Loading...
1/*
2 * drivers/mmc/host/omap_hsmmc.c
3 *
4 * Driver for OMAP2430/3430 MMC controller.
5 *
6 * Copyright (C) 2007 Texas Instruments.
7 *
8 * Authors:
9 * Syed Mohammed Khasim <x0khasim@ti.com>
10 * Madhusudhan <madhu.cr@ti.com>
11 * Mohit Jalori <mjalori@ti.com>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
18#include <linux/module.h>
19#include <linux/init.h>
20#include <linux/kernel.h>
21#include <linux/debugfs.h>
22#include <linux/dmaengine.h>
23#include <linux/seq_file.h>
24#include <linux/sizes.h>
25#include <linux/interrupt.h>
26#include <linux/delay.h>
27#include <linux/dma-mapping.h>
28#include <linux/platform_device.h>
29#include <linux/timer.h>
30#include <linux/clk.h>
31#include <linux/of.h>
32#include <linux/of_irq.h>
33#include <linux/of_device.h>
34#include <linux/mmc/host.h>
35#include <linux/mmc/core.h>
36#include <linux/mmc/mmc.h>
37#include <linux/mmc/slot-gpio.h>
38#include <linux/io.h>
39#include <linux/irq.h>
40#include <linux/regulator/consumer.h>
41#include <linux/pinctrl/consumer.h>
42#include <linux/pm_runtime.h>
43#include <linux/pm_wakeirq.h>
44#include <linux/platform_data/hsmmc-omap.h>
45
46/* OMAP HSMMC Host Controller Registers */
47#define OMAP_HSMMC_SYSSTATUS 0x0014
48#define OMAP_HSMMC_CON 0x002C
49#define OMAP_HSMMC_SDMASA 0x0100
50#define OMAP_HSMMC_BLK 0x0104
51#define OMAP_HSMMC_ARG 0x0108
52#define OMAP_HSMMC_CMD 0x010C
53#define OMAP_HSMMC_RSP10 0x0110
54#define OMAP_HSMMC_RSP32 0x0114
55#define OMAP_HSMMC_RSP54 0x0118
56#define OMAP_HSMMC_RSP76 0x011C
57#define OMAP_HSMMC_DATA 0x0120
58#define OMAP_HSMMC_PSTATE 0x0124
59#define OMAP_HSMMC_HCTL 0x0128
60#define OMAP_HSMMC_SYSCTL 0x012C
61#define OMAP_HSMMC_STAT 0x0130
62#define OMAP_HSMMC_IE 0x0134
63#define OMAP_HSMMC_ISE 0x0138
64#define OMAP_HSMMC_AC12 0x013C
65#define OMAP_HSMMC_CAPA 0x0140
66
67#define VS18 (1 << 26)
68#define VS30 (1 << 25)
69#define HSS (1 << 21)
70#define SDVS18 (0x5 << 9)
71#define SDVS30 (0x6 << 9)
72#define SDVS33 (0x7 << 9)
73#define SDVS_MASK 0x00000E00
74#define SDVSCLR 0xFFFFF1FF
75#define SDVSDET 0x00000400
76#define AUTOIDLE 0x1
77#define SDBP (1 << 8)
78#define DTO 0xe
79#define ICE 0x1
80#define ICS 0x2
81#define CEN (1 << 2)
82#define CLKD_MAX 0x3FF /* max clock divisor: 1023 */
83#define CLKD_MASK 0x0000FFC0
84#define CLKD_SHIFT 6
85#define DTO_MASK 0x000F0000
86#define DTO_SHIFT 16
87#define INIT_STREAM (1 << 1)
88#define ACEN_ACMD23 (2 << 2)
89#define DP_SELECT (1 << 21)
90#define DDIR (1 << 4)
91#define DMAE 0x1
92#define MSBS (1 << 5)
93#define BCE (1 << 1)
94#define FOUR_BIT (1 << 1)
95#define HSPE (1 << 2)
96#define IWE (1 << 24)
97#define DDR (1 << 19)
98#define CLKEXTFREE (1 << 16)
99#define CTPL (1 << 11)
100#define DW8 (1 << 5)
101#define OD 0x1
102#define STAT_CLEAR 0xFFFFFFFF
103#define INIT_STREAM_CMD 0x00000000
104#define DUAL_VOLT_OCR_BIT 7
105#define SRC (1 << 25)
106#define SRD (1 << 26)
107#define SOFTRESET (1 << 1)
108
109/* PSTATE */
110#define DLEV_DAT(x) (1 << (20 + (x)))
111
112/* Interrupt masks for IE and ISE register */
113#define CC_EN (1 << 0)
114#define TC_EN (1 << 1)
115#define BWR_EN (1 << 4)
116#define BRR_EN (1 << 5)
117#define CIRQ_EN (1 << 8)
118#define ERR_EN (1 << 15)
119#define CTO_EN (1 << 16)
120#define CCRC_EN (1 << 17)
121#define CEB_EN (1 << 18)
122#define CIE_EN (1 << 19)
123#define DTO_EN (1 << 20)
124#define DCRC_EN (1 << 21)
125#define DEB_EN (1 << 22)
126#define ACE_EN (1 << 24)
127#define CERR_EN (1 << 28)
128#define BADA_EN (1 << 29)
129
130#define INT_EN_MASK (BADA_EN | CERR_EN | ACE_EN | DEB_EN | DCRC_EN |\
131 DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \
132 BRR_EN | BWR_EN | TC_EN | CC_EN)
133
134#define CNI (1 << 7)
135#define ACIE (1 << 4)
136#define ACEB (1 << 3)
137#define ACCE (1 << 2)
138#define ACTO (1 << 1)
139#define ACNE (1 << 0)
140
141#define MMC_AUTOSUSPEND_DELAY 100
142#define MMC_TIMEOUT_MS 20 /* 20 mSec */
143#define MMC_TIMEOUT_US 20000 /* 20000 micro Sec */
144#define OMAP_MMC_MIN_CLOCK 400000
145#define OMAP_MMC_MAX_CLOCK 52000000
146#define DRIVER_NAME "omap_hsmmc"
147
148/*
149 * One controller can have multiple slots, like on some omap boards using
150 * omap.c controller driver. Luckily this is not currently done on any known
151 * omap_hsmmc.c device.
152 */
153#define mmc_pdata(host) host->pdata
154
155/*
156 * MMC Host controller read/write API's
157 */
158#define OMAP_HSMMC_READ(base, reg) \
159 __raw_readl((base) + OMAP_HSMMC_##reg)
160
161#define OMAP_HSMMC_WRITE(base, reg, val) \
162 __raw_writel((val), (base) + OMAP_HSMMC_##reg)
163
164struct omap_hsmmc_next {
165 unsigned int dma_len;
166 s32 cookie;
167};
168
169struct omap_hsmmc_host {
170 struct device *dev;
171 struct mmc_host *mmc;
172 struct mmc_request *mrq;
173 struct mmc_command *cmd;
174 struct mmc_data *data;
175 struct clk *fclk;
176 struct clk *dbclk;
177 struct regulator *pbias;
178 bool pbias_enabled;
179 void __iomem *base;
180 bool vqmmc_enabled;
181 resource_size_t mapbase;
182 spinlock_t irq_lock; /* Prevent races with irq handler */
183 unsigned int dma_len;
184 unsigned int dma_sg_idx;
185 unsigned char bus_mode;
186 unsigned char power_mode;
187 int suspended;
188 u32 con;
189 u32 hctl;
190 u32 sysctl;
191 u32 capa;
192 int irq;
193 int wake_irq;
194 int use_dma, dma_ch;
195 struct dma_chan *tx_chan;
196 struct dma_chan *rx_chan;
197 int response_busy;
198 int context_loss;
199 int reqs_blocked;
200 int req_in_progress;
201 unsigned long clk_rate;
202 unsigned int flags;
203#define AUTO_CMD23 (1 << 0) /* Auto CMD23 support */
204#define HSMMC_SDIO_IRQ_ENABLED (1 << 1) /* SDIO irq enabled */
205 struct omap_hsmmc_next next_data;
206 struct omap_hsmmc_platform_data *pdata;
207};
208
209struct omap_mmc_of_data {
210 u32 reg_offset;
211 u8 controller_flags;
212};
213
214static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host);
215
216static int omap_hsmmc_enable_supply(struct mmc_host *mmc)
217{
218 int ret;
219 struct omap_hsmmc_host *host = mmc_priv(mmc);
220 struct mmc_ios *ios = &mmc->ios;
221
222 if (!IS_ERR(mmc->supply.vmmc)) {
223 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
224 if (ret)
225 return ret;
226 }
227
228 /* Enable interface voltage rail, if needed */
229 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
230 ret = regulator_enable(mmc->supply.vqmmc);
231 if (ret) {
232 dev_err(mmc_dev(mmc), "vmmc_aux reg enable failed\n");
233 goto err_vqmmc;
234 }
235 host->vqmmc_enabled = true;
236 }
237
238 return 0;
239
240err_vqmmc:
241 if (!IS_ERR(mmc->supply.vmmc))
242 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
243
244 return ret;
245}
246
247static int omap_hsmmc_disable_supply(struct mmc_host *mmc)
248{
249 int ret;
250 int status;
251 struct omap_hsmmc_host *host = mmc_priv(mmc);
252
253 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
254 ret = regulator_disable(mmc->supply.vqmmc);
255 if (ret) {
256 dev_err(mmc_dev(mmc), "vmmc_aux reg disable failed\n");
257 return ret;
258 }
259 host->vqmmc_enabled = false;
260 }
261
262 if (!IS_ERR(mmc->supply.vmmc)) {
263 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
264 if (ret)
265 goto err_set_ocr;
266 }
267
268 return 0;
269
270err_set_ocr:
271 if (!IS_ERR(mmc->supply.vqmmc)) {
272 status = regulator_enable(mmc->supply.vqmmc);
273 if (status)
274 dev_err(mmc_dev(mmc), "vmmc_aux re-enable failed\n");
275 }
276
277 return ret;
278}
279
280static int omap_hsmmc_set_pbias(struct omap_hsmmc_host *host, bool power_on)
281{
282 int ret;
283
284 if (IS_ERR(host->pbias))
285 return 0;
286
287 if (power_on) {
288 if (!host->pbias_enabled) {
289 ret = regulator_enable(host->pbias);
290 if (ret) {
291 dev_err(host->dev, "pbias reg enable fail\n");
292 return ret;
293 }
294 host->pbias_enabled = true;
295 }
296 } else {
297 if (host->pbias_enabled) {
298 ret = regulator_disable(host->pbias);
299 if (ret) {
300 dev_err(host->dev, "pbias reg disable fail\n");
301 return ret;
302 }
303 host->pbias_enabled = false;
304 }
305 }
306
307 return 0;
308}
309
310static int omap_hsmmc_set_power(struct omap_hsmmc_host *host, int power_on)
311{
312 struct mmc_host *mmc = host->mmc;
313 int ret = 0;
314
315 /*
316 * If we don't see a Vcc regulator, assume it's a fixed
317 * voltage always-on regulator.
318 */
319 if (IS_ERR(mmc->supply.vmmc))
320 return 0;
321
322 ret = omap_hsmmc_set_pbias(host, false);
323 if (ret)
324 return ret;
325
326 /*
327 * Assume Vcc regulator is used only to power the card ... OMAP
328 * VDDS is used to power the pins, optionally with a transceiver to
329 * support cards using voltages other than VDDS (1.8V nominal). When a
330 * transceiver is used, DAT3..7 are muxed as transceiver control pins.
331 *
332 * In some cases this regulator won't support enable/disable;
333 * e.g. it's a fixed rail for a WLAN chip.
334 *
335 * In other cases vcc_aux switches interface power. Example, for
336 * eMMC cards it represents VccQ. Sometimes transceivers or SDIO
337 * chips/cards need an interface voltage rail too.
338 */
339 if (power_on) {
340 ret = omap_hsmmc_enable_supply(mmc);
341 if (ret)
342 return ret;
343
344 ret = omap_hsmmc_set_pbias(host, true);
345 if (ret)
346 goto err_set_voltage;
347 } else {
348 ret = omap_hsmmc_disable_supply(mmc);
349 if (ret)
350 return ret;
351 }
352
353 return 0;
354
355err_set_voltage:
356 omap_hsmmc_disable_supply(mmc);
357
358 return ret;
359}
360
361static int omap_hsmmc_disable_boot_regulator(struct regulator *reg)
362{
363 int ret;
364
365 if (IS_ERR(reg))
366 return 0;
367
368 if (regulator_is_enabled(reg)) {
369 ret = regulator_enable(reg);
370 if (ret)
371 return ret;
372
373 ret = regulator_disable(reg);
374 if (ret)
375 return ret;
376 }
377
378 return 0;
379}
380
381static int omap_hsmmc_disable_boot_regulators(struct omap_hsmmc_host *host)
382{
383 struct mmc_host *mmc = host->mmc;
384 int ret;
385
386 /*
387 * disable regulators enabled during boot and get the usecount
388 * right so that regulators can be enabled/disabled by checking
389 * the return value of regulator_is_enabled
390 */
391 ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vmmc);
392 if (ret) {
393 dev_err(host->dev, "fail to disable boot enabled vmmc reg\n");
394 return ret;
395 }
396
397 ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vqmmc);
398 if (ret) {
399 dev_err(host->dev,
400 "fail to disable boot enabled vmmc_aux reg\n");
401 return ret;
402 }
403
404 ret = omap_hsmmc_disable_boot_regulator(host->pbias);
405 if (ret) {
406 dev_err(host->dev,
407 "failed to disable boot enabled pbias reg\n");
408 return ret;
409 }
410
411 return 0;
412}
413
414static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
415{
416 int ret;
417 struct mmc_host *mmc = host->mmc;
418
419
420 ret = mmc_regulator_get_supply(mmc);
421 if (ret)
422 return ret;
423
424 /* Allow an aux regulator */
425 if (IS_ERR(mmc->supply.vqmmc)) {
426 mmc->supply.vqmmc = devm_regulator_get_optional(host->dev,
427 "vmmc_aux");
428 if (IS_ERR(mmc->supply.vqmmc)) {
429 ret = PTR_ERR(mmc->supply.vqmmc);
430 if ((ret != -ENODEV) && host->dev->of_node)
431 return ret;
432 dev_dbg(host->dev, "unable to get vmmc_aux regulator %ld\n",
433 PTR_ERR(mmc->supply.vqmmc));
434 }
435 }
436
437 host->pbias = devm_regulator_get_optional(host->dev, "pbias");
438 if (IS_ERR(host->pbias)) {
439 ret = PTR_ERR(host->pbias);
440 if ((ret != -ENODEV) && host->dev->of_node) {
441 dev_err(host->dev,
442 "SD card detect fail? enable CONFIG_REGULATOR_PBIAS\n");
443 return ret;
444 }
445 dev_dbg(host->dev, "unable to get pbias regulator %ld\n",
446 PTR_ERR(host->pbias));
447 }
448
449 /* For eMMC do not power off when not in sleep state */
450 if (mmc_pdata(host)->no_regulator_off_init)
451 return 0;
452
453 ret = omap_hsmmc_disable_boot_regulators(host);
454 if (ret)
455 return ret;
456
457 return 0;
458}
459
460/*
461 * Start clock to the card
462 */
463static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host)
464{
465 OMAP_HSMMC_WRITE(host->base, SYSCTL,
466 OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
467}
468
469/*
470 * Stop clock to the card
471 */
472static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
473{
474 OMAP_HSMMC_WRITE(host->base, SYSCTL,
475 OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
476 if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
477 dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n");
478}
479
480static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host,
481 struct mmc_command *cmd)
482{
483 u32 irq_mask = INT_EN_MASK;
484 unsigned long flags;
485
486 if (host->use_dma)
487 irq_mask &= ~(BRR_EN | BWR_EN);
488
489 /* Disable timeout for erases */
490 if (cmd->opcode == MMC_ERASE)
491 irq_mask &= ~DTO_EN;
492
493 spin_lock_irqsave(&host->irq_lock, flags);
494 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
495 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
496
497 /* latch pending CIRQ, but don't signal MMC core */
498 if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
499 irq_mask |= CIRQ_EN;
500 OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
501 spin_unlock_irqrestore(&host->irq_lock, flags);
502}
503
504static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
505{
506 u32 irq_mask = 0;
507 unsigned long flags;
508
509 spin_lock_irqsave(&host->irq_lock, flags);
510 /* no transfer running but need to keep cirq if enabled */
511 if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
512 irq_mask |= CIRQ_EN;
513 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
514 OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
515 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
516 spin_unlock_irqrestore(&host->irq_lock, flags);
517}
518
519/* Calculate divisor for the given clock frequency */
520static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios)
521{
522 u16 dsor = 0;
523
524 if (ios->clock) {
525 dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock);
526 if (dsor > CLKD_MAX)
527 dsor = CLKD_MAX;
528 }
529
530 return dsor;
531}
532
533static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host)
534{
535 struct mmc_ios *ios = &host->mmc->ios;
536 unsigned long regval;
537 unsigned long timeout;
538 unsigned long clkdiv;
539
540 dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock);
541
542 omap_hsmmc_stop_clock(host);
543
544 regval = OMAP_HSMMC_READ(host->base, SYSCTL);
545 regval = regval & ~(CLKD_MASK | DTO_MASK);
546 clkdiv = calc_divisor(host, ios);
547 regval = regval | (clkdiv << 6) | (DTO << 16);
548 OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
549 OMAP_HSMMC_WRITE(host->base, SYSCTL,
550 OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
551
552 /* Wait till the ICS bit is set */
553 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
554 while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
555 && time_before(jiffies, timeout))
556 cpu_relax();
557
558 /*
559 * Enable High-Speed Support
560 * Pre-Requisites
561 * - Controller should support High-Speed-Enable Bit
562 * - Controller should not be using DDR Mode
563 * - Controller should advertise that it supports High Speed
564 * in capabilities register
565 * - MMC/SD clock coming out of controller > 25MHz
566 */
567 if ((mmc_pdata(host)->features & HSMMC_HAS_HSPE_SUPPORT) &&
568 (ios->timing != MMC_TIMING_MMC_DDR52) &&
569 (ios->timing != MMC_TIMING_UHS_DDR50) &&
570 ((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) {
571 regval = OMAP_HSMMC_READ(host->base, HCTL);
572 if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000)
573 regval |= HSPE;
574 else
575 regval &= ~HSPE;
576
577 OMAP_HSMMC_WRITE(host->base, HCTL, regval);
578 }
579
580 omap_hsmmc_start_clock(host);
581}
582
583static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host)
584{
585 struct mmc_ios *ios = &host->mmc->ios;
586 u32 con;
587
588 con = OMAP_HSMMC_READ(host->base, CON);
589 if (ios->timing == MMC_TIMING_MMC_DDR52 ||
590 ios->timing == MMC_TIMING_UHS_DDR50)
591 con |= DDR; /* configure in DDR mode */
592 else
593 con &= ~DDR;
594 switch (ios->bus_width) {
595 case MMC_BUS_WIDTH_8:
596 OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
597 break;
598 case MMC_BUS_WIDTH_4:
599 OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
600 OMAP_HSMMC_WRITE(host->base, HCTL,
601 OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
602 break;
603 case MMC_BUS_WIDTH_1:
604 OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
605 OMAP_HSMMC_WRITE(host->base, HCTL,
606 OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
607 break;
608 }
609}
610
611static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host)
612{
613 struct mmc_ios *ios = &host->mmc->ios;
614 u32 con;
615
616 con = OMAP_HSMMC_READ(host->base, CON);
617 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
618 OMAP_HSMMC_WRITE(host->base, CON, con | OD);
619 else
620 OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
621}
622
623#ifdef CONFIG_PM
624
625/*
626 * Restore the MMC host context, if it was lost as result of a
627 * power state change.
628 */
629static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
630{
631 struct mmc_ios *ios = &host->mmc->ios;
632 u32 hctl, capa;
633 unsigned long timeout;
634
635 if (host->con == OMAP_HSMMC_READ(host->base, CON) &&
636 host->hctl == OMAP_HSMMC_READ(host->base, HCTL) &&
637 host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) &&
638 host->capa == OMAP_HSMMC_READ(host->base, CAPA))
639 return 0;
640
641 host->context_loss++;
642
643 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
644 if (host->power_mode != MMC_POWER_OFF &&
645 (1 << ios->vdd) <= MMC_VDD_23_24)
646 hctl = SDVS18;
647 else
648 hctl = SDVS30;
649 capa = VS30 | VS18;
650 } else {
651 hctl = SDVS18;
652 capa = VS18;
653 }
654
655 if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
656 hctl |= IWE;
657
658 OMAP_HSMMC_WRITE(host->base, HCTL,
659 OMAP_HSMMC_READ(host->base, HCTL) | hctl);
660
661 OMAP_HSMMC_WRITE(host->base, CAPA,
662 OMAP_HSMMC_READ(host->base, CAPA) | capa);
663
664 OMAP_HSMMC_WRITE(host->base, HCTL,
665 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
666
667 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
668 while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
669 && time_before(jiffies, timeout))
670 ;
671
672 OMAP_HSMMC_WRITE(host->base, ISE, 0);
673 OMAP_HSMMC_WRITE(host->base, IE, 0);
674 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
675
676 /* Do not initialize card-specific things if the power is off */
677 if (host->power_mode == MMC_POWER_OFF)
678 goto out;
679
680 omap_hsmmc_set_bus_width(host);
681
682 omap_hsmmc_set_clock(host);
683
684 omap_hsmmc_set_bus_mode(host);
685
686out:
687 dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n",
688 host->context_loss);
689 return 0;
690}
691
692/*
693 * Save the MMC host context (store the number of power state changes so far).
694 */
695static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
696{
697 host->con = OMAP_HSMMC_READ(host->base, CON);
698 host->hctl = OMAP_HSMMC_READ(host->base, HCTL);
699 host->sysctl = OMAP_HSMMC_READ(host->base, SYSCTL);
700 host->capa = OMAP_HSMMC_READ(host->base, CAPA);
701}
702
703#else
704
705static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
706{
707}
708
709#endif
710
711/*
712 * Send init stream sequence to card
713 * before sending IDLE command
714 */
715static void send_init_stream(struct omap_hsmmc_host *host)
716{
717 int reg = 0;
718 unsigned long timeout;
719
720 disable_irq(host->irq);
721
722 OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
723 OMAP_HSMMC_WRITE(host->base, CON,
724 OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
725 OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);
726
727 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
728 while ((reg != CC_EN) && time_before(jiffies, timeout))
729 reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN;
730
731 OMAP_HSMMC_WRITE(host->base, CON,
732 OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
733
734 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
735 OMAP_HSMMC_READ(host->base, STAT);
736
737 enable_irq(host->irq);
738}
739
740static ssize_t
741omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
742 char *buf)
743{
744 struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
745 struct omap_hsmmc_host *host = mmc_priv(mmc);
746
747 return sprintf(buf, "%s\n", mmc_pdata(host)->name);
748}
749
750static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
751
752/*
753 * Configure the response type and send the cmd.
754 */
755static void
756omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
757 struct mmc_data *data)
758{
759 int cmdreg = 0, resptype = 0, cmdtype = 0;
760
761 dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
762 mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
763 host->cmd = cmd;
764
765 omap_hsmmc_enable_irq(host, cmd);
766
767 host->response_busy = 0;
768 if (cmd->flags & MMC_RSP_PRESENT) {
769 if (cmd->flags & MMC_RSP_136)
770 resptype = 1;
771 else if (cmd->flags & MMC_RSP_BUSY) {
772 resptype = 3;
773 host->response_busy = 1;
774 } else
775 resptype = 2;
776 }
777
778 /*
779 * Unlike OMAP1 controller, the cmdtype does not seem to be based on
780 * ac, bc, adtc, bcr. Only commands ending an open ended transfer need
781 * a val of 0x3, rest 0x0.
782 */
783 if (cmd == host->mrq->stop)
784 cmdtype = 0x3;
785
786 cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
787
788 if ((host->flags & AUTO_CMD23) && mmc_op_multi(cmd->opcode) &&
789 host->mrq->sbc) {
790 cmdreg |= ACEN_ACMD23;
791 OMAP_HSMMC_WRITE(host->base, SDMASA, host->mrq->sbc->arg);
792 }
793 if (data) {
794 cmdreg |= DP_SELECT | MSBS | BCE;
795 if (data->flags & MMC_DATA_READ)
796 cmdreg |= DDIR;
797 else
798 cmdreg &= ~(DDIR);
799 }
800
801 if (host->use_dma)
802 cmdreg |= DMAE;
803
804 host->req_in_progress = 1;
805
806 OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
807 OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
808}
809
810static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host,
811 struct mmc_data *data)
812{
813 return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
814}
815
816static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
817{
818 int dma_ch;
819 unsigned long flags;
820
821 spin_lock_irqsave(&host->irq_lock, flags);
822 host->req_in_progress = 0;
823 dma_ch = host->dma_ch;
824 spin_unlock_irqrestore(&host->irq_lock, flags);
825
826 omap_hsmmc_disable_irq(host);
827 /* Do not complete the request if DMA is still in progress */
828 if (mrq->data && host->use_dma && dma_ch != -1)
829 return;
830 host->mrq = NULL;
831 mmc_request_done(host->mmc, mrq);
832}
833
834/*
835 * Notify the transfer complete to MMC core
836 */
837static void
838omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
839{
840 if (!data) {
841 struct mmc_request *mrq = host->mrq;
842
843 /* TC before CC from CMD6 - don't know why, but it happens */
844 if (host->cmd && host->cmd->opcode == 6 &&
845 host->response_busy) {
846 host->response_busy = 0;
847 return;
848 }
849
850 omap_hsmmc_request_done(host, mrq);
851 return;
852 }
853
854 host->data = NULL;
855
856 if (!data->error)
857 data->bytes_xfered += data->blocks * (data->blksz);
858 else
859 data->bytes_xfered = 0;
860
861 if (data->stop && (data->error || !host->mrq->sbc))
862 omap_hsmmc_start_command(host, data->stop, NULL);
863 else
864 omap_hsmmc_request_done(host, data->mrq);
865}
866
867/*
868 * Notify the core about command completion
869 */
870static void
871omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
872{
873 if (host->mrq->sbc && (host->cmd == host->mrq->sbc) &&
874 !host->mrq->sbc->error && !(host->flags & AUTO_CMD23)) {
875 host->cmd = NULL;
876 omap_hsmmc_start_dma_transfer(host);
877 omap_hsmmc_start_command(host, host->mrq->cmd,
878 host->mrq->data);
879 return;
880 }
881
882 host->cmd = NULL;
883
884 if (cmd->flags & MMC_RSP_PRESENT) {
885 if (cmd->flags & MMC_RSP_136) {
886 /* response type 2 */
887 cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
888 cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
889 cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
890 cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
891 } else {
892 /* response types 1, 1b, 3, 4, 5, 6 */
893 cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
894 }
895 }
896 if ((host->data == NULL && !host->response_busy) || cmd->error)
897 omap_hsmmc_request_done(host, host->mrq);
898}
899
900/*
901 * DMA clean up for command errors
902 */
903static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
904{
905 int dma_ch;
906 unsigned long flags;
907
908 host->data->error = errno;
909
910 spin_lock_irqsave(&host->irq_lock, flags);
911 dma_ch = host->dma_ch;
912 host->dma_ch = -1;
913 spin_unlock_irqrestore(&host->irq_lock, flags);
914
915 if (host->use_dma && dma_ch != -1) {
916 struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data);
917
918 dmaengine_terminate_all(chan);
919 dma_unmap_sg(chan->device->dev,
920 host->data->sg, host->data->sg_len,
921 mmc_get_dma_dir(host->data));
922
923 host->data->host_cookie = 0;
924 }
925 host->data = NULL;
926}
927
928/*
929 * Readable error output
930 */
931#ifdef CONFIG_MMC_DEBUG
932static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status)
933{
934 /* --- means reserved bit without definition at documentation */
935 static const char *omap_hsmmc_status_bits[] = {
936 "CC" , "TC" , "BGE", "---", "BWR" , "BRR" , "---" , "---" ,
937 "CIRQ", "OBI" , "---", "---", "---" , "---" , "---" , "ERRI",
938 "CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" ,
939 "ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---"
940 };
941 char res[256];
942 char *buf = res;
943 int len, i;
944
945 len = sprintf(buf, "MMC IRQ 0x%x :", status);
946 buf += len;
947
948 for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
949 if (status & (1 << i)) {
950 len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
951 buf += len;
952 }
953
954 dev_vdbg(mmc_dev(host->mmc), "%s\n", res);
955}
956#else
957static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host,
958 u32 status)
959{
960}
961#endif /* CONFIG_MMC_DEBUG */
962
963/*
964 * MMC controller internal state machines reset
965 *
966 * Used to reset command or data internal state machines, using respectively
967 * SRC or SRD bit of SYSCTL register
968 * Can be called from interrupt context
969 */
970static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
971 unsigned long bit)
972{
973 unsigned long i = 0;
974 unsigned long limit = MMC_TIMEOUT_US;
975
976 OMAP_HSMMC_WRITE(host->base, SYSCTL,
977 OMAP_HSMMC_READ(host->base, SYSCTL) | bit);
978
979 /*
980 * OMAP4 ES2 and greater has an updated reset logic.
981 * Monitor a 0->1 transition first
982 */
983 if (mmc_pdata(host)->features & HSMMC_HAS_UPDATED_RESET) {
984 while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit))
985 && (i++ < limit))
986 udelay(1);
987 }
988 i = 0;
989
990 while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
991 (i++ < limit))
992 udelay(1);
993
994 if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
995 dev_err(mmc_dev(host->mmc),
996 "Timeout waiting on controller reset in %s\n",
997 __func__);
998}
999
1000static void hsmmc_command_incomplete(struct omap_hsmmc_host *host,
1001 int err, int end_cmd)
1002{
1003 if (end_cmd) {
1004 omap_hsmmc_reset_controller_fsm(host, SRC);
1005 if (host->cmd)
1006 host->cmd->error = err;
1007 }
1008
1009 if (host->data) {
1010 omap_hsmmc_reset_controller_fsm(host, SRD);
1011 omap_hsmmc_dma_cleanup(host, err);
1012 } else if (host->mrq && host->mrq->cmd)
1013 host->mrq->cmd->error = err;
1014}
1015
1016static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
1017{
1018 struct mmc_data *data;
1019 int end_cmd = 0, end_trans = 0;
1020 int error = 0;
1021
1022 data = host->data;
1023 dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
1024
1025 if (status & ERR_EN) {
1026 omap_hsmmc_dbg_report_irq(host, status);
1027
1028 if (status & (CTO_EN | CCRC_EN | CEB_EN))
1029 end_cmd = 1;
1030 if (host->data || host->response_busy) {
1031 end_trans = !end_cmd;
1032 host->response_busy = 0;
1033 }
1034 if (status & (CTO_EN | DTO_EN))
1035 hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd);
1036 else if (status & (CCRC_EN | DCRC_EN | DEB_EN | CEB_EN |
1037 BADA_EN))
1038 hsmmc_command_incomplete(host, -EILSEQ, end_cmd);
1039
1040 if (status & ACE_EN) {
1041 u32 ac12;
1042 ac12 = OMAP_HSMMC_READ(host->base, AC12);
1043 if (!(ac12 & ACNE) && host->mrq->sbc) {
1044 end_cmd = 1;
1045 if (ac12 & ACTO)
1046 error = -ETIMEDOUT;
1047 else if (ac12 & (ACCE | ACEB | ACIE))
1048 error = -EILSEQ;
1049 host->mrq->sbc->error = error;
1050 hsmmc_command_incomplete(host, error, end_cmd);
1051 }
1052 dev_dbg(mmc_dev(host->mmc), "AC12 err: 0x%x\n", ac12);
1053 }
1054 }
1055
1056 OMAP_HSMMC_WRITE(host->base, STAT, status);
1057 if (end_cmd || ((status & CC_EN) && host->cmd))
1058 omap_hsmmc_cmd_done(host, host->cmd);
1059 if ((end_trans || (status & TC_EN)) && host->mrq)
1060 omap_hsmmc_xfer_done(host, data);
1061}
1062
1063/*
1064 * MMC controller IRQ handler
1065 */
1066static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
1067{
1068 struct omap_hsmmc_host *host = dev_id;
1069 int status;
1070
1071 status = OMAP_HSMMC_READ(host->base, STAT);
1072 while (status & (INT_EN_MASK | CIRQ_EN)) {
1073 if (host->req_in_progress)
1074 omap_hsmmc_do_irq(host, status);
1075
1076 if (status & CIRQ_EN)
1077 mmc_signal_sdio_irq(host->mmc);
1078
1079 /* Flush posted write */
1080 status = OMAP_HSMMC_READ(host->base, STAT);
1081 }
1082
1083 return IRQ_HANDLED;
1084}
1085
1086static void set_sd_bus_power(struct omap_hsmmc_host *host)
1087{
1088 unsigned long i;
1089
1090 OMAP_HSMMC_WRITE(host->base, HCTL,
1091 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
1092 for (i = 0; i < loops_per_jiffy; i++) {
1093 if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
1094 break;
1095 cpu_relax();
1096 }
1097}
1098
1099/*
1100 * Switch MMC interface voltage ... only relevant for MMC1.
1101 *
1102 * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
1103 * The MMC2 transceiver controls are used instead of DAT4..DAT7.
1104 * Some chips, like eMMC ones, use internal transceivers.
1105 */
1106static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
1107{
1108 u32 reg_val = 0;
1109 int ret;
1110
1111 /* Disable the clocks */
1112 clk_disable_unprepare(host->dbclk);
1113
1114 /* Turn the power off */
1115 ret = omap_hsmmc_set_power(host, 0);
1116
1117 /* Turn the power ON with given VDD 1.8 or 3.0v */
1118 if (!ret)
1119 ret = omap_hsmmc_set_power(host, 1);
1120 clk_prepare_enable(host->dbclk);
1121
1122 if (ret != 0)
1123 goto err;
1124
1125 OMAP_HSMMC_WRITE(host->base, HCTL,
1126 OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
1127 reg_val = OMAP_HSMMC_READ(host->base, HCTL);
1128
1129 /*
1130 * If a MMC dual voltage card is detected, the set_ios fn calls
1131 * this fn with VDD bit set for 1.8V. Upon card removal from the
1132 * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
1133 *
1134 * Cope with a bit of slop in the range ... per data sheets:
1135 * - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
1136 * but recommended values are 1.71V to 1.89V
1137 * - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
1138 * but recommended values are 2.7V to 3.3V
1139 *
1140 * Board setup code shouldn't permit anything very out-of-range.
1141 * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
1142 * middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
1143 */
1144 if ((1 << vdd) <= MMC_VDD_23_24)
1145 reg_val |= SDVS18;
1146 else
1147 reg_val |= SDVS30;
1148
1149 OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
1150 set_sd_bus_power(host);
1151
1152 return 0;
1153err:
1154 dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
1155 return ret;
1156}
1157
1158static void omap_hsmmc_dma_callback(void *param)
1159{
1160 struct omap_hsmmc_host *host = param;
1161 struct dma_chan *chan;
1162 struct mmc_data *data;
1163 int req_in_progress;
1164
1165 spin_lock_irq(&host->irq_lock);
1166 if (host->dma_ch < 0) {
1167 spin_unlock_irq(&host->irq_lock);
1168 return;
1169 }
1170
1171 data = host->mrq->data;
1172 chan = omap_hsmmc_get_dma_chan(host, data);
1173 if (!data->host_cookie)
1174 dma_unmap_sg(chan->device->dev,
1175 data->sg, data->sg_len,
1176 mmc_get_dma_dir(data));
1177
1178 req_in_progress = host->req_in_progress;
1179 host->dma_ch = -1;
1180 spin_unlock_irq(&host->irq_lock);
1181
1182 /* If DMA has finished after TC, complete the request */
1183 if (!req_in_progress) {
1184 struct mmc_request *mrq = host->mrq;
1185
1186 host->mrq = NULL;
1187 mmc_request_done(host->mmc, mrq);
1188 }
1189}
1190
1191static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host,
1192 struct mmc_data *data,
1193 struct omap_hsmmc_next *next,
1194 struct dma_chan *chan)
1195{
1196 int dma_len;
1197
1198 if (!next && data->host_cookie &&
1199 data->host_cookie != host->next_data.cookie) {
1200 dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d"
1201 " host->next_data.cookie %d\n",
1202 __func__, data->host_cookie, host->next_data.cookie);
1203 data->host_cookie = 0;
1204 }
1205
1206 /* Check if next job is already prepared */
1207 if (next || data->host_cookie != host->next_data.cookie) {
1208 dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len,
1209 mmc_get_dma_dir(data));
1210
1211 } else {
1212 dma_len = host->next_data.dma_len;
1213 host->next_data.dma_len = 0;
1214 }
1215
1216
1217 if (dma_len == 0)
1218 return -EINVAL;
1219
1220 if (next) {
1221 next->dma_len = dma_len;
1222 data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
1223 } else
1224 host->dma_len = dma_len;
1225
1226 return 0;
1227}
1228
1229/*
1230 * Routine to configure and start DMA for the MMC card
1231 */
1232static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host,
1233 struct mmc_request *req)
1234{
1235 struct dma_async_tx_descriptor *tx;
1236 int ret = 0, i;
1237 struct mmc_data *data = req->data;
1238 struct dma_chan *chan;
1239 struct dma_slave_config cfg = {
1240 .src_addr = host->mapbase + OMAP_HSMMC_DATA,
1241 .dst_addr = host->mapbase + OMAP_HSMMC_DATA,
1242 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1243 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1244 .src_maxburst = data->blksz / 4,
1245 .dst_maxburst = data->blksz / 4,
1246 };
1247
1248 /* Sanity check: all the SG entries must be aligned by block size. */
1249 for (i = 0; i < data->sg_len; i++) {
1250 struct scatterlist *sgl;
1251
1252 sgl = data->sg + i;
1253 if (sgl->length % data->blksz)
1254 return -EINVAL;
1255 }
1256 if ((data->blksz % 4) != 0)
1257 /* REVISIT: The MMC buffer increments only when MSB is written.
1258 * Return error for blksz which is non multiple of four.
1259 */
1260 return -EINVAL;
1261
1262 BUG_ON(host->dma_ch != -1);
1263
1264 chan = omap_hsmmc_get_dma_chan(host, data);
1265
1266 ret = dmaengine_slave_config(chan, &cfg);
1267 if (ret)
1268 return ret;
1269
1270 ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan);
1271 if (ret)
1272 return ret;
1273
1274 tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len,
1275 data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
1276 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1277 if (!tx) {
1278 dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n");
1279 /* FIXME: cleanup */
1280 return -1;
1281 }
1282
1283 tx->callback = omap_hsmmc_dma_callback;
1284 tx->callback_param = host;
1285
1286 /* Does not fail */
1287 dmaengine_submit(tx);
1288
1289 host->dma_ch = 1;
1290
1291 return 0;
1292}
1293
1294static void set_data_timeout(struct omap_hsmmc_host *host,
1295 unsigned long long timeout_ns,
1296 unsigned int timeout_clks)
1297{
1298 unsigned long long timeout = timeout_ns;
1299 unsigned int cycle_ns;
1300 uint32_t reg, clkd, dto = 0;
1301
1302 reg = OMAP_HSMMC_READ(host->base, SYSCTL);
1303 clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
1304 if (clkd == 0)
1305 clkd = 1;
1306
1307 cycle_ns = 1000000000 / (host->clk_rate / clkd);
1308 do_div(timeout, cycle_ns);
1309 timeout += timeout_clks;
1310 if (timeout) {
1311 while ((timeout & 0x80000000) == 0) {
1312 dto += 1;
1313 timeout <<= 1;
1314 }
1315 dto = 31 - dto;
1316 timeout <<= 1;
1317 if (timeout && dto)
1318 dto += 1;
1319 if (dto >= 13)
1320 dto -= 13;
1321 else
1322 dto = 0;
1323 if (dto > 14)
1324 dto = 14;
1325 }
1326
1327 reg &= ~DTO_MASK;
1328 reg |= dto << DTO_SHIFT;
1329 OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
1330}
1331
1332static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host)
1333{
1334 struct mmc_request *req = host->mrq;
1335 struct dma_chan *chan;
1336
1337 if (!req->data)
1338 return;
1339 OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
1340 | (req->data->blocks << 16));
1341 set_data_timeout(host, req->data->timeout_ns,
1342 req->data->timeout_clks);
1343 chan = omap_hsmmc_get_dma_chan(host, req->data);
1344 dma_async_issue_pending(chan);
1345}
1346
1347/*
1348 * Configure block length for MMC/SD cards and initiate the transfer.
1349 */
1350static int
1351omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
1352{
1353 int ret;
1354 unsigned long long timeout;
1355
1356 host->data = req->data;
1357
1358 if (req->data == NULL) {
1359 OMAP_HSMMC_WRITE(host->base, BLK, 0);
1360 if (req->cmd->flags & MMC_RSP_BUSY) {
1361 timeout = req->cmd->busy_timeout * NSEC_PER_MSEC;
1362
1363 /*
1364 * Set an arbitrary 100ms data timeout for commands with
1365 * busy signal and no indication of busy_timeout.
1366 */
1367 if (!timeout)
1368 timeout = 100000000U;
1369
1370 set_data_timeout(host, timeout, 0);
1371 }
1372 return 0;
1373 }
1374
1375 if (host->use_dma) {
1376 ret = omap_hsmmc_setup_dma_transfer(host, req);
1377 if (ret != 0) {
1378 dev_err(mmc_dev(host->mmc), "MMC start dma failure\n");
1379 return ret;
1380 }
1381 }
1382 return 0;
1383}
1384
1385static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
1386 int err)
1387{
1388 struct omap_hsmmc_host *host = mmc_priv(mmc);
1389 struct mmc_data *data = mrq->data;
1390
1391 if (host->use_dma && data->host_cookie) {
1392 struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data);
1393
1394 dma_unmap_sg(c->device->dev, data->sg, data->sg_len,
1395 mmc_get_dma_dir(data));
1396 data->host_cookie = 0;
1397 }
1398}
1399
1400static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
1401{
1402 struct omap_hsmmc_host *host = mmc_priv(mmc);
1403
1404 if (mrq->data->host_cookie) {
1405 mrq->data->host_cookie = 0;
1406 return ;
1407 }
1408
1409 if (host->use_dma) {
1410 struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data);
1411
1412 if (omap_hsmmc_pre_dma_transfer(host, mrq->data,
1413 &host->next_data, c))
1414 mrq->data->host_cookie = 0;
1415 }
1416}
1417
1418/*
1419 * Request function. for read/write operation
1420 */
1421static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
1422{
1423 struct omap_hsmmc_host *host = mmc_priv(mmc);
1424 int err;
1425
1426 BUG_ON(host->req_in_progress);
1427 BUG_ON(host->dma_ch != -1);
1428 if (host->reqs_blocked)
1429 host->reqs_blocked = 0;
1430 WARN_ON(host->mrq != NULL);
1431 host->mrq = req;
1432 host->clk_rate = clk_get_rate(host->fclk);
1433 err = omap_hsmmc_prepare_data(host, req);
1434 if (err) {
1435 req->cmd->error = err;
1436 if (req->data)
1437 req->data->error = err;
1438 host->mrq = NULL;
1439 mmc_request_done(mmc, req);
1440 return;
1441 }
1442 if (req->sbc && !(host->flags & AUTO_CMD23)) {
1443 omap_hsmmc_start_command(host, req->sbc, NULL);
1444 return;
1445 }
1446
1447 omap_hsmmc_start_dma_transfer(host);
1448 omap_hsmmc_start_command(host, req->cmd, req->data);
1449}
1450
1451/* Routine to configure clock values. Exposed API to core */
1452static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1453{
1454 struct omap_hsmmc_host *host = mmc_priv(mmc);
1455 int do_send_init_stream = 0;
1456
1457 if (ios->power_mode != host->power_mode) {
1458 switch (ios->power_mode) {
1459 case MMC_POWER_OFF:
1460 omap_hsmmc_set_power(host, 0);
1461 break;
1462 case MMC_POWER_UP:
1463 omap_hsmmc_set_power(host, 1);
1464 break;
1465 case MMC_POWER_ON:
1466 do_send_init_stream = 1;
1467 break;
1468 }
1469 host->power_mode = ios->power_mode;
1470 }
1471
1472 /* FIXME: set registers based only on changes to ios */
1473
1474 omap_hsmmc_set_bus_width(host);
1475
1476 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1477 /* Only MMC1 can interface at 3V without some flavor
1478 * of external transceiver; but they all handle 1.8V.
1479 */
1480 if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
1481 (ios->vdd == DUAL_VOLT_OCR_BIT)) {
1482 /*
1483 * The mmc_select_voltage fn of the core does
1484 * not seem to set the power_mode to
1485 * MMC_POWER_UP upon recalculating the voltage.
1486 * vdd 1.8v.
1487 */
1488 if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
1489 dev_dbg(mmc_dev(host->mmc),
1490 "Switch operation failed\n");
1491 }
1492 }
1493
1494 omap_hsmmc_set_clock(host);
1495
1496 if (do_send_init_stream)
1497 send_init_stream(host);
1498
1499 omap_hsmmc_set_bus_mode(host);
1500}
1501
1502static void omap_hsmmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
1503{
1504 struct omap_hsmmc_host *host = mmc_priv(mmc);
1505 u32 irq_mask, con;
1506 unsigned long flags;
1507
1508 spin_lock_irqsave(&host->irq_lock, flags);
1509
1510 con = OMAP_HSMMC_READ(host->base, CON);
1511 irq_mask = OMAP_HSMMC_READ(host->base, ISE);
1512 if (enable) {
1513 host->flags |= HSMMC_SDIO_IRQ_ENABLED;
1514 irq_mask |= CIRQ_EN;
1515 con |= CTPL | CLKEXTFREE;
1516 } else {
1517 host->flags &= ~HSMMC_SDIO_IRQ_ENABLED;
1518 irq_mask &= ~CIRQ_EN;
1519 con &= ~(CTPL | CLKEXTFREE);
1520 }
1521 OMAP_HSMMC_WRITE(host->base, CON, con);
1522 OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
1523
1524 /*
1525 * if enable, piggy back detection on current request
1526 * but always disable immediately
1527 */
1528 if (!host->req_in_progress || !enable)
1529 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
1530
1531 /* flush posted write */
1532 OMAP_HSMMC_READ(host->base, IE);
1533
1534 spin_unlock_irqrestore(&host->irq_lock, flags);
1535}
1536
1537static int omap_hsmmc_configure_wake_irq(struct omap_hsmmc_host *host)
1538{
1539 int ret;
1540
1541 /*
1542 * For omaps with wake-up path, wakeirq will be irq from pinctrl and
1543 * for other omaps, wakeirq will be from GPIO (dat line remuxed to
1544 * gpio). wakeirq is needed to detect sdio irq in runtime suspend state
1545 * with functional clock disabled.
1546 */
1547 if (!host->dev->of_node || !host->wake_irq)
1548 return -ENODEV;
1549
1550 ret = dev_pm_set_dedicated_wake_irq(host->dev, host->wake_irq);
1551 if (ret) {
1552 dev_err(mmc_dev(host->mmc), "Unable to request wake IRQ\n");
1553 goto err;
1554 }
1555
1556 /*
1557 * Some omaps don't have wake-up path from deeper idle states
1558 * and need to remux SDIO DAT1 to GPIO for wake-up from idle.
1559 */
1560 if (host->pdata->controller_flags & OMAP_HSMMC_SWAKEUP_MISSING) {
1561 struct pinctrl *p = devm_pinctrl_get(host->dev);
1562 if (IS_ERR(p)) {
1563 ret = PTR_ERR(p);
1564 goto err_free_irq;
1565 }
1566
1567 if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_IDLE))) {
1568 dev_info(host->dev, "missing idle pinctrl state\n");
1569 devm_pinctrl_put(p);
1570 ret = -EINVAL;
1571 goto err_free_irq;
1572 }
1573 devm_pinctrl_put(p);
1574 }
1575
1576 OMAP_HSMMC_WRITE(host->base, HCTL,
1577 OMAP_HSMMC_READ(host->base, HCTL) | IWE);
1578 return 0;
1579
1580err_free_irq:
1581 dev_pm_clear_wake_irq(host->dev);
1582err:
1583 dev_warn(host->dev, "no SDIO IRQ support, falling back to polling\n");
1584 host->wake_irq = 0;
1585 return ret;
1586}
1587
1588static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
1589{
1590 u32 hctl, capa, value;
1591
1592 /* Only MMC1 supports 3.0V */
1593 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1594 hctl = SDVS30;
1595 capa = VS30 | VS18;
1596 } else {
1597 hctl = SDVS18;
1598 capa = VS18;
1599 }
1600
1601 value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
1602 OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);
1603
1604 value = OMAP_HSMMC_READ(host->base, CAPA);
1605 OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);
1606
1607 /* Set SD bus power bit */
1608 set_sd_bus_power(host);
1609}
1610
1611static int omap_hsmmc_multi_io_quirk(struct mmc_card *card,
1612 unsigned int direction, int blk_size)
1613{
1614 /* This controller can't do multiblock reads due to hw bugs */
1615 if (direction == MMC_DATA_READ)
1616 return 1;
1617
1618 return blk_size;
1619}
1620
1621static struct mmc_host_ops omap_hsmmc_ops = {
1622 .post_req = omap_hsmmc_post_req,
1623 .pre_req = omap_hsmmc_pre_req,
1624 .request = omap_hsmmc_request,
1625 .set_ios = omap_hsmmc_set_ios,
1626 .get_cd = mmc_gpio_get_cd,
1627 .get_ro = mmc_gpio_get_ro,
1628 .enable_sdio_irq = omap_hsmmc_enable_sdio_irq,
1629};
1630
1631#ifdef CONFIG_DEBUG_FS
1632
1633static int mmc_regs_show(struct seq_file *s, void *data)
1634{
1635 struct mmc_host *mmc = s->private;
1636 struct omap_hsmmc_host *host = mmc_priv(mmc);
1637
1638 seq_printf(s, "mmc%d:\n", mmc->index);
1639 seq_printf(s, "sdio irq mode\t%s\n",
1640 (mmc->caps & MMC_CAP_SDIO_IRQ) ? "interrupt" : "polling");
1641
1642 if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1643 seq_printf(s, "sdio irq \t%s\n",
1644 (host->flags & HSMMC_SDIO_IRQ_ENABLED) ? "enabled"
1645 : "disabled");
1646 }
1647 seq_printf(s, "ctx_loss:\t%d\n", host->context_loss);
1648
1649 pm_runtime_get_sync(host->dev);
1650 seq_puts(s, "\nregs:\n");
1651 seq_printf(s, "CON:\t\t0x%08x\n",
1652 OMAP_HSMMC_READ(host->base, CON));
1653 seq_printf(s, "PSTATE:\t\t0x%08x\n",
1654 OMAP_HSMMC_READ(host->base, PSTATE));
1655 seq_printf(s, "HCTL:\t\t0x%08x\n",
1656 OMAP_HSMMC_READ(host->base, HCTL));
1657 seq_printf(s, "SYSCTL:\t\t0x%08x\n",
1658 OMAP_HSMMC_READ(host->base, SYSCTL));
1659 seq_printf(s, "IE:\t\t0x%08x\n",
1660 OMAP_HSMMC_READ(host->base, IE));
1661 seq_printf(s, "ISE:\t\t0x%08x\n",
1662 OMAP_HSMMC_READ(host->base, ISE));
1663 seq_printf(s, "CAPA:\t\t0x%08x\n",
1664 OMAP_HSMMC_READ(host->base, CAPA));
1665
1666 pm_runtime_mark_last_busy(host->dev);
1667 pm_runtime_put_autosuspend(host->dev);
1668
1669 return 0;
1670}
1671
1672DEFINE_SHOW_ATTRIBUTE(mmc_regs);
1673
1674static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1675{
1676 if (mmc->debugfs_root)
1677 debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root,
1678 mmc, &mmc_regs_fops);
1679}
1680
1681#else
1682
1683static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1684{
1685}
1686
1687#endif
1688
1689#ifdef CONFIG_OF
1690static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = {
1691 /* See 35xx errata 2.1.1.128 in SPRZ278F */
1692 .controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ,
1693};
1694
1695static const struct omap_mmc_of_data omap4_mmc_of_data = {
1696 .reg_offset = 0x100,
1697};
1698static const struct omap_mmc_of_data am33xx_mmc_of_data = {
1699 .reg_offset = 0x100,
1700 .controller_flags = OMAP_HSMMC_SWAKEUP_MISSING,
1701};
1702
1703static const struct of_device_id omap_mmc_of_match[] = {
1704 {
1705 .compatible = "ti,omap2-hsmmc",
1706 },
1707 {
1708 .compatible = "ti,omap3-pre-es3-hsmmc",
1709 .data = &omap3_pre_es3_mmc_of_data,
1710 },
1711 {
1712 .compatible = "ti,omap3-hsmmc",
1713 },
1714 {
1715 .compatible = "ti,omap4-hsmmc",
1716 .data = &omap4_mmc_of_data,
1717 },
1718 {
1719 .compatible = "ti,am33xx-hsmmc",
1720 .data = &am33xx_mmc_of_data,
1721 },
1722 {},
1723};
1724MODULE_DEVICE_TABLE(of, omap_mmc_of_match);
1725
1726static struct omap_hsmmc_platform_data *of_get_hsmmc_pdata(struct device *dev)
1727{
1728 struct omap_hsmmc_platform_data *pdata, *legacy;
1729 struct device_node *np = dev->of_node;
1730
1731 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1732 if (!pdata)
1733 return ERR_PTR(-ENOMEM); /* out of memory */
1734
1735 legacy = dev_get_platdata(dev);
1736 if (legacy && legacy->name)
1737 pdata->name = legacy->name;
1738
1739 if (of_find_property(np, "ti,dual-volt", NULL))
1740 pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1741
1742 if (of_find_property(np, "ti,non-removable", NULL)) {
1743 pdata->nonremovable = true;
1744 pdata->no_regulator_off_init = true;
1745 }
1746
1747 if (of_find_property(np, "ti,needs-special-reset", NULL))
1748 pdata->features |= HSMMC_HAS_UPDATED_RESET;
1749
1750 if (of_find_property(np, "ti,needs-special-hs-handling", NULL))
1751 pdata->features |= HSMMC_HAS_HSPE_SUPPORT;
1752
1753 return pdata;
1754}
1755#else
1756static inline struct omap_hsmmc_platform_data
1757 *of_get_hsmmc_pdata(struct device *dev)
1758{
1759 return ERR_PTR(-EINVAL);
1760}
1761#endif
1762
1763static int omap_hsmmc_probe(struct platform_device *pdev)
1764{
1765 struct omap_hsmmc_platform_data *pdata = pdev->dev.platform_data;
1766 struct mmc_host *mmc;
1767 struct omap_hsmmc_host *host = NULL;
1768 struct resource *res;
1769 int ret, irq;
1770 const struct of_device_id *match;
1771 const struct omap_mmc_of_data *data;
1772 void __iomem *base;
1773
1774 match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev);
1775 if (match) {
1776 pdata = of_get_hsmmc_pdata(&pdev->dev);
1777
1778 if (IS_ERR(pdata))
1779 return PTR_ERR(pdata);
1780
1781 if (match->data) {
1782 data = match->data;
1783 pdata->reg_offset = data->reg_offset;
1784 pdata->controller_flags |= data->controller_flags;
1785 }
1786 }
1787
1788 if (pdata == NULL) {
1789 dev_err(&pdev->dev, "Platform Data is missing\n");
1790 return -ENXIO;
1791 }
1792
1793 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1794 irq = platform_get_irq(pdev, 0);
1795 if (res == NULL || irq < 0)
1796 return -ENXIO;
1797
1798 base = devm_ioremap_resource(&pdev->dev, res);
1799 if (IS_ERR(base))
1800 return PTR_ERR(base);
1801
1802 mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev);
1803 if (!mmc) {
1804 ret = -ENOMEM;
1805 goto err;
1806 }
1807
1808 ret = mmc_of_parse(mmc);
1809 if (ret)
1810 goto err1;
1811
1812 host = mmc_priv(mmc);
1813 host->mmc = mmc;
1814 host->pdata = pdata;
1815 host->dev = &pdev->dev;
1816 host->use_dma = 1;
1817 host->dma_ch = -1;
1818 host->irq = irq;
1819 host->mapbase = res->start + pdata->reg_offset;
1820 host->base = base + pdata->reg_offset;
1821 host->power_mode = MMC_POWER_OFF;
1822 host->next_data.cookie = 1;
1823 host->pbias_enabled = false;
1824 host->vqmmc_enabled = false;
1825
1826 platform_set_drvdata(pdev, host);
1827
1828 if (pdev->dev.of_node)
1829 host->wake_irq = irq_of_parse_and_map(pdev->dev.of_node, 1);
1830
1831 mmc->ops = &omap_hsmmc_ops;
1832
1833 mmc->f_min = OMAP_MMC_MIN_CLOCK;
1834
1835 if (pdata->max_freq > 0)
1836 mmc->f_max = pdata->max_freq;
1837 else if (mmc->f_max == 0)
1838 mmc->f_max = OMAP_MMC_MAX_CLOCK;
1839
1840 spin_lock_init(&host->irq_lock);
1841
1842 host->fclk = devm_clk_get(&pdev->dev, "fck");
1843 if (IS_ERR(host->fclk)) {
1844 ret = PTR_ERR(host->fclk);
1845 host->fclk = NULL;
1846 goto err1;
1847 }
1848
1849 if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) {
1850 dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n");
1851 omap_hsmmc_ops.multi_io_quirk = omap_hsmmc_multi_io_quirk;
1852 }
1853
1854 device_init_wakeup(&pdev->dev, true);
1855 pm_runtime_enable(host->dev);
1856 pm_runtime_get_sync(host->dev);
1857 pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY);
1858 pm_runtime_use_autosuspend(host->dev);
1859
1860 omap_hsmmc_context_save(host);
1861
1862 host->dbclk = devm_clk_get(&pdev->dev, "mmchsdb_fck");
1863 /*
1864 * MMC can still work without debounce clock.
1865 */
1866 if (IS_ERR(host->dbclk)) {
1867 host->dbclk = NULL;
1868 } else if (clk_prepare_enable(host->dbclk) != 0) {
1869 dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n");
1870 host->dbclk = NULL;
1871 }
1872
1873 /* Set this to a value that allows allocating an entire descriptor
1874 * list within a page (zero order allocation). */
1875 mmc->max_segs = 64;
1876
1877 mmc->max_blk_size = 512; /* Block Length at max can be 1024 */
1878 mmc->max_blk_count = 0xFFFF; /* No. of Blocks is 16 bits */
1879 mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
1880
1881 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
1882 MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_CMD23;
1883
1884 mmc->caps |= mmc_pdata(host)->caps;
1885 if (mmc->caps & MMC_CAP_8_BIT_DATA)
1886 mmc->caps |= MMC_CAP_4_BIT_DATA;
1887
1888 if (mmc_pdata(host)->nonremovable)
1889 mmc->caps |= MMC_CAP_NONREMOVABLE;
1890
1891 mmc->pm_caps |= mmc_pdata(host)->pm_caps;
1892
1893 omap_hsmmc_conf_bus_power(host);
1894
1895 host->rx_chan = dma_request_chan(&pdev->dev, "rx");
1896 if (IS_ERR(host->rx_chan)) {
1897 dev_err(mmc_dev(host->mmc), "RX DMA channel request failed\n");
1898 ret = PTR_ERR(host->rx_chan);
1899 goto err_irq;
1900 }
1901
1902 host->tx_chan = dma_request_chan(&pdev->dev, "tx");
1903 if (IS_ERR(host->tx_chan)) {
1904 dev_err(mmc_dev(host->mmc), "TX DMA channel request failed\n");
1905 ret = PTR_ERR(host->tx_chan);
1906 goto err_irq;
1907 }
1908
1909 /*
1910 * Limit the maximum segment size to the lower of the request size
1911 * and the DMA engine device segment size limits. In reality, with
1912 * 32-bit transfers, the DMA engine can do longer segments than this
1913 * but there is no way to represent that in the DMA model - if we
1914 * increase this figure here, we get warnings from the DMA API debug.
1915 */
1916 mmc->max_seg_size = min3(mmc->max_req_size,
1917 dma_get_max_seg_size(host->rx_chan->device->dev),
1918 dma_get_max_seg_size(host->tx_chan->device->dev));
1919
1920 /* Request IRQ for MMC operations */
1921 ret = devm_request_irq(&pdev->dev, host->irq, omap_hsmmc_irq, 0,
1922 mmc_hostname(mmc), host);
1923 if (ret) {
1924 dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
1925 goto err_irq;
1926 }
1927
1928 ret = omap_hsmmc_reg_get(host);
1929 if (ret)
1930 goto err_irq;
1931
1932 if (!mmc->ocr_avail)
1933 mmc->ocr_avail = mmc_pdata(host)->ocr_mask;
1934
1935 omap_hsmmc_disable_irq(host);
1936
1937 /*
1938 * For now, only support SDIO interrupt if we have a separate
1939 * wake-up interrupt configured from device tree. This is because
1940 * the wake-up interrupt is needed for idle state and some
1941 * platforms need special quirks. And we don't want to add new
1942 * legacy mux platform init code callbacks any longer as we
1943 * are moving to DT based booting anyways.
1944 */
1945 ret = omap_hsmmc_configure_wake_irq(host);
1946 if (!ret)
1947 mmc->caps |= MMC_CAP_SDIO_IRQ;
1948
1949 ret = mmc_add_host(mmc);
1950 if (ret)
1951 goto err_irq;
1952
1953 if (mmc_pdata(host)->name != NULL) {
1954 ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
1955 if (ret < 0)
1956 goto err_slot_name;
1957 }
1958
1959 omap_hsmmc_debugfs(mmc);
1960 pm_runtime_mark_last_busy(host->dev);
1961 pm_runtime_put_autosuspend(host->dev);
1962
1963 return 0;
1964
1965err_slot_name:
1966 mmc_remove_host(mmc);
1967err_irq:
1968 device_init_wakeup(&pdev->dev, false);
1969 if (!IS_ERR_OR_NULL(host->tx_chan))
1970 dma_release_channel(host->tx_chan);
1971 if (!IS_ERR_OR_NULL(host->rx_chan))
1972 dma_release_channel(host->rx_chan);
1973 pm_runtime_dont_use_autosuspend(host->dev);
1974 pm_runtime_put_sync(host->dev);
1975 pm_runtime_disable(host->dev);
1976 clk_disable_unprepare(host->dbclk);
1977err1:
1978 mmc_free_host(mmc);
1979err:
1980 return ret;
1981}
1982
1983static int omap_hsmmc_remove(struct platform_device *pdev)
1984{
1985 struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
1986
1987 pm_runtime_get_sync(host->dev);
1988 mmc_remove_host(host->mmc);
1989
1990 dma_release_channel(host->tx_chan);
1991 dma_release_channel(host->rx_chan);
1992
1993 dev_pm_clear_wake_irq(host->dev);
1994 pm_runtime_dont_use_autosuspend(host->dev);
1995 pm_runtime_put_sync(host->dev);
1996 pm_runtime_disable(host->dev);
1997 device_init_wakeup(&pdev->dev, false);
1998 clk_disable_unprepare(host->dbclk);
1999
2000 mmc_free_host(host->mmc);
2001
2002 return 0;
2003}
2004
2005#ifdef CONFIG_PM_SLEEP
2006static int omap_hsmmc_suspend(struct device *dev)
2007{
2008 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2009
2010 if (!host)
2011 return 0;
2012
2013 pm_runtime_get_sync(host->dev);
2014
2015 if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
2016 OMAP_HSMMC_WRITE(host->base, ISE, 0);
2017 OMAP_HSMMC_WRITE(host->base, IE, 0);
2018 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2019 OMAP_HSMMC_WRITE(host->base, HCTL,
2020 OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
2021 }
2022
2023 clk_disable_unprepare(host->dbclk);
2024
2025 pm_runtime_put_sync(host->dev);
2026 return 0;
2027}
2028
2029/* Routine to resume the MMC device */
2030static int omap_hsmmc_resume(struct device *dev)
2031{
2032 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2033
2034 if (!host)
2035 return 0;
2036
2037 pm_runtime_get_sync(host->dev);
2038
2039 clk_prepare_enable(host->dbclk);
2040
2041 if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER))
2042 omap_hsmmc_conf_bus_power(host);
2043
2044 pm_runtime_mark_last_busy(host->dev);
2045 pm_runtime_put_autosuspend(host->dev);
2046 return 0;
2047}
2048#endif
2049
2050#ifdef CONFIG_PM
2051static int omap_hsmmc_runtime_suspend(struct device *dev)
2052{
2053 struct omap_hsmmc_host *host;
2054 unsigned long flags;
2055 int ret = 0;
2056
2057 host = dev_get_drvdata(dev);
2058 omap_hsmmc_context_save(host);
2059 dev_dbg(dev, "disabled\n");
2060
2061 spin_lock_irqsave(&host->irq_lock, flags);
2062 if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2063 (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2064 /* disable sdio irq handling to prevent race */
2065 OMAP_HSMMC_WRITE(host->base, ISE, 0);
2066 OMAP_HSMMC_WRITE(host->base, IE, 0);
2067
2068 if (!(OMAP_HSMMC_READ(host->base, PSTATE) & DLEV_DAT(1))) {
2069 /*
2070 * dat1 line low, pending sdio irq
2071 * race condition: possible irq handler running on
2072 * multi-core, abort
2073 */
2074 dev_dbg(dev, "pending sdio irq, abort suspend\n");
2075 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2076 OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2077 OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2078 pm_runtime_mark_last_busy(dev);
2079 ret = -EBUSY;
2080 goto abort;
2081 }
2082
2083 pinctrl_pm_select_idle_state(dev);
2084 } else {
2085 pinctrl_pm_select_idle_state(dev);
2086 }
2087
2088abort:
2089 spin_unlock_irqrestore(&host->irq_lock, flags);
2090 return ret;
2091}
2092
2093static int omap_hsmmc_runtime_resume(struct device *dev)
2094{
2095 struct omap_hsmmc_host *host;
2096 unsigned long flags;
2097
2098 host = dev_get_drvdata(dev);
2099 omap_hsmmc_context_restore(host);
2100 dev_dbg(dev, "enabled\n");
2101
2102 spin_lock_irqsave(&host->irq_lock, flags);
2103 if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2104 (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2105
2106 pinctrl_select_default_state(host->dev);
2107
2108 /* irq lost, if pinmux incorrect */
2109 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2110 OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2111 OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2112 } else {
2113 pinctrl_select_default_state(host->dev);
2114 }
2115 spin_unlock_irqrestore(&host->irq_lock, flags);
2116 return 0;
2117}
2118#endif
2119
2120static const struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
2121 SET_SYSTEM_SLEEP_PM_OPS(omap_hsmmc_suspend, omap_hsmmc_resume)
2122 SET_RUNTIME_PM_OPS(omap_hsmmc_runtime_suspend, omap_hsmmc_runtime_resume, NULL)
2123};
2124
2125static struct platform_driver omap_hsmmc_driver = {
2126 .probe = omap_hsmmc_probe,
2127 .remove = omap_hsmmc_remove,
2128 .driver = {
2129 .name = DRIVER_NAME,
2130 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2131 .pm = &omap_hsmmc_dev_pm_ops,
2132 .of_match_table = of_match_ptr(omap_mmc_of_match),
2133 },
2134};
2135
2136module_platform_driver(omap_hsmmc_driver);
2137MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
2138MODULE_LICENSE("GPL");
2139MODULE_ALIAS("platform:" DRIVER_NAME);
2140MODULE_AUTHOR("Texas Instruments Inc");
1/*
2 * drivers/mmc/host/omap_hsmmc.c
3 *
4 * Driver for OMAP2430/3430 MMC controller.
5 *
6 * Copyright (C) 2007 Texas Instruments.
7 *
8 * Authors:
9 * Syed Mohammed Khasim <x0khasim@ti.com>
10 * Madhusudhan <madhu.cr@ti.com>
11 * Mohit Jalori <mjalori@ti.com>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
18#include <linux/module.h>
19#include <linux/init.h>
20#include <linux/kernel.h>
21#include <linux/debugfs.h>
22#include <linux/dmaengine.h>
23#include <linux/seq_file.h>
24#include <linux/sizes.h>
25#include <linux/interrupt.h>
26#include <linux/delay.h>
27#include <linux/dma-mapping.h>
28#include <linux/platform_device.h>
29#include <linux/timer.h>
30#include <linux/clk.h>
31#include <linux/of.h>
32#include <linux/of_gpio.h>
33#include <linux/of_device.h>
34#include <linux/omap-dma.h>
35#include <linux/mmc/host.h>
36#include <linux/mmc/core.h>
37#include <linux/mmc/mmc.h>
38#include <linux/io.h>
39#include <linux/gpio.h>
40#include <linux/regulator/consumer.h>
41#include <linux/pinctrl/consumer.h>
42#include <linux/pm_runtime.h>
43#include <linux/platform_data/mmc-omap.h>
44
45/* OMAP HSMMC Host Controller Registers */
46#define OMAP_HSMMC_SYSSTATUS 0x0014
47#define OMAP_HSMMC_CON 0x002C
48#define OMAP_HSMMC_SDMASA 0x0100
49#define OMAP_HSMMC_BLK 0x0104
50#define OMAP_HSMMC_ARG 0x0108
51#define OMAP_HSMMC_CMD 0x010C
52#define OMAP_HSMMC_RSP10 0x0110
53#define OMAP_HSMMC_RSP32 0x0114
54#define OMAP_HSMMC_RSP54 0x0118
55#define OMAP_HSMMC_RSP76 0x011C
56#define OMAP_HSMMC_DATA 0x0120
57#define OMAP_HSMMC_HCTL 0x0128
58#define OMAP_HSMMC_SYSCTL 0x012C
59#define OMAP_HSMMC_STAT 0x0130
60#define OMAP_HSMMC_IE 0x0134
61#define OMAP_HSMMC_ISE 0x0138
62#define OMAP_HSMMC_AC12 0x013C
63#define OMAP_HSMMC_CAPA 0x0140
64
65#define VS18 (1 << 26)
66#define VS30 (1 << 25)
67#define HSS (1 << 21)
68#define SDVS18 (0x5 << 9)
69#define SDVS30 (0x6 << 9)
70#define SDVS33 (0x7 << 9)
71#define SDVS_MASK 0x00000E00
72#define SDVSCLR 0xFFFFF1FF
73#define SDVSDET 0x00000400
74#define AUTOIDLE 0x1
75#define SDBP (1 << 8)
76#define DTO 0xe
77#define ICE 0x1
78#define ICS 0x2
79#define CEN (1 << 2)
80#define CLKD_MAX 0x3FF /* max clock divisor: 1023 */
81#define CLKD_MASK 0x0000FFC0
82#define CLKD_SHIFT 6
83#define DTO_MASK 0x000F0000
84#define DTO_SHIFT 16
85#define INIT_STREAM (1 << 1)
86#define ACEN_ACMD23 (2 << 2)
87#define DP_SELECT (1 << 21)
88#define DDIR (1 << 4)
89#define DMAE 0x1
90#define MSBS (1 << 5)
91#define BCE (1 << 1)
92#define FOUR_BIT (1 << 1)
93#define HSPE (1 << 2)
94#define DDR (1 << 19)
95#define DW8 (1 << 5)
96#define OD 0x1
97#define STAT_CLEAR 0xFFFFFFFF
98#define INIT_STREAM_CMD 0x00000000
99#define DUAL_VOLT_OCR_BIT 7
100#define SRC (1 << 25)
101#define SRD (1 << 26)
102#define SOFTRESET (1 << 1)
103
104/* Interrupt masks for IE and ISE register */
105#define CC_EN (1 << 0)
106#define TC_EN (1 << 1)
107#define BWR_EN (1 << 4)
108#define BRR_EN (1 << 5)
109#define ERR_EN (1 << 15)
110#define CTO_EN (1 << 16)
111#define CCRC_EN (1 << 17)
112#define CEB_EN (1 << 18)
113#define CIE_EN (1 << 19)
114#define DTO_EN (1 << 20)
115#define DCRC_EN (1 << 21)
116#define DEB_EN (1 << 22)
117#define ACE_EN (1 << 24)
118#define CERR_EN (1 << 28)
119#define BADA_EN (1 << 29)
120
121#define INT_EN_MASK (BADA_EN | CERR_EN | ACE_EN | DEB_EN | DCRC_EN |\
122 DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \
123 BRR_EN | BWR_EN | TC_EN | CC_EN)
124
125#define CNI (1 << 7)
126#define ACIE (1 << 4)
127#define ACEB (1 << 3)
128#define ACCE (1 << 2)
129#define ACTO (1 << 1)
130#define ACNE (1 << 0)
131
132#define MMC_AUTOSUSPEND_DELAY 100
133#define MMC_TIMEOUT_MS 20 /* 20 mSec */
134#define MMC_TIMEOUT_US 20000 /* 20000 micro Sec */
135#define OMAP_MMC_MIN_CLOCK 400000
136#define OMAP_MMC_MAX_CLOCK 52000000
137#define DRIVER_NAME "omap_hsmmc"
138
139#define VDD_1V8 1800000 /* 180000 uV */
140#define VDD_3V0 3000000 /* 300000 uV */
141#define VDD_165_195 (ffs(MMC_VDD_165_195) - 1)
142
143#define AUTO_CMD23 (1 << 1) /* Auto CMD23 support */
144/*
145 * One controller can have multiple slots, like on some omap boards using
146 * omap.c controller driver. Luckily this is not currently done on any known
147 * omap_hsmmc.c device.
148 */
149#define mmc_slot(host) (host->pdata->slots[host->slot_id])
150
151/*
152 * MMC Host controller read/write API's
153 */
154#define OMAP_HSMMC_READ(base, reg) \
155 __raw_readl((base) + OMAP_HSMMC_##reg)
156
157#define OMAP_HSMMC_WRITE(base, reg, val) \
158 __raw_writel((val), (base) + OMAP_HSMMC_##reg)
159
160struct omap_hsmmc_next {
161 unsigned int dma_len;
162 s32 cookie;
163};
164
165struct omap_hsmmc_host {
166 struct device *dev;
167 struct mmc_host *mmc;
168 struct mmc_request *mrq;
169 struct mmc_command *cmd;
170 struct mmc_data *data;
171 struct clk *fclk;
172 struct clk *dbclk;
173 /*
174 * vcc == configured supply
175 * vcc_aux == optional
176 * - MMC1, supply for DAT4..DAT7
177 * - MMC2/MMC2, external level shifter voltage supply, for
178 * chip (SDIO, eMMC, etc) or transceiver (MMC2 only)
179 */
180 struct regulator *vcc;
181 struct regulator *vcc_aux;
182 struct regulator *pbias;
183 bool pbias_enabled;
184 void __iomem *base;
185 resource_size_t mapbase;
186 spinlock_t irq_lock; /* Prevent races with irq handler */
187 unsigned int dma_len;
188 unsigned int dma_sg_idx;
189 unsigned char bus_mode;
190 unsigned char power_mode;
191 int suspended;
192 u32 con;
193 u32 hctl;
194 u32 sysctl;
195 u32 capa;
196 int irq;
197 int use_dma, dma_ch;
198 struct dma_chan *tx_chan;
199 struct dma_chan *rx_chan;
200 int slot_id;
201 int response_busy;
202 int context_loss;
203 int protect_card;
204 int reqs_blocked;
205 int use_reg;
206 int req_in_progress;
207 unsigned long clk_rate;
208 unsigned int flags;
209 struct omap_hsmmc_next next_data;
210 struct omap_mmc_platform_data *pdata;
211};
212
213struct omap_mmc_of_data {
214 u32 reg_offset;
215 u8 controller_flags;
216};
217
218static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host);
219
220static int omap_hsmmc_card_detect(struct device *dev, int slot)
221{
222 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
223 struct omap_mmc_platform_data *mmc = host->pdata;
224
225 /* NOTE: assumes card detect signal is active-low */
226 return !gpio_get_value_cansleep(mmc->slots[0].switch_pin);
227}
228
229static int omap_hsmmc_get_wp(struct device *dev, int slot)
230{
231 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
232 struct omap_mmc_platform_data *mmc = host->pdata;
233
234 /* NOTE: assumes write protect signal is active-high */
235 return gpio_get_value_cansleep(mmc->slots[0].gpio_wp);
236}
237
238static int omap_hsmmc_get_cover_state(struct device *dev, int slot)
239{
240 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
241 struct omap_mmc_platform_data *mmc = host->pdata;
242
243 /* NOTE: assumes card detect signal is active-low */
244 return !gpio_get_value_cansleep(mmc->slots[0].switch_pin);
245}
246
247#ifdef CONFIG_PM
248
249static int omap_hsmmc_suspend_cdirq(struct device *dev, int slot)
250{
251 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
252 struct omap_mmc_platform_data *mmc = host->pdata;
253
254 disable_irq(mmc->slots[0].card_detect_irq);
255 return 0;
256}
257
258static int omap_hsmmc_resume_cdirq(struct device *dev, int slot)
259{
260 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
261 struct omap_mmc_platform_data *mmc = host->pdata;
262
263 enable_irq(mmc->slots[0].card_detect_irq);
264 return 0;
265}
266
267#else
268
269#define omap_hsmmc_suspend_cdirq NULL
270#define omap_hsmmc_resume_cdirq NULL
271
272#endif
273
274#ifdef CONFIG_REGULATOR
275
276static int omap_hsmmc_set_power(struct device *dev, int slot, int power_on,
277 int vdd)
278{
279 struct omap_hsmmc_host *host =
280 platform_get_drvdata(to_platform_device(dev));
281 int ret = 0;
282
283 /*
284 * If we don't see a Vcc regulator, assume it's a fixed
285 * voltage always-on regulator.
286 */
287 if (!host->vcc)
288 return 0;
289
290 if (mmc_slot(host).before_set_reg)
291 mmc_slot(host).before_set_reg(dev, slot, power_on, vdd);
292
293 if (host->pbias) {
294 if (host->pbias_enabled == 1) {
295 ret = regulator_disable(host->pbias);
296 if (!ret)
297 host->pbias_enabled = 0;
298 }
299 regulator_set_voltage(host->pbias, VDD_3V0, VDD_3V0);
300 }
301
302 /*
303 * Assume Vcc regulator is used only to power the card ... OMAP
304 * VDDS is used to power the pins, optionally with a transceiver to
305 * support cards using voltages other than VDDS (1.8V nominal). When a
306 * transceiver is used, DAT3..7 are muxed as transceiver control pins.
307 *
308 * In some cases this regulator won't support enable/disable;
309 * e.g. it's a fixed rail for a WLAN chip.
310 *
311 * In other cases vcc_aux switches interface power. Example, for
312 * eMMC cards it represents VccQ. Sometimes transceivers or SDIO
313 * chips/cards need an interface voltage rail too.
314 */
315 if (power_on) {
316 if (host->vcc)
317 ret = mmc_regulator_set_ocr(host->mmc, host->vcc, vdd);
318 /* Enable interface voltage rail, if needed */
319 if (ret == 0 && host->vcc_aux) {
320 ret = regulator_enable(host->vcc_aux);
321 if (ret < 0 && host->vcc)
322 ret = mmc_regulator_set_ocr(host->mmc,
323 host->vcc, 0);
324 }
325 } else {
326 /* Shut down the rail */
327 if (host->vcc_aux)
328 ret = regulator_disable(host->vcc_aux);
329 if (host->vcc) {
330 /* Then proceed to shut down the local regulator */
331 ret = mmc_regulator_set_ocr(host->mmc,
332 host->vcc, 0);
333 }
334 }
335
336 if (host->pbias) {
337 if (vdd <= VDD_165_195)
338 ret = regulator_set_voltage(host->pbias, VDD_1V8,
339 VDD_1V8);
340 else
341 ret = regulator_set_voltage(host->pbias, VDD_3V0,
342 VDD_3V0);
343 if (ret < 0)
344 goto error_set_power;
345
346 if (host->pbias_enabled == 0) {
347 ret = regulator_enable(host->pbias);
348 if (!ret)
349 host->pbias_enabled = 1;
350 }
351 }
352
353 if (mmc_slot(host).after_set_reg)
354 mmc_slot(host).after_set_reg(dev, slot, power_on, vdd);
355
356error_set_power:
357 return ret;
358}
359
360static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
361{
362 struct regulator *reg;
363 int ocr_value = 0;
364
365 reg = devm_regulator_get(host->dev, "vmmc");
366 if (IS_ERR(reg)) {
367 dev_err(host->dev, "unable to get vmmc regulator %ld\n",
368 PTR_ERR(reg));
369 return PTR_ERR(reg);
370 } else {
371 host->vcc = reg;
372 ocr_value = mmc_regulator_get_ocrmask(reg);
373 if (!mmc_slot(host).ocr_mask) {
374 mmc_slot(host).ocr_mask = ocr_value;
375 } else {
376 if (!(mmc_slot(host).ocr_mask & ocr_value)) {
377 dev_err(host->dev, "ocrmask %x is not supported\n",
378 mmc_slot(host).ocr_mask);
379 mmc_slot(host).ocr_mask = 0;
380 return -EINVAL;
381 }
382 }
383 }
384 mmc_slot(host).set_power = omap_hsmmc_set_power;
385
386 /* Allow an aux regulator */
387 reg = devm_regulator_get_optional(host->dev, "vmmc_aux");
388 host->vcc_aux = IS_ERR(reg) ? NULL : reg;
389
390 reg = devm_regulator_get_optional(host->dev, "pbias");
391 host->pbias = IS_ERR(reg) ? NULL : reg;
392
393 /* For eMMC do not power off when not in sleep state */
394 if (mmc_slot(host).no_regulator_off_init)
395 return 0;
396 /*
397 * To disable boot_on regulator, enable regulator
398 * to increase usecount and then disable it.
399 */
400 if ((host->vcc && regulator_is_enabled(host->vcc) > 0) ||
401 (host->vcc_aux && regulator_is_enabled(host->vcc_aux))) {
402 int vdd = ffs(mmc_slot(host).ocr_mask) - 1;
403
404 mmc_slot(host).set_power(host->dev, host->slot_id, 1, vdd);
405 mmc_slot(host).set_power(host->dev, host->slot_id, 0, 0);
406 }
407
408 return 0;
409}
410
411static void omap_hsmmc_reg_put(struct omap_hsmmc_host *host)
412{
413 mmc_slot(host).set_power = NULL;
414}
415
416static inline int omap_hsmmc_have_reg(void)
417{
418 return 1;
419}
420
421#else
422
423static inline int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
424{
425 return -EINVAL;
426}
427
428static inline void omap_hsmmc_reg_put(struct omap_hsmmc_host *host)
429{
430}
431
432static inline int omap_hsmmc_have_reg(void)
433{
434 return 0;
435}
436
437#endif
438
439static int omap_hsmmc_gpio_init(struct omap_mmc_platform_data *pdata)
440{
441 int ret;
442
443 if (gpio_is_valid(pdata->slots[0].switch_pin)) {
444 if (pdata->slots[0].cover)
445 pdata->slots[0].get_cover_state =
446 omap_hsmmc_get_cover_state;
447 else
448 pdata->slots[0].card_detect = omap_hsmmc_card_detect;
449 pdata->slots[0].card_detect_irq =
450 gpio_to_irq(pdata->slots[0].switch_pin);
451 ret = gpio_request(pdata->slots[0].switch_pin, "mmc_cd");
452 if (ret)
453 return ret;
454 ret = gpio_direction_input(pdata->slots[0].switch_pin);
455 if (ret)
456 goto err_free_sp;
457 } else
458 pdata->slots[0].switch_pin = -EINVAL;
459
460 if (gpio_is_valid(pdata->slots[0].gpio_wp)) {
461 pdata->slots[0].get_ro = omap_hsmmc_get_wp;
462 ret = gpio_request(pdata->slots[0].gpio_wp, "mmc_wp");
463 if (ret)
464 goto err_free_cd;
465 ret = gpio_direction_input(pdata->slots[0].gpio_wp);
466 if (ret)
467 goto err_free_wp;
468 } else
469 pdata->slots[0].gpio_wp = -EINVAL;
470
471 return 0;
472
473err_free_wp:
474 gpio_free(pdata->slots[0].gpio_wp);
475err_free_cd:
476 if (gpio_is_valid(pdata->slots[0].switch_pin))
477err_free_sp:
478 gpio_free(pdata->slots[0].switch_pin);
479 return ret;
480}
481
482static void omap_hsmmc_gpio_free(struct omap_mmc_platform_data *pdata)
483{
484 if (gpio_is_valid(pdata->slots[0].gpio_wp))
485 gpio_free(pdata->slots[0].gpio_wp);
486 if (gpio_is_valid(pdata->slots[0].switch_pin))
487 gpio_free(pdata->slots[0].switch_pin);
488}
489
490/*
491 * Start clock to the card
492 */
493static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host)
494{
495 OMAP_HSMMC_WRITE(host->base, SYSCTL,
496 OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
497}
498
499/*
500 * Stop clock to the card
501 */
502static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
503{
504 OMAP_HSMMC_WRITE(host->base, SYSCTL,
505 OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
506 if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
507 dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n");
508}
509
510static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host,
511 struct mmc_command *cmd)
512{
513 unsigned int irq_mask;
514
515 if (host->use_dma)
516 irq_mask = INT_EN_MASK & ~(BRR_EN | BWR_EN);
517 else
518 irq_mask = INT_EN_MASK;
519
520 /* Disable timeout for erases */
521 if (cmd->opcode == MMC_ERASE)
522 irq_mask &= ~DTO_EN;
523
524 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
525 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
526 OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
527}
528
529static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
530{
531 OMAP_HSMMC_WRITE(host->base, ISE, 0);
532 OMAP_HSMMC_WRITE(host->base, IE, 0);
533 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
534}
535
536/* Calculate divisor for the given clock frequency */
537static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios)
538{
539 u16 dsor = 0;
540
541 if (ios->clock) {
542 dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock);
543 if (dsor > CLKD_MAX)
544 dsor = CLKD_MAX;
545 }
546
547 return dsor;
548}
549
550static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host)
551{
552 struct mmc_ios *ios = &host->mmc->ios;
553 unsigned long regval;
554 unsigned long timeout;
555 unsigned long clkdiv;
556
557 dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock);
558
559 omap_hsmmc_stop_clock(host);
560
561 regval = OMAP_HSMMC_READ(host->base, SYSCTL);
562 regval = regval & ~(CLKD_MASK | DTO_MASK);
563 clkdiv = calc_divisor(host, ios);
564 regval = regval | (clkdiv << 6) | (DTO << 16);
565 OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
566 OMAP_HSMMC_WRITE(host->base, SYSCTL,
567 OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
568
569 /* Wait till the ICS bit is set */
570 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
571 while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
572 && time_before(jiffies, timeout))
573 cpu_relax();
574
575 /*
576 * Enable High-Speed Support
577 * Pre-Requisites
578 * - Controller should support High-Speed-Enable Bit
579 * - Controller should not be using DDR Mode
580 * - Controller should advertise that it supports High Speed
581 * in capabilities register
582 * - MMC/SD clock coming out of controller > 25MHz
583 */
584 if ((mmc_slot(host).features & HSMMC_HAS_HSPE_SUPPORT) &&
585 (ios->timing != MMC_TIMING_UHS_DDR50) &&
586 ((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) {
587 regval = OMAP_HSMMC_READ(host->base, HCTL);
588 if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000)
589 regval |= HSPE;
590 else
591 regval &= ~HSPE;
592
593 OMAP_HSMMC_WRITE(host->base, HCTL, regval);
594 }
595
596 omap_hsmmc_start_clock(host);
597}
598
599static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host)
600{
601 struct mmc_ios *ios = &host->mmc->ios;
602 u32 con;
603
604 con = OMAP_HSMMC_READ(host->base, CON);
605 if (ios->timing == MMC_TIMING_UHS_DDR50)
606 con |= DDR; /* configure in DDR mode */
607 else
608 con &= ~DDR;
609 switch (ios->bus_width) {
610 case MMC_BUS_WIDTH_8:
611 OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
612 break;
613 case MMC_BUS_WIDTH_4:
614 OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
615 OMAP_HSMMC_WRITE(host->base, HCTL,
616 OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
617 break;
618 case MMC_BUS_WIDTH_1:
619 OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
620 OMAP_HSMMC_WRITE(host->base, HCTL,
621 OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
622 break;
623 }
624}
625
626static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host)
627{
628 struct mmc_ios *ios = &host->mmc->ios;
629 u32 con;
630
631 con = OMAP_HSMMC_READ(host->base, CON);
632 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
633 OMAP_HSMMC_WRITE(host->base, CON, con | OD);
634 else
635 OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
636}
637
638#ifdef CONFIG_PM
639
640/*
641 * Restore the MMC host context, if it was lost as result of a
642 * power state change.
643 */
644static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
645{
646 struct mmc_ios *ios = &host->mmc->ios;
647 u32 hctl, capa;
648 unsigned long timeout;
649
650 if (host->con == OMAP_HSMMC_READ(host->base, CON) &&
651 host->hctl == OMAP_HSMMC_READ(host->base, HCTL) &&
652 host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) &&
653 host->capa == OMAP_HSMMC_READ(host->base, CAPA))
654 return 0;
655
656 host->context_loss++;
657
658 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
659 if (host->power_mode != MMC_POWER_OFF &&
660 (1 << ios->vdd) <= MMC_VDD_23_24)
661 hctl = SDVS18;
662 else
663 hctl = SDVS30;
664 capa = VS30 | VS18;
665 } else {
666 hctl = SDVS18;
667 capa = VS18;
668 }
669
670 OMAP_HSMMC_WRITE(host->base, HCTL,
671 OMAP_HSMMC_READ(host->base, HCTL) | hctl);
672
673 OMAP_HSMMC_WRITE(host->base, CAPA,
674 OMAP_HSMMC_READ(host->base, CAPA) | capa);
675
676 OMAP_HSMMC_WRITE(host->base, HCTL,
677 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
678
679 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
680 while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
681 && time_before(jiffies, timeout))
682 ;
683
684 omap_hsmmc_disable_irq(host);
685
686 /* Do not initialize card-specific things if the power is off */
687 if (host->power_mode == MMC_POWER_OFF)
688 goto out;
689
690 omap_hsmmc_set_bus_width(host);
691
692 omap_hsmmc_set_clock(host);
693
694 omap_hsmmc_set_bus_mode(host);
695
696out:
697 dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n",
698 host->context_loss);
699 return 0;
700}
701
702/*
703 * Save the MMC host context (store the number of power state changes so far).
704 */
705static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
706{
707 host->con = OMAP_HSMMC_READ(host->base, CON);
708 host->hctl = OMAP_HSMMC_READ(host->base, HCTL);
709 host->sysctl = OMAP_HSMMC_READ(host->base, SYSCTL);
710 host->capa = OMAP_HSMMC_READ(host->base, CAPA);
711}
712
713#else
714
715static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
716{
717 return 0;
718}
719
720static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
721{
722}
723
724#endif
725
726/*
727 * Send init stream sequence to card
728 * before sending IDLE command
729 */
730static void send_init_stream(struct omap_hsmmc_host *host)
731{
732 int reg = 0;
733 unsigned long timeout;
734
735 if (host->protect_card)
736 return;
737
738 disable_irq(host->irq);
739
740 OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
741 OMAP_HSMMC_WRITE(host->base, CON,
742 OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
743 OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);
744
745 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
746 while ((reg != CC_EN) && time_before(jiffies, timeout))
747 reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN;
748
749 OMAP_HSMMC_WRITE(host->base, CON,
750 OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
751
752 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
753 OMAP_HSMMC_READ(host->base, STAT);
754
755 enable_irq(host->irq);
756}
757
758static inline
759int omap_hsmmc_cover_is_closed(struct omap_hsmmc_host *host)
760{
761 int r = 1;
762
763 if (mmc_slot(host).get_cover_state)
764 r = mmc_slot(host).get_cover_state(host->dev, host->slot_id);
765 return r;
766}
767
768static ssize_t
769omap_hsmmc_show_cover_switch(struct device *dev, struct device_attribute *attr,
770 char *buf)
771{
772 struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
773 struct omap_hsmmc_host *host = mmc_priv(mmc);
774
775 return sprintf(buf, "%s\n",
776 omap_hsmmc_cover_is_closed(host) ? "closed" : "open");
777}
778
779static DEVICE_ATTR(cover_switch, S_IRUGO, omap_hsmmc_show_cover_switch, NULL);
780
781static ssize_t
782omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
783 char *buf)
784{
785 struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
786 struct omap_hsmmc_host *host = mmc_priv(mmc);
787
788 return sprintf(buf, "%s\n", mmc_slot(host).name);
789}
790
791static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
792
793/*
794 * Configure the response type and send the cmd.
795 */
796static void
797omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
798 struct mmc_data *data)
799{
800 int cmdreg = 0, resptype = 0, cmdtype = 0;
801
802 dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
803 mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
804 host->cmd = cmd;
805
806 omap_hsmmc_enable_irq(host, cmd);
807
808 host->response_busy = 0;
809 if (cmd->flags & MMC_RSP_PRESENT) {
810 if (cmd->flags & MMC_RSP_136)
811 resptype = 1;
812 else if (cmd->flags & MMC_RSP_BUSY) {
813 resptype = 3;
814 host->response_busy = 1;
815 } else
816 resptype = 2;
817 }
818
819 /*
820 * Unlike OMAP1 controller, the cmdtype does not seem to be based on
821 * ac, bc, adtc, bcr. Only commands ending an open ended transfer need
822 * a val of 0x3, rest 0x0.
823 */
824 if (cmd == host->mrq->stop)
825 cmdtype = 0x3;
826
827 cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
828
829 if ((host->flags & AUTO_CMD23) && mmc_op_multi(cmd->opcode) &&
830 host->mrq->sbc) {
831 cmdreg |= ACEN_ACMD23;
832 OMAP_HSMMC_WRITE(host->base, SDMASA, host->mrq->sbc->arg);
833 }
834 if (data) {
835 cmdreg |= DP_SELECT | MSBS | BCE;
836 if (data->flags & MMC_DATA_READ)
837 cmdreg |= DDIR;
838 else
839 cmdreg &= ~(DDIR);
840 }
841
842 if (host->use_dma)
843 cmdreg |= DMAE;
844
845 host->req_in_progress = 1;
846
847 OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
848 OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
849}
850
851static int
852omap_hsmmc_get_dma_dir(struct omap_hsmmc_host *host, struct mmc_data *data)
853{
854 if (data->flags & MMC_DATA_WRITE)
855 return DMA_TO_DEVICE;
856 else
857 return DMA_FROM_DEVICE;
858}
859
860static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host,
861 struct mmc_data *data)
862{
863 return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
864}
865
866static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
867{
868 int dma_ch;
869 unsigned long flags;
870
871 spin_lock_irqsave(&host->irq_lock, flags);
872 host->req_in_progress = 0;
873 dma_ch = host->dma_ch;
874 spin_unlock_irqrestore(&host->irq_lock, flags);
875
876 omap_hsmmc_disable_irq(host);
877 /* Do not complete the request if DMA is still in progress */
878 if (mrq->data && host->use_dma && dma_ch != -1)
879 return;
880 host->mrq = NULL;
881 mmc_request_done(host->mmc, mrq);
882}
883
884/*
885 * Notify the transfer complete to MMC core
886 */
887static void
888omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
889{
890 if (!data) {
891 struct mmc_request *mrq = host->mrq;
892
893 /* TC before CC from CMD6 - don't know why, but it happens */
894 if (host->cmd && host->cmd->opcode == 6 &&
895 host->response_busy) {
896 host->response_busy = 0;
897 return;
898 }
899
900 omap_hsmmc_request_done(host, mrq);
901 return;
902 }
903
904 host->data = NULL;
905
906 if (!data->error)
907 data->bytes_xfered += data->blocks * (data->blksz);
908 else
909 data->bytes_xfered = 0;
910
911 if (data->stop && (data->error || !host->mrq->sbc))
912 omap_hsmmc_start_command(host, data->stop, NULL);
913 else
914 omap_hsmmc_request_done(host, data->mrq);
915}
916
917/*
918 * Notify the core about command completion
919 */
920static void
921omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
922{
923 host->cmd = NULL;
924
925 if (host->mrq->sbc && (host->cmd == host->mrq->sbc) &&
926 !host->mrq->sbc->error && !(host->flags & AUTO_CMD23)) {
927 omap_hsmmc_start_dma_transfer(host);
928 omap_hsmmc_start_command(host, host->mrq->cmd,
929 host->mrq->data);
930 return;
931 }
932
933 if (cmd->flags & MMC_RSP_PRESENT) {
934 if (cmd->flags & MMC_RSP_136) {
935 /* response type 2 */
936 cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
937 cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
938 cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
939 cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
940 } else {
941 /* response types 1, 1b, 3, 4, 5, 6 */
942 cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
943 }
944 }
945 if ((host->data == NULL && !host->response_busy) || cmd->error)
946 omap_hsmmc_request_done(host, host->mrq);
947}
948
949/*
950 * DMA clean up for command errors
951 */
952static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
953{
954 int dma_ch;
955 unsigned long flags;
956
957 host->data->error = errno;
958
959 spin_lock_irqsave(&host->irq_lock, flags);
960 dma_ch = host->dma_ch;
961 host->dma_ch = -1;
962 spin_unlock_irqrestore(&host->irq_lock, flags);
963
964 if (host->use_dma && dma_ch != -1) {
965 struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data);
966
967 dmaengine_terminate_all(chan);
968 dma_unmap_sg(chan->device->dev,
969 host->data->sg, host->data->sg_len,
970 omap_hsmmc_get_dma_dir(host, host->data));
971
972 host->data->host_cookie = 0;
973 }
974 host->data = NULL;
975}
976
977/*
978 * Readable error output
979 */
980#ifdef CONFIG_MMC_DEBUG
981static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status)
982{
983 /* --- means reserved bit without definition at documentation */
984 static const char *omap_hsmmc_status_bits[] = {
985 "CC" , "TC" , "BGE", "---", "BWR" , "BRR" , "---" , "---" ,
986 "CIRQ", "OBI" , "---", "---", "---" , "---" , "---" , "ERRI",
987 "CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" ,
988 "ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---"
989 };
990 char res[256];
991 char *buf = res;
992 int len, i;
993
994 len = sprintf(buf, "MMC IRQ 0x%x :", status);
995 buf += len;
996
997 for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
998 if (status & (1 << i)) {
999 len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
1000 buf += len;
1001 }
1002
1003 dev_vdbg(mmc_dev(host->mmc), "%s\n", res);
1004}
1005#else
1006static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host,
1007 u32 status)
1008{
1009}
1010#endif /* CONFIG_MMC_DEBUG */
1011
1012/*
1013 * MMC controller internal state machines reset
1014 *
1015 * Used to reset command or data internal state machines, using respectively
1016 * SRC or SRD bit of SYSCTL register
1017 * Can be called from interrupt context
1018 */
1019static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
1020 unsigned long bit)
1021{
1022 unsigned long i = 0;
1023 unsigned long limit = MMC_TIMEOUT_US;
1024
1025 OMAP_HSMMC_WRITE(host->base, SYSCTL,
1026 OMAP_HSMMC_READ(host->base, SYSCTL) | bit);
1027
1028 /*
1029 * OMAP4 ES2 and greater has an updated reset logic.
1030 * Monitor a 0->1 transition first
1031 */
1032 if (mmc_slot(host).features & HSMMC_HAS_UPDATED_RESET) {
1033 while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit))
1034 && (i++ < limit))
1035 udelay(1);
1036 }
1037 i = 0;
1038
1039 while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
1040 (i++ < limit))
1041 udelay(1);
1042
1043 if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
1044 dev_err(mmc_dev(host->mmc),
1045 "Timeout waiting on controller reset in %s\n",
1046 __func__);
1047}
1048
1049static void hsmmc_command_incomplete(struct omap_hsmmc_host *host,
1050 int err, int end_cmd)
1051{
1052 if (end_cmd) {
1053 omap_hsmmc_reset_controller_fsm(host, SRC);
1054 if (host->cmd)
1055 host->cmd->error = err;
1056 }
1057
1058 if (host->data) {
1059 omap_hsmmc_reset_controller_fsm(host, SRD);
1060 omap_hsmmc_dma_cleanup(host, err);
1061 } else if (host->mrq && host->mrq->cmd)
1062 host->mrq->cmd->error = err;
1063}
1064
1065static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
1066{
1067 struct mmc_data *data;
1068 int end_cmd = 0, end_trans = 0;
1069 int error = 0;
1070
1071 data = host->data;
1072 dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
1073
1074 if (status & ERR_EN) {
1075 omap_hsmmc_dbg_report_irq(host, status);
1076
1077 if (status & (CTO_EN | CCRC_EN))
1078 end_cmd = 1;
1079 if (status & (CTO_EN | DTO_EN))
1080 hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd);
1081 else if (status & (CCRC_EN | DCRC_EN))
1082 hsmmc_command_incomplete(host, -EILSEQ, end_cmd);
1083
1084 if (status & ACE_EN) {
1085 u32 ac12;
1086 ac12 = OMAP_HSMMC_READ(host->base, AC12);
1087 if (!(ac12 & ACNE) && host->mrq->sbc) {
1088 end_cmd = 1;
1089 if (ac12 & ACTO)
1090 error = -ETIMEDOUT;
1091 else if (ac12 & (ACCE | ACEB | ACIE))
1092 error = -EILSEQ;
1093 host->mrq->sbc->error = error;
1094 hsmmc_command_incomplete(host, error, end_cmd);
1095 }
1096 dev_dbg(mmc_dev(host->mmc), "AC12 err: 0x%x\n", ac12);
1097 }
1098 if (host->data || host->response_busy) {
1099 end_trans = !end_cmd;
1100 host->response_busy = 0;
1101 }
1102 }
1103
1104 OMAP_HSMMC_WRITE(host->base, STAT, status);
1105 if (end_cmd || ((status & CC_EN) && host->cmd))
1106 omap_hsmmc_cmd_done(host, host->cmd);
1107 if ((end_trans || (status & TC_EN)) && host->mrq)
1108 omap_hsmmc_xfer_done(host, data);
1109}
1110
1111/*
1112 * MMC controller IRQ handler
1113 */
1114static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
1115{
1116 struct omap_hsmmc_host *host = dev_id;
1117 int status;
1118
1119 status = OMAP_HSMMC_READ(host->base, STAT);
1120 while (status & INT_EN_MASK && host->req_in_progress) {
1121 omap_hsmmc_do_irq(host, status);
1122
1123 /* Flush posted write */
1124 status = OMAP_HSMMC_READ(host->base, STAT);
1125 }
1126
1127 return IRQ_HANDLED;
1128}
1129
1130static void set_sd_bus_power(struct omap_hsmmc_host *host)
1131{
1132 unsigned long i;
1133
1134 OMAP_HSMMC_WRITE(host->base, HCTL,
1135 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
1136 for (i = 0; i < loops_per_jiffy; i++) {
1137 if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
1138 break;
1139 cpu_relax();
1140 }
1141}
1142
1143/*
1144 * Switch MMC interface voltage ... only relevant for MMC1.
1145 *
1146 * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
1147 * The MMC2 transceiver controls are used instead of DAT4..DAT7.
1148 * Some chips, like eMMC ones, use internal transceivers.
1149 */
1150static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
1151{
1152 u32 reg_val = 0;
1153 int ret;
1154
1155 /* Disable the clocks */
1156 pm_runtime_put_sync(host->dev);
1157 if (host->dbclk)
1158 clk_disable_unprepare(host->dbclk);
1159
1160 /* Turn the power off */
1161 ret = mmc_slot(host).set_power(host->dev, host->slot_id, 0, 0);
1162
1163 /* Turn the power ON with given VDD 1.8 or 3.0v */
1164 if (!ret)
1165 ret = mmc_slot(host).set_power(host->dev, host->slot_id, 1,
1166 vdd);
1167 pm_runtime_get_sync(host->dev);
1168 if (host->dbclk)
1169 clk_prepare_enable(host->dbclk);
1170
1171 if (ret != 0)
1172 goto err;
1173
1174 OMAP_HSMMC_WRITE(host->base, HCTL,
1175 OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
1176 reg_val = OMAP_HSMMC_READ(host->base, HCTL);
1177
1178 /*
1179 * If a MMC dual voltage card is detected, the set_ios fn calls
1180 * this fn with VDD bit set for 1.8V. Upon card removal from the
1181 * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
1182 *
1183 * Cope with a bit of slop in the range ... per data sheets:
1184 * - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
1185 * but recommended values are 1.71V to 1.89V
1186 * - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
1187 * but recommended values are 2.7V to 3.3V
1188 *
1189 * Board setup code shouldn't permit anything very out-of-range.
1190 * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
1191 * middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
1192 */
1193 if ((1 << vdd) <= MMC_VDD_23_24)
1194 reg_val |= SDVS18;
1195 else
1196 reg_val |= SDVS30;
1197
1198 OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
1199 set_sd_bus_power(host);
1200
1201 return 0;
1202err:
1203 dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
1204 return ret;
1205}
1206
1207/* Protect the card while the cover is open */
1208static void omap_hsmmc_protect_card(struct omap_hsmmc_host *host)
1209{
1210 if (!mmc_slot(host).get_cover_state)
1211 return;
1212
1213 host->reqs_blocked = 0;
1214 if (mmc_slot(host).get_cover_state(host->dev, host->slot_id)) {
1215 if (host->protect_card) {
1216 dev_info(host->dev, "%s: cover is closed, "
1217 "card is now accessible\n",
1218 mmc_hostname(host->mmc));
1219 host->protect_card = 0;
1220 }
1221 } else {
1222 if (!host->protect_card) {
1223 dev_info(host->dev, "%s: cover is open, "
1224 "card is now inaccessible\n",
1225 mmc_hostname(host->mmc));
1226 host->protect_card = 1;
1227 }
1228 }
1229}
1230
1231/*
1232 * irq handler to notify the core about card insertion/removal
1233 */
1234static irqreturn_t omap_hsmmc_detect(int irq, void *dev_id)
1235{
1236 struct omap_hsmmc_host *host = dev_id;
1237 struct omap_mmc_slot_data *slot = &mmc_slot(host);
1238 int carddetect;
1239
1240 sysfs_notify(&host->mmc->class_dev.kobj, NULL, "cover_switch");
1241
1242 if (slot->card_detect)
1243 carddetect = slot->card_detect(host->dev, host->slot_id);
1244 else {
1245 omap_hsmmc_protect_card(host);
1246 carddetect = -ENOSYS;
1247 }
1248
1249 if (carddetect)
1250 mmc_detect_change(host->mmc, (HZ * 200) / 1000);
1251 else
1252 mmc_detect_change(host->mmc, (HZ * 50) / 1000);
1253 return IRQ_HANDLED;
1254}
1255
1256static void omap_hsmmc_dma_callback(void *param)
1257{
1258 struct omap_hsmmc_host *host = param;
1259 struct dma_chan *chan;
1260 struct mmc_data *data;
1261 int req_in_progress;
1262
1263 spin_lock_irq(&host->irq_lock);
1264 if (host->dma_ch < 0) {
1265 spin_unlock_irq(&host->irq_lock);
1266 return;
1267 }
1268
1269 data = host->mrq->data;
1270 chan = omap_hsmmc_get_dma_chan(host, data);
1271 if (!data->host_cookie)
1272 dma_unmap_sg(chan->device->dev,
1273 data->sg, data->sg_len,
1274 omap_hsmmc_get_dma_dir(host, data));
1275
1276 req_in_progress = host->req_in_progress;
1277 host->dma_ch = -1;
1278 spin_unlock_irq(&host->irq_lock);
1279
1280 /* If DMA has finished after TC, complete the request */
1281 if (!req_in_progress) {
1282 struct mmc_request *mrq = host->mrq;
1283
1284 host->mrq = NULL;
1285 mmc_request_done(host->mmc, mrq);
1286 }
1287}
1288
1289static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host,
1290 struct mmc_data *data,
1291 struct omap_hsmmc_next *next,
1292 struct dma_chan *chan)
1293{
1294 int dma_len;
1295
1296 if (!next && data->host_cookie &&
1297 data->host_cookie != host->next_data.cookie) {
1298 dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d"
1299 " host->next_data.cookie %d\n",
1300 __func__, data->host_cookie, host->next_data.cookie);
1301 data->host_cookie = 0;
1302 }
1303
1304 /* Check if next job is already prepared */
1305 if (next || data->host_cookie != host->next_data.cookie) {
1306 dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len,
1307 omap_hsmmc_get_dma_dir(host, data));
1308
1309 } else {
1310 dma_len = host->next_data.dma_len;
1311 host->next_data.dma_len = 0;
1312 }
1313
1314
1315 if (dma_len == 0)
1316 return -EINVAL;
1317
1318 if (next) {
1319 next->dma_len = dma_len;
1320 data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
1321 } else
1322 host->dma_len = dma_len;
1323
1324 return 0;
1325}
1326
1327/*
1328 * Routine to configure and start DMA for the MMC card
1329 */
1330static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host,
1331 struct mmc_request *req)
1332{
1333 struct dma_slave_config cfg;
1334 struct dma_async_tx_descriptor *tx;
1335 int ret = 0, i;
1336 struct mmc_data *data = req->data;
1337 struct dma_chan *chan;
1338
1339 /* Sanity check: all the SG entries must be aligned by block size. */
1340 for (i = 0; i < data->sg_len; i++) {
1341 struct scatterlist *sgl;
1342
1343 sgl = data->sg + i;
1344 if (sgl->length % data->blksz)
1345 return -EINVAL;
1346 }
1347 if ((data->blksz % 4) != 0)
1348 /* REVISIT: The MMC buffer increments only when MSB is written.
1349 * Return error for blksz which is non multiple of four.
1350 */
1351 return -EINVAL;
1352
1353 BUG_ON(host->dma_ch != -1);
1354
1355 chan = omap_hsmmc_get_dma_chan(host, data);
1356
1357 cfg.src_addr = host->mapbase + OMAP_HSMMC_DATA;
1358 cfg.dst_addr = host->mapbase + OMAP_HSMMC_DATA;
1359 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1360 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1361 cfg.src_maxburst = data->blksz / 4;
1362 cfg.dst_maxburst = data->blksz / 4;
1363
1364 ret = dmaengine_slave_config(chan, &cfg);
1365 if (ret)
1366 return ret;
1367
1368 ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan);
1369 if (ret)
1370 return ret;
1371
1372 tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len,
1373 data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
1374 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1375 if (!tx) {
1376 dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n");
1377 /* FIXME: cleanup */
1378 return -1;
1379 }
1380
1381 tx->callback = omap_hsmmc_dma_callback;
1382 tx->callback_param = host;
1383
1384 /* Does not fail */
1385 dmaengine_submit(tx);
1386
1387 host->dma_ch = 1;
1388
1389 return 0;
1390}
1391
1392static void set_data_timeout(struct omap_hsmmc_host *host,
1393 unsigned int timeout_ns,
1394 unsigned int timeout_clks)
1395{
1396 unsigned int timeout, cycle_ns;
1397 uint32_t reg, clkd, dto = 0;
1398
1399 reg = OMAP_HSMMC_READ(host->base, SYSCTL);
1400 clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
1401 if (clkd == 0)
1402 clkd = 1;
1403
1404 cycle_ns = 1000000000 / (host->clk_rate / clkd);
1405 timeout = timeout_ns / cycle_ns;
1406 timeout += timeout_clks;
1407 if (timeout) {
1408 while ((timeout & 0x80000000) == 0) {
1409 dto += 1;
1410 timeout <<= 1;
1411 }
1412 dto = 31 - dto;
1413 timeout <<= 1;
1414 if (timeout && dto)
1415 dto += 1;
1416 if (dto >= 13)
1417 dto -= 13;
1418 else
1419 dto = 0;
1420 if (dto > 14)
1421 dto = 14;
1422 }
1423
1424 reg &= ~DTO_MASK;
1425 reg |= dto << DTO_SHIFT;
1426 OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
1427}
1428
1429static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host)
1430{
1431 struct mmc_request *req = host->mrq;
1432 struct dma_chan *chan;
1433
1434 if (!req->data)
1435 return;
1436 OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
1437 | (req->data->blocks << 16));
1438 set_data_timeout(host, req->data->timeout_ns,
1439 req->data->timeout_clks);
1440 chan = omap_hsmmc_get_dma_chan(host, req->data);
1441 dma_async_issue_pending(chan);
1442}
1443
1444/*
1445 * Configure block length for MMC/SD cards and initiate the transfer.
1446 */
1447static int
1448omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
1449{
1450 int ret;
1451 host->data = req->data;
1452
1453 if (req->data == NULL) {
1454 OMAP_HSMMC_WRITE(host->base, BLK, 0);
1455 /*
1456 * Set an arbitrary 100ms data timeout for commands with
1457 * busy signal.
1458 */
1459 if (req->cmd->flags & MMC_RSP_BUSY)
1460 set_data_timeout(host, 100000000U, 0);
1461 return 0;
1462 }
1463
1464 if (host->use_dma) {
1465 ret = omap_hsmmc_setup_dma_transfer(host, req);
1466 if (ret != 0) {
1467 dev_err(mmc_dev(host->mmc), "MMC start dma failure\n");
1468 return ret;
1469 }
1470 }
1471 return 0;
1472}
1473
1474static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
1475 int err)
1476{
1477 struct omap_hsmmc_host *host = mmc_priv(mmc);
1478 struct mmc_data *data = mrq->data;
1479
1480 if (host->use_dma && data->host_cookie) {
1481 struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data);
1482
1483 dma_unmap_sg(c->device->dev, data->sg, data->sg_len,
1484 omap_hsmmc_get_dma_dir(host, data));
1485 data->host_cookie = 0;
1486 }
1487}
1488
1489static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq,
1490 bool is_first_req)
1491{
1492 struct omap_hsmmc_host *host = mmc_priv(mmc);
1493
1494 if (mrq->data->host_cookie) {
1495 mrq->data->host_cookie = 0;
1496 return ;
1497 }
1498
1499 if (host->use_dma) {
1500 struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data);
1501
1502 if (omap_hsmmc_pre_dma_transfer(host, mrq->data,
1503 &host->next_data, c))
1504 mrq->data->host_cookie = 0;
1505 }
1506}
1507
1508/*
1509 * Request function. for read/write operation
1510 */
1511static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
1512{
1513 struct omap_hsmmc_host *host = mmc_priv(mmc);
1514 int err;
1515
1516 BUG_ON(host->req_in_progress);
1517 BUG_ON(host->dma_ch != -1);
1518 if (host->protect_card) {
1519 if (host->reqs_blocked < 3) {
1520 /*
1521 * Ensure the controller is left in a consistent
1522 * state by resetting the command and data state
1523 * machines.
1524 */
1525 omap_hsmmc_reset_controller_fsm(host, SRD);
1526 omap_hsmmc_reset_controller_fsm(host, SRC);
1527 host->reqs_blocked += 1;
1528 }
1529 req->cmd->error = -EBADF;
1530 if (req->data)
1531 req->data->error = -EBADF;
1532 req->cmd->retries = 0;
1533 mmc_request_done(mmc, req);
1534 return;
1535 } else if (host->reqs_blocked)
1536 host->reqs_blocked = 0;
1537 WARN_ON(host->mrq != NULL);
1538 host->mrq = req;
1539 host->clk_rate = clk_get_rate(host->fclk);
1540 err = omap_hsmmc_prepare_data(host, req);
1541 if (err) {
1542 req->cmd->error = err;
1543 if (req->data)
1544 req->data->error = err;
1545 host->mrq = NULL;
1546 mmc_request_done(mmc, req);
1547 return;
1548 }
1549 if (req->sbc && !(host->flags & AUTO_CMD23)) {
1550 omap_hsmmc_start_command(host, req->sbc, NULL);
1551 return;
1552 }
1553
1554 omap_hsmmc_start_dma_transfer(host);
1555 omap_hsmmc_start_command(host, req->cmd, req->data);
1556}
1557
1558/* Routine to configure clock values. Exposed API to core */
1559static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1560{
1561 struct omap_hsmmc_host *host = mmc_priv(mmc);
1562 int do_send_init_stream = 0;
1563
1564 pm_runtime_get_sync(host->dev);
1565
1566 if (ios->power_mode != host->power_mode) {
1567 switch (ios->power_mode) {
1568 case MMC_POWER_OFF:
1569 mmc_slot(host).set_power(host->dev, host->slot_id,
1570 0, 0);
1571 break;
1572 case MMC_POWER_UP:
1573 mmc_slot(host).set_power(host->dev, host->slot_id,
1574 1, ios->vdd);
1575 break;
1576 case MMC_POWER_ON:
1577 do_send_init_stream = 1;
1578 break;
1579 }
1580 host->power_mode = ios->power_mode;
1581 }
1582
1583 /* FIXME: set registers based only on changes to ios */
1584
1585 omap_hsmmc_set_bus_width(host);
1586
1587 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1588 /* Only MMC1 can interface at 3V without some flavor
1589 * of external transceiver; but they all handle 1.8V.
1590 */
1591 if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
1592 (ios->vdd == DUAL_VOLT_OCR_BIT)) {
1593 /*
1594 * The mmc_select_voltage fn of the core does
1595 * not seem to set the power_mode to
1596 * MMC_POWER_UP upon recalculating the voltage.
1597 * vdd 1.8v.
1598 */
1599 if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
1600 dev_dbg(mmc_dev(host->mmc),
1601 "Switch operation failed\n");
1602 }
1603 }
1604
1605 omap_hsmmc_set_clock(host);
1606
1607 if (do_send_init_stream)
1608 send_init_stream(host);
1609
1610 omap_hsmmc_set_bus_mode(host);
1611
1612 pm_runtime_put_autosuspend(host->dev);
1613}
1614
1615static int omap_hsmmc_get_cd(struct mmc_host *mmc)
1616{
1617 struct omap_hsmmc_host *host = mmc_priv(mmc);
1618
1619 if (!mmc_slot(host).card_detect)
1620 return -ENOSYS;
1621 return mmc_slot(host).card_detect(host->dev, host->slot_id);
1622}
1623
1624static int omap_hsmmc_get_ro(struct mmc_host *mmc)
1625{
1626 struct omap_hsmmc_host *host = mmc_priv(mmc);
1627
1628 if (!mmc_slot(host).get_ro)
1629 return -ENOSYS;
1630 return mmc_slot(host).get_ro(host->dev, 0);
1631}
1632
1633static void omap_hsmmc_init_card(struct mmc_host *mmc, struct mmc_card *card)
1634{
1635 struct omap_hsmmc_host *host = mmc_priv(mmc);
1636
1637 if (mmc_slot(host).init_card)
1638 mmc_slot(host).init_card(card);
1639}
1640
1641static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
1642{
1643 u32 hctl, capa, value;
1644
1645 /* Only MMC1 supports 3.0V */
1646 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1647 hctl = SDVS30;
1648 capa = VS30 | VS18;
1649 } else {
1650 hctl = SDVS18;
1651 capa = VS18;
1652 }
1653
1654 value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
1655 OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);
1656
1657 value = OMAP_HSMMC_READ(host->base, CAPA);
1658 OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);
1659
1660 /* Set SD bus power bit */
1661 set_sd_bus_power(host);
1662}
1663
1664static int omap_hsmmc_enable_fclk(struct mmc_host *mmc)
1665{
1666 struct omap_hsmmc_host *host = mmc_priv(mmc);
1667
1668 pm_runtime_get_sync(host->dev);
1669
1670 return 0;
1671}
1672
1673static int omap_hsmmc_disable_fclk(struct mmc_host *mmc)
1674{
1675 struct omap_hsmmc_host *host = mmc_priv(mmc);
1676
1677 pm_runtime_mark_last_busy(host->dev);
1678 pm_runtime_put_autosuspend(host->dev);
1679
1680 return 0;
1681}
1682
1683static const struct mmc_host_ops omap_hsmmc_ops = {
1684 .enable = omap_hsmmc_enable_fclk,
1685 .disable = omap_hsmmc_disable_fclk,
1686 .post_req = omap_hsmmc_post_req,
1687 .pre_req = omap_hsmmc_pre_req,
1688 .request = omap_hsmmc_request,
1689 .set_ios = omap_hsmmc_set_ios,
1690 .get_cd = omap_hsmmc_get_cd,
1691 .get_ro = omap_hsmmc_get_ro,
1692 .init_card = omap_hsmmc_init_card,
1693 /* NYET -- enable_sdio_irq */
1694};
1695
1696#ifdef CONFIG_DEBUG_FS
1697
1698static int omap_hsmmc_regs_show(struct seq_file *s, void *data)
1699{
1700 struct mmc_host *mmc = s->private;
1701 struct omap_hsmmc_host *host = mmc_priv(mmc);
1702
1703 seq_printf(s, "mmc%d:\n ctx_loss:\t%d\n\nregs:\n",
1704 mmc->index, host->context_loss);
1705
1706 pm_runtime_get_sync(host->dev);
1707
1708 seq_printf(s, "CON:\t\t0x%08x\n",
1709 OMAP_HSMMC_READ(host->base, CON));
1710 seq_printf(s, "HCTL:\t\t0x%08x\n",
1711 OMAP_HSMMC_READ(host->base, HCTL));
1712 seq_printf(s, "SYSCTL:\t\t0x%08x\n",
1713 OMAP_HSMMC_READ(host->base, SYSCTL));
1714 seq_printf(s, "IE:\t\t0x%08x\n",
1715 OMAP_HSMMC_READ(host->base, IE));
1716 seq_printf(s, "ISE:\t\t0x%08x\n",
1717 OMAP_HSMMC_READ(host->base, ISE));
1718 seq_printf(s, "CAPA:\t\t0x%08x\n",
1719 OMAP_HSMMC_READ(host->base, CAPA));
1720
1721 pm_runtime_mark_last_busy(host->dev);
1722 pm_runtime_put_autosuspend(host->dev);
1723
1724 return 0;
1725}
1726
1727static int omap_hsmmc_regs_open(struct inode *inode, struct file *file)
1728{
1729 return single_open(file, omap_hsmmc_regs_show, inode->i_private);
1730}
1731
1732static const struct file_operations mmc_regs_fops = {
1733 .open = omap_hsmmc_regs_open,
1734 .read = seq_read,
1735 .llseek = seq_lseek,
1736 .release = single_release,
1737};
1738
1739static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1740{
1741 if (mmc->debugfs_root)
1742 debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root,
1743 mmc, &mmc_regs_fops);
1744}
1745
1746#else
1747
1748static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1749{
1750}
1751
1752#endif
1753
1754#ifdef CONFIG_OF
1755static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = {
1756 /* See 35xx errata 2.1.1.128 in SPRZ278F */
1757 .controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ,
1758};
1759
1760static const struct omap_mmc_of_data omap4_mmc_of_data = {
1761 .reg_offset = 0x100,
1762};
1763
1764static const struct of_device_id omap_mmc_of_match[] = {
1765 {
1766 .compatible = "ti,omap2-hsmmc",
1767 },
1768 {
1769 .compatible = "ti,omap3-pre-es3-hsmmc",
1770 .data = &omap3_pre_es3_mmc_of_data,
1771 },
1772 {
1773 .compatible = "ti,omap3-hsmmc",
1774 },
1775 {
1776 .compatible = "ti,omap4-hsmmc",
1777 .data = &omap4_mmc_of_data,
1778 },
1779 {},
1780};
1781MODULE_DEVICE_TABLE(of, omap_mmc_of_match);
1782
1783static struct omap_mmc_platform_data *of_get_hsmmc_pdata(struct device *dev)
1784{
1785 struct omap_mmc_platform_data *pdata;
1786 struct device_node *np = dev->of_node;
1787 u32 bus_width, max_freq;
1788 int cd_gpio, wp_gpio;
1789
1790 cd_gpio = of_get_named_gpio(np, "cd-gpios", 0);
1791 wp_gpio = of_get_named_gpio(np, "wp-gpios", 0);
1792 if (cd_gpio == -EPROBE_DEFER || wp_gpio == -EPROBE_DEFER)
1793 return ERR_PTR(-EPROBE_DEFER);
1794
1795 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1796 if (!pdata)
1797 return ERR_PTR(-ENOMEM); /* out of memory */
1798
1799 if (of_find_property(np, "ti,dual-volt", NULL))
1800 pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1801
1802 /* This driver only supports 1 slot */
1803 pdata->nr_slots = 1;
1804 pdata->slots[0].switch_pin = cd_gpio;
1805 pdata->slots[0].gpio_wp = wp_gpio;
1806
1807 if (of_find_property(np, "ti,non-removable", NULL)) {
1808 pdata->slots[0].nonremovable = true;
1809 pdata->slots[0].no_regulator_off_init = true;
1810 }
1811 of_property_read_u32(np, "bus-width", &bus_width);
1812 if (bus_width == 4)
1813 pdata->slots[0].caps |= MMC_CAP_4_BIT_DATA;
1814 else if (bus_width == 8)
1815 pdata->slots[0].caps |= MMC_CAP_8_BIT_DATA;
1816
1817 if (of_find_property(np, "ti,needs-special-reset", NULL))
1818 pdata->slots[0].features |= HSMMC_HAS_UPDATED_RESET;
1819
1820 if (!of_property_read_u32(np, "max-frequency", &max_freq))
1821 pdata->max_freq = max_freq;
1822
1823 if (of_find_property(np, "ti,needs-special-hs-handling", NULL))
1824 pdata->slots[0].features |= HSMMC_HAS_HSPE_SUPPORT;
1825
1826 if (of_find_property(np, "keep-power-in-suspend", NULL))
1827 pdata->slots[0].pm_caps |= MMC_PM_KEEP_POWER;
1828
1829 if (of_find_property(np, "enable-sdio-wakeup", NULL))
1830 pdata->slots[0].pm_caps |= MMC_PM_WAKE_SDIO_IRQ;
1831
1832 return pdata;
1833}
1834#else
1835static inline struct omap_mmc_platform_data
1836 *of_get_hsmmc_pdata(struct device *dev)
1837{
1838 return ERR_PTR(-EINVAL);
1839}
1840#endif
1841
1842static int omap_hsmmc_probe(struct platform_device *pdev)
1843{
1844 struct omap_mmc_platform_data *pdata = pdev->dev.platform_data;
1845 struct mmc_host *mmc;
1846 struct omap_hsmmc_host *host = NULL;
1847 struct resource *res;
1848 int ret, irq;
1849 const struct of_device_id *match;
1850 dma_cap_mask_t mask;
1851 unsigned tx_req, rx_req;
1852 struct pinctrl *pinctrl;
1853 const struct omap_mmc_of_data *data;
1854
1855 match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev);
1856 if (match) {
1857 pdata = of_get_hsmmc_pdata(&pdev->dev);
1858
1859 if (IS_ERR(pdata))
1860 return PTR_ERR(pdata);
1861
1862 if (match->data) {
1863 data = match->data;
1864 pdata->reg_offset = data->reg_offset;
1865 pdata->controller_flags |= data->controller_flags;
1866 }
1867 }
1868
1869 if (pdata == NULL) {
1870 dev_err(&pdev->dev, "Platform Data is missing\n");
1871 return -ENXIO;
1872 }
1873
1874 if (pdata->nr_slots == 0) {
1875 dev_err(&pdev->dev, "No Slots\n");
1876 return -ENXIO;
1877 }
1878
1879 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1880 irq = platform_get_irq(pdev, 0);
1881 if (res == NULL || irq < 0)
1882 return -ENXIO;
1883
1884 res = request_mem_region(res->start, resource_size(res), pdev->name);
1885 if (res == NULL)
1886 return -EBUSY;
1887
1888 ret = omap_hsmmc_gpio_init(pdata);
1889 if (ret)
1890 goto err;
1891
1892 mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev);
1893 if (!mmc) {
1894 ret = -ENOMEM;
1895 goto err_alloc;
1896 }
1897
1898 host = mmc_priv(mmc);
1899 host->mmc = mmc;
1900 host->pdata = pdata;
1901 host->dev = &pdev->dev;
1902 host->use_dma = 1;
1903 host->dma_ch = -1;
1904 host->irq = irq;
1905 host->slot_id = 0;
1906 host->mapbase = res->start + pdata->reg_offset;
1907 host->base = ioremap(host->mapbase, SZ_4K);
1908 host->power_mode = MMC_POWER_OFF;
1909 host->next_data.cookie = 1;
1910 host->pbias_enabled = 0;
1911
1912 platform_set_drvdata(pdev, host);
1913
1914 mmc->ops = &omap_hsmmc_ops;
1915
1916 mmc->f_min = OMAP_MMC_MIN_CLOCK;
1917
1918 if (pdata->max_freq > 0)
1919 mmc->f_max = pdata->max_freq;
1920 else
1921 mmc->f_max = OMAP_MMC_MAX_CLOCK;
1922
1923 spin_lock_init(&host->irq_lock);
1924
1925 host->fclk = clk_get(&pdev->dev, "fck");
1926 if (IS_ERR(host->fclk)) {
1927 ret = PTR_ERR(host->fclk);
1928 host->fclk = NULL;
1929 goto err1;
1930 }
1931
1932 if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) {
1933 dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n");
1934 mmc->caps2 |= MMC_CAP2_NO_MULTI_READ;
1935 }
1936
1937 pm_runtime_enable(host->dev);
1938 pm_runtime_get_sync(host->dev);
1939 pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY);
1940 pm_runtime_use_autosuspend(host->dev);
1941
1942 omap_hsmmc_context_save(host);
1943
1944 host->dbclk = clk_get(&pdev->dev, "mmchsdb_fck");
1945 /*
1946 * MMC can still work without debounce clock.
1947 */
1948 if (IS_ERR(host->dbclk)) {
1949 host->dbclk = NULL;
1950 } else if (clk_prepare_enable(host->dbclk) != 0) {
1951 dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n");
1952 clk_put(host->dbclk);
1953 host->dbclk = NULL;
1954 }
1955
1956 /* Since we do only SG emulation, we can have as many segs
1957 * as we want. */
1958 mmc->max_segs = 1024;
1959
1960 mmc->max_blk_size = 512; /* Block Length at max can be 1024 */
1961 mmc->max_blk_count = 0xFFFF; /* No. of Blocks is 16 bits */
1962 mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
1963 mmc->max_seg_size = mmc->max_req_size;
1964
1965 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
1966 MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_ERASE;
1967
1968 mmc->caps |= mmc_slot(host).caps;
1969 if (mmc->caps & MMC_CAP_8_BIT_DATA)
1970 mmc->caps |= MMC_CAP_4_BIT_DATA;
1971
1972 if (mmc_slot(host).nonremovable)
1973 mmc->caps |= MMC_CAP_NONREMOVABLE;
1974
1975 mmc->pm_caps = mmc_slot(host).pm_caps;
1976
1977 omap_hsmmc_conf_bus_power(host);
1978
1979 if (!pdev->dev.of_node) {
1980 res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
1981 if (!res) {
1982 dev_err(mmc_dev(host->mmc), "cannot get DMA TX channel\n");
1983 ret = -ENXIO;
1984 goto err_irq;
1985 }
1986 tx_req = res->start;
1987
1988 res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
1989 if (!res) {
1990 dev_err(mmc_dev(host->mmc), "cannot get DMA RX channel\n");
1991 ret = -ENXIO;
1992 goto err_irq;
1993 }
1994 rx_req = res->start;
1995 }
1996
1997 dma_cap_zero(mask);
1998 dma_cap_set(DMA_SLAVE, mask);
1999
2000 host->rx_chan =
2001 dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
2002 &rx_req, &pdev->dev, "rx");
2003
2004 if (!host->rx_chan) {
2005 dev_err(mmc_dev(host->mmc), "unable to obtain RX DMA engine channel %u\n", rx_req);
2006 ret = -ENXIO;
2007 goto err_irq;
2008 }
2009
2010 host->tx_chan =
2011 dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
2012 &tx_req, &pdev->dev, "tx");
2013
2014 if (!host->tx_chan) {
2015 dev_err(mmc_dev(host->mmc), "unable to obtain TX DMA engine channel %u\n", tx_req);
2016 ret = -ENXIO;
2017 goto err_irq;
2018 }
2019
2020 /* Request IRQ for MMC operations */
2021 ret = request_irq(host->irq, omap_hsmmc_irq, 0,
2022 mmc_hostname(mmc), host);
2023 if (ret) {
2024 dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
2025 goto err_irq;
2026 }
2027
2028 if (pdata->init != NULL) {
2029 if (pdata->init(&pdev->dev) != 0) {
2030 dev_err(mmc_dev(host->mmc),
2031 "Unable to configure MMC IRQs\n");
2032 goto err_irq_cd_init;
2033 }
2034 }
2035
2036 if (omap_hsmmc_have_reg() && !mmc_slot(host).set_power) {
2037 ret = omap_hsmmc_reg_get(host);
2038 if (ret)
2039 goto err_reg;
2040 host->use_reg = 1;
2041 }
2042
2043 mmc->ocr_avail = mmc_slot(host).ocr_mask;
2044
2045 /* Request IRQ for card detect */
2046 if ((mmc_slot(host).card_detect_irq)) {
2047 ret = request_threaded_irq(mmc_slot(host).card_detect_irq,
2048 NULL,
2049 omap_hsmmc_detect,
2050 IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
2051 mmc_hostname(mmc), host);
2052 if (ret) {
2053 dev_err(mmc_dev(host->mmc),
2054 "Unable to grab MMC CD IRQ\n");
2055 goto err_irq_cd;
2056 }
2057 pdata->suspend = omap_hsmmc_suspend_cdirq;
2058 pdata->resume = omap_hsmmc_resume_cdirq;
2059 }
2060
2061 omap_hsmmc_disable_irq(host);
2062
2063 pinctrl = devm_pinctrl_get_select_default(&pdev->dev);
2064 if (IS_ERR(pinctrl))
2065 dev_warn(&pdev->dev,
2066 "pins are not configured from the driver\n");
2067
2068 omap_hsmmc_protect_card(host);
2069
2070 mmc_add_host(mmc);
2071
2072 if (mmc_slot(host).name != NULL) {
2073 ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
2074 if (ret < 0)
2075 goto err_slot_name;
2076 }
2077 if (mmc_slot(host).card_detect_irq && mmc_slot(host).get_cover_state) {
2078 ret = device_create_file(&mmc->class_dev,
2079 &dev_attr_cover_switch);
2080 if (ret < 0)
2081 goto err_slot_name;
2082 }
2083
2084 omap_hsmmc_debugfs(mmc);
2085 pm_runtime_mark_last_busy(host->dev);
2086 pm_runtime_put_autosuspend(host->dev);
2087
2088 return 0;
2089
2090err_slot_name:
2091 mmc_remove_host(mmc);
2092 free_irq(mmc_slot(host).card_detect_irq, host);
2093err_irq_cd:
2094 if (host->use_reg)
2095 omap_hsmmc_reg_put(host);
2096err_reg:
2097 if (host->pdata->cleanup)
2098 host->pdata->cleanup(&pdev->dev);
2099err_irq_cd_init:
2100 free_irq(host->irq, host);
2101err_irq:
2102 if (host->tx_chan)
2103 dma_release_channel(host->tx_chan);
2104 if (host->rx_chan)
2105 dma_release_channel(host->rx_chan);
2106 pm_runtime_put_sync(host->dev);
2107 pm_runtime_disable(host->dev);
2108 clk_put(host->fclk);
2109 if (host->dbclk) {
2110 clk_disable_unprepare(host->dbclk);
2111 clk_put(host->dbclk);
2112 }
2113err1:
2114 iounmap(host->base);
2115 mmc_free_host(mmc);
2116err_alloc:
2117 omap_hsmmc_gpio_free(pdata);
2118err:
2119 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2120 if (res)
2121 release_mem_region(res->start, resource_size(res));
2122 return ret;
2123}
2124
2125static int omap_hsmmc_remove(struct platform_device *pdev)
2126{
2127 struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
2128 struct resource *res;
2129
2130 pm_runtime_get_sync(host->dev);
2131 mmc_remove_host(host->mmc);
2132 if (host->use_reg)
2133 omap_hsmmc_reg_put(host);
2134 if (host->pdata->cleanup)
2135 host->pdata->cleanup(&pdev->dev);
2136 free_irq(host->irq, host);
2137 if (mmc_slot(host).card_detect_irq)
2138 free_irq(mmc_slot(host).card_detect_irq, host);
2139
2140 if (host->tx_chan)
2141 dma_release_channel(host->tx_chan);
2142 if (host->rx_chan)
2143 dma_release_channel(host->rx_chan);
2144
2145 pm_runtime_put_sync(host->dev);
2146 pm_runtime_disable(host->dev);
2147 clk_put(host->fclk);
2148 if (host->dbclk) {
2149 clk_disable_unprepare(host->dbclk);
2150 clk_put(host->dbclk);
2151 }
2152
2153 omap_hsmmc_gpio_free(host->pdata);
2154 iounmap(host->base);
2155 mmc_free_host(host->mmc);
2156
2157 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2158 if (res)
2159 release_mem_region(res->start, resource_size(res));
2160
2161 return 0;
2162}
2163
2164#ifdef CONFIG_PM
2165static int omap_hsmmc_prepare(struct device *dev)
2166{
2167 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2168
2169 if (host->pdata->suspend)
2170 return host->pdata->suspend(dev, host->slot_id);
2171
2172 return 0;
2173}
2174
2175static void omap_hsmmc_complete(struct device *dev)
2176{
2177 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2178
2179 if (host->pdata->resume)
2180 host->pdata->resume(dev, host->slot_id);
2181
2182}
2183
2184static int omap_hsmmc_suspend(struct device *dev)
2185{
2186 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2187
2188 if (!host)
2189 return 0;
2190
2191 pm_runtime_get_sync(host->dev);
2192
2193 if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
2194 omap_hsmmc_disable_irq(host);
2195 OMAP_HSMMC_WRITE(host->base, HCTL,
2196 OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
2197 }
2198
2199 if (host->dbclk)
2200 clk_disable_unprepare(host->dbclk);
2201
2202 pm_runtime_put_sync(host->dev);
2203 return 0;
2204}
2205
2206/* Routine to resume the MMC device */
2207static int omap_hsmmc_resume(struct device *dev)
2208{
2209 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2210
2211 if (!host)
2212 return 0;
2213
2214 pm_runtime_get_sync(host->dev);
2215
2216 if (host->dbclk)
2217 clk_prepare_enable(host->dbclk);
2218
2219 if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER))
2220 omap_hsmmc_conf_bus_power(host);
2221
2222 omap_hsmmc_protect_card(host);
2223
2224 pm_runtime_mark_last_busy(host->dev);
2225 pm_runtime_put_autosuspend(host->dev);
2226 return 0;
2227}
2228
2229#else
2230#define omap_hsmmc_prepare NULL
2231#define omap_hsmmc_complete NULL
2232#define omap_hsmmc_suspend NULL
2233#define omap_hsmmc_resume NULL
2234#endif
2235
2236static int omap_hsmmc_runtime_suspend(struct device *dev)
2237{
2238 struct omap_hsmmc_host *host;
2239
2240 host = platform_get_drvdata(to_platform_device(dev));
2241 omap_hsmmc_context_save(host);
2242 dev_dbg(dev, "disabled\n");
2243
2244 return 0;
2245}
2246
2247static int omap_hsmmc_runtime_resume(struct device *dev)
2248{
2249 struct omap_hsmmc_host *host;
2250
2251 host = platform_get_drvdata(to_platform_device(dev));
2252 omap_hsmmc_context_restore(host);
2253 dev_dbg(dev, "enabled\n");
2254
2255 return 0;
2256}
2257
2258static struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
2259 .suspend = omap_hsmmc_suspend,
2260 .resume = omap_hsmmc_resume,
2261 .prepare = omap_hsmmc_prepare,
2262 .complete = omap_hsmmc_complete,
2263 .runtime_suspend = omap_hsmmc_runtime_suspend,
2264 .runtime_resume = omap_hsmmc_runtime_resume,
2265};
2266
2267static struct platform_driver omap_hsmmc_driver = {
2268 .probe = omap_hsmmc_probe,
2269 .remove = omap_hsmmc_remove,
2270 .driver = {
2271 .name = DRIVER_NAME,
2272 .owner = THIS_MODULE,
2273 .pm = &omap_hsmmc_dev_pm_ops,
2274 .of_match_table = of_match_ptr(omap_mmc_of_match),
2275 },
2276};
2277
2278module_platform_driver(omap_hsmmc_driver);
2279MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
2280MODULE_LICENSE("GPL");
2281MODULE_ALIAS("platform:" DRIVER_NAME);
2282MODULE_AUTHOR("Texas Instruments Inc");