Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * SGI RTC clock/timer routines.
  4 *
  5 *  (C) Copyright 2020 Hewlett Packard Enterprise Development LP
 
 
 
 
 
 
 
 
 
 
 
 
 
  6 *  Copyright (c) 2009-2013 Silicon Graphics, Inc.  All Rights Reserved.
  7 *  Copyright (c) Dimitri Sivanich
  8 */
  9#include <linux/clockchips.h>
 10#include <linux/slab.h>
 11
 12#include <asm/uv/uv_mmrs.h>
 13#include <asm/uv/uv_hub.h>
 14#include <asm/uv/bios.h>
 15#include <asm/uv/uv.h>
 16#include <asm/apic.h>
 17#include <asm/cpu.h>
 18
 19#define RTC_NAME		"sgi_rtc"
 20
 21static u64 uv_read_rtc(struct clocksource *cs);
 22static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
 23static int uv_rtc_shutdown(struct clock_event_device *evt);
 
 24
 25static struct clocksource clocksource_uv = {
 26	.name		= RTC_NAME,
 27	.rating		= 299,
 28	.read		= uv_read_rtc,
 29	.mask		= (u64)UVH_RTC_REAL_TIME_CLOCK_MASK,
 30	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 31};
 32
 33static struct clock_event_device clock_event_device_uv = {
 34	.name			= RTC_NAME,
 35	.features		= CLOCK_EVT_FEAT_ONESHOT,
 36	.shift			= 20,
 37	.rating			= 400,
 38	.irq			= -1,
 39	.set_next_event		= uv_rtc_next_event,
 40	.set_state_shutdown	= uv_rtc_shutdown,
 41	.event_handler		= NULL,
 42};
 43
 44static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
 45
 46/* There is one of these allocated per node */
 47struct uv_rtc_timer_head {
 48	spinlock_t	lock;
 49	/* next cpu waiting for timer, local node relative: */
 50	int		next_cpu;
 51	/* number of cpus on this node: */
 52	int		ncpus;
 53	struct {
 54		int	lcpu;		/* systemwide logical cpu number */
 55		u64	expires;	/* next timer expiration for this cpu */
 56	} cpu[];
 57};
 58
 59/*
 60 * Access to uv_rtc_timer_head via blade id.
 61 */
 62static struct uv_rtc_timer_head		**blade_info __read_mostly;
 63
 64static int				uv_rtc_evt_enable;
 65
 66/*
 67 * Hardware interface routines
 68 */
 69
 70/* Send IPIs to another node */
 71static void uv_rtc_send_IPI(int cpu)
 72{
 73	unsigned long apicid, val;
 74	int pnode;
 75
 76	apicid = cpu_physical_id(cpu);
 77	pnode = uv_apicid_to_pnode(apicid);
 
 78	val = (1UL << UVH_IPI_INT_SEND_SHFT) |
 79	      (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
 80	      (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
 81
 82	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
 83}
 84
 85/* Check for an RTC interrupt pending */
 86static int uv_intr_pending(int pnode)
 87{
 88	return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED2) &
 89		UVH_EVENT_OCCURRED2_RTC_1_MASK;
 
 
 
 
 
 90}
 91
 92/* Setup interrupt and return non-zero if early expiration occurred. */
 93static int uv_setup_intr(int cpu, u64 expires)
 94{
 95	u64 val;
 96	unsigned long apicid = cpu_physical_id(cpu);
 97	int pnode = uv_cpu_to_pnode(cpu);
 98
 99	uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
100		UVH_RTC1_INT_CONFIG_M_MASK);
101	uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
102
103	uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED2_ALIAS,
104			      UVH_EVENT_OCCURRED2_RTC_1_MASK);
 
 
 
 
105
106	val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
107		((u64)apicid << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
108
109	/* Set configuration */
110	uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
111	/* Initialize comparator value */
112	uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
113
114	if (uv_read_rtc(NULL) <= expires)
115		return 0;
116
117	return !uv_intr_pending(pnode);
118}
119
120/*
121 * Per-cpu timer tracking routines
122 */
123
124static __init void uv_rtc_deallocate_timers(void)
125{
126	int bid;
127
128	for_each_possible_blade(bid) {
129		kfree(blade_info[bid]);
130	}
131	kfree(blade_info);
132}
133
134/* Allocate per-node list of cpu timer expiration times. */
135static __init int uv_rtc_allocate_timers(void)
136{
137	int cpu;
138
139	blade_info = kcalloc(uv_possible_blades, sizeof(void *), GFP_KERNEL);
140	if (!blade_info)
141		return -ENOMEM;
142
143	for_each_present_cpu(cpu) {
144		int nid = cpu_to_node(cpu);
145		int bid = uv_cpu_to_blade_id(cpu);
146		int bcpu = uv_cpu_blade_processor_id(cpu);
147		struct uv_rtc_timer_head *head = blade_info[bid];
148
149		if (!head) {
150			head = kmalloc_node(struct_size(head, cpu,
151				uv_blade_nr_possible_cpus(bid)),
 
152				GFP_KERNEL, nid);
153			if (!head) {
154				uv_rtc_deallocate_timers();
155				return -ENOMEM;
156			}
157			spin_lock_init(&head->lock);
158			head->ncpus = uv_blade_nr_possible_cpus(bid);
159			head->next_cpu = -1;
160			blade_info[bid] = head;
161		}
162
163		head->cpu[bcpu].lcpu = cpu;
164		head->cpu[bcpu].expires = ULLONG_MAX;
165	}
166
167	return 0;
168}
169
170/* Find and set the next expiring timer.  */
171static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
172{
173	u64 lowest = ULLONG_MAX;
174	int c, bcpu = -1;
175
176	head->next_cpu = -1;
177	for (c = 0; c < head->ncpus; c++) {
178		u64 exp = head->cpu[c].expires;
179		if (exp < lowest) {
180			bcpu = c;
181			lowest = exp;
182		}
183	}
184	if (bcpu >= 0) {
185		head->next_cpu = bcpu;
186		c = head->cpu[bcpu].lcpu;
187		if (uv_setup_intr(c, lowest))
188			/* If we didn't set it up in time, trigger */
189			uv_rtc_send_IPI(c);
190	} else {
191		uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
192			UVH_RTC1_INT_CONFIG_M_MASK);
193	}
194}
195
196/*
197 * Set expiration time for current cpu.
198 *
199 * Returns 1 if we missed the expiration time.
200 */
201static int uv_rtc_set_timer(int cpu, u64 expires)
202{
203	int pnode = uv_cpu_to_pnode(cpu);
204	int bid = uv_cpu_to_blade_id(cpu);
205	struct uv_rtc_timer_head *head = blade_info[bid];
206	int bcpu = uv_cpu_blade_processor_id(cpu);
207	u64 *t = &head->cpu[bcpu].expires;
208	unsigned long flags;
209	int next_cpu;
210
211	spin_lock_irqsave(&head->lock, flags);
212
213	next_cpu = head->next_cpu;
214	*t = expires;
215
216	/* Will this one be next to go off? */
217	if (next_cpu < 0 || bcpu == next_cpu ||
218			expires < head->cpu[next_cpu].expires) {
219		head->next_cpu = bcpu;
220		if (uv_setup_intr(cpu, expires)) {
221			*t = ULLONG_MAX;
222			uv_rtc_find_next_timer(head, pnode);
223			spin_unlock_irqrestore(&head->lock, flags);
224			return -ETIME;
225		}
226	}
227
228	spin_unlock_irqrestore(&head->lock, flags);
229	return 0;
230}
231
232/*
233 * Unset expiration time for current cpu.
234 *
235 * Returns 1 if this timer was pending.
236 */
237static int uv_rtc_unset_timer(int cpu, int force)
238{
239	int pnode = uv_cpu_to_pnode(cpu);
240	int bid = uv_cpu_to_blade_id(cpu);
241	struct uv_rtc_timer_head *head = blade_info[bid];
242	int bcpu = uv_cpu_blade_processor_id(cpu);
243	u64 *t = &head->cpu[bcpu].expires;
244	unsigned long flags;
245	int rc = 0;
246
247	spin_lock_irqsave(&head->lock, flags);
248
249	if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
250		rc = 1;
251
252	if (rc) {
253		*t = ULLONG_MAX;
254		/* Was the hardware setup for this timer? */
255		if (head->next_cpu == bcpu)
256			uv_rtc_find_next_timer(head, pnode);
257	}
258
259	spin_unlock_irqrestore(&head->lock, flags);
260
261	return rc;
262}
263
264
265/*
266 * Kernel interface routines.
267 */
268
269/*
270 * Read the RTC.
271 *
272 * Starting with HUB rev 2.0, the UV RTC register is replicated across all
273 * cachelines of it's own page.  This allows faster simultaneous reads
274 * from a given socket.
275 */
276static u64 uv_read_rtc(struct clocksource *cs)
277{
278	unsigned long offset;
279
280	if (uv_get_min_hub_revision_id() == 1)
281		offset = 0;
282	else
283		offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE;
284
285	return (u64)uv_read_local_mmr(UVH_RTC | offset);
286}
287
288/*
289 * Program the next event, relative to now
290 */
291static int uv_rtc_next_event(unsigned long delta,
292			     struct clock_event_device *ced)
293{
294	int ced_cpu = cpumask_first(ced->cpumask);
295
296	return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
297}
298
299/*
300 * Shutdown the RTC timer
301 */
302static int uv_rtc_shutdown(struct clock_event_device *evt)
 
303{
304	int ced_cpu = cpumask_first(evt->cpumask);
305
306	uv_rtc_unset_timer(ced_cpu, 1);
307	return 0;
 
 
 
 
 
 
 
 
 
308}
309
310static void uv_rtc_interrupt(void)
311{
312	int cpu = smp_processor_id();
313	struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
314
315	if (!ced || !ced->event_handler)
316		return;
317
318	if (uv_rtc_unset_timer(cpu, 0) != 1)
319		return;
320
321	ced->event_handler(ced);
322}
323
324static int __init uv_enable_evt_rtc(char *str)
325{
326	uv_rtc_evt_enable = 1;
327
328	return 1;
329}
330__setup("uvrtcevt", uv_enable_evt_rtc);
331
332static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
333{
334	struct clock_event_device *ced = this_cpu_ptr(&cpu_ced);
335
336	*ced = clock_event_device_uv;
337	ced->cpumask = cpumask_of(smp_processor_id());
338	clockevents_register_device(ced);
339}
340
341static __init int uv_rtc_setup_clock(void)
342{
343	int rc;
344
345	if (!is_uv_system())
346		return -ENODEV;
347
348	rc = clocksource_register_hz(&clocksource_uv, sn_rtc_cycles_per_second);
349	if (rc)
350		printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
351	else
352		printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
353			sn_rtc_cycles_per_second/(unsigned long)1E6);
354
355	if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
356		return rc;
357
358	/* Setup and register clockevents */
359	rc = uv_rtc_allocate_timers();
360	if (rc)
361		goto error;
362
363	x86_platform_ipi_callback = uv_rtc_interrupt;
364
365	clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
366				NSEC_PER_SEC, clock_event_device_uv.shift);
367
368	clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
369						sn_rtc_cycles_per_second;
370	clock_event_device_uv.min_delta_ticks = 1;
371
372	clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
373				(NSEC_PER_SEC / sn_rtc_cycles_per_second);
374	clock_event_device_uv.max_delta_ticks = clocksource_uv.mask;
375
376	rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
377	if (rc) {
378		x86_platform_ipi_callback = NULL;
379		uv_rtc_deallocate_timers();
380		goto error;
381	}
382
383	printk(KERN_INFO "UV RTC clockevents registered\n");
384
385	return 0;
386
387error:
388	clocksource_unregister(&clocksource_uv);
389	printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
390
391	return rc;
392}
393arch_initcall(uv_rtc_setup_clock);
v3.15
 
  1/*
  2 * SGI RTC clock/timer routines.
  3 *
  4 *  This program is free software; you can redistribute it and/or modify
  5 *  it under the terms of the GNU General Public License as published by
  6 *  the Free Software Foundation; either version 2 of the License, or
  7 *  (at your option) any later version.
  8 *
  9 *  This program is distributed in the hope that it will be useful,
 10 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 *  GNU General Public License for more details.
 13 *
 14 *  You should have received a copy of the GNU General Public License
 15 *  along with this program; if not, write to the Free Software
 16 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 17 *
 18 *  Copyright (c) 2009-2013 Silicon Graphics, Inc.  All Rights Reserved.
 19 *  Copyright (c) Dimitri Sivanich
 20 */
 21#include <linux/clockchips.h>
 22#include <linux/slab.h>
 23
 24#include <asm/uv/uv_mmrs.h>
 25#include <asm/uv/uv_hub.h>
 26#include <asm/uv/bios.h>
 27#include <asm/uv/uv.h>
 28#include <asm/apic.h>
 29#include <asm/cpu.h>
 30
 31#define RTC_NAME		"sgi_rtc"
 32
 33static cycle_t uv_read_rtc(struct clocksource *cs);
 34static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
 35static void uv_rtc_timer_setup(enum clock_event_mode,
 36				struct clock_event_device *);
 37
 38static struct clocksource clocksource_uv = {
 39	.name		= RTC_NAME,
 40	.rating		= 299,
 41	.read		= uv_read_rtc,
 42	.mask		= (cycle_t)UVH_RTC_REAL_TIME_CLOCK_MASK,
 43	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 44};
 45
 46static struct clock_event_device clock_event_device_uv = {
 47	.name		= RTC_NAME,
 48	.features	= CLOCK_EVT_FEAT_ONESHOT,
 49	.shift		= 20,
 50	.rating		= 400,
 51	.irq		= -1,
 52	.set_next_event	= uv_rtc_next_event,
 53	.set_mode	= uv_rtc_timer_setup,
 54	.event_handler	= NULL,
 55};
 56
 57static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
 58
 59/* There is one of these allocated per node */
 60struct uv_rtc_timer_head {
 61	spinlock_t	lock;
 62	/* next cpu waiting for timer, local node relative: */
 63	int		next_cpu;
 64	/* number of cpus on this node: */
 65	int		ncpus;
 66	struct {
 67		int	lcpu;		/* systemwide logical cpu number */
 68		u64	expires;	/* next timer expiration for this cpu */
 69	} cpu[1];
 70};
 71
 72/*
 73 * Access to uv_rtc_timer_head via blade id.
 74 */
 75static struct uv_rtc_timer_head		**blade_info __read_mostly;
 76
 77static int				uv_rtc_evt_enable;
 78
 79/*
 80 * Hardware interface routines
 81 */
 82
 83/* Send IPIs to another node */
 84static void uv_rtc_send_IPI(int cpu)
 85{
 86	unsigned long apicid, val;
 87	int pnode;
 88
 89	apicid = cpu_physical_id(cpu);
 90	pnode = uv_apicid_to_pnode(apicid);
 91	apicid |= uv_apicid_hibits;
 92	val = (1UL << UVH_IPI_INT_SEND_SHFT) |
 93	      (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
 94	      (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
 95
 96	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
 97}
 98
 99/* Check for an RTC interrupt pending */
100static int uv_intr_pending(int pnode)
101{
102	if (is_uv1_hub())
103		return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) &
104			UV1H_EVENT_OCCURRED0_RTC1_MASK;
105	else if (is_uvx_hub())
106		return uv_read_global_mmr64(pnode, UVXH_EVENT_OCCURRED2) &
107			UVXH_EVENT_OCCURRED2_RTC_1_MASK;
108	return 0;
109}
110
111/* Setup interrupt and return non-zero if early expiration occurred. */
112static int uv_setup_intr(int cpu, u64 expires)
113{
114	u64 val;
115	unsigned long apicid = cpu_physical_id(cpu) | uv_apicid_hibits;
116	int pnode = uv_cpu_to_pnode(cpu);
117
118	uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
119		UVH_RTC1_INT_CONFIG_M_MASK);
120	uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
121
122	if (is_uv1_hub())
123		uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS,
124				UV1H_EVENT_OCCURRED0_RTC1_MASK);
125	else
126		uv_write_global_mmr64(pnode, UVXH_EVENT_OCCURRED2_ALIAS,
127				UVXH_EVENT_OCCURRED2_RTC_1_MASK);
128
129	val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
130		((u64)apicid << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
131
132	/* Set configuration */
133	uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
134	/* Initialize comparator value */
135	uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
136
137	if (uv_read_rtc(NULL) <= expires)
138		return 0;
139
140	return !uv_intr_pending(pnode);
141}
142
143/*
144 * Per-cpu timer tracking routines
145 */
146
147static __init void uv_rtc_deallocate_timers(void)
148{
149	int bid;
150
151	for_each_possible_blade(bid) {
152		kfree(blade_info[bid]);
153	}
154	kfree(blade_info);
155}
156
157/* Allocate per-node list of cpu timer expiration times. */
158static __init int uv_rtc_allocate_timers(void)
159{
160	int cpu;
161
162	blade_info = kzalloc(uv_possible_blades * sizeof(void *), GFP_KERNEL);
163	if (!blade_info)
164		return -ENOMEM;
165
166	for_each_present_cpu(cpu) {
167		int nid = cpu_to_node(cpu);
168		int bid = uv_cpu_to_blade_id(cpu);
169		int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
170		struct uv_rtc_timer_head *head = blade_info[bid];
171
172		if (!head) {
173			head = kmalloc_node(sizeof(struct uv_rtc_timer_head) +
174				(uv_blade_nr_possible_cpus(bid) *
175					2 * sizeof(u64)),
176				GFP_KERNEL, nid);
177			if (!head) {
178				uv_rtc_deallocate_timers();
179				return -ENOMEM;
180			}
181			spin_lock_init(&head->lock);
182			head->ncpus = uv_blade_nr_possible_cpus(bid);
183			head->next_cpu = -1;
184			blade_info[bid] = head;
185		}
186
187		head->cpu[bcpu].lcpu = cpu;
188		head->cpu[bcpu].expires = ULLONG_MAX;
189	}
190
191	return 0;
192}
193
194/* Find and set the next expiring timer.  */
195static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
196{
197	u64 lowest = ULLONG_MAX;
198	int c, bcpu = -1;
199
200	head->next_cpu = -1;
201	for (c = 0; c < head->ncpus; c++) {
202		u64 exp = head->cpu[c].expires;
203		if (exp < lowest) {
204			bcpu = c;
205			lowest = exp;
206		}
207	}
208	if (bcpu >= 0) {
209		head->next_cpu = bcpu;
210		c = head->cpu[bcpu].lcpu;
211		if (uv_setup_intr(c, lowest))
212			/* If we didn't set it up in time, trigger */
213			uv_rtc_send_IPI(c);
214	} else {
215		uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
216			UVH_RTC1_INT_CONFIG_M_MASK);
217	}
218}
219
220/*
221 * Set expiration time for current cpu.
222 *
223 * Returns 1 if we missed the expiration time.
224 */
225static int uv_rtc_set_timer(int cpu, u64 expires)
226{
227	int pnode = uv_cpu_to_pnode(cpu);
228	int bid = uv_cpu_to_blade_id(cpu);
229	struct uv_rtc_timer_head *head = blade_info[bid];
230	int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
231	u64 *t = &head->cpu[bcpu].expires;
232	unsigned long flags;
233	int next_cpu;
234
235	spin_lock_irqsave(&head->lock, flags);
236
237	next_cpu = head->next_cpu;
238	*t = expires;
239
240	/* Will this one be next to go off? */
241	if (next_cpu < 0 || bcpu == next_cpu ||
242			expires < head->cpu[next_cpu].expires) {
243		head->next_cpu = bcpu;
244		if (uv_setup_intr(cpu, expires)) {
245			*t = ULLONG_MAX;
246			uv_rtc_find_next_timer(head, pnode);
247			spin_unlock_irqrestore(&head->lock, flags);
248			return -ETIME;
249		}
250	}
251
252	spin_unlock_irqrestore(&head->lock, flags);
253	return 0;
254}
255
256/*
257 * Unset expiration time for current cpu.
258 *
259 * Returns 1 if this timer was pending.
260 */
261static int uv_rtc_unset_timer(int cpu, int force)
262{
263	int pnode = uv_cpu_to_pnode(cpu);
264	int bid = uv_cpu_to_blade_id(cpu);
265	struct uv_rtc_timer_head *head = blade_info[bid];
266	int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
267	u64 *t = &head->cpu[bcpu].expires;
268	unsigned long flags;
269	int rc = 0;
270
271	spin_lock_irqsave(&head->lock, flags);
272
273	if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
274		rc = 1;
275
276	if (rc) {
277		*t = ULLONG_MAX;
278		/* Was the hardware setup for this timer? */
279		if (head->next_cpu == bcpu)
280			uv_rtc_find_next_timer(head, pnode);
281	}
282
283	spin_unlock_irqrestore(&head->lock, flags);
284
285	return rc;
286}
287
288
289/*
290 * Kernel interface routines.
291 */
292
293/*
294 * Read the RTC.
295 *
296 * Starting with HUB rev 2.0, the UV RTC register is replicated across all
297 * cachelines of it's own page.  This allows faster simultaneous reads
298 * from a given socket.
299 */
300static cycle_t uv_read_rtc(struct clocksource *cs)
301{
302	unsigned long offset;
303
304	if (uv_get_min_hub_revision_id() == 1)
305		offset = 0;
306	else
307		offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE;
308
309	return (cycle_t)uv_read_local_mmr(UVH_RTC | offset);
310}
311
312/*
313 * Program the next event, relative to now
314 */
315static int uv_rtc_next_event(unsigned long delta,
316			     struct clock_event_device *ced)
317{
318	int ced_cpu = cpumask_first(ced->cpumask);
319
320	return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
321}
322
323/*
324 * Setup the RTC timer in oneshot mode
325 */
326static void uv_rtc_timer_setup(enum clock_event_mode mode,
327			       struct clock_event_device *evt)
328{
329	int ced_cpu = cpumask_first(evt->cpumask);
330
331	switch (mode) {
332	case CLOCK_EVT_MODE_PERIODIC:
333	case CLOCK_EVT_MODE_ONESHOT:
334	case CLOCK_EVT_MODE_RESUME:
335		/* Nothing to do here yet */
336		break;
337	case CLOCK_EVT_MODE_UNUSED:
338	case CLOCK_EVT_MODE_SHUTDOWN:
339		uv_rtc_unset_timer(ced_cpu, 1);
340		break;
341	}
342}
343
344static void uv_rtc_interrupt(void)
345{
346	int cpu = smp_processor_id();
347	struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
348
349	if (!ced || !ced->event_handler)
350		return;
351
352	if (uv_rtc_unset_timer(cpu, 0) != 1)
353		return;
354
355	ced->event_handler(ced);
356}
357
358static int __init uv_enable_evt_rtc(char *str)
359{
360	uv_rtc_evt_enable = 1;
361
362	return 1;
363}
364__setup("uvrtcevt", uv_enable_evt_rtc);
365
366static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
367{
368	struct clock_event_device *ced = &__get_cpu_var(cpu_ced);
369
370	*ced = clock_event_device_uv;
371	ced->cpumask = cpumask_of(smp_processor_id());
372	clockevents_register_device(ced);
373}
374
375static __init int uv_rtc_setup_clock(void)
376{
377	int rc;
378
379	if (!is_uv_system())
380		return -ENODEV;
381
382	rc = clocksource_register_hz(&clocksource_uv, sn_rtc_cycles_per_second);
383	if (rc)
384		printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
385	else
386		printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
387			sn_rtc_cycles_per_second/(unsigned long)1E6);
388
389	if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
390		return rc;
391
392	/* Setup and register clockevents */
393	rc = uv_rtc_allocate_timers();
394	if (rc)
395		goto error;
396
397	x86_platform_ipi_callback = uv_rtc_interrupt;
398
399	clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
400				NSEC_PER_SEC, clock_event_device_uv.shift);
401
402	clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
403						sn_rtc_cycles_per_second;
 
404
405	clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
406				(NSEC_PER_SEC / sn_rtc_cycles_per_second);
 
407
408	rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
409	if (rc) {
410		x86_platform_ipi_callback = NULL;
411		uv_rtc_deallocate_timers();
412		goto error;
413	}
414
415	printk(KERN_INFO "UV RTC clockevents registered\n");
416
417	return 0;
418
419error:
420	clocksource_unregister(&clocksource_uv);
421	printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
422
423	return rc;
424}
425arch_initcall(uv_rtc_setup_clock);