Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SuperH Timer Support - CMT
4 *
5 * Copyright (C) 2008 Magnus Damm
6 */
7
8#include <linux/clk.h>
9#include <linux/clockchips.h>
10#include <linux/clocksource.h>
11#include <linux/delay.h>
12#include <linux/err.h>
13#include <linux/init.h>
14#include <linux/interrupt.h>
15#include <linux/io.h>
16#include <linux/iopoll.h>
17#include <linux/ioport.h>
18#include <linux/irq.h>
19#include <linux/module.h>
20#include <linux/of.h>
21#include <linux/of_device.h>
22#include <linux/platform_device.h>
23#include <linux/pm_domain.h>
24#include <linux/pm_runtime.h>
25#include <linux/sh_timer.h>
26#include <linux/slab.h>
27#include <linux/spinlock.h>
28
29#ifdef CONFIG_SUPERH
30#include <asm/platform_early.h>
31#endif
32
33struct sh_cmt_device;
34
35/*
36 * The CMT comes in 5 different identified flavours, depending not only on the
37 * SoC but also on the particular instance. The following table lists the main
38 * characteristics of those flavours.
39 *
40 * 16B 32B 32B-F 48B R-Car Gen2
41 * -----------------------------------------------------------------------------
42 * Channels 2 1/4 1 6 2/8
43 * Control Width 16 16 16 16 32
44 * Counter Width 16 32 32 32/48 32/48
45 * Shared Start/Stop Y Y Y Y N
46 *
47 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
48 * located in the channel registers block. All other versions have a shared
49 * start/stop register located in the global space.
50 *
51 * Channels are indexed from 0 to N-1 in the documentation. The channel index
52 * infers the start/stop bit position in the control register and the channel
53 * registers block address. Some CMT instances have a subset of channels
54 * available, in which case the index in the documentation doesn't match the
55 * "real" index as implemented in hardware. This is for instance the case with
56 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
57 * in the documentation but using start/stop bit 5 and having its registers
58 * block at 0x60.
59 *
60 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
61 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
62 */
63
64enum sh_cmt_model {
65 SH_CMT_16BIT,
66 SH_CMT_32BIT,
67 SH_CMT_48BIT,
68 SH_CMT0_RCAR_GEN2,
69 SH_CMT1_RCAR_GEN2,
70};
71
72struct sh_cmt_info {
73 enum sh_cmt_model model;
74
75 unsigned int channels_mask;
76
77 unsigned long width; /* 16 or 32 bit version of hardware block */
78 u32 overflow_bit;
79 u32 clear_bits;
80
81 /* callbacks for CMSTR and CMCSR access */
82 u32 (*read_control)(void __iomem *base, unsigned long offs);
83 void (*write_control)(void __iomem *base, unsigned long offs,
84 u32 value);
85
86 /* callbacks for CMCNT and CMCOR access */
87 u32 (*read_count)(void __iomem *base, unsigned long offs);
88 void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
89};
90
91struct sh_cmt_channel {
92 struct sh_cmt_device *cmt;
93
94 unsigned int index; /* Index in the documentation */
95 unsigned int hwidx; /* Real hardware index */
96
97 void __iomem *iostart;
98 void __iomem *ioctrl;
99
100 unsigned int timer_bit;
101 unsigned long flags;
102 u32 match_value;
103 u32 next_match_value;
104 u32 max_match_value;
105 raw_spinlock_t lock;
106 struct clock_event_device ced;
107 struct clocksource cs;
108 u64 total_cycles;
109 bool cs_enabled;
110};
111
112struct sh_cmt_device {
113 struct platform_device *pdev;
114
115 const struct sh_cmt_info *info;
116
117 void __iomem *mapbase;
118 struct clk *clk;
119 unsigned long rate;
120 unsigned int reg_delay;
121
122 raw_spinlock_t lock; /* Protect the shared start/stop register */
123
124 struct sh_cmt_channel *channels;
125 unsigned int num_channels;
126 unsigned int hw_channels;
127
128 bool has_clockevent;
129 bool has_clocksource;
130};
131
132#define SH_CMT16_CMCSR_CMF (1 << 7)
133#define SH_CMT16_CMCSR_CMIE (1 << 6)
134#define SH_CMT16_CMCSR_CKS8 (0 << 0)
135#define SH_CMT16_CMCSR_CKS32 (1 << 0)
136#define SH_CMT16_CMCSR_CKS128 (2 << 0)
137#define SH_CMT16_CMCSR_CKS512 (3 << 0)
138#define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
139
140#define SH_CMT32_CMCSR_CMF (1 << 15)
141#define SH_CMT32_CMCSR_OVF (1 << 14)
142#define SH_CMT32_CMCSR_WRFLG (1 << 13)
143#define SH_CMT32_CMCSR_STTF (1 << 12)
144#define SH_CMT32_CMCSR_STPF (1 << 11)
145#define SH_CMT32_CMCSR_SSIE (1 << 10)
146#define SH_CMT32_CMCSR_CMS (1 << 9)
147#define SH_CMT32_CMCSR_CMM (1 << 8)
148#define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
149#define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
150#define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
151#define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
152#define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
153#define SH_CMT32_CMCSR_DBGIVD (1 << 3)
154#define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
155#define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
156#define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
157#define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
158#define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
159
160static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
161{
162 return ioread16(base + (offs << 1));
163}
164
165static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
166{
167 return ioread32(base + (offs << 2));
168}
169
170static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
171{
172 iowrite16(value, base + (offs << 1));
173}
174
175static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
176{
177 iowrite32(value, base + (offs << 2));
178}
179
180static const struct sh_cmt_info sh_cmt_info[] = {
181 [SH_CMT_16BIT] = {
182 .model = SH_CMT_16BIT,
183 .width = 16,
184 .overflow_bit = SH_CMT16_CMCSR_CMF,
185 .clear_bits = ~SH_CMT16_CMCSR_CMF,
186 .read_control = sh_cmt_read16,
187 .write_control = sh_cmt_write16,
188 .read_count = sh_cmt_read16,
189 .write_count = sh_cmt_write16,
190 },
191 [SH_CMT_32BIT] = {
192 .model = SH_CMT_32BIT,
193 .width = 32,
194 .overflow_bit = SH_CMT32_CMCSR_CMF,
195 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
196 .read_control = sh_cmt_read16,
197 .write_control = sh_cmt_write16,
198 .read_count = sh_cmt_read32,
199 .write_count = sh_cmt_write32,
200 },
201 [SH_CMT_48BIT] = {
202 .model = SH_CMT_48BIT,
203 .channels_mask = 0x3f,
204 .width = 32,
205 .overflow_bit = SH_CMT32_CMCSR_CMF,
206 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
207 .read_control = sh_cmt_read32,
208 .write_control = sh_cmt_write32,
209 .read_count = sh_cmt_read32,
210 .write_count = sh_cmt_write32,
211 },
212 [SH_CMT0_RCAR_GEN2] = {
213 .model = SH_CMT0_RCAR_GEN2,
214 .channels_mask = 0x60,
215 .width = 32,
216 .overflow_bit = SH_CMT32_CMCSR_CMF,
217 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
218 .read_control = sh_cmt_read32,
219 .write_control = sh_cmt_write32,
220 .read_count = sh_cmt_read32,
221 .write_count = sh_cmt_write32,
222 },
223 [SH_CMT1_RCAR_GEN2] = {
224 .model = SH_CMT1_RCAR_GEN2,
225 .channels_mask = 0xff,
226 .width = 32,
227 .overflow_bit = SH_CMT32_CMCSR_CMF,
228 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
229 .read_control = sh_cmt_read32,
230 .write_control = sh_cmt_write32,
231 .read_count = sh_cmt_read32,
232 .write_count = sh_cmt_write32,
233 },
234};
235
236#define CMCSR 0 /* channel register */
237#define CMCNT 1 /* channel register */
238#define CMCOR 2 /* channel register */
239
240#define CMCLKE 0x1000 /* CLK Enable Register (R-Car Gen2) */
241
242static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
243{
244 if (ch->iostart)
245 return ch->cmt->info->read_control(ch->iostart, 0);
246 else
247 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
248}
249
250static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
251{
252 u32 old_value = sh_cmt_read_cmstr(ch);
253
254 if (value != old_value) {
255 if (ch->iostart) {
256 ch->cmt->info->write_control(ch->iostart, 0, value);
257 udelay(ch->cmt->reg_delay);
258 } else {
259 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
260 udelay(ch->cmt->reg_delay);
261 }
262 }
263}
264
265static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
266{
267 return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
268}
269
270static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
271{
272 u32 old_value = sh_cmt_read_cmcsr(ch);
273
274 if (value != old_value) {
275 ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
276 udelay(ch->cmt->reg_delay);
277 }
278}
279
280static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
281{
282 return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
283}
284
285static inline int sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
286{
287 /* Tests showed that we need to wait 3 clocks here */
288 unsigned int cmcnt_delay = DIV_ROUND_UP(3 * ch->cmt->reg_delay, 2);
289 u32 reg;
290
291 if (ch->cmt->info->model > SH_CMT_16BIT) {
292 int ret = read_poll_timeout_atomic(sh_cmt_read_cmcsr, reg,
293 !(reg & SH_CMT32_CMCSR_WRFLG),
294 1, cmcnt_delay, false, ch);
295 if (ret < 0)
296 return ret;
297 }
298
299 ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
300 udelay(cmcnt_delay);
301 return 0;
302}
303
304static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
305{
306 u32 old_value = ch->cmt->info->read_count(ch->ioctrl, CMCOR);
307
308 if (value != old_value) {
309 ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
310 udelay(ch->cmt->reg_delay);
311 }
312}
313
314static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
315{
316 u32 v1, v2, v3;
317 u32 o1, o2;
318
319 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
320
321 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
322 do {
323 o2 = o1;
324 v1 = sh_cmt_read_cmcnt(ch);
325 v2 = sh_cmt_read_cmcnt(ch);
326 v3 = sh_cmt_read_cmcnt(ch);
327 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
328 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
329 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
330
331 *has_wrapped = o1;
332 return v2;
333}
334
335static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
336{
337 unsigned long flags;
338 u32 value;
339
340 /* start stop register shared by multiple timer channels */
341 raw_spin_lock_irqsave(&ch->cmt->lock, flags);
342 value = sh_cmt_read_cmstr(ch);
343
344 if (start)
345 value |= 1 << ch->timer_bit;
346 else
347 value &= ~(1 << ch->timer_bit);
348
349 sh_cmt_write_cmstr(ch, value);
350 raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
351}
352
353static int sh_cmt_enable(struct sh_cmt_channel *ch)
354{
355 int ret;
356
357 dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
358
359 /* enable clock */
360 ret = clk_enable(ch->cmt->clk);
361 if (ret) {
362 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
363 ch->index);
364 goto err0;
365 }
366
367 /* make sure channel is disabled */
368 sh_cmt_start_stop_ch(ch, 0);
369
370 /* configure channel, periodic mode and maximum timeout */
371 if (ch->cmt->info->width == 16) {
372 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
373 SH_CMT16_CMCSR_CKS512);
374 } else {
375 u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
376 SH_CMT32_CMCSR_CMTOUT_IE : 0;
377 sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
378 SH_CMT32_CMCSR_CMR_IRQ |
379 SH_CMT32_CMCSR_CKS_RCLK8);
380 }
381
382 sh_cmt_write_cmcor(ch, 0xffffffff);
383 ret = sh_cmt_write_cmcnt(ch, 0);
384
385 if (ret || sh_cmt_read_cmcnt(ch)) {
386 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
387 ch->index);
388 ret = -ETIMEDOUT;
389 goto err1;
390 }
391
392 /* enable channel */
393 sh_cmt_start_stop_ch(ch, 1);
394 return 0;
395 err1:
396 /* stop clock */
397 clk_disable(ch->cmt->clk);
398
399 err0:
400 return ret;
401}
402
403static void sh_cmt_disable(struct sh_cmt_channel *ch)
404{
405 /* disable channel */
406 sh_cmt_start_stop_ch(ch, 0);
407
408 /* disable interrupts in CMT block */
409 sh_cmt_write_cmcsr(ch, 0);
410
411 /* stop clock */
412 clk_disable(ch->cmt->clk);
413
414 dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
415}
416
417/* private flags */
418#define FLAG_CLOCKEVENT (1 << 0)
419#define FLAG_CLOCKSOURCE (1 << 1)
420#define FLAG_REPROGRAM (1 << 2)
421#define FLAG_SKIPEVENT (1 << 3)
422#define FLAG_IRQCONTEXT (1 << 4)
423
424static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
425 int absolute)
426{
427 u32 value = ch->next_match_value;
428 u32 new_match;
429 u32 delay = 0;
430 u32 now = 0;
431 u32 has_wrapped;
432
433 now = sh_cmt_get_counter(ch, &has_wrapped);
434 ch->flags |= FLAG_REPROGRAM; /* force reprogram */
435
436 if (has_wrapped) {
437 /* we're competing with the interrupt handler.
438 * -> let the interrupt handler reprogram the timer.
439 * -> interrupt number two handles the event.
440 */
441 ch->flags |= FLAG_SKIPEVENT;
442 return;
443 }
444
445 if (absolute)
446 now = 0;
447
448 do {
449 /* reprogram the timer hardware,
450 * but don't save the new match value yet.
451 */
452 new_match = now + value + delay;
453 if (new_match > ch->max_match_value)
454 new_match = ch->max_match_value;
455
456 sh_cmt_write_cmcor(ch, new_match);
457
458 now = sh_cmt_get_counter(ch, &has_wrapped);
459 if (has_wrapped && (new_match > ch->match_value)) {
460 /* we are changing to a greater match value,
461 * so this wrap must be caused by the counter
462 * matching the old value.
463 * -> first interrupt reprograms the timer.
464 * -> interrupt number two handles the event.
465 */
466 ch->flags |= FLAG_SKIPEVENT;
467 break;
468 }
469
470 if (has_wrapped) {
471 /* we are changing to a smaller match value,
472 * so the wrap must be caused by the counter
473 * matching the new value.
474 * -> save programmed match value.
475 * -> let isr handle the event.
476 */
477 ch->match_value = new_match;
478 break;
479 }
480
481 /* be safe: verify hardware settings */
482 if (now < new_match) {
483 /* timer value is below match value, all good.
484 * this makes sure we won't miss any match events.
485 * -> save programmed match value.
486 * -> let isr handle the event.
487 */
488 ch->match_value = new_match;
489 break;
490 }
491
492 /* the counter has reached a value greater
493 * than our new match value. and since the
494 * has_wrapped flag isn't set we must have
495 * programmed a too close event.
496 * -> increase delay and retry.
497 */
498 if (delay)
499 delay <<= 1;
500 else
501 delay = 1;
502
503 if (!delay)
504 dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
505 ch->index);
506
507 } while (delay);
508}
509
510static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
511{
512 if (delta > ch->max_match_value)
513 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
514 ch->index);
515
516 ch->next_match_value = delta;
517 sh_cmt_clock_event_program_verify(ch, 0);
518}
519
520static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
521{
522 unsigned long flags;
523
524 raw_spin_lock_irqsave(&ch->lock, flags);
525 __sh_cmt_set_next(ch, delta);
526 raw_spin_unlock_irqrestore(&ch->lock, flags);
527}
528
529static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
530{
531 struct sh_cmt_channel *ch = dev_id;
532
533 /* clear flags */
534 sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
535 ch->cmt->info->clear_bits);
536
537 /* update clock source counter to begin with if enabled
538 * the wrap flag should be cleared by the timer specific
539 * isr before we end up here.
540 */
541 if (ch->flags & FLAG_CLOCKSOURCE)
542 ch->total_cycles += ch->match_value + 1;
543
544 if (!(ch->flags & FLAG_REPROGRAM))
545 ch->next_match_value = ch->max_match_value;
546
547 ch->flags |= FLAG_IRQCONTEXT;
548
549 if (ch->flags & FLAG_CLOCKEVENT) {
550 if (!(ch->flags & FLAG_SKIPEVENT)) {
551 if (clockevent_state_oneshot(&ch->ced)) {
552 ch->next_match_value = ch->max_match_value;
553 ch->flags |= FLAG_REPROGRAM;
554 }
555
556 ch->ced.event_handler(&ch->ced);
557 }
558 }
559
560 ch->flags &= ~FLAG_SKIPEVENT;
561
562 if (ch->flags & FLAG_REPROGRAM) {
563 ch->flags &= ~FLAG_REPROGRAM;
564 sh_cmt_clock_event_program_verify(ch, 1);
565
566 if (ch->flags & FLAG_CLOCKEVENT)
567 if ((clockevent_state_shutdown(&ch->ced))
568 || (ch->match_value == ch->next_match_value))
569 ch->flags &= ~FLAG_REPROGRAM;
570 }
571
572 ch->flags &= ~FLAG_IRQCONTEXT;
573
574 return IRQ_HANDLED;
575}
576
577static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
578{
579 int ret = 0;
580 unsigned long flags;
581
582 if (flag & FLAG_CLOCKSOURCE)
583 pm_runtime_get_sync(&ch->cmt->pdev->dev);
584
585 raw_spin_lock_irqsave(&ch->lock, flags);
586
587 if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
588 if (flag & FLAG_CLOCKEVENT)
589 pm_runtime_get_sync(&ch->cmt->pdev->dev);
590 ret = sh_cmt_enable(ch);
591 }
592
593 if (ret)
594 goto out;
595 ch->flags |= flag;
596
597 /* setup timeout if no clockevent */
598 if (ch->cmt->num_channels == 1 &&
599 flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
600 __sh_cmt_set_next(ch, ch->max_match_value);
601 out:
602 raw_spin_unlock_irqrestore(&ch->lock, flags);
603
604 return ret;
605}
606
607static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
608{
609 unsigned long flags;
610 unsigned long f;
611
612 raw_spin_lock_irqsave(&ch->lock, flags);
613
614 f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
615 ch->flags &= ~flag;
616
617 if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
618 sh_cmt_disable(ch);
619 if (flag & FLAG_CLOCKEVENT)
620 pm_runtime_put(&ch->cmt->pdev->dev);
621 }
622
623 /* adjust the timeout to maximum if only clocksource left */
624 if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
625 __sh_cmt_set_next(ch, ch->max_match_value);
626
627 raw_spin_unlock_irqrestore(&ch->lock, flags);
628
629 if (flag & FLAG_CLOCKSOURCE)
630 pm_runtime_put(&ch->cmt->pdev->dev);
631}
632
633static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
634{
635 return container_of(cs, struct sh_cmt_channel, cs);
636}
637
638static u64 sh_cmt_clocksource_read(struct clocksource *cs)
639{
640 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
641 u32 has_wrapped;
642
643 if (ch->cmt->num_channels == 1) {
644 unsigned long flags;
645 u64 value;
646 u32 raw;
647
648 raw_spin_lock_irqsave(&ch->lock, flags);
649 value = ch->total_cycles;
650 raw = sh_cmt_get_counter(ch, &has_wrapped);
651
652 if (unlikely(has_wrapped))
653 raw += ch->match_value + 1;
654 raw_spin_unlock_irqrestore(&ch->lock, flags);
655
656 return value + raw;
657 }
658
659 return sh_cmt_get_counter(ch, &has_wrapped);
660}
661
662static int sh_cmt_clocksource_enable(struct clocksource *cs)
663{
664 int ret;
665 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
666
667 WARN_ON(ch->cs_enabled);
668
669 ch->total_cycles = 0;
670
671 ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
672 if (!ret)
673 ch->cs_enabled = true;
674
675 return ret;
676}
677
678static void sh_cmt_clocksource_disable(struct clocksource *cs)
679{
680 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
681
682 WARN_ON(!ch->cs_enabled);
683
684 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
685 ch->cs_enabled = false;
686}
687
688static void sh_cmt_clocksource_suspend(struct clocksource *cs)
689{
690 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
691
692 if (!ch->cs_enabled)
693 return;
694
695 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
696 dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
697}
698
699static void sh_cmt_clocksource_resume(struct clocksource *cs)
700{
701 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
702
703 if (!ch->cs_enabled)
704 return;
705
706 dev_pm_genpd_resume(&ch->cmt->pdev->dev);
707 sh_cmt_start(ch, FLAG_CLOCKSOURCE);
708}
709
710static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
711 const char *name)
712{
713 struct clocksource *cs = &ch->cs;
714
715 cs->name = name;
716 cs->rating = 125;
717 cs->read = sh_cmt_clocksource_read;
718 cs->enable = sh_cmt_clocksource_enable;
719 cs->disable = sh_cmt_clocksource_disable;
720 cs->suspend = sh_cmt_clocksource_suspend;
721 cs->resume = sh_cmt_clocksource_resume;
722 cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
723 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
724
725 dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
726 ch->index);
727
728 clocksource_register_hz(cs, ch->cmt->rate);
729 return 0;
730}
731
732static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
733{
734 return container_of(ced, struct sh_cmt_channel, ced);
735}
736
737static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
738{
739 sh_cmt_start(ch, FLAG_CLOCKEVENT);
740
741 if (periodic)
742 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
743 else
744 sh_cmt_set_next(ch, ch->max_match_value);
745}
746
747static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
748{
749 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
750
751 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
752 return 0;
753}
754
755static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
756 int periodic)
757{
758 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
759
760 /* deal with old setting first */
761 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
762 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
763
764 dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
765 ch->index, periodic ? "periodic" : "oneshot");
766 sh_cmt_clock_event_start(ch, periodic);
767 return 0;
768}
769
770static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
771{
772 return sh_cmt_clock_event_set_state(ced, 0);
773}
774
775static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
776{
777 return sh_cmt_clock_event_set_state(ced, 1);
778}
779
780static int sh_cmt_clock_event_next(unsigned long delta,
781 struct clock_event_device *ced)
782{
783 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
784
785 BUG_ON(!clockevent_state_oneshot(ced));
786 if (likely(ch->flags & FLAG_IRQCONTEXT))
787 ch->next_match_value = delta - 1;
788 else
789 sh_cmt_set_next(ch, delta - 1);
790
791 return 0;
792}
793
794static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
795{
796 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
797
798 dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
799 clk_unprepare(ch->cmt->clk);
800}
801
802static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
803{
804 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
805
806 clk_prepare(ch->cmt->clk);
807 dev_pm_genpd_resume(&ch->cmt->pdev->dev);
808}
809
810static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
811 const char *name)
812{
813 struct clock_event_device *ced = &ch->ced;
814 int irq;
815 int ret;
816
817 irq = platform_get_irq(ch->cmt->pdev, ch->index);
818 if (irq < 0)
819 return irq;
820
821 ret = request_irq(irq, sh_cmt_interrupt,
822 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
823 dev_name(&ch->cmt->pdev->dev), ch);
824 if (ret) {
825 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
826 ch->index, irq);
827 return ret;
828 }
829
830 ced->name = name;
831 ced->features = CLOCK_EVT_FEAT_PERIODIC;
832 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
833 ced->rating = 125;
834 ced->cpumask = cpu_possible_mask;
835 ced->set_next_event = sh_cmt_clock_event_next;
836 ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
837 ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
838 ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
839 ced->suspend = sh_cmt_clock_event_suspend;
840 ced->resume = sh_cmt_clock_event_resume;
841
842 /* TODO: calculate good shift from rate and counter bit width */
843 ced->shift = 32;
844 ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
845 ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
846 ced->max_delta_ticks = ch->max_match_value;
847 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
848 ced->min_delta_ticks = 0x1f;
849
850 dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
851 ch->index);
852 clockevents_register_device(ced);
853
854 return 0;
855}
856
857static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
858 bool clockevent, bool clocksource)
859{
860 int ret;
861
862 if (clockevent) {
863 ch->cmt->has_clockevent = true;
864 ret = sh_cmt_register_clockevent(ch, name);
865 if (ret < 0)
866 return ret;
867 }
868
869 if (clocksource) {
870 ch->cmt->has_clocksource = true;
871 sh_cmt_register_clocksource(ch, name);
872 }
873
874 return 0;
875}
876
877static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
878 unsigned int hwidx, bool clockevent,
879 bool clocksource, struct sh_cmt_device *cmt)
880{
881 u32 value;
882 int ret;
883
884 /* Skip unused channels. */
885 if (!clockevent && !clocksource)
886 return 0;
887
888 ch->cmt = cmt;
889 ch->index = index;
890 ch->hwidx = hwidx;
891 ch->timer_bit = hwidx;
892
893 /*
894 * Compute the address of the channel control register block. For the
895 * timers with a per-channel start/stop register, compute its address
896 * as well.
897 */
898 switch (cmt->info->model) {
899 case SH_CMT_16BIT:
900 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
901 break;
902 case SH_CMT_32BIT:
903 case SH_CMT_48BIT:
904 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
905 break;
906 case SH_CMT0_RCAR_GEN2:
907 case SH_CMT1_RCAR_GEN2:
908 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
909 ch->ioctrl = ch->iostart + 0x10;
910 ch->timer_bit = 0;
911
912 /* Enable the clock supply to the channel */
913 value = ioread32(cmt->mapbase + CMCLKE);
914 value |= BIT(hwidx);
915 iowrite32(value, cmt->mapbase + CMCLKE);
916 break;
917 }
918
919 if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
920 ch->max_match_value = ~0;
921 else
922 ch->max_match_value = (1 << cmt->info->width) - 1;
923
924 ch->match_value = ch->max_match_value;
925 raw_spin_lock_init(&ch->lock);
926
927 ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
928 clockevent, clocksource);
929 if (ret) {
930 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
931 ch->index);
932 return ret;
933 }
934 ch->cs_enabled = false;
935
936 return 0;
937}
938
939static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
940{
941 struct resource *mem;
942
943 mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
944 if (!mem) {
945 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
946 return -ENXIO;
947 }
948
949 cmt->mapbase = ioremap(mem->start, resource_size(mem));
950 if (cmt->mapbase == NULL) {
951 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
952 return -ENXIO;
953 }
954
955 return 0;
956}
957
958static const struct platform_device_id sh_cmt_id_table[] = {
959 { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
960 { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
961 { }
962};
963MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
964
965static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
966 {
967 /* deprecated, preserved for backward compatibility */
968 .compatible = "renesas,cmt-48",
969 .data = &sh_cmt_info[SH_CMT_48BIT]
970 },
971 {
972 /* deprecated, preserved for backward compatibility */
973 .compatible = "renesas,cmt-48-gen2",
974 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
975 },
976 {
977 .compatible = "renesas,r8a7740-cmt1",
978 .data = &sh_cmt_info[SH_CMT_48BIT]
979 },
980 {
981 .compatible = "renesas,sh73a0-cmt1",
982 .data = &sh_cmt_info[SH_CMT_48BIT]
983 },
984 {
985 .compatible = "renesas,rcar-gen2-cmt0",
986 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
987 },
988 {
989 .compatible = "renesas,rcar-gen2-cmt1",
990 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
991 },
992 {
993 .compatible = "renesas,rcar-gen3-cmt0",
994 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
995 },
996 {
997 .compatible = "renesas,rcar-gen3-cmt1",
998 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
999 },
1000 {
1001 .compatible = "renesas,rcar-gen4-cmt0",
1002 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1003 },
1004 {
1005 .compatible = "renesas,rcar-gen4-cmt1",
1006 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1007 },
1008 { }
1009};
1010MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
1011
1012static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
1013{
1014 unsigned int mask, i;
1015 unsigned long rate;
1016 int ret;
1017
1018 cmt->pdev = pdev;
1019 raw_spin_lock_init(&cmt->lock);
1020
1021 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
1022 cmt->info = of_device_get_match_data(&pdev->dev);
1023 cmt->hw_channels = cmt->info->channels_mask;
1024 } else if (pdev->dev.platform_data) {
1025 struct sh_timer_config *cfg = pdev->dev.platform_data;
1026 const struct platform_device_id *id = pdev->id_entry;
1027
1028 cmt->info = (const struct sh_cmt_info *)id->driver_data;
1029 cmt->hw_channels = cfg->channels_mask;
1030 } else {
1031 dev_err(&cmt->pdev->dev, "missing platform data\n");
1032 return -ENXIO;
1033 }
1034
1035 /* Get hold of clock. */
1036 cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1037 if (IS_ERR(cmt->clk)) {
1038 dev_err(&cmt->pdev->dev, "cannot get clock\n");
1039 return PTR_ERR(cmt->clk);
1040 }
1041
1042 ret = clk_prepare(cmt->clk);
1043 if (ret < 0)
1044 goto err_clk_put;
1045
1046 /* Determine clock rate. */
1047 ret = clk_enable(cmt->clk);
1048 if (ret < 0)
1049 goto err_clk_unprepare;
1050
1051 rate = clk_get_rate(cmt->clk);
1052 if (!rate) {
1053 ret = -EINVAL;
1054 goto err_clk_disable;
1055 }
1056
1057 /* We shall wait 2 input clks after register writes */
1058 if (cmt->info->model >= SH_CMT_48BIT)
1059 cmt->reg_delay = DIV_ROUND_UP(2UL * USEC_PER_SEC, rate);
1060 cmt->rate = rate / (cmt->info->width == 16 ? 512 : 8);
1061
1062 /* Map the memory resource(s). */
1063 ret = sh_cmt_map_memory(cmt);
1064 if (ret < 0)
1065 goto err_clk_disable;
1066
1067 /* Allocate and setup the channels. */
1068 cmt->num_channels = hweight8(cmt->hw_channels);
1069 cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1070 GFP_KERNEL);
1071 if (cmt->channels == NULL) {
1072 ret = -ENOMEM;
1073 goto err_unmap;
1074 }
1075
1076 /*
1077 * Use the first channel as a clock event device and the second channel
1078 * as a clock source. If only one channel is available use it for both.
1079 */
1080 for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1081 unsigned int hwidx = ffs(mask) - 1;
1082 bool clocksource = i == 1 || cmt->num_channels == 1;
1083 bool clockevent = i == 0;
1084
1085 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1086 clockevent, clocksource, cmt);
1087 if (ret < 0)
1088 goto err_unmap;
1089
1090 mask &= ~(1 << hwidx);
1091 }
1092
1093 clk_disable(cmt->clk);
1094
1095 platform_set_drvdata(pdev, cmt);
1096
1097 return 0;
1098
1099err_unmap:
1100 kfree(cmt->channels);
1101 iounmap(cmt->mapbase);
1102err_clk_disable:
1103 clk_disable(cmt->clk);
1104err_clk_unprepare:
1105 clk_unprepare(cmt->clk);
1106err_clk_put:
1107 clk_put(cmt->clk);
1108 return ret;
1109}
1110
1111static int sh_cmt_probe(struct platform_device *pdev)
1112{
1113 struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1114 int ret;
1115
1116 if (!is_sh_early_platform_device(pdev)) {
1117 pm_runtime_set_active(&pdev->dev);
1118 pm_runtime_enable(&pdev->dev);
1119 }
1120
1121 if (cmt) {
1122 dev_info(&pdev->dev, "kept as earlytimer\n");
1123 goto out;
1124 }
1125
1126 cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1127 if (cmt == NULL)
1128 return -ENOMEM;
1129
1130 ret = sh_cmt_setup(cmt, pdev);
1131 if (ret) {
1132 kfree(cmt);
1133 pm_runtime_idle(&pdev->dev);
1134 return ret;
1135 }
1136 if (is_sh_early_platform_device(pdev))
1137 return 0;
1138
1139 out:
1140 if (cmt->has_clockevent || cmt->has_clocksource)
1141 pm_runtime_irq_safe(&pdev->dev);
1142 else
1143 pm_runtime_idle(&pdev->dev);
1144
1145 return 0;
1146}
1147
1148static int sh_cmt_remove(struct platform_device *pdev)
1149{
1150 return -EBUSY; /* cannot unregister clockevent and clocksource */
1151}
1152
1153static struct platform_driver sh_cmt_device_driver = {
1154 .probe = sh_cmt_probe,
1155 .remove = sh_cmt_remove,
1156 .driver = {
1157 .name = "sh_cmt",
1158 .of_match_table = of_match_ptr(sh_cmt_of_table),
1159 },
1160 .id_table = sh_cmt_id_table,
1161};
1162
1163static int __init sh_cmt_init(void)
1164{
1165 return platform_driver_register(&sh_cmt_device_driver);
1166}
1167
1168static void __exit sh_cmt_exit(void)
1169{
1170 platform_driver_unregister(&sh_cmt_device_driver);
1171}
1172
1173#ifdef CONFIG_SUPERH
1174sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1175#endif
1176
1177subsys_initcall(sh_cmt_init);
1178module_exit(sh_cmt_exit);
1179
1180MODULE_AUTHOR("Magnus Damm");
1181MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1182MODULE_LICENSE("GPL v2");
1/*
2 * SuperH Timer Support - CMT
3 *
4 * Copyright (C) 2008 Magnus Damm
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/init.h>
21#include <linux/platform_device.h>
22#include <linux/spinlock.h>
23#include <linux/interrupt.h>
24#include <linux/ioport.h>
25#include <linux/io.h>
26#include <linux/clk.h>
27#include <linux/irq.h>
28#include <linux/err.h>
29#include <linux/delay.h>
30#include <linux/clocksource.h>
31#include <linux/clockchips.h>
32#include <linux/sh_timer.h>
33#include <linux/slab.h>
34#include <linux/module.h>
35#include <linux/pm_domain.h>
36#include <linux/pm_runtime.h>
37
38struct sh_cmt_priv {
39 void __iomem *mapbase;
40 void __iomem *mapbase_str;
41 struct clk *clk;
42 unsigned long width; /* 16 or 32 bit version of hardware block */
43 unsigned long overflow_bit;
44 unsigned long clear_bits;
45 struct irqaction irqaction;
46 struct platform_device *pdev;
47
48 unsigned long flags;
49 unsigned long match_value;
50 unsigned long next_match_value;
51 unsigned long max_match_value;
52 unsigned long rate;
53 raw_spinlock_t lock;
54 struct clock_event_device ced;
55 struct clocksource cs;
56 unsigned long total_cycles;
57 bool cs_enabled;
58
59 /* callbacks for CMSTR and CMCSR access */
60 unsigned long (*read_control)(void __iomem *base, unsigned long offs);
61 void (*write_control)(void __iomem *base, unsigned long offs,
62 unsigned long value);
63
64 /* callbacks for CMCNT and CMCOR access */
65 unsigned long (*read_count)(void __iomem *base, unsigned long offs);
66 void (*write_count)(void __iomem *base, unsigned long offs,
67 unsigned long value);
68};
69
70/* Examples of supported CMT timer register layouts and I/O access widths:
71 *
72 * "16-bit counter and 16-bit control" as found on sh7263:
73 * CMSTR 0xfffec000 16-bit
74 * CMCSR 0xfffec002 16-bit
75 * CMCNT 0xfffec004 16-bit
76 * CMCOR 0xfffec006 16-bit
77 *
78 * "32-bit counter and 16-bit control" as found on sh7372, sh73a0, r8a7740:
79 * CMSTR 0xffca0000 16-bit
80 * CMCSR 0xffca0060 16-bit
81 * CMCNT 0xffca0064 32-bit
82 * CMCOR 0xffca0068 32-bit
83 *
84 * "32-bit counter and 32-bit control" as found on r8a73a4 and r8a7790:
85 * CMSTR 0xffca0500 32-bit
86 * CMCSR 0xffca0510 32-bit
87 * CMCNT 0xffca0514 32-bit
88 * CMCOR 0xffca0518 32-bit
89 */
90
91static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
92{
93 return ioread16(base + (offs << 1));
94}
95
96static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
97{
98 return ioread32(base + (offs << 2));
99}
100
101static void sh_cmt_write16(void __iomem *base, unsigned long offs,
102 unsigned long value)
103{
104 iowrite16(value, base + (offs << 1));
105}
106
107static void sh_cmt_write32(void __iomem *base, unsigned long offs,
108 unsigned long value)
109{
110 iowrite32(value, base + (offs << 2));
111}
112
113#define CMCSR 0 /* channel register */
114#define CMCNT 1 /* channel register */
115#define CMCOR 2 /* channel register */
116
117static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_priv *p)
118{
119 return p->read_control(p->mapbase_str, 0);
120}
121
122static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_priv *p)
123{
124 return p->read_control(p->mapbase, CMCSR);
125}
126
127static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_priv *p)
128{
129 return p->read_count(p->mapbase, CMCNT);
130}
131
132static inline void sh_cmt_write_cmstr(struct sh_cmt_priv *p,
133 unsigned long value)
134{
135 p->write_control(p->mapbase_str, 0, value);
136}
137
138static inline void sh_cmt_write_cmcsr(struct sh_cmt_priv *p,
139 unsigned long value)
140{
141 p->write_control(p->mapbase, CMCSR, value);
142}
143
144static inline void sh_cmt_write_cmcnt(struct sh_cmt_priv *p,
145 unsigned long value)
146{
147 p->write_count(p->mapbase, CMCNT, value);
148}
149
150static inline void sh_cmt_write_cmcor(struct sh_cmt_priv *p,
151 unsigned long value)
152{
153 p->write_count(p->mapbase, CMCOR, value);
154}
155
156static unsigned long sh_cmt_get_counter(struct sh_cmt_priv *p,
157 int *has_wrapped)
158{
159 unsigned long v1, v2, v3;
160 int o1, o2;
161
162 o1 = sh_cmt_read_cmcsr(p) & p->overflow_bit;
163
164 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
165 do {
166 o2 = o1;
167 v1 = sh_cmt_read_cmcnt(p);
168 v2 = sh_cmt_read_cmcnt(p);
169 v3 = sh_cmt_read_cmcnt(p);
170 o1 = sh_cmt_read_cmcsr(p) & p->overflow_bit;
171 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
172 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
173
174 *has_wrapped = o1;
175 return v2;
176}
177
178static DEFINE_RAW_SPINLOCK(sh_cmt_lock);
179
180static void sh_cmt_start_stop_ch(struct sh_cmt_priv *p, int start)
181{
182 struct sh_timer_config *cfg = p->pdev->dev.platform_data;
183 unsigned long flags, value;
184
185 /* start stop register shared by multiple timer channels */
186 raw_spin_lock_irqsave(&sh_cmt_lock, flags);
187 value = sh_cmt_read_cmstr(p);
188
189 if (start)
190 value |= 1 << cfg->timer_bit;
191 else
192 value &= ~(1 << cfg->timer_bit);
193
194 sh_cmt_write_cmstr(p, value);
195 raw_spin_unlock_irqrestore(&sh_cmt_lock, flags);
196}
197
198static int sh_cmt_enable(struct sh_cmt_priv *p, unsigned long *rate)
199{
200 int k, ret;
201
202 pm_runtime_get_sync(&p->pdev->dev);
203 dev_pm_syscore_device(&p->pdev->dev, true);
204
205 /* enable clock */
206 ret = clk_enable(p->clk);
207 if (ret) {
208 dev_err(&p->pdev->dev, "cannot enable clock\n");
209 goto err0;
210 }
211
212 /* make sure channel is disabled */
213 sh_cmt_start_stop_ch(p, 0);
214
215 /* configure channel, periodic mode and maximum timeout */
216 if (p->width == 16) {
217 *rate = clk_get_rate(p->clk) / 512;
218 sh_cmt_write_cmcsr(p, 0x43);
219 } else {
220 *rate = clk_get_rate(p->clk) / 8;
221 sh_cmt_write_cmcsr(p, 0x01a4);
222 }
223
224 sh_cmt_write_cmcor(p, 0xffffffff);
225 sh_cmt_write_cmcnt(p, 0);
226
227 /*
228 * According to the sh73a0 user's manual, as CMCNT can be operated
229 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
230 * modifying CMCNT register; two RCLK cycles are necessary before
231 * this register is either read or any modification of the value
232 * it holds is reflected in the LSI's actual operation.
233 *
234 * While at it, we're supposed to clear out the CMCNT as of this
235 * moment, so make sure it's processed properly here. This will
236 * take RCLKx2 at maximum.
237 */
238 for (k = 0; k < 100; k++) {
239 if (!sh_cmt_read_cmcnt(p))
240 break;
241 udelay(1);
242 }
243
244 if (sh_cmt_read_cmcnt(p)) {
245 dev_err(&p->pdev->dev, "cannot clear CMCNT\n");
246 ret = -ETIMEDOUT;
247 goto err1;
248 }
249
250 /* enable channel */
251 sh_cmt_start_stop_ch(p, 1);
252 return 0;
253 err1:
254 /* stop clock */
255 clk_disable(p->clk);
256
257 err0:
258 return ret;
259}
260
261static void sh_cmt_disable(struct sh_cmt_priv *p)
262{
263 /* disable channel */
264 sh_cmt_start_stop_ch(p, 0);
265
266 /* disable interrupts in CMT block */
267 sh_cmt_write_cmcsr(p, 0);
268
269 /* stop clock */
270 clk_disable(p->clk);
271
272 dev_pm_syscore_device(&p->pdev->dev, false);
273 pm_runtime_put(&p->pdev->dev);
274}
275
276/* private flags */
277#define FLAG_CLOCKEVENT (1 << 0)
278#define FLAG_CLOCKSOURCE (1 << 1)
279#define FLAG_REPROGRAM (1 << 2)
280#define FLAG_SKIPEVENT (1 << 3)
281#define FLAG_IRQCONTEXT (1 << 4)
282
283static void sh_cmt_clock_event_program_verify(struct sh_cmt_priv *p,
284 int absolute)
285{
286 unsigned long new_match;
287 unsigned long value = p->next_match_value;
288 unsigned long delay = 0;
289 unsigned long now = 0;
290 int has_wrapped;
291
292 now = sh_cmt_get_counter(p, &has_wrapped);
293 p->flags |= FLAG_REPROGRAM; /* force reprogram */
294
295 if (has_wrapped) {
296 /* we're competing with the interrupt handler.
297 * -> let the interrupt handler reprogram the timer.
298 * -> interrupt number two handles the event.
299 */
300 p->flags |= FLAG_SKIPEVENT;
301 return;
302 }
303
304 if (absolute)
305 now = 0;
306
307 do {
308 /* reprogram the timer hardware,
309 * but don't save the new match value yet.
310 */
311 new_match = now + value + delay;
312 if (new_match > p->max_match_value)
313 new_match = p->max_match_value;
314
315 sh_cmt_write_cmcor(p, new_match);
316
317 now = sh_cmt_get_counter(p, &has_wrapped);
318 if (has_wrapped && (new_match > p->match_value)) {
319 /* we are changing to a greater match value,
320 * so this wrap must be caused by the counter
321 * matching the old value.
322 * -> first interrupt reprograms the timer.
323 * -> interrupt number two handles the event.
324 */
325 p->flags |= FLAG_SKIPEVENT;
326 break;
327 }
328
329 if (has_wrapped) {
330 /* we are changing to a smaller match value,
331 * so the wrap must be caused by the counter
332 * matching the new value.
333 * -> save programmed match value.
334 * -> let isr handle the event.
335 */
336 p->match_value = new_match;
337 break;
338 }
339
340 /* be safe: verify hardware settings */
341 if (now < new_match) {
342 /* timer value is below match value, all good.
343 * this makes sure we won't miss any match events.
344 * -> save programmed match value.
345 * -> let isr handle the event.
346 */
347 p->match_value = new_match;
348 break;
349 }
350
351 /* the counter has reached a value greater
352 * than our new match value. and since the
353 * has_wrapped flag isn't set we must have
354 * programmed a too close event.
355 * -> increase delay and retry.
356 */
357 if (delay)
358 delay <<= 1;
359 else
360 delay = 1;
361
362 if (!delay)
363 dev_warn(&p->pdev->dev, "too long delay\n");
364
365 } while (delay);
366}
367
368static void __sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
369{
370 if (delta > p->max_match_value)
371 dev_warn(&p->pdev->dev, "delta out of range\n");
372
373 p->next_match_value = delta;
374 sh_cmt_clock_event_program_verify(p, 0);
375}
376
377static void sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
378{
379 unsigned long flags;
380
381 raw_spin_lock_irqsave(&p->lock, flags);
382 __sh_cmt_set_next(p, delta);
383 raw_spin_unlock_irqrestore(&p->lock, flags);
384}
385
386static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
387{
388 struct sh_cmt_priv *p = dev_id;
389
390 /* clear flags */
391 sh_cmt_write_cmcsr(p, sh_cmt_read_cmcsr(p) & p->clear_bits);
392
393 /* update clock source counter to begin with if enabled
394 * the wrap flag should be cleared by the timer specific
395 * isr before we end up here.
396 */
397 if (p->flags & FLAG_CLOCKSOURCE)
398 p->total_cycles += p->match_value + 1;
399
400 if (!(p->flags & FLAG_REPROGRAM))
401 p->next_match_value = p->max_match_value;
402
403 p->flags |= FLAG_IRQCONTEXT;
404
405 if (p->flags & FLAG_CLOCKEVENT) {
406 if (!(p->flags & FLAG_SKIPEVENT)) {
407 if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT) {
408 p->next_match_value = p->max_match_value;
409 p->flags |= FLAG_REPROGRAM;
410 }
411
412 p->ced.event_handler(&p->ced);
413 }
414 }
415
416 p->flags &= ~FLAG_SKIPEVENT;
417
418 if (p->flags & FLAG_REPROGRAM) {
419 p->flags &= ~FLAG_REPROGRAM;
420 sh_cmt_clock_event_program_verify(p, 1);
421
422 if (p->flags & FLAG_CLOCKEVENT)
423 if ((p->ced.mode == CLOCK_EVT_MODE_SHUTDOWN)
424 || (p->match_value == p->next_match_value))
425 p->flags &= ~FLAG_REPROGRAM;
426 }
427
428 p->flags &= ~FLAG_IRQCONTEXT;
429
430 return IRQ_HANDLED;
431}
432
433static int sh_cmt_start(struct sh_cmt_priv *p, unsigned long flag)
434{
435 int ret = 0;
436 unsigned long flags;
437
438 raw_spin_lock_irqsave(&p->lock, flags);
439
440 if (!(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
441 ret = sh_cmt_enable(p, &p->rate);
442
443 if (ret)
444 goto out;
445 p->flags |= flag;
446
447 /* setup timeout if no clockevent */
448 if ((flag == FLAG_CLOCKSOURCE) && (!(p->flags & FLAG_CLOCKEVENT)))
449 __sh_cmt_set_next(p, p->max_match_value);
450 out:
451 raw_spin_unlock_irqrestore(&p->lock, flags);
452
453 return ret;
454}
455
456static void sh_cmt_stop(struct sh_cmt_priv *p, unsigned long flag)
457{
458 unsigned long flags;
459 unsigned long f;
460
461 raw_spin_lock_irqsave(&p->lock, flags);
462
463 f = p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
464 p->flags &= ~flag;
465
466 if (f && !(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
467 sh_cmt_disable(p);
468
469 /* adjust the timeout to maximum if only clocksource left */
470 if ((flag == FLAG_CLOCKEVENT) && (p->flags & FLAG_CLOCKSOURCE))
471 __sh_cmt_set_next(p, p->max_match_value);
472
473 raw_spin_unlock_irqrestore(&p->lock, flags);
474}
475
476static struct sh_cmt_priv *cs_to_sh_cmt(struct clocksource *cs)
477{
478 return container_of(cs, struct sh_cmt_priv, cs);
479}
480
481static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
482{
483 struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
484 unsigned long flags, raw;
485 unsigned long value;
486 int has_wrapped;
487
488 raw_spin_lock_irqsave(&p->lock, flags);
489 value = p->total_cycles;
490 raw = sh_cmt_get_counter(p, &has_wrapped);
491
492 if (unlikely(has_wrapped))
493 raw += p->match_value + 1;
494 raw_spin_unlock_irqrestore(&p->lock, flags);
495
496 return value + raw;
497}
498
499static int sh_cmt_clocksource_enable(struct clocksource *cs)
500{
501 int ret;
502 struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
503
504 WARN_ON(p->cs_enabled);
505
506 p->total_cycles = 0;
507
508 ret = sh_cmt_start(p, FLAG_CLOCKSOURCE);
509 if (!ret) {
510 __clocksource_updatefreq_hz(cs, p->rate);
511 p->cs_enabled = true;
512 }
513 return ret;
514}
515
516static void sh_cmt_clocksource_disable(struct clocksource *cs)
517{
518 struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
519
520 WARN_ON(!p->cs_enabled);
521
522 sh_cmt_stop(p, FLAG_CLOCKSOURCE);
523 p->cs_enabled = false;
524}
525
526static void sh_cmt_clocksource_suspend(struct clocksource *cs)
527{
528 struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
529
530 sh_cmt_stop(p, FLAG_CLOCKSOURCE);
531 pm_genpd_syscore_poweroff(&p->pdev->dev);
532}
533
534static void sh_cmt_clocksource_resume(struct clocksource *cs)
535{
536 struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
537
538 pm_genpd_syscore_poweron(&p->pdev->dev);
539 sh_cmt_start(p, FLAG_CLOCKSOURCE);
540}
541
542static int sh_cmt_register_clocksource(struct sh_cmt_priv *p,
543 char *name, unsigned long rating)
544{
545 struct clocksource *cs = &p->cs;
546
547 cs->name = name;
548 cs->rating = rating;
549 cs->read = sh_cmt_clocksource_read;
550 cs->enable = sh_cmt_clocksource_enable;
551 cs->disable = sh_cmt_clocksource_disable;
552 cs->suspend = sh_cmt_clocksource_suspend;
553 cs->resume = sh_cmt_clocksource_resume;
554 cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
555 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
556
557 dev_info(&p->pdev->dev, "used as clock source\n");
558
559 /* Register with dummy 1 Hz value, gets updated in ->enable() */
560 clocksource_register_hz(cs, 1);
561 return 0;
562}
563
564static struct sh_cmt_priv *ced_to_sh_cmt(struct clock_event_device *ced)
565{
566 return container_of(ced, struct sh_cmt_priv, ced);
567}
568
569static void sh_cmt_clock_event_start(struct sh_cmt_priv *p, int periodic)
570{
571 struct clock_event_device *ced = &p->ced;
572
573 sh_cmt_start(p, FLAG_CLOCKEVENT);
574
575 /* TODO: calculate good shift from rate and counter bit width */
576
577 ced->shift = 32;
578 ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift);
579 ced->max_delta_ns = clockevent_delta2ns(p->max_match_value, ced);
580 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
581
582 if (periodic)
583 sh_cmt_set_next(p, ((p->rate + HZ/2) / HZ) - 1);
584 else
585 sh_cmt_set_next(p, p->max_match_value);
586}
587
588static void sh_cmt_clock_event_mode(enum clock_event_mode mode,
589 struct clock_event_device *ced)
590{
591 struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
592
593 /* deal with old setting first */
594 switch (ced->mode) {
595 case CLOCK_EVT_MODE_PERIODIC:
596 case CLOCK_EVT_MODE_ONESHOT:
597 sh_cmt_stop(p, FLAG_CLOCKEVENT);
598 break;
599 default:
600 break;
601 }
602
603 switch (mode) {
604 case CLOCK_EVT_MODE_PERIODIC:
605 dev_info(&p->pdev->dev, "used for periodic clock events\n");
606 sh_cmt_clock_event_start(p, 1);
607 break;
608 case CLOCK_EVT_MODE_ONESHOT:
609 dev_info(&p->pdev->dev, "used for oneshot clock events\n");
610 sh_cmt_clock_event_start(p, 0);
611 break;
612 case CLOCK_EVT_MODE_SHUTDOWN:
613 case CLOCK_EVT_MODE_UNUSED:
614 sh_cmt_stop(p, FLAG_CLOCKEVENT);
615 break;
616 default:
617 break;
618 }
619}
620
621static int sh_cmt_clock_event_next(unsigned long delta,
622 struct clock_event_device *ced)
623{
624 struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
625
626 BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
627 if (likely(p->flags & FLAG_IRQCONTEXT))
628 p->next_match_value = delta - 1;
629 else
630 sh_cmt_set_next(p, delta - 1);
631
632 return 0;
633}
634
635static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
636{
637 struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
638
639 pm_genpd_syscore_poweroff(&p->pdev->dev);
640 clk_unprepare(p->clk);
641}
642
643static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
644{
645 struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
646
647 clk_prepare(p->clk);
648 pm_genpd_syscore_poweron(&p->pdev->dev);
649}
650
651static void sh_cmt_register_clockevent(struct sh_cmt_priv *p,
652 char *name, unsigned long rating)
653{
654 struct clock_event_device *ced = &p->ced;
655
656 memset(ced, 0, sizeof(*ced));
657
658 ced->name = name;
659 ced->features = CLOCK_EVT_FEAT_PERIODIC;
660 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
661 ced->rating = rating;
662 ced->cpumask = cpumask_of(0);
663 ced->set_next_event = sh_cmt_clock_event_next;
664 ced->set_mode = sh_cmt_clock_event_mode;
665 ced->suspend = sh_cmt_clock_event_suspend;
666 ced->resume = sh_cmt_clock_event_resume;
667
668 dev_info(&p->pdev->dev, "used for clock events\n");
669 clockevents_register_device(ced);
670}
671
672static int sh_cmt_register(struct sh_cmt_priv *p, char *name,
673 unsigned long clockevent_rating,
674 unsigned long clocksource_rating)
675{
676 if (clockevent_rating)
677 sh_cmt_register_clockevent(p, name, clockevent_rating);
678
679 if (clocksource_rating)
680 sh_cmt_register_clocksource(p, name, clocksource_rating);
681
682 return 0;
683}
684
685static int sh_cmt_setup(struct sh_cmt_priv *p, struct platform_device *pdev)
686{
687 struct sh_timer_config *cfg = pdev->dev.platform_data;
688 struct resource *res, *res2;
689 int irq, ret;
690 ret = -ENXIO;
691
692 memset(p, 0, sizeof(*p));
693 p->pdev = pdev;
694
695 if (!cfg) {
696 dev_err(&p->pdev->dev, "missing platform data\n");
697 goto err0;
698 }
699
700 res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0);
701 if (!res) {
702 dev_err(&p->pdev->dev, "failed to get I/O memory\n");
703 goto err0;
704 }
705
706 /* optional resource for the shared timer start/stop register */
707 res2 = platform_get_resource(p->pdev, IORESOURCE_MEM, 1);
708
709 irq = platform_get_irq(p->pdev, 0);
710 if (irq < 0) {
711 dev_err(&p->pdev->dev, "failed to get irq\n");
712 goto err0;
713 }
714
715 /* map memory, let mapbase point to our channel */
716 p->mapbase = ioremap_nocache(res->start, resource_size(res));
717 if (p->mapbase == NULL) {
718 dev_err(&p->pdev->dev, "failed to remap I/O memory\n");
719 goto err0;
720 }
721
722 /* map second resource for CMSTR */
723 p->mapbase_str = ioremap_nocache(res2 ? res2->start :
724 res->start - cfg->channel_offset,
725 res2 ? resource_size(res2) : 2);
726 if (p->mapbase_str == NULL) {
727 dev_err(&p->pdev->dev, "failed to remap I/O second memory\n");
728 goto err1;
729 }
730
731 /* request irq using setup_irq() (too early for request_irq()) */
732 p->irqaction.name = dev_name(&p->pdev->dev);
733 p->irqaction.handler = sh_cmt_interrupt;
734 p->irqaction.dev_id = p;
735 p->irqaction.flags = IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING;
736
737 /* get hold of clock */
738 p->clk = clk_get(&p->pdev->dev, "cmt_fck");
739 if (IS_ERR(p->clk)) {
740 dev_err(&p->pdev->dev, "cannot get clock\n");
741 ret = PTR_ERR(p->clk);
742 goto err2;
743 }
744
745 ret = clk_prepare(p->clk);
746 if (ret < 0)
747 goto err3;
748
749 if (res2 && (resource_size(res2) == 4)) {
750 /* assume both CMSTR and CMCSR to be 32-bit */
751 p->read_control = sh_cmt_read32;
752 p->write_control = sh_cmt_write32;
753 } else {
754 p->read_control = sh_cmt_read16;
755 p->write_control = sh_cmt_write16;
756 }
757
758 if (resource_size(res) == 6) {
759 p->width = 16;
760 p->read_count = sh_cmt_read16;
761 p->write_count = sh_cmt_write16;
762 p->overflow_bit = 0x80;
763 p->clear_bits = ~0x80;
764 } else {
765 p->width = 32;
766 p->read_count = sh_cmt_read32;
767 p->write_count = sh_cmt_write32;
768 p->overflow_bit = 0x8000;
769 p->clear_bits = ~0xc000;
770 }
771
772 if (p->width == (sizeof(p->max_match_value) * 8))
773 p->max_match_value = ~0;
774 else
775 p->max_match_value = (1 << p->width) - 1;
776
777 p->match_value = p->max_match_value;
778 raw_spin_lock_init(&p->lock);
779
780 ret = sh_cmt_register(p, (char *)dev_name(&p->pdev->dev),
781 cfg->clockevent_rating,
782 cfg->clocksource_rating);
783 if (ret) {
784 dev_err(&p->pdev->dev, "registration failed\n");
785 goto err4;
786 }
787 p->cs_enabled = false;
788
789 ret = setup_irq(irq, &p->irqaction);
790 if (ret) {
791 dev_err(&p->pdev->dev, "failed to request irq %d\n", irq);
792 goto err4;
793 }
794
795 platform_set_drvdata(pdev, p);
796
797 return 0;
798err4:
799 clk_unprepare(p->clk);
800err3:
801 clk_put(p->clk);
802err2:
803 iounmap(p->mapbase_str);
804err1:
805 iounmap(p->mapbase);
806err0:
807 return ret;
808}
809
810static int sh_cmt_probe(struct platform_device *pdev)
811{
812 struct sh_cmt_priv *p = platform_get_drvdata(pdev);
813 struct sh_timer_config *cfg = pdev->dev.platform_data;
814 int ret;
815
816 if (!is_early_platform_device(pdev)) {
817 pm_runtime_set_active(&pdev->dev);
818 pm_runtime_enable(&pdev->dev);
819 }
820
821 if (p) {
822 dev_info(&pdev->dev, "kept as earlytimer\n");
823 goto out;
824 }
825
826 p = kmalloc(sizeof(*p), GFP_KERNEL);
827 if (p == NULL) {
828 dev_err(&pdev->dev, "failed to allocate driver data\n");
829 return -ENOMEM;
830 }
831
832 ret = sh_cmt_setup(p, pdev);
833 if (ret) {
834 kfree(p);
835 pm_runtime_idle(&pdev->dev);
836 return ret;
837 }
838 if (is_early_platform_device(pdev))
839 return 0;
840
841 out:
842 if (cfg->clockevent_rating || cfg->clocksource_rating)
843 pm_runtime_irq_safe(&pdev->dev);
844 else
845 pm_runtime_idle(&pdev->dev);
846
847 return 0;
848}
849
850static int sh_cmt_remove(struct platform_device *pdev)
851{
852 return -EBUSY; /* cannot unregister clockevent and clocksource */
853}
854
855static struct platform_driver sh_cmt_device_driver = {
856 .probe = sh_cmt_probe,
857 .remove = sh_cmt_remove,
858 .driver = {
859 .name = "sh_cmt",
860 }
861};
862
863static int __init sh_cmt_init(void)
864{
865 return platform_driver_register(&sh_cmt_device_driver);
866}
867
868static void __exit sh_cmt_exit(void)
869{
870 platform_driver_unregister(&sh_cmt_device_driver);
871}
872
873early_platform_init("earlytimer", &sh_cmt_device_driver);
874subsys_initcall(sh_cmt_init);
875module_exit(sh_cmt_exit);
876
877MODULE_AUTHOR("Magnus Damm");
878MODULE_DESCRIPTION("SuperH CMT Timer Driver");
879MODULE_LICENSE("GPL v2");