Linux Audio

Check our new training course

Loading...
v6.2
   1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
   2/*
   3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice shall be included in
  13 * all copies or substantial portions of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  21 * OTHER DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#ifndef KFD_PRIV_H_INCLUDED
  25#define KFD_PRIV_H_INCLUDED
  26
  27#include <linux/hashtable.h>
  28#include <linux/mmu_notifier.h>
  29#include <linux/memremap.h>
  30#include <linux/mutex.h>
  31#include <linux/types.h>
  32#include <linux/atomic.h>
  33#include <linux/workqueue.h>
  34#include <linux/spinlock.h>
  35#include <linux/kfd_ioctl.h>
  36#include <linux/idr.h>
  37#include <linux/kfifo.h>
  38#include <linux/seq_file.h>
  39#include <linux/kref.h>
  40#include <linux/sysfs.h>
  41#include <linux/device_cgroup.h>
  42#include <drm/drm_file.h>
  43#include <drm/drm_drv.h>
  44#include <drm/drm_device.h>
  45#include <drm/drm_ioctl.h>
  46#include <kgd_kfd_interface.h>
  47#include <linux/swap.h>
  48
  49#include "amd_shared.h"
  50#include "amdgpu.h"
  51
  52#define KFD_MAX_RING_ENTRY_SIZE	8
  53
  54#define KFD_SYSFS_FILE_MODE 0444
  55
  56/* GPU ID hash width in bits */
  57#define KFD_GPU_ID_HASH_WIDTH 16
  58
  59/* Use upper bits of mmap offset to store KFD driver specific information.
  60 * BITS[63:62] - Encode MMAP type
  61 * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
  62 * BITS[45:0]  - MMAP offset value
  63 *
  64 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
  65 *  defines are w.r.t to PAGE_SIZE
  66 */
  67#define KFD_MMAP_TYPE_SHIFT	62
  68#define KFD_MMAP_TYPE_MASK	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
  69#define KFD_MMAP_TYPE_DOORBELL	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
  70#define KFD_MMAP_TYPE_EVENTS	(0x2ULL << KFD_MMAP_TYPE_SHIFT)
  71#define KFD_MMAP_TYPE_RESERVED_MEM	(0x1ULL << KFD_MMAP_TYPE_SHIFT)
  72#define KFD_MMAP_TYPE_MMIO	(0x0ULL << KFD_MMAP_TYPE_SHIFT)
  73
  74#define KFD_MMAP_GPU_ID_SHIFT 46
  75#define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
  76				<< KFD_MMAP_GPU_ID_SHIFT)
  77#define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
  78				& KFD_MMAP_GPU_ID_MASK)
  79#define KFD_MMAP_GET_GPU_ID(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
  80				>> KFD_MMAP_GPU_ID_SHIFT)
  81
  82/*
  83 * When working with cp scheduler we should assign the HIQ manually or via
  84 * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
  85 * definitions for Kaveri. In Kaveri only the first ME queues participates
  86 * in the cp scheduling taking that in mind we set the HIQ slot in the
  87 * second ME.
  88 */
  89#define KFD_CIK_HIQ_PIPE 4
  90#define KFD_CIK_HIQ_QUEUE 0
  91
 
 
 
  92/* Macro for allocating structures */
  93#define kfd_alloc_struct(ptr_to_struct)	\
  94	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
  95
  96#define KFD_MAX_NUM_OF_PROCESSES 512
  97#define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
  98
  99/*
 100 * Size of the per-process TBA+TMA buffer: 2 pages
 101 *
 102 * The first page is the TBA used for the CWSR ISA code. The second
 103 * page is used as TMA for user-mode trap handler setup in daisy-chain mode.
 104 */
 105#define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
 106#define KFD_CWSR_TMA_OFFSET PAGE_SIZE
 107
 
 108#define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
 109	(KFD_MAX_NUM_OF_PROCESSES *			\
 110			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
 111
 112#define KFD_KERNEL_QUEUE_SIZE 2048
 113
 114#define KFD_UNMAP_LATENCY_MS	(4000)
 115
 116/*
 117 * 512 = 0x200
 118 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
 119 * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
 120 * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
 121 * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
 122 * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
 123 */
 124#define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
 125
 126/**
 127 * enum kfd_ioctl_flags - KFD ioctl flags
 128 * Various flags that can be set in &amdkfd_ioctl_desc.flags to control how
 129 * userspace can use a given ioctl.
 130 */
 131enum kfd_ioctl_flags {
 132	/*
 133	 * @KFD_IOC_FLAG_CHECKPOINT_RESTORE:
 134	 * Certain KFD ioctls such as AMDKFD_IOC_CRIU_OP can potentially
 135	 * perform privileged operations and load arbitrary data into MQDs and
 136	 * eventually HQD registers when the queue is mapped by HWS. In order to
 137	 * prevent this we should perform additional security checks.
 138	 *
 139	 * This is equivalent to callers with the CHECKPOINT_RESTORE capability.
 140	 *
 141	 * Note: Since earlier versions of docker do not support CHECKPOINT_RESTORE,
 142	 * we also allow ioctls with SYS_ADMIN capability.
 143	 */
 144	KFD_IOC_FLAG_CHECKPOINT_RESTORE = BIT(0),
 145};
 146/*
 147 * Kernel module parameter to specify maximum number of supported queues per
 148 * device
 149 */
 150extern int max_num_of_queues_per_device;
 151
 152
 153/* Kernel module parameter to specify the scheduling policy */
 154extern int sched_policy;
 155
 156/*
 157 * Kernel module parameter to specify the maximum process
 158 * number per HW scheduler
 159 */
 160extern int hws_max_conc_proc;
 161
 162extern int cwsr_enable;
 163
 164/*
 165 * Kernel module parameter to specify whether to send sigterm to HSA process on
 166 * unhandled exception
 167 */
 168extern int send_sigterm;
 169
 170/*
 171 * This kernel module is used to simulate large bar machine on non-large bar
 172 * enabled machines.
 173 */
 174extern int debug_largebar;
 175
 176/*
 177 * Ignore CRAT table during KFD initialization, can be used to work around
 178 * broken CRAT tables on some AMD systems
 179 */
 180extern int ignore_crat;
 181
 182/* Set sh_mem_config.retry_disable on GFX v9 */
 183extern int amdgpu_noretry;
 184
 185/* Halt if HWS hang is detected */
 186extern int halt_if_hws_hang;
 187
 188/* Whether MEC FW support GWS barriers */
 189extern bool hws_gws_support;
 190
 191/* Queue preemption timeout in ms */
 192extern int queue_preemption_timeout_ms;
 193
 194/*
 195 * Don't evict process queues on vm fault
 196 */
 197extern int amdgpu_no_queue_eviction_on_vm_fault;
 198
 199/* Enable eviction debug messages */
 200extern bool debug_evictions;
 201
 202enum cache_policy {
 203	cache_policy_coherent,
 204	cache_policy_noncoherent
 205};
 206
 207#define KFD_GC_VERSION(dev) ((dev)->adev->ip_versions[GC_HWIP][0])
 208#define KFD_IS_SOC15(dev)   ((KFD_GC_VERSION(dev)) >= (IP_VERSION(9, 0, 1)))
 
 
 209
 210struct kfd_event_interrupt_class {
 211	bool (*interrupt_isr)(struct kfd_dev *dev,
 212			const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
 213			bool *patched_flag);
 214	void (*interrupt_wq)(struct kfd_dev *dev,
 215			const uint32_t *ih_ring_entry);
 216};
 217
 218struct kfd_device_info {
 219	uint32_t gfx_target_version;
 220	const struct kfd_event_interrupt_class *event_interrupt_class;
 221	unsigned int max_pasid_bits;
 222	unsigned int max_no_of_hqd;
 223	unsigned int doorbell_size;
 224	size_t ih_ring_entry_size;
 225	uint8_t num_of_watch_points;
 226	uint16_t mqd_size_aligned;
 227	bool supports_cwsr;
 228	bool needs_iommu_device;
 229	bool needs_pci_atomics;
 230	uint32_t no_atomic_fw_version;
 231	unsigned int num_sdma_queues_per_engine;
 232	unsigned int num_reserved_sdma_queues_per_engine;
 233	uint64_t reserved_sdma_queues_bitmap;
 234};
 235
 236unsigned int kfd_get_num_sdma_engines(struct kfd_dev *kdev);
 237unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_dev *kdev);
 238
 239struct kfd_mem_obj {
 240	uint32_t range_start;
 241	uint32_t range_end;
 242	uint64_t gpu_addr;
 243	uint32_t *cpu_ptr;
 244	void *gtt_mem;
 245};
 246
 247struct kfd_vmid_info {
 248	uint32_t first_vmid_kfd;
 249	uint32_t last_vmid_kfd;
 250	uint32_t vmid_num_kfd;
 251};
 252
 253struct kfd_dev {
 254	struct amdgpu_device *adev;
 255
 256	struct kfd_device_info device_info;
 
 257
 258	unsigned int id;		/* topology stub index */
 259
 260	phys_addr_t doorbell_base;	/* Start of actual doorbells used by
 261					 * KFD. It is aligned for mapping
 262					 * into user mode
 263					 */
 264	size_t doorbell_base_dw_offset;	/* Offset from the start of the PCI
 265					 * doorbell BAR to the first KFD
 266					 * doorbell in dwords. GFX reserves
 267					 * the segment before this offset.
 
 
 268					 */
 269	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
 270					   * page used by kernel queue
 271					   */
 272
 273	struct kgd2kfd_shared_resources shared_resources;
 274	struct kfd_vmid_info vm_info;
 275	struct kfd_local_mem_info local_mem_info;
 276
 277	const struct kfd2kgd_calls *kfd2kgd;
 278	struct mutex doorbell_mutex;
 279	DECLARE_BITMAP(doorbell_available_index,
 280			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
 281
 282	void *gtt_mem;
 283	uint64_t gtt_start_gpu_addr;
 284	void *gtt_start_cpu_ptr;
 285	void *gtt_sa_bitmap;
 286	struct mutex gtt_sa_lock;
 287	unsigned int gtt_sa_chunk_size;
 288	unsigned int gtt_sa_num_of_chunks;
 289
 290	/* Interrupts */
 291	struct kfifo ih_fifo;
 292	struct workqueue_struct *ih_wq;
 
 
 293	struct work_struct interrupt_work;
 294	spinlock_t interrupt_lock;
 295
 296	/* QCM Device instance */
 297	struct device_queue_manager *dqm;
 298
 299	bool init_complete;
 300	/*
 301	 * Interrupts of interest to KFD are copied
 302	 * from the HW ring into a SW ring.
 303	 */
 304	bool interrupts_active;
 305
 306	/* Firmware versions */
 307	uint16_t mec_fw_version;
 308	uint16_t mec2_fw_version;
 309	uint16_t sdma_fw_version;
 310
 311	/* Maximum process number mapped to HW scheduler */
 312	unsigned int max_proc_per_quantum;
 313
 314	/* CWSR */
 315	bool cwsr_enabled;
 316	const void *cwsr_isa;
 317	unsigned int cwsr_isa_size;
 318
 319	/* xGMI */
 320	uint64_t hive_id;
 321
 322	bool pci_atomic_requested;
 323
 324	/* Use IOMMU v2 flag */
 325	bool use_iommu_v2;
 326
 327	/* SRAM ECC flag */
 328	atomic_t sram_ecc_flag;
 329
 330	/* Compute Profile ref. count */
 331	atomic_t compute_profile;
 332
 333	/* Global GWS resource shared between processes */
 334	void *gws;
 335
 336	/* Clients watching SMI events */
 337	struct list_head smi_clients;
 338	spinlock_t smi_lock;
 339
 340	uint32_t reset_seq_num;
 341
 342	struct ida doorbell_ida;
 343	unsigned int max_doorbell_slices;
 344
 345	int noretry;
 346
 347	/* HMM page migration MEMORY_DEVICE_PRIVATE mapping */
 348	struct dev_pagemap pgmap;
 349};
 350
 
 
 
 
 
 
 
 
 351enum kfd_mempool {
 352	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
 353	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
 354	KFD_MEMPOOL_FRAMEBUFFER = 3,
 355};
 356
 357/* Character device interface */
 358int kfd_chardev_init(void);
 359void kfd_chardev_exit(void);
 
 360
 361/**
 362 * enum kfd_unmap_queues_filter - Enum for queue filters.
 363 *
 364 * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
 365 *						running queues list.
 366 *
 367 * @KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES: Preempts all non-static queues
 368 *						in the run list.
 369 *
 370 * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
 371 *						specific process.
 372 *
 373 */
 374enum kfd_unmap_queues_filter {
 375	KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES = 1,
 376	KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES = 2,
 377	KFD_UNMAP_QUEUES_FILTER_BY_PASID = 3
 
 
 
 
 
 
 378};
 379
 380/**
 381 * enum kfd_queue_type - Enum for various queue types.
 382 *
 383 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
 384 *
 385 * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type.
 386 *
 387 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
 388 *
 389 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
 390 *
 391 * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface.
 392 */
 393enum kfd_queue_type  {
 394	KFD_QUEUE_TYPE_COMPUTE,
 395	KFD_QUEUE_TYPE_SDMA,
 396	KFD_QUEUE_TYPE_HIQ,
 397	KFD_QUEUE_TYPE_DIQ,
 398	KFD_QUEUE_TYPE_SDMA_XGMI
 399};
 400
 401enum kfd_queue_format {
 402	KFD_QUEUE_FORMAT_PM4,
 403	KFD_QUEUE_FORMAT_AQL
 404};
 405
 406enum KFD_QUEUE_PRIORITY {
 407	KFD_QUEUE_PRIORITY_MINIMUM = 0,
 408	KFD_QUEUE_PRIORITY_MAXIMUM = 15
 409};
 410
 411/**
 412 * struct queue_properties
 413 *
 414 * @type: The queue type.
 415 *
 416 * @queue_id: Queue identifier.
 417 *
 418 * @queue_address: Queue ring buffer address.
 419 *
 420 * @queue_size: Queue ring buffer size.
 421 *
 422 * @priority: Defines the queue priority relative to other queues in the
 423 * process.
 424 * This is just an indication and HW scheduling may override the priority as
 425 * necessary while keeping the relative prioritization.
 426 * the priority granularity is from 0 to f which f is the highest priority.
 427 * currently all queues are initialized with the highest priority.
 428 *
 429 * @queue_percent: This field is partially implemented and currently a zero in
 430 * this field defines that the queue is non active.
 431 *
 432 * @read_ptr: User space address which points to the number of dwords the
 433 * cp read from the ring buffer. This field updates automatically by the H/W.
 434 *
 435 * @write_ptr: Defines the number of dwords written to the ring buffer.
 436 *
 437 * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring
 438 * buffer. This field should be similar to write_ptr and the user should
 439 * update this field after updating the write_ptr.
 440 *
 441 * @doorbell_off: The doorbell offset in the doorbell pci-bar.
 442 *
 443 * @is_interop: Defines if this is a interop queue. Interop queue means that
 444 * the queue can access both graphics and compute resources.
 445 *
 446 * @is_evicted: Defines if the queue is evicted. Only active queues
 447 * are evicted, rendering them inactive.
 448 *
 449 * @is_active: Defines if the queue is active or not. @is_active and
 450 * @is_evicted are protected by the DQM lock.
 451 *
 452 * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
 453 * @is_gws should be protected by the DQM lock, since changing it can yield the
 454 * possibility of updating DQM state on number of GWS queues.
 455 *
 456 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
 457 * of the queue.
 458 *
 459 * This structure represents the queue properties for each queue no matter if
 460 * it's user mode or kernel mode queue.
 461 *
 462 */
 463
 464struct queue_properties {
 465	enum kfd_queue_type type;
 466	enum kfd_queue_format format;
 467	unsigned int queue_id;
 468	uint64_t queue_address;
 469	uint64_t  queue_size;
 470	uint32_t priority;
 471	uint32_t queue_percent;
 472	uint32_t *read_ptr;
 473	uint32_t *write_ptr;
 474	void __iomem *doorbell_ptr;
 475	uint32_t doorbell_off;
 476	bool is_interop;
 477	bool is_evicted;
 478	bool is_active;
 479	bool is_gws;
 480	/* Not relevant for user mode queues in cp scheduling */
 481	unsigned int vmid;
 482	/* Relevant only for sdma queues*/
 483	uint32_t sdma_engine_id;
 484	uint32_t sdma_queue_id;
 485	uint32_t sdma_vm_addr;
 486	/* Relevant only for VI */
 487	uint64_t eop_ring_buffer_address;
 488	uint32_t eop_ring_buffer_size;
 489	uint64_t ctx_save_restore_area_address;
 490	uint32_t ctx_save_restore_area_size;
 491	uint32_t ctl_stack_size;
 492	uint64_t tba_addr;
 493	uint64_t tma_addr;
 494};
 495
 496#define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&	\
 497			    (q).queue_address != 0 &&	\
 498			    (q).queue_percent > 0 &&	\
 499			    !(q).is_evicted)
 500
 501enum mqd_update_flag {
 502	UPDATE_FLAG_CU_MASK = 0,
 503};
 504
 505struct mqd_update_info {
 506	union {
 507		struct {
 508			uint32_t count; /* Must be a multiple of 32 */
 509			uint32_t *ptr;
 510		} cu_mask;
 511	};
 512	enum mqd_update_flag update_flag;
 513};
 514
 515/**
 516 * struct queue
 517 *
 518 * @list: Queue linked list.
 519 *
 520 * @mqd: The queue MQD (memory queue descriptor).
 521 *
 522 * @mqd_mem_obj: The MQD local gpu memory object.
 523 *
 524 * @gart_mqd_addr: The MQD gart mc address.
 525 *
 526 * @properties: The queue properties.
 527 *
 528 * @mec: Used only in no cp scheduling mode and identifies to micro engine id
 529 *	 that the queue should be executed on.
 530 *
 531 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
 532 *	  id.
 533 *
 534 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
 535 *
 536 * @process: The kfd process that created this queue.
 537 *
 538 * @device: The kfd device that created this queue.
 539 *
 540 * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
 541 * otherwise.
 542 *
 543 * This structure represents user mode compute queues.
 544 * It contains all the necessary data to handle such queues.
 545 *
 546 */
 547
 548struct queue {
 549	struct list_head list;
 550	void *mqd;
 551	struct kfd_mem_obj *mqd_mem_obj;
 552	uint64_t gart_mqd_addr;
 553	struct queue_properties properties;
 554
 555	uint32_t mec;
 556	uint32_t pipe;
 557	uint32_t queue;
 558
 559	unsigned int sdma_id;
 560	unsigned int doorbell_id;
 561
 562	struct kfd_process	*process;
 563	struct kfd_dev		*device;
 564	void *gws;
 565
 566	/* procfs */
 567	struct kobject kobj;
 568
 569	void *gang_ctx_bo;
 570	uint64_t gang_ctx_gpu_addr;
 571	void *gang_ctx_cpu_ptr;
 572
 573	struct amdgpu_bo *wptr_bo;
 574};
 575
 
 
 
 576enum KFD_MQD_TYPE {
 577	KFD_MQD_TYPE_HIQ = 0,		/* for hiq */
 
 578	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
 579	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
 580	KFD_MQD_TYPE_DIQ,		/* for diq */
 581	KFD_MQD_TYPE_MAX
 582};
 583
 584enum KFD_PIPE_PRIORITY {
 585	KFD_PIPE_PRIORITY_CS_LOW = 0,
 586	KFD_PIPE_PRIORITY_CS_MEDIUM,
 587	KFD_PIPE_PRIORITY_CS_HIGH
 588};
 589
 590struct scheduling_resources {
 591	unsigned int vmid_mask;
 592	enum kfd_queue_type type;
 593	uint64_t queue_mask;
 594	uint64_t gws_mask;
 595	uint32_t oac_mask;
 596	uint32_t gds_heap_base;
 597	uint32_t gds_heap_size;
 598};
 599
 600struct process_queue_manager {
 601	/* data */
 602	struct kfd_process	*process;
 
 603	struct list_head	queues;
 604	unsigned long		*queue_slot_bitmap;
 605};
 606
 607struct qcm_process_device {
 608	/* The Device Queue Manager that owns this data */
 609	struct device_queue_manager *dqm;
 610	struct process_queue_manager *pqm;
 611	/* Queues list */
 612	struct list_head queues_list;
 613	struct list_head priv_queue_list;
 614
 615	unsigned int queue_count;
 616	unsigned int vmid;
 617	bool is_debug;
 618	unsigned int evicted; /* eviction counter, 0=active */
 619
 620	/* This flag tells if we should reset all wavefronts on
 621	 * process termination
 622	 */
 623	bool reset_wavefronts;
 624
 625	/* This flag tells us if this process has a GWS-capable
 626	 * queue that will be mapped into the runlist. It's
 627	 * possible to request a GWS BO, but not have the queue
 628	 * currently mapped, and this changes how the MAP_PROCESS
 629	 * PM4 packet is configured.
 630	 */
 631	bool mapped_gws_queue;
 632
 633	/* All the memory management data should be here too */
 634	uint64_t gds_context_area;
 635	/* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
 636	uint64_t page_table_base;
 637	uint32_t sh_mem_config;
 638	uint32_t sh_mem_bases;
 639	uint32_t sh_mem_ape1_base;
 640	uint32_t sh_mem_ape1_limit;
 
 641	uint32_t gds_size;
 642	uint32_t num_gws;
 643	uint32_t num_oac;
 644	uint32_t sh_hidden_private_base;
 645
 646	/* CWSR memory */
 647	struct kgd_mem *cwsr_mem;
 648	void *cwsr_kaddr;
 649	uint64_t cwsr_base;
 650	uint64_t tba_addr;
 651	uint64_t tma_addr;
 652
 653	/* IB memory */
 654	struct kgd_mem *ib_mem;
 655	uint64_t ib_base;
 656	void *ib_kaddr;
 657
 658	/* doorbell resources per process per device */
 659	unsigned long *doorbell_bitmap;
 660};
 661
 662/* KFD Memory Eviction */
 663
 664/* Approx. wait time before attempting to restore evicted BOs */
 665#define PROCESS_RESTORE_TIME_MS 100
 666/* Approx. back off time if restore fails due to lack of memory */
 667#define PROCESS_BACK_OFF_TIME_MS 100
 668/* Approx. time before evicting the process again */
 669#define PROCESS_ACTIVE_TIME_MS 10
 670
 671/* 8 byte handle containing GPU ID in the most significant 4 bytes and
 672 * idr_handle in the least significant 4 bytes
 673 */
 674#define MAKE_HANDLE(gpu_id, idr_handle) \
 675	(((uint64_t)(gpu_id) << 32) + idr_handle)
 676#define GET_GPU_ID(handle) (handle >> 32)
 677#define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
 678
 679enum kfd_pdd_bound {
 680	PDD_UNBOUND = 0,
 681	PDD_BOUND,
 682	PDD_BOUND_SUSPENDED,
 683};
 684
 685#define MAX_SYSFS_FILENAME_LEN 15
 686
 687/*
 688 * SDMA counter runs at 100MHz frequency.
 689 * We display SDMA activity in microsecond granularity in sysfs.
 690 * As a result, the divisor is 100.
 691 */
 692#define SDMA_ACTIVITY_DIVISOR  100
 693
 694/* Data that is per-process-per device. */
 695struct kfd_process_device {
 
 
 
 
 
 
 696	/* The device that owns this data. */
 697	struct kfd_dev *dev;
 698
 699	/* The process that owns this kfd_process_device. */
 700	struct kfd_process *process;
 701
 702	/* per-process-per device QCM data structure */
 703	struct qcm_process_device qpd;
 704
 705	/*Apertures*/
 706	uint64_t lds_base;
 707	uint64_t lds_limit;
 708	uint64_t gpuvm_base;
 709	uint64_t gpuvm_limit;
 710	uint64_t scratch_base;
 711	uint64_t scratch_limit;
 712
 713	/* VM context for GPUVM allocations */
 714	struct file *drm_file;
 715	void *drm_priv;
 716	atomic64_t tlb_seq;
 717
 718	/* GPUVM allocations storage */
 719	struct idr alloc_idr;
 720
 721	/* Flag used to tell the pdd has dequeued from the dqm.
 722	 * This is used to prevent dev->dqm->ops.process_termination() from
 723	 * being called twice when it is already called in IOMMU callback
 724	 * function.
 725	 */
 726	bool already_dequeued;
 727	bool runtime_inuse;
 728
 729	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
 730	enum kfd_pdd_bound bound;
 731
 732	/* VRAM usage */
 733	uint64_t vram_usage;
 734	struct attribute attr_vram;
 735	char vram_filename[MAX_SYSFS_FILENAME_LEN];
 736
 737	/* SDMA activity tracking */
 738	uint64_t sdma_past_activity_counter;
 739	struct attribute attr_sdma;
 740	char sdma_filename[MAX_SYSFS_FILENAME_LEN];
 741
 742	/* Eviction activity tracking */
 743	uint64_t last_evict_timestamp;
 744	atomic64_t evict_duration_counter;
 745	struct attribute attr_evict;
 746
 747	struct kobject *kobj_stats;
 748	unsigned int doorbell_index;
 749
 750	/*
 751	 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process
 752	 * that is associated with device encoded by "this" struct instance. The
 753	 * value reflects CU usage by all of the waves launched by this process
 754	 * on this device. A very important property of occupancy parameter is
 755	 * that its value is a snapshot of current use.
 756	 *
 757	 * Following is to be noted regarding how this parameter is reported:
 758	 *
 759	 *  The number of waves that a CU can launch is limited by couple of
 760	 *  parameters. These are encoded by struct amdgpu_cu_info instance
 761	 *  that is part of every device definition. For GFX9 devices this
 762	 *  translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves
 763	 *  do not use scratch memory and 32 waves (max_scratch_slots_per_cu)
 764	 *  when they do use scratch memory. This could change for future
 765	 *  devices and therefore this example should be considered as a guide.
 766	 *
 767	 *  All CU's of a device are available for the process. This may not be true
 768	 *  under certain conditions - e.g. CU masking.
 769	 *
 770	 *  Finally number of CU's that are occupied by a process is affected by both
 771	 *  number of CU's a device has along with number of other competing processes
 772	 */
 773	struct attribute attr_cu_occupancy;
 774
 775	/* sysfs counters for GPU retry fault and page migration tracking */
 776	struct kobject *kobj_counters;
 777	struct attribute attr_faults;
 778	struct attribute attr_page_in;
 779	struct attribute attr_page_out;
 780	uint64_t faults;
 781	uint64_t page_in;
 782	uint64_t page_out;
 783	/*
 784	 * If this process has been checkpointed before, then the user
 785	 * application will use the original gpu_id on the
 786	 * checkpointed node to refer to this device.
 787	 */
 788	uint32_t user_gpu_id;
 789
 790	void *proc_ctx_bo;
 791	uint64_t proc_ctx_gpu_addr;
 792	void *proc_ctx_cpu_ptr;
 793};
 794
 795#define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
 796
 797struct svm_range_list {
 798	struct mutex			lock;
 799	struct rb_root_cached		objects;
 800	struct list_head		list;
 801	struct work_struct		deferred_list_work;
 802	struct list_head		deferred_range_list;
 803	struct list_head                criu_svm_metadata_list;
 804	spinlock_t			deferred_list_lock;
 805	atomic_t			evicted_ranges;
 806	atomic_t			drain_pagefaults;
 807	struct delayed_work		restore_work;
 808	DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE);
 809	struct task_struct		*faulting_task;
 810};
 811
 812/* Process data */
 813struct kfd_process {
 814	/*
 815	 * kfd_process are stored in an mm_struct*->kfd_process*
 816	 * hash table (kfd_processes in kfd_process.c)
 817	 */
 818	struct hlist_node kfd_processes;
 819
 820	/*
 821	 * Opaque pointer to mm_struct. We don't hold a reference to
 822	 * it so it should never be dereferenced from here. This is
 823	 * only used for looking up processes by their mm.
 824	 */
 825	void *mm;
 826
 827	struct kref ref;
 828	struct work_struct release_work;
 829
 830	struct mutex mutex;
 831
 832	/*
 833	 * In any process, the thread that started main() is the lead
 834	 * thread and outlives the rest.
 835	 * It is here because amd_iommu_bind_pasid wants a task_struct.
 836	 * It can also be used for safely getting a reference to the
 837	 * mm_struct of the process.
 838	 */
 839	struct task_struct *lead_thread;
 840
 841	/* We want to receive a notification when the mm_struct is destroyed */
 842	struct mmu_notifier mmu_notifier;
 843
 844	u32 pasid;
 
 
 
 845
 846	/*
 847	 * Array of kfd_process_device pointers,
 848	 * one for each device the process is using.
 849	 */
 850	struct kfd_process_device *pdds[MAX_GPU_INSTANCE];
 851	uint32_t n_pdds;
 852
 853	struct process_queue_manager pqm;
 854
 
 
 
 
 
 
 855	/*Is the user space process 32 bit?*/
 856	bool is_32bit_user_mode;
 857
 858	/* Event-related data */
 859	struct mutex event_mutex;
 860	/* Event ID allocator and lookup */
 861	struct idr event_idr;
 862	/* Event page */
 863	u64 signal_handle;
 864	struct kfd_signal_page *signal_page;
 865	size_t signal_mapped_size;
 866	size_t signal_event_count;
 867	bool signal_event_limit_reached;
 868
 869	/* Information used for memory eviction */
 870	void *kgd_process_info;
 871	/* Eviction fence that is attached to all the BOs of this process. The
 872	 * fence will be triggered during eviction and new one will be created
 873	 * during restore
 874	 */
 875	struct dma_fence *ef;
 876
 877	/* Work items for evicting and restoring BOs */
 878	struct delayed_work eviction_work;
 879	struct delayed_work restore_work;
 880	/* seqno of the last scheduled eviction */
 881	unsigned int last_eviction_seqno;
 882	/* Approx. the last timestamp (in jiffies) when the process was
 883	 * restored after an eviction
 884	 */
 885	unsigned long last_restore_timestamp;
 886
 887	/* Kobj for our procfs */
 888	struct kobject *kobj;
 889	struct kobject *kobj_queues;
 890	struct attribute attr_pasid;
 891
 892	/* shared virtual memory registered by this process */
 893	struct svm_range_list svms;
 894
 895	bool xnack_enabled;
 896
 897	atomic_t poison;
 898	/* Queues are in paused stated because we are in the process of doing a CRIU checkpoint */
 899	bool queues_paused;
 900};
 901
 902#define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
 903extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
 904extern struct srcu_struct kfd_processes_srcu;
 905
 906/**
 907 * typedef amdkfd_ioctl_t - typedef for ioctl function pointer.
 908 *
 909 * @filep: pointer to file structure.
 910 * @p: amdkfd process pointer.
 911 * @data: pointer to arg that was copied from user.
 912 *
 913 * Return: returns ioctl completion code.
 
 
 914 */
 915typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
 916				void *data);
 917
 918struct amdkfd_ioctl_desc {
 919	unsigned int cmd;
 920	int flags;
 921	amdkfd_ioctl_t *func;
 922	unsigned int cmd_drv;
 923	const char *name;
 924};
 925bool kfd_dev_is_large_bar(struct kfd_dev *dev);
 926
 927int kfd_process_create_wq(void);
 928void kfd_process_destroy_wq(void);
 929struct kfd_process *kfd_create_process(struct file *filep);
 930struct kfd_process *kfd_get_process(const struct task_struct *task);
 931struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid);
 932struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
 933
 934int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id);
 935int kfd_process_gpuid_from_adev(struct kfd_process *p,
 936			       struct amdgpu_device *adev, uint32_t *gpuid,
 937			       uint32_t *gpuidx);
 938static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p,
 939				uint32_t gpuidx, uint32_t *gpuid) {
 940	return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL;
 941}
 942static inline struct kfd_process_device *kfd_process_device_from_gpuidx(
 943				struct kfd_process *p, uint32_t gpuidx) {
 944	return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL;
 945}
 946
 947void kfd_unref_process(struct kfd_process *p);
 948int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger);
 949int kfd_process_restore_queues(struct kfd_process *p);
 950void kfd_suspend_all_processes(void);
 951int kfd_resume_all_processes(void);
 952
 953struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *process,
 954							 uint32_t gpu_id);
 955
 956int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id);
 957
 958int kfd_process_device_init_vm(struct kfd_process_device *pdd,
 959			       struct file *drm_file);
 960struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
 961						struct kfd_process *p);
 
 962struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
 963							struct kfd_process *p);
 964struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
 965							struct kfd_process *p);
 966
 967bool kfd_process_xnack_mode(struct kfd_process *p, bool supported);
 968
 969int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
 970			  struct vm_area_struct *vma);
 971
 972/* KFD process API for creating and translating handles */
 973int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
 974					void *mem);
 975void *kfd_process_device_translate_handle(struct kfd_process_device *p,
 976					int handle);
 977void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
 978					int handle);
 979struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid);
 980
 981/* PASIDs */
 982int kfd_pasid_init(void);
 983void kfd_pasid_exit(void);
 984bool kfd_set_pasid_limit(unsigned int new_limit);
 985unsigned int kfd_get_pasid_limit(void);
 986u32 kfd_pasid_alloc(void);
 987void kfd_pasid_free(u32 pasid);
 988
 989/* Doorbells */
 990size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
 991int kfd_doorbell_init(struct kfd_dev *kfd);
 992void kfd_doorbell_fini(struct kfd_dev *kfd);
 993int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process,
 994		      struct vm_area_struct *vma);
 995void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
 996					unsigned int *doorbell_off);
 997void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
 998u32 read_kernel_doorbell(u32 __iomem *db);
 999void write_kernel_doorbell(void __iomem *db, u32 value);
1000void write_kernel_doorbell64(void __iomem *db, u64 value);
1001unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
1002					struct kfd_process_device *pdd,
1003					unsigned int doorbell_id);
1004phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd);
1005int kfd_alloc_process_doorbells(struct kfd_dev *kfd,
1006				unsigned int *doorbell_index);
1007void kfd_free_process_doorbells(struct kfd_dev *kfd,
1008				unsigned int doorbell_index);
1009/* GTT Sub-Allocator */
1010
1011int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
1012			struct kfd_mem_obj **mem_obj);
1013
1014int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
1015
1016extern struct device *kfd_device;
1017
1018/* KFD's procfs */
1019void kfd_procfs_init(void);
1020void kfd_procfs_shutdown(void);
1021int kfd_procfs_add_queue(struct queue *q);
1022void kfd_procfs_del_queue(struct queue *q);
1023
1024/* Topology */
1025int kfd_topology_init(void);
1026void kfd_topology_shutdown(void);
1027int kfd_topology_add_device(struct kfd_dev *gpu);
1028int kfd_topology_remove_device(struct kfd_dev *gpu);
1029struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
1030						uint32_t proximity_domain);
1031struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
1032						uint32_t proximity_domain);
1033struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
1034struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
1035struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
1036struct kfd_dev *kfd_device_by_adev(const struct amdgpu_device *adev);
1037int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev);
1038int kfd_numa_node_to_apic_id(int numa_node_id);
1039void kfd_double_confirm_iommu_support(struct kfd_dev *gpu);
1040
1041/* Interrupts */
1042int kfd_interrupt_init(struct kfd_dev *dev);
1043void kfd_interrupt_exit(struct kfd_dev *dev);
 
1044bool enqueue_ih_ring_entry(struct kfd_dev *kfd,	const void *ih_ring_entry);
1045bool interrupt_is_wanted(struct kfd_dev *dev,
1046				const uint32_t *ih_ring_entry,
1047				uint32_t *patched_ihre, bool *flag);
 
 
1048
1049/* amdkfd Apertures */
1050int kfd_init_apertures(struct kfd_process *process);
1051
1052void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1053				  uint64_t tba_addr,
1054				  uint64_t tma_addr);
1055
1056/* CRIU */
1057/*
1058 * Need to increment KFD_CRIU_PRIV_VERSION each time a change is made to any of the CRIU private
1059 * structures:
1060 * kfd_criu_process_priv_data
1061 * kfd_criu_device_priv_data
1062 * kfd_criu_bo_priv_data
1063 * kfd_criu_queue_priv_data
1064 * kfd_criu_event_priv_data
1065 * kfd_criu_svm_range_priv_data
1066 */
1067
1068#define KFD_CRIU_PRIV_VERSION 1
1069
1070struct kfd_criu_process_priv_data {
1071	uint32_t version;
1072	uint32_t xnack_mode;
1073};
1074
1075struct kfd_criu_device_priv_data {
1076	/* For future use */
1077	uint64_t reserved;
1078};
1079
1080struct kfd_criu_bo_priv_data {
1081	uint64_t user_addr;
1082	uint32_t idr_handle;
1083	uint32_t mapped_gpuids[MAX_GPU_INSTANCE];
1084};
1085
1086/*
1087 * The first 4 bytes of kfd_criu_queue_priv_data, kfd_criu_event_priv_data,
1088 * kfd_criu_svm_range_priv_data is the object type
1089 */
1090enum kfd_criu_object_type {
1091	KFD_CRIU_OBJECT_TYPE_QUEUE,
1092	KFD_CRIU_OBJECT_TYPE_EVENT,
1093	KFD_CRIU_OBJECT_TYPE_SVM_RANGE,
1094};
1095
1096struct kfd_criu_svm_range_priv_data {
1097	uint32_t object_type;
1098	uint64_t start_addr;
1099	uint64_t size;
1100	/* Variable length array of attributes */
1101	struct kfd_ioctl_svm_attribute attrs[];
1102};
1103
1104struct kfd_criu_queue_priv_data {
1105	uint32_t object_type;
1106	uint64_t q_address;
1107	uint64_t q_size;
1108	uint64_t read_ptr_addr;
1109	uint64_t write_ptr_addr;
1110	uint64_t doorbell_off;
1111	uint64_t eop_ring_buffer_address;
1112	uint64_t ctx_save_restore_area_address;
1113	uint32_t gpu_id;
1114	uint32_t type;
1115	uint32_t format;
1116	uint32_t q_id;
1117	uint32_t priority;
1118	uint32_t q_percent;
1119	uint32_t doorbell_id;
1120	uint32_t gws;
1121	uint32_t sdma_id;
1122	uint32_t eop_ring_buffer_size;
1123	uint32_t ctx_save_restore_area_size;
1124	uint32_t ctl_stack_size;
1125	uint32_t mqd_size;
1126};
1127
1128struct kfd_criu_event_priv_data {
1129	uint32_t object_type;
1130	uint64_t user_handle;
1131	uint32_t event_id;
1132	uint32_t auto_reset;
1133	uint32_t type;
1134	uint32_t signaled;
1135
1136	union {
1137		struct kfd_hsa_memory_exception_data memory_exception_data;
1138		struct kfd_hsa_hw_exception_data hw_exception_data;
1139	};
1140};
1141
1142int kfd_process_get_queue_info(struct kfd_process *p,
1143			       uint32_t *num_queues,
1144			       uint64_t *priv_data_sizes);
1145
1146int kfd_criu_checkpoint_queues(struct kfd_process *p,
1147			 uint8_t __user *user_priv_data,
1148			 uint64_t *priv_data_offset);
1149
1150int kfd_criu_restore_queue(struct kfd_process *p,
1151			   uint8_t __user *user_priv_data,
1152			   uint64_t *priv_data_offset,
1153			   uint64_t max_priv_data_size);
1154
1155int kfd_criu_checkpoint_events(struct kfd_process *p,
1156			 uint8_t __user *user_priv_data,
1157			 uint64_t *priv_data_offset);
1158
1159int kfd_criu_restore_event(struct file *devkfd,
1160			   struct kfd_process *p,
1161			   uint8_t __user *user_priv_data,
1162			   uint64_t *priv_data_offset,
1163			   uint64_t max_priv_data_size);
1164/* CRIU - End */
1165
1166/* Queue Context Management */
 
 
1167int init_queue(struct queue **q, const struct queue_properties *properties);
1168void uninit_queue(struct queue *q);
1169void print_queue_properties(struct queue_properties *q);
1170void print_queue(struct queue *q);
1171
 
 
1172struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
1173		struct kfd_dev *dev);
1174struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
1175		struct kfd_dev *dev);
1176struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
1177		struct kfd_dev *dev);
1178struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
1179		struct kfd_dev *dev);
1180struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
1181		struct kfd_dev *dev);
1182struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
1183		struct kfd_dev *dev);
1184struct mqd_manager *mqd_manager_init_v11(enum KFD_MQD_TYPE type,
1185		struct kfd_dev *dev);
1186struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
1187void device_queue_manager_uninit(struct device_queue_manager *dqm);
1188struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
1189					enum kfd_queue_type type);
1190void kernel_queue_uninit(struct kernel_queue *kq, bool hanging);
1191int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid);
1192
1193/* Process Queue Manager */
1194struct process_queue_node {
1195	struct queue *q;
1196	struct kernel_queue *kq;
1197	struct list_head process_queue_list;
1198};
1199
1200void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
1201void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
1202int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
1203void pqm_uninit(struct process_queue_manager *pqm);
1204int pqm_create_queue(struct process_queue_manager *pqm,
1205			    struct kfd_dev *dev,
1206			    struct file *f,
1207			    struct queue_properties *properties,
1208			    unsigned int *qid,
1209			    struct amdgpu_bo *wptr_bo,
1210			    const struct kfd_criu_queue_priv_data *q_data,
1211			    const void *restore_mqd,
1212			    const void *restore_ctl_stack,
1213			    uint32_t *p_doorbell_offset_in_process);
1214int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
1215int pqm_update_queue_properties(struct process_queue_manager *pqm, unsigned int qid,
1216			struct queue_properties *p);
1217int pqm_update_mqd(struct process_queue_manager *pqm, unsigned int qid,
1218			struct mqd_update_info *minfo);
1219int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
1220			void *gws);
1221struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
1222						unsigned int qid);
1223struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
1224						unsigned int qid);
1225int pqm_get_wave_state(struct process_queue_manager *pqm,
1226		       unsigned int qid,
1227		       void __user *ctl_stack,
1228		       u32 *ctl_stack_used_size,
1229		       u32 *save_area_used_size);
1230
1231int amdkfd_fence_wait_timeout(uint64_t *fence_addr,
1232			      uint64_t fence_value,
1233			      unsigned int timeout_ms);
1234
1235int pqm_get_queue_checkpoint_info(struct process_queue_manager *pqm,
1236				  unsigned int qid,
1237				  u32 *mqd_size,
1238				  u32 *ctl_stack_size);
1239/* Packet Manager */
1240
 
 
1241#define KFD_FENCE_COMPLETED (100)
1242#define KFD_FENCE_INIT   (10)
 
1243
1244struct packet_manager {
1245	struct device_queue_manager *dqm;
1246	struct kernel_queue *priv_queue;
1247	struct mutex lock;
1248	bool allocated;
1249	struct kfd_mem_obj *ib_buffer_obj;
1250	unsigned int ib_size_bytes;
1251	bool is_over_subscription;
1252
1253	const struct packet_manager_funcs *pmf;
1254};
1255
1256struct packet_manager_funcs {
1257	/* Support ASIC-specific packet formats for PM4 packets */
1258	int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
1259			struct qcm_process_device *qpd);
1260	int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
1261			uint64_t ib, size_t ib_size_in_dwords, bool chain);
1262	int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
1263			struct scheduling_resources *res);
1264	int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
1265			struct queue *q, bool is_static);
1266	int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
1267			enum kfd_unmap_queues_filter mode,
1268			uint32_t filter_param, bool reset);
1269	int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
1270			uint64_t fence_address,	uint64_t fence_value);
1271	int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
1272
1273	/* Packet sizes */
1274	int map_process_size;
1275	int runlist_size;
1276	int set_resources_size;
1277	int map_queues_size;
1278	int unmap_queues_size;
1279	int query_status_size;
1280	int release_mem_size;
1281};
1282
1283extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1284extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1285extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs;
1286
1287int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1288void pm_uninit(struct packet_manager *pm, bool hanging);
1289int pm_send_set_resources(struct packet_manager *pm,
1290				struct scheduling_resources *res);
1291int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1292int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1293				uint64_t fence_value);
1294
1295int pm_send_unmap_queue(struct packet_manager *pm,
1296			enum kfd_unmap_queues_filter mode,
1297			uint32_t filter_param, bool reset);
 
1298
1299void pm_release_ib(struct packet_manager *pm);
1300
1301/* Following PM funcs can be shared among VI and AI */
1302unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1303
1304uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
 
 
1305
1306/* Events */
1307extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1308extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1309extern const struct kfd_event_interrupt_class event_interrupt_class_v11;
1310
1311extern const struct kfd_device_global_init_class device_global_init_class_cik;
1312
1313int kfd_event_init_process(struct kfd_process *p);
 
 
 
 
 
 
1314void kfd_event_free_process(struct kfd_process *p);
1315int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1316int kfd_wait_on_events(struct kfd_process *p,
1317		       uint32_t num_events, void __user *data,
1318		       bool all, uint32_t *user_timeout_ms,
1319		       uint32_t *wait_result);
1320void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
1321				uint32_t valid_id_bits);
1322void kfd_signal_iommu_event(struct kfd_dev *dev,
1323			    u32 pasid, unsigned long address,
1324			    bool is_write_requested, bool is_execute_requested);
1325void kfd_signal_hw_exception_event(u32 pasid);
1326int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1327int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1328int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset);
1329
1330int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1331		     uint32_t event_type, bool auto_reset, uint32_t node_id,
1332		     uint32_t *event_id, uint32_t *event_trigger_data,
1333		     uint64_t *event_page_offset, uint32_t *event_slot_index);
1334
1335int kfd_get_num_events(struct kfd_process *p);
1336int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1337
1338void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid,
1339				struct kfd_vm_fault_info *info);
1340
1341void kfd_signal_reset_event(struct kfd_dev *dev);
1342
1343void kfd_signal_poison_consumed_event(struct kfd_dev *dev, u32 pasid);
1344
1345void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type);
1346
1347static inline bool kfd_flush_tlb_after_unmap(struct kfd_dev *dev)
1348{
1349	return KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2) ||
1350	       (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 1) &&
1351	       dev->adev->sdma.instance[0].fw_version >= 18) ||
1352	       KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 0);
1353}
1354
1355bool kfd_is_locked(void);
1356
1357/* Compute profile */
1358void kfd_inc_compute_active(struct kfd_dev *dev);
1359void kfd_dec_compute_active(struct kfd_dev *dev);
1360
1361/* Cgroup Support */
1362/* Check with device cgroup if @kfd device is accessible */
1363static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd)
1364{
1365#if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1366	struct drm_device *ddev = adev_to_drm(kfd->adev);
1367
1368	return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1369					  ddev->render->index,
1370					  DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1371#else
1372	return 0;
1373#endif
1374}
1375
1376/* Debugfs */
1377#if defined(CONFIG_DEBUG_FS)
1378
1379void kfd_debugfs_init(void);
1380void kfd_debugfs_fini(void);
1381int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1382int pqm_debugfs_mqds(struct seq_file *m, void *data);
1383int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1384int dqm_debugfs_hqds(struct seq_file *m, void *data);
1385int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1386int pm_debugfs_runlist(struct seq_file *m, void *data);
1387
1388int kfd_debugfs_hang_hws(struct kfd_dev *dev);
1389int pm_debugfs_hang_hws(struct packet_manager *pm);
1390int dqm_debugfs_hang_hws(struct device_queue_manager *dqm);
1391
1392#else
1393
1394static inline void kfd_debugfs_init(void) {}
1395static inline void kfd_debugfs_fini(void) {}
1396
1397#endif
1398
1399#endif
v4.10.11
 
  1/*
  2 * Copyright 2014 Advanced Micro Devices, Inc.
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice shall be included in
 12 * all copies or substantial portions of the Software.
 13 *
 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 20 * OTHER DEALINGS IN THE SOFTWARE.
 21 */
 22
 23#ifndef KFD_PRIV_H_INCLUDED
 24#define KFD_PRIV_H_INCLUDED
 25
 26#include <linux/hashtable.h>
 27#include <linux/mmu_notifier.h>
 
 28#include <linux/mutex.h>
 29#include <linux/types.h>
 30#include <linux/atomic.h>
 31#include <linux/workqueue.h>
 32#include <linux/spinlock.h>
 33#include <linux/kfd_ioctl.h>
 
 
 
 
 
 
 
 
 
 
 34#include <kgd_kfd_interface.h>
 
 
 
 
 
 
 35
 36#define KFD_SYSFS_FILE_MODE 0444
 37
 38#define KFD_MMAP_DOORBELL_MASK 0x8000000000000
 39#define KFD_MMAP_EVENTS_MASK 0x4000000000000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 40
 41/*
 42 * When working with cp scheduler we should assign the HIQ manually or via
 43 * the radeon driver to a fixed hqd slot, here are the fixed HIQ hqd slot
 44 * definitions for Kaveri. In Kaveri only the first ME queues participates
 45 * in the cp scheduling taking that in mind we set the HIQ slot in the
 46 * second ME.
 47 */
 48#define KFD_CIK_HIQ_PIPE 4
 49#define KFD_CIK_HIQ_QUEUE 0
 50
 51/* GPU ID hash width in bits */
 52#define KFD_GPU_ID_HASH_WIDTH 16
 53
 54/* Macro for allocating structures */
 55#define kfd_alloc_struct(ptr_to_struct)	\
 56	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
 57
 58#define KFD_MAX_NUM_OF_PROCESSES 512
 59#define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
 60
 61/*
 62 * Kernel module parameter to specify maximum number of supported queues per
 63 * device
 
 
 64 */
 65extern int max_num_of_queues_per_device;
 
 66
 67#define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE_DEFAULT 4096
 68#define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
 69	(KFD_MAX_NUM_OF_PROCESSES *			\
 70			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
 71
 72#define KFD_KERNEL_QUEUE_SIZE 2048
 73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 74/* Kernel module parameter to specify the scheduling policy */
 75extern int sched_policy;
 76
 77/*
 
 
 
 
 
 
 
 
 78 * Kernel module parameter to specify whether to send sigterm to HSA process on
 79 * unhandled exception
 80 */
 81extern int send_sigterm;
 82
 83/**
 84 * enum kfd_sched_policy
 85 *
 86 * @KFD_SCHED_POLICY_HWS: H/W scheduling policy known as command processor (cp)
 87 * scheduling. In this scheduling mode we're using the firmware code to
 88 * schedule the user mode queues and kernel queues such as HIQ and DIQ.
 89 * the HIQ queue is used as a special queue that dispatches the configuration
 90 * to the cp and the user mode queues list that are currently running.
 91 * the DIQ queue is a debugging queue that dispatches debugging commands to the
 92 * firmware.
 93 * in this scheduling mode user mode queues over subscription feature is
 94 * enabled.
 95 *
 96 * @KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION: The same as above but the over
 97 * subscription feature disabled.
 98 *
 99 * @KFD_SCHED_POLICY_NO_HWS: no H/W scheduling policy is a mode which directly
100 * set the command processor registers and sets the queues "manually". This
101 * mode is used *ONLY* for debugging proposes.
102 *
103 */
104enum kfd_sched_policy {
105	KFD_SCHED_POLICY_HWS = 0,
106	KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION,
107	KFD_SCHED_POLICY_NO_HWS
108};
 
 
 
 
 
109
110enum cache_policy {
111	cache_policy_coherent,
112	cache_policy_noncoherent
113};
114
115enum asic_family_type {
116	CHIP_KAVERI = 0,
117	CHIP_CARRIZO
118};
119
120struct kfd_event_interrupt_class {
121	bool (*interrupt_isr)(struct kfd_dev *dev,
122				const uint32_t *ih_ring_entry);
 
123	void (*interrupt_wq)(struct kfd_dev *dev,
124				const uint32_t *ih_ring_entry);
125};
126
127struct kfd_device_info {
128	unsigned int asic_family;
129	const struct kfd_event_interrupt_class *event_interrupt_class;
130	unsigned int max_pasid_bits;
131	unsigned int max_no_of_hqd;
 
132	size_t ih_ring_entry_size;
133	uint8_t num_of_watch_points;
134	uint16_t mqd_size_aligned;
 
 
 
 
 
 
 
135};
136
 
 
 
137struct kfd_mem_obj {
138	uint32_t range_start;
139	uint32_t range_end;
140	uint64_t gpu_addr;
141	uint32_t *cpu_ptr;
 
 
 
 
 
 
 
142};
143
144struct kfd_dev {
145	struct kgd_dev *kgd;
146
147	const struct kfd_device_info *device_info;
148	struct pci_dev *pdev;
149
150	unsigned int id;		/* topology stub index */
151
152	phys_addr_t doorbell_base;	/* Start of actual doorbells used by
153					 * KFD. It is aligned for mapping
154					 * into user mode
155					 */
156	size_t doorbell_id_offset;	/* Doorbell offset (from KFD doorbell
157					 * to HW doorbell, GFX reserved some
158					 * at the start)
159					 */
160	size_t doorbell_process_limit;	/* Number of processes we have doorbell
161					 * space for.
162					 */
163	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
164					   * page used by kernel queue
165					   */
166
167	struct kgd2kfd_shared_resources shared_resources;
 
 
168
169	const struct kfd2kgd_calls *kfd2kgd;
170	struct mutex doorbell_mutex;
171	DECLARE_BITMAP(doorbell_available_index,
172			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
173
174	void *gtt_mem;
175	uint64_t gtt_start_gpu_addr;
176	void *gtt_start_cpu_ptr;
177	void *gtt_sa_bitmap;
178	struct mutex gtt_sa_lock;
179	unsigned int gtt_sa_chunk_size;
180	unsigned int gtt_sa_num_of_chunks;
181
182	/* Interrupts */
183	void *interrupt_ring;
184	size_t interrupt_ring_size;
185	atomic_t interrupt_ring_rptr;
186	atomic_t interrupt_ring_wptr;
187	struct work_struct interrupt_work;
188	spinlock_t interrupt_lock;
189
190	/* QCM Device instance */
191	struct device_queue_manager *dqm;
192
193	bool init_complete;
194	/*
195	 * Interrupts of interest to KFD are copied
196	 * from the HW ring into a SW ring.
197	 */
198	bool interrupts_active;
199
200	/* Debug manager */
201	struct kfd_dbgmgr           *dbgmgr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
202};
203
204/* KGD2KFD callbacks */
205void kgd2kfd_exit(void);
206struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
207			struct pci_dev *pdev, const struct kfd2kgd_calls *f2g);
208bool kgd2kfd_device_init(struct kfd_dev *kfd,
209			const struct kgd2kfd_shared_resources *gpu_resources);
210void kgd2kfd_device_exit(struct kfd_dev *kfd);
211
212enum kfd_mempool {
213	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
214	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
215	KFD_MEMPOOL_FRAMEBUFFER = 3,
216};
217
218/* Character device interface */
219int kfd_chardev_init(void);
220void kfd_chardev_exit(void);
221struct device *kfd_chardev(void);
222
223/**
224 * enum kfd_preempt_type_filter
225 *
226 * @KFD_PREEMPT_TYPE_FILTER_SINGLE_QUEUE: Preempts single queue.
 
227 *
228 * @KFD_PRERMPT_TYPE_FILTER_ALL_QUEUES: Preempts all queues in the
229 *						running queues list.
230 *
231 * @KFD_PRERMPT_TYPE_FILTER_BY_PASID: Preempts queues that belongs to
232 *						specific process.
233 *
234 */
235enum kfd_preempt_type_filter {
236	KFD_PREEMPT_TYPE_FILTER_SINGLE_QUEUE,
237	KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES,
238	KFD_PREEMPT_TYPE_FILTER_DYNAMIC_QUEUES,
239	KFD_PREEMPT_TYPE_FILTER_BY_PASID
240};
241
242enum kfd_preempt_type {
243	KFD_PREEMPT_TYPE_WAVEFRONT,
244	KFD_PREEMPT_TYPE_WAVEFRONT_RESET
245};
246
247/**
248 * enum kfd_queue_type
249 *
250 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
251 *
252 * @KFD_QUEUE_TYPE_SDMA: Sdma user mode queue type.
253 *
254 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
255 *
256 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
 
 
257 */
258enum kfd_queue_type  {
259	KFD_QUEUE_TYPE_COMPUTE,
260	KFD_QUEUE_TYPE_SDMA,
261	KFD_QUEUE_TYPE_HIQ,
262	KFD_QUEUE_TYPE_DIQ
 
263};
264
265enum kfd_queue_format {
266	KFD_QUEUE_FORMAT_PM4,
267	KFD_QUEUE_FORMAT_AQL
268};
269
 
 
 
 
 
270/**
271 * struct queue_properties
272 *
273 * @type: The queue type.
274 *
275 * @queue_id: Queue identifier.
276 *
277 * @queue_address: Queue ring buffer address.
278 *
279 * @queue_size: Queue ring buffer size.
280 *
281 * @priority: Defines the queue priority relative to other queues in the
282 * process.
283 * This is just an indication and HW scheduling may override the priority as
284 * necessary while keeping the relative prioritization.
285 * the priority granularity is from 0 to f which f is the highest priority.
286 * currently all queues are initialized with the highest priority.
287 *
288 * @queue_percent: This field is partially implemented and currently a zero in
289 * this field defines that the queue is non active.
290 *
291 * @read_ptr: User space address which points to the number of dwords the
292 * cp read from the ring buffer. This field updates automatically by the H/W.
293 *
294 * @write_ptr: Defines the number of dwords written to the ring buffer.
295 *
296 * @doorbell_ptr: This field aim is to notify the H/W of new packet written to
297 * the queue ring buffer. This field should be similar to write_ptr and the user
298 * should update this field after he updated the write_ptr.
299 *
300 * @doorbell_off: The doorbell offset in the doorbell pci-bar.
301 *
302 * @is_interop: Defines if this is a interop queue. Interop queue means that the
303 * queue can access both graphics and compute resources.
 
 
 
 
 
 
304 *
305 * @is_active: Defines if the queue is active or not.
 
 
306 *
307 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
308 * of the queue.
309 *
310 * This structure represents the queue properties for each queue no matter if
311 * it's user mode or kernel mode queue.
312 *
313 */
 
314struct queue_properties {
315	enum kfd_queue_type type;
316	enum kfd_queue_format format;
317	unsigned int queue_id;
318	uint64_t queue_address;
319	uint64_t  queue_size;
320	uint32_t priority;
321	uint32_t queue_percent;
322	uint32_t *read_ptr;
323	uint32_t *write_ptr;
324	uint32_t __iomem *doorbell_ptr;
325	uint32_t doorbell_off;
326	bool is_interop;
 
327	bool is_active;
 
328	/* Not relevant for user mode queues in cp scheduling */
329	unsigned int vmid;
330	/* Relevant only for sdma queues*/
331	uint32_t sdma_engine_id;
332	uint32_t sdma_queue_id;
333	uint32_t sdma_vm_addr;
334	/* Relevant only for VI */
335	uint64_t eop_ring_buffer_address;
336	uint32_t eop_ring_buffer_size;
337	uint64_t ctx_save_restore_area_address;
338	uint32_t ctx_save_restore_area_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
339};
340
341/**
342 * struct queue
343 *
344 * @list: Queue linked list.
345 *
346 * @mqd: The queue MQD.
347 *
348 * @mqd_mem_obj: The MQD local gpu memory object.
349 *
350 * @gart_mqd_addr: The MQD gart mc address.
351 *
352 * @properties: The queue properties.
353 *
354 * @mec: Used only in no cp scheduling mode and identifies to micro engine id
355 * that the queue should be execute on.
356 *
357 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe id.
 
358 *
359 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
360 *
361 * @process: The kfd process that created this queue.
362 *
363 * @device: The kfd device that created this queue.
364 *
 
 
 
365 * This structure represents user mode compute queues.
366 * It contains all the necessary data to handle such queues.
367 *
368 */
369
370struct queue {
371	struct list_head list;
372	void *mqd;
373	struct kfd_mem_obj *mqd_mem_obj;
374	uint64_t gart_mqd_addr;
375	struct queue_properties properties;
376
377	uint32_t mec;
378	uint32_t pipe;
379	uint32_t queue;
380
381	unsigned int sdma_id;
 
382
383	struct kfd_process	*process;
384	struct kfd_dev		*device;
 
 
 
 
 
 
 
 
 
 
385};
386
387/*
388 * Please read the kfd_mqd_manager.h description.
389 */
390enum KFD_MQD_TYPE {
391	KFD_MQD_TYPE_COMPUTE = 0,	/* for no cp scheduling */
392	KFD_MQD_TYPE_HIQ,		/* for hiq */
393	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
394	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
 
395	KFD_MQD_TYPE_MAX
396};
397
 
 
 
 
 
 
398struct scheduling_resources {
399	unsigned int vmid_mask;
400	enum kfd_queue_type type;
401	uint64_t queue_mask;
402	uint64_t gws_mask;
403	uint32_t oac_mask;
404	uint32_t gds_heap_base;
405	uint32_t gds_heap_size;
406};
407
408struct process_queue_manager {
409	/* data */
410	struct kfd_process	*process;
411	unsigned int		num_concurrent_processes;
412	struct list_head	queues;
413	unsigned long		*queue_slot_bitmap;
414};
415
416struct qcm_process_device {
417	/* The Device Queue Manager that owns this data */
418	struct device_queue_manager *dqm;
419	struct process_queue_manager *pqm;
420	/* Queues list */
421	struct list_head queues_list;
422	struct list_head priv_queue_list;
423
424	unsigned int queue_count;
425	unsigned int vmid;
426	bool is_debug;
427	/*
428	 * All the memory management data should be here too
 
 
 
 
 
 
 
 
 
 
429	 */
 
 
 
430	uint64_t gds_context_area;
 
 
431	uint32_t sh_mem_config;
432	uint32_t sh_mem_bases;
433	uint32_t sh_mem_ape1_base;
434	uint32_t sh_mem_ape1_limit;
435	uint32_t page_table_base;
436	uint32_t gds_size;
437	uint32_t num_gws;
438	uint32_t num_oac;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
439};
440
 
 
 
 
 
 
 
 
 
441/* Data that is per-process-per device. */
442struct kfd_process_device {
443	/*
444	 * List of all per-device data for a process.
445	 * Starts from kfd_process.per_device_data.
446	 */
447	struct list_head per_device_list;
448
449	/* The device that owns this data. */
450	struct kfd_dev *dev;
451
 
 
452
453	/* per-process-per device QCM data structure */
454	struct qcm_process_device qpd;
455
456	/*Apertures*/
457	uint64_t lds_base;
458	uint64_t lds_limit;
459	uint64_t gpuvm_base;
460	uint64_t gpuvm_limit;
461	uint64_t scratch_base;
462	uint64_t scratch_limit;
463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
464	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
465	bool bound;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
466
467	/* This flag tells if we should reset all
468	 * wavefronts on process termination
 
 
 
 
 
 
 
 
 
 
469	 */
470	bool reset_wavefronts;
 
 
 
 
471};
472
473#define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
474
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
475/* Process data */
476struct kfd_process {
477	/*
478	 * kfd_process are stored in an mm_struct*->kfd_process*
479	 * hash table (kfd_processes in kfd_process.c)
480	 */
481	struct hlist_node kfd_processes;
482
483	struct mm_struct *mm;
 
 
 
 
 
 
 
 
484
485	struct mutex mutex;
486
487	/*
488	 * In any process, the thread that started main() is the lead
489	 * thread and outlives the rest.
490	 * It is here because amd_iommu_bind_pasid wants a task_struct.
 
 
491	 */
492	struct task_struct *lead_thread;
493
494	/* We want to receive a notification when the mm_struct is destroyed */
495	struct mmu_notifier mmu_notifier;
496
497	/* Use for delayed freeing of kfd_process structure */
498	struct rcu_head	rcu;
499
500	unsigned int pasid;
501
502	/*
503	 * List of kfd_process_device structures,
504	 * one for each device the process is using.
505	 */
506	struct list_head per_device_data;
 
507
508	struct process_queue_manager pqm;
509
510	/* The process's queues. */
511	size_t queue_array_size;
512
513	/* Size is queue_array_size, up to MAX_PROCESS_QUEUES. */
514	struct kfd_queue **queues;
515
516	/*Is the user space process 32 bit?*/
517	bool is_32bit_user_mode;
518
519	/* Event-related data */
520	struct mutex event_mutex;
521	/* All events in process hashed by ID, linked on kfd_event.events. */
522	DECLARE_HASHTABLE(events, 4);
523	struct list_head signal_event_pages;	/* struct slot_page_header.
524								event_pages */
525	u32 next_nonsignal_event_id;
 
526	size_t signal_event_count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
527};
528
 
 
 
 
529/**
530 * Ioctl function type.
 
 
 
 
531 *
532 * \param filep pointer to file structure.
533 * \param p amdkfd process pointer.
534 * \param data pointer to arg that was copied from user.
535 */
536typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
537				void *data);
538
539struct amdkfd_ioctl_desc {
540	unsigned int cmd;
541	int flags;
542	amdkfd_ioctl_t *func;
543	unsigned int cmd_drv;
544	const char *name;
545};
 
546
547void kfd_process_create_wq(void);
548void kfd_process_destroy_wq(void);
549struct kfd_process *kfd_create_process(const struct task_struct *);
550struct kfd_process *kfd_get_process(const struct task_struct *);
551struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
552
 
 
 
 
 
 
 
553struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
554							struct kfd_process *p);
555void kfd_unbind_process_from_device(struct kfd_dev *dev, unsigned int pasid);
556struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
557							struct kfd_process *p);
558struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
559							struct kfd_process *p);
560
561/* Process device data iterator */
562struct kfd_process_device *kfd_get_first_process_device_data(struct kfd_process *p);
563struct kfd_process_device *kfd_get_next_process_device_data(struct kfd_process *p,
564						struct kfd_process_device *pdd);
565bool kfd_has_process_device_data(struct kfd_process *p);
 
 
 
 
 
 
 
 
566
567/* PASIDs */
568int kfd_pasid_init(void);
569void kfd_pasid_exit(void);
570bool kfd_set_pasid_limit(unsigned int new_limit);
571unsigned int kfd_get_pasid_limit(void);
572unsigned int kfd_pasid_alloc(void);
573void kfd_pasid_free(unsigned int pasid);
574
575/* Doorbells */
576void kfd_doorbell_init(struct kfd_dev *kfd);
577int kfd_doorbell_mmap(struct kfd_process *process, struct vm_area_struct *vma);
578u32 __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
 
 
 
579					unsigned int *doorbell_off);
580void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
581u32 read_kernel_doorbell(u32 __iomem *db);
582void write_kernel_doorbell(u32 __iomem *db, u32 value);
583unsigned int kfd_queue_id_to_doorbell(struct kfd_dev *kfd,
584					struct kfd_process *process,
585					unsigned int queue_id);
586
 
 
 
 
 
587/* GTT Sub-Allocator */
588
589int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
590			struct kfd_mem_obj **mem_obj);
591
592int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
593
594extern struct device *kfd_device;
595
 
 
 
 
 
 
596/* Topology */
597int kfd_topology_init(void);
598void kfd_topology_shutdown(void);
599int kfd_topology_add_device(struct kfd_dev *gpu);
600int kfd_topology_remove_device(struct kfd_dev *gpu);
 
 
 
 
 
601struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
602struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
603struct kfd_dev *kfd_topology_enum_kfd_devices(uint8_t idx);
 
 
 
604
605/* Interrupts */
606int kfd_interrupt_init(struct kfd_dev *dev);
607void kfd_interrupt_exit(struct kfd_dev *dev);
608void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry);
609bool enqueue_ih_ring_entry(struct kfd_dev *kfd,	const void *ih_ring_entry);
610bool interrupt_is_wanted(struct kfd_dev *dev, const uint32_t *ih_ring_entry);
611
612/* Power Management */
613void kgd2kfd_suspend(struct kfd_dev *kfd);
614int kgd2kfd_resume(struct kfd_dev *kfd);
615
616/* amdkfd Apertures */
617int kfd_init_apertures(struct kfd_process *process);
618
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
619/* Queue Context Management */
620struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd);
621
622int init_queue(struct queue **q, const struct queue_properties *properties);
623void uninit_queue(struct queue *q);
624void print_queue_properties(struct queue_properties *q);
625void print_queue(struct queue *q);
626
627struct mqd_manager *mqd_manager_init(enum KFD_MQD_TYPE type,
628					struct kfd_dev *dev);
629struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
630		struct kfd_dev *dev);
 
 
631struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
632		struct kfd_dev *dev);
 
 
 
 
 
 
 
 
633struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
634void device_queue_manager_uninit(struct device_queue_manager *dqm);
635struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
636					enum kfd_queue_type type);
637void kernel_queue_uninit(struct kernel_queue *kq);
 
638
639/* Process Queue Manager */
640struct process_queue_node {
641	struct queue *q;
642	struct kernel_queue *kq;
643	struct list_head process_queue_list;
644};
645
 
 
646int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
647void pqm_uninit(struct process_queue_manager *pqm);
648int pqm_create_queue(struct process_queue_manager *pqm,
649			    struct kfd_dev *dev,
650			    struct file *f,
651			    struct queue_properties *properties,
652			    unsigned int flags,
653			    enum kfd_queue_type type,
654			    unsigned int *qid);
 
 
 
655int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
656int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid,
657			struct queue_properties *p);
 
 
 
 
658struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
659						unsigned int qid);
660
661int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
662				unsigned int fence_value,
663				unsigned long timeout);
664
 
 
 
 
 
 
 
 
 
 
 
665/* Packet Manager */
666
667#define KFD_HIQ_TIMEOUT (500)
668
669#define KFD_FENCE_COMPLETED (100)
670#define KFD_FENCE_INIT   (10)
671#define KFD_UNMAP_LATENCY (150)
672
673struct packet_manager {
674	struct device_queue_manager *dqm;
675	struct kernel_queue *priv_queue;
676	struct mutex lock;
677	bool allocated;
678	struct kfd_mem_obj *ib_buffer_obj;
 
 
 
 
679};
680
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
681int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
682void pm_uninit(struct packet_manager *pm);
683int pm_send_set_resources(struct packet_manager *pm,
684				struct scheduling_resources *res);
685int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
686int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
687				uint32_t fence_value);
688
689int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
690			enum kfd_preempt_type_filter mode,
691			uint32_t filter_param, bool reset,
692			unsigned int sdma_engine);
693
694void pm_release_ib(struct packet_manager *pm);
695
 
 
 
696uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
697phys_addr_t kfd_get_process_doorbells(struct kfd_dev *dev,
698					struct kfd_process *process);
699
700/* Events */
701extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
 
 
 
702extern const struct kfd_device_global_init_class device_global_init_class_cik;
703
704enum kfd_event_wait_result {
705	KFD_WAIT_COMPLETE,
706	KFD_WAIT_TIMEOUT,
707	KFD_WAIT_ERROR
708};
709
710void kfd_event_init_process(struct kfd_process *p);
711void kfd_event_free_process(struct kfd_process *p);
712int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
713int kfd_wait_on_events(struct kfd_process *p,
714		       uint32_t num_events, void __user *data,
715		       bool all, uint32_t user_timeout_ms,
716		       enum kfd_event_wait_result *wait_result);
717void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
718				uint32_t valid_id_bits);
719void kfd_signal_iommu_event(struct kfd_dev *dev,
720		unsigned int pasid, unsigned long address,
721		bool is_write_requested, bool is_execute_requested);
722void kfd_signal_hw_exception_event(unsigned int pasid);
723int kfd_set_event(struct kfd_process *p, uint32_t event_id);
724int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
 
 
725int kfd_event_create(struct file *devkfd, struct kfd_process *p,
726		     uint32_t event_type, bool auto_reset, uint32_t node_id,
727		     uint32_t *event_id, uint32_t *event_trigger_data,
728		     uint64_t *event_page_offset, uint32_t *event_slot_index);
 
 
729int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
730
731int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
732
733#endif