Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1994  Linus Torvalds
   4 *
   5 *  Cyrix stuff, June 1998 by:
   6 *	- Rafael R. Reilova (moved everything from head.S),
   7 *        <rreilova@ececs.uc.edu>
   8 *	- Channing Corn (tests & fixes),
   9 *	- Andrew D. Balsa (code cleanup).
  10 */
  11#include <linux/init.h>
  12#include <linux/utsname.h>
  13#include <linux/cpu.h>
  14#include <linux/module.h>
  15#include <linux/nospec.h>
  16#include <linux/prctl.h>
  17#include <linux/sched/smt.h>
  18#include <linux/pgtable.h>
  19#include <linux/bpf.h>
  20
  21#include <asm/spec-ctrl.h>
  22#include <asm/cmdline.h>
  23#include <asm/bugs.h>
  24#include <asm/processor.h>
  25#include <asm/processor-flags.h>
  26#include <asm/fpu/api.h>
  27#include <asm/msr.h>
  28#include <asm/vmx.h>
  29#include <asm/paravirt.h>
  30#include <asm/alternative.h>
  31#include <asm/set_memory.h>
  32#include <asm/intel-family.h>
  33#include <asm/e820/api.h>
  34#include <asm/hypervisor.h>
  35#include <asm/tlbflush.h>
 
  36
  37#include "cpu.h"
  38
  39static void __init spectre_v1_select_mitigation(void);
  40static void __init spectre_v2_select_mitigation(void);
  41static void __init retbleed_select_mitigation(void);
  42static void __init spectre_v2_user_select_mitigation(void);
  43static void __init ssb_select_mitigation(void);
  44static void __init l1tf_select_mitigation(void);
  45static void __init mds_select_mitigation(void);
  46static void __init md_clear_update_mitigation(void);
  47static void __init md_clear_select_mitigation(void);
  48static void __init taa_select_mitigation(void);
  49static void __init mmio_select_mitigation(void);
  50static void __init srbds_select_mitigation(void);
  51static void __init l1d_flush_select_mitigation(void);
 
 
  52
  53/* The base value of the SPEC_CTRL MSR without task-specific bits set */
  54u64 x86_spec_ctrl_base;
  55EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
  56
  57/* The current value of the SPEC_CTRL MSR with task-specific bits set */
  58DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
  59EXPORT_SYMBOL_GPL(x86_spec_ctrl_current);
  60
 
 
 
  61static DEFINE_MUTEX(spec_ctrl_mutex);
  62
 
 
  63/* Update SPEC_CTRL MSR and its cached copy unconditionally */
  64static void update_spec_ctrl(u64 val)
  65{
  66	this_cpu_write(x86_spec_ctrl_current, val);
  67	wrmsrl(MSR_IA32_SPEC_CTRL, val);
  68}
  69
  70/*
  71 * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
  72 * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
  73 */
  74void update_spec_ctrl_cond(u64 val)
  75{
  76	if (this_cpu_read(x86_spec_ctrl_current) == val)
  77		return;
  78
  79	this_cpu_write(x86_spec_ctrl_current, val);
  80
  81	/*
  82	 * When KERNEL_IBRS this MSR is written on return-to-user, unless
  83	 * forced the update can be delayed until that time.
  84	 */
  85	if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
  86		wrmsrl(MSR_IA32_SPEC_CTRL, val);
  87}
  88
  89u64 spec_ctrl_current(void)
  90{
  91	return this_cpu_read(x86_spec_ctrl_current);
  92}
  93EXPORT_SYMBOL_GPL(spec_ctrl_current);
  94
  95/*
  96 * AMD specific MSR info for Speculative Store Bypass control.
  97 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
  98 */
  99u64 __ro_after_init x86_amd_ls_cfg_base;
 100u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
 101
 102/* Control conditional STIBP in switch_to() */
 103DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
 104/* Control conditional IBPB in switch_mm() */
 105DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
 106/* Control unconditional IBPB in switch_mm() */
 107DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
 108
 109/* Control MDS CPU buffer clear before returning to user space */
 110DEFINE_STATIC_KEY_FALSE(mds_user_clear);
 111EXPORT_SYMBOL_GPL(mds_user_clear);
 112/* Control MDS CPU buffer clear before idling (halt, mwait) */
 113DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
 114EXPORT_SYMBOL_GPL(mds_idle_clear);
 115
 116/*
 117 * Controls whether l1d flush based mitigations are enabled,
 118 * based on hw features and admin setting via boot parameter
 119 * defaults to false
 120 */
 121DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
 122
 123/* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
 124DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
 125EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
 126
 127void __init check_bugs(void)
 128{
 129	identify_boot_cpu();
 130
 131	/*
 132	 * identify_boot_cpu() initialized SMT support information, let the
 133	 * core code know.
 134	 */
 135	cpu_smt_check_topology();
 136
 137	if (!IS_ENABLED(CONFIG_SMP)) {
 138		pr_info("CPU: ");
 139		print_cpu_info(&boot_cpu_data);
 140	}
 141
 142	/*
 143	 * Read the SPEC_CTRL MSR to account for reserved bits which may
 144	 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
 145	 * init code as it is not enumerated and depends on the family.
 146	 */
 147	if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
 148		rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
 149
 
 
 
 
 
 
 
 
 150	/* Select the proper CPU mitigations before patching alternatives: */
 151	spectre_v1_select_mitigation();
 152	spectre_v2_select_mitigation();
 153	/*
 154	 * retbleed_select_mitigation() relies on the state set by
 155	 * spectre_v2_select_mitigation(); specifically it wants to know about
 156	 * spectre_v2=ibrs.
 157	 */
 158	retbleed_select_mitigation();
 159	/*
 160	 * spectre_v2_user_select_mitigation() relies on the state set by
 161	 * retbleed_select_mitigation(); specifically the STIBP selection is
 162	 * forced for UNRET or IBPB.
 163	 */
 164	spectre_v2_user_select_mitigation();
 165	ssb_select_mitigation();
 166	l1tf_select_mitigation();
 167	md_clear_select_mitigation();
 168	srbds_select_mitigation();
 169	l1d_flush_select_mitigation();
 170
 171	arch_smt_update();
 172
 173#ifdef CONFIG_X86_32
 174	/*
 175	 * Check whether we are able to run this kernel safely on SMP.
 176	 *
 177	 * - i386 is no longer supported.
 178	 * - In order to run on anything without a TSC, we need to be
 179	 *   compiled for a i486.
 180	 */
 181	if (boot_cpu_data.x86 < 4)
 182		panic("Kernel requires i486+ for 'invlpg' and other features");
 183
 184	init_utsname()->machine[1] =
 185		'0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
 186	alternative_instructions();
 187
 188	fpu__init_check_bugs();
 189#else /* CONFIG_X86_64 */
 190	alternative_instructions();
 191
 192	/*
 193	 * Make sure the first 2MB area is not mapped by huge pages
 194	 * There are typically fixed size MTRRs in there and overlapping
 195	 * MTRRs into large pages causes slow downs.
 196	 *
 197	 * Right now we don't do that with gbpages because there seems
 198	 * very little benefit for that case.
 199	 */
 200	if (!direct_gbpages)
 201		set_memory_4k((unsigned long)__va(0), 1);
 202#endif
 203}
 204
 205/*
 206 * NOTE: This function is *only* called for SVM, since Intel uses
 207 * MSR_IA32_SPEC_CTRL for SSBD.
 208 */
 209void
 210x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
 211{
 212	u64 guestval, hostval;
 213	struct thread_info *ti = current_thread_info();
 214
 215	/*
 216	 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
 217	 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
 218	 */
 219	if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
 220	    !static_cpu_has(X86_FEATURE_VIRT_SSBD))
 221		return;
 222
 223	/*
 224	 * If the host has SSBD mitigation enabled, force it in the host's
 225	 * virtual MSR value. If its not permanently enabled, evaluate
 226	 * current's TIF_SSBD thread flag.
 227	 */
 228	if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
 229		hostval = SPEC_CTRL_SSBD;
 230	else
 231		hostval = ssbd_tif_to_spec_ctrl(ti->flags);
 232
 233	/* Sanitize the guest value */
 234	guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
 235
 236	if (hostval != guestval) {
 237		unsigned long tif;
 238
 239		tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
 240				 ssbd_spec_ctrl_to_tif(hostval);
 241
 242		speculation_ctrl_update(tif);
 243	}
 244}
 245EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
 246
 247static void x86_amd_ssb_disable(void)
 248{
 249	u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
 250
 251	if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
 252		wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
 253	else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
 254		wrmsrl(MSR_AMD64_LS_CFG, msrval);
 255}
 256
 257#undef pr_fmt
 258#define pr_fmt(fmt)	"MDS: " fmt
 259
 260/* Default mitigation for MDS-affected CPUs */
 261static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
 262static bool mds_nosmt __ro_after_init = false;
 263
 264static const char * const mds_strings[] = {
 265	[MDS_MITIGATION_OFF]	= "Vulnerable",
 266	[MDS_MITIGATION_FULL]	= "Mitigation: Clear CPU buffers",
 267	[MDS_MITIGATION_VMWERV]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
 268};
 269
 270static void __init mds_select_mitigation(void)
 271{
 272	if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
 273		mds_mitigation = MDS_MITIGATION_OFF;
 274		return;
 275	}
 276
 277	if (mds_mitigation == MDS_MITIGATION_FULL) {
 278		if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
 279			mds_mitigation = MDS_MITIGATION_VMWERV;
 280
 281		static_branch_enable(&mds_user_clear);
 282
 283		if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
 284		    (mds_nosmt || cpu_mitigations_auto_nosmt()))
 285			cpu_smt_disable(false);
 286	}
 287}
 288
 289static int __init mds_cmdline(char *str)
 290{
 291	if (!boot_cpu_has_bug(X86_BUG_MDS))
 292		return 0;
 293
 294	if (!str)
 295		return -EINVAL;
 296
 297	if (!strcmp(str, "off"))
 298		mds_mitigation = MDS_MITIGATION_OFF;
 299	else if (!strcmp(str, "full"))
 300		mds_mitigation = MDS_MITIGATION_FULL;
 301	else if (!strcmp(str, "full,nosmt")) {
 302		mds_mitigation = MDS_MITIGATION_FULL;
 303		mds_nosmt = true;
 304	}
 305
 306	return 0;
 307}
 308early_param("mds", mds_cmdline);
 309
 310#undef pr_fmt
 311#define pr_fmt(fmt)	"TAA: " fmt
 312
 313enum taa_mitigations {
 314	TAA_MITIGATION_OFF,
 315	TAA_MITIGATION_UCODE_NEEDED,
 316	TAA_MITIGATION_VERW,
 317	TAA_MITIGATION_TSX_DISABLED,
 318};
 319
 320/* Default mitigation for TAA-affected CPUs */
 321static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
 322static bool taa_nosmt __ro_after_init;
 323
 324static const char * const taa_strings[] = {
 325	[TAA_MITIGATION_OFF]		= "Vulnerable",
 326	[TAA_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
 327	[TAA_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
 328	[TAA_MITIGATION_TSX_DISABLED]	= "Mitigation: TSX disabled",
 329};
 330
 331static void __init taa_select_mitigation(void)
 332{
 333	u64 ia32_cap;
 334
 335	if (!boot_cpu_has_bug(X86_BUG_TAA)) {
 336		taa_mitigation = TAA_MITIGATION_OFF;
 337		return;
 338	}
 339
 340	/* TSX previously disabled by tsx=off */
 341	if (!boot_cpu_has(X86_FEATURE_RTM)) {
 342		taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
 343		return;
 344	}
 345
 346	if (cpu_mitigations_off()) {
 347		taa_mitigation = TAA_MITIGATION_OFF;
 348		return;
 349	}
 350
 351	/*
 352	 * TAA mitigation via VERW is turned off if both
 353	 * tsx_async_abort=off and mds=off are specified.
 354	 */
 355	if (taa_mitigation == TAA_MITIGATION_OFF &&
 356	    mds_mitigation == MDS_MITIGATION_OFF)
 357		return;
 358
 359	if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
 360		taa_mitigation = TAA_MITIGATION_VERW;
 361	else
 362		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
 363
 364	/*
 365	 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
 366	 * A microcode update fixes this behavior to clear CPU buffers. It also
 367	 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
 368	 * ARCH_CAP_TSX_CTRL_MSR bit.
 369	 *
 370	 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
 371	 * update is required.
 372	 */
 373	ia32_cap = x86_read_arch_cap_msr();
 374	if ( (ia32_cap & ARCH_CAP_MDS_NO) &&
 375	    !(ia32_cap & ARCH_CAP_TSX_CTRL_MSR))
 376		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
 377
 378	/*
 379	 * TSX is enabled, select alternate mitigation for TAA which is
 380	 * the same as MDS. Enable MDS static branch to clear CPU buffers.
 381	 *
 382	 * For guests that can't determine whether the correct microcode is
 383	 * present on host, enable the mitigation for UCODE_NEEDED as well.
 384	 */
 385	static_branch_enable(&mds_user_clear);
 386
 387	if (taa_nosmt || cpu_mitigations_auto_nosmt())
 388		cpu_smt_disable(false);
 389}
 390
 391static int __init tsx_async_abort_parse_cmdline(char *str)
 392{
 393	if (!boot_cpu_has_bug(X86_BUG_TAA))
 394		return 0;
 395
 396	if (!str)
 397		return -EINVAL;
 398
 399	if (!strcmp(str, "off")) {
 400		taa_mitigation = TAA_MITIGATION_OFF;
 401	} else if (!strcmp(str, "full")) {
 402		taa_mitigation = TAA_MITIGATION_VERW;
 403	} else if (!strcmp(str, "full,nosmt")) {
 404		taa_mitigation = TAA_MITIGATION_VERW;
 405		taa_nosmt = true;
 406	}
 407
 408	return 0;
 409}
 410early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
 411
 412#undef pr_fmt
 413#define pr_fmt(fmt)	"MMIO Stale Data: " fmt
 414
 415enum mmio_mitigations {
 416	MMIO_MITIGATION_OFF,
 417	MMIO_MITIGATION_UCODE_NEEDED,
 418	MMIO_MITIGATION_VERW,
 419};
 420
 421/* Default mitigation for Processor MMIO Stale Data vulnerabilities */
 422static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW;
 423static bool mmio_nosmt __ro_after_init = false;
 424
 425static const char * const mmio_strings[] = {
 426	[MMIO_MITIGATION_OFF]		= "Vulnerable",
 427	[MMIO_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
 428	[MMIO_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
 429};
 430
 431static void __init mmio_select_mitigation(void)
 432{
 433	u64 ia32_cap;
 434
 435	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
 436	     boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) ||
 437	     cpu_mitigations_off()) {
 438		mmio_mitigation = MMIO_MITIGATION_OFF;
 439		return;
 440	}
 441
 442	if (mmio_mitigation == MMIO_MITIGATION_OFF)
 443		return;
 444
 445	ia32_cap = x86_read_arch_cap_msr();
 446
 447	/*
 448	 * Enable CPU buffer clear mitigation for host and VMM, if also affected
 449	 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
 450	 */
 451	if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
 452					      boot_cpu_has(X86_FEATURE_RTM)))
 453		static_branch_enable(&mds_user_clear);
 454	else
 455		static_branch_enable(&mmio_stale_data_clear);
 456
 457	/*
 458	 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
 459	 * be propagated to uncore buffers, clearing the Fill buffers on idle
 460	 * is required irrespective of SMT state.
 461	 */
 462	if (!(ia32_cap & ARCH_CAP_FBSDP_NO))
 463		static_branch_enable(&mds_idle_clear);
 464
 465	/*
 466	 * Check if the system has the right microcode.
 467	 *
 468	 * CPU Fill buffer clear mitigation is enumerated by either an explicit
 469	 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
 470	 * affected systems.
 471	 */
 472	if ((ia32_cap & ARCH_CAP_FB_CLEAR) ||
 473	    (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
 474	     boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
 475	     !(ia32_cap & ARCH_CAP_MDS_NO)))
 476		mmio_mitigation = MMIO_MITIGATION_VERW;
 477	else
 478		mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
 479
 480	if (mmio_nosmt || cpu_mitigations_auto_nosmt())
 481		cpu_smt_disable(false);
 482}
 483
 484static int __init mmio_stale_data_parse_cmdline(char *str)
 485{
 486	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
 487		return 0;
 488
 489	if (!str)
 490		return -EINVAL;
 491
 492	if (!strcmp(str, "off")) {
 493		mmio_mitigation = MMIO_MITIGATION_OFF;
 494	} else if (!strcmp(str, "full")) {
 495		mmio_mitigation = MMIO_MITIGATION_VERW;
 496	} else if (!strcmp(str, "full,nosmt")) {
 497		mmio_mitigation = MMIO_MITIGATION_VERW;
 498		mmio_nosmt = true;
 499	}
 500
 501	return 0;
 502}
 503early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
 504
 505#undef pr_fmt
 506#define pr_fmt(fmt)     "" fmt
 507
 508static void __init md_clear_update_mitigation(void)
 509{
 510	if (cpu_mitigations_off())
 511		return;
 512
 513	if (!static_key_enabled(&mds_user_clear))
 514		goto out;
 515
 516	/*
 517	 * mds_user_clear is now enabled. Update MDS, TAA and MMIO Stale Data
 518	 * mitigation, if necessary.
 519	 */
 520	if (mds_mitigation == MDS_MITIGATION_OFF &&
 521	    boot_cpu_has_bug(X86_BUG_MDS)) {
 522		mds_mitigation = MDS_MITIGATION_FULL;
 523		mds_select_mitigation();
 524	}
 525	if (taa_mitigation == TAA_MITIGATION_OFF &&
 526	    boot_cpu_has_bug(X86_BUG_TAA)) {
 527		taa_mitigation = TAA_MITIGATION_VERW;
 528		taa_select_mitigation();
 529	}
 530	if (mmio_mitigation == MMIO_MITIGATION_OFF &&
 531	    boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
 532		mmio_mitigation = MMIO_MITIGATION_VERW;
 533		mmio_select_mitigation();
 534	}
 535out:
 536	if (boot_cpu_has_bug(X86_BUG_MDS))
 537		pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
 538	if (boot_cpu_has_bug(X86_BUG_TAA))
 539		pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
 540	if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
 541		pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
 542	else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
 543		pr_info("MMIO Stale Data: Unknown: No mitigations\n");
 544}
 545
 546static void __init md_clear_select_mitigation(void)
 547{
 548	mds_select_mitigation();
 549	taa_select_mitigation();
 550	mmio_select_mitigation();
 551
 552	/*
 553	 * As MDS, TAA and MMIO Stale Data mitigations are inter-related, update
 554	 * and print their mitigation after MDS, TAA and MMIO Stale Data
 555	 * mitigation selection is done.
 556	 */
 557	md_clear_update_mitigation();
 558}
 559
 560#undef pr_fmt
 561#define pr_fmt(fmt)	"SRBDS: " fmt
 562
 563enum srbds_mitigations {
 564	SRBDS_MITIGATION_OFF,
 565	SRBDS_MITIGATION_UCODE_NEEDED,
 566	SRBDS_MITIGATION_FULL,
 567	SRBDS_MITIGATION_TSX_OFF,
 568	SRBDS_MITIGATION_HYPERVISOR,
 569};
 570
 571static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;
 572
 573static const char * const srbds_strings[] = {
 574	[SRBDS_MITIGATION_OFF]		= "Vulnerable",
 575	[SRBDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
 576	[SRBDS_MITIGATION_FULL]		= "Mitigation: Microcode",
 577	[SRBDS_MITIGATION_TSX_OFF]	= "Mitigation: TSX disabled",
 578	[SRBDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
 579};
 580
 581static bool srbds_off;
 582
 583void update_srbds_msr(void)
 584{
 585	u64 mcu_ctrl;
 586
 587	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
 588		return;
 589
 590	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
 591		return;
 592
 593	if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
 594		return;
 595
 596	/*
 597	 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
 598	 * being disabled and it hasn't received the SRBDS MSR microcode.
 599	 */
 600	if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
 601		return;
 602
 603	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
 604
 605	switch (srbds_mitigation) {
 606	case SRBDS_MITIGATION_OFF:
 607	case SRBDS_MITIGATION_TSX_OFF:
 608		mcu_ctrl |= RNGDS_MITG_DIS;
 609		break;
 610	case SRBDS_MITIGATION_FULL:
 611		mcu_ctrl &= ~RNGDS_MITG_DIS;
 612		break;
 613	default:
 614		break;
 615	}
 616
 617	wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
 618}
 619
 620static void __init srbds_select_mitigation(void)
 621{
 622	u64 ia32_cap;
 623
 624	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
 625		return;
 626
 627	/*
 628	 * Check to see if this is one of the MDS_NO systems supporting TSX that
 629	 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
 630	 * by Processor MMIO Stale Data vulnerability.
 631	 */
 632	ia32_cap = x86_read_arch_cap_msr();
 633	if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
 634	    !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
 635		srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
 636	else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
 637		srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
 638	else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
 639		srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
 640	else if (cpu_mitigations_off() || srbds_off)
 641		srbds_mitigation = SRBDS_MITIGATION_OFF;
 642
 643	update_srbds_msr();
 644	pr_info("%s\n", srbds_strings[srbds_mitigation]);
 645}
 646
 647static int __init srbds_parse_cmdline(char *str)
 648{
 649	if (!str)
 650		return -EINVAL;
 651
 652	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
 653		return 0;
 654
 655	srbds_off = !strcmp(str, "off");
 656	return 0;
 657}
 658early_param("srbds", srbds_parse_cmdline);
 659
 660#undef pr_fmt
 661#define pr_fmt(fmt)     "L1D Flush : " fmt
 662
 663enum l1d_flush_mitigations {
 664	L1D_FLUSH_OFF = 0,
 665	L1D_FLUSH_ON,
 666};
 667
 668static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
 669
 670static void __init l1d_flush_select_mitigation(void)
 671{
 672	if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
 673		return;
 674
 675	static_branch_enable(&switch_mm_cond_l1d_flush);
 676	pr_info("Conditional flush on switch_mm() enabled\n");
 677}
 678
 679static int __init l1d_flush_parse_cmdline(char *str)
 680{
 681	if (!strcmp(str, "on"))
 682		l1d_flush_mitigation = L1D_FLUSH_ON;
 683
 684	return 0;
 685}
 686early_param("l1d_flush", l1d_flush_parse_cmdline);
 687
 688#undef pr_fmt
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 689#define pr_fmt(fmt)     "Spectre V1 : " fmt
 690
 691enum spectre_v1_mitigation {
 692	SPECTRE_V1_MITIGATION_NONE,
 693	SPECTRE_V1_MITIGATION_AUTO,
 694};
 695
 696static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
 697	SPECTRE_V1_MITIGATION_AUTO;
 698
 699static const char * const spectre_v1_strings[] = {
 700	[SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
 701	[SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
 702};
 703
 704/*
 705 * Does SMAP provide full mitigation against speculative kernel access to
 706 * userspace?
 707 */
 708static bool smap_works_speculatively(void)
 709{
 710	if (!boot_cpu_has(X86_FEATURE_SMAP))
 711		return false;
 712
 713	/*
 714	 * On CPUs which are vulnerable to Meltdown, SMAP does not
 715	 * prevent speculative access to user data in the L1 cache.
 716	 * Consider SMAP to be non-functional as a mitigation on these
 717	 * CPUs.
 718	 */
 719	if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
 720		return false;
 721
 722	return true;
 723}
 724
 725static void __init spectre_v1_select_mitigation(void)
 726{
 727	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
 728		spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
 729		return;
 730	}
 731
 732	if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
 733		/*
 734		 * With Spectre v1, a user can speculatively control either
 735		 * path of a conditional swapgs with a user-controlled GS
 736		 * value.  The mitigation is to add lfences to both code paths.
 737		 *
 738		 * If FSGSBASE is enabled, the user can put a kernel address in
 739		 * GS, in which case SMAP provides no protection.
 740		 *
 741		 * If FSGSBASE is disabled, the user can only put a user space
 742		 * address in GS.  That makes an attack harder, but still
 743		 * possible if there's no SMAP protection.
 744		 */
 745		if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
 746		    !smap_works_speculatively()) {
 747			/*
 748			 * Mitigation can be provided from SWAPGS itself or
 749			 * PTI as the CR3 write in the Meltdown mitigation
 750			 * is serializing.
 751			 *
 752			 * If neither is there, mitigate with an LFENCE to
 753			 * stop speculation through swapgs.
 754			 */
 755			if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
 756			    !boot_cpu_has(X86_FEATURE_PTI))
 757				setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
 758
 759			/*
 760			 * Enable lfences in the kernel entry (non-swapgs)
 761			 * paths, to prevent user entry from speculatively
 762			 * skipping swapgs.
 763			 */
 764			setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
 765		}
 766	}
 767
 768	pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
 769}
 770
 771static int __init nospectre_v1_cmdline(char *str)
 772{
 773	spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
 774	return 0;
 775}
 776early_param("nospectre_v1", nospectre_v1_cmdline);
 777
 778static enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init =
 779	SPECTRE_V2_NONE;
 780
 781#undef pr_fmt
 782#define pr_fmt(fmt)     "RETBleed: " fmt
 783
 784enum retbleed_mitigation {
 785	RETBLEED_MITIGATION_NONE,
 786	RETBLEED_MITIGATION_UNRET,
 787	RETBLEED_MITIGATION_IBPB,
 788	RETBLEED_MITIGATION_IBRS,
 789	RETBLEED_MITIGATION_EIBRS,
 790	RETBLEED_MITIGATION_STUFF,
 791};
 792
 793enum retbleed_mitigation_cmd {
 794	RETBLEED_CMD_OFF,
 795	RETBLEED_CMD_AUTO,
 796	RETBLEED_CMD_UNRET,
 797	RETBLEED_CMD_IBPB,
 798	RETBLEED_CMD_STUFF,
 799};
 800
 801static const char * const retbleed_strings[] = {
 802	[RETBLEED_MITIGATION_NONE]	= "Vulnerable",
 803	[RETBLEED_MITIGATION_UNRET]	= "Mitigation: untrained return thunk",
 804	[RETBLEED_MITIGATION_IBPB]	= "Mitigation: IBPB",
 805	[RETBLEED_MITIGATION_IBRS]	= "Mitigation: IBRS",
 806	[RETBLEED_MITIGATION_EIBRS]	= "Mitigation: Enhanced IBRS",
 807	[RETBLEED_MITIGATION_STUFF]	= "Mitigation: Stuffing",
 808};
 809
 810static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
 811	RETBLEED_MITIGATION_NONE;
 812static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init =
 813	RETBLEED_CMD_AUTO;
 814
 815static int __ro_after_init retbleed_nosmt = false;
 816
 817static int __init retbleed_parse_cmdline(char *str)
 818{
 819	if (!str)
 820		return -EINVAL;
 821
 822	while (str) {
 823		char *next = strchr(str, ',');
 824		if (next) {
 825			*next = 0;
 826			next++;
 827		}
 828
 829		if (!strcmp(str, "off")) {
 830			retbleed_cmd = RETBLEED_CMD_OFF;
 831		} else if (!strcmp(str, "auto")) {
 832			retbleed_cmd = RETBLEED_CMD_AUTO;
 833		} else if (!strcmp(str, "unret")) {
 834			retbleed_cmd = RETBLEED_CMD_UNRET;
 835		} else if (!strcmp(str, "ibpb")) {
 836			retbleed_cmd = RETBLEED_CMD_IBPB;
 837		} else if (!strcmp(str, "stuff")) {
 838			retbleed_cmd = RETBLEED_CMD_STUFF;
 839		} else if (!strcmp(str, "nosmt")) {
 840			retbleed_nosmt = true;
 841		} else if (!strcmp(str, "force")) {
 842			setup_force_cpu_bug(X86_BUG_RETBLEED);
 843		} else {
 844			pr_err("Ignoring unknown retbleed option (%s).", str);
 845		}
 846
 847		str = next;
 848	}
 849
 850	return 0;
 851}
 852early_param("retbleed", retbleed_parse_cmdline);
 853
 854#define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
 855#define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
 856
 857static void __init retbleed_select_mitigation(void)
 858{
 859	bool mitigate_smt = false;
 860
 861	if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
 862		return;
 863
 864	switch (retbleed_cmd) {
 865	case RETBLEED_CMD_OFF:
 866		return;
 867
 868	case RETBLEED_CMD_UNRET:
 869		if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY)) {
 870			retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
 871		} else {
 872			pr_err("WARNING: kernel not compiled with CPU_UNRET_ENTRY.\n");
 873			goto do_cmd_auto;
 874		}
 875		break;
 876
 877	case RETBLEED_CMD_IBPB:
 878		if (!boot_cpu_has(X86_FEATURE_IBPB)) {
 879			pr_err("WARNING: CPU does not support IBPB.\n");
 880			goto do_cmd_auto;
 881		} else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) {
 882			retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
 883		} else {
 884			pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n");
 885			goto do_cmd_auto;
 886		}
 887		break;
 888
 889	case RETBLEED_CMD_STUFF:
 890		if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING) &&
 891		    spectre_v2_enabled == SPECTRE_V2_RETPOLINE) {
 892			retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
 893
 894		} else {
 895			if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING))
 896				pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n");
 897			else
 898				pr_err("WARNING: kernel not compiled with CALL_DEPTH_TRACKING.\n");
 899
 900			goto do_cmd_auto;
 901		}
 902		break;
 903
 904do_cmd_auto:
 905	case RETBLEED_CMD_AUTO:
 906	default:
 907		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
 908		    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
 909			if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY))
 910				retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
 911			else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY) && boot_cpu_has(X86_FEATURE_IBPB))
 912				retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
 913		}
 914
 915		/*
 916		 * The Intel mitigation (IBRS or eIBRS) was already selected in
 917		 * spectre_v2_select_mitigation().  'retbleed_mitigation' will
 918		 * be set accordingly below.
 919		 */
 920
 921		break;
 922	}
 923
 924	switch (retbleed_mitigation) {
 925	case RETBLEED_MITIGATION_UNRET:
 926		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
 927		setup_force_cpu_cap(X86_FEATURE_UNRET);
 928
 
 
 929		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
 930		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
 931			pr_err(RETBLEED_UNTRAIN_MSG);
 932
 933		mitigate_smt = true;
 934		break;
 935
 936	case RETBLEED_MITIGATION_IBPB:
 937		setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
 
 938		mitigate_smt = true;
 939		break;
 940
 941	case RETBLEED_MITIGATION_STUFF:
 942		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
 943		setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
 944		x86_set_skl_return_thunk();
 
 945		break;
 946
 947	default:
 948		break;
 949	}
 950
 951	if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
 952	    (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
 953		cpu_smt_disable(false);
 954
 955	/*
 956	 * Let IBRS trump all on Intel without affecting the effects of the
 957	 * retbleed= cmdline option except for call depth based stuffing
 958	 */
 959	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
 960		switch (spectre_v2_enabled) {
 961		case SPECTRE_V2_IBRS:
 962			retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
 963			break;
 964		case SPECTRE_V2_EIBRS:
 965		case SPECTRE_V2_EIBRS_RETPOLINE:
 966		case SPECTRE_V2_EIBRS_LFENCE:
 967			retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
 968			break;
 969		default:
 970			if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF)
 971				pr_err(RETBLEED_INTEL_MSG);
 972		}
 973	}
 974
 975	pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
 976}
 977
 978#undef pr_fmt
 979#define pr_fmt(fmt)     "Spectre V2 : " fmt
 980
 981static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
 982	SPECTRE_V2_USER_NONE;
 983static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
 984	SPECTRE_V2_USER_NONE;
 985
 986#ifdef CONFIG_RETPOLINE
 987static bool spectre_v2_bad_module;
 988
 989bool retpoline_module_ok(bool has_retpoline)
 990{
 991	if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
 992		return true;
 993
 994	pr_err("System may be vulnerable to spectre v2\n");
 995	spectre_v2_bad_module = true;
 996	return false;
 997}
 998
 999static inline const char *spectre_v2_module_string(void)
1000{
1001	return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
1002}
1003#else
1004static inline const char *spectre_v2_module_string(void) { return ""; }
1005#endif
1006
1007#define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
1008#define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
1009#define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
1010#define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
1011
1012#ifdef CONFIG_BPF_SYSCALL
1013void unpriv_ebpf_notify(int new_state)
1014{
1015	if (new_state)
1016		return;
1017
1018	/* Unprivileged eBPF is enabled */
1019
1020	switch (spectre_v2_enabled) {
1021	case SPECTRE_V2_EIBRS:
1022		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1023		break;
1024	case SPECTRE_V2_EIBRS_LFENCE:
1025		if (sched_smt_active())
1026			pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1027		break;
1028	default:
1029		break;
1030	}
1031}
1032#endif
1033
1034static inline bool match_option(const char *arg, int arglen, const char *opt)
1035{
1036	int len = strlen(opt);
1037
1038	return len == arglen && !strncmp(arg, opt, len);
1039}
1040
1041/* The kernel command line selection for spectre v2 */
1042enum spectre_v2_mitigation_cmd {
1043	SPECTRE_V2_CMD_NONE,
1044	SPECTRE_V2_CMD_AUTO,
1045	SPECTRE_V2_CMD_FORCE,
1046	SPECTRE_V2_CMD_RETPOLINE,
1047	SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1048	SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1049	SPECTRE_V2_CMD_EIBRS,
1050	SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1051	SPECTRE_V2_CMD_EIBRS_LFENCE,
1052	SPECTRE_V2_CMD_IBRS,
1053};
1054
1055enum spectre_v2_user_cmd {
1056	SPECTRE_V2_USER_CMD_NONE,
1057	SPECTRE_V2_USER_CMD_AUTO,
1058	SPECTRE_V2_USER_CMD_FORCE,
1059	SPECTRE_V2_USER_CMD_PRCTL,
1060	SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1061	SPECTRE_V2_USER_CMD_SECCOMP,
1062	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1063};
1064
1065static const char * const spectre_v2_user_strings[] = {
1066	[SPECTRE_V2_USER_NONE]			= "User space: Vulnerable",
1067	[SPECTRE_V2_USER_STRICT]		= "User space: Mitigation: STIBP protection",
1068	[SPECTRE_V2_USER_STRICT_PREFERRED]	= "User space: Mitigation: STIBP always-on protection",
1069	[SPECTRE_V2_USER_PRCTL]			= "User space: Mitigation: STIBP via prctl",
1070	[SPECTRE_V2_USER_SECCOMP]		= "User space: Mitigation: STIBP via seccomp and prctl",
1071};
1072
1073static const struct {
1074	const char			*option;
1075	enum spectre_v2_user_cmd	cmd;
1076	bool				secure;
1077} v2_user_options[] __initconst = {
1078	{ "auto",		SPECTRE_V2_USER_CMD_AUTO,		false },
1079	{ "off",		SPECTRE_V2_USER_CMD_NONE,		false },
1080	{ "on",			SPECTRE_V2_USER_CMD_FORCE,		true  },
1081	{ "prctl",		SPECTRE_V2_USER_CMD_PRCTL,		false },
1082	{ "prctl,ibpb",		SPECTRE_V2_USER_CMD_PRCTL_IBPB,		false },
1083	{ "seccomp",		SPECTRE_V2_USER_CMD_SECCOMP,		false },
1084	{ "seccomp,ibpb",	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,	false },
1085};
1086
1087static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1088{
1089	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1090		pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1091}
1092
1093static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd;
1094
1095static enum spectre_v2_user_cmd __init
1096spectre_v2_parse_user_cmdline(void)
1097{
1098	char arg[20];
1099	int ret, i;
1100
1101	switch (spectre_v2_cmd) {
1102	case SPECTRE_V2_CMD_NONE:
1103		return SPECTRE_V2_USER_CMD_NONE;
1104	case SPECTRE_V2_CMD_FORCE:
1105		return SPECTRE_V2_USER_CMD_FORCE;
1106	default:
1107		break;
1108	}
1109
1110	ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
1111				  arg, sizeof(arg));
1112	if (ret < 0)
1113		return SPECTRE_V2_USER_CMD_AUTO;
1114
1115	for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1116		if (match_option(arg, ret, v2_user_options[i].option)) {
1117			spec_v2_user_print_cond(v2_user_options[i].option,
1118						v2_user_options[i].secure);
1119			return v2_user_options[i].cmd;
1120		}
1121	}
1122
1123	pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
1124	return SPECTRE_V2_USER_CMD_AUTO;
1125}
1126
1127static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1128{
1129	return mode == SPECTRE_V2_IBRS ||
1130	       mode == SPECTRE_V2_EIBRS ||
1131	       mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1132	       mode == SPECTRE_V2_EIBRS_LFENCE;
1133}
1134
1135static void __init
1136spectre_v2_user_select_mitigation(void)
1137{
1138	enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
1139	bool smt_possible = IS_ENABLED(CONFIG_SMP);
1140	enum spectre_v2_user_cmd cmd;
1141
1142	if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1143		return;
1144
1145	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
1146	    cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
1147		smt_possible = false;
1148
1149	cmd = spectre_v2_parse_user_cmdline();
1150	switch (cmd) {
1151	case SPECTRE_V2_USER_CMD_NONE:
1152		goto set_mode;
1153	case SPECTRE_V2_USER_CMD_FORCE:
1154		mode = SPECTRE_V2_USER_STRICT;
1155		break;
1156	case SPECTRE_V2_USER_CMD_AUTO:
1157	case SPECTRE_V2_USER_CMD_PRCTL:
1158	case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1159		mode = SPECTRE_V2_USER_PRCTL;
1160		break;
1161	case SPECTRE_V2_USER_CMD_SECCOMP:
1162	case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1163		if (IS_ENABLED(CONFIG_SECCOMP))
1164			mode = SPECTRE_V2_USER_SECCOMP;
1165		else
1166			mode = SPECTRE_V2_USER_PRCTL;
1167		break;
1168	}
1169
1170	/* Initialize Indirect Branch Prediction Barrier */
1171	if (boot_cpu_has(X86_FEATURE_IBPB)) {
1172		setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
1173
1174		spectre_v2_user_ibpb = mode;
1175		switch (cmd) {
 
 
1176		case SPECTRE_V2_USER_CMD_FORCE:
1177		case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1178		case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1179			static_branch_enable(&switch_mm_always_ibpb);
1180			spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1181			break;
1182		case SPECTRE_V2_USER_CMD_PRCTL:
1183		case SPECTRE_V2_USER_CMD_AUTO:
1184		case SPECTRE_V2_USER_CMD_SECCOMP:
1185			static_branch_enable(&switch_mm_cond_ibpb);
1186			break;
1187		default:
1188			break;
1189		}
1190
1191		pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
1192			static_key_enabled(&switch_mm_always_ibpb) ?
1193			"always-on" : "conditional");
1194	}
1195
1196	/*
1197	 * If no STIBP, IBRS or enhanced IBRS is enabled, or SMT impossible,
1198	 * STIBP is not required.
 
 
 
 
 
 
 
 
1199	 */
1200	if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1201	    !smt_possible ||
1202	    spectre_v2_in_ibrs_mode(spectre_v2_enabled))
 
1203		return;
1204
1205	/*
1206	 * At this point, an STIBP mode other than "off" has been set.
1207	 * If STIBP support is not being forced, check if STIBP always-on
1208	 * is preferred.
1209	 */
1210	if (mode != SPECTRE_V2_USER_STRICT &&
1211	    boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1212		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1213
1214	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1215	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
1216		if (mode != SPECTRE_V2_USER_STRICT &&
1217		    mode != SPECTRE_V2_USER_STRICT_PREFERRED)
1218			pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1219		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1220	}
1221
1222	spectre_v2_user_stibp = mode;
1223
1224set_mode:
1225	pr_info("%s\n", spectre_v2_user_strings[mode]);
1226}
1227
1228static const char * const spectre_v2_strings[] = {
1229	[SPECTRE_V2_NONE]			= "Vulnerable",
1230	[SPECTRE_V2_RETPOLINE]			= "Mitigation: Retpolines",
1231	[SPECTRE_V2_LFENCE]			= "Mitigation: LFENCE",
1232	[SPECTRE_V2_EIBRS]			= "Mitigation: Enhanced IBRS",
1233	[SPECTRE_V2_EIBRS_LFENCE]		= "Mitigation: Enhanced IBRS + LFENCE",
1234	[SPECTRE_V2_EIBRS_RETPOLINE]		= "Mitigation: Enhanced IBRS + Retpolines",
1235	[SPECTRE_V2_IBRS]			= "Mitigation: IBRS",
1236};
1237
1238static const struct {
1239	const char *option;
1240	enum spectre_v2_mitigation_cmd cmd;
1241	bool secure;
1242} mitigation_options[] __initconst = {
1243	{ "off",		SPECTRE_V2_CMD_NONE,		  false },
1244	{ "on",			SPECTRE_V2_CMD_FORCE,		  true  },
1245	{ "retpoline",		SPECTRE_V2_CMD_RETPOLINE,	  false },
1246	{ "retpoline,amd",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1247	{ "retpoline,lfence",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1248	{ "retpoline,generic",	SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1249	{ "eibrs",		SPECTRE_V2_CMD_EIBRS,		  false },
1250	{ "eibrs,lfence",	SPECTRE_V2_CMD_EIBRS_LFENCE,	  false },
1251	{ "eibrs,retpoline",	SPECTRE_V2_CMD_EIBRS_RETPOLINE,	  false },
1252	{ "auto",		SPECTRE_V2_CMD_AUTO,		  false },
1253	{ "ibrs",		SPECTRE_V2_CMD_IBRS,              false },
1254};
1255
1256static void __init spec_v2_print_cond(const char *reason, bool secure)
1257{
1258	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1259		pr_info("%s selected on command line.\n", reason);
1260}
1261
1262static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1263{
1264	enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
1265	char arg[20];
1266	int ret, i;
1267
1268	if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1269	    cpu_mitigations_off())
1270		return SPECTRE_V2_CMD_NONE;
1271
1272	ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1273	if (ret < 0)
1274		return SPECTRE_V2_CMD_AUTO;
1275
1276	for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1277		if (!match_option(arg, ret, mitigation_options[i].option))
1278			continue;
1279		cmd = mitigation_options[i].cmd;
1280		break;
1281	}
1282
1283	if (i >= ARRAY_SIZE(mitigation_options)) {
1284		pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1285		return SPECTRE_V2_CMD_AUTO;
1286	}
1287
1288	if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1289	     cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1290	     cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1291	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1292	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1293	    !IS_ENABLED(CONFIG_RETPOLINE)) {
1294		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1295		       mitigation_options[i].option);
1296		return SPECTRE_V2_CMD_AUTO;
1297	}
1298
1299	if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1300	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1301	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1302	    !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1303		pr_err("%s selected but CPU doesn't have eIBRS. Switching to AUTO select\n",
1304		       mitigation_options[i].option);
1305		return SPECTRE_V2_CMD_AUTO;
1306	}
1307
1308	if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1309	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1310	    !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1311		pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1312		       mitigation_options[i].option);
1313		return SPECTRE_V2_CMD_AUTO;
1314	}
1315
1316	if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_CPU_IBRS_ENTRY)) {
1317		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1318		       mitigation_options[i].option);
1319		return SPECTRE_V2_CMD_AUTO;
1320	}
1321
1322	if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1323		pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
1324		       mitigation_options[i].option);
1325		return SPECTRE_V2_CMD_AUTO;
1326	}
1327
1328	if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
1329		pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
1330		       mitigation_options[i].option);
1331		return SPECTRE_V2_CMD_AUTO;
1332	}
1333
1334	if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
1335		pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
1336		       mitigation_options[i].option);
1337		return SPECTRE_V2_CMD_AUTO;
1338	}
1339
1340	spec_v2_print_cond(mitigation_options[i].option,
1341			   mitigation_options[i].secure);
1342	return cmd;
1343}
1344
1345static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1346{
1347	if (!IS_ENABLED(CONFIG_RETPOLINE)) {
1348		pr_err("Kernel not compiled with retpoline; no mitigation available!");
1349		return SPECTRE_V2_NONE;
1350	}
1351
1352	return SPECTRE_V2_RETPOLINE;
1353}
1354
1355/* Disable in-kernel use of non-RSB RET predictors */
1356static void __init spec_ctrl_disable_kernel_rrsba(void)
1357{
1358	u64 ia32_cap;
1359
1360	if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
1361		return;
1362
1363	ia32_cap = x86_read_arch_cap_msr();
1364
1365	if (ia32_cap & ARCH_CAP_RRSBA) {
1366		x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
1367		update_spec_ctrl(x86_spec_ctrl_base);
1368	}
1369}
1370
1371static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)
1372{
1373	/*
1374	 * Similar to context switches, there are two types of RSB attacks
1375	 * after VM exit:
1376	 *
1377	 * 1) RSB underflow
1378	 *
1379	 * 2) Poisoned RSB entry
1380	 *
1381	 * When retpoline is enabled, both are mitigated by filling/clearing
1382	 * the RSB.
1383	 *
1384	 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
1385	 * prediction isolation protections, RSB still needs to be cleared
1386	 * because of #2.  Note that SMEP provides no protection here, unlike
1387	 * user-space-poisoned RSB entries.
1388	 *
1389	 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB
1390	 * bug is present then a LITE version of RSB protection is required,
1391	 * just a single call needs to retire before a RET is executed.
1392	 */
1393	switch (mode) {
1394	case SPECTRE_V2_NONE:
1395		return;
1396
1397	case SPECTRE_V2_EIBRS_LFENCE:
1398	case SPECTRE_V2_EIBRS:
1399		if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
1400			setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
1401			pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
1402		}
1403		return;
1404
1405	case SPECTRE_V2_EIBRS_RETPOLINE:
1406	case SPECTRE_V2_RETPOLINE:
1407	case SPECTRE_V2_LFENCE:
1408	case SPECTRE_V2_IBRS:
1409		setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1410		pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n");
1411		return;
1412	}
1413
1414	pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit");
1415	dump_stack();
1416}
1417
1418static void __init spectre_v2_select_mitigation(void)
1419{
1420	enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1421	enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1422
1423	/*
1424	 * If the CPU is not affected and the command line mode is NONE or AUTO
1425	 * then nothing to do.
1426	 */
1427	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1428	    (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1429		return;
1430
1431	switch (cmd) {
1432	case SPECTRE_V2_CMD_NONE:
1433		return;
1434
1435	case SPECTRE_V2_CMD_FORCE:
1436	case SPECTRE_V2_CMD_AUTO:
1437		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1438			mode = SPECTRE_V2_EIBRS;
1439			break;
1440		}
1441
1442		if (IS_ENABLED(CONFIG_CPU_IBRS_ENTRY) &&
1443		    boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1444		    retbleed_cmd != RETBLEED_CMD_OFF &&
1445		    retbleed_cmd != RETBLEED_CMD_STUFF &&
1446		    boot_cpu_has(X86_FEATURE_IBRS) &&
1447		    boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1448			mode = SPECTRE_V2_IBRS;
1449			break;
1450		}
1451
1452		mode = spectre_v2_select_retpoline();
1453		break;
1454
1455	case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1456		pr_err(SPECTRE_V2_LFENCE_MSG);
1457		mode = SPECTRE_V2_LFENCE;
1458		break;
1459
1460	case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1461		mode = SPECTRE_V2_RETPOLINE;
1462		break;
1463
1464	case SPECTRE_V2_CMD_RETPOLINE:
1465		mode = spectre_v2_select_retpoline();
1466		break;
1467
1468	case SPECTRE_V2_CMD_IBRS:
1469		mode = SPECTRE_V2_IBRS;
1470		break;
1471
1472	case SPECTRE_V2_CMD_EIBRS:
1473		mode = SPECTRE_V2_EIBRS;
1474		break;
1475
1476	case SPECTRE_V2_CMD_EIBRS_LFENCE:
1477		mode = SPECTRE_V2_EIBRS_LFENCE;
1478		break;
1479
1480	case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1481		mode = SPECTRE_V2_EIBRS_RETPOLINE;
1482		break;
1483	}
1484
1485	if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1486		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1487
1488	if (spectre_v2_in_ibrs_mode(mode)) {
1489		x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1490		update_spec_ctrl(x86_spec_ctrl_base);
 
 
 
 
1491	}
1492
1493	switch (mode) {
1494	case SPECTRE_V2_NONE:
1495	case SPECTRE_V2_EIBRS:
1496		break;
1497
1498	case SPECTRE_V2_IBRS:
1499		setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
1500		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1501			pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
1502		break;
1503
1504	case SPECTRE_V2_LFENCE:
1505	case SPECTRE_V2_EIBRS_LFENCE:
1506		setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1507		fallthrough;
1508
1509	case SPECTRE_V2_RETPOLINE:
1510	case SPECTRE_V2_EIBRS_RETPOLINE:
1511		setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1512		break;
1513	}
1514
1515	/*
1516	 * Disable alternate RSB predictions in kernel when indirect CALLs and
1517	 * JMPs gets protection against BHI and Intramode-BTI, but RET
1518	 * prediction from a non-RSB predictor is still a risk.
1519	 */
1520	if (mode == SPECTRE_V2_EIBRS_LFENCE ||
1521	    mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1522	    mode == SPECTRE_V2_RETPOLINE)
1523		spec_ctrl_disable_kernel_rrsba();
1524
1525	spectre_v2_enabled = mode;
1526	pr_info("%s\n", spectre_v2_strings[mode]);
1527
1528	/*
1529	 * If Spectre v2 protection has been enabled, fill the RSB during a
1530	 * context switch.  In general there are two types of RSB attacks
1531	 * across context switches, for which the CALLs/RETs may be unbalanced.
1532	 *
1533	 * 1) RSB underflow
1534	 *
1535	 *    Some Intel parts have "bottomless RSB".  When the RSB is empty,
1536	 *    speculated return targets may come from the branch predictor,
1537	 *    which could have a user-poisoned BTB or BHB entry.
1538	 *
1539	 *    AMD has it even worse: *all* returns are speculated from the BTB,
1540	 *    regardless of the state of the RSB.
1541	 *
1542	 *    When IBRS or eIBRS is enabled, the "user -> kernel" attack
1543	 *    scenario is mitigated by the IBRS branch prediction isolation
1544	 *    properties, so the RSB buffer filling wouldn't be necessary to
1545	 *    protect against this type of attack.
1546	 *
1547	 *    The "user -> user" attack scenario is mitigated by RSB filling.
1548	 *
1549	 * 2) Poisoned RSB entry
1550	 *
1551	 *    If the 'next' in-kernel return stack is shorter than 'prev',
1552	 *    'next' could be tricked into speculating with a user-poisoned RSB
1553	 *    entry.
1554	 *
1555	 *    The "user -> kernel" attack scenario is mitigated by SMEP and
1556	 *    eIBRS.
1557	 *
1558	 *    The "user -> user" scenario, also known as SpectreBHB, requires
1559	 *    RSB clearing.
1560	 *
1561	 * So to mitigate all cases, unconditionally fill RSB on context
1562	 * switches.
1563	 *
1564	 * FIXME: Is this pointless for retbleed-affected AMD?
1565	 */
1566	setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1567	pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1568
1569	spectre_v2_determine_rsb_fill_type_at_vmexit(mode);
1570
1571	/*
1572	 * Retpoline protects the kernel, but doesn't protect firmware.  IBRS
1573	 * and Enhanced IBRS protect firmware too, so enable IBRS around
1574	 * firmware calls only when IBRS / Enhanced IBRS aren't otherwise
1575	 * enabled.
1576	 *
1577	 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1578	 * the user might select retpoline on the kernel command line and if
1579	 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1580	 * enable IBRS around firmware calls.
1581	 */
1582	if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1583	    boot_cpu_has(X86_FEATURE_IBPB) &&
1584	    (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1585	     boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
1586
1587		if (retbleed_cmd != RETBLEED_CMD_IBPB) {
1588			setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
1589			pr_info("Enabling Speculation Barrier for firmware calls\n");
1590		}
1591
1592	} else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) {
1593		setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1594		pr_info("Enabling Restricted Speculation for firmware calls\n");
1595	}
1596
1597	/* Set up IBPB and STIBP depending on the general spectre V2 command */
1598	spectre_v2_cmd = cmd;
1599}
1600
1601static void update_stibp_msr(void * __unused)
1602{
1603	u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
1604	update_spec_ctrl(val);
1605}
1606
1607/* Update x86_spec_ctrl_base in case SMT state changed. */
1608static void update_stibp_strict(void)
1609{
1610	u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1611
1612	if (sched_smt_active())
1613		mask |= SPEC_CTRL_STIBP;
1614
1615	if (mask == x86_spec_ctrl_base)
1616		return;
1617
1618	pr_info("Update user space SMT mitigation: STIBP %s\n",
1619		mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1620	x86_spec_ctrl_base = mask;
1621	on_each_cpu(update_stibp_msr, NULL, 1);
1622}
1623
1624/* Update the static key controlling the evaluation of TIF_SPEC_IB */
1625static void update_indir_branch_cond(void)
1626{
1627	if (sched_smt_active())
1628		static_branch_enable(&switch_to_cond_stibp);
1629	else
1630		static_branch_disable(&switch_to_cond_stibp);
1631}
1632
1633#undef pr_fmt
1634#define pr_fmt(fmt) fmt
1635
1636/* Update the static key controlling the MDS CPU buffer clear in idle */
1637static void update_mds_branch_idle(void)
1638{
1639	u64 ia32_cap = x86_read_arch_cap_msr();
1640
1641	/*
1642	 * Enable the idle clearing if SMT is active on CPUs which are
1643	 * affected only by MSBDS and not any other MDS variant.
1644	 *
1645	 * The other variants cannot be mitigated when SMT is enabled, so
1646	 * clearing the buffers on idle just to prevent the Store Buffer
1647	 * repartitioning leak would be a window dressing exercise.
1648	 */
1649	if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1650		return;
1651
1652	if (sched_smt_active()) {
1653		static_branch_enable(&mds_idle_clear);
1654	} else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1655		   (ia32_cap & ARCH_CAP_FBSDP_NO)) {
1656		static_branch_disable(&mds_idle_clear);
1657	}
1658}
1659
1660#define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1661#define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1662#define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
1663
1664void cpu_bugs_smt_update(void)
1665{
1666	mutex_lock(&spec_ctrl_mutex);
1667
1668	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1669	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1670		pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1671
1672	switch (spectre_v2_user_stibp) {
1673	case SPECTRE_V2_USER_NONE:
1674		break;
1675	case SPECTRE_V2_USER_STRICT:
1676	case SPECTRE_V2_USER_STRICT_PREFERRED:
1677		update_stibp_strict();
1678		break;
1679	case SPECTRE_V2_USER_PRCTL:
1680	case SPECTRE_V2_USER_SECCOMP:
1681		update_indir_branch_cond();
1682		break;
1683	}
1684
1685	switch (mds_mitigation) {
1686	case MDS_MITIGATION_FULL:
1687	case MDS_MITIGATION_VMWERV:
1688		if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1689			pr_warn_once(MDS_MSG_SMT);
1690		update_mds_branch_idle();
1691		break;
1692	case MDS_MITIGATION_OFF:
1693		break;
1694	}
1695
1696	switch (taa_mitigation) {
1697	case TAA_MITIGATION_VERW:
1698	case TAA_MITIGATION_UCODE_NEEDED:
1699		if (sched_smt_active())
1700			pr_warn_once(TAA_MSG_SMT);
1701		break;
1702	case TAA_MITIGATION_TSX_DISABLED:
1703	case TAA_MITIGATION_OFF:
1704		break;
1705	}
1706
1707	switch (mmio_mitigation) {
1708	case MMIO_MITIGATION_VERW:
1709	case MMIO_MITIGATION_UCODE_NEEDED:
1710		if (sched_smt_active())
1711			pr_warn_once(MMIO_MSG_SMT);
1712		break;
1713	case MMIO_MITIGATION_OFF:
1714		break;
1715	}
1716
1717	mutex_unlock(&spec_ctrl_mutex);
1718}
1719
1720#undef pr_fmt
1721#define pr_fmt(fmt)	"Speculative Store Bypass: " fmt
1722
1723static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
1724
1725/* The kernel command line selection */
1726enum ssb_mitigation_cmd {
1727	SPEC_STORE_BYPASS_CMD_NONE,
1728	SPEC_STORE_BYPASS_CMD_AUTO,
1729	SPEC_STORE_BYPASS_CMD_ON,
1730	SPEC_STORE_BYPASS_CMD_PRCTL,
1731	SPEC_STORE_BYPASS_CMD_SECCOMP,
1732};
1733
1734static const char * const ssb_strings[] = {
1735	[SPEC_STORE_BYPASS_NONE]	= "Vulnerable",
1736	[SPEC_STORE_BYPASS_DISABLE]	= "Mitigation: Speculative Store Bypass disabled",
1737	[SPEC_STORE_BYPASS_PRCTL]	= "Mitigation: Speculative Store Bypass disabled via prctl",
1738	[SPEC_STORE_BYPASS_SECCOMP]	= "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
1739};
1740
1741static const struct {
1742	const char *option;
1743	enum ssb_mitigation_cmd cmd;
1744} ssb_mitigation_options[]  __initconst = {
1745	{ "auto",	SPEC_STORE_BYPASS_CMD_AUTO },    /* Platform decides */
1746	{ "on",		SPEC_STORE_BYPASS_CMD_ON },      /* Disable Speculative Store Bypass */
1747	{ "off",	SPEC_STORE_BYPASS_CMD_NONE },    /* Don't touch Speculative Store Bypass */
1748	{ "prctl",	SPEC_STORE_BYPASS_CMD_PRCTL },   /* Disable Speculative Store Bypass via prctl */
1749	{ "seccomp",	SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
1750};
1751
1752static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
1753{
1754	enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
1755	char arg[20];
1756	int ret, i;
1757
1758	if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
1759	    cpu_mitigations_off()) {
1760		return SPEC_STORE_BYPASS_CMD_NONE;
1761	} else {
1762		ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
1763					  arg, sizeof(arg));
1764		if (ret < 0)
1765			return SPEC_STORE_BYPASS_CMD_AUTO;
1766
1767		for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
1768			if (!match_option(arg, ret, ssb_mitigation_options[i].option))
1769				continue;
1770
1771			cmd = ssb_mitigation_options[i].cmd;
1772			break;
1773		}
1774
1775		if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
1776			pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1777			return SPEC_STORE_BYPASS_CMD_AUTO;
1778		}
1779	}
1780
1781	return cmd;
1782}
1783
1784static enum ssb_mitigation __init __ssb_select_mitigation(void)
1785{
1786	enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
1787	enum ssb_mitigation_cmd cmd;
1788
1789	if (!boot_cpu_has(X86_FEATURE_SSBD))
1790		return mode;
1791
1792	cmd = ssb_parse_cmdline();
1793	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
1794	    (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
1795	     cmd == SPEC_STORE_BYPASS_CMD_AUTO))
1796		return mode;
1797
1798	switch (cmd) {
1799	case SPEC_STORE_BYPASS_CMD_SECCOMP:
1800		/*
1801		 * Choose prctl+seccomp as the default mode if seccomp is
1802		 * enabled.
1803		 */
1804		if (IS_ENABLED(CONFIG_SECCOMP))
1805			mode = SPEC_STORE_BYPASS_SECCOMP;
1806		else
1807			mode = SPEC_STORE_BYPASS_PRCTL;
1808		break;
1809	case SPEC_STORE_BYPASS_CMD_ON:
1810		mode = SPEC_STORE_BYPASS_DISABLE;
1811		break;
1812	case SPEC_STORE_BYPASS_CMD_AUTO:
1813	case SPEC_STORE_BYPASS_CMD_PRCTL:
1814		mode = SPEC_STORE_BYPASS_PRCTL;
1815		break;
1816	case SPEC_STORE_BYPASS_CMD_NONE:
1817		break;
1818	}
1819
1820	/*
1821	 * We have three CPU feature flags that are in play here:
1822	 *  - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
1823	 *  - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
1824	 *  - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
1825	 */
1826	if (mode == SPEC_STORE_BYPASS_DISABLE) {
1827		setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
1828		/*
1829		 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
1830		 * use a completely different MSR and bit dependent on family.
1831		 */
1832		if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
1833		    !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
1834			x86_amd_ssb_disable();
1835		} else {
1836			x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
1837			update_spec_ctrl(x86_spec_ctrl_base);
1838		}
1839	}
1840
1841	return mode;
1842}
1843
1844static void ssb_select_mitigation(void)
1845{
1846	ssb_mode = __ssb_select_mitigation();
1847
1848	if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1849		pr_info("%s\n", ssb_strings[ssb_mode]);
1850}
1851
1852#undef pr_fmt
1853#define pr_fmt(fmt)     "Speculation prctl: " fmt
1854
1855static void task_update_spec_tif(struct task_struct *tsk)
1856{
1857	/* Force the update of the real TIF bits */
1858	set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
1859
1860	/*
1861	 * Immediately update the speculation control MSRs for the current
1862	 * task, but for a non-current task delay setting the CPU
1863	 * mitigation until it is scheduled next.
1864	 *
1865	 * This can only happen for SECCOMP mitigation. For PRCTL it's
1866	 * always the current task.
1867	 */
1868	if (tsk == current)
1869		speculation_ctrl_update_current();
1870}
1871
1872static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
1873{
1874
1875	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
1876		return -EPERM;
1877
1878	switch (ctrl) {
1879	case PR_SPEC_ENABLE:
1880		set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
1881		return 0;
1882	case PR_SPEC_DISABLE:
1883		clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
1884		return 0;
1885	default:
1886		return -ERANGE;
1887	}
1888}
1889
1890static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
1891{
1892	if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
1893	    ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
1894		return -ENXIO;
1895
1896	switch (ctrl) {
1897	case PR_SPEC_ENABLE:
1898		/* If speculation is force disabled, enable is not allowed */
1899		if (task_spec_ssb_force_disable(task))
1900			return -EPERM;
1901		task_clear_spec_ssb_disable(task);
1902		task_clear_spec_ssb_noexec(task);
1903		task_update_spec_tif(task);
1904		break;
1905	case PR_SPEC_DISABLE:
1906		task_set_spec_ssb_disable(task);
1907		task_clear_spec_ssb_noexec(task);
1908		task_update_spec_tif(task);
1909		break;
1910	case PR_SPEC_FORCE_DISABLE:
1911		task_set_spec_ssb_disable(task);
1912		task_set_spec_ssb_force_disable(task);
1913		task_clear_spec_ssb_noexec(task);
1914		task_update_spec_tif(task);
1915		break;
1916	case PR_SPEC_DISABLE_NOEXEC:
1917		if (task_spec_ssb_force_disable(task))
1918			return -EPERM;
1919		task_set_spec_ssb_disable(task);
1920		task_set_spec_ssb_noexec(task);
1921		task_update_spec_tif(task);
1922		break;
1923	default:
1924		return -ERANGE;
1925	}
1926	return 0;
1927}
1928
1929static bool is_spec_ib_user_controlled(void)
1930{
1931	return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
1932		spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
1933		spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
1934		spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
1935}
1936
1937static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
1938{
1939	switch (ctrl) {
1940	case PR_SPEC_ENABLE:
1941		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1942		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1943			return 0;
1944
1945		/*
1946		 * With strict mode for both IBPB and STIBP, the instruction
1947		 * code paths avoid checking this task flag and instead,
1948		 * unconditionally run the instruction. However, STIBP and IBPB
1949		 * are independent and either can be set to conditionally
1950		 * enabled regardless of the mode of the other.
1951		 *
1952		 * If either is set to conditional, allow the task flag to be
1953		 * updated, unless it was force-disabled by a previous prctl
1954		 * call. Currently, this is possible on an AMD CPU which has the
1955		 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
1956		 * kernel is booted with 'spectre_v2_user=seccomp', then
1957		 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
1958		 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
1959		 */
1960		if (!is_spec_ib_user_controlled() ||
1961		    task_spec_ib_force_disable(task))
1962			return -EPERM;
1963
1964		task_clear_spec_ib_disable(task);
1965		task_update_spec_tif(task);
1966		break;
1967	case PR_SPEC_DISABLE:
1968	case PR_SPEC_FORCE_DISABLE:
1969		/*
1970		 * Indirect branch speculation is always allowed when
1971		 * mitigation is force disabled.
1972		 */
1973		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1974		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1975			return -EPERM;
1976
1977		if (!is_spec_ib_user_controlled())
1978			return 0;
1979
1980		task_set_spec_ib_disable(task);
1981		if (ctrl == PR_SPEC_FORCE_DISABLE)
1982			task_set_spec_ib_force_disable(task);
1983		task_update_spec_tif(task);
1984		if (task == current)
1985			indirect_branch_prediction_barrier();
1986		break;
1987	default:
1988		return -ERANGE;
1989	}
1990	return 0;
1991}
1992
1993int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
1994			     unsigned long ctrl)
1995{
1996	switch (which) {
1997	case PR_SPEC_STORE_BYPASS:
1998		return ssb_prctl_set(task, ctrl);
1999	case PR_SPEC_INDIRECT_BRANCH:
2000		return ib_prctl_set(task, ctrl);
2001	case PR_SPEC_L1D_FLUSH:
2002		return l1d_flush_prctl_set(task, ctrl);
2003	default:
2004		return -ENODEV;
2005	}
2006}
2007
2008#ifdef CONFIG_SECCOMP
2009void arch_seccomp_spec_mitigate(struct task_struct *task)
2010{
2011	if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
2012		ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2013	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2014	    spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
2015		ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2016}
2017#endif
2018
2019static int l1d_flush_prctl_get(struct task_struct *task)
2020{
2021	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2022		return PR_SPEC_FORCE_DISABLE;
2023
2024	if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
2025		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2026	else
2027		return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2028}
2029
2030static int ssb_prctl_get(struct task_struct *task)
2031{
2032	switch (ssb_mode) {
 
 
 
 
2033	case SPEC_STORE_BYPASS_DISABLE:
2034		return PR_SPEC_DISABLE;
2035	case SPEC_STORE_BYPASS_SECCOMP:
2036	case SPEC_STORE_BYPASS_PRCTL:
2037		if (task_spec_ssb_force_disable(task))
2038			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2039		if (task_spec_ssb_noexec(task))
2040			return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2041		if (task_spec_ssb_disable(task))
2042			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2043		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2044	default:
2045		if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2046			return PR_SPEC_ENABLE;
2047		return PR_SPEC_NOT_AFFECTED;
2048	}
 
2049}
2050
2051static int ib_prctl_get(struct task_struct *task)
2052{
2053	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2054		return PR_SPEC_NOT_AFFECTED;
2055
2056	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2057	    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2058		return PR_SPEC_ENABLE;
2059	else if (is_spec_ib_user_controlled()) {
2060		if (task_spec_ib_force_disable(task))
2061			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2062		if (task_spec_ib_disable(task))
2063			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2064		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2065	} else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2066	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2067	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2068		return PR_SPEC_DISABLE;
2069	else
2070		return PR_SPEC_NOT_AFFECTED;
2071}
2072
2073int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2074{
2075	switch (which) {
2076	case PR_SPEC_STORE_BYPASS:
2077		return ssb_prctl_get(task);
2078	case PR_SPEC_INDIRECT_BRANCH:
2079		return ib_prctl_get(task);
2080	case PR_SPEC_L1D_FLUSH:
2081		return l1d_flush_prctl_get(task);
2082	default:
2083		return -ENODEV;
2084	}
2085}
2086
2087void x86_spec_ctrl_setup_ap(void)
2088{
2089	if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2090		update_spec_ctrl(x86_spec_ctrl_base);
2091
2092	if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2093		x86_amd_ssb_disable();
2094}
2095
2096bool itlb_multihit_kvm_mitigation;
2097EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2098
2099#undef pr_fmt
2100#define pr_fmt(fmt)	"L1TF: " fmt
2101
2102/* Default mitigation for L1TF-affected CPUs */
2103enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
2104#if IS_ENABLED(CONFIG_KVM_INTEL)
2105EXPORT_SYMBOL_GPL(l1tf_mitigation);
2106#endif
2107enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2108EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2109
2110/*
2111 * These CPUs all support 44bits physical address space internally in the
2112 * cache but CPUID can report a smaller number of physical address bits.
2113 *
2114 * The L1TF mitigation uses the top most address bit for the inversion of
2115 * non present PTEs. When the installed memory reaches into the top most
2116 * address bit due to memory holes, which has been observed on machines
2117 * which report 36bits physical address bits and have 32G RAM installed,
2118 * then the mitigation range check in l1tf_select_mitigation() triggers.
2119 * This is a false positive because the mitigation is still possible due to
2120 * the fact that the cache uses 44bit internally. Use the cache bits
2121 * instead of the reported physical bits and adjust them on the affected
2122 * machines to 44bit if the reported bits are less than 44.
2123 */
2124static void override_cache_bits(struct cpuinfo_x86 *c)
2125{
2126	if (c->x86 != 6)
2127		return;
2128
2129	switch (c->x86_model) {
2130	case INTEL_FAM6_NEHALEM:
2131	case INTEL_FAM6_WESTMERE:
2132	case INTEL_FAM6_SANDYBRIDGE:
2133	case INTEL_FAM6_IVYBRIDGE:
2134	case INTEL_FAM6_HASWELL:
2135	case INTEL_FAM6_HASWELL_L:
2136	case INTEL_FAM6_HASWELL_G:
2137	case INTEL_FAM6_BROADWELL:
2138	case INTEL_FAM6_BROADWELL_G:
2139	case INTEL_FAM6_SKYLAKE_L:
2140	case INTEL_FAM6_SKYLAKE:
2141	case INTEL_FAM6_KABYLAKE_L:
2142	case INTEL_FAM6_KABYLAKE:
2143		if (c->x86_cache_bits < 44)
2144			c->x86_cache_bits = 44;
2145		break;
2146	}
2147}
2148
2149static void __init l1tf_select_mitigation(void)
2150{
2151	u64 half_pa;
2152
2153	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2154		return;
2155
2156	if (cpu_mitigations_off())
2157		l1tf_mitigation = L1TF_MITIGATION_OFF;
2158	else if (cpu_mitigations_auto_nosmt())
2159		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2160
2161	override_cache_bits(&boot_cpu_data);
2162
2163	switch (l1tf_mitigation) {
2164	case L1TF_MITIGATION_OFF:
2165	case L1TF_MITIGATION_FLUSH_NOWARN:
2166	case L1TF_MITIGATION_FLUSH:
2167		break;
2168	case L1TF_MITIGATION_FLUSH_NOSMT:
2169	case L1TF_MITIGATION_FULL:
2170		cpu_smt_disable(false);
2171		break;
2172	case L1TF_MITIGATION_FULL_FORCE:
2173		cpu_smt_disable(true);
2174		break;
2175	}
2176
2177#if CONFIG_PGTABLE_LEVELS == 2
2178	pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2179	return;
2180#endif
2181
2182	half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2183	if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2184			e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
2185		pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2186		pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2187				half_pa);
2188		pr_info("However, doing so will make a part of your RAM unusable.\n");
2189		pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2190		return;
2191	}
2192
2193	setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2194}
2195
2196static int __init l1tf_cmdline(char *str)
2197{
2198	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2199		return 0;
2200
2201	if (!str)
2202		return -EINVAL;
2203
2204	if (!strcmp(str, "off"))
2205		l1tf_mitigation = L1TF_MITIGATION_OFF;
2206	else if (!strcmp(str, "flush,nowarn"))
2207		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2208	else if (!strcmp(str, "flush"))
2209		l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2210	else if (!strcmp(str, "flush,nosmt"))
2211		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2212	else if (!strcmp(str, "full"))
2213		l1tf_mitigation = L1TF_MITIGATION_FULL;
2214	else if (!strcmp(str, "full,force"))
2215		l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2216
2217	return 0;
2218}
2219early_param("l1tf", l1tf_cmdline);
2220
2221#undef pr_fmt
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2222#define pr_fmt(fmt) fmt
2223
2224#ifdef CONFIG_SYSFS
2225
2226#define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
2227
2228#if IS_ENABLED(CONFIG_KVM_INTEL)
2229static const char * const l1tf_vmx_states[] = {
2230	[VMENTER_L1D_FLUSH_AUTO]		= "auto",
2231	[VMENTER_L1D_FLUSH_NEVER]		= "vulnerable",
2232	[VMENTER_L1D_FLUSH_COND]		= "conditional cache flushes",
2233	[VMENTER_L1D_FLUSH_ALWAYS]		= "cache flushes",
2234	[VMENTER_L1D_FLUSH_EPT_DISABLED]	= "EPT disabled",
2235	[VMENTER_L1D_FLUSH_NOT_REQUIRED]	= "flush not necessary"
2236};
2237
2238static ssize_t l1tf_show_state(char *buf)
2239{
2240	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
2241		return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2242
2243	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
2244	    (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
2245	     sched_smt_active())) {
2246		return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
2247				  l1tf_vmx_states[l1tf_vmx_mitigation]);
2248	}
2249
2250	return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
2251			  l1tf_vmx_states[l1tf_vmx_mitigation],
2252			  sched_smt_active() ? "vulnerable" : "disabled");
2253}
2254
2255static ssize_t itlb_multihit_show_state(char *buf)
2256{
2257	if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2258	    !boot_cpu_has(X86_FEATURE_VMX))
2259		return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n");
2260	else if (!(cr4_read_shadow() & X86_CR4_VMXE))
2261		return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n");
2262	else if (itlb_multihit_kvm_mitigation)
2263		return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n");
2264	else
2265		return sysfs_emit(buf, "KVM: Vulnerable\n");
2266}
2267#else
2268static ssize_t l1tf_show_state(char *buf)
2269{
2270	return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2271}
2272
2273static ssize_t itlb_multihit_show_state(char *buf)
2274{
2275	return sysfs_emit(buf, "Processor vulnerable\n");
2276}
2277#endif
2278
2279static ssize_t mds_show_state(char *buf)
2280{
2281	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2282		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2283				  mds_strings[mds_mitigation]);
2284	}
2285
2286	if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
2287		return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2288				  (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
2289				   sched_smt_active() ? "mitigated" : "disabled"));
2290	}
2291
2292	return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2293			  sched_smt_active() ? "vulnerable" : "disabled");
2294}
2295
2296static ssize_t tsx_async_abort_show_state(char *buf)
2297{
2298	if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
2299	    (taa_mitigation == TAA_MITIGATION_OFF))
2300		return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]);
2301
2302	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2303		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2304				  taa_strings[taa_mitigation]);
2305	}
2306
2307	return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
2308			  sched_smt_active() ? "vulnerable" : "disabled");
2309}
2310
2311static ssize_t mmio_stale_data_show_state(char *buf)
2312{
2313	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2314		return sysfs_emit(buf, "Unknown: No mitigations\n");
2315
2316	if (mmio_mitigation == MMIO_MITIGATION_OFF)
2317		return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
2318
2319	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2320		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2321				  mmio_strings[mmio_mitigation]);
2322	}
2323
2324	return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
2325			  sched_smt_active() ? "vulnerable" : "disabled");
2326}
2327
2328static char *stibp_state(void)
2329{
2330	if (spectre_v2_in_ibrs_mode(spectre_v2_enabled))
 
2331		return "";
2332
2333	switch (spectre_v2_user_stibp) {
2334	case SPECTRE_V2_USER_NONE:
2335		return ", STIBP: disabled";
2336	case SPECTRE_V2_USER_STRICT:
2337		return ", STIBP: forced";
2338	case SPECTRE_V2_USER_STRICT_PREFERRED:
2339		return ", STIBP: always-on";
2340	case SPECTRE_V2_USER_PRCTL:
2341	case SPECTRE_V2_USER_SECCOMP:
2342		if (static_key_enabled(&switch_to_cond_stibp))
2343			return ", STIBP: conditional";
2344	}
2345	return "";
2346}
2347
2348static char *ibpb_state(void)
2349{
2350	if (boot_cpu_has(X86_FEATURE_IBPB)) {
2351		if (static_key_enabled(&switch_mm_always_ibpb))
2352			return ", IBPB: always-on";
2353		if (static_key_enabled(&switch_mm_cond_ibpb))
2354			return ", IBPB: conditional";
2355		return ", IBPB: disabled";
2356	}
2357	return "";
2358}
2359
2360static char *pbrsb_eibrs_state(void)
2361{
2362	if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2363		if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
2364		    boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
2365			return ", PBRSB-eIBRS: SW sequence";
2366		else
2367			return ", PBRSB-eIBRS: Vulnerable";
2368	} else {
2369		return ", PBRSB-eIBRS: Not affected";
2370	}
2371}
2372
2373static ssize_t spectre_v2_show_state(char *buf)
2374{
2375	if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
2376		return sysfs_emit(buf, "Vulnerable: LFENCE\n");
2377
2378	if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2379		return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
2380
2381	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2382	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2383		return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
2384
2385	return sysfs_emit(buf, "%s%s%s%s%s%s%s\n",
2386			  spectre_v2_strings[spectre_v2_enabled],
2387			  ibpb_state(),
2388			  boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "",
2389			  stibp_state(),
2390			  boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "",
2391			  pbrsb_eibrs_state(),
2392			  spectre_v2_module_string());
2393}
2394
2395static ssize_t srbds_show_state(char *buf)
2396{
2397	return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]);
2398}
2399
2400static ssize_t retbleed_show_state(char *buf)
2401{
2402	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
2403	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2404		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
2405		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
2406			return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
2407
2408		return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
2409				  !sched_smt_active() ? "disabled" :
2410				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2411				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
2412				  "enabled with STIBP protection" : "vulnerable");
2413	}
2414
2415	return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
2416}
2417
 
 
 
 
 
 
 
 
 
 
 
 
 
2418static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
2419			       char *buf, unsigned int bug)
2420{
2421	if (!boot_cpu_has_bug(bug))
2422		return sysfs_emit(buf, "Not affected\n");
2423
2424	switch (bug) {
2425	case X86_BUG_CPU_MELTDOWN:
2426		if (boot_cpu_has(X86_FEATURE_PTI))
2427			return sysfs_emit(buf, "Mitigation: PTI\n");
2428
2429		if (hypervisor_is_type(X86_HYPER_XEN_PV))
2430			return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
2431
2432		break;
2433
2434	case X86_BUG_SPECTRE_V1:
2435		return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
2436
2437	case X86_BUG_SPECTRE_V2:
2438		return spectre_v2_show_state(buf);
2439
2440	case X86_BUG_SPEC_STORE_BYPASS:
2441		return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]);
2442
2443	case X86_BUG_L1TF:
2444		if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
2445			return l1tf_show_state(buf);
2446		break;
2447
2448	case X86_BUG_MDS:
2449		return mds_show_state(buf);
2450
2451	case X86_BUG_TAA:
2452		return tsx_async_abort_show_state(buf);
2453
2454	case X86_BUG_ITLB_MULTIHIT:
2455		return itlb_multihit_show_state(buf);
2456
2457	case X86_BUG_SRBDS:
2458		return srbds_show_state(buf);
2459
2460	case X86_BUG_MMIO_STALE_DATA:
2461	case X86_BUG_MMIO_UNKNOWN:
2462		return mmio_stale_data_show_state(buf);
2463
2464	case X86_BUG_RETBLEED:
2465		return retbleed_show_state(buf);
2466
 
 
 
 
 
 
2467	default:
2468		break;
2469	}
2470
2471	return sysfs_emit(buf, "Vulnerable\n");
2472}
2473
2474ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
2475{
2476	return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
2477}
2478
2479ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
2480{
2481	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
2482}
2483
2484ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
2485{
2486	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
2487}
2488
2489ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
2490{
2491	return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
2492}
2493
2494ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
2495{
2496	return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
2497}
2498
2499ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
2500{
2501	return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
2502}
2503
2504ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
2505{
2506	return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
2507}
2508
2509ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
2510{
2511	return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
2512}
2513
2514ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
2515{
2516	return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
2517}
2518
2519ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
2520{
2521	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2522		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN);
2523	else
2524		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
2525}
2526
2527ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
2528{
2529	return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
 
 
 
 
 
 
 
 
 
 
2530}
2531#endif
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1994  Linus Torvalds
   4 *
   5 *  Cyrix stuff, June 1998 by:
   6 *	- Rafael R. Reilova (moved everything from head.S),
   7 *        <rreilova@ececs.uc.edu>
   8 *	- Channing Corn (tests & fixes),
   9 *	- Andrew D. Balsa (code cleanup).
  10 */
  11#include <linux/init.h>
 
  12#include <linux/cpu.h>
  13#include <linux/module.h>
  14#include <linux/nospec.h>
  15#include <linux/prctl.h>
  16#include <linux/sched/smt.h>
  17#include <linux/pgtable.h>
  18#include <linux/bpf.h>
  19
  20#include <asm/spec-ctrl.h>
  21#include <asm/cmdline.h>
  22#include <asm/bugs.h>
  23#include <asm/processor.h>
  24#include <asm/processor-flags.h>
  25#include <asm/fpu/api.h>
  26#include <asm/msr.h>
  27#include <asm/vmx.h>
  28#include <asm/paravirt.h>
 
 
  29#include <asm/intel-family.h>
  30#include <asm/e820/api.h>
  31#include <asm/hypervisor.h>
  32#include <asm/tlbflush.h>
  33#include <asm/cpu.h>
  34
  35#include "cpu.h"
  36
  37static void __init spectre_v1_select_mitigation(void);
  38static void __init spectre_v2_select_mitigation(void);
  39static void __init retbleed_select_mitigation(void);
  40static void __init spectre_v2_user_select_mitigation(void);
  41static void __init ssb_select_mitigation(void);
  42static void __init l1tf_select_mitigation(void);
  43static void __init mds_select_mitigation(void);
  44static void __init md_clear_update_mitigation(void);
  45static void __init md_clear_select_mitigation(void);
  46static void __init taa_select_mitigation(void);
  47static void __init mmio_select_mitigation(void);
  48static void __init srbds_select_mitigation(void);
  49static void __init l1d_flush_select_mitigation(void);
  50static void __init srso_select_mitigation(void);
  51static void __init gds_select_mitigation(void);
  52
  53/* The base value of the SPEC_CTRL MSR without task-specific bits set */
  54u64 x86_spec_ctrl_base;
  55EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
  56
  57/* The current value of the SPEC_CTRL MSR with task-specific bits set */
  58DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
  59EXPORT_SYMBOL_GPL(x86_spec_ctrl_current);
  60
  61u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB;
  62EXPORT_SYMBOL_GPL(x86_pred_cmd);
  63
  64static DEFINE_MUTEX(spec_ctrl_mutex);
  65
  66void (*x86_return_thunk)(void) __ro_after_init = __x86_return_thunk;
  67
  68/* Update SPEC_CTRL MSR and its cached copy unconditionally */
  69static void update_spec_ctrl(u64 val)
  70{
  71	this_cpu_write(x86_spec_ctrl_current, val);
  72	wrmsrl(MSR_IA32_SPEC_CTRL, val);
  73}
  74
  75/*
  76 * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
  77 * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
  78 */
  79void update_spec_ctrl_cond(u64 val)
  80{
  81	if (this_cpu_read(x86_spec_ctrl_current) == val)
  82		return;
  83
  84	this_cpu_write(x86_spec_ctrl_current, val);
  85
  86	/*
  87	 * When KERNEL_IBRS this MSR is written on return-to-user, unless
  88	 * forced the update can be delayed until that time.
  89	 */
  90	if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
  91		wrmsrl(MSR_IA32_SPEC_CTRL, val);
  92}
  93
  94noinstr u64 spec_ctrl_current(void)
  95{
  96	return this_cpu_read(x86_spec_ctrl_current);
  97}
  98EXPORT_SYMBOL_GPL(spec_ctrl_current);
  99
 100/*
 101 * AMD specific MSR info for Speculative Store Bypass control.
 102 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
 103 */
 104u64 __ro_after_init x86_amd_ls_cfg_base;
 105u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
 106
 107/* Control conditional STIBP in switch_to() */
 108DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
 109/* Control conditional IBPB in switch_mm() */
 110DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
 111/* Control unconditional IBPB in switch_mm() */
 112DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
 113
 
 
 
 114/* Control MDS CPU buffer clear before idling (halt, mwait) */
 115DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
 116EXPORT_SYMBOL_GPL(mds_idle_clear);
 117
 118/*
 119 * Controls whether l1d flush based mitigations are enabled,
 120 * based on hw features and admin setting via boot parameter
 121 * defaults to false
 122 */
 123DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
 124
 125/* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
 126DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
 127EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
 128
 129void __init cpu_select_mitigations(void)
 130{
 
 
 
 
 
 
 
 
 
 
 
 
 
 131	/*
 132	 * Read the SPEC_CTRL MSR to account for reserved bits which may
 133	 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
 134	 * init code as it is not enumerated and depends on the family.
 135	 */
 136	if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) {
 137		rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
 138
 139		/*
 140		 * Previously running kernel (kexec), may have some controls
 141		 * turned ON. Clear them and let the mitigations setup below
 142		 * rediscover them based on configuration.
 143		 */
 144		x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK;
 145	}
 146
 147	/* Select the proper CPU mitigations before patching alternatives: */
 148	spectre_v1_select_mitigation();
 149	spectre_v2_select_mitigation();
 150	/*
 151	 * retbleed_select_mitigation() relies on the state set by
 152	 * spectre_v2_select_mitigation(); specifically it wants to know about
 153	 * spectre_v2=ibrs.
 154	 */
 155	retbleed_select_mitigation();
 156	/*
 157	 * spectre_v2_user_select_mitigation() relies on the state set by
 158	 * retbleed_select_mitigation(); specifically the STIBP selection is
 159	 * forced for UNRET or IBPB.
 160	 */
 161	spectre_v2_user_select_mitigation();
 162	ssb_select_mitigation();
 163	l1tf_select_mitigation();
 164	md_clear_select_mitigation();
 165	srbds_select_mitigation();
 166	l1d_flush_select_mitigation();
 167
 
 
 
 168	/*
 169	 * srso_select_mitigation() depends and must run after
 170	 * retbleed_select_mitigation().
 
 
 
 171	 */
 172	srso_select_mitigation();
 173	gds_select_mitigation();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 174}
 175
 176/*
 177 * NOTE: This function is *only* called for SVM, since Intel uses
 178 * MSR_IA32_SPEC_CTRL for SSBD.
 179 */
 180void
 181x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
 182{
 183	u64 guestval, hostval;
 184	struct thread_info *ti = current_thread_info();
 185
 186	/*
 187	 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
 188	 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
 189	 */
 190	if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
 191	    !static_cpu_has(X86_FEATURE_VIRT_SSBD))
 192		return;
 193
 194	/*
 195	 * If the host has SSBD mitigation enabled, force it in the host's
 196	 * virtual MSR value. If its not permanently enabled, evaluate
 197	 * current's TIF_SSBD thread flag.
 198	 */
 199	if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
 200		hostval = SPEC_CTRL_SSBD;
 201	else
 202		hostval = ssbd_tif_to_spec_ctrl(ti->flags);
 203
 204	/* Sanitize the guest value */
 205	guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
 206
 207	if (hostval != guestval) {
 208		unsigned long tif;
 209
 210		tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
 211				 ssbd_spec_ctrl_to_tif(hostval);
 212
 213		speculation_ctrl_update(tif);
 214	}
 215}
 216EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
 217
 218static void x86_amd_ssb_disable(void)
 219{
 220	u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
 221
 222	if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
 223		wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
 224	else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
 225		wrmsrl(MSR_AMD64_LS_CFG, msrval);
 226}
 227
 228#undef pr_fmt
 229#define pr_fmt(fmt)	"MDS: " fmt
 230
 231/* Default mitigation for MDS-affected CPUs */
 232static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
 233static bool mds_nosmt __ro_after_init = false;
 234
 235static const char * const mds_strings[] = {
 236	[MDS_MITIGATION_OFF]	= "Vulnerable",
 237	[MDS_MITIGATION_FULL]	= "Mitigation: Clear CPU buffers",
 238	[MDS_MITIGATION_VMWERV]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
 239};
 240
 241static void __init mds_select_mitigation(void)
 242{
 243	if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
 244		mds_mitigation = MDS_MITIGATION_OFF;
 245		return;
 246	}
 247
 248	if (mds_mitigation == MDS_MITIGATION_FULL) {
 249		if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
 250			mds_mitigation = MDS_MITIGATION_VMWERV;
 251
 252		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
 253
 254		if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
 255		    (mds_nosmt || cpu_mitigations_auto_nosmt()))
 256			cpu_smt_disable(false);
 257	}
 258}
 259
 260static int __init mds_cmdline(char *str)
 261{
 262	if (!boot_cpu_has_bug(X86_BUG_MDS))
 263		return 0;
 264
 265	if (!str)
 266		return -EINVAL;
 267
 268	if (!strcmp(str, "off"))
 269		mds_mitigation = MDS_MITIGATION_OFF;
 270	else if (!strcmp(str, "full"))
 271		mds_mitigation = MDS_MITIGATION_FULL;
 272	else if (!strcmp(str, "full,nosmt")) {
 273		mds_mitigation = MDS_MITIGATION_FULL;
 274		mds_nosmt = true;
 275	}
 276
 277	return 0;
 278}
 279early_param("mds", mds_cmdline);
 280
 281#undef pr_fmt
 282#define pr_fmt(fmt)	"TAA: " fmt
 283
 284enum taa_mitigations {
 285	TAA_MITIGATION_OFF,
 286	TAA_MITIGATION_UCODE_NEEDED,
 287	TAA_MITIGATION_VERW,
 288	TAA_MITIGATION_TSX_DISABLED,
 289};
 290
 291/* Default mitigation for TAA-affected CPUs */
 292static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
 293static bool taa_nosmt __ro_after_init;
 294
 295static const char * const taa_strings[] = {
 296	[TAA_MITIGATION_OFF]		= "Vulnerable",
 297	[TAA_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
 298	[TAA_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
 299	[TAA_MITIGATION_TSX_DISABLED]	= "Mitigation: TSX disabled",
 300};
 301
 302static void __init taa_select_mitigation(void)
 303{
 304	u64 ia32_cap;
 305
 306	if (!boot_cpu_has_bug(X86_BUG_TAA)) {
 307		taa_mitigation = TAA_MITIGATION_OFF;
 308		return;
 309	}
 310
 311	/* TSX previously disabled by tsx=off */
 312	if (!boot_cpu_has(X86_FEATURE_RTM)) {
 313		taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
 314		return;
 315	}
 316
 317	if (cpu_mitigations_off()) {
 318		taa_mitigation = TAA_MITIGATION_OFF;
 319		return;
 320	}
 321
 322	/*
 323	 * TAA mitigation via VERW is turned off if both
 324	 * tsx_async_abort=off and mds=off are specified.
 325	 */
 326	if (taa_mitigation == TAA_MITIGATION_OFF &&
 327	    mds_mitigation == MDS_MITIGATION_OFF)
 328		return;
 329
 330	if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
 331		taa_mitigation = TAA_MITIGATION_VERW;
 332	else
 333		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
 334
 335	/*
 336	 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
 337	 * A microcode update fixes this behavior to clear CPU buffers. It also
 338	 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
 339	 * ARCH_CAP_TSX_CTRL_MSR bit.
 340	 *
 341	 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
 342	 * update is required.
 343	 */
 344	ia32_cap = x86_read_arch_cap_msr();
 345	if ( (ia32_cap & ARCH_CAP_MDS_NO) &&
 346	    !(ia32_cap & ARCH_CAP_TSX_CTRL_MSR))
 347		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
 348
 349	/*
 350	 * TSX is enabled, select alternate mitigation for TAA which is
 351	 * the same as MDS. Enable MDS static branch to clear CPU buffers.
 352	 *
 353	 * For guests that can't determine whether the correct microcode is
 354	 * present on host, enable the mitigation for UCODE_NEEDED as well.
 355	 */
 356	setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
 357
 358	if (taa_nosmt || cpu_mitigations_auto_nosmt())
 359		cpu_smt_disable(false);
 360}
 361
 362static int __init tsx_async_abort_parse_cmdline(char *str)
 363{
 364	if (!boot_cpu_has_bug(X86_BUG_TAA))
 365		return 0;
 366
 367	if (!str)
 368		return -EINVAL;
 369
 370	if (!strcmp(str, "off")) {
 371		taa_mitigation = TAA_MITIGATION_OFF;
 372	} else if (!strcmp(str, "full")) {
 373		taa_mitigation = TAA_MITIGATION_VERW;
 374	} else if (!strcmp(str, "full,nosmt")) {
 375		taa_mitigation = TAA_MITIGATION_VERW;
 376		taa_nosmt = true;
 377	}
 378
 379	return 0;
 380}
 381early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
 382
 383#undef pr_fmt
 384#define pr_fmt(fmt)	"MMIO Stale Data: " fmt
 385
 386enum mmio_mitigations {
 387	MMIO_MITIGATION_OFF,
 388	MMIO_MITIGATION_UCODE_NEEDED,
 389	MMIO_MITIGATION_VERW,
 390};
 391
 392/* Default mitigation for Processor MMIO Stale Data vulnerabilities */
 393static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW;
 394static bool mmio_nosmt __ro_after_init = false;
 395
 396static const char * const mmio_strings[] = {
 397	[MMIO_MITIGATION_OFF]		= "Vulnerable",
 398	[MMIO_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
 399	[MMIO_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
 400};
 401
 402static void __init mmio_select_mitigation(void)
 403{
 404	u64 ia32_cap;
 405
 406	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
 407	     boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) ||
 408	     cpu_mitigations_off()) {
 409		mmio_mitigation = MMIO_MITIGATION_OFF;
 410		return;
 411	}
 412
 413	if (mmio_mitigation == MMIO_MITIGATION_OFF)
 414		return;
 415
 416	ia32_cap = x86_read_arch_cap_msr();
 417
 418	/*
 419	 * Enable CPU buffer clear mitigation for host and VMM, if also affected
 420	 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
 421	 */
 422	if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
 423					      boot_cpu_has(X86_FEATURE_RTM)))
 424		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
 425	else
 426		static_branch_enable(&mmio_stale_data_clear);
 427
 428	/*
 429	 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
 430	 * be propagated to uncore buffers, clearing the Fill buffers on idle
 431	 * is required irrespective of SMT state.
 432	 */
 433	if (!(ia32_cap & ARCH_CAP_FBSDP_NO))
 434		static_branch_enable(&mds_idle_clear);
 435
 436	/*
 437	 * Check if the system has the right microcode.
 438	 *
 439	 * CPU Fill buffer clear mitigation is enumerated by either an explicit
 440	 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
 441	 * affected systems.
 442	 */
 443	if ((ia32_cap & ARCH_CAP_FB_CLEAR) ||
 444	    (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
 445	     boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
 446	     !(ia32_cap & ARCH_CAP_MDS_NO)))
 447		mmio_mitigation = MMIO_MITIGATION_VERW;
 448	else
 449		mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
 450
 451	if (mmio_nosmt || cpu_mitigations_auto_nosmt())
 452		cpu_smt_disable(false);
 453}
 454
 455static int __init mmio_stale_data_parse_cmdline(char *str)
 456{
 457	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
 458		return 0;
 459
 460	if (!str)
 461		return -EINVAL;
 462
 463	if (!strcmp(str, "off")) {
 464		mmio_mitigation = MMIO_MITIGATION_OFF;
 465	} else if (!strcmp(str, "full")) {
 466		mmio_mitigation = MMIO_MITIGATION_VERW;
 467	} else if (!strcmp(str, "full,nosmt")) {
 468		mmio_mitigation = MMIO_MITIGATION_VERW;
 469		mmio_nosmt = true;
 470	}
 471
 472	return 0;
 473}
 474early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
 475
 476#undef pr_fmt
 477#define pr_fmt(fmt)     "" fmt
 478
 479static void __init md_clear_update_mitigation(void)
 480{
 481	if (cpu_mitigations_off())
 482		return;
 483
 484	if (!boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
 485		goto out;
 486
 487	/*
 488	 * X86_FEATURE_CLEAR_CPU_BUF is now enabled. Update MDS, TAA and MMIO
 489	 * Stale Data mitigation, if necessary.
 490	 */
 491	if (mds_mitigation == MDS_MITIGATION_OFF &&
 492	    boot_cpu_has_bug(X86_BUG_MDS)) {
 493		mds_mitigation = MDS_MITIGATION_FULL;
 494		mds_select_mitigation();
 495	}
 496	if (taa_mitigation == TAA_MITIGATION_OFF &&
 497	    boot_cpu_has_bug(X86_BUG_TAA)) {
 498		taa_mitigation = TAA_MITIGATION_VERW;
 499		taa_select_mitigation();
 500	}
 501	if (mmio_mitigation == MMIO_MITIGATION_OFF &&
 502	    boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
 503		mmio_mitigation = MMIO_MITIGATION_VERW;
 504		mmio_select_mitigation();
 505	}
 506out:
 507	if (boot_cpu_has_bug(X86_BUG_MDS))
 508		pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
 509	if (boot_cpu_has_bug(X86_BUG_TAA))
 510		pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
 511	if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
 512		pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
 513	else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
 514		pr_info("MMIO Stale Data: Unknown: No mitigations\n");
 515}
 516
 517static void __init md_clear_select_mitigation(void)
 518{
 519	mds_select_mitigation();
 520	taa_select_mitigation();
 521	mmio_select_mitigation();
 522
 523	/*
 524	 * As MDS, TAA and MMIO Stale Data mitigations are inter-related, update
 525	 * and print their mitigation after MDS, TAA and MMIO Stale Data
 526	 * mitigation selection is done.
 527	 */
 528	md_clear_update_mitigation();
 529}
 530
 531#undef pr_fmt
 532#define pr_fmt(fmt)	"SRBDS: " fmt
 533
 534enum srbds_mitigations {
 535	SRBDS_MITIGATION_OFF,
 536	SRBDS_MITIGATION_UCODE_NEEDED,
 537	SRBDS_MITIGATION_FULL,
 538	SRBDS_MITIGATION_TSX_OFF,
 539	SRBDS_MITIGATION_HYPERVISOR,
 540};
 541
 542static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;
 543
 544static const char * const srbds_strings[] = {
 545	[SRBDS_MITIGATION_OFF]		= "Vulnerable",
 546	[SRBDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
 547	[SRBDS_MITIGATION_FULL]		= "Mitigation: Microcode",
 548	[SRBDS_MITIGATION_TSX_OFF]	= "Mitigation: TSX disabled",
 549	[SRBDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
 550};
 551
 552static bool srbds_off;
 553
 554void update_srbds_msr(void)
 555{
 556	u64 mcu_ctrl;
 557
 558	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
 559		return;
 560
 561	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
 562		return;
 563
 564	if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
 565		return;
 566
 567	/*
 568	 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
 569	 * being disabled and it hasn't received the SRBDS MSR microcode.
 570	 */
 571	if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
 572		return;
 573
 574	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
 575
 576	switch (srbds_mitigation) {
 577	case SRBDS_MITIGATION_OFF:
 578	case SRBDS_MITIGATION_TSX_OFF:
 579		mcu_ctrl |= RNGDS_MITG_DIS;
 580		break;
 581	case SRBDS_MITIGATION_FULL:
 582		mcu_ctrl &= ~RNGDS_MITG_DIS;
 583		break;
 584	default:
 585		break;
 586	}
 587
 588	wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
 589}
 590
 591static void __init srbds_select_mitigation(void)
 592{
 593	u64 ia32_cap;
 594
 595	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
 596		return;
 597
 598	/*
 599	 * Check to see if this is one of the MDS_NO systems supporting TSX that
 600	 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
 601	 * by Processor MMIO Stale Data vulnerability.
 602	 */
 603	ia32_cap = x86_read_arch_cap_msr();
 604	if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
 605	    !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
 606		srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
 607	else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
 608		srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
 609	else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
 610		srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
 611	else if (cpu_mitigations_off() || srbds_off)
 612		srbds_mitigation = SRBDS_MITIGATION_OFF;
 613
 614	update_srbds_msr();
 615	pr_info("%s\n", srbds_strings[srbds_mitigation]);
 616}
 617
 618static int __init srbds_parse_cmdline(char *str)
 619{
 620	if (!str)
 621		return -EINVAL;
 622
 623	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
 624		return 0;
 625
 626	srbds_off = !strcmp(str, "off");
 627	return 0;
 628}
 629early_param("srbds", srbds_parse_cmdline);
 630
 631#undef pr_fmt
 632#define pr_fmt(fmt)     "L1D Flush : " fmt
 633
 634enum l1d_flush_mitigations {
 635	L1D_FLUSH_OFF = 0,
 636	L1D_FLUSH_ON,
 637};
 638
 639static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
 640
 641static void __init l1d_flush_select_mitigation(void)
 642{
 643	if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
 644		return;
 645
 646	static_branch_enable(&switch_mm_cond_l1d_flush);
 647	pr_info("Conditional flush on switch_mm() enabled\n");
 648}
 649
 650static int __init l1d_flush_parse_cmdline(char *str)
 651{
 652	if (!strcmp(str, "on"))
 653		l1d_flush_mitigation = L1D_FLUSH_ON;
 654
 655	return 0;
 656}
 657early_param("l1d_flush", l1d_flush_parse_cmdline);
 658
 659#undef pr_fmt
 660#define pr_fmt(fmt)	"GDS: " fmt
 661
 662enum gds_mitigations {
 663	GDS_MITIGATION_OFF,
 664	GDS_MITIGATION_UCODE_NEEDED,
 665	GDS_MITIGATION_FORCE,
 666	GDS_MITIGATION_FULL,
 667	GDS_MITIGATION_FULL_LOCKED,
 668	GDS_MITIGATION_HYPERVISOR,
 669};
 670
 671#if IS_ENABLED(CONFIG_GDS_FORCE_MITIGATION)
 672static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FORCE;
 673#else
 674static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FULL;
 675#endif
 676
 677static const char * const gds_strings[] = {
 678	[GDS_MITIGATION_OFF]		= "Vulnerable",
 679	[GDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
 680	[GDS_MITIGATION_FORCE]		= "Mitigation: AVX disabled, no microcode",
 681	[GDS_MITIGATION_FULL]		= "Mitigation: Microcode",
 682	[GDS_MITIGATION_FULL_LOCKED]	= "Mitigation: Microcode (locked)",
 683	[GDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
 684};
 685
 686bool gds_ucode_mitigated(void)
 687{
 688	return (gds_mitigation == GDS_MITIGATION_FULL ||
 689		gds_mitigation == GDS_MITIGATION_FULL_LOCKED);
 690}
 691EXPORT_SYMBOL_GPL(gds_ucode_mitigated);
 692
 693void update_gds_msr(void)
 694{
 695	u64 mcu_ctrl_after;
 696	u64 mcu_ctrl;
 697
 698	switch (gds_mitigation) {
 699	case GDS_MITIGATION_OFF:
 700		rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
 701		mcu_ctrl |= GDS_MITG_DIS;
 702		break;
 703	case GDS_MITIGATION_FULL_LOCKED:
 704		/*
 705		 * The LOCKED state comes from the boot CPU. APs might not have
 706		 * the same state. Make sure the mitigation is enabled on all
 707		 * CPUs.
 708		 */
 709	case GDS_MITIGATION_FULL:
 710		rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
 711		mcu_ctrl &= ~GDS_MITG_DIS;
 712		break;
 713	case GDS_MITIGATION_FORCE:
 714	case GDS_MITIGATION_UCODE_NEEDED:
 715	case GDS_MITIGATION_HYPERVISOR:
 716		return;
 717	}
 718
 719	wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
 720
 721	/*
 722	 * Check to make sure that the WRMSR value was not ignored. Writes to
 723	 * GDS_MITG_DIS will be ignored if this processor is locked but the boot
 724	 * processor was not.
 725	 */
 726	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after);
 727	WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after);
 728}
 729
 730static void __init gds_select_mitigation(void)
 731{
 732	u64 mcu_ctrl;
 733
 734	if (!boot_cpu_has_bug(X86_BUG_GDS))
 735		return;
 736
 737	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
 738		gds_mitigation = GDS_MITIGATION_HYPERVISOR;
 739		goto out;
 740	}
 741
 742	if (cpu_mitigations_off())
 743		gds_mitigation = GDS_MITIGATION_OFF;
 744	/* Will verify below that mitigation _can_ be disabled */
 745
 746	/* No microcode */
 747	if (!(x86_read_arch_cap_msr() & ARCH_CAP_GDS_CTRL)) {
 748		if (gds_mitigation == GDS_MITIGATION_FORCE) {
 749			/*
 750			 * This only needs to be done on the boot CPU so do it
 751			 * here rather than in update_gds_msr()
 752			 */
 753			setup_clear_cpu_cap(X86_FEATURE_AVX);
 754			pr_warn("Microcode update needed! Disabling AVX as mitigation.\n");
 755		} else {
 756			gds_mitigation = GDS_MITIGATION_UCODE_NEEDED;
 757		}
 758		goto out;
 759	}
 760
 761	/* Microcode has mitigation, use it */
 762	if (gds_mitigation == GDS_MITIGATION_FORCE)
 763		gds_mitigation = GDS_MITIGATION_FULL;
 764
 765	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
 766	if (mcu_ctrl & GDS_MITG_LOCKED) {
 767		if (gds_mitigation == GDS_MITIGATION_OFF)
 768			pr_warn("Mitigation locked. Disable failed.\n");
 769
 770		/*
 771		 * The mitigation is selected from the boot CPU. All other CPUs
 772		 * _should_ have the same state. If the boot CPU isn't locked
 773		 * but others are then update_gds_msr() will WARN() of the state
 774		 * mismatch. If the boot CPU is locked update_gds_msr() will
 775		 * ensure the other CPUs have the mitigation enabled.
 776		 */
 777		gds_mitigation = GDS_MITIGATION_FULL_LOCKED;
 778	}
 779
 780	update_gds_msr();
 781out:
 782	pr_info("%s\n", gds_strings[gds_mitigation]);
 783}
 784
 785static int __init gds_parse_cmdline(char *str)
 786{
 787	if (!str)
 788		return -EINVAL;
 789
 790	if (!boot_cpu_has_bug(X86_BUG_GDS))
 791		return 0;
 792
 793	if (!strcmp(str, "off"))
 794		gds_mitigation = GDS_MITIGATION_OFF;
 795	else if (!strcmp(str, "force"))
 796		gds_mitigation = GDS_MITIGATION_FORCE;
 797
 798	return 0;
 799}
 800early_param("gather_data_sampling", gds_parse_cmdline);
 801
 802#undef pr_fmt
 803#define pr_fmt(fmt)     "Spectre V1 : " fmt
 804
 805enum spectre_v1_mitigation {
 806	SPECTRE_V1_MITIGATION_NONE,
 807	SPECTRE_V1_MITIGATION_AUTO,
 808};
 809
 810static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
 811	SPECTRE_V1_MITIGATION_AUTO;
 812
 813static const char * const spectre_v1_strings[] = {
 814	[SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
 815	[SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
 816};
 817
 818/*
 819 * Does SMAP provide full mitigation against speculative kernel access to
 820 * userspace?
 821 */
 822static bool smap_works_speculatively(void)
 823{
 824	if (!boot_cpu_has(X86_FEATURE_SMAP))
 825		return false;
 826
 827	/*
 828	 * On CPUs which are vulnerable to Meltdown, SMAP does not
 829	 * prevent speculative access to user data in the L1 cache.
 830	 * Consider SMAP to be non-functional as a mitigation on these
 831	 * CPUs.
 832	 */
 833	if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
 834		return false;
 835
 836	return true;
 837}
 838
 839static void __init spectre_v1_select_mitigation(void)
 840{
 841	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
 842		spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
 843		return;
 844	}
 845
 846	if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
 847		/*
 848		 * With Spectre v1, a user can speculatively control either
 849		 * path of a conditional swapgs with a user-controlled GS
 850		 * value.  The mitigation is to add lfences to both code paths.
 851		 *
 852		 * If FSGSBASE is enabled, the user can put a kernel address in
 853		 * GS, in which case SMAP provides no protection.
 854		 *
 855		 * If FSGSBASE is disabled, the user can only put a user space
 856		 * address in GS.  That makes an attack harder, but still
 857		 * possible if there's no SMAP protection.
 858		 */
 859		if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
 860		    !smap_works_speculatively()) {
 861			/*
 862			 * Mitigation can be provided from SWAPGS itself or
 863			 * PTI as the CR3 write in the Meltdown mitigation
 864			 * is serializing.
 865			 *
 866			 * If neither is there, mitigate with an LFENCE to
 867			 * stop speculation through swapgs.
 868			 */
 869			if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
 870			    !boot_cpu_has(X86_FEATURE_PTI))
 871				setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
 872
 873			/*
 874			 * Enable lfences in the kernel entry (non-swapgs)
 875			 * paths, to prevent user entry from speculatively
 876			 * skipping swapgs.
 877			 */
 878			setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
 879		}
 880	}
 881
 882	pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
 883}
 884
 885static int __init nospectre_v1_cmdline(char *str)
 886{
 887	spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
 888	return 0;
 889}
 890early_param("nospectre_v1", nospectre_v1_cmdline);
 891
 892enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE;
 
 893
 894#undef pr_fmt
 895#define pr_fmt(fmt)     "RETBleed: " fmt
 896
 897enum retbleed_mitigation {
 898	RETBLEED_MITIGATION_NONE,
 899	RETBLEED_MITIGATION_UNRET,
 900	RETBLEED_MITIGATION_IBPB,
 901	RETBLEED_MITIGATION_IBRS,
 902	RETBLEED_MITIGATION_EIBRS,
 903	RETBLEED_MITIGATION_STUFF,
 904};
 905
 906enum retbleed_mitigation_cmd {
 907	RETBLEED_CMD_OFF,
 908	RETBLEED_CMD_AUTO,
 909	RETBLEED_CMD_UNRET,
 910	RETBLEED_CMD_IBPB,
 911	RETBLEED_CMD_STUFF,
 912};
 913
 914static const char * const retbleed_strings[] = {
 915	[RETBLEED_MITIGATION_NONE]	= "Vulnerable",
 916	[RETBLEED_MITIGATION_UNRET]	= "Mitigation: untrained return thunk",
 917	[RETBLEED_MITIGATION_IBPB]	= "Mitigation: IBPB",
 918	[RETBLEED_MITIGATION_IBRS]	= "Mitigation: IBRS",
 919	[RETBLEED_MITIGATION_EIBRS]	= "Mitigation: Enhanced IBRS",
 920	[RETBLEED_MITIGATION_STUFF]	= "Mitigation: Stuffing",
 921};
 922
 923static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
 924	RETBLEED_MITIGATION_NONE;
 925static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init =
 926	RETBLEED_CMD_AUTO;
 927
 928static int __ro_after_init retbleed_nosmt = false;
 929
 930static int __init retbleed_parse_cmdline(char *str)
 931{
 932	if (!str)
 933		return -EINVAL;
 934
 935	while (str) {
 936		char *next = strchr(str, ',');
 937		if (next) {
 938			*next = 0;
 939			next++;
 940		}
 941
 942		if (!strcmp(str, "off")) {
 943			retbleed_cmd = RETBLEED_CMD_OFF;
 944		} else if (!strcmp(str, "auto")) {
 945			retbleed_cmd = RETBLEED_CMD_AUTO;
 946		} else if (!strcmp(str, "unret")) {
 947			retbleed_cmd = RETBLEED_CMD_UNRET;
 948		} else if (!strcmp(str, "ibpb")) {
 949			retbleed_cmd = RETBLEED_CMD_IBPB;
 950		} else if (!strcmp(str, "stuff")) {
 951			retbleed_cmd = RETBLEED_CMD_STUFF;
 952		} else if (!strcmp(str, "nosmt")) {
 953			retbleed_nosmt = true;
 954		} else if (!strcmp(str, "force")) {
 955			setup_force_cpu_bug(X86_BUG_RETBLEED);
 956		} else {
 957			pr_err("Ignoring unknown retbleed option (%s).", str);
 958		}
 959
 960		str = next;
 961	}
 962
 963	return 0;
 964}
 965early_param("retbleed", retbleed_parse_cmdline);
 966
 967#define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
 968#define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
 969
 970static void __init retbleed_select_mitigation(void)
 971{
 972	bool mitigate_smt = false;
 973
 974	if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
 975		return;
 976
 977	switch (retbleed_cmd) {
 978	case RETBLEED_CMD_OFF:
 979		return;
 980
 981	case RETBLEED_CMD_UNRET:
 982		if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY)) {
 983			retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
 984		} else {
 985			pr_err("WARNING: kernel not compiled with CPU_UNRET_ENTRY.\n");
 986			goto do_cmd_auto;
 987		}
 988		break;
 989
 990	case RETBLEED_CMD_IBPB:
 991		if (!boot_cpu_has(X86_FEATURE_IBPB)) {
 992			pr_err("WARNING: CPU does not support IBPB.\n");
 993			goto do_cmd_auto;
 994		} else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) {
 995			retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
 996		} else {
 997			pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n");
 998			goto do_cmd_auto;
 999		}
1000		break;
1001
1002	case RETBLEED_CMD_STUFF:
1003		if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING) &&
1004		    spectre_v2_enabled == SPECTRE_V2_RETPOLINE) {
1005			retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
1006
1007		} else {
1008			if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING))
1009				pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n");
1010			else
1011				pr_err("WARNING: kernel not compiled with CALL_DEPTH_TRACKING.\n");
1012
1013			goto do_cmd_auto;
1014		}
1015		break;
1016
1017do_cmd_auto:
1018	case RETBLEED_CMD_AUTO:
 
1019		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1020		    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
1021			if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY))
1022				retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1023			else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY) && boot_cpu_has(X86_FEATURE_IBPB))
1024				retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1025		}
1026
1027		/*
1028		 * The Intel mitigation (IBRS or eIBRS) was already selected in
1029		 * spectre_v2_select_mitigation().  'retbleed_mitigation' will
1030		 * be set accordingly below.
1031		 */
1032
1033		break;
1034	}
1035
1036	switch (retbleed_mitigation) {
1037	case RETBLEED_MITIGATION_UNRET:
1038		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1039		setup_force_cpu_cap(X86_FEATURE_UNRET);
1040
1041		x86_return_thunk = retbleed_return_thunk;
1042
1043		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
1044		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
1045			pr_err(RETBLEED_UNTRAIN_MSG);
1046
1047		mitigate_smt = true;
1048		break;
1049
1050	case RETBLEED_MITIGATION_IBPB:
1051		setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
1052		setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
1053		mitigate_smt = true;
1054		break;
1055
1056	case RETBLEED_MITIGATION_STUFF:
1057		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1058		setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
1059
1060		x86_return_thunk = call_depth_return_thunk;
1061		break;
1062
1063	default:
1064		break;
1065	}
1066
1067	if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
1068	    (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
1069		cpu_smt_disable(false);
1070
1071	/*
1072	 * Let IBRS trump all on Intel without affecting the effects of the
1073	 * retbleed= cmdline option except for call depth based stuffing
1074	 */
1075	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1076		switch (spectre_v2_enabled) {
1077		case SPECTRE_V2_IBRS:
1078			retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
1079			break;
1080		case SPECTRE_V2_EIBRS:
1081		case SPECTRE_V2_EIBRS_RETPOLINE:
1082		case SPECTRE_V2_EIBRS_LFENCE:
1083			retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
1084			break;
1085		default:
1086			if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF)
1087				pr_err(RETBLEED_INTEL_MSG);
1088		}
1089	}
1090
1091	pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
1092}
1093
1094#undef pr_fmt
1095#define pr_fmt(fmt)     "Spectre V2 : " fmt
1096
1097static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
1098	SPECTRE_V2_USER_NONE;
1099static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
1100	SPECTRE_V2_USER_NONE;
1101
1102#ifdef CONFIG_RETPOLINE
1103static bool spectre_v2_bad_module;
1104
1105bool retpoline_module_ok(bool has_retpoline)
1106{
1107	if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
1108		return true;
1109
1110	pr_err("System may be vulnerable to spectre v2\n");
1111	spectre_v2_bad_module = true;
1112	return false;
1113}
1114
1115static inline const char *spectre_v2_module_string(void)
1116{
1117	return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
1118}
1119#else
1120static inline const char *spectre_v2_module_string(void) { return ""; }
1121#endif
1122
1123#define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
1124#define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
1125#define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
1126#define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
1127
1128#ifdef CONFIG_BPF_SYSCALL
1129void unpriv_ebpf_notify(int new_state)
1130{
1131	if (new_state)
1132		return;
1133
1134	/* Unprivileged eBPF is enabled */
1135
1136	switch (spectre_v2_enabled) {
1137	case SPECTRE_V2_EIBRS:
1138		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1139		break;
1140	case SPECTRE_V2_EIBRS_LFENCE:
1141		if (sched_smt_active())
1142			pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1143		break;
1144	default:
1145		break;
1146	}
1147}
1148#endif
1149
1150static inline bool match_option(const char *arg, int arglen, const char *opt)
1151{
1152	int len = strlen(opt);
1153
1154	return len == arglen && !strncmp(arg, opt, len);
1155}
1156
1157/* The kernel command line selection for spectre v2 */
1158enum spectre_v2_mitigation_cmd {
1159	SPECTRE_V2_CMD_NONE,
1160	SPECTRE_V2_CMD_AUTO,
1161	SPECTRE_V2_CMD_FORCE,
1162	SPECTRE_V2_CMD_RETPOLINE,
1163	SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1164	SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1165	SPECTRE_V2_CMD_EIBRS,
1166	SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1167	SPECTRE_V2_CMD_EIBRS_LFENCE,
1168	SPECTRE_V2_CMD_IBRS,
1169};
1170
1171enum spectre_v2_user_cmd {
1172	SPECTRE_V2_USER_CMD_NONE,
1173	SPECTRE_V2_USER_CMD_AUTO,
1174	SPECTRE_V2_USER_CMD_FORCE,
1175	SPECTRE_V2_USER_CMD_PRCTL,
1176	SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1177	SPECTRE_V2_USER_CMD_SECCOMP,
1178	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1179};
1180
1181static const char * const spectre_v2_user_strings[] = {
1182	[SPECTRE_V2_USER_NONE]			= "User space: Vulnerable",
1183	[SPECTRE_V2_USER_STRICT]		= "User space: Mitigation: STIBP protection",
1184	[SPECTRE_V2_USER_STRICT_PREFERRED]	= "User space: Mitigation: STIBP always-on protection",
1185	[SPECTRE_V2_USER_PRCTL]			= "User space: Mitigation: STIBP via prctl",
1186	[SPECTRE_V2_USER_SECCOMP]		= "User space: Mitigation: STIBP via seccomp and prctl",
1187};
1188
1189static const struct {
1190	const char			*option;
1191	enum spectre_v2_user_cmd	cmd;
1192	bool				secure;
1193} v2_user_options[] __initconst = {
1194	{ "auto",		SPECTRE_V2_USER_CMD_AUTO,		false },
1195	{ "off",		SPECTRE_V2_USER_CMD_NONE,		false },
1196	{ "on",			SPECTRE_V2_USER_CMD_FORCE,		true  },
1197	{ "prctl",		SPECTRE_V2_USER_CMD_PRCTL,		false },
1198	{ "prctl,ibpb",		SPECTRE_V2_USER_CMD_PRCTL_IBPB,		false },
1199	{ "seccomp",		SPECTRE_V2_USER_CMD_SECCOMP,		false },
1200	{ "seccomp,ibpb",	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,	false },
1201};
1202
1203static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1204{
1205	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1206		pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1207}
1208
1209static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd;
1210
1211static enum spectre_v2_user_cmd __init
1212spectre_v2_parse_user_cmdline(void)
1213{
1214	char arg[20];
1215	int ret, i;
1216
1217	switch (spectre_v2_cmd) {
1218	case SPECTRE_V2_CMD_NONE:
1219		return SPECTRE_V2_USER_CMD_NONE;
1220	case SPECTRE_V2_CMD_FORCE:
1221		return SPECTRE_V2_USER_CMD_FORCE;
1222	default:
1223		break;
1224	}
1225
1226	ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
1227				  arg, sizeof(arg));
1228	if (ret < 0)
1229		return SPECTRE_V2_USER_CMD_AUTO;
1230
1231	for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1232		if (match_option(arg, ret, v2_user_options[i].option)) {
1233			spec_v2_user_print_cond(v2_user_options[i].option,
1234						v2_user_options[i].secure);
1235			return v2_user_options[i].cmd;
1236		}
1237	}
1238
1239	pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
1240	return SPECTRE_V2_USER_CMD_AUTO;
1241}
1242
1243static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1244{
1245	return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS;
 
 
 
1246}
1247
1248static void __init
1249spectre_v2_user_select_mitigation(void)
1250{
1251	enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
1252	bool smt_possible = IS_ENABLED(CONFIG_SMP);
1253	enum spectre_v2_user_cmd cmd;
1254
1255	if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1256		return;
1257
1258	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
1259	    cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
1260		smt_possible = false;
1261
1262	cmd = spectre_v2_parse_user_cmdline();
1263	switch (cmd) {
1264	case SPECTRE_V2_USER_CMD_NONE:
1265		goto set_mode;
1266	case SPECTRE_V2_USER_CMD_FORCE:
1267		mode = SPECTRE_V2_USER_STRICT;
1268		break;
1269	case SPECTRE_V2_USER_CMD_AUTO:
1270	case SPECTRE_V2_USER_CMD_PRCTL:
1271	case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1272		mode = SPECTRE_V2_USER_PRCTL;
1273		break;
1274	case SPECTRE_V2_USER_CMD_SECCOMP:
1275	case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1276		if (IS_ENABLED(CONFIG_SECCOMP))
1277			mode = SPECTRE_V2_USER_SECCOMP;
1278		else
1279			mode = SPECTRE_V2_USER_PRCTL;
1280		break;
1281	}
1282
1283	/* Initialize Indirect Branch Prediction Barrier */
1284	if (boot_cpu_has(X86_FEATURE_IBPB)) {
1285		setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
1286
1287		spectre_v2_user_ibpb = mode;
1288		switch (cmd) {
1289		case SPECTRE_V2_USER_CMD_NONE:
1290			break;
1291		case SPECTRE_V2_USER_CMD_FORCE:
1292		case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1293		case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1294			static_branch_enable(&switch_mm_always_ibpb);
1295			spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1296			break;
1297		case SPECTRE_V2_USER_CMD_PRCTL:
1298		case SPECTRE_V2_USER_CMD_AUTO:
1299		case SPECTRE_V2_USER_CMD_SECCOMP:
1300			static_branch_enable(&switch_mm_cond_ibpb);
1301			break;
 
 
1302		}
1303
1304		pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
1305			static_key_enabled(&switch_mm_always_ibpb) ?
1306			"always-on" : "conditional");
1307	}
1308
1309	/*
1310	 * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP
1311	 * is not required.
1312	 *
1313	 * Intel's Enhanced IBRS also protects against cross-thread branch target
1314	 * injection in user-mode as the IBRS bit remains always set which
1315	 * implicitly enables cross-thread protections.  However, in legacy IBRS
1316	 * mode, the IBRS bit is set only on kernel entry and cleared on return
1317	 * to userspace.  AMD Automatic IBRS also does not protect userspace.
1318	 * These modes therefore disable the implicit cross-thread protection,
1319	 * so allow for STIBP to be selected in those cases.
1320	 */
1321	if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1322	    !smt_possible ||
1323	    (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
1324	     !boot_cpu_has(X86_FEATURE_AUTOIBRS)))
1325		return;
1326
1327	/*
1328	 * At this point, an STIBP mode other than "off" has been set.
1329	 * If STIBP support is not being forced, check if STIBP always-on
1330	 * is preferred.
1331	 */
1332	if (mode != SPECTRE_V2_USER_STRICT &&
1333	    boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1334		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1335
1336	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1337	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
1338		if (mode != SPECTRE_V2_USER_STRICT &&
1339		    mode != SPECTRE_V2_USER_STRICT_PREFERRED)
1340			pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1341		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1342	}
1343
1344	spectre_v2_user_stibp = mode;
1345
1346set_mode:
1347	pr_info("%s\n", spectre_v2_user_strings[mode]);
1348}
1349
1350static const char * const spectre_v2_strings[] = {
1351	[SPECTRE_V2_NONE]			= "Vulnerable",
1352	[SPECTRE_V2_RETPOLINE]			= "Mitigation: Retpolines",
1353	[SPECTRE_V2_LFENCE]			= "Mitigation: LFENCE",
1354	[SPECTRE_V2_EIBRS]			= "Mitigation: Enhanced / Automatic IBRS",
1355	[SPECTRE_V2_EIBRS_LFENCE]		= "Mitigation: Enhanced / Automatic IBRS + LFENCE",
1356	[SPECTRE_V2_EIBRS_RETPOLINE]		= "Mitigation: Enhanced / Automatic IBRS + Retpolines",
1357	[SPECTRE_V2_IBRS]			= "Mitigation: IBRS",
1358};
1359
1360static const struct {
1361	const char *option;
1362	enum spectre_v2_mitigation_cmd cmd;
1363	bool secure;
1364} mitigation_options[] __initconst = {
1365	{ "off",		SPECTRE_V2_CMD_NONE,		  false },
1366	{ "on",			SPECTRE_V2_CMD_FORCE,		  true  },
1367	{ "retpoline",		SPECTRE_V2_CMD_RETPOLINE,	  false },
1368	{ "retpoline,amd",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1369	{ "retpoline,lfence",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1370	{ "retpoline,generic",	SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1371	{ "eibrs",		SPECTRE_V2_CMD_EIBRS,		  false },
1372	{ "eibrs,lfence",	SPECTRE_V2_CMD_EIBRS_LFENCE,	  false },
1373	{ "eibrs,retpoline",	SPECTRE_V2_CMD_EIBRS_RETPOLINE,	  false },
1374	{ "auto",		SPECTRE_V2_CMD_AUTO,		  false },
1375	{ "ibrs",		SPECTRE_V2_CMD_IBRS,              false },
1376};
1377
1378static void __init spec_v2_print_cond(const char *reason, bool secure)
1379{
1380	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1381		pr_info("%s selected on command line.\n", reason);
1382}
1383
1384static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1385{
1386	enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
1387	char arg[20];
1388	int ret, i;
1389
1390	if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1391	    cpu_mitigations_off())
1392		return SPECTRE_V2_CMD_NONE;
1393
1394	ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1395	if (ret < 0)
1396		return SPECTRE_V2_CMD_AUTO;
1397
1398	for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1399		if (!match_option(arg, ret, mitigation_options[i].option))
1400			continue;
1401		cmd = mitigation_options[i].cmd;
1402		break;
1403	}
1404
1405	if (i >= ARRAY_SIZE(mitigation_options)) {
1406		pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1407		return SPECTRE_V2_CMD_AUTO;
1408	}
1409
1410	if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1411	     cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1412	     cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1413	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1414	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1415	    !IS_ENABLED(CONFIG_RETPOLINE)) {
1416		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1417		       mitigation_options[i].option);
1418		return SPECTRE_V2_CMD_AUTO;
1419	}
1420
1421	if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1422	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1423	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1424	    !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1425		pr_err("%s selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n",
1426		       mitigation_options[i].option);
1427		return SPECTRE_V2_CMD_AUTO;
1428	}
1429
1430	if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1431	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1432	    !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1433		pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1434		       mitigation_options[i].option);
1435		return SPECTRE_V2_CMD_AUTO;
1436	}
1437
1438	if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_CPU_IBRS_ENTRY)) {
1439		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1440		       mitigation_options[i].option);
1441		return SPECTRE_V2_CMD_AUTO;
1442	}
1443
1444	if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1445		pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
1446		       mitigation_options[i].option);
1447		return SPECTRE_V2_CMD_AUTO;
1448	}
1449
1450	if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
1451		pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
1452		       mitigation_options[i].option);
1453		return SPECTRE_V2_CMD_AUTO;
1454	}
1455
1456	if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
1457		pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
1458		       mitigation_options[i].option);
1459		return SPECTRE_V2_CMD_AUTO;
1460	}
1461
1462	spec_v2_print_cond(mitigation_options[i].option,
1463			   mitigation_options[i].secure);
1464	return cmd;
1465}
1466
1467static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1468{
1469	if (!IS_ENABLED(CONFIG_RETPOLINE)) {
1470		pr_err("Kernel not compiled with retpoline; no mitigation available!");
1471		return SPECTRE_V2_NONE;
1472	}
1473
1474	return SPECTRE_V2_RETPOLINE;
1475}
1476
1477/* Disable in-kernel use of non-RSB RET predictors */
1478static void __init spec_ctrl_disable_kernel_rrsba(void)
1479{
1480	u64 ia32_cap;
1481
1482	if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
1483		return;
1484
1485	ia32_cap = x86_read_arch_cap_msr();
1486
1487	if (ia32_cap & ARCH_CAP_RRSBA) {
1488		x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
1489		update_spec_ctrl(x86_spec_ctrl_base);
1490	}
1491}
1492
1493static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)
1494{
1495	/*
1496	 * Similar to context switches, there are two types of RSB attacks
1497	 * after VM exit:
1498	 *
1499	 * 1) RSB underflow
1500	 *
1501	 * 2) Poisoned RSB entry
1502	 *
1503	 * When retpoline is enabled, both are mitigated by filling/clearing
1504	 * the RSB.
1505	 *
1506	 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
1507	 * prediction isolation protections, RSB still needs to be cleared
1508	 * because of #2.  Note that SMEP provides no protection here, unlike
1509	 * user-space-poisoned RSB entries.
1510	 *
1511	 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB
1512	 * bug is present then a LITE version of RSB protection is required,
1513	 * just a single call needs to retire before a RET is executed.
1514	 */
1515	switch (mode) {
1516	case SPECTRE_V2_NONE:
1517		return;
1518
1519	case SPECTRE_V2_EIBRS_LFENCE:
1520	case SPECTRE_V2_EIBRS:
1521		if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
1522			setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
1523			pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
1524		}
1525		return;
1526
1527	case SPECTRE_V2_EIBRS_RETPOLINE:
1528	case SPECTRE_V2_RETPOLINE:
1529	case SPECTRE_V2_LFENCE:
1530	case SPECTRE_V2_IBRS:
1531		setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1532		pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n");
1533		return;
1534	}
1535
1536	pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit");
1537	dump_stack();
1538}
1539
1540static void __init spectre_v2_select_mitigation(void)
1541{
1542	enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1543	enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1544
1545	/*
1546	 * If the CPU is not affected and the command line mode is NONE or AUTO
1547	 * then nothing to do.
1548	 */
1549	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1550	    (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1551		return;
1552
1553	switch (cmd) {
1554	case SPECTRE_V2_CMD_NONE:
1555		return;
1556
1557	case SPECTRE_V2_CMD_FORCE:
1558	case SPECTRE_V2_CMD_AUTO:
1559		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1560			mode = SPECTRE_V2_EIBRS;
1561			break;
1562		}
1563
1564		if (IS_ENABLED(CONFIG_CPU_IBRS_ENTRY) &&
1565		    boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1566		    retbleed_cmd != RETBLEED_CMD_OFF &&
1567		    retbleed_cmd != RETBLEED_CMD_STUFF &&
1568		    boot_cpu_has(X86_FEATURE_IBRS) &&
1569		    boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1570			mode = SPECTRE_V2_IBRS;
1571			break;
1572		}
1573
1574		mode = spectre_v2_select_retpoline();
1575		break;
1576
1577	case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1578		pr_err(SPECTRE_V2_LFENCE_MSG);
1579		mode = SPECTRE_V2_LFENCE;
1580		break;
1581
1582	case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1583		mode = SPECTRE_V2_RETPOLINE;
1584		break;
1585
1586	case SPECTRE_V2_CMD_RETPOLINE:
1587		mode = spectre_v2_select_retpoline();
1588		break;
1589
1590	case SPECTRE_V2_CMD_IBRS:
1591		mode = SPECTRE_V2_IBRS;
1592		break;
1593
1594	case SPECTRE_V2_CMD_EIBRS:
1595		mode = SPECTRE_V2_EIBRS;
1596		break;
1597
1598	case SPECTRE_V2_CMD_EIBRS_LFENCE:
1599		mode = SPECTRE_V2_EIBRS_LFENCE;
1600		break;
1601
1602	case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1603		mode = SPECTRE_V2_EIBRS_RETPOLINE;
1604		break;
1605	}
1606
1607	if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1608		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1609
1610	if (spectre_v2_in_ibrs_mode(mode)) {
1611		if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) {
1612			msr_set_bit(MSR_EFER, _EFER_AUTOIBRS);
1613		} else {
1614			x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1615			update_spec_ctrl(x86_spec_ctrl_base);
1616		}
1617	}
1618
1619	switch (mode) {
1620	case SPECTRE_V2_NONE:
1621	case SPECTRE_V2_EIBRS:
1622		break;
1623
1624	case SPECTRE_V2_IBRS:
1625		setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
1626		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1627			pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
1628		break;
1629
1630	case SPECTRE_V2_LFENCE:
1631	case SPECTRE_V2_EIBRS_LFENCE:
1632		setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1633		fallthrough;
1634
1635	case SPECTRE_V2_RETPOLINE:
1636	case SPECTRE_V2_EIBRS_RETPOLINE:
1637		setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1638		break;
1639	}
1640
1641	/*
1642	 * Disable alternate RSB predictions in kernel when indirect CALLs and
1643	 * JMPs gets protection against BHI and Intramode-BTI, but RET
1644	 * prediction from a non-RSB predictor is still a risk.
1645	 */
1646	if (mode == SPECTRE_V2_EIBRS_LFENCE ||
1647	    mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1648	    mode == SPECTRE_V2_RETPOLINE)
1649		spec_ctrl_disable_kernel_rrsba();
1650
1651	spectre_v2_enabled = mode;
1652	pr_info("%s\n", spectre_v2_strings[mode]);
1653
1654	/*
1655	 * If Spectre v2 protection has been enabled, fill the RSB during a
1656	 * context switch.  In general there are two types of RSB attacks
1657	 * across context switches, for which the CALLs/RETs may be unbalanced.
1658	 *
1659	 * 1) RSB underflow
1660	 *
1661	 *    Some Intel parts have "bottomless RSB".  When the RSB is empty,
1662	 *    speculated return targets may come from the branch predictor,
1663	 *    which could have a user-poisoned BTB or BHB entry.
1664	 *
1665	 *    AMD has it even worse: *all* returns are speculated from the BTB,
1666	 *    regardless of the state of the RSB.
1667	 *
1668	 *    When IBRS or eIBRS is enabled, the "user -> kernel" attack
1669	 *    scenario is mitigated by the IBRS branch prediction isolation
1670	 *    properties, so the RSB buffer filling wouldn't be necessary to
1671	 *    protect against this type of attack.
1672	 *
1673	 *    The "user -> user" attack scenario is mitigated by RSB filling.
1674	 *
1675	 * 2) Poisoned RSB entry
1676	 *
1677	 *    If the 'next' in-kernel return stack is shorter than 'prev',
1678	 *    'next' could be tricked into speculating with a user-poisoned RSB
1679	 *    entry.
1680	 *
1681	 *    The "user -> kernel" attack scenario is mitigated by SMEP and
1682	 *    eIBRS.
1683	 *
1684	 *    The "user -> user" scenario, also known as SpectreBHB, requires
1685	 *    RSB clearing.
1686	 *
1687	 * So to mitigate all cases, unconditionally fill RSB on context
1688	 * switches.
1689	 *
1690	 * FIXME: Is this pointless for retbleed-affected AMD?
1691	 */
1692	setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1693	pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1694
1695	spectre_v2_determine_rsb_fill_type_at_vmexit(mode);
1696
1697	/*
1698	 * Retpoline protects the kernel, but doesn't protect firmware.  IBRS
1699	 * and Enhanced IBRS protect firmware too, so enable IBRS around
1700	 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't
1701	 * otherwise enabled.
1702	 *
1703	 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1704	 * the user might select retpoline on the kernel command line and if
1705	 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1706	 * enable IBRS around firmware calls.
1707	 */
1708	if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1709	    boot_cpu_has(X86_FEATURE_IBPB) &&
1710	    (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1711	     boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
1712
1713		if (retbleed_cmd != RETBLEED_CMD_IBPB) {
1714			setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
1715			pr_info("Enabling Speculation Barrier for firmware calls\n");
1716		}
1717
1718	} else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) {
1719		setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1720		pr_info("Enabling Restricted Speculation for firmware calls\n");
1721	}
1722
1723	/* Set up IBPB and STIBP depending on the general spectre V2 command */
1724	spectre_v2_cmd = cmd;
1725}
1726
1727static void update_stibp_msr(void * __unused)
1728{
1729	u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
1730	update_spec_ctrl(val);
1731}
1732
1733/* Update x86_spec_ctrl_base in case SMT state changed. */
1734static void update_stibp_strict(void)
1735{
1736	u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1737
1738	if (sched_smt_active())
1739		mask |= SPEC_CTRL_STIBP;
1740
1741	if (mask == x86_spec_ctrl_base)
1742		return;
1743
1744	pr_info("Update user space SMT mitigation: STIBP %s\n",
1745		mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1746	x86_spec_ctrl_base = mask;
1747	on_each_cpu(update_stibp_msr, NULL, 1);
1748}
1749
1750/* Update the static key controlling the evaluation of TIF_SPEC_IB */
1751static void update_indir_branch_cond(void)
1752{
1753	if (sched_smt_active())
1754		static_branch_enable(&switch_to_cond_stibp);
1755	else
1756		static_branch_disable(&switch_to_cond_stibp);
1757}
1758
1759#undef pr_fmt
1760#define pr_fmt(fmt) fmt
1761
1762/* Update the static key controlling the MDS CPU buffer clear in idle */
1763static void update_mds_branch_idle(void)
1764{
1765	u64 ia32_cap = x86_read_arch_cap_msr();
1766
1767	/*
1768	 * Enable the idle clearing if SMT is active on CPUs which are
1769	 * affected only by MSBDS and not any other MDS variant.
1770	 *
1771	 * The other variants cannot be mitigated when SMT is enabled, so
1772	 * clearing the buffers on idle just to prevent the Store Buffer
1773	 * repartitioning leak would be a window dressing exercise.
1774	 */
1775	if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1776		return;
1777
1778	if (sched_smt_active()) {
1779		static_branch_enable(&mds_idle_clear);
1780	} else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1781		   (ia32_cap & ARCH_CAP_FBSDP_NO)) {
1782		static_branch_disable(&mds_idle_clear);
1783	}
1784}
1785
1786#define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1787#define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1788#define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
1789
1790void cpu_bugs_smt_update(void)
1791{
1792	mutex_lock(&spec_ctrl_mutex);
1793
1794	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1795	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1796		pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1797
1798	switch (spectre_v2_user_stibp) {
1799	case SPECTRE_V2_USER_NONE:
1800		break;
1801	case SPECTRE_V2_USER_STRICT:
1802	case SPECTRE_V2_USER_STRICT_PREFERRED:
1803		update_stibp_strict();
1804		break;
1805	case SPECTRE_V2_USER_PRCTL:
1806	case SPECTRE_V2_USER_SECCOMP:
1807		update_indir_branch_cond();
1808		break;
1809	}
1810
1811	switch (mds_mitigation) {
1812	case MDS_MITIGATION_FULL:
1813	case MDS_MITIGATION_VMWERV:
1814		if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1815			pr_warn_once(MDS_MSG_SMT);
1816		update_mds_branch_idle();
1817		break;
1818	case MDS_MITIGATION_OFF:
1819		break;
1820	}
1821
1822	switch (taa_mitigation) {
1823	case TAA_MITIGATION_VERW:
1824	case TAA_MITIGATION_UCODE_NEEDED:
1825		if (sched_smt_active())
1826			pr_warn_once(TAA_MSG_SMT);
1827		break;
1828	case TAA_MITIGATION_TSX_DISABLED:
1829	case TAA_MITIGATION_OFF:
1830		break;
1831	}
1832
1833	switch (mmio_mitigation) {
1834	case MMIO_MITIGATION_VERW:
1835	case MMIO_MITIGATION_UCODE_NEEDED:
1836		if (sched_smt_active())
1837			pr_warn_once(MMIO_MSG_SMT);
1838		break;
1839	case MMIO_MITIGATION_OFF:
1840		break;
1841	}
1842
1843	mutex_unlock(&spec_ctrl_mutex);
1844}
1845
1846#undef pr_fmt
1847#define pr_fmt(fmt)	"Speculative Store Bypass: " fmt
1848
1849static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
1850
1851/* The kernel command line selection */
1852enum ssb_mitigation_cmd {
1853	SPEC_STORE_BYPASS_CMD_NONE,
1854	SPEC_STORE_BYPASS_CMD_AUTO,
1855	SPEC_STORE_BYPASS_CMD_ON,
1856	SPEC_STORE_BYPASS_CMD_PRCTL,
1857	SPEC_STORE_BYPASS_CMD_SECCOMP,
1858};
1859
1860static const char * const ssb_strings[] = {
1861	[SPEC_STORE_BYPASS_NONE]	= "Vulnerable",
1862	[SPEC_STORE_BYPASS_DISABLE]	= "Mitigation: Speculative Store Bypass disabled",
1863	[SPEC_STORE_BYPASS_PRCTL]	= "Mitigation: Speculative Store Bypass disabled via prctl",
1864	[SPEC_STORE_BYPASS_SECCOMP]	= "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
1865};
1866
1867static const struct {
1868	const char *option;
1869	enum ssb_mitigation_cmd cmd;
1870} ssb_mitigation_options[]  __initconst = {
1871	{ "auto",	SPEC_STORE_BYPASS_CMD_AUTO },    /* Platform decides */
1872	{ "on",		SPEC_STORE_BYPASS_CMD_ON },      /* Disable Speculative Store Bypass */
1873	{ "off",	SPEC_STORE_BYPASS_CMD_NONE },    /* Don't touch Speculative Store Bypass */
1874	{ "prctl",	SPEC_STORE_BYPASS_CMD_PRCTL },   /* Disable Speculative Store Bypass via prctl */
1875	{ "seccomp",	SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
1876};
1877
1878static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
1879{
1880	enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
1881	char arg[20];
1882	int ret, i;
1883
1884	if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
1885	    cpu_mitigations_off()) {
1886		return SPEC_STORE_BYPASS_CMD_NONE;
1887	} else {
1888		ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
1889					  arg, sizeof(arg));
1890		if (ret < 0)
1891			return SPEC_STORE_BYPASS_CMD_AUTO;
1892
1893		for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
1894			if (!match_option(arg, ret, ssb_mitigation_options[i].option))
1895				continue;
1896
1897			cmd = ssb_mitigation_options[i].cmd;
1898			break;
1899		}
1900
1901		if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
1902			pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1903			return SPEC_STORE_BYPASS_CMD_AUTO;
1904		}
1905	}
1906
1907	return cmd;
1908}
1909
1910static enum ssb_mitigation __init __ssb_select_mitigation(void)
1911{
1912	enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
1913	enum ssb_mitigation_cmd cmd;
1914
1915	if (!boot_cpu_has(X86_FEATURE_SSBD))
1916		return mode;
1917
1918	cmd = ssb_parse_cmdline();
1919	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
1920	    (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
1921	     cmd == SPEC_STORE_BYPASS_CMD_AUTO))
1922		return mode;
1923
1924	switch (cmd) {
1925	case SPEC_STORE_BYPASS_CMD_SECCOMP:
1926		/*
1927		 * Choose prctl+seccomp as the default mode if seccomp is
1928		 * enabled.
1929		 */
1930		if (IS_ENABLED(CONFIG_SECCOMP))
1931			mode = SPEC_STORE_BYPASS_SECCOMP;
1932		else
1933			mode = SPEC_STORE_BYPASS_PRCTL;
1934		break;
1935	case SPEC_STORE_BYPASS_CMD_ON:
1936		mode = SPEC_STORE_BYPASS_DISABLE;
1937		break;
1938	case SPEC_STORE_BYPASS_CMD_AUTO:
1939	case SPEC_STORE_BYPASS_CMD_PRCTL:
1940		mode = SPEC_STORE_BYPASS_PRCTL;
1941		break;
1942	case SPEC_STORE_BYPASS_CMD_NONE:
1943		break;
1944	}
1945
1946	/*
1947	 * We have three CPU feature flags that are in play here:
1948	 *  - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
1949	 *  - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
1950	 *  - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
1951	 */
1952	if (mode == SPEC_STORE_BYPASS_DISABLE) {
1953		setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
1954		/*
1955		 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
1956		 * use a completely different MSR and bit dependent on family.
1957		 */
1958		if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
1959		    !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
1960			x86_amd_ssb_disable();
1961		} else {
1962			x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
1963			update_spec_ctrl(x86_spec_ctrl_base);
1964		}
1965	}
1966
1967	return mode;
1968}
1969
1970static void ssb_select_mitigation(void)
1971{
1972	ssb_mode = __ssb_select_mitigation();
1973
1974	if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1975		pr_info("%s\n", ssb_strings[ssb_mode]);
1976}
1977
1978#undef pr_fmt
1979#define pr_fmt(fmt)     "Speculation prctl: " fmt
1980
1981static void task_update_spec_tif(struct task_struct *tsk)
1982{
1983	/* Force the update of the real TIF bits */
1984	set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
1985
1986	/*
1987	 * Immediately update the speculation control MSRs for the current
1988	 * task, but for a non-current task delay setting the CPU
1989	 * mitigation until it is scheduled next.
1990	 *
1991	 * This can only happen for SECCOMP mitigation. For PRCTL it's
1992	 * always the current task.
1993	 */
1994	if (tsk == current)
1995		speculation_ctrl_update_current();
1996}
1997
1998static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
1999{
2000
2001	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2002		return -EPERM;
2003
2004	switch (ctrl) {
2005	case PR_SPEC_ENABLE:
2006		set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2007		return 0;
2008	case PR_SPEC_DISABLE:
2009		clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2010		return 0;
2011	default:
2012		return -ERANGE;
2013	}
2014}
2015
2016static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
2017{
2018	if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
2019	    ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
2020		return -ENXIO;
2021
2022	switch (ctrl) {
2023	case PR_SPEC_ENABLE:
2024		/* If speculation is force disabled, enable is not allowed */
2025		if (task_spec_ssb_force_disable(task))
2026			return -EPERM;
2027		task_clear_spec_ssb_disable(task);
2028		task_clear_spec_ssb_noexec(task);
2029		task_update_spec_tif(task);
2030		break;
2031	case PR_SPEC_DISABLE:
2032		task_set_spec_ssb_disable(task);
2033		task_clear_spec_ssb_noexec(task);
2034		task_update_spec_tif(task);
2035		break;
2036	case PR_SPEC_FORCE_DISABLE:
2037		task_set_spec_ssb_disable(task);
2038		task_set_spec_ssb_force_disable(task);
2039		task_clear_spec_ssb_noexec(task);
2040		task_update_spec_tif(task);
2041		break;
2042	case PR_SPEC_DISABLE_NOEXEC:
2043		if (task_spec_ssb_force_disable(task))
2044			return -EPERM;
2045		task_set_spec_ssb_disable(task);
2046		task_set_spec_ssb_noexec(task);
2047		task_update_spec_tif(task);
2048		break;
2049	default:
2050		return -ERANGE;
2051	}
2052	return 0;
2053}
2054
2055static bool is_spec_ib_user_controlled(void)
2056{
2057	return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
2058		spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2059		spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
2060		spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
2061}
2062
2063static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
2064{
2065	switch (ctrl) {
2066	case PR_SPEC_ENABLE:
2067		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2068		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2069			return 0;
2070
2071		/*
2072		 * With strict mode for both IBPB and STIBP, the instruction
2073		 * code paths avoid checking this task flag and instead,
2074		 * unconditionally run the instruction. However, STIBP and IBPB
2075		 * are independent and either can be set to conditionally
2076		 * enabled regardless of the mode of the other.
2077		 *
2078		 * If either is set to conditional, allow the task flag to be
2079		 * updated, unless it was force-disabled by a previous prctl
2080		 * call. Currently, this is possible on an AMD CPU which has the
2081		 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
2082		 * kernel is booted with 'spectre_v2_user=seccomp', then
2083		 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
2084		 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
2085		 */
2086		if (!is_spec_ib_user_controlled() ||
2087		    task_spec_ib_force_disable(task))
2088			return -EPERM;
2089
2090		task_clear_spec_ib_disable(task);
2091		task_update_spec_tif(task);
2092		break;
2093	case PR_SPEC_DISABLE:
2094	case PR_SPEC_FORCE_DISABLE:
2095		/*
2096		 * Indirect branch speculation is always allowed when
2097		 * mitigation is force disabled.
2098		 */
2099		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2100		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2101			return -EPERM;
2102
2103		if (!is_spec_ib_user_controlled())
2104			return 0;
2105
2106		task_set_spec_ib_disable(task);
2107		if (ctrl == PR_SPEC_FORCE_DISABLE)
2108			task_set_spec_ib_force_disable(task);
2109		task_update_spec_tif(task);
2110		if (task == current)
2111			indirect_branch_prediction_barrier();
2112		break;
2113	default:
2114		return -ERANGE;
2115	}
2116	return 0;
2117}
2118
2119int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
2120			     unsigned long ctrl)
2121{
2122	switch (which) {
2123	case PR_SPEC_STORE_BYPASS:
2124		return ssb_prctl_set(task, ctrl);
2125	case PR_SPEC_INDIRECT_BRANCH:
2126		return ib_prctl_set(task, ctrl);
2127	case PR_SPEC_L1D_FLUSH:
2128		return l1d_flush_prctl_set(task, ctrl);
2129	default:
2130		return -ENODEV;
2131	}
2132}
2133
2134#ifdef CONFIG_SECCOMP
2135void arch_seccomp_spec_mitigate(struct task_struct *task)
2136{
2137	if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
2138		ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2139	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2140	    spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
2141		ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2142}
2143#endif
2144
2145static int l1d_flush_prctl_get(struct task_struct *task)
2146{
2147	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2148		return PR_SPEC_FORCE_DISABLE;
2149
2150	if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
2151		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2152	else
2153		return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2154}
2155
2156static int ssb_prctl_get(struct task_struct *task)
2157{
2158	switch (ssb_mode) {
2159	case SPEC_STORE_BYPASS_NONE:
2160		if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2161			return PR_SPEC_ENABLE;
2162		return PR_SPEC_NOT_AFFECTED;
2163	case SPEC_STORE_BYPASS_DISABLE:
2164		return PR_SPEC_DISABLE;
2165	case SPEC_STORE_BYPASS_SECCOMP:
2166	case SPEC_STORE_BYPASS_PRCTL:
2167		if (task_spec_ssb_force_disable(task))
2168			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2169		if (task_spec_ssb_noexec(task))
2170			return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2171		if (task_spec_ssb_disable(task))
2172			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2173		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
 
 
 
 
2174	}
2175	BUG();
2176}
2177
2178static int ib_prctl_get(struct task_struct *task)
2179{
2180	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2181		return PR_SPEC_NOT_AFFECTED;
2182
2183	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2184	    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2185		return PR_SPEC_ENABLE;
2186	else if (is_spec_ib_user_controlled()) {
2187		if (task_spec_ib_force_disable(task))
2188			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2189		if (task_spec_ib_disable(task))
2190			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2191		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2192	} else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2193	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2194	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2195		return PR_SPEC_DISABLE;
2196	else
2197		return PR_SPEC_NOT_AFFECTED;
2198}
2199
2200int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2201{
2202	switch (which) {
2203	case PR_SPEC_STORE_BYPASS:
2204		return ssb_prctl_get(task);
2205	case PR_SPEC_INDIRECT_BRANCH:
2206		return ib_prctl_get(task);
2207	case PR_SPEC_L1D_FLUSH:
2208		return l1d_flush_prctl_get(task);
2209	default:
2210		return -ENODEV;
2211	}
2212}
2213
2214void x86_spec_ctrl_setup_ap(void)
2215{
2216	if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2217		update_spec_ctrl(x86_spec_ctrl_base);
2218
2219	if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2220		x86_amd_ssb_disable();
2221}
2222
2223bool itlb_multihit_kvm_mitigation;
2224EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2225
2226#undef pr_fmt
2227#define pr_fmt(fmt)	"L1TF: " fmt
2228
2229/* Default mitigation for L1TF-affected CPUs */
2230enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
2231#if IS_ENABLED(CONFIG_KVM_INTEL)
2232EXPORT_SYMBOL_GPL(l1tf_mitigation);
2233#endif
2234enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2235EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2236
2237/*
2238 * These CPUs all support 44bits physical address space internally in the
2239 * cache but CPUID can report a smaller number of physical address bits.
2240 *
2241 * The L1TF mitigation uses the top most address bit for the inversion of
2242 * non present PTEs. When the installed memory reaches into the top most
2243 * address bit due to memory holes, which has been observed on machines
2244 * which report 36bits physical address bits and have 32G RAM installed,
2245 * then the mitigation range check in l1tf_select_mitigation() triggers.
2246 * This is a false positive because the mitigation is still possible due to
2247 * the fact that the cache uses 44bit internally. Use the cache bits
2248 * instead of the reported physical bits and adjust them on the affected
2249 * machines to 44bit if the reported bits are less than 44.
2250 */
2251static void override_cache_bits(struct cpuinfo_x86 *c)
2252{
2253	if (c->x86 != 6)
2254		return;
2255
2256	switch (c->x86_model) {
2257	case INTEL_FAM6_NEHALEM:
2258	case INTEL_FAM6_WESTMERE:
2259	case INTEL_FAM6_SANDYBRIDGE:
2260	case INTEL_FAM6_IVYBRIDGE:
2261	case INTEL_FAM6_HASWELL:
2262	case INTEL_FAM6_HASWELL_L:
2263	case INTEL_FAM6_HASWELL_G:
2264	case INTEL_FAM6_BROADWELL:
2265	case INTEL_FAM6_BROADWELL_G:
2266	case INTEL_FAM6_SKYLAKE_L:
2267	case INTEL_FAM6_SKYLAKE:
2268	case INTEL_FAM6_KABYLAKE_L:
2269	case INTEL_FAM6_KABYLAKE:
2270		if (c->x86_cache_bits < 44)
2271			c->x86_cache_bits = 44;
2272		break;
2273	}
2274}
2275
2276static void __init l1tf_select_mitigation(void)
2277{
2278	u64 half_pa;
2279
2280	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2281		return;
2282
2283	if (cpu_mitigations_off())
2284		l1tf_mitigation = L1TF_MITIGATION_OFF;
2285	else if (cpu_mitigations_auto_nosmt())
2286		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2287
2288	override_cache_bits(&boot_cpu_data);
2289
2290	switch (l1tf_mitigation) {
2291	case L1TF_MITIGATION_OFF:
2292	case L1TF_MITIGATION_FLUSH_NOWARN:
2293	case L1TF_MITIGATION_FLUSH:
2294		break;
2295	case L1TF_MITIGATION_FLUSH_NOSMT:
2296	case L1TF_MITIGATION_FULL:
2297		cpu_smt_disable(false);
2298		break;
2299	case L1TF_MITIGATION_FULL_FORCE:
2300		cpu_smt_disable(true);
2301		break;
2302	}
2303
2304#if CONFIG_PGTABLE_LEVELS == 2
2305	pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2306	return;
2307#endif
2308
2309	half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2310	if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2311			e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
2312		pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2313		pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2314				half_pa);
2315		pr_info("However, doing so will make a part of your RAM unusable.\n");
2316		pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2317		return;
2318	}
2319
2320	setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2321}
2322
2323static int __init l1tf_cmdline(char *str)
2324{
2325	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2326		return 0;
2327
2328	if (!str)
2329		return -EINVAL;
2330
2331	if (!strcmp(str, "off"))
2332		l1tf_mitigation = L1TF_MITIGATION_OFF;
2333	else if (!strcmp(str, "flush,nowarn"))
2334		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2335	else if (!strcmp(str, "flush"))
2336		l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2337	else if (!strcmp(str, "flush,nosmt"))
2338		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2339	else if (!strcmp(str, "full"))
2340		l1tf_mitigation = L1TF_MITIGATION_FULL;
2341	else if (!strcmp(str, "full,force"))
2342		l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2343
2344	return 0;
2345}
2346early_param("l1tf", l1tf_cmdline);
2347
2348#undef pr_fmt
2349#define pr_fmt(fmt)	"Speculative Return Stack Overflow: " fmt
2350
2351enum srso_mitigation {
2352	SRSO_MITIGATION_NONE,
2353	SRSO_MITIGATION_UCODE_NEEDED,
2354	SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED,
2355	SRSO_MITIGATION_MICROCODE,
2356	SRSO_MITIGATION_SAFE_RET,
2357	SRSO_MITIGATION_IBPB,
2358	SRSO_MITIGATION_IBPB_ON_VMEXIT,
2359};
2360
2361enum srso_mitigation_cmd {
2362	SRSO_CMD_OFF,
2363	SRSO_CMD_MICROCODE,
2364	SRSO_CMD_SAFE_RET,
2365	SRSO_CMD_IBPB,
2366	SRSO_CMD_IBPB_ON_VMEXIT,
2367};
2368
2369static const char * const srso_strings[] = {
2370	[SRSO_MITIGATION_NONE]			= "Vulnerable",
2371	[SRSO_MITIGATION_UCODE_NEEDED]		= "Vulnerable: No microcode",
2372	[SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED]	= "Vulnerable: Safe RET, no microcode",
2373	[SRSO_MITIGATION_MICROCODE]		= "Vulnerable: Microcode, no safe RET",
2374	[SRSO_MITIGATION_SAFE_RET]		= "Mitigation: Safe RET",
2375	[SRSO_MITIGATION_IBPB]			= "Mitigation: IBPB",
2376	[SRSO_MITIGATION_IBPB_ON_VMEXIT]	= "Mitigation: IBPB on VMEXIT only"
2377};
2378
2379static enum srso_mitigation srso_mitigation __ro_after_init = SRSO_MITIGATION_NONE;
2380static enum srso_mitigation_cmd srso_cmd __ro_after_init = SRSO_CMD_SAFE_RET;
2381
2382static int __init srso_parse_cmdline(char *str)
2383{
2384	if (!str)
2385		return -EINVAL;
2386
2387	if (!strcmp(str, "off"))
2388		srso_cmd = SRSO_CMD_OFF;
2389	else if (!strcmp(str, "microcode"))
2390		srso_cmd = SRSO_CMD_MICROCODE;
2391	else if (!strcmp(str, "safe-ret"))
2392		srso_cmd = SRSO_CMD_SAFE_RET;
2393	else if (!strcmp(str, "ibpb"))
2394		srso_cmd = SRSO_CMD_IBPB;
2395	else if (!strcmp(str, "ibpb-vmexit"))
2396		srso_cmd = SRSO_CMD_IBPB_ON_VMEXIT;
2397	else
2398		pr_err("Ignoring unknown SRSO option (%s).", str);
2399
2400	return 0;
2401}
2402early_param("spec_rstack_overflow", srso_parse_cmdline);
2403
2404#define SRSO_NOTICE "WARNING: See https://kernel.org/doc/html/latest/admin-guide/hw-vuln/srso.html for mitigation options."
2405
2406static void __init srso_select_mitigation(void)
2407{
2408	bool has_microcode = boot_cpu_has(X86_FEATURE_IBPB_BRTYPE);
2409
2410	if (cpu_mitigations_off())
2411		return;
2412
2413	if (!boot_cpu_has_bug(X86_BUG_SRSO)) {
2414		if (boot_cpu_has(X86_FEATURE_SBPB))
2415			x86_pred_cmd = PRED_CMD_SBPB;
2416		return;
2417	}
2418
2419	if (has_microcode) {
2420		/*
2421		 * Zen1/2 with SMT off aren't vulnerable after the right
2422		 * IBPB microcode has been applied.
2423		 *
2424		 * Zen1/2 don't have SBPB, no need to try to enable it here.
2425		 */
2426		if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) {
2427			setup_force_cpu_cap(X86_FEATURE_SRSO_NO);
2428			return;
2429		}
2430
2431		if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2432			srso_mitigation = SRSO_MITIGATION_IBPB;
2433			goto out;
2434		}
2435	} else {
2436		pr_warn("IBPB-extending microcode not applied!\n");
2437		pr_warn(SRSO_NOTICE);
2438
2439		/* may be overwritten by SRSO_CMD_SAFE_RET below */
2440		srso_mitigation = SRSO_MITIGATION_UCODE_NEEDED;
2441	}
2442
2443	switch (srso_cmd) {
2444	case SRSO_CMD_OFF:
2445		if (boot_cpu_has(X86_FEATURE_SBPB))
2446			x86_pred_cmd = PRED_CMD_SBPB;
2447		return;
2448
2449	case SRSO_CMD_MICROCODE:
2450		if (has_microcode) {
2451			srso_mitigation = SRSO_MITIGATION_MICROCODE;
2452			pr_warn(SRSO_NOTICE);
2453		}
2454		break;
2455
2456	case SRSO_CMD_SAFE_RET:
2457		if (IS_ENABLED(CONFIG_CPU_SRSO)) {
2458			/*
2459			 * Enable the return thunk for generated code
2460			 * like ftrace, static_call, etc.
2461			 */
2462			setup_force_cpu_cap(X86_FEATURE_RETHUNK);
2463			setup_force_cpu_cap(X86_FEATURE_UNRET);
2464
2465			if (boot_cpu_data.x86 == 0x19) {
2466				setup_force_cpu_cap(X86_FEATURE_SRSO_ALIAS);
2467				x86_return_thunk = srso_alias_return_thunk;
2468			} else {
2469				setup_force_cpu_cap(X86_FEATURE_SRSO);
2470				x86_return_thunk = srso_return_thunk;
2471			}
2472			if (has_microcode)
2473				srso_mitigation = SRSO_MITIGATION_SAFE_RET;
2474			else
2475				srso_mitigation = SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED;
2476		} else {
2477			pr_err("WARNING: kernel not compiled with CPU_SRSO.\n");
2478		}
2479		break;
2480
2481	case SRSO_CMD_IBPB:
2482		if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) {
2483			if (has_microcode) {
2484				setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
2485				srso_mitigation = SRSO_MITIGATION_IBPB;
2486			}
2487		} else {
2488			pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n");
2489		}
2490		break;
2491
2492	case SRSO_CMD_IBPB_ON_VMEXIT:
2493		if (IS_ENABLED(CONFIG_CPU_SRSO)) {
2494			if (!boot_cpu_has(X86_FEATURE_ENTRY_IBPB) && has_microcode) {
2495				setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
2496				srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT;
2497			}
2498		} else {
2499			pr_err("WARNING: kernel not compiled with CPU_SRSO.\n");
2500                }
2501		break;
2502	}
2503
2504out:
2505	pr_info("%s\n", srso_strings[srso_mitigation]);
2506}
2507
2508#undef pr_fmt
2509#define pr_fmt(fmt) fmt
2510
2511#ifdef CONFIG_SYSFS
2512
2513#define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
2514
2515#if IS_ENABLED(CONFIG_KVM_INTEL)
2516static const char * const l1tf_vmx_states[] = {
2517	[VMENTER_L1D_FLUSH_AUTO]		= "auto",
2518	[VMENTER_L1D_FLUSH_NEVER]		= "vulnerable",
2519	[VMENTER_L1D_FLUSH_COND]		= "conditional cache flushes",
2520	[VMENTER_L1D_FLUSH_ALWAYS]		= "cache flushes",
2521	[VMENTER_L1D_FLUSH_EPT_DISABLED]	= "EPT disabled",
2522	[VMENTER_L1D_FLUSH_NOT_REQUIRED]	= "flush not necessary"
2523};
2524
2525static ssize_t l1tf_show_state(char *buf)
2526{
2527	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
2528		return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2529
2530	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
2531	    (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
2532	     sched_smt_active())) {
2533		return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
2534				  l1tf_vmx_states[l1tf_vmx_mitigation]);
2535	}
2536
2537	return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
2538			  l1tf_vmx_states[l1tf_vmx_mitigation],
2539			  sched_smt_active() ? "vulnerable" : "disabled");
2540}
2541
2542static ssize_t itlb_multihit_show_state(char *buf)
2543{
2544	if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2545	    !boot_cpu_has(X86_FEATURE_VMX))
2546		return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n");
2547	else if (!(cr4_read_shadow() & X86_CR4_VMXE))
2548		return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n");
2549	else if (itlb_multihit_kvm_mitigation)
2550		return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n");
2551	else
2552		return sysfs_emit(buf, "KVM: Vulnerable\n");
2553}
2554#else
2555static ssize_t l1tf_show_state(char *buf)
2556{
2557	return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2558}
2559
2560static ssize_t itlb_multihit_show_state(char *buf)
2561{
2562	return sysfs_emit(buf, "Processor vulnerable\n");
2563}
2564#endif
2565
2566static ssize_t mds_show_state(char *buf)
2567{
2568	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2569		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2570				  mds_strings[mds_mitigation]);
2571	}
2572
2573	if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
2574		return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2575				  (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
2576				   sched_smt_active() ? "mitigated" : "disabled"));
2577	}
2578
2579	return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2580			  sched_smt_active() ? "vulnerable" : "disabled");
2581}
2582
2583static ssize_t tsx_async_abort_show_state(char *buf)
2584{
2585	if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
2586	    (taa_mitigation == TAA_MITIGATION_OFF))
2587		return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]);
2588
2589	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2590		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2591				  taa_strings[taa_mitigation]);
2592	}
2593
2594	return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
2595			  sched_smt_active() ? "vulnerable" : "disabled");
2596}
2597
2598static ssize_t mmio_stale_data_show_state(char *buf)
2599{
2600	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2601		return sysfs_emit(buf, "Unknown: No mitigations\n");
2602
2603	if (mmio_mitigation == MMIO_MITIGATION_OFF)
2604		return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
2605
2606	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2607		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2608				  mmio_strings[mmio_mitigation]);
2609	}
2610
2611	return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
2612			  sched_smt_active() ? "vulnerable" : "disabled");
2613}
2614
2615static char *stibp_state(void)
2616{
2617	if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
2618	    !boot_cpu_has(X86_FEATURE_AUTOIBRS))
2619		return "";
2620
2621	switch (spectre_v2_user_stibp) {
2622	case SPECTRE_V2_USER_NONE:
2623		return ", STIBP: disabled";
2624	case SPECTRE_V2_USER_STRICT:
2625		return ", STIBP: forced";
2626	case SPECTRE_V2_USER_STRICT_PREFERRED:
2627		return ", STIBP: always-on";
2628	case SPECTRE_V2_USER_PRCTL:
2629	case SPECTRE_V2_USER_SECCOMP:
2630		if (static_key_enabled(&switch_to_cond_stibp))
2631			return ", STIBP: conditional";
2632	}
2633	return "";
2634}
2635
2636static char *ibpb_state(void)
2637{
2638	if (boot_cpu_has(X86_FEATURE_IBPB)) {
2639		if (static_key_enabled(&switch_mm_always_ibpb))
2640			return ", IBPB: always-on";
2641		if (static_key_enabled(&switch_mm_cond_ibpb))
2642			return ", IBPB: conditional";
2643		return ", IBPB: disabled";
2644	}
2645	return "";
2646}
2647
2648static char *pbrsb_eibrs_state(void)
2649{
2650	if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2651		if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
2652		    boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
2653			return ", PBRSB-eIBRS: SW sequence";
2654		else
2655			return ", PBRSB-eIBRS: Vulnerable";
2656	} else {
2657		return ", PBRSB-eIBRS: Not affected";
2658	}
2659}
2660
2661static ssize_t spectre_v2_show_state(char *buf)
2662{
2663	if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
2664		return sysfs_emit(buf, "Vulnerable: LFENCE\n");
2665
2666	if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2667		return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
2668
2669	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2670	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2671		return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
2672
2673	return sysfs_emit(buf, "%s%s%s%s%s%s%s\n",
2674			  spectre_v2_strings[spectre_v2_enabled],
2675			  ibpb_state(),
2676			  boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "",
2677			  stibp_state(),
2678			  boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "",
2679			  pbrsb_eibrs_state(),
2680			  spectre_v2_module_string());
2681}
2682
2683static ssize_t srbds_show_state(char *buf)
2684{
2685	return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]);
2686}
2687
2688static ssize_t retbleed_show_state(char *buf)
2689{
2690	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
2691	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2692		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
2693		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
2694			return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
2695
2696		return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
2697				  !sched_smt_active() ? "disabled" :
2698				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2699				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
2700				  "enabled with STIBP protection" : "vulnerable");
2701	}
2702
2703	return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
2704}
2705
2706static ssize_t srso_show_state(char *buf)
2707{
2708	if (boot_cpu_has(X86_FEATURE_SRSO_NO))
2709		return sysfs_emit(buf, "Mitigation: SMT disabled\n");
2710
2711	return sysfs_emit(buf, "%s\n", srso_strings[srso_mitigation]);
2712}
2713
2714static ssize_t gds_show_state(char *buf)
2715{
2716	return sysfs_emit(buf, "%s\n", gds_strings[gds_mitigation]);
2717}
2718
2719static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
2720			       char *buf, unsigned int bug)
2721{
2722	if (!boot_cpu_has_bug(bug))
2723		return sysfs_emit(buf, "Not affected\n");
2724
2725	switch (bug) {
2726	case X86_BUG_CPU_MELTDOWN:
2727		if (boot_cpu_has(X86_FEATURE_PTI))
2728			return sysfs_emit(buf, "Mitigation: PTI\n");
2729
2730		if (hypervisor_is_type(X86_HYPER_XEN_PV))
2731			return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
2732
2733		break;
2734
2735	case X86_BUG_SPECTRE_V1:
2736		return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
2737
2738	case X86_BUG_SPECTRE_V2:
2739		return spectre_v2_show_state(buf);
2740
2741	case X86_BUG_SPEC_STORE_BYPASS:
2742		return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]);
2743
2744	case X86_BUG_L1TF:
2745		if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
2746			return l1tf_show_state(buf);
2747		break;
2748
2749	case X86_BUG_MDS:
2750		return mds_show_state(buf);
2751
2752	case X86_BUG_TAA:
2753		return tsx_async_abort_show_state(buf);
2754
2755	case X86_BUG_ITLB_MULTIHIT:
2756		return itlb_multihit_show_state(buf);
2757
2758	case X86_BUG_SRBDS:
2759		return srbds_show_state(buf);
2760
2761	case X86_BUG_MMIO_STALE_DATA:
2762	case X86_BUG_MMIO_UNKNOWN:
2763		return mmio_stale_data_show_state(buf);
2764
2765	case X86_BUG_RETBLEED:
2766		return retbleed_show_state(buf);
2767
2768	case X86_BUG_SRSO:
2769		return srso_show_state(buf);
2770
2771	case X86_BUG_GDS:
2772		return gds_show_state(buf);
2773
2774	default:
2775		break;
2776	}
2777
2778	return sysfs_emit(buf, "Vulnerable\n");
2779}
2780
2781ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
2782{
2783	return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
2784}
2785
2786ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
2787{
2788	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
2789}
2790
2791ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
2792{
2793	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
2794}
2795
2796ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
2797{
2798	return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
2799}
2800
2801ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
2802{
2803	return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
2804}
2805
2806ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
2807{
2808	return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
2809}
2810
2811ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
2812{
2813	return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
2814}
2815
2816ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
2817{
2818	return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
2819}
2820
2821ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
2822{
2823	return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
2824}
2825
2826ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
2827{
2828	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2829		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN);
2830	else
2831		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
2832}
2833
2834ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
2835{
2836	return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
2837}
2838
2839ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf)
2840{
2841	return cpu_show_common(dev, attr, buf, X86_BUG_SRSO);
2842}
2843
2844ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf)
2845{
2846	return cpu_show_common(dev, attr, buf, X86_BUG_GDS);
2847}
2848#endif