Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * SGI RTC clock/timer routines.
  4 *
  5 *  (C) Copyright 2020 Hewlett Packard Enterprise Development LP
  6 *  Copyright (c) 2009-2013 Silicon Graphics, Inc.  All Rights Reserved.
  7 *  Copyright (c) Dimitri Sivanich
  8 */
  9#include <linux/clockchips.h>
 10#include <linux/slab.h>
 11
 12#include <asm/uv/uv_mmrs.h>
 13#include <asm/uv/uv_hub.h>
 14#include <asm/uv/bios.h>
 15#include <asm/uv/uv.h>
 16#include <asm/apic.h>
 17#include <asm/cpu.h>
 18
 19#define RTC_NAME		"sgi_rtc"
 20
 21static u64 uv_read_rtc(struct clocksource *cs);
 22static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
 23static int uv_rtc_shutdown(struct clock_event_device *evt);
 24
 25static struct clocksource clocksource_uv = {
 26	.name		= RTC_NAME,
 27	.rating		= 299,
 28	.read		= uv_read_rtc,
 29	.mask		= (u64)UVH_RTC_REAL_TIME_CLOCK_MASK,
 30	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 31};
 32
 33static struct clock_event_device clock_event_device_uv = {
 34	.name			= RTC_NAME,
 35	.features		= CLOCK_EVT_FEAT_ONESHOT,
 36	.shift			= 20,
 37	.rating			= 400,
 38	.irq			= -1,
 39	.set_next_event		= uv_rtc_next_event,
 40	.set_state_shutdown	= uv_rtc_shutdown,
 41	.event_handler		= NULL,
 42};
 43
 44static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
 45
 46/* There is one of these allocated per node */
 47struct uv_rtc_timer_head {
 48	spinlock_t	lock;
 49	/* next cpu waiting for timer, local node relative: */
 50	int		next_cpu;
 51	/* number of cpus on this node: */
 52	int		ncpus;
 53	struct {
 54		int	lcpu;		/* systemwide logical cpu number */
 55		u64	expires;	/* next timer expiration for this cpu */
 56	} cpu[];
 57};
 58
 59/*
 60 * Access to uv_rtc_timer_head via blade id.
 61 */
 62static struct uv_rtc_timer_head		**blade_info __read_mostly;
 63
 64static int				uv_rtc_evt_enable;
 65
 66/*
 67 * Hardware interface routines
 68 */
 69
 70/* Send IPIs to another node */
 71static void uv_rtc_send_IPI(int cpu)
 72{
 73	unsigned long apicid, val;
 74	int pnode;
 75
 76	apicid = cpu_physical_id(cpu);
 77	pnode = uv_apicid_to_pnode(apicid);
 
 78	val = (1UL << UVH_IPI_INT_SEND_SHFT) |
 79	      (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
 80	      (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
 81
 82	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
 83}
 84
 85/* Check for an RTC interrupt pending */
 86static int uv_intr_pending(int pnode)
 87{
 88	return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED2) &
 89		UVH_EVENT_OCCURRED2_RTC_1_MASK;
 
 
 
 
 
 90}
 91
 92/* Setup interrupt and return non-zero if early expiration occurred. */
 93static int uv_setup_intr(int cpu, u64 expires)
 94{
 95	u64 val;
 96	unsigned long apicid = cpu_physical_id(cpu);
 97	int pnode = uv_cpu_to_pnode(cpu);
 98
 99	uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
100		UVH_RTC1_INT_CONFIG_M_MASK);
101	uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
102
103	uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED2_ALIAS,
104			      UVH_EVENT_OCCURRED2_RTC_1_MASK);
 
 
 
 
105
106	val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
107		((u64)apicid << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
108
109	/* Set configuration */
110	uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
111	/* Initialize comparator value */
112	uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
113
114	if (uv_read_rtc(NULL) <= expires)
115		return 0;
116
117	return !uv_intr_pending(pnode);
118}
119
120/*
121 * Per-cpu timer tracking routines
122 */
123
124static __init void uv_rtc_deallocate_timers(void)
125{
126	int bid;
127
128	for_each_possible_blade(bid) {
129		kfree(blade_info[bid]);
130	}
131	kfree(blade_info);
132}
133
134/* Allocate per-node list of cpu timer expiration times. */
135static __init int uv_rtc_allocate_timers(void)
136{
137	int cpu;
138
139	blade_info = kcalloc(uv_possible_blades, sizeof(void *), GFP_KERNEL);
140	if (!blade_info)
141		return -ENOMEM;
142
143	for_each_present_cpu(cpu) {
144		int nid = cpu_to_node(cpu);
145		int bid = uv_cpu_to_blade_id(cpu);
146		int bcpu = uv_cpu_blade_processor_id(cpu);
147		struct uv_rtc_timer_head *head = blade_info[bid];
148
149		if (!head) {
150			head = kmalloc_node(struct_size(head, cpu,
151				uv_blade_nr_possible_cpus(bid)),
 
152				GFP_KERNEL, nid);
153			if (!head) {
154				uv_rtc_deallocate_timers();
155				return -ENOMEM;
156			}
157			spin_lock_init(&head->lock);
158			head->ncpus = uv_blade_nr_possible_cpus(bid);
159			head->next_cpu = -1;
160			blade_info[bid] = head;
161		}
162
163		head->cpu[bcpu].lcpu = cpu;
164		head->cpu[bcpu].expires = ULLONG_MAX;
165	}
166
167	return 0;
168}
169
170/* Find and set the next expiring timer.  */
171static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
172{
173	u64 lowest = ULLONG_MAX;
174	int c, bcpu = -1;
175
176	head->next_cpu = -1;
177	for (c = 0; c < head->ncpus; c++) {
178		u64 exp = head->cpu[c].expires;
179		if (exp < lowest) {
180			bcpu = c;
181			lowest = exp;
182		}
183	}
184	if (bcpu >= 0) {
185		head->next_cpu = bcpu;
186		c = head->cpu[bcpu].lcpu;
187		if (uv_setup_intr(c, lowest))
188			/* If we didn't set it up in time, trigger */
189			uv_rtc_send_IPI(c);
190	} else {
191		uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
192			UVH_RTC1_INT_CONFIG_M_MASK);
193	}
194}
195
196/*
197 * Set expiration time for current cpu.
198 *
199 * Returns 1 if we missed the expiration time.
200 */
201static int uv_rtc_set_timer(int cpu, u64 expires)
202{
203	int pnode = uv_cpu_to_pnode(cpu);
204	int bid = uv_cpu_to_blade_id(cpu);
205	struct uv_rtc_timer_head *head = blade_info[bid];
206	int bcpu = uv_cpu_blade_processor_id(cpu);
207	u64 *t = &head->cpu[bcpu].expires;
208	unsigned long flags;
209	int next_cpu;
210
211	spin_lock_irqsave(&head->lock, flags);
212
213	next_cpu = head->next_cpu;
214	*t = expires;
215
216	/* Will this one be next to go off? */
217	if (next_cpu < 0 || bcpu == next_cpu ||
218			expires < head->cpu[next_cpu].expires) {
219		head->next_cpu = bcpu;
220		if (uv_setup_intr(cpu, expires)) {
221			*t = ULLONG_MAX;
222			uv_rtc_find_next_timer(head, pnode);
223			spin_unlock_irqrestore(&head->lock, flags);
224			return -ETIME;
225		}
226	}
227
228	spin_unlock_irqrestore(&head->lock, flags);
229	return 0;
230}
231
232/*
233 * Unset expiration time for current cpu.
234 *
235 * Returns 1 if this timer was pending.
236 */
237static int uv_rtc_unset_timer(int cpu, int force)
238{
239	int pnode = uv_cpu_to_pnode(cpu);
240	int bid = uv_cpu_to_blade_id(cpu);
241	struct uv_rtc_timer_head *head = blade_info[bid];
242	int bcpu = uv_cpu_blade_processor_id(cpu);
243	u64 *t = &head->cpu[bcpu].expires;
244	unsigned long flags;
245	int rc = 0;
246
247	spin_lock_irqsave(&head->lock, flags);
248
249	if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
250		rc = 1;
251
252	if (rc) {
253		*t = ULLONG_MAX;
254		/* Was the hardware setup for this timer? */
255		if (head->next_cpu == bcpu)
256			uv_rtc_find_next_timer(head, pnode);
257	}
258
259	spin_unlock_irqrestore(&head->lock, flags);
260
261	return rc;
262}
263
264
265/*
266 * Kernel interface routines.
267 */
268
269/*
270 * Read the RTC.
271 *
272 * Starting with HUB rev 2.0, the UV RTC register is replicated across all
273 * cachelines of it's own page.  This allows faster simultaneous reads
274 * from a given socket.
275 */
276static u64 uv_read_rtc(struct clocksource *cs)
277{
278	unsigned long offset;
279
280	if (uv_get_min_hub_revision_id() == 1)
281		offset = 0;
282	else
283		offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE;
284
285	return (u64)uv_read_local_mmr(UVH_RTC | offset);
286}
287
288/*
289 * Program the next event, relative to now
290 */
291static int uv_rtc_next_event(unsigned long delta,
292			     struct clock_event_device *ced)
293{
294	int ced_cpu = cpumask_first(ced->cpumask);
295
296	return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
297}
298
299/*
300 * Shutdown the RTC timer
301 */
302static int uv_rtc_shutdown(struct clock_event_device *evt)
303{
304	int ced_cpu = cpumask_first(evt->cpumask);
305
306	uv_rtc_unset_timer(ced_cpu, 1);
307	return 0;
308}
309
310static void uv_rtc_interrupt(void)
311{
312	int cpu = smp_processor_id();
313	struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
314
315	if (!ced || !ced->event_handler)
316		return;
317
318	if (uv_rtc_unset_timer(cpu, 0) != 1)
319		return;
320
321	ced->event_handler(ced);
322}
323
324static int __init uv_enable_evt_rtc(char *str)
325{
326	uv_rtc_evt_enable = 1;
327
328	return 1;
329}
330__setup("uvrtcevt", uv_enable_evt_rtc);
331
332static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
333{
334	struct clock_event_device *ced = this_cpu_ptr(&cpu_ced);
335
336	*ced = clock_event_device_uv;
337	ced->cpumask = cpumask_of(smp_processor_id());
338	clockevents_register_device(ced);
339}
340
341static __init int uv_rtc_setup_clock(void)
342{
343	int rc;
344
345	if (!is_uv_system())
346		return -ENODEV;
347
348	rc = clocksource_register_hz(&clocksource_uv, sn_rtc_cycles_per_second);
349	if (rc)
350		printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
351	else
352		printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
353			sn_rtc_cycles_per_second/(unsigned long)1E6);
354
355	if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
356		return rc;
357
358	/* Setup and register clockevents */
359	rc = uv_rtc_allocate_timers();
360	if (rc)
361		goto error;
362
363	x86_platform_ipi_callback = uv_rtc_interrupt;
364
365	clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
366				NSEC_PER_SEC, clock_event_device_uv.shift);
367
368	clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
369						sn_rtc_cycles_per_second;
370	clock_event_device_uv.min_delta_ticks = 1;
371
372	clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
373				(NSEC_PER_SEC / sn_rtc_cycles_per_second);
374	clock_event_device_uv.max_delta_ticks = clocksource_uv.mask;
375
376	rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
377	if (rc) {
378		x86_platform_ipi_callback = NULL;
379		uv_rtc_deallocate_timers();
380		goto error;
381	}
382
383	printk(KERN_INFO "UV RTC clockevents registered\n");
384
385	return 0;
386
387error:
388	clocksource_unregister(&clocksource_uv);
389	printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
390
391	return rc;
392}
393arch_initcall(uv_rtc_setup_clock);
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * SGI RTC clock/timer routines.
  4 *
 
  5 *  Copyright (c) 2009-2013 Silicon Graphics, Inc.  All Rights Reserved.
  6 *  Copyright (c) Dimitri Sivanich
  7 */
  8#include <linux/clockchips.h>
  9#include <linux/slab.h>
 10
 11#include <asm/uv/uv_mmrs.h>
 12#include <asm/uv/uv_hub.h>
 13#include <asm/uv/bios.h>
 14#include <asm/uv/uv.h>
 15#include <asm/apic.h>
 16#include <asm/cpu.h>
 17
 18#define RTC_NAME		"sgi_rtc"
 19
 20static u64 uv_read_rtc(struct clocksource *cs);
 21static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
 22static int uv_rtc_shutdown(struct clock_event_device *evt);
 23
 24static struct clocksource clocksource_uv = {
 25	.name		= RTC_NAME,
 26	.rating		= 299,
 27	.read		= uv_read_rtc,
 28	.mask		= (u64)UVH_RTC_REAL_TIME_CLOCK_MASK,
 29	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 30};
 31
 32static struct clock_event_device clock_event_device_uv = {
 33	.name			= RTC_NAME,
 34	.features		= CLOCK_EVT_FEAT_ONESHOT,
 35	.shift			= 20,
 36	.rating			= 400,
 37	.irq			= -1,
 38	.set_next_event		= uv_rtc_next_event,
 39	.set_state_shutdown	= uv_rtc_shutdown,
 40	.event_handler		= NULL,
 41};
 42
 43static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
 44
 45/* There is one of these allocated per node */
 46struct uv_rtc_timer_head {
 47	spinlock_t	lock;
 48	/* next cpu waiting for timer, local node relative: */
 49	int		next_cpu;
 50	/* number of cpus on this node: */
 51	int		ncpus;
 52	struct {
 53		int	lcpu;		/* systemwide logical cpu number */
 54		u64	expires;	/* next timer expiration for this cpu */
 55	} cpu[1];
 56};
 57
 58/*
 59 * Access to uv_rtc_timer_head via blade id.
 60 */
 61static struct uv_rtc_timer_head		**blade_info __read_mostly;
 62
 63static int				uv_rtc_evt_enable;
 64
 65/*
 66 * Hardware interface routines
 67 */
 68
 69/* Send IPIs to another node */
 70static void uv_rtc_send_IPI(int cpu)
 71{
 72	unsigned long apicid, val;
 73	int pnode;
 74
 75	apicid = cpu_physical_id(cpu);
 76	pnode = uv_apicid_to_pnode(apicid);
 77	apicid |= uv_apicid_hibits;
 78	val = (1UL << UVH_IPI_INT_SEND_SHFT) |
 79	      (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
 80	      (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
 81
 82	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
 83}
 84
 85/* Check for an RTC interrupt pending */
 86static int uv_intr_pending(int pnode)
 87{
 88	if (is_uv1_hub())
 89		return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) &
 90			UV1H_EVENT_OCCURRED0_RTC1_MASK;
 91	else if (is_uvx_hub())
 92		return uv_read_global_mmr64(pnode, UVXH_EVENT_OCCURRED2) &
 93			UVXH_EVENT_OCCURRED2_RTC_1_MASK;
 94	return 0;
 95}
 96
 97/* Setup interrupt and return non-zero if early expiration occurred. */
 98static int uv_setup_intr(int cpu, u64 expires)
 99{
100	u64 val;
101	unsigned long apicid = cpu_physical_id(cpu) | uv_apicid_hibits;
102	int pnode = uv_cpu_to_pnode(cpu);
103
104	uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
105		UVH_RTC1_INT_CONFIG_M_MASK);
106	uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
107
108	if (is_uv1_hub())
109		uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS,
110				UV1H_EVENT_OCCURRED0_RTC1_MASK);
111	else
112		uv_write_global_mmr64(pnode, UVXH_EVENT_OCCURRED2_ALIAS,
113				UVXH_EVENT_OCCURRED2_RTC_1_MASK);
114
115	val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
116		((u64)apicid << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
117
118	/* Set configuration */
119	uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
120	/* Initialize comparator value */
121	uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
122
123	if (uv_read_rtc(NULL) <= expires)
124		return 0;
125
126	return !uv_intr_pending(pnode);
127}
128
129/*
130 * Per-cpu timer tracking routines
131 */
132
133static __init void uv_rtc_deallocate_timers(void)
134{
135	int bid;
136
137	for_each_possible_blade(bid) {
138		kfree(blade_info[bid]);
139	}
140	kfree(blade_info);
141}
142
143/* Allocate per-node list of cpu timer expiration times. */
144static __init int uv_rtc_allocate_timers(void)
145{
146	int cpu;
147
148	blade_info = kcalloc(uv_possible_blades, sizeof(void *), GFP_KERNEL);
149	if (!blade_info)
150		return -ENOMEM;
151
152	for_each_present_cpu(cpu) {
153		int nid = cpu_to_node(cpu);
154		int bid = uv_cpu_to_blade_id(cpu);
155		int bcpu = uv_cpu_blade_processor_id(cpu);
156		struct uv_rtc_timer_head *head = blade_info[bid];
157
158		if (!head) {
159			head = kmalloc_node(sizeof(struct uv_rtc_timer_head) +
160				(uv_blade_nr_possible_cpus(bid) *
161					2 * sizeof(u64)),
162				GFP_KERNEL, nid);
163			if (!head) {
164				uv_rtc_deallocate_timers();
165				return -ENOMEM;
166			}
167			spin_lock_init(&head->lock);
168			head->ncpus = uv_blade_nr_possible_cpus(bid);
169			head->next_cpu = -1;
170			blade_info[bid] = head;
171		}
172
173		head->cpu[bcpu].lcpu = cpu;
174		head->cpu[bcpu].expires = ULLONG_MAX;
175	}
176
177	return 0;
178}
179
180/* Find and set the next expiring timer.  */
181static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
182{
183	u64 lowest = ULLONG_MAX;
184	int c, bcpu = -1;
185
186	head->next_cpu = -1;
187	for (c = 0; c < head->ncpus; c++) {
188		u64 exp = head->cpu[c].expires;
189		if (exp < lowest) {
190			bcpu = c;
191			lowest = exp;
192		}
193	}
194	if (bcpu >= 0) {
195		head->next_cpu = bcpu;
196		c = head->cpu[bcpu].lcpu;
197		if (uv_setup_intr(c, lowest))
198			/* If we didn't set it up in time, trigger */
199			uv_rtc_send_IPI(c);
200	} else {
201		uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
202			UVH_RTC1_INT_CONFIG_M_MASK);
203	}
204}
205
206/*
207 * Set expiration time for current cpu.
208 *
209 * Returns 1 if we missed the expiration time.
210 */
211static int uv_rtc_set_timer(int cpu, u64 expires)
212{
213	int pnode = uv_cpu_to_pnode(cpu);
214	int bid = uv_cpu_to_blade_id(cpu);
215	struct uv_rtc_timer_head *head = blade_info[bid];
216	int bcpu = uv_cpu_blade_processor_id(cpu);
217	u64 *t = &head->cpu[bcpu].expires;
218	unsigned long flags;
219	int next_cpu;
220
221	spin_lock_irqsave(&head->lock, flags);
222
223	next_cpu = head->next_cpu;
224	*t = expires;
225
226	/* Will this one be next to go off? */
227	if (next_cpu < 0 || bcpu == next_cpu ||
228			expires < head->cpu[next_cpu].expires) {
229		head->next_cpu = bcpu;
230		if (uv_setup_intr(cpu, expires)) {
231			*t = ULLONG_MAX;
232			uv_rtc_find_next_timer(head, pnode);
233			spin_unlock_irqrestore(&head->lock, flags);
234			return -ETIME;
235		}
236	}
237
238	spin_unlock_irqrestore(&head->lock, flags);
239	return 0;
240}
241
242/*
243 * Unset expiration time for current cpu.
244 *
245 * Returns 1 if this timer was pending.
246 */
247static int uv_rtc_unset_timer(int cpu, int force)
248{
249	int pnode = uv_cpu_to_pnode(cpu);
250	int bid = uv_cpu_to_blade_id(cpu);
251	struct uv_rtc_timer_head *head = blade_info[bid];
252	int bcpu = uv_cpu_blade_processor_id(cpu);
253	u64 *t = &head->cpu[bcpu].expires;
254	unsigned long flags;
255	int rc = 0;
256
257	spin_lock_irqsave(&head->lock, flags);
258
259	if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
260		rc = 1;
261
262	if (rc) {
263		*t = ULLONG_MAX;
264		/* Was the hardware setup for this timer? */
265		if (head->next_cpu == bcpu)
266			uv_rtc_find_next_timer(head, pnode);
267	}
268
269	spin_unlock_irqrestore(&head->lock, flags);
270
271	return rc;
272}
273
274
275/*
276 * Kernel interface routines.
277 */
278
279/*
280 * Read the RTC.
281 *
282 * Starting with HUB rev 2.0, the UV RTC register is replicated across all
283 * cachelines of it's own page.  This allows faster simultaneous reads
284 * from a given socket.
285 */
286static u64 uv_read_rtc(struct clocksource *cs)
287{
288	unsigned long offset;
289
290	if (uv_get_min_hub_revision_id() == 1)
291		offset = 0;
292	else
293		offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE;
294
295	return (u64)uv_read_local_mmr(UVH_RTC | offset);
296}
297
298/*
299 * Program the next event, relative to now
300 */
301static int uv_rtc_next_event(unsigned long delta,
302			     struct clock_event_device *ced)
303{
304	int ced_cpu = cpumask_first(ced->cpumask);
305
306	return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
307}
308
309/*
310 * Shutdown the RTC timer
311 */
312static int uv_rtc_shutdown(struct clock_event_device *evt)
313{
314	int ced_cpu = cpumask_first(evt->cpumask);
315
316	uv_rtc_unset_timer(ced_cpu, 1);
317	return 0;
318}
319
320static void uv_rtc_interrupt(void)
321{
322	int cpu = smp_processor_id();
323	struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
324
325	if (!ced || !ced->event_handler)
326		return;
327
328	if (uv_rtc_unset_timer(cpu, 0) != 1)
329		return;
330
331	ced->event_handler(ced);
332}
333
334static int __init uv_enable_evt_rtc(char *str)
335{
336	uv_rtc_evt_enable = 1;
337
338	return 1;
339}
340__setup("uvrtcevt", uv_enable_evt_rtc);
341
342static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
343{
344	struct clock_event_device *ced = this_cpu_ptr(&cpu_ced);
345
346	*ced = clock_event_device_uv;
347	ced->cpumask = cpumask_of(smp_processor_id());
348	clockevents_register_device(ced);
349}
350
351static __init int uv_rtc_setup_clock(void)
352{
353	int rc;
354
355	if (!is_uv_system())
356		return -ENODEV;
357
358	rc = clocksource_register_hz(&clocksource_uv, sn_rtc_cycles_per_second);
359	if (rc)
360		printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
361	else
362		printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
363			sn_rtc_cycles_per_second/(unsigned long)1E6);
364
365	if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
366		return rc;
367
368	/* Setup and register clockevents */
369	rc = uv_rtc_allocate_timers();
370	if (rc)
371		goto error;
372
373	x86_platform_ipi_callback = uv_rtc_interrupt;
374
375	clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
376				NSEC_PER_SEC, clock_event_device_uv.shift);
377
378	clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
379						sn_rtc_cycles_per_second;
380	clock_event_device_uv.min_delta_ticks = 1;
381
382	clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
383				(NSEC_PER_SEC / sn_rtc_cycles_per_second);
384	clock_event_device_uv.max_delta_ticks = clocksource_uv.mask;
385
386	rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
387	if (rc) {
388		x86_platform_ipi_callback = NULL;
389		uv_rtc_deallocate_timers();
390		goto error;
391	}
392
393	printk(KERN_INFO "UV RTC clockevents registered\n");
394
395	return 0;
396
397error:
398	clocksource_unregister(&clocksource_uv);
399	printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
400
401	return rc;
402}
403arch_initcall(uv_rtc_setup_clock);