Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH Timer Support - CMT
   4 *
   5 *  Copyright (C) 2008 Magnus Damm
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/clk.h>
   9#include <linux/clockchips.h>
  10#include <linux/clocksource.h>
  11#include <linux/delay.h>
  12#include <linux/err.h>
  13#include <linux/init.h>
 
 
  14#include <linux/interrupt.h>
  15#include <linux/io.h>
  16#include <linux/iopoll.h>
  17#include <linux/ioport.h>
 
 
  18#include <linux/irq.h>
 
 
 
 
 
 
  19#include <linux/module.h>
  20#include <linux/of.h>
  21#include <linux/of_device.h>
  22#include <linux/platform_device.h>
  23#include <linux/pm_domain.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/sh_timer.h>
  26#include <linux/slab.h>
  27#include <linux/spinlock.h>
  28
  29#ifdef CONFIG_SUPERH
  30#include <asm/platform_early.h>
  31#endif
  32
  33struct sh_cmt_device;
  34
  35/*
  36 * The CMT comes in 5 different identified flavours, depending not only on the
  37 * SoC but also on the particular instance. The following table lists the main
  38 * characteristics of those flavours.
  39 *
  40 *			16B	32B	32B-F	48B	R-Car Gen2
  41 * -----------------------------------------------------------------------------
  42 * Channels		2	1/4	1	6	2/8
  43 * Control Width	16	16	16	16	32
  44 * Counter Width	16	32	32	32/48	32/48
  45 * Shared Start/Stop	Y	Y	Y	Y	N
  46 *
  47 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
  48 * located in the channel registers block. All other versions have a shared
  49 * start/stop register located in the global space.
  50 *
  51 * Channels are indexed from 0 to N-1 in the documentation. The channel index
  52 * infers the start/stop bit position in the control register and the channel
  53 * registers block address. Some CMT instances have a subset of channels
  54 * available, in which case the index in the documentation doesn't match the
  55 * "real" index as implemented in hardware. This is for instance the case with
  56 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
  57 * in the documentation but using start/stop bit 5 and having its registers
  58 * block at 0x60.
  59 *
  60 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
  61 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
  62 */
  63
  64enum sh_cmt_model {
  65	SH_CMT_16BIT,
  66	SH_CMT_32BIT,
  67	SH_CMT_48BIT,
  68	SH_CMT0_RCAR_GEN2,
  69	SH_CMT1_RCAR_GEN2,
  70};
  71
  72struct sh_cmt_info {
  73	enum sh_cmt_model model;
  74
  75	unsigned int channels_mask;
  76
 
 
 
 
  77	unsigned long width; /* 16 or 32 bit version of hardware block */
  78	u32 overflow_bit;
  79	u32 clear_bits;
  80
  81	/* callbacks for CMSTR and CMCSR access */
  82	u32 (*read_control)(void __iomem *base, unsigned long offs);
  83	void (*write_control)(void __iomem *base, unsigned long offs,
  84			      u32 value);
  85
  86	/* callbacks for CMCNT and CMCOR access */
  87	u32 (*read_count)(void __iomem *base, unsigned long offs);
  88	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
  89};
  90
  91struct sh_cmt_channel {
  92	struct sh_cmt_device *cmt;
  93
  94	unsigned int index;	/* Index in the documentation */
  95	unsigned int hwidx;	/* Real hardware index */
  96
  97	void __iomem *iostart;
  98	void __iomem *ioctrl;
  99
 100	unsigned int timer_bit;
 101	unsigned long flags;
 102	u32 match_value;
 103	u32 next_match_value;
 104	u32 max_match_value;
 
 105	raw_spinlock_t lock;
 106	struct clock_event_device ced;
 107	struct clocksource cs;
 108	u64 total_cycles;
 109	bool cs_enabled;
 110};
 111
 112struct sh_cmt_device {
 113	struct platform_device *pdev;
 114
 115	const struct sh_cmt_info *info;
 116
 117	void __iomem *mapbase;
 118	struct clk *clk;
 119	unsigned long rate;
 120	unsigned int reg_delay;
 121
 122	raw_spinlock_t lock; /* Protect the shared start/stop register */
 123
 124	struct sh_cmt_channel *channels;
 125	unsigned int num_channels;
 126	unsigned int hw_channels;
 127
 128	bool has_clockevent;
 129	bool has_clocksource;
 
 
 130};
 131
 132#define SH_CMT16_CMCSR_CMF		(1 << 7)
 133#define SH_CMT16_CMCSR_CMIE		(1 << 6)
 134#define SH_CMT16_CMCSR_CKS8		(0 << 0)
 135#define SH_CMT16_CMCSR_CKS32		(1 << 0)
 136#define SH_CMT16_CMCSR_CKS128		(2 << 0)
 137#define SH_CMT16_CMCSR_CKS512		(3 << 0)
 138#define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
 139
 140#define SH_CMT32_CMCSR_CMF		(1 << 15)
 141#define SH_CMT32_CMCSR_OVF		(1 << 14)
 142#define SH_CMT32_CMCSR_WRFLG		(1 << 13)
 143#define SH_CMT32_CMCSR_STTF		(1 << 12)
 144#define SH_CMT32_CMCSR_STPF		(1 << 11)
 145#define SH_CMT32_CMCSR_SSIE		(1 << 10)
 146#define SH_CMT32_CMCSR_CMS		(1 << 9)
 147#define SH_CMT32_CMCSR_CMM		(1 << 8)
 148#define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
 149#define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
 150#define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
 151#define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
 152#define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
 153#define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
 154#define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
 155#define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
 156#define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
 157#define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
 158#define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
 159
 160static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
 161{
 162	return ioread16(base + (offs << 1));
 163}
 164
 165static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
 166{
 167	return ioread32(base + (offs << 2));
 168}
 169
 170static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
 
 171{
 172	iowrite16(value, base + (offs << 1));
 173}
 174
 175static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
 
 176{
 177	iowrite32(value, base + (offs << 2));
 178}
 179
 180static const struct sh_cmt_info sh_cmt_info[] = {
 181	[SH_CMT_16BIT] = {
 182		.model = SH_CMT_16BIT,
 183		.width = 16,
 184		.overflow_bit = SH_CMT16_CMCSR_CMF,
 185		.clear_bits = ~SH_CMT16_CMCSR_CMF,
 186		.read_control = sh_cmt_read16,
 187		.write_control = sh_cmt_write16,
 188		.read_count = sh_cmt_read16,
 189		.write_count = sh_cmt_write16,
 190	},
 191	[SH_CMT_32BIT] = {
 192		.model = SH_CMT_32BIT,
 193		.width = 32,
 194		.overflow_bit = SH_CMT32_CMCSR_CMF,
 195		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 196		.read_control = sh_cmt_read16,
 197		.write_control = sh_cmt_write16,
 198		.read_count = sh_cmt_read32,
 199		.write_count = sh_cmt_write32,
 200	},
 201	[SH_CMT_48BIT] = {
 202		.model = SH_CMT_48BIT,
 203		.channels_mask = 0x3f,
 204		.width = 32,
 205		.overflow_bit = SH_CMT32_CMCSR_CMF,
 206		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 207		.read_control = sh_cmt_read32,
 208		.write_control = sh_cmt_write32,
 209		.read_count = sh_cmt_read32,
 210		.write_count = sh_cmt_write32,
 211	},
 212	[SH_CMT0_RCAR_GEN2] = {
 213		.model = SH_CMT0_RCAR_GEN2,
 214		.channels_mask = 0x60,
 215		.width = 32,
 216		.overflow_bit = SH_CMT32_CMCSR_CMF,
 217		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 218		.read_control = sh_cmt_read32,
 219		.write_control = sh_cmt_write32,
 220		.read_count = sh_cmt_read32,
 221		.write_count = sh_cmt_write32,
 222	},
 223	[SH_CMT1_RCAR_GEN2] = {
 224		.model = SH_CMT1_RCAR_GEN2,
 225		.channels_mask = 0xff,
 226		.width = 32,
 227		.overflow_bit = SH_CMT32_CMCSR_CMF,
 228		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 229		.read_control = sh_cmt_read32,
 230		.write_control = sh_cmt_write32,
 231		.read_count = sh_cmt_read32,
 232		.write_count = sh_cmt_write32,
 233	},
 234};
 235
 236#define CMCSR 0 /* channel register */
 237#define CMCNT 1 /* channel register */
 238#define CMCOR 2 /* channel register */
 239
 240#define CMCLKE	0x1000	/* CLK Enable Register (R-Car Gen2) */
 241
 242static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
 243{
 244	if (ch->iostart)
 245		return ch->cmt->info->read_control(ch->iostart, 0);
 246	else
 247		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
 248}
 249
 250static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
 251{
 252	u32 old_value = sh_cmt_read_cmstr(ch);
 253
 254	if (value != old_value) {
 255		if (ch->iostart) {
 256			ch->cmt->info->write_control(ch->iostart, 0, value);
 257			udelay(ch->cmt->reg_delay);
 258		} else {
 259			ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
 260			udelay(ch->cmt->reg_delay);
 261		}
 262	}
 263}
 264
 265static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
 266{
 267	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
 268}
 269
 270static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
 
 271{
 272	u32 old_value = sh_cmt_read_cmcsr(ch);
 273
 274	if (value != old_value) {
 275		ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
 276		udelay(ch->cmt->reg_delay);
 277	}
 278}
 279
 280static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
 
 281{
 282	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
 283}
 284
 285static inline int sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
 
 286{
 287	/* Tests showed that we need to wait 3 clocks here */
 288	unsigned int cmcnt_delay = DIV_ROUND_UP(3 * ch->cmt->reg_delay, 2);
 289	u32 reg;
 290
 291	if (ch->cmt->info->model > SH_CMT_16BIT) {
 292		int ret = read_poll_timeout_atomic(sh_cmt_read_cmcsr, reg,
 293						   !(reg & SH_CMT32_CMCSR_WRFLG),
 294						   1, cmcnt_delay, false, ch);
 295		if (ret < 0)
 296			return ret;
 297	}
 298
 299	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
 300	udelay(cmcnt_delay);
 301	return 0;
 302}
 303
 304static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
 
 305{
 306	u32 old_value = ch->cmt->info->read_count(ch->ioctrl, CMCOR);
 307
 308	if (value != old_value) {
 309		ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
 310		udelay(ch->cmt->reg_delay);
 311	}
 312}
 313
 314static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
 
 315{
 316	u32 v1, v2, v3;
 317	u32 o1, o2;
 318
 319	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 320
 321	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
 322	do {
 323		o2 = o1;
 324		v1 = sh_cmt_read_cmcnt(ch);
 325		v2 = sh_cmt_read_cmcnt(ch);
 326		v3 = sh_cmt_read_cmcnt(ch);
 327		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 328	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
 329			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
 330
 331	*has_wrapped = o1;
 332	return v2;
 333}
 334
 335static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
 
 
 336{
 337	unsigned long flags;
 338	u32 value;
 339
 340	/* start stop register shared by multiple timer channels */
 341	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
 342	value = sh_cmt_read_cmstr(ch);
 343
 344	if (start)
 345		value |= 1 << ch->timer_bit;
 346	else
 347		value &= ~(1 << ch->timer_bit);
 348
 349	sh_cmt_write_cmstr(ch, value);
 350	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
 351}
 352
 353static int sh_cmt_enable(struct sh_cmt_channel *ch)
 354{
 355	int ret;
 356
 357	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
 
 358
 359	/* enable clock */
 360	ret = clk_enable(ch->cmt->clk);
 361	if (ret) {
 362		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
 363			ch->index);
 364		goto err0;
 365	}
 366
 367	/* make sure channel is disabled */
 368	sh_cmt_start_stop_ch(ch, 0);
 369
 370	/* configure channel, periodic mode and maximum timeout */
 371	if (ch->cmt->info->width == 16) {
 372		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
 373				   SH_CMT16_CMCSR_CKS512);
 374	} else {
 375		u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
 376			      SH_CMT32_CMCSR_CMTOUT_IE : 0;
 377		sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
 378				   SH_CMT32_CMCSR_CMR_IRQ |
 379				   SH_CMT32_CMCSR_CKS_RCLK8);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 380	}
 381
 382	sh_cmt_write_cmcor(ch, 0xffffffff);
 383	ret = sh_cmt_write_cmcnt(ch, 0);
 384
 385	if (ret || sh_cmt_read_cmcnt(ch)) {
 386		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
 387			ch->index);
 388		ret = -ETIMEDOUT;
 389		goto err1;
 390	}
 391
 392	/* enable channel */
 393	sh_cmt_start_stop_ch(ch, 1);
 394	return 0;
 395 err1:
 396	/* stop clock */
 397	clk_disable(ch->cmt->clk);
 398
 399 err0:
 400	return ret;
 401}
 402
 403static void sh_cmt_disable(struct sh_cmt_channel *ch)
 404{
 405	/* disable channel */
 406	sh_cmt_start_stop_ch(ch, 0);
 407
 408	/* disable interrupts in CMT block */
 409	sh_cmt_write_cmcsr(ch, 0);
 410
 411	/* stop clock */
 412	clk_disable(ch->cmt->clk);
 413
 414	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
 
 415}
 416
 417/* private flags */
 418#define FLAG_CLOCKEVENT (1 << 0)
 419#define FLAG_CLOCKSOURCE (1 << 1)
 420#define FLAG_REPROGRAM (1 << 2)
 421#define FLAG_SKIPEVENT (1 << 3)
 422#define FLAG_IRQCONTEXT (1 << 4)
 423
 424static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
 425					      int absolute)
 426{
 427	u32 value = ch->next_match_value;
 428	u32 new_match;
 429	u32 delay = 0;
 430	u32 now = 0;
 431	u32 has_wrapped;
 432
 433	now = sh_cmt_get_counter(ch, &has_wrapped);
 434	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
 435
 436	if (has_wrapped) {
 437		/* we're competing with the interrupt handler.
 438		 *  -> let the interrupt handler reprogram the timer.
 439		 *  -> interrupt number two handles the event.
 440		 */
 441		ch->flags |= FLAG_SKIPEVENT;
 442		return;
 443	}
 444
 445	if (absolute)
 446		now = 0;
 447
 448	do {
 449		/* reprogram the timer hardware,
 450		 * but don't save the new match value yet.
 451		 */
 452		new_match = now + value + delay;
 453		if (new_match > ch->max_match_value)
 454			new_match = ch->max_match_value;
 455
 456		sh_cmt_write_cmcor(ch, new_match);
 457
 458		now = sh_cmt_get_counter(ch, &has_wrapped);
 459		if (has_wrapped && (new_match > ch->match_value)) {
 460			/* we are changing to a greater match value,
 461			 * so this wrap must be caused by the counter
 462			 * matching the old value.
 463			 * -> first interrupt reprograms the timer.
 464			 * -> interrupt number two handles the event.
 465			 */
 466			ch->flags |= FLAG_SKIPEVENT;
 467			break;
 468		}
 469
 470		if (has_wrapped) {
 471			/* we are changing to a smaller match value,
 472			 * so the wrap must be caused by the counter
 473			 * matching the new value.
 474			 * -> save programmed match value.
 475			 * -> let isr handle the event.
 476			 */
 477			ch->match_value = new_match;
 478			break;
 479		}
 480
 481		/* be safe: verify hardware settings */
 482		if (now < new_match) {
 483			/* timer value is below match value, all good.
 484			 * this makes sure we won't miss any match events.
 485			 * -> save programmed match value.
 486			 * -> let isr handle the event.
 487			 */
 488			ch->match_value = new_match;
 489			break;
 490		}
 491
 492		/* the counter has reached a value greater
 493		 * than our new match value. and since the
 494		 * has_wrapped flag isn't set we must have
 495		 * programmed a too close event.
 496		 * -> increase delay and retry.
 497		 */
 498		if (delay)
 499			delay <<= 1;
 500		else
 501			delay = 1;
 502
 503		if (!delay)
 504			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
 505				 ch->index);
 506
 507	} while (delay);
 508}
 509
 510static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 511{
 512	if (delta > ch->max_match_value)
 513		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
 514			 ch->index);
 515
 516	ch->next_match_value = delta;
 517	sh_cmt_clock_event_program_verify(ch, 0);
 518}
 519
 520static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 521{
 522	unsigned long flags;
 523
 524	raw_spin_lock_irqsave(&ch->lock, flags);
 525	__sh_cmt_set_next(ch, delta);
 526	raw_spin_unlock_irqrestore(&ch->lock, flags);
 527}
 528
 529static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
 530{
 531	struct sh_cmt_channel *ch = dev_id;
 532
 533	/* clear flags */
 534	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
 535			   ch->cmt->info->clear_bits);
 536
 537	/* update clock source counter to begin with if enabled
 538	 * the wrap flag should be cleared by the timer specific
 539	 * isr before we end up here.
 540	 */
 541	if (ch->flags & FLAG_CLOCKSOURCE)
 542		ch->total_cycles += ch->match_value + 1;
 543
 544	if (!(ch->flags & FLAG_REPROGRAM))
 545		ch->next_match_value = ch->max_match_value;
 546
 547	ch->flags |= FLAG_IRQCONTEXT;
 548
 549	if (ch->flags & FLAG_CLOCKEVENT) {
 550		if (!(ch->flags & FLAG_SKIPEVENT)) {
 551			if (clockevent_state_oneshot(&ch->ced)) {
 552				ch->next_match_value = ch->max_match_value;
 553				ch->flags |= FLAG_REPROGRAM;
 554			}
 555
 556			ch->ced.event_handler(&ch->ced);
 557		}
 558	}
 559
 560	ch->flags &= ~FLAG_SKIPEVENT;
 561
 562	if (ch->flags & FLAG_REPROGRAM) {
 563		ch->flags &= ~FLAG_REPROGRAM;
 564		sh_cmt_clock_event_program_verify(ch, 1);
 565
 566		if (ch->flags & FLAG_CLOCKEVENT)
 567			if ((clockevent_state_shutdown(&ch->ced))
 568			    || (ch->match_value == ch->next_match_value))
 569				ch->flags &= ~FLAG_REPROGRAM;
 570	}
 571
 572	ch->flags &= ~FLAG_IRQCONTEXT;
 573
 574	return IRQ_HANDLED;
 575}
 576
 577static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
 578{
 579	int ret = 0;
 580	unsigned long flags;
 581
 582	if (flag & FLAG_CLOCKSOURCE)
 583		pm_runtime_get_sync(&ch->cmt->pdev->dev);
 584
 585	raw_spin_lock_irqsave(&ch->lock, flags);
 586
 587	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
 588		if (flag & FLAG_CLOCKEVENT)
 589			pm_runtime_get_sync(&ch->cmt->pdev->dev);
 590		ret = sh_cmt_enable(ch);
 591	}
 592
 593	if (ret)
 594		goto out;
 595	ch->flags |= flag;
 596
 597	/* setup timeout if no clockevent */
 598	if (ch->cmt->num_channels == 1 &&
 599	    flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
 600		__sh_cmt_set_next(ch, ch->max_match_value);
 601 out:
 602	raw_spin_unlock_irqrestore(&ch->lock, flags);
 603
 604	return ret;
 605}
 606
 607static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
 608{
 609	unsigned long flags;
 610	unsigned long f;
 611
 612	raw_spin_lock_irqsave(&ch->lock, flags);
 613
 614	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
 615	ch->flags &= ~flag;
 616
 617	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
 618		sh_cmt_disable(ch);
 619		if (flag & FLAG_CLOCKEVENT)
 620			pm_runtime_put(&ch->cmt->pdev->dev);
 621	}
 622
 623	/* adjust the timeout to maximum if only clocksource left */
 624	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
 625		__sh_cmt_set_next(ch, ch->max_match_value);
 626
 627	raw_spin_unlock_irqrestore(&ch->lock, flags);
 628
 629	if (flag & FLAG_CLOCKSOURCE)
 630		pm_runtime_put(&ch->cmt->pdev->dev);
 631}
 632
 633static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
 634{
 635	return container_of(cs, struct sh_cmt_channel, cs);
 636}
 637
 638static u64 sh_cmt_clocksource_read(struct clocksource *cs)
 639{
 640	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 641	u32 has_wrapped;
 642
 643	if (ch->cmt->num_channels == 1) {
 644		unsigned long flags;
 645		u64 value;
 646		u32 raw;
 647
 648		raw_spin_lock_irqsave(&ch->lock, flags);
 649		value = ch->total_cycles;
 650		raw = sh_cmt_get_counter(ch, &has_wrapped);
 651
 652		if (unlikely(has_wrapped))
 653			raw += ch->match_value + 1;
 654		raw_spin_unlock_irqrestore(&ch->lock, flags);
 655
 656		return value + raw;
 657	}
 
 658
 659	return sh_cmt_get_counter(ch, &has_wrapped);
 660}
 661
 662static int sh_cmt_clocksource_enable(struct clocksource *cs)
 663{
 664	int ret;
 665	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 666
 667	WARN_ON(ch->cs_enabled);
 668
 669	ch->total_cycles = 0;
 670
 671	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 672	if (!ret)
 673		ch->cs_enabled = true;
 674
 
 
 
 
 
 675	return ret;
 676}
 677
 678static void sh_cmt_clocksource_disable(struct clocksource *cs)
 679{
 680	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 681
 682	WARN_ON(!ch->cs_enabled);
 683
 684	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 685	ch->cs_enabled = false;
 686}
 687
 688static void sh_cmt_clocksource_suspend(struct clocksource *cs)
 689{
 690	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 691
 692	if (!ch->cs_enabled)
 693		return;
 694
 695	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 696	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
 697}
 698
 699static void sh_cmt_clocksource_resume(struct clocksource *cs)
 700{
 701	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 702
 703	if (!ch->cs_enabled)
 704		return;
 705
 706	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
 707	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 708}
 709
 710static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
 711				       const char *name)
 712{
 713	struct clocksource *cs = &ch->cs;
 714
 715	cs->name = name;
 716	cs->rating = 125;
 717	cs->read = sh_cmt_clocksource_read;
 718	cs->enable = sh_cmt_clocksource_enable;
 719	cs->disable = sh_cmt_clocksource_disable;
 720	cs->suspend = sh_cmt_clocksource_suspend;
 721	cs->resume = sh_cmt_clocksource_resume;
 722	cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
 723	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
 724
 725	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
 726		 ch->index);
 727
 728	clocksource_register_hz(cs, ch->cmt->rate);
 
 729	return 0;
 730}
 731
 732static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
 733{
 734	return container_of(ced, struct sh_cmt_channel, ced);
 735}
 736
 737static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
 738{
 739	sh_cmt_start(ch, FLAG_CLOCKEVENT);
 740
 741	if (periodic)
 742		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
 743	else
 744		sh_cmt_set_next(ch, ch->max_match_value);
 745}
 746
 747static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
 748{
 749	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 750
 751	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 752	return 0;
 
 
 
 
 
 
 
 753}
 754
 755static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
 756					int periodic)
 757{
 758	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 759
 760	/* deal with old setting first */
 761	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
 762		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 763
 764	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
 765		 ch->index, periodic ? "periodic" : "oneshot");
 766	sh_cmt_clock_event_start(ch, periodic);
 767	return 0;
 768}
 769
 770static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
 771{
 772	return sh_cmt_clock_event_set_state(ced, 0);
 773}
 774
 775static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
 776{
 777	return sh_cmt_clock_event_set_state(ced, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 778}
 779
 780static int sh_cmt_clock_event_next(unsigned long delta,
 781				   struct clock_event_device *ced)
 782{
 783	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 784
 785	BUG_ON(!clockevent_state_oneshot(ced));
 786	if (likely(ch->flags & FLAG_IRQCONTEXT))
 787		ch->next_match_value = delta - 1;
 788	else
 789		sh_cmt_set_next(ch, delta - 1);
 790
 791	return 0;
 792}
 793
 794static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
 795{
 796	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 797
 798	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
 799	clk_unprepare(ch->cmt->clk);
 800}
 801
 802static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
 803{
 804	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 805
 806	clk_prepare(ch->cmt->clk);
 807	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
 808}
 809
 810static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
 811				      const char *name)
 812{
 813	struct clock_event_device *ced = &ch->ced;
 814	int irq;
 815	int ret;
 816
 817	irq = platform_get_irq(ch->cmt->pdev, ch->index);
 818	if (irq < 0)
 819		return irq;
 820
 821	ret = request_irq(irq, sh_cmt_interrupt,
 822			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
 823			  dev_name(&ch->cmt->pdev->dev), ch);
 824	if (ret) {
 825		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
 826			ch->index, irq);
 827		return ret;
 828	}
 829
 830	ced->name = name;
 831	ced->features = CLOCK_EVT_FEAT_PERIODIC;
 832	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
 833	ced->rating = 125;
 834	ced->cpumask = cpu_possible_mask;
 835	ced->set_next_event = sh_cmt_clock_event_next;
 836	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
 837	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
 838	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
 839	ced->suspend = sh_cmt_clock_event_suspend;
 840	ced->resume = sh_cmt_clock_event_resume;
 841
 842	/* TODO: calculate good shift from rate and counter bit width */
 843	ced->shift = 32;
 844	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
 845	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
 846	ced->max_delta_ticks = ch->max_match_value;
 847	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
 848	ced->min_delta_ticks = 0x1f;
 849
 850	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
 851		 ch->index);
 852	clockevents_register_device(ced);
 853
 854	return 0;
 855}
 856
 857static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
 858			   bool clockevent, bool clocksource)
 
 859{
 860	int ret;
 861
 862	if (clockevent) {
 863		ch->cmt->has_clockevent = true;
 864		ret = sh_cmt_register_clockevent(ch, name);
 865		if (ret < 0)
 866			return ret;
 867	}
 868
 869	if (clocksource) {
 870		ch->cmt->has_clocksource = true;
 871		sh_cmt_register_clocksource(ch, name);
 872	}
 873
 874	return 0;
 875}
 876
 877static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
 878				unsigned int hwidx, bool clockevent,
 879				bool clocksource, struct sh_cmt_device *cmt)
 880{
 881	u32 value;
 882	int ret;
 883
 884	/* Skip unused channels. */
 885	if (!clockevent && !clocksource)
 886		return 0;
 887
 888	ch->cmt = cmt;
 889	ch->index = index;
 890	ch->hwidx = hwidx;
 891	ch->timer_bit = hwidx;
 892
 893	/*
 894	 * Compute the address of the channel control register block. For the
 895	 * timers with a per-channel start/stop register, compute its address
 896	 * as well.
 897	 */
 898	switch (cmt->info->model) {
 899	case SH_CMT_16BIT:
 900		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
 901		break;
 902	case SH_CMT_32BIT:
 903	case SH_CMT_48BIT:
 904		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
 905		break;
 906	case SH_CMT0_RCAR_GEN2:
 907	case SH_CMT1_RCAR_GEN2:
 908		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
 909		ch->ioctrl = ch->iostart + 0x10;
 910		ch->timer_bit = 0;
 911
 912		/* Enable the clock supply to the channel */
 913		value = ioread32(cmt->mapbase + CMCLKE);
 914		value |= BIT(hwidx);
 915		iowrite32(value, cmt->mapbase + CMCLKE);
 916		break;
 917	}
 918
 919	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
 920		ch->max_match_value = ~0;
 921	else
 922		ch->max_match_value = (1 << cmt->info->width) - 1;
 923
 924	ch->match_value = ch->max_match_value;
 925	raw_spin_lock_init(&ch->lock);
 926
 927	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
 928			      clockevent, clocksource);
 929	if (ret) {
 930		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
 931			ch->index);
 932		return ret;
 933	}
 934	ch->cs_enabled = false;
 935
 936	return 0;
 937}
 938
 939static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
 940{
 941	struct resource *mem;
 942
 943	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
 944	if (!mem) {
 945		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
 946		return -ENXIO;
 947	}
 948
 949	cmt->mapbase = ioremap(mem->start, resource_size(mem));
 950	if (cmt->mapbase == NULL) {
 951		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
 952		return -ENXIO;
 
 953	}
 954
 955	return 0;
 956}
 957
 958static const struct platform_device_id sh_cmt_id_table[] = {
 959	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
 960	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
 961	{ }
 962};
 963MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
 964
 965static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
 966	{
 967		/* deprecated, preserved for backward compatibility */
 968		.compatible = "renesas,cmt-48",
 969		.data = &sh_cmt_info[SH_CMT_48BIT]
 970	},
 971	{
 972		/* deprecated, preserved for backward compatibility */
 973		.compatible = "renesas,cmt-48-gen2",
 974		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 975	},
 976	{
 977		.compatible = "renesas,r8a7740-cmt1",
 978		.data = &sh_cmt_info[SH_CMT_48BIT]
 979	},
 980	{
 981		.compatible = "renesas,sh73a0-cmt1",
 982		.data = &sh_cmt_info[SH_CMT_48BIT]
 983	},
 984	{
 985		.compatible = "renesas,rcar-gen2-cmt0",
 986		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 987	},
 988	{
 989		.compatible = "renesas,rcar-gen2-cmt1",
 990		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
 991	},
 992	{
 993		.compatible = "renesas,rcar-gen3-cmt0",
 994		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 995	},
 996	{
 997		.compatible = "renesas,rcar-gen3-cmt1",
 998		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
 999	},
1000	{
1001		.compatible = "renesas,rcar-gen4-cmt0",
1002		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1003	},
1004	{
1005		.compatible = "renesas,rcar-gen4-cmt1",
1006		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1007	},
1008	{ }
1009};
1010MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
1011
1012static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
1013{
1014	unsigned int mask, i;
1015	unsigned long rate;
1016	int ret;
1017
1018	cmt->pdev = pdev;
1019	raw_spin_lock_init(&cmt->lock);
1020
1021	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
1022		cmt->info = of_device_get_match_data(&pdev->dev);
1023		cmt->hw_channels = cmt->info->channels_mask;
1024	} else if (pdev->dev.platform_data) {
1025		struct sh_timer_config *cfg = pdev->dev.platform_data;
1026		const struct platform_device_id *id = pdev->id_entry;
1027
1028		cmt->info = (const struct sh_cmt_info *)id->driver_data;
1029		cmt->hw_channels = cfg->channels_mask;
1030	} else {
1031		dev_err(&cmt->pdev->dev, "missing platform data\n");
1032		return -ENXIO;
1033	}
1034
1035	/* Get hold of clock. */
1036	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1037	if (IS_ERR(cmt->clk)) {
1038		dev_err(&cmt->pdev->dev, "cannot get clock\n");
1039		return PTR_ERR(cmt->clk);
 
 
 
 
 
 
 
1040	}
1041
1042	ret = clk_prepare(cmt->clk);
1043	if (ret < 0)
1044		goto err_clk_put;
1045
1046	/* Determine clock rate. */
1047	ret = clk_enable(cmt->clk);
1048	if (ret < 0)
1049		goto err_clk_unprepare;
1050
1051	rate = clk_get_rate(cmt->clk);
1052	if (!rate) {
1053		ret = -EINVAL;
1054		goto err_clk_disable;
 
 
 
1055	}
1056
1057	/* We shall wait 2 input clks after register writes */
1058	if (cmt->info->model >= SH_CMT_48BIT)
1059		cmt->reg_delay = DIV_ROUND_UP(2UL * USEC_PER_SEC, rate);
1060	cmt->rate = rate / (cmt->info->width == 16 ? 512 : 8);
1061
1062	/* Map the memory resource(s). */
1063	ret = sh_cmt_map_memory(cmt);
1064	if (ret < 0)
1065		goto err_clk_disable;
1066
1067	/* Allocate and setup the channels. */
1068	cmt->num_channels = hweight8(cmt->hw_channels);
1069	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1070				GFP_KERNEL);
1071	if (cmt->channels == NULL) {
1072		ret = -ENOMEM;
1073		goto err_unmap;
1074	}
1075
1076	/*
1077	 * Use the first channel as a clock event device and the second channel
1078	 * as a clock source. If only one channel is available use it for both.
1079	 */
1080	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1081		unsigned int hwidx = ffs(mask) - 1;
1082		bool clocksource = i == 1 || cmt->num_channels == 1;
1083		bool clockevent = i == 0;
1084
1085		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1086					   clockevent, clocksource, cmt);
1087		if (ret < 0)
1088			goto err_unmap;
1089
1090		mask &= ~(1 << hwidx);
 
 
 
 
 
1091	}
 
1092
1093	clk_disable(cmt->clk);
 
 
 
 
1094
1095	platform_set_drvdata(pdev, cmt);
1096
1097	return 0;
1098
1099err_unmap:
1100	kfree(cmt->channels);
1101	iounmap(cmt->mapbase);
1102err_clk_disable:
1103	clk_disable(cmt->clk);
1104err_clk_unprepare:
1105	clk_unprepare(cmt->clk);
1106err_clk_put:
1107	clk_put(cmt->clk);
1108	return ret;
1109}
1110
1111static int sh_cmt_probe(struct platform_device *pdev)
1112{
1113	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
 
1114	int ret;
1115
1116	if (!is_sh_early_platform_device(pdev)) {
1117		pm_runtime_set_active(&pdev->dev);
1118		pm_runtime_enable(&pdev->dev);
1119	}
1120
1121	if (cmt) {
1122		dev_info(&pdev->dev, "kept as earlytimer\n");
1123		goto out;
1124	}
1125
1126	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1127	if (cmt == NULL)
 
1128		return -ENOMEM;
 
1129
1130	ret = sh_cmt_setup(cmt, pdev);
1131	if (ret) {
1132		kfree(cmt);
1133		pm_runtime_idle(&pdev->dev);
1134		return ret;
1135	}
1136	if (is_sh_early_platform_device(pdev))
1137		return 0;
1138
1139 out:
1140	if (cmt->has_clockevent || cmt->has_clocksource)
1141		pm_runtime_irq_safe(&pdev->dev);
1142	else
1143		pm_runtime_idle(&pdev->dev);
1144
1145	return 0;
1146}
1147
1148static int sh_cmt_remove(struct platform_device *pdev)
1149{
1150	return -EBUSY; /* cannot unregister clockevent and clocksource */
1151}
1152
1153static struct platform_driver sh_cmt_device_driver = {
1154	.probe		= sh_cmt_probe,
1155	.remove		= sh_cmt_remove,
1156	.driver		= {
1157		.name	= "sh_cmt",
1158		.of_match_table = of_match_ptr(sh_cmt_of_table),
1159	},
1160	.id_table	= sh_cmt_id_table,
1161};
1162
1163static int __init sh_cmt_init(void)
1164{
1165	return platform_driver_register(&sh_cmt_device_driver);
1166}
1167
1168static void __exit sh_cmt_exit(void)
1169{
1170	platform_driver_unregister(&sh_cmt_device_driver);
1171}
1172
1173#ifdef CONFIG_SUPERH
1174sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1175#endif
1176
1177subsys_initcall(sh_cmt_init);
1178module_exit(sh_cmt_exit);
1179
1180MODULE_AUTHOR("Magnus Damm");
1181MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1182MODULE_LICENSE("GPL v2");
v3.15
 
  1/*
  2 * SuperH Timer Support - CMT
  3 *
  4 *  Copyright (C) 2008 Magnus Damm
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License as published by
  8 * the Free Software Foundation; either version 2 of the License
  9 *
 10 * This program is distributed in the hope that it will be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13 * GNU General Public License for more details.
 14 *
 15 * You should have received a copy of the GNU General Public License
 16 * along with this program; if not, write to the Free Software
 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 18 */
 19
 
 
 
 
 
 20#include <linux/init.h>
 21#include <linux/platform_device.h>
 22#include <linux/spinlock.h>
 23#include <linux/interrupt.h>
 
 
 24#include <linux/ioport.h>
 25#include <linux/io.h>
 26#include <linux/clk.h>
 27#include <linux/irq.h>
 28#include <linux/err.h>
 29#include <linux/delay.h>
 30#include <linux/clocksource.h>
 31#include <linux/clockchips.h>
 32#include <linux/sh_timer.h>
 33#include <linux/slab.h>
 34#include <linux/module.h>
 
 
 
 35#include <linux/pm_domain.h>
 36#include <linux/pm_runtime.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 37
 38struct sh_cmt_priv {
 39	void __iomem *mapbase;
 40	void __iomem *mapbase_str;
 41	struct clk *clk;
 42	unsigned long width; /* 16 or 32 bit version of hardware block */
 43	unsigned long overflow_bit;
 44	unsigned long clear_bits;
 45	struct irqaction irqaction;
 46	struct platform_device *pdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 47
 
 48	unsigned long flags;
 49	unsigned long match_value;
 50	unsigned long next_match_value;
 51	unsigned long max_match_value;
 52	unsigned long rate;
 53	raw_spinlock_t lock;
 54	struct clock_event_device ced;
 55	struct clocksource cs;
 56	unsigned long total_cycles;
 57	bool cs_enabled;
 
 
 
 
 
 
 58
 59	/* callbacks for CMSTR and CMCSR access */
 60	unsigned long (*read_control)(void __iomem *base, unsigned long offs);
 61	void (*write_control)(void __iomem *base, unsigned long offs,
 62			      unsigned long value);
 
 
 
 
 
 
 63
 64	/* callbacks for CMCNT and CMCOR access */
 65	unsigned long (*read_count)(void __iomem *base, unsigned long offs);
 66	void (*write_count)(void __iomem *base, unsigned long offs,
 67			    unsigned long value);
 68};
 69
 70/* Examples of supported CMT timer register layouts and I/O access widths:
 71 *
 72 * "16-bit counter and 16-bit control" as found on sh7263:
 73 * CMSTR 0xfffec000 16-bit
 74 * CMCSR 0xfffec002 16-bit
 75 * CMCNT 0xfffec004 16-bit
 76 * CMCOR 0xfffec006 16-bit
 77 *
 78 * "32-bit counter and 16-bit control" as found on sh7372, sh73a0, r8a7740:
 79 * CMSTR 0xffca0000 16-bit
 80 * CMCSR 0xffca0060 16-bit
 81 * CMCNT 0xffca0064 32-bit
 82 * CMCOR 0xffca0068 32-bit
 83 *
 84 * "32-bit counter and 32-bit control" as found on r8a73a4 and r8a7790:
 85 * CMSTR 0xffca0500 32-bit
 86 * CMCSR 0xffca0510 32-bit
 87 * CMCNT 0xffca0514 32-bit
 88 * CMCOR 0xffca0518 32-bit
 89 */
 
 
 
 
 
 
 
 90
 91static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
 92{
 93	return ioread16(base + (offs << 1));
 94}
 95
 96static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
 97{
 98	return ioread32(base + (offs << 2));
 99}
100
101static void sh_cmt_write16(void __iomem *base, unsigned long offs,
102			   unsigned long value)
103{
104	iowrite16(value, base + (offs << 1));
105}
106
107static void sh_cmt_write32(void __iomem *base, unsigned long offs,
108			   unsigned long value)
109{
110	iowrite32(value, base + (offs << 2));
111}
112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113#define CMCSR 0 /* channel register */
114#define CMCNT 1 /* channel register */
115#define CMCOR 2 /* channel register */
116
117static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_priv *p)
 
 
118{
119	return p->read_control(p->mapbase_str, 0);
 
 
 
120}
121
122static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_priv *p)
123{
124	return p->read_control(p->mapbase, CMCSR);
 
 
 
 
 
 
 
 
 
 
125}
126
127static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_priv *p)
128{
129	return p->read_count(p->mapbase, CMCNT);
130}
131
132static inline void sh_cmt_write_cmstr(struct sh_cmt_priv *p,
133				      unsigned long value)
134{
135	p->write_control(p->mapbase_str, 0, value);
 
 
 
 
 
136}
137
138static inline void sh_cmt_write_cmcsr(struct sh_cmt_priv *p,
139				      unsigned long value)
140{
141	p->write_control(p->mapbase, CMCSR, value);
142}
143
144static inline void sh_cmt_write_cmcnt(struct sh_cmt_priv *p,
145				      unsigned long value)
146{
147	p->write_count(p->mapbase, CMCNT, value);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148}
149
150static inline void sh_cmt_write_cmcor(struct sh_cmt_priv *p,
151				      unsigned long value)
152{
153	p->write_count(p->mapbase, CMCOR, value);
 
 
 
 
 
154}
155
156static unsigned long sh_cmt_get_counter(struct sh_cmt_priv *p,
157					int *has_wrapped)
158{
159	unsigned long v1, v2, v3;
160	int o1, o2;
161
162	o1 = sh_cmt_read_cmcsr(p) & p->overflow_bit;
163
164	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
165	do {
166		o2 = o1;
167		v1 = sh_cmt_read_cmcnt(p);
168		v2 = sh_cmt_read_cmcnt(p);
169		v3 = sh_cmt_read_cmcnt(p);
170		o1 = sh_cmt_read_cmcsr(p) & p->overflow_bit;
171	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
172			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
173
174	*has_wrapped = o1;
175	return v2;
176}
177
178static DEFINE_RAW_SPINLOCK(sh_cmt_lock);
179
180static void sh_cmt_start_stop_ch(struct sh_cmt_priv *p, int start)
181{
182	struct sh_timer_config *cfg = p->pdev->dev.platform_data;
183	unsigned long flags, value;
184
185	/* start stop register shared by multiple timer channels */
186	raw_spin_lock_irqsave(&sh_cmt_lock, flags);
187	value = sh_cmt_read_cmstr(p);
188
189	if (start)
190		value |= 1 << cfg->timer_bit;
191	else
192		value &= ~(1 << cfg->timer_bit);
193
194	sh_cmt_write_cmstr(p, value);
195	raw_spin_unlock_irqrestore(&sh_cmt_lock, flags);
196}
197
198static int sh_cmt_enable(struct sh_cmt_priv *p, unsigned long *rate)
199{
200	int k, ret;
201
202	pm_runtime_get_sync(&p->pdev->dev);
203	dev_pm_syscore_device(&p->pdev->dev, true);
204
205	/* enable clock */
206	ret = clk_enable(p->clk);
207	if (ret) {
208		dev_err(&p->pdev->dev, "cannot enable clock\n");
 
209		goto err0;
210	}
211
212	/* make sure channel is disabled */
213	sh_cmt_start_stop_ch(p, 0);
214
215	/* configure channel, periodic mode and maximum timeout */
216	if (p->width == 16) {
217		*rate = clk_get_rate(p->clk) / 512;
218		sh_cmt_write_cmcsr(p, 0x43);
219	} else {
220		*rate = clk_get_rate(p->clk) / 8;
221		sh_cmt_write_cmcsr(p, 0x01a4);
222	}
223
224	sh_cmt_write_cmcor(p, 0xffffffff);
225	sh_cmt_write_cmcnt(p, 0);
226
227	/*
228	 * According to the sh73a0 user's manual, as CMCNT can be operated
229	 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
230	 * modifying CMCNT register; two RCLK cycles are necessary before
231	 * this register is either read or any modification of the value
232	 * it holds is reflected in the LSI's actual operation.
233	 *
234	 * While at it, we're supposed to clear out the CMCNT as of this
235	 * moment, so make sure it's processed properly here.  This will
236	 * take RCLKx2 at maximum.
237	 */
238	for (k = 0; k < 100; k++) {
239		if (!sh_cmt_read_cmcnt(p))
240			break;
241		udelay(1);
242	}
243
244	if (sh_cmt_read_cmcnt(p)) {
245		dev_err(&p->pdev->dev, "cannot clear CMCNT\n");
 
 
 
 
246		ret = -ETIMEDOUT;
247		goto err1;
248	}
249
250	/* enable channel */
251	sh_cmt_start_stop_ch(p, 1);
252	return 0;
253 err1:
254	/* stop clock */
255	clk_disable(p->clk);
256
257 err0:
258	return ret;
259}
260
261static void sh_cmt_disable(struct sh_cmt_priv *p)
262{
263	/* disable channel */
264	sh_cmt_start_stop_ch(p, 0);
265
266	/* disable interrupts in CMT block */
267	sh_cmt_write_cmcsr(p, 0);
268
269	/* stop clock */
270	clk_disable(p->clk);
271
272	dev_pm_syscore_device(&p->pdev->dev, false);
273	pm_runtime_put(&p->pdev->dev);
274}
275
276/* private flags */
277#define FLAG_CLOCKEVENT (1 << 0)
278#define FLAG_CLOCKSOURCE (1 << 1)
279#define FLAG_REPROGRAM (1 << 2)
280#define FLAG_SKIPEVENT (1 << 3)
281#define FLAG_IRQCONTEXT (1 << 4)
282
283static void sh_cmt_clock_event_program_verify(struct sh_cmt_priv *p,
284					      int absolute)
285{
286	unsigned long new_match;
287	unsigned long value = p->next_match_value;
288	unsigned long delay = 0;
289	unsigned long now = 0;
290	int has_wrapped;
291
292	now = sh_cmt_get_counter(p, &has_wrapped);
293	p->flags |= FLAG_REPROGRAM; /* force reprogram */
294
295	if (has_wrapped) {
296		/* we're competing with the interrupt handler.
297		 *  -> let the interrupt handler reprogram the timer.
298		 *  -> interrupt number two handles the event.
299		 */
300		p->flags |= FLAG_SKIPEVENT;
301		return;
302	}
303
304	if (absolute)
305		now = 0;
306
307	do {
308		/* reprogram the timer hardware,
309		 * but don't save the new match value yet.
310		 */
311		new_match = now + value + delay;
312		if (new_match > p->max_match_value)
313			new_match = p->max_match_value;
314
315		sh_cmt_write_cmcor(p, new_match);
316
317		now = sh_cmt_get_counter(p, &has_wrapped);
318		if (has_wrapped && (new_match > p->match_value)) {
319			/* we are changing to a greater match value,
320			 * so this wrap must be caused by the counter
321			 * matching the old value.
322			 * -> first interrupt reprograms the timer.
323			 * -> interrupt number two handles the event.
324			 */
325			p->flags |= FLAG_SKIPEVENT;
326			break;
327		}
328
329		if (has_wrapped) {
330			/* we are changing to a smaller match value,
331			 * so the wrap must be caused by the counter
332			 * matching the new value.
333			 * -> save programmed match value.
334			 * -> let isr handle the event.
335			 */
336			p->match_value = new_match;
337			break;
338		}
339
340		/* be safe: verify hardware settings */
341		if (now < new_match) {
342			/* timer value is below match value, all good.
343			 * this makes sure we won't miss any match events.
344			 * -> save programmed match value.
345			 * -> let isr handle the event.
346			 */
347			p->match_value = new_match;
348			break;
349		}
350
351		/* the counter has reached a value greater
352		 * than our new match value. and since the
353		 * has_wrapped flag isn't set we must have
354		 * programmed a too close event.
355		 * -> increase delay and retry.
356		 */
357		if (delay)
358			delay <<= 1;
359		else
360			delay = 1;
361
362		if (!delay)
363			dev_warn(&p->pdev->dev, "too long delay\n");
 
364
365	} while (delay);
366}
367
368static void __sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
369{
370	if (delta > p->max_match_value)
371		dev_warn(&p->pdev->dev, "delta out of range\n");
 
372
373	p->next_match_value = delta;
374	sh_cmt_clock_event_program_verify(p, 0);
375}
376
377static void sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
378{
379	unsigned long flags;
380
381	raw_spin_lock_irqsave(&p->lock, flags);
382	__sh_cmt_set_next(p, delta);
383	raw_spin_unlock_irqrestore(&p->lock, flags);
384}
385
386static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
387{
388	struct sh_cmt_priv *p = dev_id;
389
390	/* clear flags */
391	sh_cmt_write_cmcsr(p, sh_cmt_read_cmcsr(p) & p->clear_bits);
 
392
393	/* update clock source counter to begin with if enabled
394	 * the wrap flag should be cleared by the timer specific
395	 * isr before we end up here.
396	 */
397	if (p->flags & FLAG_CLOCKSOURCE)
398		p->total_cycles += p->match_value + 1;
399
400	if (!(p->flags & FLAG_REPROGRAM))
401		p->next_match_value = p->max_match_value;
402
403	p->flags |= FLAG_IRQCONTEXT;
404
405	if (p->flags & FLAG_CLOCKEVENT) {
406		if (!(p->flags & FLAG_SKIPEVENT)) {
407			if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT) {
408				p->next_match_value = p->max_match_value;
409				p->flags |= FLAG_REPROGRAM;
410			}
411
412			p->ced.event_handler(&p->ced);
413		}
414	}
415
416	p->flags &= ~FLAG_SKIPEVENT;
417
418	if (p->flags & FLAG_REPROGRAM) {
419		p->flags &= ~FLAG_REPROGRAM;
420		sh_cmt_clock_event_program_verify(p, 1);
421
422		if (p->flags & FLAG_CLOCKEVENT)
423			if ((p->ced.mode == CLOCK_EVT_MODE_SHUTDOWN)
424			    || (p->match_value == p->next_match_value))
425				p->flags &= ~FLAG_REPROGRAM;
426	}
427
428	p->flags &= ~FLAG_IRQCONTEXT;
429
430	return IRQ_HANDLED;
431}
432
433static int sh_cmt_start(struct sh_cmt_priv *p, unsigned long flag)
434{
435	int ret = 0;
436	unsigned long flags;
437
438	raw_spin_lock_irqsave(&p->lock, flags);
 
439
440	if (!(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
441		ret = sh_cmt_enable(p, &p->rate);
 
 
 
 
 
442
443	if (ret)
444		goto out;
445	p->flags |= flag;
446
447	/* setup timeout if no clockevent */
448	if ((flag == FLAG_CLOCKSOURCE) && (!(p->flags & FLAG_CLOCKEVENT)))
449		__sh_cmt_set_next(p, p->max_match_value);
 
450 out:
451	raw_spin_unlock_irqrestore(&p->lock, flags);
452
453	return ret;
454}
455
456static void sh_cmt_stop(struct sh_cmt_priv *p, unsigned long flag)
457{
458	unsigned long flags;
459	unsigned long f;
460
461	raw_spin_lock_irqsave(&p->lock, flags);
462
463	f = p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
464	p->flags &= ~flag;
465
466	if (f && !(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
467		sh_cmt_disable(p);
 
 
 
468
469	/* adjust the timeout to maximum if only clocksource left */
470	if ((flag == FLAG_CLOCKEVENT) && (p->flags & FLAG_CLOCKSOURCE))
471		__sh_cmt_set_next(p, p->max_match_value);
472
473	raw_spin_unlock_irqrestore(&p->lock, flags);
 
 
 
474}
475
476static struct sh_cmt_priv *cs_to_sh_cmt(struct clocksource *cs)
477{
478	return container_of(cs, struct sh_cmt_priv, cs);
479}
480
481static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
482{
483	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
484	unsigned long flags, raw;
485	unsigned long value;
486	int has_wrapped;
 
 
 
 
 
 
 
487
488	raw_spin_lock_irqsave(&p->lock, flags);
489	value = p->total_cycles;
490	raw = sh_cmt_get_counter(p, &has_wrapped);
491
492	if (unlikely(has_wrapped))
493		raw += p->match_value + 1;
494	raw_spin_unlock_irqrestore(&p->lock, flags);
495
496	return value + raw;
497}
498
499static int sh_cmt_clocksource_enable(struct clocksource *cs)
500{
501	int ret;
502	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
 
 
503
504	WARN_ON(p->cs_enabled);
505
506	p->total_cycles = 0;
 
 
507
508	ret = sh_cmt_start(p, FLAG_CLOCKSOURCE);
509	if (!ret) {
510		__clocksource_updatefreq_hz(cs, p->rate);
511		p->cs_enabled = true;
512	}
513	return ret;
514}
515
516static void sh_cmt_clocksource_disable(struct clocksource *cs)
517{
518	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
519
520	WARN_ON(!p->cs_enabled);
521
522	sh_cmt_stop(p, FLAG_CLOCKSOURCE);
523	p->cs_enabled = false;
524}
525
526static void sh_cmt_clocksource_suspend(struct clocksource *cs)
527{
528	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
529
530	sh_cmt_stop(p, FLAG_CLOCKSOURCE);
531	pm_genpd_syscore_poweroff(&p->pdev->dev);
 
 
 
532}
533
534static void sh_cmt_clocksource_resume(struct clocksource *cs)
535{
536	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
 
 
 
537
538	pm_genpd_syscore_poweron(&p->pdev->dev);
539	sh_cmt_start(p, FLAG_CLOCKSOURCE);
540}
541
542static int sh_cmt_register_clocksource(struct sh_cmt_priv *p,
543				       char *name, unsigned long rating)
544{
545	struct clocksource *cs = &p->cs;
546
547	cs->name = name;
548	cs->rating = rating;
549	cs->read = sh_cmt_clocksource_read;
550	cs->enable = sh_cmt_clocksource_enable;
551	cs->disable = sh_cmt_clocksource_disable;
552	cs->suspend = sh_cmt_clocksource_suspend;
553	cs->resume = sh_cmt_clocksource_resume;
554	cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
555	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
556
557	dev_info(&p->pdev->dev, "used as clock source\n");
 
558
559	/* Register with dummy 1 Hz value, gets updated in ->enable() */
560	clocksource_register_hz(cs, 1);
561	return 0;
562}
563
564static struct sh_cmt_priv *ced_to_sh_cmt(struct clock_event_device *ced)
565{
566	return container_of(ced, struct sh_cmt_priv, ced);
567}
568
569static void sh_cmt_clock_event_start(struct sh_cmt_priv *p, int periodic)
570{
571	struct clock_event_device *ced = &p->ced;
572
573	sh_cmt_start(p, FLAG_CLOCKEVENT);
 
 
 
 
574
575	/* TODO: calculate good shift from rate and counter bit width */
 
 
576
577	ced->shift = 32;
578	ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift);
579	ced->max_delta_ns = clockevent_delta2ns(p->max_match_value, ced);
580	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
581
582	if (periodic)
583		sh_cmt_set_next(p, ((p->rate + HZ/2) / HZ) - 1);
584	else
585		sh_cmt_set_next(p, p->max_match_value);
586}
587
588static void sh_cmt_clock_event_mode(enum clock_event_mode mode,
589				    struct clock_event_device *ced)
590{
591	struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
592
593	/* deal with old setting first */
594	switch (ced->mode) {
595	case CLOCK_EVT_MODE_PERIODIC:
596	case CLOCK_EVT_MODE_ONESHOT:
597		sh_cmt_stop(p, FLAG_CLOCKEVENT);
598		break;
599	default:
600		break;
601	}
 
 
 
 
 
602
603	switch (mode) {
604	case CLOCK_EVT_MODE_PERIODIC:
605		dev_info(&p->pdev->dev, "used for periodic clock events\n");
606		sh_cmt_clock_event_start(p, 1);
607		break;
608	case CLOCK_EVT_MODE_ONESHOT:
609		dev_info(&p->pdev->dev, "used for oneshot clock events\n");
610		sh_cmt_clock_event_start(p, 0);
611		break;
612	case CLOCK_EVT_MODE_SHUTDOWN:
613	case CLOCK_EVT_MODE_UNUSED:
614		sh_cmt_stop(p, FLAG_CLOCKEVENT);
615		break;
616	default:
617		break;
618	}
619}
620
621static int sh_cmt_clock_event_next(unsigned long delta,
622				   struct clock_event_device *ced)
623{
624	struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
625
626	BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
627	if (likely(p->flags & FLAG_IRQCONTEXT))
628		p->next_match_value = delta - 1;
629	else
630		sh_cmt_set_next(p, delta - 1);
631
632	return 0;
633}
634
635static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
636{
637	struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
638
639	pm_genpd_syscore_poweroff(&p->pdev->dev);
640	clk_unprepare(p->clk);
641}
642
643static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
644{
645	struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
646
647	clk_prepare(p->clk);
648	pm_genpd_syscore_poweron(&p->pdev->dev);
649}
650
651static void sh_cmt_register_clockevent(struct sh_cmt_priv *p,
652				       char *name, unsigned long rating)
653{
654	struct clock_event_device *ced = &p->ced;
 
 
655
656	memset(ced, 0, sizeof(*ced));
 
 
 
 
 
 
 
 
 
 
 
657
658	ced->name = name;
659	ced->features = CLOCK_EVT_FEAT_PERIODIC;
660	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
661	ced->rating = rating;
662	ced->cpumask = cpumask_of(0);
663	ced->set_next_event = sh_cmt_clock_event_next;
664	ced->set_mode = sh_cmt_clock_event_mode;
 
 
665	ced->suspend = sh_cmt_clock_event_suspend;
666	ced->resume = sh_cmt_clock_event_resume;
667
668	dev_info(&p->pdev->dev, "used for clock events\n");
 
 
 
 
 
 
 
 
 
669	clockevents_register_device(ced);
 
 
670}
671
672static int sh_cmt_register(struct sh_cmt_priv *p, char *name,
673			   unsigned long clockevent_rating,
674			   unsigned long clocksource_rating)
675{
676	if (clockevent_rating)
677		sh_cmt_register_clockevent(p, name, clockevent_rating);
 
 
 
 
 
 
678
679	if (clocksource_rating)
680		sh_cmt_register_clocksource(p, name, clocksource_rating);
 
 
681
682	return 0;
683}
684
685static int sh_cmt_setup(struct sh_cmt_priv *p, struct platform_device *pdev)
 
 
686{
687	struct sh_timer_config *cfg = pdev->dev.platform_data;
688	struct resource *res, *res2;
689	int irq, ret;
690	ret = -ENXIO;
 
 
691
692	memset(p, 0, sizeof(*p));
693	p->pdev = pdev;
 
 
694
695	if (!cfg) {
696		dev_err(&p->pdev->dev, "missing platform data\n");
697		goto err0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
698	}
699
700	res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0);
701	if (!res) {
702		dev_err(&p->pdev->dev, "failed to get I/O memory\n");
703		goto err0;
 
 
 
 
 
 
 
 
 
 
704	}
 
 
 
 
705
706	/* optional resource for the shared timer start/stop register */
707	res2 = platform_get_resource(p->pdev, IORESOURCE_MEM, 1);
 
708
709	irq = platform_get_irq(p->pdev, 0);
710	if (irq < 0) {
711		dev_err(&p->pdev->dev, "failed to get irq\n");
712		goto err0;
713	}
714
715	/* map memory, let mapbase point to our channel */
716	p->mapbase = ioremap_nocache(res->start, resource_size(res));
717	if (p->mapbase == NULL) {
718		dev_err(&p->pdev->dev, "failed to remap I/O memory\n");
719		goto err0;
720	}
721
722	/* map second resource for CMSTR */
723	p->mapbase_str = ioremap_nocache(res2 ? res2->start :
724					 res->start - cfg->channel_offset,
725					 res2 ? resource_size(res2) : 2);
726	if (p->mapbase_str == NULL) {
727		dev_err(&p->pdev->dev, "failed to remap I/O second memory\n");
728		goto err1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
729	}
730
731	/* request irq using setup_irq() (too early for request_irq()) */
732	p->irqaction.name = dev_name(&p->pdev->dev);
733	p->irqaction.handler = sh_cmt_interrupt;
734	p->irqaction.dev_id = p;
735	p->irqaction.flags = IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING;
736
737	/* get hold of clock */
738	p->clk = clk_get(&p->pdev->dev, "cmt_fck");
739	if (IS_ERR(p->clk)) {
740		dev_err(&p->pdev->dev, "cannot get clock\n");
741		ret = PTR_ERR(p->clk);
742		goto err2;
743	}
744
745	ret = clk_prepare(p->clk);
 
 
 
 
 
746	if (ret < 0)
747		goto err3;
748
749	if (res2 && (resource_size(res2) == 4)) {
750		/* assume both CMSTR and CMCSR to be 32-bit */
751		p->read_control = sh_cmt_read32;
752		p->write_control = sh_cmt_write32;
753	} else {
754		p->read_control = sh_cmt_read16;
755		p->write_control = sh_cmt_write16;
756	}
757
758	if (resource_size(res) == 6) {
759		p->width = 16;
760		p->read_count = sh_cmt_read16;
761		p->write_count = sh_cmt_write16;
762		p->overflow_bit = 0x80;
763		p->clear_bits = ~0x80;
764	} else {
765		p->width = 32;
766		p->read_count = sh_cmt_read32;
767		p->write_count = sh_cmt_write32;
768		p->overflow_bit = 0x8000;
769		p->clear_bits = ~0xc000;
 
 
 
 
 
770	}
771
772	if (p->width == (sizeof(p->max_match_value) * 8))
773		p->max_match_value = ~0;
774	else
775		p->max_match_value = (1 << p->width) - 1;
 
 
 
 
776
777	p->match_value = p->max_match_value;
778	raw_spin_lock_init(&p->lock);
 
 
779
780	ret = sh_cmt_register(p, (char *)dev_name(&p->pdev->dev),
781			      cfg->clockevent_rating,
782			      cfg->clocksource_rating);
783	if (ret) {
784		dev_err(&p->pdev->dev, "registration failed\n");
785		goto err4;
786	}
787	p->cs_enabled = false;
788
789	ret = setup_irq(irq, &p->irqaction);
790	if (ret) {
791		dev_err(&p->pdev->dev, "failed to request irq %d\n", irq);
792		goto err4;
793	}
794
795	platform_set_drvdata(pdev, p);
796
797	return 0;
798err4:
799	clk_unprepare(p->clk);
800err3:
801	clk_put(p->clk);
802err2:
803	iounmap(p->mapbase_str);
804err1:
805	iounmap(p->mapbase);
806err0:
 
807	return ret;
808}
809
810static int sh_cmt_probe(struct platform_device *pdev)
811{
812	struct sh_cmt_priv *p = platform_get_drvdata(pdev);
813	struct sh_timer_config *cfg = pdev->dev.platform_data;
814	int ret;
815
816	if (!is_early_platform_device(pdev)) {
817		pm_runtime_set_active(&pdev->dev);
818		pm_runtime_enable(&pdev->dev);
819	}
820
821	if (p) {
822		dev_info(&pdev->dev, "kept as earlytimer\n");
823		goto out;
824	}
825
826	p = kmalloc(sizeof(*p), GFP_KERNEL);
827	if (p == NULL) {
828		dev_err(&pdev->dev, "failed to allocate driver data\n");
829		return -ENOMEM;
830	}
831
832	ret = sh_cmt_setup(p, pdev);
833	if (ret) {
834		kfree(p);
835		pm_runtime_idle(&pdev->dev);
836		return ret;
837	}
838	if (is_early_platform_device(pdev))
839		return 0;
840
841 out:
842	if (cfg->clockevent_rating || cfg->clocksource_rating)
843		pm_runtime_irq_safe(&pdev->dev);
844	else
845		pm_runtime_idle(&pdev->dev);
846
847	return 0;
848}
849
850static int sh_cmt_remove(struct platform_device *pdev)
851{
852	return -EBUSY; /* cannot unregister clockevent and clocksource */
853}
854
855static struct platform_driver sh_cmt_device_driver = {
856	.probe		= sh_cmt_probe,
857	.remove		= sh_cmt_remove,
858	.driver		= {
859		.name	= "sh_cmt",
860	}
 
 
861};
862
863static int __init sh_cmt_init(void)
864{
865	return platform_driver_register(&sh_cmt_device_driver);
866}
867
868static void __exit sh_cmt_exit(void)
869{
870	platform_driver_unregister(&sh_cmt_device_driver);
871}
872
873early_platform_init("earlytimer", &sh_cmt_device_driver);
 
 
 
874subsys_initcall(sh_cmt_init);
875module_exit(sh_cmt_exit);
876
877MODULE_AUTHOR("Magnus Damm");
878MODULE_DESCRIPTION("SuperH CMT Timer Driver");
879MODULE_LICENSE("GPL v2");