Loading...
Note: File does not exist in v3.15.
1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
2/*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24#ifndef KFD_PRIV_H_INCLUDED
25#define KFD_PRIV_H_INCLUDED
26
27#include <linux/hashtable.h>
28#include <linux/mmu_notifier.h>
29#include <linux/memremap.h>
30#include <linux/mutex.h>
31#include <linux/types.h>
32#include <linux/atomic.h>
33#include <linux/workqueue.h>
34#include <linux/spinlock.h>
35#include <linux/kfd_ioctl.h>
36#include <linux/idr.h>
37#include <linux/kfifo.h>
38#include <linux/seq_file.h>
39#include <linux/kref.h>
40#include <linux/sysfs.h>
41#include <linux/device_cgroup.h>
42#include <drm/drm_file.h>
43#include <drm/drm_drv.h>
44#include <drm/drm_device.h>
45#include <drm/drm_ioctl.h>
46#include <kgd_kfd_interface.h>
47#include <linux/swap.h>
48
49#include "amd_shared.h"
50#include "amdgpu.h"
51
52#define KFD_MAX_RING_ENTRY_SIZE 8
53
54#define KFD_SYSFS_FILE_MODE 0444
55
56/* GPU ID hash width in bits */
57#define KFD_GPU_ID_HASH_WIDTH 16
58
59/* Use upper bits of mmap offset to store KFD driver specific information.
60 * BITS[63:62] - Encode MMAP type
61 * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
62 * BITS[45:0] - MMAP offset value
63 *
64 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
65 * defines are w.r.t to PAGE_SIZE
66 */
67#define KFD_MMAP_TYPE_SHIFT 62
68#define KFD_MMAP_TYPE_MASK (0x3ULL << KFD_MMAP_TYPE_SHIFT)
69#define KFD_MMAP_TYPE_DOORBELL (0x3ULL << KFD_MMAP_TYPE_SHIFT)
70#define KFD_MMAP_TYPE_EVENTS (0x2ULL << KFD_MMAP_TYPE_SHIFT)
71#define KFD_MMAP_TYPE_RESERVED_MEM (0x1ULL << KFD_MMAP_TYPE_SHIFT)
72#define KFD_MMAP_TYPE_MMIO (0x0ULL << KFD_MMAP_TYPE_SHIFT)
73
74#define KFD_MMAP_GPU_ID_SHIFT 46
75#define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
76 << KFD_MMAP_GPU_ID_SHIFT)
77#define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
78 & KFD_MMAP_GPU_ID_MASK)
79#define KFD_MMAP_GET_GPU_ID(offset) ((offset & KFD_MMAP_GPU_ID_MASK) \
80 >> KFD_MMAP_GPU_ID_SHIFT)
81
82/*
83 * When working with cp scheduler we should assign the HIQ manually or via
84 * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
85 * definitions for Kaveri. In Kaveri only the first ME queues participates
86 * in the cp scheduling taking that in mind we set the HIQ slot in the
87 * second ME.
88 */
89#define KFD_CIK_HIQ_PIPE 4
90#define KFD_CIK_HIQ_QUEUE 0
91
92/* Macro for allocating structures */
93#define kfd_alloc_struct(ptr_to_struct) \
94 ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
95
96#define KFD_MAX_NUM_OF_PROCESSES 512
97#define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
98
99/*
100 * Size of the per-process TBA+TMA buffer: 2 pages
101 *
102 * The first page is the TBA used for the CWSR ISA code. The second
103 * page is used as TMA for user-mode trap handler setup in daisy-chain mode.
104 */
105#define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
106#define KFD_CWSR_TMA_OFFSET PAGE_SIZE
107
108#define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE \
109 (KFD_MAX_NUM_OF_PROCESSES * \
110 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
111
112#define KFD_KERNEL_QUEUE_SIZE 2048
113
114#define KFD_UNMAP_LATENCY_MS (4000)
115
116/*
117 * 512 = 0x200
118 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
119 * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
120 * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
121 * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
122 * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
123 */
124#define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
125
126/**
127 * enum kfd_ioctl_flags - KFD ioctl flags
128 * Various flags that can be set in &amdkfd_ioctl_desc.flags to control how
129 * userspace can use a given ioctl.
130 */
131enum kfd_ioctl_flags {
132 /*
133 * @KFD_IOC_FLAG_CHECKPOINT_RESTORE:
134 * Certain KFD ioctls such as AMDKFD_IOC_CRIU_OP can potentially
135 * perform privileged operations and load arbitrary data into MQDs and
136 * eventually HQD registers when the queue is mapped by HWS. In order to
137 * prevent this we should perform additional security checks.
138 *
139 * This is equivalent to callers with the CHECKPOINT_RESTORE capability.
140 *
141 * Note: Since earlier versions of docker do not support CHECKPOINT_RESTORE,
142 * we also allow ioctls with SYS_ADMIN capability.
143 */
144 KFD_IOC_FLAG_CHECKPOINT_RESTORE = BIT(0),
145};
146/*
147 * Kernel module parameter to specify maximum number of supported queues per
148 * device
149 */
150extern int max_num_of_queues_per_device;
151
152
153/* Kernel module parameter to specify the scheduling policy */
154extern int sched_policy;
155
156/*
157 * Kernel module parameter to specify the maximum process
158 * number per HW scheduler
159 */
160extern int hws_max_conc_proc;
161
162extern int cwsr_enable;
163
164/*
165 * Kernel module parameter to specify whether to send sigterm to HSA process on
166 * unhandled exception
167 */
168extern int send_sigterm;
169
170/*
171 * This kernel module is used to simulate large bar machine on non-large bar
172 * enabled machines.
173 */
174extern int debug_largebar;
175
176/*
177 * Ignore CRAT table during KFD initialization, can be used to work around
178 * broken CRAT tables on some AMD systems
179 */
180extern int ignore_crat;
181
182/* Set sh_mem_config.retry_disable on GFX v9 */
183extern int amdgpu_noretry;
184
185/* Halt if HWS hang is detected */
186extern int halt_if_hws_hang;
187
188/* Whether MEC FW support GWS barriers */
189extern bool hws_gws_support;
190
191/* Queue preemption timeout in ms */
192extern int queue_preemption_timeout_ms;
193
194/*
195 * Don't evict process queues on vm fault
196 */
197extern int amdgpu_no_queue_eviction_on_vm_fault;
198
199/* Enable eviction debug messages */
200extern bool debug_evictions;
201
202enum cache_policy {
203 cache_policy_coherent,
204 cache_policy_noncoherent
205};
206
207#define KFD_GC_VERSION(dev) ((dev)->adev->ip_versions[GC_HWIP][0])
208#define KFD_IS_SOC15(dev) ((KFD_GC_VERSION(dev)) >= (IP_VERSION(9, 0, 1)))
209
210struct kfd_event_interrupt_class {
211 bool (*interrupt_isr)(struct kfd_dev *dev,
212 const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
213 bool *patched_flag);
214 void (*interrupt_wq)(struct kfd_dev *dev,
215 const uint32_t *ih_ring_entry);
216};
217
218struct kfd_device_info {
219 uint32_t gfx_target_version;
220 const struct kfd_event_interrupt_class *event_interrupt_class;
221 unsigned int max_pasid_bits;
222 unsigned int max_no_of_hqd;
223 unsigned int doorbell_size;
224 size_t ih_ring_entry_size;
225 uint8_t num_of_watch_points;
226 uint16_t mqd_size_aligned;
227 bool supports_cwsr;
228 bool needs_iommu_device;
229 bool needs_pci_atomics;
230 uint32_t no_atomic_fw_version;
231 unsigned int num_sdma_queues_per_engine;
232 unsigned int num_reserved_sdma_queues_per_engine;
233 uint64_t reserved_sdma_queues_bitmap;
234};
235
236unsigned int kfd_get_num_sdma_engines(struct kfd_dev *kdev);
237unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_dev *kdev);
238
239struct kfd_mem_obj {
240 uint32_t range_start;
241 uint32_t range_end;
242 uint64_t gpu_addr;
243 uint32_t *cpu_ptr;
244 void *gtt_mem;
245};
246
247struct kfd_vmid_info {
248 uint32_t first_vmid_kfd;
249 uint32_t last_vmid_kfd;
250 uint32_t vmid_num_kfd;
251};
252
253struct kfd_dev {
254 struct amdgpu_device *adev;
255
256 struct kfd_device_info device_info;
257
258 unsigned int id; /* topology stub index */
259
260 phys_addr_t doorbell_base; /* Start of actual doorbells used by
261 * KFD. It is aligned for mapping
262 * into user mode
263 */
264 size_t doorbell_base_dw_offset; /* Offset from the start of the PCI
265 * doorbell BAR to the first KFD
266 * doorbell in dwords. GFX reserves
267 * the segment before this offset.
268 */
269 u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
270 * page used by kernel queue
271 */
272
273 struct kgd2kfd_shared_resources shared_resources;
274 struct kfd_vmid_info vm_info;
275 struct kfd_local_mem_info local_mem_info;
276
277 const struct kfd2kgd_calls *kfd2kgd;
278 struct mutex doorbell_mutex;
279 DECLARE_BITMAP(doorbell_available_index,
280 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
281
282 void *gtt_mem;
283 uint64_t gtt_start_gpu_addr;
284 void *gtt_start_cpu_ptr;
285 void *gtt_sa_bitmap;
286 struct mutex gtt_sa_lock;
287 unsigned int gtt_sa_chunk_size;
288 unsigned int gtt_sa_num_of_chunks;
289
290 /* Interrupts */
291 struct kfifo ih_fifo;
292 struct workqueue_struct *ih_wq;
293 struct work_struct interrupt_work;
294 spinlock_t interrupt_lock;
295
296 /* QCM Device instance */
297 struct device_queue_manager *dqm;
298
299 bool init_complete;
300 /*
301 * Interrupts of interest to KFD are copied
302 * from the HW ring into a SW ring.
303 */
304 bool interrupts_active;
305
306 /* Firmware versions */
307 uint16_t mec_fw_version;
308 uint16_t mec2_fw_version;
309 uint16_t sdma_fw_version;
310
311 /* Maximum process number mapped to HW scheduler */
312 unsigned int max_proc_per_quantum;
313
314 /* CWSR */
315 bool cwsr_enabled;
316 const void *cwsr_isa;
317 unsigned int cwsr_isa_size;
318
319 /* xGMI */
320 uint64_t hive_id;
321
322 bool pci_atomic_requested;
323
324 /* Use IOMMU v2 flag */
325 bool use_iommu_v2;
326
327 /* SRAM ECC flag */
328 atomic_t sram_ecc_flag;
329
330 /* Compute Profile ref. count */
331 atomic_t compute_profile;
332
333 /* Global GWS resource shared between processes */
334 void *gws;
335
336 /* Clients watching SMI events */
337 struct list_head smi_clients;
338 spinlock_t smi_lock;
339
340 uint32_t reset_seq_num;
341
342 struct ida doorbell_ida;
343 unsigned int max_doorbell_slices;
344
345 int noretry;
346
347 /* HMM page migration MEMORY_DEVICE_PRIVATE mapping */
348 struct dev_pagemap pgmap;
349};
350
351enum kfd_mempool {
352 KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
353 KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
354 KFD_MEMPOOL_FRAMEBUFFER = 3,
355};
356
357/* Character device interface */
358int kfd_chardev_init(void);
359void kfd_chardev_exit(void);
360
361/**
362 * enum kfd_unmap_queues_filter - Enum for queue filters.
363 *
364 * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
365 * running queues list.
366 *
367 * @KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES: Preempts all non-static queues
368 * in the run list.
369 *
370 * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
371 * specific process.
372 *
373 */
374enum kfd_unmap_queues_filter {
375 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES = 1,
376 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES = 2,
377 KFD_UNMAP_QUEUES_FILTER_BY_PASID = 3
378};
379
380/**
381 * enum kfd_queue_type - Enum for various queue types.
382 *
383 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
384 *
385 * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type.
386 *
387 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
388 *
389 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
390 *
391 * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface.
392 */
393enum kfd_queue_type {
394 KFD_QUEUE_TYPE_COMPUTE,
395 KFD_QUEUE_TYPE_SDMA,
396 KFD_QUEUE_TYPE_HIQ,
397 KFD_QUEUE_TYPE_DIQ,
398 KFD_QUEUE_TYPE_SDMA_XGMI
399};
400
401enum kfd_queue_format {
402 KFD_QUEUE_FORMAT_PM4,
403 KFD_QUEUE_FORMAT_AQL
404};
405
406enum KFD_QUEUE_PRIORITY {
407 KFD_QUEUE_PRIORITY_MINIMUM = 0,
408 KFD_QUEUE_PRIORITY_MAXIMUM = 15
409};
410
411/**
412 * struct queue_properties
413 *
414 * @type: The queue type.
415 *
416 * @queue_id: Queue identifier.
417 *
418 * @queue_address: Queue ring buffer address.
419 *
420 * @queue_size: Queue ring buffer size.
421 *
422 * @priority: Defines the queue priority relative to other queues in the
423 * process.
424 * This is just an indication and HW scheduling may override the priority as
425 * necessary while keeping the relative prioritization.
426 * the priority granularity is from 0 to f which f is the highest priority.
427 * currently all queues are initialized with the highest priority.
428 *
429 * @queue_percent: This field is partially implemented and currently a zero in
430 * this field defines that the queue is non active.
431 *
432 * @read_ptr: User space address which points to the number of dwords the
433 * cp read from the ring buffer. This field updates automatically by the H/W.
434 *
435 * @write_ptr: Defines the number of dwords written to the ring buffer.
436 *
437 * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring
438 * buffer. This field should be similar to write_ptr and the user should
439 * update this field after updating the write_ptr.
440 *
441 * @doorbell_off: The doorbell offset in the doorbell pci-bar.
442 *
443 * @is_interop: Defines if this is a interop queue. Interop queue means that
444 * the queue can access both graphics and compute resources.
445 *
446 * @is_evicted: Defines if the queue is evicted. Only active queues
447 * are evicted, rendering them inactive.
448 *
449 * @is_active: Defines if the queue is active or not. @is_active and
450 * @is_evicted are protected by the DQM lock.
451 *
452 * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
453 * @is_gws should be protected by the DQM lock, since changing it can yield the
454 * possibility of updating DQM state on number of GWS queues.
455 *
456 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
457 * of the queue.
458 *
459 * This structure represents the queue properties for each queue no matter if
460 * it's user mode or kernel mode queue.
461 *
462 */
463
464struct queue_properties {
465 enum kfd_queue_type type;
466 enum kfd_queue_format format;
467 unsigned int queue_id;
468 uint64_t queue_address;
469 uint64_t queue_size;
470 uint32_t priority;
471 uint32_t queue_percent;
472 uint32_t *read_ptr;
473 uint32_t *write_ptr;
474 void __iomem *doorbell_ptr;
475 uint32_t doorbell_off;
476 bool is_interop;
477 bool is_evicted;
478 bool is_active;
479 bool is_gws;
480 /* Not relevant for user mode queues in cp scheduling */
481 unsigned int vmid;
482 /* Relevant only for sdma queues*/
483 uint32_t sdma_engine_id;
484 uint32_t sdma_queue_id;
485 uint32_t sdma_vm_addr;
486 /* Relevant only for VI */
487 uint64_t eop_ring_buffer_address;
488 uint32_t eop_ring_buffer_size;
489 uint64_t ctx_save_restore_area_address;
490 uint32_t ctx_save_restore_area_size;
491 uint32_t ctl_stack_size;
492 uint64_t tba_addr;
493 uint64_t tma_addr;
494};
495
496#define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 && \
497 (q).queue_address != 0 && \
498 (q).queue_percent > 0 && \
499 !(q).is_evicted)
500
501enum mqd_update_flag {
502 UPDATE_FLAG_CU_MASK = 0,
503};
504
505struct mqd_update_info {
506 union {
507 struct {
508 uint32_t count; /* Must be a multiple of 32 */
509 uint32_t *ptr;
510 } cu_mask;
511 };
512 enum mqd_update_flag update_flag;
513};
514
515/**
516 * struct queue
517 *
518 * @list: Queue linked list.
519 *
520 * @mqd: The queue MQD (memory queue descriptor).
521 *
522 * @mqd_mem_obj: The MQD local gpu memory object.
523 *
524 * @gart_mqd_addr: The MQD gart mc address.
525 *
526 * @properties: The queue properties.
527 *
528 * @mec: Used only in no cp scheduling mode and identifies to micro engine id
529 * that the queue should be executed on.
530 *
531 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
532 * id.
533 *
534 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
535 *
536 * @process: The kfd process that created this queue.
537 *
538 * @device: The kfd device that created this queue.
539 *
540 * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
541 * otherwise.
542 *
543 * This structure represents user mode compute queues.
544 * It contains all the necessary data to handle such queues.
545 *
546 */
547
548struct queue {
549 struct list_head list;
550 void *mqd;
551 struct kfd_mem_obj *mqd_mem_obj;
552 uint64_t gart_mqd_addr;
553 struct queue_properties properties;
554
555 uint32_t mec;
556 uint32_t pipe;
557 uint32_t queue;
558
559 unsigned int sdma_id;
560 unsigned int doorbell_id;
561
562 struct kfd_process *process;
563 struct kfd_dev *device;
564 void *gws;
565
566 /* procfs */
567 struct kobject kobj;
568
569 void *gang_ctx_bo;
570 uint64_t gang_ctx_gpu_addr;
571 void *gang_ctx_cpu_ptr;
572
573 struct amdgpu_bo *wptr_bo;
574};
575
576enum KFD_MQD_TYPE {
577 KFD_MQD_TYPE_HIQ = 0, /* for hiq */
578 KFD_MQD_TYPE_CP, /* for cp queues and diq */
579 KFD_MQD_TYPE_SDMA, /* for sdma queues */
580 KFD_MQD_TYPE_DIQ, /* for diq */
581 KFD_MQD_TYPE_MAX
582};
583
584enum KFD_PIPE_PRIORITY {
585 KFD_PIPE_PRIORITY_CS_LOW = 0,
586 KFD_PIPE_PRIORITY_CS_MEDIUM,
587 KFD_PIPE_PRIORITY_CS_HIGH
588};
589
590struct scheduling_resources {
591 unsigned int vmid_mask;
592 enum kfd_queue_type type;
593 uint64_t queue_mask;
594 uint64_t gws_mask;
595 uint32_t oac_mask;
596 uint32_t gds_heap_base;
597 uint32_t gds_heap_size;
598};
599
600struct process_queue_manager {
601 /* data */
602 struct kfd_process *process;
603 struct list_head queues;
604 unsigned long *queue_slot_bitmap;
605};
606
607struct qcm_process_device {
608 /* The Device Queue Manager that owns this data */
609 struct device_queue_manager *dqm;
610 struct process_queue_manager *pqm;
611 /* Queues list */
612 struct list_head queues_list;
613 struct list_head priv_queue_list;
614
615 unsigned int queue_count;
616 unsigned int vmid;
617 bool is_debug;
618 unsigned int evicted; /* eviction counter, 0=active */
619
620 /* This flag tells if we should reset all wavefronts on
621 * process termination
622 */
623 bool reset_wavefronts;
624
625 /* This flag tells us if this process has a GWS-capable
626 * queue that will be mapped into the runlist. It's
627 * possible to request a GWS BO, but not have the queue
628 * currently mapped, and this changes how the MAP_PROCESS
629 * PM4 packet is configured.
630 */
631 bool mapped_gws_queue;
632
633 /* All the memory management data should be here too */
634 uint64_t gds_context_area;
635 /* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
636 uint64_t page_table_base;
637 uint32_t sh_mem_config;
638 uint32_t sh_mem_bases;
639 uint32_t sh_mem_ape1_base;
640 uint32_t sh_mem_ape1_limit;
641 uint32_t gds_size;
642 uint32_t num_gws;
643 uint32_t num_oac;
644 uint32_t sh_hidden_private_base;
645
646 /* CWSR memory */
647 struct kgd_mem *cwsr_mem;
648 void *cwsr_kaddr;
649 uint64_t cwsr_base;
650 uint64_t tba_addr;
651 uint64_t tma_addr;
652
653 /* IB memory */
654 struct kgd_mem *ib_mem;
655 uint64_t ib_base;
656 void *ib_kaddr;
657
658 /* doorbell resources per process per device */
659 unsigned long *doorbell_bitmap;
660};
661
662/* KFD Memory Eviction */
663
664/* Approx. wait time before attempting to restore evicted BOs */
665#define PROCESS_RESTORE_TIME_MS 100
666/* Approx. back off time if restore fails due to lack of memory */
667#define PROCESS_BACK_OFF_TIME_MS 100
668/* Approx. time before evicting the process again */
669#define PROCESS_ACTIVE_TIME_MS 10
670
671/* 8 byte handle containing GPU ID in the most significant 4 bytes and
672 * idr_handle in the least significant 4 bytes
673 */
674#define MAKE_HANDLE(gpu_id, idr_handle) \
675 (((uint64_t)(gpu_id) << 32) + idr_handle)
676#define GET_GPU_ID(handle) (handle >> 32)
677#define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
678
679enum kfd_pdd_bound {
680 PDD_UNBOUND = 0,
681 PDD_BOUND,
682 PDD_BOUND_SUSPENDED,
683};
684
685#define MAX_SYSFS_FILENAME_LEN 15
686
687/*
688 * SDMA counter runs at 100MHz frequency.
689 * We display SDMA activity in microsecond granularity in sysfs.
690 * As a result, the divisor is 100.
691 */
692#define SDMA_ACTIVITY_DIVISOR 100
693
694/* Data that is per-process-per device. */
695struct kfd_process_device {
696 /* The device that owns this data. */
697 struct kfd_dev *dev;
698
699 /* The process that owns this kfd_process_device. */
700 struct kfd_process *process;
701
702 /* per-process-per device QCM data structure */
703 struct qcm_process_device qpd;
704
705 /*Apertures*/
706 uint64_t lds_base;
707 uint64_t lds_limit;
708 uint64_t gpuvm_base;
709 uint64_t gpuvm_limit;
710 uint64_t scratch_base;
711 uint64_t scratch_limit;
712
713 /* VM context for GPUVM allocations */
714 struct file *drm_file;
715 void *drm_priv;
716 atomic64_t tlb_seq;
717
718 /* GPUVM allocations storage */
719 struct idr alloc_idr;
720
721 /* Flag used to tell the pdd has dequeued from the dqm.
722 * This is used to prevent dev->dqm->ops.process_termination() from
723 * being called twice when it is already called in IOMMU callback
724 * function.
725 */
726 bool already_dequeued;
727 bool runtime_inuse;
728
729 /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
730 enum kfd_pdd_bound bound;
731
732 /* VRAM usage */
733 uint64_t vram_usage;
734 struct attribute attr_vram;
735 char vram_filename[MAX_SYSFS_FILENAME_LEN];
736
737 /* SDMA activity tracking */
738 uint64_t sdma_past_activity_counter;
739 struct attribute attr_sdma;
740 char sdma_filename[MAX_SYSFS_FILENAME_LEN];
741
742 /* Eviction activity tracking */
743 uint64_t last_evict_timestamp;
744 atomic64_t evict_duration_counter;
745 struct attribute attr_evict;
746
747 struct kobject *kobj_stats;
748 unsigned int doorbell_index;
749
750 /*
751 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process
752 * that is associated with device encoded by "this" struct instance. The
753 * value reflects CU usage by all of the waves launched by this process
754 * on this device. A very important property of occupancy parameter is
755 * that its value is a snapshot of current use.
756 *
757 * Following is to be noted regarding how this parameter is reported:
758 *
759 * The number of waves that a CU can launch is limited by couple of
760 * parameters. These are encoded by struct amdgpu_cu_info instance
761 * that is part of every device definition. For GFX9 devices this
762 * translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves
763 * do not use scratch memory and 32 waves (max_scratch_slots_per_cu)
764 * when they do use scratch memory. This could change for future
765 * devices and therefore this example should be considered as a guide.
766 *
767 * All CU's of a device are available for the process. This may not be true
768 * under certain conditions - e.g. CU masking.
769 *
770 * Finally number of CU's that are occupied by a process is affected by both
771 * number of CU's a device has along with number of other competing processes
772 */
773 struct attribute attr_cu_occupancy;
774
775 /* sysfs counters for GPU retry fault and page migration tracking */
776 struct kobject *kobj_counters;
777 struct attribute attr_faults;
778 struct attribute attr_page_in;
779 struct attribute attr_page_out;
780 uint64_t faults;
781 uint64_t page_in;
782 uint64_t page_out;
783 /*
784 * If this process has been checkpointed before, then the user
785 * application will use the original gpu_id on the
786 * checkpointed node to refer to this device.
787 */
788 uint32_t user_gpu_id;
789
790 void *proc_ctx_bo;
791 uint64_t proc_ctx_gpu_addr;
792 void *proc_ctx_cpu_ptr;
793};
794
795#define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
796
797struct svm_range_list {
798 struct mutex lock;
799 struct rb_root_cached objects;
800 struct list_head list;
801 struct work_struct deferred_list_work;
802 struct list_head deferred_range_list;
803 struct list_head criu_svm_metadata_list;
804 spinlock_t deferred_list_lock;
805 atomic_t evicted_ranges;
806 atomic_t drain_pagefaults;
807 struct delayed_work restore_work;
808 DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE);
809 struct task_struct *faulting_task;
810};
811
812/* Process data */
813struct kfd_process {
814 /*
815 * kfd_process are stored in an mm_struct*->kfd_process*
816 * hash table (kfd_processes in kfd_process.c)
817 */
818 struct hlist_node kfd_processes;
819
820 /*
821 * Opaque pointer to mm_struct. We don't hold a reference to
822 * it so it should never be dereferenced from here. This is
823 * only used for looking up processes by their mm.
824 */
825 void *mm;
826
827 struct kref ref;
828 struct work_struct release_work;
829
830 struct mutex mutex;
831
832 /*
833 * In any process, the thread that started main() is the lead
834 * thread and outlives the rest.
835 * It is here because amd_iommu_bind_pasid wants a task_struct.
836 * It can also be used for safely getting a reference to the
837 * mm_struct of the process.
838 */
839 struct task_struct *lead_thread;
840
841 /* We want to receive a notification when the mm_struct is destroyed */
842 struct mmu_notifier mmu_notifier;
843
844 u32 pasid;
845
846 /*
847 * Array of kfd_process_device pointers,
848 * one for each device the process is using.
849 */
850 struct kfd_process_device *pdds[MAX_GPU_INSTANCE];
851 uint32_t n_pdds;
852
853 struct process_queue_manager pqm;
854
855 /*Is the user space process 32 bit?*/
856 bool is_32bit_user_mode;
857
858 /* Event-related data */
859 struct mutex event_mutex;
860 /* Event ID allocator and lookup */
861 struct idr event_idr;
862 /* Event page */
863 u64 signal_handle;
864 struct kfd_signal_page *signal_page;
865 size_t signal_mapped_size;
866 size_t signal_event_count;
867 bool signal_event_limit_reached;
868
869 /* Information used for memory eviction */
870 void *kgd_process_info;
871 /* Eviction fence that is attached to all the BOs of this process. The
872 * fence will be triggered during eviction and new one will be created
873 * during restore
874 */
875 struct dma_fence *ef;
876
877 /* Work items for evicting and restoring BOs */
878 struct delayed_work eviction_work;
879 struct delayed_work restore_work;
880 /* seqno of the last scheduled eviction */
881 unsigned int last_eviction_seqno;
882 /* Approx. the last timestamp (in jiffies) when the process was
883 * restored after an eviction
884 */
885 unsigned long last_restore_timestamp;
886
887 /* Kobj for our procfs */
888 struct kobject *kobj;
889 struct kobject *kobj_queues;
890 struct attribute attr_pasid;
891
892 /* shared virtual memory registered by this process */
893 struct svm_range_list svms;
894
895 bool xnack_enabled;
896
897 atomic_t poison;
898 /* Queues are in paused stated because we are in the process of doing a CRIU checkpoint */
899 bool queues_paused;
900};
901
902#define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
903extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
904extern struct srcu_struct kfd_processes_srcu;
905
906/**
907 * typedef amdkfd_ioctl_t - typedef for ioctl function pointer.
908 *
909 * @filep: pointer to file structure.
910 * @p: amdkfd process pointer.
911 * @data: pointer to arg that was copied from user.
912 *
913 * Return: returns ioctl completion code.
914 */
915typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
916 void *data);
917
918struct amdkfd_ioctl_desc {
919 unsigned int cmd;
920 int flags;
921 amdkfd_ioctl_t *func;
922 unsigned int cmd_drv;
923 const char *name;
924};
925bool kfd_dev_is_large_bar(struct kfd_dev *dev);
926
927int kfd_process_create_wq(void);
928void kfd_process_destroy_wq(void);
929struct kfd_process *kfd_create_process(struct file *filep);
930struct kfd_process *kfd_get_process(const struct task_struct *task);
931struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid);
932struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
933
934int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id);
935int kfd_process_gpuid_from_adev(struct kfd_process *p,
936 struct amdgpu_device *adev, uint32_t *gpuid,
937 uint32_t *gpuidx);
938static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p,
939 uint32_t gpuidx, uint32_t *gpuid) {
940 return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL;
941}
942static inline struct kfd_process_device *kfd_process_device_from_gpuidx(
943 struct kfd_process *p, uint32_t gpuidx) {
944 return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL;
945}
946
947void kfd_unref_process(struct kfd_process *p);
948int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger);
949int kfd_process_restore_queues(struct kfd_process *p);
950void kfd_suspend_all_processes(void);
951int kfd_resume_all_processes(void);
952
953struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *process,
954 uint32_t gpu_id);
955
956int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id);
957
958int kfd_process_device_init_vm(struct kfd_process_device *pdd,
959 struct file *drm_file);
960struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
961 struct kfd_process *p);
962struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
963 struct kfd_process *p);
964struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
965 struct kfd_process *p);
966
967bool kfd_process_xnack_mode(struct kfd_process *p, bool supported);
968
969int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
970 struct vm_area_struct *vma);
971
972/* KFD process API for creating and translating handles */
973int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
974 void *mem);
975void *kfd_process_device_translate_handle(struct kfd_process_device *p,
976 int handle);
977void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
978 int handle);
979struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid);
980
981/* PASIDs */
982int kfd_pasid_init(void);
983void kfd_pasid_exit(void);
984bool kfd_set_pasid_limit(unsigned int new_limit);
985unsigned int kfd_get_pasid_limit(void);
986u32 kfd_pasid_alloc(void);
987void kfd_pasid_free(u32 pasid);
988
989/* Doorbells */
990size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
991int kfd_doorbell_init(struct kfd_dev *kfd);
992void kfd_doorbell_fini(struct kfd_dev *kfd);
993int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process,
994 struct vm_area_struct *vma);
995void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
996 unsigned int *doorbell_off);
997void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
998u32 read_kernel_doorbell(u32 __iomem *db);
999void write_kernel_doorbell(void __iomem *db, u32 value);
1000void write_kernel_doorbell64(void __iomem *db, u64 value);
1001unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
1002 struct kfd_process_device *pdd,
1003 unsigned int doorbell_id);
1004phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd);
1005int kfd_alloc_process_doorbells(struct kfd_dev *kfd,
1006 unsigned int *doorbell_index);
1007void kfd_free_process_doorbells(struct kfd_dev *kfd,
1008 unsigned int doorbell_index);
1009/* GTT Sub-Allocator */
1010
1011int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
1012 struct kfd_mem_obj **mem_obj);
1013
1014int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
1015
1016extern struct device *kfd_device;
1017
1018/* KFD's procfs */
1019void kfd_procfs_init(void);
1020void kfd_procfs_shutdown(void);
1021int kfd_procfs_add_queue(struct queue *q);
1022void kfd_procfs_del_queue(struct queue *q);
1023
1024/* Topology */
1025int kfd_topology_init(void);
1026void kfd_topology_shutdown(void);
1027int kfd_topology_add_device(struct kfd_dev *gpu);
1028int kfd_topology_remove_device(struct kfd_dev *gpu);
1029struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
1030 uint32_t proximity_domain);
1031struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
1032 uint32_t proximity_domain);
1033struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
1034struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
1035struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
1036struct kfd_dev *kfd_device_by_adev(const struct amdgpu_device *adev);
1037int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev);
1038int kfd_numa_node_to_apic_id(int numa_node_id);
1039void kfd_double_confirm_iommu_support(struct kfd_dev *gpu);
1040
1041/* Interrupts */
1042int kfd_interrupt_init(struct kfd_dev *dev);
1043void kfd_interrupt_exit(struct kfd_dev *dev);
1044bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry);
1045bool interrupt_is_wanted(struct kfd_dev *dev,
1046 const uint32_t *ih_ring_entry,
1047 uint32_t *patched_ihre, bool *flag);
1048
1049/* amdkfd Apertures */
1050int kfd_init_apertures(struct kfd_process *process);
1051
1052void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1053 uint64_t tba_addr,
1054 uint64_t tma_addr);
1055
1056/* CRIU */
1057/*
1058 * Need to increment KFD_CRIU_PRIV_VERSION each time a change is made to any of the CRIU private
1059 * structures:
1060 * kfd_criu_process_priv_data
1061 * kfd_criu_device_priv_data
1062 * kfd_criu_bo_priv_data
1063 * kfd_criu_queue_priv_data
1064 * kfd_criu_event_priv_data
1065 * kfd_criu_svm_range_priv_data
1066 */
1067
1068#define KFD_CRIU_PRIV_VERSION 1
1069
1070struct kfd_criu_process_priv_data {
1071 uint32_t version;
1072 uint32_t xnack_mode;
1073};
1074
1075struct kfd_criu_device_priv_data {
1076 /* For future use */
1077 uint64_t reserved;
1078};
1079
1080struct kfd_criu_bo_priv_data {
1081 uint64_t user_addr;
1082 uint32_t idr_handle;
1083 uint32_t mapped_gpuids[MAX_GPU_INSTANCE];
1084};
1085
1086/*
1087 * The first 4 bytes of kfd_criu_queue_priv_data, kfd_criu_event_priv_data,
1088 * kfd_criu_svm_range_priv_data is the object type
1089 */
1090enum kfd_criu_object_type {
1091 KFD_CRIU_OBJECT_TYPE_QUEUE,
1092 KFD_CRIU_OBJECT_TYPE_EVENT,
1093 KFD_CRIU_OBJECT_TYPE_SVM_RANGE,
1094};
1095
1096struct kfd_criu_svm_range_priv_data {
1097 uint32_t object_type;
1098 uint64_t start_addr;
1099 uint64_t size;
1100 /* Variable length array of attributes */
1101 struct kfd_ioctl_svm_attribute attrs[];
1102};
1103
1104struct kfd_criu_queue_priv_data {
1105 uint32_t object_type;
1106 uint64_t q_address;
1107 uint64_t q_size;
1108 uint64_t read_ptr_addr;
1109 uint64_t write_ptr_addr;
1110 uint64_t doorbell_off;
1111 uint64_t eop_ring_buffer_address;
1112 uint64_t ctx_save_restore_area_address;
1113 uint32_t gpu_id;
1114 uint32_t type;
1115 uint32_t format;
1116 uint32_t q_id;
1117 uint32_t priority;
1118 uint32_t q_percent;
1119 uint32_t doorbell_id;
1120 uint32_t gws;
1121 uint32_t sdma_id;
1122 uint32_t eop_ring_buffer_size;
1123 uint32_t ctx_save_restore_area_size;
1124 uint32_t ctl_stack_size;
1125 uint32_t mqd_size;
1126};
1127
1128struct kfd_criu_event_priv_data {
1129 uint32_t object_type;
1130 uint64_t user_handle;
1131 uint32_t event_id;
1132 uint32_t auto_reset;
1133 uint32_t type;
1134 uint32_t signaled;
1135
1136 union {
1137 struct kfd_hsa_memory_exception_data memory_exception_data;
1138 struct kfd_hsa_hw_exception_data hw_exception_data;
1139 };
1140};
1141
1142int kfd_process_get_queue_info(struct kfd_process *p,
1143 uint32_t *num_queues,
1144 uint64_t *priv_data_sizes);
1145
1146int kfd_criu_checkpoint_queues(struct kfd_process *p,
1147 uint8_t __user *user_priv_data,
1148 uint64_t *priv_data_offset);
1149
1150int kfd_criu_restore_queue(struct kfd_process *p,
1151 uint8_t __user *user_priv_data,
1152 uint64_t *priv_data_offset,
1153 uint64_t max_priv_data_size);
1154
1155int kfd_criu_checkpoint_events(struct kfd_process *p,
1156 uint8_t __user *user_priv_data,
1157 uint64_t *priv_data_offset);
1158
1159int kfd_criu_restore_event(struct file *devkfd,
1160 struct kfd_process *p,
1161 uint8_t __user *user_priv_data,
1162 uint64_t *priv_data_offset,
1163 uint64_t max_priv_data_size);
1164/* CRIU - End */
1165
1166/* Queue Context Management */
1167int init_queue(struct queue **q, const struct queue_properties *properties);
1168void uninit_queue(struct queue *q);
1169void print_queue_properties(struct queue_properties *q);
1170void print_queue(struct queue *q);
1171
1172struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
1173 struct kfd_dev *dev);
1174struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
1175 struct kfd_dev *dev);
1176struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
1177 struct kfd_dev *dev);
1178struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
1179 struct kfd_dev *dev);
1180struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
1181 struct kfd_dev *dev);
1182struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
1183 struct kfd_dev *dev);
1184struct mqd_manager *mqd_manager_init_v11(enum KFD_MQD_TYPE type,
1185 struct kfd_dev *dev);
1186struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
1187void device_queue_manager_uninit(struct device_queue_manager *dqm);
1188struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
1189 enum kfd_queue_type type);
1190void kernel_queue_uninit(struct kernel_queue *kq, bool hanging);
1191int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid);
1192
1193/* Process Queue Manager */
1194struct process_queue_node {
1195 struct queue *q;
1196 struct kernel_queue *kq;
1197 struct list_head process_queue_list;
1198};
1199
1200void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
1201void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
1202int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
1203void pqm_uninit(struct process_queue_manager *pqm);
1204int pqm_create_queue(struct process_queue_manager *pqm,
1205 struct kfd_dev *dev,
1206 struct file *f,
1207 struct queue_properties *properties,
1208 unsigned int *qid,
1209 struct amdgpu_bo *wptr_bo,
1210 const struct kfd_criu_queue_priv_data *q_data,
1211 const void *restore_mqd,
1212 const void *restore_ctl_stack,
1213 uint32_t *p_doorbell_offset_in_process);
1214int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
1215int pqm_update_queue_properties(struct process_queue_manager *pqm, unsigned int qid,
1216 struct queue_properties *p);
1217int pqm_update_mqd(struct process_queue_manager *pqm, unsigned int qid,
1218 struct mqd_update_info *minfo);
1219int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
1220 void *gws);
1221struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
1222 unsigned int qid);
1223struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
1224 unsigned int qid);
1225int pqm_get_wave_state(struct process_queue_manager *pqm,
1226 unsigned int qid,
1227 void __user *ctl_stack,
1228 u32 *ctl_stack_used_size,
1229 u32 *save_area_used_size);
1230
1231int amdkfd_fence_wait_timeout(uint64_t *fence_addr,
1232 uint64_t fence_value,
1233 unsigned int timeout_ms);
1234
1235int pqm_get_queue_checkpoint_info(struct process_queue_manager *pqm,
1236 unsigned int qid,
1237 u32 *mqd_size,
1238 u32 *ctl_stack_size);
1239/* Packet Manager */
1240
1241#define KFD_FENCE_COMPLETED (100)
1242#define KFD_FENCE_INIT (10)
1243
1244struct packet_manager {
1245 struct device_queue_manager *dqm;
1246 struct kernel_queue *priv_queue;
1247 struct mutex lock;
1248 bool allocated;
1249 struct kfd_mem_obj *ib_buffer_obj;
1250 unsigned int ib_size_bytes;
1251 bool is_over_subscription;
1252
1253 const struct packet_manager_funcs *pmf;
1254};
1255
1256struct packet_manager_funcs {
1257 /* Support ASIC-specific packet formats for PM4 packets */
1258 int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
1259 struct qcm_process_device *qpd);
1260 int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
1261 uint64_t ib, size_t ib_size_in_dwords, bool chain);
1262 int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
1263 struct scheduling_resources *res);
1264 int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
1265 struct queue *q, bool is_static);
1266 int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
1267 enum kfd_unmap_queues_filter mode,
1268 uint32_t filter_param, bool reset);
1269 int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
1270 uint64_t fence_address, uint64_t fence_value);
1271 int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
1272
1273 /* Packet sizes */
1274 int map_process_size;
1275 int runlist_size;
1276 int set_resources_size;
1277 int map_queues_size;
1278 int unmap_queues_size;
1279 int query_status_size;
1280 int release_mem_size;
1281};
1282
1283extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1284extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1285extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs;
1286
1287int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1288void pm_uninit(struct packet_manager *pm, bool hanging);
1289int pm_send_set_resources(struct packet_manager *pm,
1290 struct scheduling_resources *res);
1291int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1292int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1293 uint64_t fence_value);
1294
1295int pm_send_unmap_queue(struct packet_manager *pm,
1296 enum kfd_unmap_queues_filter mode,
1297 uint32_t filter_param, bool reset);
1298
1299void pm_release_ib(struct packet_manager *pm);
1300
1301/* Following PM funcs can be shared among VI and AI */
1302unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1303
1304uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1305
1306/* Events */
1307extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1308extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1309extern const struct kfd_event_interrupt_class event_interrupt_class_v11;
1310
1311extern const struct kfd_device_global_init_class device_global_init_class_cik;
1312
1313int kfd_event_init_process(struct kfd_process *p);
1314void kfd_event_free_process(struct kfd_process *p);
1315int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1316int kfd_wait_on_events(struct kfd_process *p,
1317 uint32_t num_events, void __user *data,
1318 bool all, uint32_t *user_timeout_ms,
1319 uint32_t *wait_result);
1320void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
1321 uint32_t valid_id_bits);
1322void kfd_signal_iommu_event(struct kfd_dev *dev,
1323 u32 pasid, unsigned long address,
1324 bool is_write_requested, bool is_execute_requested);
1325void kfd_signal_hw_exception_event(u32 pasid);
1326int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1327int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1328int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset);
1329
1330int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1331 uint32_t event_type, bool auto_reset, uint32_t node_id,
1332 uint32_t *event_id, uint32_t *event_trigger_data,
1333 uint64_t *event_page_offset, uint32_t *event_slot_index);
1334
1335int kfd_get_num_events(struct kfd_process *p);
1336int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1337
1338void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid,
1339 struct kfd_vm_fault_info *info);
1340
1341void kfd_signal_reset_event(struct kfd_dev *dev);
1342
1343void kfd_signal_poison_consumed_event(struct kfd_dev *dev, u32 pasid);
1344
1345void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type);
1346
1347static inline bool kfd_flush_tlb_after_unmap(struct kfd_dev *dev)
1348{
1349 return KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2) ||
1350 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 1) &&
1351 dev->adev->sdma.instance[0].fw_version >= 18) ||
1352 KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 0);
1353}
1354
1355bool kfd_is_locked(void);
1356
1357/* Compute profile */
1358void kfd_inc_compute_active(struct kfd_dev *dev);
1359void kfd_dec_compute_active(struct kfd_dev *dev);
1360
1361/* Cgroup Support */
1362/* Check with device cgroup if @kfd device is accessible */
1363static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd)
1364{
1365#if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1366 struct drm_device *ddev = adev_to_drm(kfd->adev);
1367
1368 return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1369 ddev->render->index,
1370 DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1371#else
1372 return 0;
1373#endif
1374}
1375
1376/* Debugfs */
1377#if defined(CONFIG_DEBUG_FS)
1378
1379void kfd_debugfs_init(void);
1380void kfd_debugfs_fini(void);
1381int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1382int pqm_debugfs_mqds(struct seq_file *m, void *data);
1383int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1384int dqm_debugfs_hqds(struct seq_file *m, void *data);
1385int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1386int pm_debugfs_runlist(struct seq_file *m, void *data);
1387
1388int kfd_debugfs_hang_hws(struct kfd_dev *dev);
1389int pm_debugfs_hang_hws(struct packet_manager *pm);
1390int dqm_debugfs_hang_hws(struct device_queue_manager *dqm);
1391
1392#else
1393
1394static inline void kfd_debugfs_init(void) {}
1395static inline void kfd_debugfs_fini(void) {}
1396
1397#endif
1398
1399#endif