Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1994 Linus Torvalds
4 *
5 * Cyrix stuff, June 1998 by:
6 * - Rafael R. Reilova (moved everything from head.S),
7 * <rreilova@ececs.uc.edu>
8 * - Channing Corn (tests & fixes),
9 * - Andrew D. Balsa (code cleanup).
10 */
11#include <linux/init.h>
12#include <linux/utsname.h>
13#include <linux/cpu.h>
14#include <linux/module.h>
15#include <linux/nospec.h>
16#include <linux/prctl.h>
17#include <linux/sched/smt.h>
18#include <linux/pgtable.h>
19#include <linux/bpf.h>
20
21#include <asm/spec-ctrl.h>
22#include <asm/cmdline.h>
23#include <asm/bugs.h>
24#include <asm/processor.h>
25#include <asm/processor-flags.h>
26#include <asm/fpu/api.h>
27#include <asm/msr.h>
28#include <asm/vmx.h>
29#include <asm/paravirt.h>
30#include <asm/alternative.h>
31#include <asm/set_memory.h>
32#include <asm/intel-family.h>
33#include <asm/e820/api.h>
34#include <asm/hypervisor.h>
35#include <asm/tlbflush.h>
36
37#include "cpu.h"
38
39static void __init spectre_v1_select_mitigation(void);
40static void __init spectre_v2_select_mitigation(void);
41static void __init retbleed_select_mitigation(void);
42static void __init spectre_v2_user_select_mitigation(void);
43static void __init ssb_select_mitigation(void);
44static void __init l1tf_select_mitigation(void);
45static void __init mds_select_mitigation(void);
46static void __init md_clear_update_mitigation(void);
47static void __init md_clear_select_mitigation(void);
48static void __init taa_select_mitigation(void);
49static void __init mmio_select_mitigation(void);
50static void __init srbds_select_mitigation(void);
51static void __init l1d_flush_select_mitigation(void);
52
53/* The base value of the SPEC_CTRL MSR without task-specific bits set */
54u64 x86_spec_ctrl_base;
55EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
56
57/* The current value of the SPEC_CTRL MSR with task-specific bits set */
58DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
59EXPORT_SYMBOL_GPL(x86_spec_ctrl_current);
60
61static DEFINE_MUTEX(spec_ctrl_mutex);
62
63/* Update SPEC_CTRL MSR and its cached copy unconditionally */
64static void update_spec_ctrl(u64 val)
65{
66 this_cpu_write(x86_spec_ctrl_current, val);
67 wrmsrl(MSR_IA32_SPEC_CTRL, val);
68}
69
70/*
71 * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
72 * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
73 */
74void update_spec_ctrl_cond(u64 val)
75{
76 if (this_cpu_read(x86_spec_ctrl_current) == val)
77 return;
78
79 this_cpu_write(x86_spec_ctrl_current, val);
80
81 /*
82 * When KERNEL_IBRS this MSR is written on return-to-user, unless
83 * forced the update can be delayed until that time.
84 */
85 if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
86 wrmsrl(MSR_IA32_SPEC_CTRL, val);
87}
88
89u64 spec_ctrl_current(void)
90{
91 return this_cpu_read(x86_spec_ctrl_current);
92}
93EXPORT_SYMBOL_GPL(spec_ctrl_current);
94
95/*
96 * AMD specific MSR info for Speculative Store Bypass control.
97 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
98 */
99u64 __ro_after_init x86_amd_ls_cfg_base;
100u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
101
102/* Control conditional STIBP in switch_to() */
103DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
104/* Control conditional IBPB in switch_mm() */
105DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
106/* Control unconditional IBPB in switch_mm() */
107DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
108
109/* Control MDS CPU buffer clear before returning to user space */
110DEFINE_STATIC_KEY_FALSE(mds_user_clear);
111EXPORT_SYMBOL_GPL(mds_user_clear);
112/* Control MDS CPU buffer clear before idling (halt, mwait) */
113DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
114EXPORT_SYMBOL_GPL(mds_idle_clear);
115
116/*
117 * Controls whether l1d flush based mitigations are enabled,
118 * based on hw features and admin setting via boot parameter
119 * defaults to false
120 */
121DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
122
123/* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
124DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
125EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
126
127void __init check_bugs(void)
128{
129 identify_boot_cpu();
130
131 /*
132 * identify_boot_cpu() initialized SMT support information, let the
133 * core code know.
134 */
135 cpu_smt_check_topology();
136
137 if (!IS_ENABLED(CONFIG_SMP)) {
138 pr_info("CPU: ");
139 print_cpu_info(&boot_cpu_data);
140 }
141
142 /*
143 * Read the SPEC_CTRL MSR to account for reserved bits which may
144 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
145 * init code as it is not enumerated and depends on the family.
146 */
147 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
148 rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
149
150 /* Select the proper CPU mitigations before patching alternatives: */
151 spectre_v1_select_mitigation();
152 spectre_v2_select_mitigation();
153 /*
154 * retbleed_select_mitigation() relies on the state set by
155 * spectre_v2_select_mitigation(); specifically it wants to know about
156 * spectre_v2=ibrs.
157 */
158 retbleed_select_mitigation();
159 /*
160 * spectre_v2_user_select_mitigation() relies on the state set by
161 * retbleed_select_mitigation(); specifically the STIBP selection is
162 * forced for UNRET or IBPB.
163 */
164 spectre_v2_user_select_mitigation();
165 ssb_select_mitigation();
166 l1tf_select_mitigation();
167 md_clear_select_mitigation();
168 srbds_select_mitigation();
169 l1d_flush_select_mitigation();
170
171 arch_smt_update();
172
173#ifdef CONFIG_X86_32
174 /*
175 * Check whether we are able to run this kernel safely on SMP.
176 *
177 * - i386 is no longer supported.
178 * - In order to run on anything without a TSC, we need to be
179 * compiled for a i486.
180 */
181 if (boot_cpu_data.x86 < 4)
182 panic("Kernel requires i486+ for 'invlpg' and other features");
183
184 init_utsname()->machine[1] =
185 '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
186 alternative_instructions();
187
188 fpu__init_check_bugs();
189#else /* CONFIG_X86_64 */
190 alternative_instructions();
191
192 /*
193 * Make sure the first 2MB area is not mapped by huge pages
194 * There are typically fixed size MTRRs in there and overlapping
195 * MTRRs into large pages causes slow downs.
196 *
197 * Right now we don't do that with gbpages because there seems
198 * very little benefit for that case.
199 */
200 if (!direct_gbpages)
201 set_memory_4k((unsigned long)__va(0), 1);
202#endif
203}
204
205/*
206 * NOTE: This function is *only* called for SVM, since Intel uses
207 * MSR_IA32_SPEC_CTRL for SSBD.
208 */
209void
210x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
211{
212 u64 guestval, hostval;
213 struct thread_info *ti = current_thread_info();
214
215 /*
216 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
217 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
218 */
219 if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
220 !static_cpu_has(X86_FEATURE_VIRT_SSBD))
221 return;
222
223 /*
224 * If the host has SSBD mitigation enabled, force it in the host's
225 * virtual MSR value. If its not permanently enabled, evaluate
226 * current's TIF_SSBD thread flag.
227 */
228 if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
229 hostval = SPEC_CTRL_SSBD;
230 else
231 hostval = ssbd_tif_to_spec_ctrl(ti->flags);
232
233 /* Sanitize the guest value */
234 guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
235
236 if (hostval != guestval) {
237 unsigned long tif;
238
239 tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
240 ssbd_spec_ctrl_to_tif(hostval);
241
242 speculation_ctrl_update(tif);
243 }
244}
245EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
246
247static void x86_amd_ssb_disable(void)
248{
249 u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
250
251 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
252 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
253 else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
254 wrmsrl(MSR_AMD64_LS_CFG, msrval);
255}
256
257#undef pr_fmt
258#define pr_fmt(fmt) "MDS: " fmt
259
260/* Default mitigation for MDS-affected CPUs */
261static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
262static bool mds_nosmt __ro_after_init = false;
263
264static const char * const mds_strings[] = {
265 [MDS_MITIGATION_OFF] = "Vulnerable",
266 [MDS_MITIGATION_FULL] = "Mitigation: Clear CPU buffers",
267 [MDS_MITIGATION_VMWERV] = "Vulnerable: Clear CPU buffers attempted, no microcode",
268};
269
270static void __init mds_select_mitigation(void)
271{
272 if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
273 mds_mitigation = MDS_MITIGATION_OFF;
274 return;
275 }
276
277 if (mds_mitigation == MDS_MITIGATION_FULL) {
278 if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
279 mds_mitigation = MDS_MITIGATION_VMWERV;
280
281 static_branch_enable(&mds_user_clear);
282
283 if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
284 (mds_nosmt || cpu_mitigations_auto_nosmt()))
285 cpu_smt_disable(false);
286 }
287}
288
289static int __init mds_cmdline(char *str)
290{
291 if (!boot_cpu_has_bug(X86_BUG_MDS))
292 return 0;
293
294 if (!str)
295 return -EINVAL;
296
297 if (!strcmp(str, "off"))
298 mds_mitigation = MDS_MITIGATION_OFF;
299 else if (!strcmp(str, "full"))
300 mds_mitigation = MDS_MITIGATION_FULL;
301 else if (!strcmp(str, "full,nosmt")) {
302 mds_mitigation = MDS_MITIGATION_FULL;
303 mds_nosmt = true;
304 }
305
306 return 0;
307}
308early_param("mds", mds_cmdline);
309
310#undef pr_fmt
311#define pr_fmt(fmt) "TAA: " fmt
312
313enum taa_mitigations {
314 TAA_MITIGATION_OFF,
315 TAA_MITIGATION_UCODE_NEEDED,
316 TAA_MITIGATION_VERW,
317 TAA_MITIGATION_TSX_DISABLED,
318};
319
320/* Default mitigation for TAA-affected CPUs */
321static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
322static bool taa_nosmt __ro_after_init;
323
324static const char * const taa_strings[] = {
325 [TAA_MITIGATION_OFF] = "Vulnerable",
326 [TAA_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
327 [TAA_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
328 [TAA_MITIGATION_TSX_DISABLED] = "Mitigation: TSX disabled",
329};
330
331static void __init taa_select_mitigation(void)
332{
333 u64 ia32_cap;
334
335 if (!boot_cpu_has_bug(X86_BUG_TAA)) {
336 taa_mitigation = TAA_MITIGATION_OFF;
337 return;
338 }
339
340 /* TSX previously disabled by tsx=off */
341 if (!boot_cpu_has(X86_FEATURE_RTM)) {
342 taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
343 return;
344 }
345
346 if (cpu_mitigations_off()) {
347 taa_mitigation = TAA_MITIGATION_OFF;
348 return;
349 }
350
351 /*
352 * TAA mitigation via VERW is turned off if both
353 * tsx_async_abort=off and mds=off are specified.
354 */
355 if (taa_mitigation == TAA_MITIGATION_OFF &&
356 mds_mitigation == MDS_MITIGATION_OFF)
357 return;
358
359 if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
360 taa_mitigation = TAA_MITIGATION_VERW;
361 else
362 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
363
364 /*
365 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
366 * A microcode update fixes this behavior to clear CPU buffers. It also
367 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
368 * ARCH_CAP_TSX_CTRL_MSR bit.
369 *
370 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
371 * update is required.
372 */
373 ia32_cap = x86_read_arch_cap_msr();
374 if ( (ia32_cap & ARCH_CAP_MDS_NO) &&
375 !(ia32_cap & ARCH_CAP_TSX_CTRL_MSR))
376 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
377
378 /*
379 * TSX is enabled, select alternate mitigation for TAA which is
380 * the same as MDS. Enable MDS static branch to clear CPU buffers.
381 *
382 * For guests that can't determine whether the correct microcode is
383 * present on host, enable the mitigation for UCODE_NEEDED as well.
384 */
385 static_branch_enable(&mds_user_clear);
386
387 if (taa_nosmt || cpu_mitigations_auto_nosmt())
388 cpu_smt_disable(false);
389}
390
391static int __init tsx_async_abort_parse_cmdline(char *str)
392{
393 if (!boot_cpu_has_bug(X86_BUG_TAA))
394 return 0;
395
396 if (!str)
397 return -EINVAL;
398
399 if (!strcmp(str, "off")) {
400 taa_mitigation = TAA_MITIGATION_OFF;
401 } else if (!strcmp(str, "full")) {
402 taa_mitigation = TAA_MITIGATION_VERW;
403 } else if (!strcmp(str, "full,nosmt")) {
404 taa_mitigation = TAA_MITIGATION_VERW;
405 taa_nosmt = true;
406 }
407
408 return 0;
409}
410early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
411
412#undef pr_fmt
413#define pr_fmt(fmt) "MMIO Stale Data: " fmt
414
415enum mmio_mitigations {
416 MMIO_MITIGATION_OFF,
417 MMIO_MITIGATION_UCODE_NEEDED,
418 MMIO_MITIGATION_VERW,
419};
420
421/* Default mitigation for Processor MMIO Stale Data vulnerabilities */
422static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW;
423static bool mmio_nosmt __ro_after_init = false;
424
425static const char * const mmio_strings[] = {
426 [MMIO_MITIGATION_OFF] = "Vulnerable",
427 [MMIO_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
428 [MMIO_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
429};
430
431static void __init mmio_select_mitigation(void)
432{
433 u64 ia32_cap;
434
435 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
436 boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) ||
437 cpu_mitigations_off()) {
438 mmio_mitigation = MMIO_MITIGATION_OFF;
439 return;
440 }
441
442 if (mmio_mitigation == MMIO_MITIGATION_OFF)
443 return;
444
445 ia32_cap = x86_read_arch_cap_msr();
446
447 /*
448 * Enable CPU buffer clear mitigation for host and VMM, if also affected
449 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
450 */
451 if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
452 boot_cpu_has(X86_FEATURE_RTM)))
453 static_branch_enable(&mds_user_clear);
454 else
455 static_branch_enable(&mmio_stale_data_clear);
456
457 /*
458 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
459 * be propagated to uncore buffers, clearing the Fill buffers on idle
460 * is required irrespective of SMT state.
461 */
462 if (!(ia32_cap & ARCH_CAP_FBSDP_NO))
463 static_branch_enable(&mds_idle_clear);
464
465 /*
466 * Check if the system has the right microcode.
467 *
468 * CPU Fill buffer clear mitigation is enumerated by either an explicit
469 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
470 * affected systems.
471 */
472 if ((ia32_cap & ARCH_CAP_FB_CLEAR) ||
473 (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
474 boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
475 !(ia32_cap & ARCH_CAP_MDS_NO)))
476 mmio_mitigation = MMIO_MITIGATION_VERW;
477 else
478 mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
479
480 if (mmio_nosmt || cpu_mitigations_auto_nosmt())
481 cpu_smt_disable(false);
482}
483
484static int __init mmio_stale_data_parse_cmdline(char *str)
485{
486 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
487 return 0;
488
489 if (!str)
490 return -EINVAL;
491
492 if (!strcmp(str, "off")) {
493 mmio_mitigation = MMIO_MITIGATION_OFF;
494 } else if (!strcmp(str, "full")) {
495 mmio_mitigation = MMIO_MITIGATION_VERW;
496 } else if (!strcmp(str, "full,nosmt")) {
497 mmio_mitigation = MMIO_MITIGATION_VERW;
498 mmio_nosmt = true;
499 }
500
501 return 0;
502}
503early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
504
505#undef pr_fmt
506#define pr_fmt(fmt) "" fmt
507
508static void __init md_clear_update_mitigation(void)
509{
510 if (cpu_mitigations_off())
511 return;
512
513 if (!static_key_enabled(&mds_user_clear))
514 goto out;
515
516 /*
517 * mds_user_clear is now enabled. Update MDS, TAA and MMIO Stale Data
518 * mitigation, if necessary.
519 */
520 if (mds_mitigation == MDS_MITIGATION_OFF &&
521 boot_cpu_has_bug(X86_BUG_MDS)) {
522 mds_mitigation = MDS_MITIGATION_FULL;
523 mds_select_mitigation();
524 }
525 if (taa_mitigation == TAA_MITIGATION_OFF &&
526 boot_cpu_has_bug(X86_BUG_TAA)) {
527 taa_mitigation = TAA_MITIGATION_VERW;
528 taa_select_mitigation();
529 }
530 if (mmio_mitigation == MMIO_MITIGATION_OFF &&
531 boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
532 mmio_mitigation = MMIO_MITIGATION_VERW;
533 mmio_select_mitigation();
534 }
535out:
536 if (boot_cpu_has_bug(X86_BUG_MDS))
537 pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
538 if (boot_cpu_has_bug(X86_BUG_TAA))
539 pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
540 if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
541 pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
542 else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
543 pr_info("MMIO Stale Data: Unknown: No mitigations\n");
544}
545
546static void __init md_clear_select_mitigation(void)
547{
548 mds_select_mitigation();
549 taa_select_mitigation();
550 mmio_select_mitigation();
551
552 /*
553 * As MDS, TAA and MMIO Stale Data mitigations are inter-related, update
554 * and print their mitigation after MDS, TAA and MMIO Stale Data
555 * mitigation selection is done.
556 */
557 md_clear_update_mitigation();
558}
559
560#undef pr_fmt
561#define pr_fmt(fmt) "SRBDS: " fmt
562
563enum srbds_mitigations {
564 SRBDS_MITIGATION_OFF,
565 SRBDS_MITIGATION_UCODE_NEEDED,
566 SRBDS_MITIGATION_FULL,
567 SRBDS_MITIGATION_TSX_OFF,
568 SRBDS_MITIGATION_HYPERVISOR,
569};
570
571static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;
572
573static const char * const srbds_strings[] = {
574 [SRBDS_MITIGATION_OFF] = "Vulnerable",
575 [SRBDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
576 [SRBDS_MITIGATION_FULL] = "Mitigation: Microcode",
577 [SRBDS_MITIGATION_TSX_OFF] = "Mitigation: TSX disabled",
578 [SRBDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status",
579};
580
581static bool srbds_off;
582
583void update_srbds_msr(void)
584{
585 u64 mcu_ctrl;
586
587 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
588 return;
589
590 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
591 return;
592
593 if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
594 return;
595
596 /*
597 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
598 * being disabled and it hasn't received the SRBDS MSR microcode.
599 */
600 if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
601 return;
602
603 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
604
605 switch (srbds_mitigation) {
606 case SRBDS_MITIGATION_OFF:
607 case SRBDS_MITIGATION_TSX_OFF:
608 mcu_ctrl |= RNGDS_MITG_DIS;
609 break;
610 case SRBDS_MITIGATION_FULL:
611 mcu_ctrl &= ~RNGDS_MITG_DIS;
612 break;
613 default:
614 break;
615 }
616
617 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
618}
619
620static void __init srbds_select_mitigation(void)
621{
622 u64 ia32_cap;
623
624 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
625 return;
626
627 /*
628 * Check to see if this is one of the MDS_NO systems supporting TSX that
629 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
630 * by Processor MMIO Stale Data vulnerability.
631 */
632 ia32_cap = x86_read_arch_cap_msr();
633 if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
634 !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
635 srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
636 else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
637 srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
638 else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
639 srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
640 else if (cpu_mitigations_off() || srbds_off)
641 srbds_mitigation = SRBDS_MITIGATION_OFF;
642
643 update_srbds_msr();
644 pr_info("%s\n", srbds_strings[srbds_mitigation]);
645}
646
647static int __init srbds_parse_cmdline(char *str)
648{
649 if (!str)
650 return -EINVAL;
651
652 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
653 return 0;
654
655 srbds_off = !strcmp(str, "off");
656 return 0;
657}
658early_param("srbds", srbds_parse_cmdline);
659
660#undef pr_fmt
661#define pr_fmt(fmt) "L1D Flush : " fmt
662
663enum l1d_flush_mitigations {
664 L1D_FLUSH_OFF = 0,
665 L1D_FLUSH_ON,
666};
667
668static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
669
670static void __init l1d_flush_select_mitigation(void)
671{
672 if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
673 return;
674
675 static_branch_enable(&switch_mm_cond_l1d_flush);
676 pr_info("Conditional flush on switch_mm() enabled\n");
677}
678
679static int __init l1d_flush_parse_cmdline(char *str)
680{
681 if (!strcmp(str, "on"))
682 l1d_flush_mitigation = L1D_FLUSH_ON;
683
684 return 0;
685}
686early_param("l1d_flush", l1d_flush_parse_cmdline);
687
688#undef pr_fmt
689#define pr_fmt(fmt) "Spectre V1 : " fmt
690
691enum spectre_v1_mitigation {
692 SPECTRE_V1_MITIGATION_NONE,
693 SPECTRE_V1_MITIGATION_AUTO,
694};
695
696static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
697 SPECTRE_V1_MITIGATION_AUTO;
698
699static const char * const spectre_v1_strings[] = {
700 [SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
701 [SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
702};
703
704/*
705 * Does SMAP provide full mitigation against speculative kernel access to
706 * userspace?
707 */
708static bool smap_works_speculatively(void)
709{
710 if (!boot_cpu_has(X86_FEATURE_SMAP))
711 return false;
712
713 /*
714 * On CPUs which are vulnerable to Meltdown, SMAP does not
715 * prevent speculative access to user data in the L1 cache.
716 * Consider SMAP to be non-functional as a mitigation on these
717 * CPUs.
718 */
719 if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
720 return false;
721
722 return true;
723}
724
725static void __init spectre_v1_select_mitigation(void)
726{
727 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
728 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
729 return;
730 }
731
732 if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
733 /*
734 * With Spectre v1, a user can speculatively control either
735 * path of a conditional swapgs with a user-controlled GS
736 * value. The mitigation is to add lfences to both code paths.
737 *
738 * If FSGSBASE is enabled, the user can put a kernel address in
739 * GS, in which case SMAP provides no protection.
740 *
741 * If FSGSBASE is disabled, the user can only put a user space
742 * address in GS. That makes an attack harder, but still
743 * possible if there's no SMAP protection.
744 */
745 if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
746 !smap_works_speculatively()) {
747 /*
748 * Mitigation can be provided from SWAPGS itself or
749 * PTI as the CR3 write in the Meltdown mitigation
750 * is serializing.
751 *
752 * If neither is there, mitigate with an LFENCE to
753 * stop speculation through swapgs.
754 */
755 if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
756 !boot_cpu_has(X86_FEATURE_PTI))
757 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
758
759 /*
760 * Enable lfences in the kernel entry (non-swapgs)
761 * paths, to prevent user entry from speculatively
762 * skipping swapgs.
763 */
764 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
765 }
766 }
767
768 pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
769}
770
771static int __init nospectre_v1_cmdline(char *str)
772{
773 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
774 return 0;
775}
776early_param("nospectre_v1", nospectre_v1_cmdline);
777
778static enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init =
779 SPECTRE_V2_NONE;
780
781#undef pr_fmt
782#define pr_fmt(fmt) "RETBleed: " fmt
783
784enum retbleed_mitigation {
785 RETBLEED_MITIGATION_NONE,
786 RETBLEED_MITIGATION_UNRET,
787 RETBLEED_MITIGATION_IBPB,
788 RETBLEED_MITIGATION_IBRS,
789 RETBLEED_MITIGATION_EIBRS,
790 RETBLEED_MITIGATION_STUFF,
791};
792
793enum retbleed_mitigation_cmd {
794 RETBLEED_CMD_OFF,
795 RETBLEED_CMD_AUTO,
796 RETBLEED_CMD_UNRET,
797 RETBLEED_CMD_IBPB,
798 RETBLEED_CMD_STUFF,
799};
800
801static const char * const retbleed_strings[] = {
802 [RETBLEED_MITIGATION_NONE] = "Vulnerable",
803 [RETBLEED_MITIGATION_UNRET] = "Mitigation: untrained return thunk",
804 [RETBLEED_MITIGATION_IBPB] = "Mitigation: IBPB",
805 [RETBLEED_MITIGATION_IBRS] = "Mitigation: IBRS",
806 [RETBLEED_MITIGATION_EIBRS] = "Mitigation: Enhanced IBRS",
807 [RETBLEED_MITIGATION_STUFF] = "Mitigation: Stuffing",
808};
809
810static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
811 RETBLEED_MITIGATION_NONE;
812static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init =
813 RETBLEED_CMD_AUTO;
814
815static int __ro_after_init retbleed_nosmt = false;
816
817static int __init retbleed_parse_cmdline(char *str)
818{
819 if (!str)
820 return -EINVAL;
821
822 while (str) {
823 char *next = strchr(str, ',');
824 if (next) {
825 *next = 0;
826 next++;
827 }
828
829 if (!strcmp(str, "off")) {
830 retbleed_cmd = RETBLEED_CMD_OFF;
831 } else if (!strcmp(str, "auto")) {
832 retbleed_cmd = RETBLEED_CMD_AUTO;
833 } else if (!strcmp(str, "unret")) {
834 retbleed_cmd = RETBLEED_CMD_UNRET;
835 } else if (!strcmp(str, "ibpb")) {
836 retbleed_cmd = RETBLEED_CMD_IBPB;
837 } else if (!strcmp(str, "stuff")) {
838 retbleed_cmd = RETBLEED_CMD_STUFF;
839 } else if (!strcmp(str, "nosmt")) {
840 retbleed_nosmt = true;
841 } else if (!strcmp(str, "force")) {
842 setup_force_cpu_bug(X86_BUG_RETBLEED);
843 } else {
844 pr_err("Ignoring unknown retbleed option (%s).", str);
845 }
846
847 str = next;
848 }
849
850 return 0;
851}
852early_param("retbleed", retbleed_parse_cmdline);
853
854#define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
855#define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
856
857static void __init retbleed_select_mitigation(void)
858{
859 bool mitigate_smt = false;
860
861 if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
862 return;
863
864 switch (retbleed_cmd) {
865 case RETBLEED_CMD_OFF:
866 return;
867
868 case RETBLEED_CMD_UNRET:
869 if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY)) {
870 retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
871 } else {
872 pr_err("WARNING: kernel not compiled with CPU_UNRET_ENTRY.\n");
873 goto do_cmd_auto;
874 }
875 break;
876
877 case RETBLEED_CMD_IBPB:
878 if (!boot_cpu_has(X86_FEATURE_IBPB)) {
879 pr_err("WARNING: CPU does not support IBPB.\n");
880 goto do_cmd_auto;
881 } else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) {
882 retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
883 } else {
884 pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n");
885 goto do_cmd_auto;
886 }
887 break;
888
889 case RETBLEED_CMD_STUFF:
890 if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING) &&
891 spectre_v2_enabled == SPECTRE_V2_RETPOLINE) {
892 retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
893
894 } else {
895 if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING))
896 pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n");
897 else
898 pr_err("WARNING: kernel not compiled with CALL_DEPTH_TRACKING.\n");
899
900 goto do_cmd_auto;
901 }
902 break;
903
904do_cmd_auto:
905 case RETBLEED_CMD_AUTO:
906 default:
907 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
908 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
909 if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY))
910 retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
911 else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY) && boot_cpu_has(X86_FEATURE_IBPB))
912 retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
913 }
914
915 /*
916 * The Intel mitigation (IBRS or eIBRS) was already selected in
917 * spectre_v2_select_mitigation(). 'retbleed_mitigation' will
918 * be set accordingly below.
919 */
920
921 break;
922 }
923
924 switch (retbleed_mitigation) {
925 case RETBLEED_MITIGATION_UNRET:
926 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
927 setup_force_cpu_cap(X86_FEATURE_UNRET);
928
929 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
930 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
931 pr_err(RETBLEED_UNTRAIN_MSG);
932
933 mitigate_smt = true;
934 break;
935
936 case RETBLEED_MITIGATION_IBPB:
937 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
938 mitigate_smt = true;
939 break;
940
941 case RETBLEED_MITIGATION_STUFF:
942 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
943 setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
944 x86_set_skl_return_thunk();
945 break;
946
947 default:
948 break;
949 }
950
951 if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
952 (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
953 cpu_smt_disable(false);
954
955 /*
956 * Let IBRS trump all on Intel without affecting the effects of the
957 * retbleed= cmdline option except for call depth based stuffing
958 */
959 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
960 switch (spectre_v2_enabled) {
961 case SPECTRE_V2_IBRS:
962 retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
963 break;
964 case SPECTRE_V2_EIBRS:
965 case SPECTRE_V2_EIBRS_RETPOLINE:
966 case SPECTRE_V2_EIBRS_LFENCE:
967 retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
968 break;
969 default:
970 if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF)
971 pr_err(RETBLEED_INTEL_MSG);
972 }
973 }
974
975 pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
976}
977
978#undef pr_fmt
979#define pr_fmt(fmt) "Spectre V2 : " fmt
980
981static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
982 SPECTRE_V2_USER_NONE;
983static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
984 SPECTRE_V2_USER_NONE;
985
986#ifdef CONFIG_RETPOLINE
987static bool spectre_v2_bad_module;
988
989bool retpoline_module_ok(bool has_retpoline)
990{
991 if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
992 return true;
993
994 pr_err("System may be vulnerable to spectre v2\n");
995 spectre_v2_bad_module = true;
996 return false;
997}
998
999static inline const char *spectre_v2_module_string(void)
1000{
1001 return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
1002}
1003#else
1004static inline const char *spectre_v2_module_string(void) { return ""; }
1005#endif
1006
1007#define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
1008#define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
1009#define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
1010#define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
1011
1012#ifdef CONFIG_BPF_SYSCALL
1013void unpriv_ebpf_notify(int new_state)
1014{
1015 if (new_state)
1016 return;
1017
1018 /* Unprivileged eBPF is enabled */
1019
1020 switch (spectre_v2_enabled) {
1021 case SPECTRE_V2_EIBRS:
1022 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1023 break;
1024 case SPECTRE_V2_EIBRS_LFENCE:
1025 if (sched_smt_active())
1026 pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1027 break;
1028 default:
1029 break;
1030 }
1031}
1032#endif
1033
1034static inline bool match_option(const char *arg, int arglen, const char *opt)
1035{
1036 int len = strlen(opt);
1037
1038 return len == arglen && !strncmp(arg, opt, len);
1039}
1040
1041/* The kernel command line selection for spectre v2 */
1042enum spectre_v2_mitigation_cmd {
1043 SPECTRE_V2_CMD_NONE,
1044 SPECTRE_V2_CMD_AUTO,
1045 SPECTRE_V2_CMD_FORCE,
1046 SPECTRE_V2_CMD_RETPOLINE,
1047 SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1048 SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1049 SPECTRE_V2_CMD_EIBRS,
1050 SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1051 SPECTRE_V2_CMD_EIBRS_LFENCE,
1052 SPECTRE_V2_CMD_IBRS,
1053};
1054
1055enum spectre_v2_user_cmd {
1056 SPECTRE_V2_USER_CMD_NONE,
1057 SPECTRE_V2_USER_CMD_AUTO,
1058 SPECTRE_V2_USER_CMD_FORCE,
1059 SPECTRE_V2_USER_CMD_PRCTL,
1060 SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1061 SPECTRE_V2_USER_CMD_SECCOMP,
1062 SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1063};
1064
1065static const char * const spectre_v2_user_strings[] = {
1066 [SPECTRE_V2_USER_NONE] = "User space: Vulnerable",
1067 [SPECTRE_V2_USER_STRICT] = "User space: Mitigation: STIBP protection",
1068 [SPECTRE_V2_USER_STRICT_PREFERRED] = "User space: Mitigation: STIBP always-on protection",
1069 [SPECTRE_V2_USER_PRCTL] = "User space: Mitigation: STIBP via prctl",
1070 [SPECTRE_V2_USER_SECCOMP] = "User space: Mitigation: STIBP via seccomp and prctl",
1071};
1072
1073static const struct {
1074 const char *option;
1075 enum spectre_v2_user_cmd cmd;
1076 bool secure;
1077} v2_user_options[] __initconst = {
1078 { "auto", SPECTRE_V2_USER_CMD_AUTO, false },
1079 { "off", SPECTRE_V2_USER_CMD_NONE, false },
1080 { "on", SPECTRE_V2_USER_CMD_FORCE, true },
1081 { "prctl", SPECTRE_V2_USER_CMD_PRCTL, false },
1082 { "prctl,ibpb", SPECTRE_V2_USER_CMD_PRCTL_IBPB, false },
1083 { "seccomp", SPECTRE_V2_USER_CMD_SECCOMP, false },
1084 { "seccomp,ibpb", SPECTRE_V2_USER_CMD_SECCOMP_IBPB, false },
1085};
1086
1087static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1088{
1089 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1090 pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1091}
1092
1093static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd;
1094
1095static enum spectre_v2_user_cmd __init
1096spectre_v2_parse_user_cmdline(void)
1097{
1098 char arg[20];
1099 int ret, i;
1100
1101 switch (spectre_v2_cmd) {
1102 case SPECTRE_V2_CMD_NONE:
1103 return SPECTRE_V2_USER_CMD_NONE;
1104 case SPECTRE_V2_CMD_FORCE:
1105 return SPECTRE_V2_USER_CMD_FORCE;
1106 default:
1107 break;
1108 }
1109
1110 ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
1111 arg, sizeof(arg));
1112 if (ret < 0)
1113 return SPECTRE_V2_USER_CMD_AUTO;
1114
1115 for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1116 if (match_option(arg, ret, v2_user_options[i].option)) {
1117 spec_v2_user_print_cond(v2_user_options[i].option,
1118 v2_user_options[i].secure);
1119 return v2_user_options[i].cmd;
1120 }
1121 }
1122
1123 pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
1124 return SPECTRE_V2_USER_CMD_AUTO;
1125}
1126
1127static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1128{
1129 return mode == SPECTRE_V2_IBRS ||
1130 mode == SPECTRE_V2_EIBRS ||
1131 mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1132 mode == SPECTRE_V2_EIBRS_LFENCE;
1133}
1134
1135static void __init
1136spectre_v2_user_select_mitigation(void)
1137{
1138 enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
1139 bool smt_possible = IS_ENABLED(CONFIG_SMP);
1140 enum spectre_v2_user_cmd cmd;
1141
1142 if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1143 return;
1144
1145 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
1146 cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
1147 smt_possible = false;
1148
1149 cmd = spectre_v2_parse_user_cmdline();
1150 switch (cmd) {
1151 case SPECTRE_V2_USER_CMD_NONE:
1152 goto set_mode;
1153 case SPECTRE_V2_USER_CMD_FORCE:
1154 mode = SPECTRE_V2_USER_STRICT;
1155 break;
1156 case SPECTRE_V2_USER_CMD_AUTO:
1157 case SPECTRE_V2_USER_CMD_PRCTL:
1158 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1159 mode = SPECTRE_V2_USER_PRCTL;
1160 break;
1161 case SPECTRE_V2_USER_CMD_SECCOMP:
1162 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1163 if (IS_ENABLED(CONFIG_SECCOMP))
1164 mode = SPECTRE_V2_USER_SECCOMP;
1165 else
1166 mode = SPECTRE_V2_USER_PRCTL;
1167 break;
1168 }
1169
1170 /* Initialize Indirect Branch Prediction Barrier */
1171 if (boot_cpu_has(X86_FEATURE_IBPB)) {
1172 setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
1173
1174 spectre_v2_user_ibpb = mode;
1175 switch (cmd) {
1176 case SPECTRE_V2_USER_CMD_FORCE:
1177 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1178 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1179 static_branch_enable(&switch_mm_always_ibpb);
1180 spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1181 break;
1182 case SPECTRE_V2_USER_CMD_PRCTL:
1183 case SPECTRE_V2_USER_CMD_AUTO:
1184 case SPECTRE_V2_USER_CMD_SECCOMP:
1185 static_branch_enable(&switch_mm_cond_ibpb);
1186 break;
1187 default:
1188 break;
1189 }
1190
1191 pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
1192 static_key_enabled(&switch_mm_always_ibpb) ?
1193 "always-on" : "conditional");
1194 }
1195
1196 /*
1197 * If no STIBP, IBRS or enhanced IBRS is enabled, or SMT impossible,
1198 * STIBP is not required.
1199 */
1200 if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1201 !smt_possible ||
1202 spectre_v2_in_ibrs_mode(spectre_v2_enabled))
1203 return;
1204
1205 /*
1206 * At this point, an STIBP mode other than "off" has been set.
1207 * If STIBP support is not being forced, check if STIBP always-on
1208 * is preferred.
1209 */
1210 if (mode != SPECTRE_V2_USER_STRICT &&
1211 boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1212 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1213
1214 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1215 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
1216 if (mode != SPECTRE_V2_USER_STRICT &&
1217 mode != SPECTRE_V2_USER_STRICT_PREFERRED)
1218 pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1219 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1220 }
1221
1222 spectre_v2_user_stibp = mode;
1223
1224set_mode:
1225 pr_info("%s\n", spectre_v2_user_strings[mode]);
1226}
1227
1228static const char * const spectre_v2_strings[] = {
1229 [SPECTRE_V2_NONE] = "Vulnerable",
1230 [SPECTRE_V2_RETPOLINE] = "Mitigation: Retpolines",
1231 [SPECTRE_V2_LFENCE] = "Mitigation: LFENCE",
1232 [SPECTRE_V2_EIBRS] = "Mitigation: Enhanced IBRS",
1233 [SPECTRE_V2_EIBRS_LFENCE] = "Mitigation: Enhanced IBRS + LFENCE",
1234 [SPECTRE_V2_EIBRS_RETPOLINE] = "Mitigation: Enhanced IBRS + Retpolines",
1235 [SPECTRE_V2_IBRS] = "Mitigation: IBRS",
1236};
1237
1238static const struct {
1239 const char *option;
1240 enum spectre_v2_mitigation_cmd cmd;
1241 bool secure;
1242} mitigation_options[] __initconst = {
1243 { "off", SPECTRE_V2_CMD_NONE, false },
1244 { "on", SPECTRE_V2_CMD_FORCE, true },
1245 { "retpoline", SPECTRE_V2_CMD_RETPOLINE, false },
1246 { "retpoline,amd", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false },
1247 { "retpoline,lfence", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false },
1248 { "retpoline,generic", SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1249 { "eibrs", SPECTRE_V2_CMD_EIBRS, false },
1250 { "eibrs,lfence", SPECTRE_V2_CMD_EIBRS_LFENCE, false },
1251 { "eibrs,retpoline", SPECTRE_V2_CMD_EIBRS_RETPOLINE, false },
1252 { "auto", SPECTRE_V2_CMD_AUTO, false },
1253 { "ibrs", SPECTRE_V2_CMD_IBRS, false },
1254};
1255
1256static void __init spec_v2_print_cond(const char *reason, bool secure)
1257{
1258 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1259 pr_info("%s selected on command line.\n", reason);
1260}
1261
1262static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1263{
1264 enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
1265 char arg[20];
1266 int ret, i;
1267
1268 if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1269 cpu_mitigations_off())
1270 return SPECTRE_V2_CMD_NONE;
1271
1272 ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1273 if (ret < 0)
1274 return SPECTRE_V2_CMD_AUTO;
1275
1276 for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1277 if (!match_option(arg, ret, mitigation_options[i].option))
1278 continue;
1279 cmd = mitigation_options[i].cmd;
1280 break;
1281 }
1282
1283 if (i >= ARRAY_SIZE(mitigation_options)) {
1284 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1285 return SPECTRE_V2_CMD_AUTO;
1286 }
1287
1288 if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1289 cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1290 cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1291 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1292 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1293 !IS_ENABLED(CONFIG_RETPOLINE)) {
1294 pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1295 mitigation_options[i].option);
1296 return SPECTRE_V2_CMD_AUTO;
1297 }
1298
1299 if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1300 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1301 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1302 !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1303 pr_err("%s selected but CPU doesn't have eIBRS. Switching to AUTO select\n",
1304 mitigation_options[i].option);
1305 return SPECTRE_V2_CMD_AUTO;
1306 }
1307
1308 if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1309 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1310 !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1311 pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1312 mitigation_options[i].option);
1313 return SPECTRE_V2_CMD_AUTO;
1314 }
1315
1316 if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_CPU_IBRS_ENTRY)) {
1317 pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1318 mitigation_options[i].option);
1319 return SPECTRE_V2_CMD_AUTO;
1320 }
1321
1322 if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1323 pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
1324 mitigation_options[i].option);
1325 return SPECTRE_V2_CMD_AUTO;
1326 }
1327
1328 if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
1329 pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
1330 mitigation_options[i].option);
1331 return SPECTRE_V2_CMD_AUTO;
1332 }
1333
1334 if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
1335 pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
1336 mitigation_options[i].option);
1337 return SPECTRE_V2_CMD_AUTO;
1338 }
1339
1340 spec_v2_print_cond(mitigation_options[i].option,
1341 mitigation_options[i].secure);
1342 return cmd;
1343}
1344
1345static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1346{
1347 if (!IS_ENABLED(CONFIG_RETPOLINE)) {
1348 pr_err("Kernel not compiled with retpoline; no mitigation available!");
1349 return SPECTRE_V2_NONE;
1350 }
1351
1352 return SPECTRE_V2_RETPOLINE;
1353}
1354
1355/* Disable in-kernel use of non-RSB RET predictors */
1356static void __init spec_ctrl_disable_kernel_rrsba(void)
1357{
1358 u64 ia32_cap;
1359
1360 if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
1361 return;
1362
1363 ia32_cap = x86_read_arch_cap_msr();
1364
1365 if (ia32_cap & ARCH_CAP_RRSBA) {
1366 x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
1367 update_spec_ctrl(x86_spec_ctrl_base);
1368 }
1369}
1370
1371static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)
1372{
1373 /*
1374 * Similar to context switches, there are two types of RSB attacks
1375 * after VM exit:
1376 *
1377 * 1) RSB underflow
1378 *
1379 * 2) Poisoned RSB entry
1380 *
1381 * When retpoline is enabled, both are mitigated by filling/clearing
1382 * the RSB.
1383 *
1384 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
1385 * prediction isolation protections, RSB still needs to be cleared
1386 * because of #2. Note that SMEP provides no protection here, unlike
1387 * user-space-poisoned RSB entries.
1388 *
1389 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB
1390 * bug is present then a LITE version of RSB protection is required,
1391 * just a single call needs to retire before a RET is executed.
1392 */
1393 switch (mode) {
1394 case SPECTRE_V2_NONE:
1395 return;
1396
1397 case SPECTRE_V2_EIBRS_LFENCE:
1398 case SPECTRE_V2_EIBRS:
1399 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
1400 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
1401 pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
1402 }
1403 return;
1404
1405 case SPECTRE_V2_EIBRS_RETPOLINE:
1406 case SPECTRE_V2_RETPOLINE:
1407 case SPECTRE_V2_LFENCE:
1408 case SPECTRE_V2_IBRS:
1409 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1410 pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n");
1411 return;
1412 }
1413
1414 pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit");
1415 dump_stack();
1416}
1417
1418static void __init spectre_v2_select_mitigation(void)
1419{
1420 enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1421 enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1422
1423 /*
1424 * If the CPU is not affected and the command line mode is NONE or AUTO
1425 * then nothing to do.
1426 */
1427 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1428 (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1429 return;
1430
1431 switch (cmd) {
1432 case SPECTRE_V2_CMD_NONE:
1433 return;
1434
1435 case SPECTRE_V2_CMD_FORCE:
1436 case SPECTRE_V2_CMD_AUTO:
1437 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1438 mode = SPECTRE_V2_EIBRS;
1439 break;
1440 }
1441
1442 if (IS_ENABLED(CONFIG_CPU_IBRS_ENTRY) &&
1443 boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1444 retbleed_cmd != RETBLEED_CMD_OFF &&
1445 retbleed_cmd != RETBLEED_CMD_STUFF &&
1446 boot_cpu_has(X86_FEATURE_IBRS) &&
1447 boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1448 mode = SPECTRE_V2_IBRS;
1449 break;
1450 }
1451
1452 mode = spectre_v2_select_retpoline();
1453 break;
1454
1455 case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1456 pr_err(SPECTRE_V2_LFENCE_MSG);
1457 mode = SPECTRE_V2_LFENCE;
1458 break;
1459
1460 case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1461 mode = SPECTRE_V2_RETPOLINE;
1462 break;
1463
1464 case SPECTRE_V2_CMD_RETPOLINE:
1465 mode = spectre_v2_select_retpoline();
1466 break;
1467
1468 case SPECTRE_V2_CMD_IBRS:
1469 mode = SPECTRE_V2_IBRS;
1470 break;
1471
1472 case SPECTRE_V2_CMD_EIBRS:
1473 mode = SPECTRE_V2_EIBRS;
1474 break;
1475
1476 case SPECTRE_V2_CMD_EIBRS_LFENCE:
1477 mode = SPECTRE_V2_EIBRS_LFENCE;
1478 break;
1479
1480 case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1481 mode = SPECTRE_V2_EIBRS_RETPOLINE;
1482 break;
1483 }
1484
1485 if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1486 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1487
1488 if (spectre_v2_in_ibrs_mode(mode)) {
1489 x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1490 update_spec_ctrl(x86_spec_ctrl_base);
1491 }
1492
1493 switch (mode) {
1494 case SPECTRE_V2_NONE:
1495 case SPECTRE_V2_EIBRS:
1496 break;
1497
1498 case SPECTRE_V2_IBRS:
1499 setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
1500 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1501 pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
1502 break;
1503
1504 case SPECTRE_V2_LFENCE:
1505 case SPECTRE_V2_EIBRS_LFENCE:
1506 setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1507 fallthrough;
1508
1509 case SPECTRE_V2_RETPOLINE:
1510 case SPECTRE_V2_EIBRS_RETPOLINE:
1511 setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1512 break;
1513 }
1514
1515 /*
1516 * Disable alternate RSB predictions in kernel when indirect CALLs and
1517 * JMPs gets protection against BHI and Intramode-BTI, but RET
1518 * prediction from a non-RSB predictor is still a risk.
1519 */
1520 if (mode == SPECTRE_V2_EIBRS_LFENCE ||
1521 mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1522 mode == SPECTRE_V2_RETPOLINE)
1523 spec_ctrl_disable_kernel_rrsba();
1524
1525 spectre_v2_enabled = mode;
1526 pr_info("%s\n", spectre_v2_strings[mode]);
1527
1528 /*
1529 * If Spectre v2 protection has been enabled, fill the RSB during a
1530 * context switch. In general there are two types of RSB attacks
1531 * across context switches, for which the CALLs/RETs may be unbalanced.
1532 *
1533 * 1) RSB underflow
1534 *
1535 * Some Intel parts have "bottomless RSB". When the RSB is empty,
1536 * speculated return targets may come from the branch predictor,
1537 * which could have a user-poisoned BTB or BHB entry.
1538 *
1539 * AMD has it even worse: *all* returns are speculated from the BTB,
1540 * regardless of the state of the RSB.
1541 *
1542 * When IBRS or eIBRS is enabled, the "user -> kernel" attack
1543 * scenario is mitigated by the IBRS branch prediction isolation
1544 * properties, so the RSB buffer filling wouldn't be necessary to
1545 * protect against this type of attack.
1546 *
1547 * The "user -> user" attack scenario is mitigated by RSB filling.
1548 *
1549 * 2) Poisoned RSB entry
1550 *
1551 * If the 'next' in-kernel return stack is shorter than 'prev',
1552 * 'next' could be tricked into speculating with a user-poisoned RSB
1553 * entry.
1554 *
1555 * The "user -> kernel" attack scenario is mitigated by SMEP and
1556 * eIBRS.
1557 *
1558 * The "user -> user" scenario, also known as SpectreBHB, requires
1559 * RSB clearing.
1560 *
1561 * So to mitigate all cases, unconditionally fill RSB on context
1562 * switches.
1563 *
1564 * FIXME: Is this pointless for retbleed-affected AMD?
1565 */
1566 setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1567 pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1568
1569 spectre_v2_determine_rsb_fill_type_at_vmexit(mode);
1570
1571 /*
1572 * Retpoline protects the kernel, but doesn't protect firmware. IBRS
1573 * and Enhanced IBRS protect firmware too, so enable IBRS around
1574 * firmware calls only when IBRS / Enhanced IBRS aren't otherwise
1575 * enabled.
1576 *
1577 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1578 * the user might select retpoline on the kernel command line and if
1579 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1580 * enable IBRS around firmware calls.
1581 */
1582 if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1583 boot_cpu_has(X86_FEATURE_IBPB) &&
1584 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1585 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
1586
1587 if (retbleed_cmd != RETBLEED_CMD_IBPB) {
1588 setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
1589 pr_info("Enabling Speculation Barrier for firmware calls\n");
1590 }
1591
1592 } else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) {
1593 setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1594 pr_info("Enabling Restricted Speculation for firmware calls\n");
1595 }
1596
1597 /* Set up IBPB and STIBP depending on the general spectre V2 command */
1598 spectre_v2_cmd = cmd;
1599}
1600
1601static void update_stibp_msr(void * __unused)
1602{
1603 u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
1604 update_spec_ctrl(val);
1605}
1606
1607/* Update x86_spec_ctrl_base in case SMT state changed. */
1608static void update_stibp_strict(void)
1609{
1610 u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1611
1612 if (sched_smt_active())
1613 mask |= SPEC_CTRL_STIBP;
1614
1615 if (mask == x86_spec_ctrl_base)
1616 return;
1617
1618 pr_info("Update user space SMT mitigation: STIBP %s\n",
1619 mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1620 x86_spec_ctrl_base = mask;
1621 on_each_cpu(update_stibp_msr, NULL, 1);
1622}
1623
1624/* Update the static key controlling the evaluation of TIF_SPEC_IB */
1625static void update_indir_branch_cond(void)
1626{
1627 if (sched_smt_active())
1628 static_branch_enable(&switch_to_cond_stibp);
1629 else
1630 static_branch_disable(&switch_to_cond_stibp);
1631}
1632
1633#undef pr_fmt
1634#define pr_fmt(fmt) fmt
1635
1636/* Update the static key controlling the MDS CPU buffer clear in idle */
1637static void update_mds_branch_idle(void)
1638{
1639 u64 ia32_cap = x86_read_arch_cap_msr();
1640
1641 /*
1642 * Enable the idle clearing if SMT is active on CPUs which are
1643 * affected only by MSBDS and not any other MDS variant.
1644 *
1645 * The other variants cannot be mitigated when SMT is enabled, so
1646 * clearing the buffers on idle just to prevent the Store Buffer
1647 * repartitioning leak would be a window dressing exercise.
1648 */
1649 if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1650 return;
1651
1652 if (sched_smt_active()) {
1653 static_branch_enable(&mds_idle_clear);
1654 } else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1655 (ia32_cap & ARCH_CAP_FBSDP_NO)) {
1656 static_branch_disable(&mds_idle_clear);
1657 }
1658}
1659
1660#define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1661#define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1662#define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
1663
1664void cpu_bugs_smt_update(void)
1665{
1666 mutex_lock(&spec_ctrl_mutex);
1667
1668 if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1669 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1670 pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1671
1672 switch (spectre_v2_user_stibp) {
1673 case SPECTRE_V2_USER_NONE:
1674 break;
1675 case SPECTRE_V2_USER_STRICT:
1676 case SPECTRE_V2_USER_STRICT_PREFERRED:
1677 update_stibp_strict();
1678 break;
1679 case SPECTRE_V2_USER_PRCTL:
1680 case SPECTRE_V2_USER_SECCOMP:
1681 update_indir_branch_cond();
1682 break;
1683 }
1684
1685 switch (mds_mitigation) {
1686 case MDS_MITIGATION_FULL:
1687 case MDS_MITIGATION_VMWERV:
1688 if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1689 pr_warn_once(MDS_MSG_SMT);
1690 update_mds_branch_idle();
1691 break;
1692 case MDS_MITIGATION_OFF:
1693 break;
1694 }
1695
1696 switch (taa_mitigation) {
1697 case TAA_MITIGATION_VERW:
1698 case TAA_MITIGATION_UCODE_NEEDED:
1699 if (sched_smt_active())
1700 pr_warn_once(TAA_MSG_SMT);
1701 break;
1702 case TAA_MITIGATION_TSX_DISABLED:
1703 case TAA_MITIGATION_OFF:
1704 break;
1705 }
1706
1707 switch (mmio_mitigation) {
1708 case MMIO_MITIGATION_VERW:
1709 case MMIO_MITIGATION_UCODE_NEEDED:
1710 if (sched_smt_active())
1711 pr_warn_once(MMIO_MSG_SMT);
1712 break;
1713 case MMIO_MITIGATION_OFF:
1714 break;
1715 }
1716
1717 mutex_unlock(&spec_ctrl_mutex);
1718}
1719
1720#undef pr_fmt
1721#define pr_fmt(fmt) "Speculative Store Bypass: " fmt
1722
1723static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
1724
1725/* The kernel command line selection */
1726enum ssb_mitigation_cmd {
1727 SPEC_STORE_BYPASS_CMD_NONE,
1728 SPEC_STORE_BYPASS_CMD_AUTO,
1729 SPEC_STORE_BYPASS_CMD_ON,
1730 SPEC_STORE_BYPASS_CMD_PRCTL,
1731 SPEC_STORE_BYPASS_CMD_SECCOMP,
1732};
1733
1734static const char * const ssb_strings[] = {
1735 [SPEC_STORE_BYPASS_NONE] = "Vulnerable",
1736 [SPEC_STORE_BYPASS_DISABLE] = "Mitigation: Speculative Store Bypass disabled",
1737 [SPEC_STORE_BYPASS_PRCTL] = "Mitigation: Speculative Store Bypass disabled via prctl",
1738 [SPEC_STORE_BYPASS_SECCOMP] = "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
1739};
1740
1741static const struct {
1742 const char *option;
1743 enum ssb_mitigation_cmd cmd;
1744} ssb_mitigation_options[] __initconst = {
1745 { "auto", SPEC_STORE_BYPASS_CMD_AUTO }, /* Platform decides */
1746 { "on", SPEC_STORE_BYPASS_CMD_ON }, /* Disable Speculative Store Bypass */
1747 { "off", SPEC_STORE_BYPASS_CMD_NONE }, /* Don't touch Speculative Store Bypass */
1748 { "prctl", SPEC_STORE_BYPASS_CMD_PRCTL }, /* Disable Speculative Store Bypass via prctl */
1749 { "seccomp", SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
1750};
1751
1752static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
1753{
1754 enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
1755 char arg[20];
1756 int ret, i;
1757
1758 if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
1759 cpu_mitigations_off()) {
1760 return SPEC_STORE_BYPASS_CMD_NONE;
1761 } else {
1762 ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
1763 arg, sizeof(arg));
1764 if (ret < 0)
1765 return SPEC_STORE_BYPASS_CMD_AUTO;
1766
1767 for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
1768 if (!match_option(arg, ret, ssb_mitigation_options[i].option))
1769 continue;
1770
1771 cmd = ssb_mitigation_options[i].cmd;
1772 break;
1773 }
1774
1775 if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
1776 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1777 return SPEC_STORE_BYPASS_CMD_AUTO;
1778 }
1779 }
1780
1781 return cmd;
1782}
1783
1784static enum ssb_mitigation __init __ssb_select_mitigation(void)
1785{
1786 enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
1787 enum ssb_mitigation_cmd cmd;
1788
1789 if (!boot_cpu_has(X86_FEATURE_SSBD))
1790 return mode;
1791
1792 cmd = ssb_parse_cmdline();
1793 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
1794 (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
1795 cmd == SPEC_STORE_BYPASS_CMD_AUTO))
1796 return mode;
1797
1798 switch (cmd) {
1799 case SPEC_STORE_BYPASS_CMD_SECCOMP:
1800 /*
1801 * Choose prctl+seccomp as the default mode if seccomp is
1802 * enabled.
1803 */
1804 if (IS_ENABLED(CONFIG_SECCOMP))
1805 mode = SPEC_STORE_BYPASS_SECCOMP;
1806 else
1807 mode = SPEC_STORE_BYPASS_PRCTL;
1808 break;
1809 case SPEC_STORE_BYPASS_CMD_ON:
1810 mode = SPEC_STORE_BYPASS_DISABLE;
1811 break;
1812 case SPEC_STORE_BYPASS_CMD_AUTO:
1813 case SPEC_STORE_BYPASS_CMD_PRCTL:
1814 mode = SPEC_STORE_BYPASS_PRCTL;
1815 break;
1816 case SPEC_STORE_BYPASS_CMD_NONE:
1817 break;
1818 }
1819
1820 /*
1821 * We have three CPU feature flags that are in play here:
1822 * - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
1823 * - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
1824 * - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
1825 */
1826 if (mode == SPEC_STORE_BYPASS_DISABLE) {
1827 setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
1828 /*
1829 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
1830 * use a completely different MSR and bit dependent on family.
1831 */
1832 if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
1833 !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
1834 x86_amd_ssb_disable();
1835 } else {
1836 x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
1837 update_spec_ctrl(x86_spec_ctrl_base);
1838 }
1839 }
1840
1841 return mode;
1842}
1843
1844static void ssb_select_mitigation(void)
1845{
1846 ssb_mode = __ssb_select_mitigation();
1847
1848 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1849 pr_info("%s\n", ssb_strings[ssb_mode]);
1850}
1851
1852#undef pr_fmt
1853#define pr_fmt(fmt) "Speculation prctl: " fmt
1854
1855static void task_update_spec_tif(struct task_struct *tsk)
1856{
1857 /* Force the update of the real TIF bits */
1858 set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
1859
1860 /*
1861 * Immediately update the speculation control MSRs for the current
1862 * task, but for a non-current task delay setting the CPU
1863 * mitigation until it is scheduled next.
1864 *
1865 * This can only happen for SECCOMP mitigation. For PRCTL it's
1866 * always the current task.
1867 */
1868 if (tsk == current)
1869 speculation_ctrl_update_current();
1870}
1871
1872static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
1873{
1874
1875 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
1876 return -EPERM;
1877
1878 switch (ctrl) {
1879 case PR_SPEC_ENABLE:
1880 set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
1881 return 0;
1882 case PR_SPEC_DISABLE:
1883 clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
1884 return 0;
1885 default:
1886 return -ERANGE;
1887 }
1888}
1889
1890static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
1891{
1892 if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
1893 ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
1894 return -ENXIO;
1895
1896 switch (ctrl) {
1897 case PR_SPEC_ENABLE:
1898 /* If speculation is force disabled, enable is not allowed */
1899 if (task_spec_ssb_force_disable(task))
1900 return -EPERM;
1901 task_clear_spec_ssb_disable(task);
1902 task_clear_spec_ssb_noexec(task);
1903 task_update_spec_tif(task);
1904 break;
1905 case PR_SPEC_DISABLE:
1906 task_set_spec_ssb_disable(task);
1907 task_clear_spec_ssb_noexec(task);
1908 task_update_spec_tif(task);
1909 break;
1910 case PR_SPEC_FORCE_DISABLE:
1911 task_set_spec_ssb_disable(task);
1912 task_set_spec_ssb_force_disable(task);
1913 task_clear_spec_ssb_noexec(task);
1914 task_update_spec_tif(task);
1915 break;
1916 case PR_SPEC_DISABLE_NOEXEC:
1917 if (task_spec_ssb_force_disable(task))
1918 return -EPERM;
1919 task_set_spec_ssb_disable(task);
1920 task_set_spec_ssb_noexec(task);
1921 task_update_spec_tif(task);
1922 break;
1923 default:
1924 return -ERANGE;
1925 }
1926 return 0;
1927}
1928
1929static bool is_spec_ib_user_controlled(void)
1930{
1931 return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
1932 spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
1933 spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
1934 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
1935}
1936
1937static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
1938{
1939 switch (ctrl) {
1940 case PR_SPEC_ENABLE:
1941 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1942 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1943 return 0;
1944
1945 /*
1946 * With strict mode for both IBPB and STIBP, the instruction
1947 * code paths avoid checking this task flag and instead,
1948 * unconditionally run the instruction. However, STIBP and IBPB
1949 * are independent and either can be set to conditionally
1950 * enabled regardless of the mode of the other.
1951 *
1952 * If either is set to conditional, allow the task flag to be
1953 * updated, unless it was force-disabled by a previous prctl
1954 * call. Currently, this is possible on an AMD CPU which has the
1955 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
1956 * kernel is booted with 'spectre_v2_user=seccomp', then
1957 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
1958 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
1959 */
1960 if (!is_spec_ib_user_controlled() ||
1961 task_spec_ib_force_disable(task))
1962 return -EPERM;
1963
1964 task_clear_spec_ib_disable(task);
1965 task_update_spec_tif(task);
1966 break;
1967 case PR_SPEC_DISABLE:
1968 case PR_SPEC_FORCE_DISABLE:
1969 /*
1970 * Indirect branch speculation is always allowed when
1971 * mitigation is force disabled.
1972 */
1973 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1974 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1975 return -EPERM;
1976
1977 if (!is_spec_ib_user_controlled())
1978 return 0;
1979
1980 task_set_spec_ib_disable(task);
1981 if (ctrl == PR_SPEC_FORCE_DISABLE)
1982 task_set_spec_ib_force_disable(task);
1983 task_update_spec_tif(task);
1984 if (task == current)
1985 indirect_branch_prediction_barrier();
1986 break;
1987 default:
1988 return -ERANGE;
1989 }
1990 return 0;
1991}
1992
1993int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
1994 unsigned long ctrl)
1995{
1996 switch (which) {
1997 case PR_SPEC_STORE_BYPASS:
1998 return ssb_prctl_set(task, ctrl);
1999 case PR_SPEC_INDIRECT_BRANCH:
2000 return ib_prctl_set(task, ctrl);
2001 case PR_SPEC_L1D_FLUSH:
2002 return l1d_flush_prctl_set(task, ctrl);
2003 default:
2004 return -ENODEV;
2005 }
2006}
2007
2008#ifdef CONFIG_SECCOMP
2009void arch_seccomp_spec_mitigate(struct task_struct *task)
2010{
2011 if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
2012 ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2013 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2014 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
2015 ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2016}
2017#endif
2018
2019static int l1d_flush_prctl_get(struct task_struct *task)
2020{
2021 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2022 return PR_SPEC_FORCE_DISABLE;
2023
2024 if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
2025 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2026 else
2027 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2028}
2029
2030static int ssb_prctl_get(struct task_struct *task)
2031{
2032 switch (ssb_mode) {
2033 case SPEC_STORE_BYPASS_DISABLE:
2034 return PR_SPEC_DISABLE;
2035 case SPEC_STORE_BYPASS_SECCOMP:
2036 case SPEC_STORE_BYPASS_PRCTL:
2037 if (task_spec_ssb_force_disable(task))
2038 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2039 if (task_spec_ssb_noexec(task))
2040 return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2041 if (task_spec_ssb_disable(task))
2042 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2043 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2044 default:
2045 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2046 return PR_SPEC_ENABLE;
2047 return PR_SPEC_NOT_AFFECTED;
2048 }
2049}
2050
2051static int ib_prctl_get(struct task_struct *task)
2052{
2053 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2054 return PR_SPEC_NOT_AFFECTED;
2055
2056 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2057 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2058 return PR_SPEC_ENABLE;
2059 else if (is_spec_ib_user_controlled()) {
2060 if (task_spec_ib_force_disable(task))
2061 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2062 if (task_spec_ib_disable(task))
2063 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2064 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2065 } else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2066 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2067 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2068 return PR_SPEC_DISABLE;
2069 else
2070 return PR_SPEC_NOT_AFFECTED;
2071}
2072
2073int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2074{
2075 switch (which) {
2076 case PR_SPEC_STORE_BYPASS:
2077 return ssb_prctl_get(task);
2078 case PR_SPEC_INDIRECT_BRANCH:
2079 return ib_prctl_get(task);
2080 case PR_SPEC_L1D_FLUSH:
2081 return l1d_flush_prctl_get(task);
2082 default:
2083 return -ENODEV;
2084 }
2085}
2086
2087void x86_spec_ctrl_setup_ap(void)
2088{
2089 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2090 update_spec_ctrl(x86_spec_ctrl_base);
2091
2092 if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2093 x86_amd_ssb_disable();
2094}
2095
2096bool itlb_multihit_kvm_mitigation;
2097EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2098
2099#undef pr_fmt
2100#define pr_fmt(fmt) "L1TF: " fmt
2101
2102/* Default mitigation for L1TF-affected CPUs */
2103enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
2104#if IS_ENABLED(CONFIG_KVM_INTEL)
2105EXPORT_SYMBOL_GPL(l1tf_mitigation);
2106#endif
2107enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2108EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2109
2110/*
2111 * These CPUs all support 44bits physical address space internally in the
2112 * cache but CPUID can report a smaller number of physical address bits.
2113 *
2114 * The L1TF mitigation uses the top most address bit for the inversion of
2115 * non present PTEs. When the installed memory reaches into the top most
2116 * address bit due to memory holes, which has been observed on machines
2117 * which report 36bits physical address bits and have 32G RAM installed,
2118 * then the mitigation range check in l1tf_select_mitigation() triggers.
2119 * This is a false positive because the mitigation is still possible due to
2120 * the fact that the cache uses 44bit internally. Use the cache bits
2121 * instead of the reported physical bits and adjust them on the affected
2122 * machines to 44bit if the reported bits are less than 44.
2123 */
2124static void override_cache_bits(struct cpuinfo_x86 *c)
2125{
2126 if (c->x86 != 6)
2127 return;
2128
2129 switch (c->x86_model) {
2130 case INTEL_FAM6_NEHALEM:
2131 case INTEL_FAM6_WESTMERE:
2132 case INTEL_FAM6_SANDYBRIDGE:
2133 case INTEL_FAM6_IVYBRIDGE:
2134 case INTEL_FAM6_HASWELL:
2135 case INTEL_FAM6_HASWELL_L:
2136 case INTEL_FAM6_HASWELL_G:
2137 case INTEL_FAM6_BROADWELL:
2138 case INTEL_FAM6_BROADWELL_G:
2139 case INTEL_FAM6_SKYLAKE_L:
2140 case INTEL_FAM6_SKYLAKE:
2141 case INTEL_FAM6_KABYLAKE_L:
2142 case INTEL_FAM6_KABYLAKE:
2143 if (c->x86_cache_bits < 44)
2144 c->x86_cache_bits = 44;
2145 break;
2146 }
2147}
2148
2149static void __init l1tf_select_mitigation(void)
2150{
2151 u64 half_pa;
2152
2153 if (!boot_cpu_has_bug(X86_BUG_L1TF))
2154 return;
2155
2156 if (cpu_mitigations_off())
2157 l1tf_mitigation = L1TF_MITIGATION_OFF;
2158 else if (cpu_mitigations_auto_nosmt())
2159 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2160
2161 override_cache_bits(&boot_cpu_data);
2162
2163 switch (l1tf_mitigation) {
2164 case L1TF_MITIGATION_OFF:
2165 case L1TF_MITIGATION_FLUSH_NOWARN:
2166 case L1TF_MITIGATION_FLUSH:
2167 break;
2168 case L1TF_MITIGATION_FLUSH_NOSMT:
2169 case L1TF_MITIGATION_FULL:
2170 cpu_smt_disable(false);
2171 break;
2172 case L1TF_MITIGATION_FULL_FORCE:
2173 cpu_smt_disable(true);
2174 break;
2175 }
2176
2177#if CONFIG_PGTABLE_LEVELS == 2
2178 pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2179 return;
2180#endif
2181
2182 half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2183 if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2184 e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
2185 pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2186 pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2187 half_pa);
2188 pr_info("However, doing so will make a part of your RAM unusable.\n");
2189 pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2190 return;
2191 }
2192
2193 setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2194}
2195
2196static int __init l1tf_cmdline(char *str)
2197{
2198 if (!boot_cpu_has_bug(X86_BUG_L1TF))
2199 return 0;
2200
2201 if (!str)
2202 return -EINVAL;
2203
2204 if (!strcmp(str, "off"))
2205 l1tf_mitigation = L1TF_MITIGATION_OFF;
2206 else if (!strcmp(str, "flush,nowarn"))
2207 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2208 else if (!strcmp(str, "flush"))
2209 l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2210 else if (!strcmp(str, "flush,nosmt"))
2211 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2212 else if (!strcmp(str, "full"))
2213 l1tf_mitigation = L1TF_MITIGATION_FULL;
2214 else if (!strcmp(str, "full,force"))
2215 l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2216
2217 return 0;
2218}
2219early_param("l1tf", l1tf_cmdline);
2220
2221#undef pr_fmt
2222#define pr_fmt(fmt) fmt
2223
2224#ifdef CONFIG_SYSFS
2225
2226#define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
2227
2228#if IS_ENABLED(CONFIG_KVM_INTEL)
2229static const char * const l1tf_vmx_states[] = {
2230 [VMENTER_L1D_FLUSH_AUTO] = "auto",
2231 [VMENTER_L1D_FLUSH_NEVER] = "vulnerable",
2232 [VMENTER_L1D_FLUSH_COND] = "conditional cache flushes",
2233 [VMENTER_L1D_FLUSH_ALWAYS] = "cache flushes",
2234 [VMENTER_L1D_FLUSH_EPT_DISABLED] = "EPT disabled",
2235 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = "flush not necessary"
2236};
2237
2238static ssize_t l1tf_show_state(char *buf)
2239{
2240 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
2241 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2242
2243 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
2244 (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
2245 sched_smt_active())) {
2246 return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
2247 l1tf_vmx_states[l1tf_vmx_mitigation]);
2248 }
2249
2250 return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
2251 l1tf_vmx_states[l1tf_vmx_mitigation],
2252 sched_smt_active() ? "vulnerable" : "disabled");
2253}
2254
2255static ssize_t itlb_multihit_show_state(char *buf)
2256{
2257 if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2258 !boot_cpu_has(X86_FEATURE_VMX))
2259 return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n");
2260 else if (!(cr4_read_shadow() & X86_CR4_VMXE))
2261 return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n");
2262 else if (itlb_multihit_kvm_mitigation)
2263 return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n");
2264 else
2265 return sysfs_emit(buf, "KVM: Vulnerable\n");
2266}
2267#else
2268static ssize_t l1tf_show_state(char *buf)
2269{
2270 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2271}
2272
2273static ssize_t itlb_multihit_show_state(char *buf)
2274{
2275 return sysfs_emit(buf, "Processor vulnerable\n");
2276}
2277#endif
2278
2279static ssize_t mds_show_state(char *buf)
2280{
2281 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2282 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2283 mds_strings[mds_mitigation]);
2284 }
2285
2286 if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
2287 return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2288 (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
2289 sched_smt_active() ? "mitigated" : "disabled"));
2290 }
2291
2292 return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2293 sched_smt_active() ? "vulnerable" : "disabled");
2294}
2295
2296static ssize_t tsx_async_abort_show_state(char *buf)
2297{
2298 if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
2299 (taa_mitigation == TAA_MITIGATION_OFF))
2300 return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]);
2301
2302 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2303 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2304 taa_strings[taa_mitigation]);
2305 }
2306
2307 return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
2308 sched_smt_active() ? "vulnerable" : "disabled");
2309}
2310
2311static ssize_t mmio_stale_data_show_state(char *buf)
2312{
2313 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2314 return sysfs_emit(buf, "Unknown: No mitigations\n");
2315
2316 if (mmio_mitigation == MMIO_MITIGATION_OFF)
2317 return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
2318
2319 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2320 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2321 mmio_strings[mmio_mitigation]);
2322 }
2323
2324 return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
2325 sched_smt_active() ? "vulnerable" : "disabled");
2326}
2327
2328static char *stibp_state(void)
2329{
2330 if (spectre_v2_in_ibrs_mode(spectre_v2_enabled))
2331 return "";
2332
2333 switch (spectre_v2_user_stibp) {
2334 case SPECTRE_V2_USER_NONE:
2335 return ", STIBP: disabled";
2336 case SPECTRE_V2_USER_STRICT:
2337 return ", STIBP: forced";
2338 case SPECTRE_V2_USER_STRICT_PREFERRED:
2339 return ", STIBP: always-on";
2340 case SPECTRE_V2_USER_PRCTL:
2341 case SPECTRE_V2_USER_SECCOMP:
2342 if (static_key_enabled(&switch_to_cond_stibp))
2343 return ", STIBP: conditional";
2344 }
2345 return "";
2346}
2347
2348static char *ibpb_state(void)
2349{
2350 if (boot_cpu_has(X86_FEATURE_IBPB)) {
2351 if (static_key_enabled(&switch_mm_always_ibpb))
2352 return ", IBPB: always-on";
2353 if (static_key_enabled(&switch_mm_cond_ibpb))
2354 return ", IBPB: conditional";
2355 return ", IBPB: disabled";
2356 }
2357 return "";
2358}
2359
2360static char *pbrsb_eibrs_state(void)
2361{
2362 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2363 if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
2364 boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
2365 return ", PBRSB-eIBRS: SW sequence";
2366 else
2367 return ", PBRSB-eIBRS: Vulnerable";
2368 } else {
2369 return ", PBRSB-eIBRS: Not affected";
2370 }
2371}
2372
2373static ssize_t spectre_v2_show_state(char *buf)
2374{
2375 if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
2376 return sysfs_emit(buf, "Vulnerable: LFENCE\n");
2377
2378 if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2379 return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
2380
2381 if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2382 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2383 return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
2384
2385 return sysfs_emit(buf, "%s%s%s%s%s%s%s\n",
2386 spectre_v2_strings[spectre_v2_enabled],
2387 ibpb_state(),
2388 boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "",
2389 stibp_state(),
2390 boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "",
2391 pbrsb_eibrs_state(),
2392 spectre_v2_module_string());
2393}
2394
2395static ssize_t srbds_show_state(char *buf)
2396{
2397 return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]);
2398}
2399
2400static ssize_t retbleed_show_state(char *buf)
2401{
2402 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
2403 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2404 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
2405 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
2406 return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
2407
2408 return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
2409 !sched_smt_active() ? "disabled" :
2410 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2411 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
2412 "enabled with STIBP protection" : "vulnerable");
2413 }
2414
2415 return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
2416}
2417
2418static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
2419 char *buf, unsigned int bug)
2420{
2421 if (!boot_cpu_has_bug(bug))
2422 return sysfs_emit(buf, "Not affected\n");
2423
2424 switch (bug) {
2425 case X86_BUG_CPU_MELTDOWN:
2426 if (boot_cpu_has(X86_FEATURE_PTI))
2427 return sysfs_emit(buf, "Mitigation: PTI\n");
2428
2429 if (hypervisor_is_type(X86_HYPER_XEN_PV))
2430 return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
2431
2432 break;
2433
2434 case X86_BUG_SPECTRE_V1:
2435 return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
2436
2437 case X86_BUG_SPECTRE_V2:
2438 return spectre_v2_show_state(buf);
2439
2440 case X86_BUG_SPEC_STORE_BYPASS:
2441 return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]);
2442
2443 case X86_BUG_L1TF:
2444 if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
2445 return l1tf_show_state(buf);
2446 break;
2447
2448 case X86_BUG_MDS:
2449 return mds_show_state(buf);
2450
2451 case X86_BUG_TAA:
2452 return tsx_async_abort_show_state(buf);
2453
2454 case X86_BUG_ITLB_MULTIHIT:
2455 return itlb_multihit_show_state(buf);
2456
2457 case X86_BUG_SRBDS:
2458 return srbds_show_state(buf);
2459
2460 case X86_BUG_MMIO_STALE_DATA:
2461 case X86_BUG_MMIO_UNKNOWN:
2462 return mmio_stale_data_show_state(buf);
2463
2464 case X86_BUG_RETBLEED:
2465 return retbleed_show_state(buf);
2466
2467 default:
2468 break;
2469 }
2470
2471 return sysfs_emit(buf, "Vulnerable\n");
2472}
2473
2474ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
2475{
2476 return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
2477}
2478
2479ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
2480{
2481 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
2482}
2483
2484ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
2485{
2486 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
2487}
2488
2489ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
2490{
2491 return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
2492}
2493
2494ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
2495{
2496 return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
2497}
2498
2499ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
2500{
2501 return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
2502}
2503
2504ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
2505{
2506 return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
2507}
2508
2509ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
2510{
2511 return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
2512}
2513
2514ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
2515{
2516 return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
2517}
2518
2519ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
2520{
2521 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2522 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN);
2523 else
2524 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
2525}
2526
2527ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
2528{
2529 return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
2530}
2531#endif
1/*
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * Cyrix stuff, June 1998 by:
5 * - Rafael R. Reilova (moved everything from head.S),
6 * <rreilova@ececs.uc.edu>
7 * - Channing Corn (tests & fixes),
8 * - Andrew D. Balsa (code cleanup).
9 */
10#include <linux/init.h>
11#include <linux/utsname.h>
12#include <asm/bugs.h>
13#include <asm/processor.h>
14#include <asm/processor-flags.h>
15#include <asm/i387.h>
16#include <asm/msr.h>
17#include <asm/paravirt.h>
18#include <asm/alternative.h>
19
20static double __initdata x = 4195835.0;
21static double __initdata y = 3145727.0;
22
23/*
24 * This used to check for exceptions..
25 * However, it turns out that to support that,
26 * the XMM trap handlers basically had to
27 * be buggy. So let's have a correct XMM trap
28 * handler, and forget about printing out
29 * some status at boot.
30 *
31 * We should really only care about bugs here
32 * anyway. Not features.
33 */
34static void __init check_fpu(void)
35{
36 s32 fdiv_bug;
37
38 kernel_fpu_begin();
39
40 /*
41 * trap_init() enabled FXSR and company _before_ testing for FP
42 * problems here.
43 *
44 * Test for the divl bug: http://en.wikipedia.org/wiki/Fdiv_bug
45 */
46 __asm__("fninit\n\t"
47 "fldl %1\n\t"
48 "fdivl %2\n\t"
49 "fmull %2\n\t"
50 "fldl %1\n\t"
51 "fsubp %%st,%%st(1)\n\t"
52 "fistpl %0\n\t"
53 "fwait\n\t"
54 "fninit"
55 : "=m" (*&fdiv_bug)
56 : "m" (*&x), "m" (*&y));
57
58 kernel_fpu_end();
59
60 if (fdiv_bug) {
61 set_cpu_bug(&boot_cpu_data, X86_BUG_FDIV);
62 pr_warn("Hmm, FPU with FDIV bug\n");
63 }
64}
65
66void __init check_bugs(void)
67{
68 identify_boot_cpu();
69#ifndef CONFIG_SMP
70 pr_info("CPU: ");
71 print_cpu_info(&boot_cpu_data);
72#endif
73
74 /*
75 * Check whether we are able to run this kernel safely on SMP.
76 *
77 * - i386 is no longer supported.
78 * - In order to run on anything without a TSC, we need to be
79 * compiled for a i486.
80 */
81 if (boot_cpu_data.x86 < 4)
82 panic("Kernel requires i486+ for 'invlpg' and other features");
83
84 init_utsname()->machine[1] =
85 '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
86 alternative_instructions();
87
88 /*
89 * kernel_fpu_begin/end() in check_fpu() relies on the patched
90 * alternative instructions.
91 */
92 if (cpu_has_fpu)
93 check_fpu();
94}