_CCSTO		(1 << 15)
 190#define STS2_RDATTO		(1 << 14)
 191#define STS2_DATBSYTO		(1 << 13)
 192#define STS2_CRCSTTO		(1 << 12)
 193#define STS2_AC12BSYTO		(1 << 11)
 194#define STS2_RSPBSYTO		(1 << 10)
 195#define STS2_AC12RSPTO		(1 << 9)
 196#define STS2_RSPTO		(1 << 8)
 197#define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
 198				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
 199#define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
 200				 STS2_DATBSYTO | STS2_CRCSTTO |		\
 201				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
 202				 STS2_AC12RSPTO | STS2_RSPTO)
 203
 204#define CLKDEV_EMMC_DATA	52000000 /* 52MHz */
 205#define CLKDEV_MMC_DATA		20000000 /* 20MHz */
 206#define CLKDEV_INIT		400000   /* 400 KHz */
 207
 208enum mmcif_state {
 209	STATE_IDLE,
 210	STATE_REQUEST,
 211	STATE_IOS,
 212	STATE_TIMEOUT,
 213};
 214
 215enum mmcif_wait_for {
 216	MMCIF_WAIT_FOR_REQUEST,
 217	MMCIF_WAIT_FOR_CMD,
 218	MMCIF_WAIT_FOR_MREAD,
 219	MMCIF_WAIT_FOR_MWRITE,
 220	MMCIF_WAIT_FOR_READ,
 221	MMCIF_WAIT_FOR_WRITE,
 222	MMCIF_WAIT_FOR_READ_END,
 223	MMCIF_WAIT_FOR_WRITE_END,
 224	MMCIF_WAIT_FOR_STOP,
 225};
 226
 
 
 
 227struct sh_mmcif_host {
 228	struct mmc_host *mmc;
 229	struct mmc_request *mrq;
 230	struct platform_device *pd;
 231	struct clk *hclk;
 232	unsigned int clk;
 233	int bus_width;
 234	unsigned char timing;
 235	bool sd_error;
 236	bool dying;
 237	long timeout;
 238	void __iomem *addr;
 239	u32 *pio_ptr;
 240	spinlock_t lock;		/* protect sh_mmcif_host::state */
 241	enum mmcif_state state;
 242	enum mmcif_wait_for wait_for;
 243	struct delayed_work timeout_work;
 244	size_t blocksize;
 245	int sg_idx;
 246	int sg_blkidx;
 247	bool power;
 248	bool card_present;
 249	bool ccs_enable;		/* Command Completion Signal support */
 250	bool clk_ctrl2_enable;
 251	struct mutex thread_lock;
 
 252
 253	/* DMA support */
 254	struct dma_chan		*chan_rx;
 255	struct dma_chan		*chan_tx;
 256	struct completion	dma_complete;
 257	bool			dma_active;
 258};
 259
 
 
 
 
 
 
 
 
 260static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
 261					unsigned int reg, u32 val)
 262{
 263	writel(val | readl(host->addr + reg), host->addr + reg);
 264}
 265
 266static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
 267					unsigned int reg, u32 val)
 268{
 269	writel(~val & readl(host->addr + reg), host->addr + reg);
 270}
 271
 272static void mmcif_dma_complete(void *arg)
 273{
 274	struct sh_mmcif_host *host = arg;
 275	struct mmc_request *mrq = host->mrq;
 
 276
 277	dev_dbg(&host->pd->dev, "Command completed\n");
 278
 279	if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
 280		 dev_name(&host->pd->dev)))
 281		return;
 282
 283	complete(&host->dma_complete);
 284}
 285
 286static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
 287{
 288	struct mmc_data *data = host->mrq->data;
 289	struct scatterlist *sg = data->sg;
 290	struct dma_async_tx_descriptor *desc = NULL;
 291	struct dma_chan *chan = host->chan_rx;
 
 292	dma_cookie_t cookie = -EINVAL;
 293	int ret;
 294
 295	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 296			 DMA_FROM_DEVICE);
 297	if (ret > 0) {
 298		host->dma_active = true;
 299		desc = dmaengine_prep_slave_sg(chan, sg, ret,
 300			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 301	}
 302
 303	if (desc) {
 304		desc->callback = mmcif_dma_complete;
 305		desc->callback_param = host;
 306		cookie = dmaengine_submit(desc);
 307		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
 308		dma_async_issue_pending(chan);
 309	}
 310	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
 311		__func__, data->sg_len, ret, cookie);
 312
 313	if (!desc) {
 314		/* DMA failed, fall back to PIO */
 315		if (ret >= 0)
 316			ret = -EIO;
 317		host->chan_rx = NULL;
 318		host->dma_active = false;
 319		dma_release_channel(chan);
 320		/* Free the Tx channel too */
 321		chan = host->chan_tx;
 322		if (chan) {
 323			host->chan_tx = NULL;
 324			dma_release_channel(chan);
 325		}
 326		dev_warn(&host->pd->dev,
 327			 "DMA failed: %d, falling back to PIO\n", ret);
 328		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 329	}
 330
 331	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
 332		desc, cookie, data->sg_len);
 333}
 334
 335static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
 336{
 337	struct mmc_data *data = host->mrq->data;
 338	struct scatterlist *sg = data->sg;
 339	struct dma_async_tx_descriptor *desc = NULL;
 340	struct dma_chan *chan = host->chan_tx;
 
 341	dma_cookie_t cookie = -EINVAL;
 342	int ret;
 343
 344	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 345			 DMA_TO_DEVICE);
 346	if (ret > 0) {
 347		host->dma_active = true;
 348		desc = dmaengine_prep_slave_sg(chan, sg, ret,
 349			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 350	}
 351
 352	if (desc) {
 353		desc->callback = mmcif_dma_complete;
 354		desc->callback_param = host;
 355		cookie = dmaengine_submit(desc);
 356		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
 357		dma_async_issue_pending(chan);
 358	}
 359	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
 360		__func__, data->sg_len, ret, cookie);
 361
 362	if (!desc) {
 363		/* DMA failed, fall back to PIO */
 364		if (ret >= 0)
 365			ret = -EIO;
 366		host->chan_tx = NULL;
 367		host->dma_active = false;
 368		dma_release_channel(chan);
 369		/* Free the Rx channel too */
 370		chan = host->chan_rx;
 371		if (chan) {
 372			host->chan_rx = NULL;
 373			dma_release_channel(chan);
 374		}
 375		dev_warn(&host->pd->dev,
 376			 "DMA failed: %d, falling back to PIO\n", ret);
 377		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 378	}
 379
 380	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
 381		desc, cookie);
 382}
 383
 384static struct dma_chan *
 385sh_mmcif_request_dma_one(struct sh_mmcif_host *host,
 386			 struct sh_mmcif_plat_data *pdata,
 387			 enum dma_transfer_direction direction)
 388{
 389	struct dma_slave_config cfg;
 390	struct dma_chan *chan;
 391	unsigned int slave_id;
 392	struct resource *res;
 393	dma_cap_mask_t mask;
 394	int ret;
 395
 396	dma_cap_zero(mask);
 397	dma_cap_set(DMA_SLAVE, mask);
 
 
 398
 399	if (pdata)
 400		slave_id = direction == DMA_MEM_TO_DEV
 401			 ? pdata->slave_id_tx : pdata->slave_id_rx;
 402	else
 403		slave_id = 0;
 404
 405	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
 406				(void *)(unsigned long)slave_id, &host->pd->dev,
 407				direction == DMA_MEM_TO_DEV ? "tx" : "rx");
 408
 409	dev_dbg(&host->pd->dev, "%s: %s: got channel %p\n", __func__,
 410		direction == DMA_MEM_TO_DEV ? "TX" : "RX", chan);
 411
 412	if (!chan)
 413		return NULL;
 414
 415	res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
 
 
 416
 417	/* In the OF case the driver will get the slave ID from the DT */
 418	cfg.slave_id = slave_id;
 419	cfg.direction = direction;
 420	cfg.dst_addr = res->start + MMCIF_CE_DATA;
 421	cfg.src_addr = 0;
 422	ret = dmaengine_slave_config(chan, &cfg);
 423	if (ret < 0) {
 424		dma_release_channel(chan);
 425		return NULL;
 
 426	}
 427
 428	return chan;
 429}
 430
 431static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
 432				 struct sh_mmcif_plat_data *pdata)
 433{
 
 434	host->dma_active = false;
 435
 436	if (pdata) {
 437		if (pdata->slave_id_tx <= 0 || pdata->slave_id_rx <= 0)
 438			return;
 439	} else if (!host->pd->dev.of_node) {
 440		return;
 
 
 
 
 
 
 
 
 
 
 441	}
 
 
 442
 443	/* We can only either use DMA for both Tx and Rx or not use it at all */
 444	host->chan_tx = sh_mmcif_request_dma_one(host, pdata, DMA_MEM_TO_DEV);
 445	if (!host->chan_tx)
 446		return;
 
 
 447
 448	host->chan_rx = sh_mmcif_request_dma_one(host, pdata, DMA_DEV_TO_MEM);
 449	if (!host->chan_rx) {
 450		dma_release_channel(host->chan_tx);
 451		host->chan_tx = NULL;
 452	}
 
 453}
 454
 455static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
 456{
 457	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 458	/* Descriptors are freed automatically */
 459	if (host->chan_tx) {
 460		struct dma_chan *chan = host->chan_tx;
 461		host->chan_tx = NULL;
 462		dma_release_channel(chan);
 463	}
 464	if (host->chan_rx) {
 465		struct dma_chan *chan = host->chan_rx;
 466		host->chan_rx = NULL;
 467		dma_release_channel(chan);
 468	}
 469
 470	host->dma_active = false;
 471}
 472
 473static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
 474{
 475	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
 
 476	bool sup_pclk = p ? p->sup_pclk : false;
 
 
 477
 478	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 479	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
 480
 481	if (!clk)
 482		return;
 483	if (sup_pclk && clk == host->clk)
 484		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
 485	else
 486		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
 487				((fls(DIV_ROUND_UP(host->clk,
 488						   clk) - 1) - 1) << 16));
 489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 490	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 491}
 492
 493static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
 494{
 495	u32 tmp;
 496
 497	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
 498
 499	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
 500	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
 501	if (host->ccs_enable)
 502		tmp |= SCCSTO_29;
 503	if (host->clk_ctrl2_enable)
 504		sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
 505	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
 506		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
 507	/* byte swap on */
 508	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
 509}
 510
 511static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
 512{
 
 513	u32 state1, state2;
 514	int ret, timeout;
 515
 516	host->sd_error = false;
 517
 518	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
 519	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
 520	dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
 521	dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
 522
 523	if (state1 & STS1_CMDSEQ) {
 524		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
 525		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
 526		for (timeout = 10000000; timeout; timeout--) {
 527			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
 528			      & STS1_CMDSEQ))
 529				break;
 530			mdelay(1);
 531		}
 532		if (!timeout) {
 533			dev_err(&host->pd->dev,
 534				"Forced end of command sequence timeout err\n");
 535			return -EIO;
 536		}
 537		sh_mmcif_sync_reset(host);
 538		dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
 539		return -EIO;
 540	}
 541
 542	if (state2 & STS2_CRC_ERR) {
 543		dev_err(&host->pd->dev, " CRC error: state %u, wait %u\n",
 544			host->state, host->wait_for);
 545		ret = -EIO;
 546	} else if (state2 & STS2_TIMEOUT_ERR) {
 547		dev_err(&host->pd->dev, " Timeout: state %u, wait %u\n",
 548			host->state, host->wait_for);
 549		ret = -ETIMEDOUT;
 550	} else {
 551		dev_dbg(&host->pd->dev, " End/Index error: state %u, wait %u\n",
 552			host->state, host->wait_for);
 553		ret = -EIO;
 554	}
 555	return ret;
 556}
 557
 558static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
 559{
 560	struct mmc_data *data = host->mrq->data;
 561
 562	host->sg_blkidx += host->blocksize;
 563
 564	/* data->sg->length must be a multiple of host->blocksize? */
 565	BUG_ON(host->sg_blkidx > data->sg->length);
 566
 567	if (host->sg_blkidx == data->sg->length) {
 568		host->sg_blkidx = 0;
 569		if (++host->sg_idx < data->sg_len)
 570			host->pio_ptr = sg_virt(++data->sg);
 571	} else {
 572		host->pio_ptr = p;
 573	}
 574
 575	return host->sg_idx != data->sg_len;
 576}
 577
 578static void sh_mmcif_single_read(struct sh_mmcif_host *host,
 579				 struct mmc_request *mrq)
 580{
 581	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 582			   BLOCK_SIZE_MASK) + 3;
 583
 584	host->wait_for = MMCIF_WAIT_FOR_READ;
 585
 586	/* buf read enable */
 587	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 588}
 589
 590static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
 591{
 
 592	struct mmc_data *data = host->mrq->data;
 593	u32 *p = sg_virt(data->sg);
 594	int i;
 595
 596	if (host->sd_error) {
 597		data->error = sh_mmcif_error_manage(host);
 598		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
 599		return false;
 600	}
 601
 602	for (i = 0; i < host->blocksize / 4; i++)
 603		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 604
 605	/* buffer read end */
 606	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
 607	host->wait_for = MMCIF_WAIT_FOR_READ_END;
 608
 609	return true;
 610}
 611
 612static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
 613				struct mmc_request *mrq)
 614{
 615	struct mmc_data *data = mrq->data;
 616
 617	if (!data->sg_len || !data->sg->length)
 618		return;
 619
 620	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 621		BLOCK_SIZE_MASK;
 622
 623	host->wait_for = MMCIF_WAIT_FOR_MREAD;
 624	host->sg_idx = 0;
 625	host->sg_blkidx = 0;
 626	host->pio_ptr = sg_virt(data->sg);
 627
 628	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 629}
 630
 631static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
 632{
 
 633	struct mmc_data *data = host->mrq->data;
 634	u32 *p = host->pio_ptr;
 635	int i;
 636
 637	if (host->sd_error) {
 638		data->error = sh_mmcif_error_manage(host);
 639		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
 640		return false;
 641	}
 642
 643	BUG_ON(!data->sg->length);
 644
 645	for (i = 0; i < host->blocksize / 4; i++)
 646		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 647
 648	if (!sh_mmcif_next_block(host, p))
 649		return false;
 650
 651	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 652
 653	return true;
 654}
 655
 656static void sh_mmcif_single_write(struct sh_mmcif_host *host,
 657					struct mmc_request *mrq)
 658{
 659	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 660			   BLOCK_SIZE_MASK) + 3;
 661
 662	host->wait_for = MMCIF_WAIT_FOR_WRITE;
 663
 664	/* buf write enable */
 665	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 666}
 667
 668static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
 669{
 
 670	struct mmc_data *data = host->mrq->data;
 671	u32 *p = sg_virt(data->sg);
 672	int i;
 673
 674	if (host->sd_error) {
 675		data->error = sh_mmcif_error_manage(host);
 676		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
 677		return false;
 678	}
 679
 680	for (i = 0; i < host->blocksize / 4; i++)
 681		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 682
 683	/* buffer write end */
 684	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
 685	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
 686
 687	return true;
 688}
 689
 690static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
 691				struct mmc_request *mrq)
 692{
 693	struct mmc_data *data = mrq->data;
 694
 695	if (!data->sg_len || !data->sg->length)
 696		return;
 697
 698	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 699		BLOCK_SIZE_MASK;
 700
 701	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
 702	host->sg_idx = 0;
 703	host->sg_blkidx = 0;
 704	host->pio_ptr = sg_virt(data->sg);
 705
 706	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 707}
 708
 709static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
 710{
 
 711	struct mmc_data *data = host->mrq->data;
 712	u32 *p = host->pio_ptr;
 713	int i;
 714
 715	if (host->sd_error) {
 716		data->error = sh_mmcif_error_manage(host);
 717		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
 718		return false;
 719	}
 720
 721	BUG_ON(!data->sg->length);
 722
 723	for (i = 0; i < host->blocksize / 4; i++)
 724		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 725
 726	if (!sh_mmcif_next_block(host, p))
 727		return false;
 728
 729	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 730
 731	return true;
 732}
 733
 734static void sh_mmcif_get_response(struct sh_mmcif_host *host,
 735						struct mmc_command *cmd)
 736{
 737	if (cmd->flags & MMC_RSP_136) {
 738		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
 739		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
 740		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
 741		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 742	} else
 743		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 744}
 745
 746static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
 747						struct mmc_command *cmd)
 748{
 749	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
 750}
 751
 752static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
 753			    struct mmc_request *mrq)
 754{
 
 755	struct mmc_data *data = mrq->data;
 756	struct mmc_command *cmd = mrq->cmd;
 757	u32 opc = cmd->opcode;
 758	u32 tmp = 0;
 759
 760	/* Response Type check */
 761	switch (mmc_resp_type(cmd)) {
 762	case MMC_RSP_NONE:
 763		tmp |= CMD_SET_RTYP_NO;
 764		break;
 765	case MMC_RSP_R1:
 766	case MMC_RSP_R1B:
 767	case MMC_RSP_R3:
 768		tmp |= CMD_SET_RTYP_6B;
 769		break;
 
 
 
 770	case MMC_RSP_R2:
 771		tmp |= CMD_SET_RTYP_17B;
 772		break;
 773	default:
 774		dev_err(&host->pd->dev, "Unsupported response type.\n");
 775		break;
 776	}
 777	switch (opc) {
 778	/* RBSY */
 779	case MMC_SLEEP_AWAKE:
 780	case MMC_SWITCH:
 781	case MMC_STOP_TRANSMISSION:
 782	case MMC_SET_WRITE_PROT:
 783	case MMC_CLR_WRITE_PROT:
 784	case MMC_ERASE:
 785		tmp |= CMD_SET_RBSY;
 786		break;
 787	}
 
 788	/* WDAT / DATW */
 789	if (data) {
 790		tmp |= CMD_SET_WDAT;
 791		switch (host->bus_width) {
 792		case MMC_BUS_WIDTH_1:
 793			tmp |= CMD_SET_DATW_1;
 794			break;
 795		case MMC_BUS_WIDTH_4:
 796			tmp |= CMD_SET_DATW_4;
 797			break;
 798		case MMC_BUS_WIDTH_8:
 799			tmp |= CMD_SET_DATW_8;
 800			break;
 801		default:
 802			dev_err(&host->pd->dev, "Unsupported bus width.\n");
 803			break;
 804		}
 805		switch (host->timing) {
 806		case MMC_TIMING_UHS_DDR50:
 807			/*
 808			 * MMC core will only set this timing, if the host
 809			 * advertises the MMC_CAP_UHS_DDR50 capability. MMCIF
 810			 * implementations with this capability, e.g. sh73a0,
 811			 * will have to set it in their platform data.
 
 812			 */
 813			tmp |= CMD_SET_DARS;
 814			break;
 815		}
 816	}
 817	/* DWEN */
 818	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
 819		tmp |= CMD_SET_DWEN;
 820	/* CMLTE/CMD12EN */
 821	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
 822		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
 823		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
 824				data->blocks << 16);
 825	}
 826	/* RIDXC[1:0] check bits */
 827	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
 828	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 829		tmp |= CMD_SET_RIDXC_BITS;
 830	/* RCRC7C[1:0] check bits */
 831	if (opc == MMC_SEND_OP_COND)
 832		tmp |= CMD_SET_CRC7C_BITS;
 833	/* RCRC7C[1:0] internal CRC7 */
 834	if (opc == MMC_ALL_SEND_CID ||
 835		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 836		tmp |= CMD_SET_CRC7C_INTERNAL;
 837
 838	return (opc << 24) | tmp;
 839}
 840
 841static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
 842			       struct mmc_request *mrq, u32 opc)
 843{
 
 
 844	switch (opc) {
 845	case MMC_READ_MULTIPLE_BLOCK:
 846		sh_mmcif_multi_read(host, mrq);
 847		return 0;
 848	case MMC_WRITE_MULTIPLE_BLOCK:
 849		sh_mmcif_multi_write(host, mrq);
 850		return 0;
 851	case MMC_WRITE_BLOCK:
 852		sh_mmcif_single_write(host, mrq);
 853		return 0;
 854	case MMC_READ_SINGLE_BLOCK:
 855	case MMC_SEND_EXT_CSD:
 856		sh_mmcif_single_read(host, mrq);
 857		return 0;
 858	default:
 859		dev_err(&host->pd->dev, "Unsupported CMD%d\n", opc);
 860		return -EINVAL;
 861	}
 862}
 863
 864static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
 865			       struct mmc_request *mrq)
 866{
 867	struct mmc_command *cmd = mrq->cmd;
 868	u32 opc = cmd->opcode;
 869	u32 mask;
 
 870
 871	switch (opc) {
 872	/* response busy check */
 873	case MMC_SLEEP_AWAKE:
 874	case MMC_SWITCH:
 875	case MMC_STOP_TRANSMISSION:
 876	case MMC_SET_WRITE_PROT:
 877	case MMC_CLR_WRITE_PROT:
 878	case MMC_ERASE:
 879		mask = MASK_START_CMD | MASK_MRBSYE;
 880		break;
 881	default:
 882		mask = MASK_START_CMD | MASK_MCRSPE;
 883		break;
 884	}
 885
 886	if (host->ccs_enable)
 887		mask |= MASK_MCCSTO;
 888
 889	if (mrq->data) {
 890		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
 891		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
 892				mrq->data->blksz);
 893	}
 894	opc = sh_mmcif_set_cmd(host, mrq);
 895
 896	if (host->ccs_enable)
 897		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
 898	else
 899		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
 900	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
 901	/* set arg */
 902	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
 903	/* set cmd */
 
 904	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
 905
 906	host->wait_for = MMCIF_WAIT_FOR_CMD;
 907	schedule_delayed_work(&host->timeout_work, host->timeout);
 
 908}
 909
 910static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
 911			      struct mmc_request *mrq)
 912{
 
 
 913	switch (mrq->cmd->opcode) {
 914	case MMC_READ_MULTIPLE_BLOCK:
 915		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
 916		break;
 917	case MMC_WRITE_MULTIPLE_BLOCK:
 918		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
 919		break;
 920	default:
 921		dev_err(&host->pd->dev, "unsupported stop cmd\n");
 922		mrq->stop->error = sh_mmcif_error_manage(host);
 923		return;
 924	}
 925
 926	host->wait_for = MMCIF_WAIT_FOR_STOP;
 927}
 928
 929static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
 930{
 931	struct sh_mmcif_host *host = mmc_priv(mmc);
 
 932	unsigned long flags;
 933
 934	spin_lock_irqsave(&host->lock, flags);
 935	if (host->state != STATE_IDLE) {
 936		dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
 
 937		spin_unlock_irqrestore(&host->lock, flags);
 938		mrq->cmd->error = -EAGAIN;
 939		mmc_request_done(mmc, mrq);
 940		return;
 941	}
 942
 943	host->state = STATE_REQUEST;
 944	spin_unlock_irqrestore(&host->lock, flags);
 945
 946	switch (mrq->cmd->opcode) {
 947	/* MMCIF does not support SD/SDIO command */
 948	case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
 949	case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
 950		if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
 951			break;
 952	case MMC_APP_CMD:
 953	case SD_IO_RW_DIRECT:
 954		host->state = STATE_IDLE;
 955		mrq->cmd->error = -ETIMEDOUT;
 956		mmc_request_done(mmc, mrq);
 957		return;
 958	default:
 959		break;
 960	}
 961
 962	host->mrq = mrq;
 963
 964	sh_mmcif_start_cmd(host, mrq);
 965}
 966
 967static int sh_mmcif_clk_update(struct sh_mmcif_host *host)
 968{
 969	int ret = clk_prepare_enable(host->hclk);
 
 
 
 
 
 
 
 
 
 
 
 970
 971	if (!ret) {
 972		host->clk = clk_get_rate(host->hclk);
 973		host->mmc->f_max = host->clk / 2;
 974		host->mmc->f_min = host->clk / 512;
 975	}
 976
 977	return ret;
 978}
 
 
 979
 980static void sh_mmcif_set_power(struct sh_mmcif_host *host, struct mmc_ios *ios)
 981{
 982	struct mmc_host *mmc = host->mmc;
 983
 984	if (!IS_ERR(mmc->supply.vmmc))
 985		/* Errors ignored... */
 986		mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
 987				      ios->power_mode ? ios->vdd : 0);
 988}
 989
 990static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
 991{
 992	struct sh_mmcif_host *host = mmc_priv(mmc);
 
 993	unsigned long flags;
 994
 995	spin_lock_irqsave(&host->lock, flags);
 996	if (host->state != STATE_IDLE) {
 997		dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
 
 998		spin_unlock_irqrestore(&host->lock, flags);
 999		return;
1000	}
1001
1002	host->state = STATE_IOS;
1003	spin_unlock_irqrestore(&host->lock, flags);
1004
1005	if (ios->power_mode == MMC_POWER_UP) {
1006		if (!host->card_present) {
1007			/* See if we also get DMA */
1008			sh_mmcif_request_dma(host, host->pd->dev.platform_data);
1009			host->card_present = true;
1010		}
1011		sh_mmcif_set_power(host, ios);
1012	} else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
1013		/* clock stop */
1014		sh_mmcif_clock_control(host, 0);
1015		if (ios->power_mode == MMC_POWER_OFF) {
1016			if (host->card_present) {
1017				sh_mmcif_release_dma(host);
1018				host->card_present = false;
1019			}
1020		}
 
 
 
 
1021		if (host->power) {
1022			pm_runtime_put_sync(&host->pd->dev);
1023			clk_disable_unprepare(host->hclk);
 
 
1024			host->power = false;
1025			if (ios->power_mode == MMC_POWER_OFF)
1026				sh_mmcif_set_power(host, ios);
1027		}
1028		host->state = STATE_IDLE;
1029		return;
1030	}
1031
1032	if (ios->clock) {
1033		if (!host->power) {
1034			sh_mmcif_clk_update(host);
1035			pm_runtime_get_sync(&host->pd->dev);
1036			host->power = true;
1037			sh_mmcif_sync_reset(host);
1038		}
 
 
1039		sh_mmcif_clock_control(host, ios->clock);
 
1040	}
1041
1042	host->timing = ios->timing;
1043	host->bus_width = ios->bus_width;
1044	host->state = STATE_IDLE;
1045}
1046
1047static int sh_mmcif_get_cd(struct mmc_host *mmc)
1048{
1049	struct sh_mmcif_host *host = mmc_priv(mmc);
1050	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
1051	int ret = mmc_gpio_get_cd(mmc);
1052
1053	if (ret >= 0)
1054		return ret;
1055
1056	if (!p || !p->get_cd)
1057		return -ENOSYS;
1058	else
1059		return p->get_cd(host->pd);
1060}
1061
1062static struct mmc_host_ops sh_mmcif_ops = {
1063	.request	= sh_mmcif_request,
1064	.set_ios	= sh_mmcif_set_ios,
1065	.get_cd		= sh_mmcif_get_cd,
1066};
1067
1068static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1069{
1070	struct mmc_command *cmd = host->mrq->cmd;
1071	struct mmc_data *data = host->mrq->data;
 
1072	long time;
1073
1074	if (host->sd_error) {
1075		switch (cmd->opcode) {
1076		case MMC_ALL_SEND_CID:
1077		case MMC_SELECT_CARD:
1078		case MMC_APP_CMD:
1079			cmd->error = -ETIMEDOUT;
1080			break;
1081		default:
1082			cmd->error = sh_mmcif_error_manage(host);
1083			break;
1084		}
1085		dev_dbg(&host->pd->dev, "CMD%d error %d\n",
1086			cmd->opcode, cmd->error);
1087		host->sd_error = false;
1088		return false;
1089	}
1090	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1091		cmd->error = 0;
1092		return false;
1093	}
1094
1095	sh_mmcif_get_response(host, cmd);
1096
1097	if (!data)
1098		return false;
1099
1100	/*
1101	 * Completion can be signalled from DMA callback and error, so, have to
1102	 * reset here, before setting .dma_active
1103	 */
1104	init_completion(&host->dma_complete);
1105
1106	if (data->flags & MMC_DATA_READ) {
1107		if (host->chan_rx)
1108			sh_mmcif_start_dma_rx(host);
1109	} else {
1110		if (host->chan_tx)
1111			sh_mmcif_start_dma_tx(host);
1112	}
1113
1114	if (!host->dma_active) {
1115		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1116		return !data->error;
1117	}
1118
1119	/* Running in the IRQ thread, can sleep */
1120	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1121							 host->timeout);
1122
1123	if (data->flags & MMC_DATA_READ)
1124		dma_unmap_sg(host->chan_rx->device->dev,
1125			     data->sg, data->sg_len,
1126			     DMA_FROM_DEVICE);
1127	else
1128		dma_unmap_sg(host->chan_tx->device->dev,
1129			     data->sg, data->sg_len,
1130			     DMA_TO_DEVICE);
1131
1132	if (host->sd_error) {
1133		dev_err(host->mmc->parent,
1134			"Error IRQ while waiting for DMA completion!\n");
1135		/* Woken up by an error IRQ: abort DMA */
1136		data->error = sh_mmcif_error_manage(host);
1137	} else if (!time) {
1138		dev_err(host->mmc->parent, "DMA timeout!\n");
1139		data->error = -ETIMEDOUT;
1140	} else if (time < 0) {
1141		dev_err(host->mmc->parent,
1142			"wait_for_completion_...() error %ld!\n", time);
1143		data->error = time;
1144	}
1145	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1146			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1147	host->dma_active = false;
1148
1149	if (data->error) {
1150		data->bytes_xfered = 0;
1151		/* Abort DMA */
1152		if (data->flags & MMC_DATA_READ)
1153			dmaengine_terminate_all(host->chan_rx);
1154		else
1155			dmaengine_terminate_all(host->chan_tx);
1156	}
1157
1158	return false;
1159}
1160
1161static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1162{
1163	struct sh_mmcif_host *host = dev_id;
1164	struct mmc_request *mrq;
 
1165	bool wait = false;
 
 
 
 
 
 
1166
1167	cancel_delayed_work_sync(&host->timeout_work);
1168
1169	mutex_lock(&host->thread_lock);
1170
1171	mrq = host->mrq;
1172	if (!mrq) {
1173		dev_dbg(&host->pd->dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1174			host->state, host->wait_for);
1175		mutex_unlock(&host->thread_lock);
1176		return IRQ_HANDLED;
1177	}
1178
1179	/*
1180	 * All handlers return true, if processing continues, and false, if the
1181	 * request has to be completed - successfully or not
1182	 */
1183	switch (host->wait_for) {
1184	case MMCIF_WAIT_FOR_REQUEST:
1185		/* We're too late, the timeout has already kicked in */
1186		mutex_unlock(&host->thread_lock);
1187		return IRQ_HANDLED;
1188	case MMCIF_WAIT_FOR_CMD:
1189		/* Wait for data? */
1190		wait = sh_mmcif_end_cmd(host);
1191		break;
1192	case MMCIF_WAIT_FOR_MREAD:
1193		/* Wait for more data? */
1194		wait = sh_mmcif_mread_block(host);
1195		break;
1196	case MMCIF_WAIT_FOR_READ:
1197		/* Wait for data end? */
1198		wait = sh_mmcif_read_block(host);
1199		break;
1200	case MMCIF_WAIT_FOR_MWRITE:
1201		/* Wait data to write? */
1202		wait = sh_mmcif_mwrite_block(host);
1203		break;
1204	case MMCIF_WAIT_FOR_WRITE:
1205		/* Wait for data end? */
1206		wait = sh_mmcif_write_block(host);
1207		break;
1208	case MMCIF_WAIT_FOR_STOP:
1209		if (host->sd_error) {
1210			mrq->stop->error = sh_mmcif_error_manage(host);
1211			dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->stop->error);
1212			break;
1213		}
1214		sh_mmcif_get_cmd12response(host, mrq->stop);
1215		mrq->stop->error = 0;
1216		break;
1217	case MMCIF_WAIT_FOR_READ_END:
1218	case MMCIF_WAIT_FOR_WRITE_END:
1219		if (host->sd_error) {
1220			mrq->data->error = sh_mmcif_error_manage(host);
1221			dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->data->error);
1222		}
1223		break;
1224	default:
1225		BUG();
1226	}
1227
1228	if (wait) {
1229		schedule_delayed_work(&host->timeout_work, host->timeout);
1230		/* Wait for more data */
1231		mutex_unlock(&host->thread_lock);
1232		return IRQ_HANDLED;
1233	}
1234
1235	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1236		struct mmc_data *data = mrq->data;
1237		if (!mrq->cmd->error && data && !data->error)
1238			data->bytes_xfered =
1239				data->blocks * data->blksz;
1240
1241		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1242			sh_mmcif_stop_cmd(host, mrq);
1243			if (!mrq->stop->error) {
1244				schedule_delayed_work(&host->timeout_work, host->timeout);
1245				mutex_unlock(&host->thread_lock);
1246				return IRQ_HANDLED;
1247			}
1248		}
1249	}
1250
1251	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1252	host->state = STATE_IDLE;
1253	host->mrq = NULL;
1254	mmc_request_done(host->mmc, mrq);
1255
1256	mutex_unlock(&host->thread_lock);
1257
1258	return IRQ_HANDLED;
1259}
1260
1261static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1262{
1263	struct sh_mmcif_host *host = dev_id;
 
1264	u32 state, mask;
1265
1266	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1267	mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1268	if (host->ccs_enable)
1269		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1270	else
1271		sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1272	sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1273
1274	if (state & ~MASK_CLEAN)
1275		dev_dbg(&host->pd->dev, "IRQ state = 0x%08x incompletely cleared\n",
1276			state);
1277
1278	if (state & INT_ERR_STS || state & ~INT_ALL) {
1279		host->sd_error = true;
1280		dev_dbg(&host->pd->dev, "int err state = 0x%08x\n", state);
1281	}
1282	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1283		if (!host->mrq)
1284			dev_dbg(&host->pd->dev, "NULL IRQ state = 0x%08x\n", state);
1285		if (!host->dma_active)
1286			return IRQ_WAKE_THREAD;
1287		else if (host->sd_error)
1288			mmcif_dma_complete(host);
1289	} else {
1290		dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1291	}
1292
1293	return IRQ_HANDLED;
1294}
1295
1296static void mmcif_timeout_work(struct work_struct *work)
1297{
1298	struct delayed_work *d = container_of(work, struct delayed_work, work);
1299	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1300	struct mmc_request *mrq = host->mrq;
 
1301	unsigned long flags;
1302
1303	if (host->dying)
1304		/* Don't run after mmc_remove_host() */
1305		return;
1306
1307	dev_err(&host->pd->dev, "Timeout waiting for %u on CMD%u\n",
1308		host->wait_for, mrq->cmd->opcode);
1309
1310	spin_lock_irqsave(&host->lock, flags);
1311	if (host->state == STATE_IDLE) {
1312		spin_unlock_irqrestore(&host->lock, flags);
1313		return;
1314	}
1315
 
 
 
1316	host->state = STATE_TIMEOUT;
1317	spin_unlock_irqrestore(&host->lock, flags);
1318
1319	/*
1320	 * Handle races with cancel_delayed_work(), unless
1321	 * cancel_delayed_work_sync() is used
1322	 */
1323	switch (host->wait_for) {
1324	case MMCIF_WAIT_FOR_CMD:
1325		mrq->cmd->error = sh_mmcif_error_manage(host);
1326		break;
1327	case MMCIF_WAIT_FOR_STOP:
1328		mrq->stop->error = sh_mmcif_error_manage(host);
1329		break;
1330	case MMCIF_WAIT_FOR_MREAD:
1331	case MMCIF_WAIT_FOR_MWRITE:
1332	case MMCIF_WAIT_FOR_READ:
1333	case MMCIF_WAIT_FOR_WRITE:
1334	case MMCIF_WAIT_FOR_READ_END:
1335	case MMCIF_WAIT_FOR_WRITE_END:
1336		mrq->data->error = sh_mmcif_error_manage(host);
1337		break;
1338	default:
1339		BUG();
1340	}
1341
1342	host->state = STATE_IDLE;
1343	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1344	host->mrq = NULL;
1345	mmc_request_done(host->mmc, mrq);
1346}
1347
1348static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1349{
1350	struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data;
 
1351	struct mmc_host *mmc = host->mmc;
1352
1353	mmc_regulator_get_supply(mmc);
1354
1355	if (!pd)
1356		return;
1357
1358	if (!mmc->ocr_avail)
1359		mmc->ocr_avail = pd->ocr;
1360	else if (pd->ocr)
1361		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1362}
1363
1364static int sh_mmcif_probe(struct platform_device *pdev)
1365{
1366	int ret = 0, irq[2];
1367	struct mmc_host *mmc;
1368	struct sh_mmcif_host *host;
1369	struct sh_mmcif_plat_data *pd = pdev->dev.platform_data;
1370	struct resource *res;
1371	void __iomem *reg;
1372	const char *name;
1373
1374	irq[0] = platform_get_irq(pdev, 0);
1375	irq[1] = platform_get_irq(pdev, 1);
1376	if (irq[0] < 0) {
1377		dev_err(&pdev->dev, "Get irq error\n");
1378		return -ENXIO;
1379	}
1380	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1381	if (!res) {
1382		dev_err(&pdev->dev, "platform_get_resource error.\n");
1383		return -ENXIO;
1384	}
1385	reg = ioremap(res->start, resource_size(res));
1386	if (!reg) {
1387		dev_err(&pdev->dev, "ioremap error.\n");
1388		return -ENOMEM;
1389	}
1390
1391	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1392	if (!mmc) {
1393		ret = -ENOMEM;
1394		goto ealloch;
1395	}
1396
1397	ret = mmc_of_parse(mmc);
1398	if (ret < 0)
1399		goto eofparse;
1400
1401	host		= mmc_priv(mmc);
1402	host->mmc	= mmc;
1403	host->addr	= reg;
1404	host->timeout	= msecs_to_jiffies(1000);
1405	host->ccs_enable = !pd || !pd->ccs_unsupported;
1406	host->clk_ctrl2_enable = pd && pd->clk_ctrl2_present;
1407
1408	host->pd = pdev;
1409
1410	spin_lock_init(&host->lock);
1411
1412	mmc->ops = &sh_mmcif_ops;
1413	sh_mmcif_init_ocr(host);
1414
1415	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
 
 
 
1416	if (pd && pd->caps)
1417		mmc->caps |= pd->caps;
1418	mmc->max_segs = 32;
1419	mmc->max_blk_size = 512;
1420	mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1421	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1422	mmc->max_seg_size = mmc->max_req_size;
1423
1424	platform_set_drvdata(pdev, host);
1425
1426	pm_runtime_enable(&pdev->dev);
1427	host->power = false;
 
 
 
 
1428
1429	host->hclk = clk_get(&pdev->dev, NULL);
1430	if (IS_ERR(host->hclk)) {
1431		ret = PTR_ERR(host->hclk);
1432		dev_err(&pdev->dev, "cannot get clock: %d\n", ret);
1433		goto eclkget;
1434	}
1435	ret = sh_mmcif_clk_update(host);
1436	if (ret < 0)
1437		goto eclkupdate;
1438
1439	ret = pm_runtime_resume(&pdev->dev);
 
 
 
 
 
1440	if (ret < 0)
1441		goto eresume;
1442
1443	INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1444
1445	sh_mmcif_sync_reset(host);
1446	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1447
1448	name = irq[1] < 0 ? dev_name(&pdev->dev) : "sh_mmc:error";
1449	ret = request_threaded_irq(irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, name, host);
 
1450	if (ret) {
1451		dev_err(&pdev->dev, "request_irq error (%s)\n", name);
1452		goto ereqirq0;
1453	}
1454	if (irq[1] >= 0) {
1455		ret = request_threaded_irq(irq[1], sh_mmcif_intr, sh_mmcif_irqt,
1456					   0, "sh_mmc:int", host);
 
1457		if (ret) {
1458			dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1459			goto ereqirq1;
1460		}
1461	}
1462
1463	if (pd && pd->use_cd_gpio) {
1464		ret = mmc_gpio_request_cd(mmc, pd->cd_gpio, 0);
1465		if (ret < 0)
1466			goto erqcd;
1467	}
1468
1469	mutex_init(&host->thread_lock);
1470
1471	clk_disable_unprepare(host->hclk);
1472	ret = mmc_add_host(mmc);
1473	if (ret < 0)
1474		goto emmcaddh;
 
 
1475
1476	dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
 
 
1477
1478	dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1479	dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1480		sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1481	return ret;
1482
1483emmcaddh:
1484erqcd:
1485	if (irq[1] >= 0)
1486		free_irq(irq[1], host);
1487ereqirq1:
1488	free_irq(irq[0], host);
1489ereqirq0:
1490	pm_runtime_suspend(&pdev->dev);
1491eresume:
1492	clk_disable_unprepare(host->hclk);
1493eclkupdate:
1494	clk_put(host->hclk);
1495eclkget:
1496	pm_runtime_disable(&pdev->dev);
1497eofparse:
1498	mmc_free_host(mmc);
1499ealloch:
1500	iounmap(reg);
1501	return ret;
1502}
1503
1504static int sh_mmcif_remove(struct platform_device *pdev)
1505{
1506	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1507	int irq[2];
1508
1509	host->dying = true;
1510	clk_prepare_enable(host->hclk);
1511	pm_runtime_get_sync(&pdev->dev);
1512
1513	dev_pm_qos_hide_latency_limit(&pdev->dev);
1514
1515	mmc_remove_host(host->mmc);
1516	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1517
1518	/*
1519	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1520	 * mmc_remove_host() call above. But swapping order doesn't help either
1521	 * (a query on the linux-mmc mailing list didn't bring any replies).
1522	 */
1523	cancel_delayed_work_sync(&host->timeout_work);
1524
1525	if (host->addr)
1526		iounmap(host->addr);
1527
1528	irq[0] = platform_get_irq(pdev, 0);
1529	irq[1] = platform_get_irq(pdev, 1);
1530
1531	free_irq(irq[0], host);
1532	if (irq[1] >= 0)
1533		free_irq(irq[1], host);
1534
1535	clk_disable_unprepare(host->hclk);
1536	mmc_free_host(host->mmc);
1537	pm_runtime_put_sync(&pdev->dev);
1538	pm_runtime_disable(&pdev->dev);
1539
1540	return 0;
1541}
1542
1543#ifdef CONFIG_PM_SLEEP
1544static int sh_mmcif_suspend(struct device *dev)
1545{
1546	struct sh_mmcif_host *host = dev_get_drvdata(dev);
1547
 
1548	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
 
1549
1550	return 0;
1551}
1552
1553static int sh_mmcif_resume(struct device *dev)
1554{
1555	return 0;
1556}
1557#endif
1558
1559static const struct of_device_id mmcif_of_match[] = {
1560	{ .compatible = "renesas,sh-mmcif" },
1561	{ }
1562};
1563MODULE_DEVICE_TABLE(of, mmcif_of_match);
1564
1565static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1566	SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1567};
1568
1569static struct platform_driver sh_mmcif_driver = {
1570	.probe		= sh_mmcif_probe,
1571	.remove		= sh_mmcif_remove,
1572	.driver		= {
1573		.name	= DRIVER_NAME,
 
1574		.pm	= &sh_mmcif_dev_pm_ops,
1575		.owner	= THIS_MODULE,
1576		.of_match_table = mmcif_of_match,
1577	},
1578};
1579
1580module_platform_driver(sh_mmcif_driver);
1581
1582MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1583MODULE_LICENSE("GPL");
1584MODULE_ALIAS("platform:" DRIVER_NAME);
1585MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");