Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1994 Linus Torvalds
4 *
5 * Cyrix stuff, June 1998 by:
6 * - Rafael R. Reilova (moved everything from head.S),
7 * <rreilova@ececs.uc.edu>
8 * - Channing Corn (tests & fixes),
9 * - Andrew D. Balsa (code cleanup).
10 */
11#include <linux/init.h>
12#include <linux/utsname.h>
13#include <linux/cpu.h>
14#include <linux/module.h>
15#include <linux/nospec.h>
16#include <linux/prctl.h>
17#include <linux/sched/smt.h>
18#include <linux/pgtable.h>
19#include <linux/bpf.h>
20
21#include <asm/spec-ctrl.h>
22#include <asm/cmdline.h>
23#include <asm/bugs.h>
24#include <asm/processor.h>
25#include <asm/processor-flags.h>
26#include <asm/fpu/api.h>
27#include <asm/msr.h>
28#include <asm/vmx.h>
29#include <asm/paravirt.h>
30#include <asm/alternative.h>
31#include <asm/set_memory.h>
32#include <asm/intel-family.h>
33#include <asm/e820/api.h>
34#include <asm/hypervisor.h>
35#include <asm/tlbflush.h>
36
37#include "cpu.h"
38
39static void __init spectre_v1_select_mitigation(void);
40static void __init spectre_v2_select_mitigation(void);
41static void __init retbleed_select_mitigation(void);
42static void __init spectre_v2_user_select_mitigation(void);
43static void __init ssb_select_mitigation(void);
44static void __init l1tf_select_mitigation(void);
45static void __init mds_select_mitigation(void);
46static void __init md_clear_update_mitigation(void);
47static void __init md_clear_select_mitigation(void);
48static void __init taa_select_mitigation(void);
49static void __init mmio_select_mitigation(void);
50static void __init srbds_select_mitigation(void);
51static void __init l1d_flush_select_mitigation(void);
52
53/* The base value of the SPEC_CTRL MSR without task-specific bits set */
54u64 x86_spec_ctrl_base;
55EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
56
57/* The current value of the SPEC_CTRL MSR with task-specific bits set */
58DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
59EXPORT_SYMBOL_GPL(x86_spec_ctrl_current);
60
61static DEFINE_MUTEX(spec_ctrl_mutex);
62
63/* Update SPEC_CTRL MSR and its cached copy unconditionally */
64static void update_spec_ctrl(u64 val)
65{
66 this_cpu_write(x86_spec_ctrl_current, val);
67 wrmsrl(MSR_IA32_SPEC_CTRL, val);
68}
69
70/*
71 * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
72 * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
73 */
74void update_spec_ctrl_cond(u64 val)
75{
76 if (this_cpu_read(x86_spec_ctrl_current) == val)
77 return;
78
79 this_cpu_write(x86_spec_ctrl_current, val);
80
81 /*
82 * When KERNEL_IBRS this MSR is written on return-to-user, unless
83 * forced the update can be delayed until that time.
84 */
85 if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
86 wrmsrl(MSR_IA32_SPEC_CTRL, val);
87}
88
89u64 spec_ctrl_current(void)
90{
91 return this_cpu_read(x86_spec_ctrl_current);
92}
93EXPORT_SYMBOL_GPL(spec_ctrl_current);
94
95/*
96 * AMD specific MSR info for Speculative Store Bypass control.
97 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
98 */
99u64 __ro_after_init x86_amd_ls_cfg_base;
100u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
101
102/* Control conditional STIBP in switch_to() */
103DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
104/* Control conditional IBPB in switch_mm() */
105DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
106/* Control unconditional IBPB in switch_mm() */
107DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
108
109/* Control MDS CPU buffer clear before returning to user space */
110DEFINE_STATIC_KEY_FALSE(mds_user_clear);
111EXPORT_SYMBOL_GPL(mds_user_clear);
112/* Control MDS CPU buffer clear before idling (halt, mwait) */
113DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
114EXPORT_SYMBOL_GPL(mds_idle_clear);
115
116/*
117 * Controls whether l1d flush based mitigations are enabled,
118 * based on hw features and admin setting via boot parameter
119 * defaults to false
120 */
121DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
122
123/* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
124DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
125EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
126
127void __init check_bugs(void)
128{
129 identify_boot_cpu();
130
131 /*
132 * identify_boot_cpu() initialized SMT support information, let the
133 * core code know.
134 */
135 cpu_smt_check_topology();
136
137 if (!IS_ENABLED(CONFIG_SMP)) {
138 pr_info("CPU: ");
139 print_cpu_info(&boot_cpu_data);
140 }
141
142 /*
143 * Read the SPEC_CTRL MSR to account for reserved bits which may
144 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
145 * init code as it is not enumerated and depends on the family.
146 */
147 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
148 rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
149
150 /* Select the proper CPU mitigations before patching alternatives: */
151 spectre_v1_select_mitigation();
152 spectre_v2_select_mitigation();
153 /*
154 * retbleed_select_mitigation() relies on the state set by
155 * spectre_v2_select_mitigation(); specifically it wants to know about
156 * spectre_v2=ibrs.
157 */
158 retbleed_select_mitigation();
159 /*
160 * spectre_v2_user_select_mitigation() relies on the state set by
161 * retbleed_select_mitigation(); specifically the STIBP selection is
162 * forced for UNRET or IBPB.
163 */
164 spectre_v2_user_select_mitigation();
165 ssb_select_mitigation();
166 l1tf_select_mitigation();
167 md_clear_select_mitigation();
168 srbds_select_mitigation();
169 l1d_flush_select_mitigation();
170
171 arch_smt_update();
172
173#ifdef CONFIG_X86_32
174 /*
175 * Check whether we are able to run this kernel safely on SMP.
176 *
177 * - i386 is no longer supported.
178 * - In order to run on anything without a TSC, we need to be
179 * compiled for a i486.
180 */
181 if (boot_cpu_data.x86 < 4)
182 panic("Kernel requires i486+ for 'invlpg' and other features");
183
184 init_utsname()->machine[1] =
185 '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
186 alternative_instructions();
187
188 fpu__init_check_bugs();
189#else /* CONFIG_X86_64 */
190 alternative_instructions();
191
192 /*
193 * Make sure the first 2MB area is not mapped by huge pages
194 * There are typically fixed size MTRRs in there and overlapping
195 * MTRRs into large pages causes slow downs.
196 *
197 * Right now we don't do that with gbpages because there seems
198 * very little benefit for that case.
199 */
200 if (!direct_gbpages)
201 set_memory_4k((unsigned long)__va(0), 1);
202#endif
203}
204
205/*
206 * NOTE: This function is *only* called for SVM, since Intel uses
207 * MSR_IA32_SPEC_CTRL for SSBD.
208 */
209void
210x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
211{
212 u64 guestval, hostval;
213 struct thread_info *ti = current_thread_info();
214
215 /*
216 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
217 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
218 */
219 if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
220 !static_cpu_has(X86_FEATURE_VIRT_SSBD))
221 return;
222
223 /*
224 * If the host has SSBD mitigation enabled, force it in the host's
225 * virtual MSR value. If its not permanently enabled, evaluate
226 * current's TIF_SSBD thread flag.
227 */
228 if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
229 hostval = SPEC_CTRL_SSBD;
230 else
231 hostval = ssbd_tif_to_spec_ctrl(ti->flags);
232
233 /* Sanitize the guest value */
234 guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
235
236 if (hostval != guestval) {
237 unsigned long tif;
238
239 tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
240 ssbd_spec_ctrl_to_tif(hostval);
241
242 speculation_ctrl_update(tif);
243 }
244}
245EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
246
247static void x86_amd_ssb_disable(void)
248{
249 u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
250
251 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
252 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
253 else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
254 wrmsrl(MSR_AMD64_LS_CFG, msrval);
255}
256
257#undef pr_fmt
258#define pr_fmt(fmt) "MDS: " fmt
259
260/* Default mitigation for MDS-affected CPUs */
261static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
262static bool mds_nosmt __ro_after_init = false;
263
264static const char * const mds_strings[] = {
265 [MDS_MITIGATION_OFF] = "Vulnerable",
266 [MDS_MITIGATION_FULL] = "Mitigation: Clear CPU buffers",
267 [MDS_MITIGATION_VMWERV] = "Vulnerable: Clear CPU buffers attempted, no microcode",
268};
269
270static void __init mds_select_mitigation(void)
271{
272 if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
273 mds_mitigation = MDS_MITIGATION_OFF;
274 return;
275 }
276
277 if (mds_mitigation == MDS_MITIGATION_FULL) {
278 if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
279 mds_mitigation = MDS_MITIGATION_VMWERV;
280
281 static_branch_enable(&mds_user_clear);
282
283 if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
284 (mds_nosmt || cpu_mitigations_auto_nosmt()))
285 cpu_smt_disable(false);
286 }
287}
288
289static int __init mds_cmdline(char *str)
290{
291 if (!boot_cpu_has_bug(X86_BUG_MDS))
292 return 0;
293
294 if (!str)
295 return -EINVAL;
296
297 if (!strcmp(str, "off"))
298 mds_mitigation = MDS_MITIGATION_OFF;
299 else if (!strcmp(str, "full"))
300 mds_mitigation = MDS_MITIGATION_FULL;
301 else if (!strcmp(str, "full,nosmt")) {
302 mds_mitigation = MDS_MITIGATION_FULL;
303 mds_nosmt = true;
304 }
305
306 return 0;
307}
308early_param("mds", mds_cmdline);
309
310#undef pr_fmt
311#define pr_fmt(fmt) "TAA: " fmt
312
313enum taa_mitigations {
314 TAA_MITIGATION_OFF,
315 TAA_MITIGATION_UCODE_NEEDED,
316 TAA_MITIGATION_VERW,
317 TAA_MITIGATION_TSX_DISABLED,
318};
319
320/* Default mitigation for TAA-affected CPUs */
321static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
322static bool taa_nosmt __ro_after_init;
323
324static const char * const taa_strings[] = {
325 [TAA_MITIGATION_OFF] = "Vulnerable",
326 [TAA_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
327 [TAA_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
328 [TAA_MITIGATION_TSX_DISABLED] = "Mitigation: TSX disabled",
329};
330
331static void __init taa_select_mitigation(void)
332{
333 u64 ia32_cap;
334
335 if (!boot_cpu_has_bug(X86_BUG_TAA)) {
336 taa_mitigation = TAA_MITIGATION_OFF;
337 return;
338 }
339
340 /* TSX previously disabled by tsx=off */
341 if (!boot_cpu_has(X86_FEATURE_RTM)) {
342 taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
343 return;
344 }
345
346 if (cpu_mitigations_off()) {
347 taa_mitigation = TAA_MITIGATION_OFF;
348 return;
349 }
350
351 /*
352 * TAA mitigation via VERW is turned off if both
353 * tsx_async_abort=off and mds=off are specified.
354 */
355 if (taa_mitigation == TAA_MITIGATION_OFF &&
356 mds_mitigation == MDS_MITIGATION_OFF)
357 return;
358
359 if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
360 taa_mitigation = TAA_MITIGATION_VERW;
361 else
362 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
363
364 /*
365 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
366 * A microcode update fixes this behavior to clear CPU buffers. It also
367 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
368 * ARCH_CAP_TSX_CTRL_MSR bit.
369 *
370 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
371 * update is required.
372 */
373 ia32_cap = x86_read_arch_cap_msr();
374 if ( (ia32_cap & ARCH_CAP_MDS_NO) &&
375 !(ia32_cap & ARCH_CAP_TSX_CTRL_MSR))
376 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
377
378 /*
379 * TSX is enabled, select alternate mitigation for TAA which is
380 * the same as MDS. Enable MDS static branch to clear CPU buffers.
381 *
382 * For guests that can't determine whether the correct microcode is
383 * present on host, enable the mitigation for UCODE_NEEDED as well.
384 */
385 static_branch_enable(&mds_user_clear);
386
387 if (taa_nosmt || cpu_mitigations_auto_nosmt())
388 cpu_smt_disable(false);
389}
390
391static int __init tsx_async_abort_parse_cmdline(char *str)
392{
393 if (!boot_cpu_has_bug(X86_BUG_TAA))
394 return 0;
395
396 if (!str)
397 return -EINVAL;
398
399 if (!strcmp(str, "off")) {
400 taa_mitigation = TAA_MITIGATION_OFF;
401 } else if (!strcmp(str, "full")) {
402 taa_mitigation = TAA_MITIGATION_VERW;
403 } else if (!strcmp(str, "full,nosmt")) {
404 taa_mitigation = TAA_MITIGATION_VERW;
405 taa_nosmt = true;
406 }
407
408 return 0;
409}
410early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
411
412#undef pr_fmt
413#define pr_fmt(fmt) "MMIO Stale Data: " fmt
414
415enum mmio_mitigations {
416 MMIO_MITIGATION_OFF,
417 MMIO_MITIGATION_UCODE_NEEDED,
418 MMIO_MITIGATION_VERW,
419};
420
421/* Default mitigation for Processor MMIO Stale Data vulnerabilities */
422static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW;
423static bool mmio_nosmt __ro_after_init = false;
424
425static const char * const mmio_strings[] = {
426 [MMIO_MITIGATION_OFF] = "Vulnerable",
427 [MMIO_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
428 [MMIO_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
429};
430
431static void __init mmio_select_mitigation(void)
432{
433 u64 ia32_cap;
434
435 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
436 boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) ||
437 cpu_mitigations_off()) {
438 mmio_mitigation = MMIO_MITIGATION_OFF;
439 return;
440 }
441
442 if (mmio_mitigation == MMIO_MITIGATION_OFF)
443 return;
444
445 ia32_cap = x86_read_arch_cap_msr();
446
447 /*
448 * Enable CPU buffer clear mitigation for host and VMM, if also affected
449 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
450 */
451 if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
452 boot_cpu_has(X86_FEATURE_RTM)))
453 static_branch_enable(&mds_user_clear);
454 else
455 static_branch_enable(&mmio_stale_data_clear);
456
457 /*
458 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
459 * be propagated to uncore buffers, clearing the Fill buffers on idle
460 * is required irrespective of SMT state.
461 */
462 if (!(ia32_cap & ARCH_CAP_FBSDP_NO))
463 static_branch_enable(&mds_idle_clear);
464
465 /*
466 * Check if the system has the right microcode.
467 *
468 * CPU Fill buffer clear mitigation is enumerated by either an explicit
469 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
470 * affected systems.
471 */
472 if ((ia32_cap & ARCH_CAP_FB_CLEAR) ||
473 (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
474 boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
475 !(ia32_cap & ARCH_CAP_MDS_NO)))
476 mmio_mitigation = MMIO_MITIGATION_VERW;
477 else
478 mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
479
480 if (mmio_nosmt || cpu_mitigations_auto_nosmt())
481 cpu_smt_disable(false);
482}
483
484static int __init mmio_stale_data_parse_cmdline(char *str)
485{
486 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
487 return 0;
488
489 if (!str)
490 return -EINVAL;
491
492 if (!strcmp(str, "off")) {
493 mmio_mitigation = MMIO_MITIGATION_OFF;
494 } else if (!strcmp(str, "full")) {
495 mmio_mitigation = MMIO_MITIGATION_VERW;
496 } else if (!strcmp(str, "full,nosmt")) {
497 mmio_mitigation = MMIO_MITIGATION_VERW;
498 mmio_nosmt = true;
499 }
500
501 return 0;
502}
503early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
504
505#undef pr_fmt
506#define pr_fmt(fmt) "" fmt
507
508static void __init md_clear_update_mitigation(void)
509{
510 if (cpu_mitigations_off())
511 return;
512
513 if (!static_key_enabled(&mds_user_clear))
514 goto out;
515
516 /*
517 * mds_user_clear is now enabled. Update MDS, TAA and MMIO Stale Data
518 * mitigation, if necessary.
519 */
520 if (mds_mitigation == MDS_MITIGATION_OFF &&
521 boot_cpu_has_bug(X86_BUG_MDS)) {
522 mds_mitigation = MDS_MITIGATION_FULL;
523 mds_select_mitigation();
524 }
525 if (taa_mitigation == TAA_MITIGATION_OFF &&
526 boot_cpu_has_bug(X86_BUG_TAA)) {
527 taa_mitigation = TAA_MITIGATION_VERW;
528 taa_select_mitigation();
529 }
530 if (mmio_mitigation == MMIO_MITIGATION_OFF &&
531 boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
532 mmio_mitigation = MMIO_MITIGATION_VERW;
533 mmio_select_mitigation();
534 }
535out:
536 if (boot_cpu_has_bug(X86_BUG_MDS))
537 pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
538 if (boot_cpu_has_bug(X86_BUG_TAA))
539 pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
540 if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
541 pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
542 else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
543 pr_info("MMIO Stale Data: Unknown: No mitigations\n");
544}
545
546static void __init md_clear_select_mitigation(void)
547{
548 mds_select_mitigation();
549 taa_select_mitigation();
550 mmio_select_mitigation();
551
552 /*
553 * As MDS, TAA and MMIO Stale Data mitigations are inter-related, update
554 * and print their mitigation after MDS, TAA and MMIO Stale Data
555 * mitigation selection is done.
556 */
557 md_clear_update_mitigation();
558}
559
560#undef pr_fmt
561#define pr_fmt(fmt) "SRBDS: " fmt
562
563enum srbds_mitigations {
564 SRBDS_MITIGATION_OFF,
565 SRBDS_MITIGATION_UCODE_NEEDED,
566 SRBDS_MITIGATION_FULL,
567 SRBDS_MITIGATION_TSX_OFF,
568 SRBDS_MITIGATION_HYPERVISOR,
569};
570
571static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;
572
573static const char * const srbds_strings[] = {
574 [SRBDS_MITIGATION_OFF] = "Vulnerable",
575 [SRBDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
576 [SRBDS_MITIGATION_FULL] = "Mitigation: Microcode",
577 [SRBDS_MITIGATION_TSX_OFF] = "Mitigation: TSX disabled",
578 [SRBDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status",
579};
580
581static bool srbds_off;
582
583void update_srbds_msr(void)
584{
585 u64 mcu_ctrl;
586
587 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
588 return;
589
590 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
591 return;
592
593 if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
594 return;
595
596 /*
597 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
598 * being disabled and it hasn't received the SRBDS MSR microcode.
599 */
600 if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
601 return;
602
603 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
604
605 switch (srbds_mitigation) {
606 case SRBDS_MITIGATION_OFF:
607 case SRBDS_MITIGATION_TSX_OFF:
608 mcu_ctrl |= RNGDS_MITG_DIS;
609 break;
610 case SRBDS_MITIGATION_FULL:
611 mcu_ctrl &= ~RNGDS_MITG_DIS;
612 break;
613 default:
614 break;
615 }
616
617 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
618}
619
620static void __init srbds_select_mitigation(void)
621{
622 u64 ia32_cap;
623
624 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
625 return;
626
627 /*
628 * Check to see if this is one of the MDS_NO systems supporting TSX that
629 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
630 * by Processor MMIO Stale Data vulnerability.
631 */
632 ia32_cap = x86_read_arch_cap_msr();
633 if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
634 !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
635 srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
636 else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
637 srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
638 else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
639 srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
640 else if (cpu_mitigations_off() || srbds_off)
641 srbds_mitigation = SRBDS_MITIGATION_OFF;
642
643 update_srbds_msr();
644 pr_info("%s\n", srbds_strings[srbds_mitigation]);
645}
646
647static int __init srbds_parse_cmdline(char *str)
648{
649 if (!str)
650 return -EINVAL;
651
652 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
653 return 0;
654
655 srbds_off = !strcmp(str, "off");
656 return 0;
657}
658early_param("srbds", srbds_parse_cmdline);
659
660#undef pr_fmt
661#define pr_fmt(fmt) "L1D Flush : " fmt
662
663enum l1d_flush_mitigations {
664 L1D_FLUSH_OFF = 0,
665 L1D_FLUSH_ON,
666};
667
668static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
669
670static void __init l1d_flush_select_mitigation(void)
671{
672 if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
673 return;
674
675 static_branch_enable(&switch_mm_cond_l1d_flush);
676 pr_info("Conditional flush on switch_mm() enabled\n");
677}
678
679static int __init l1d_flush_parse_cmdline(char *str)
680{
681 if (!strcmp(str, "on"))
682 l1d_flush_mitigation = L1D_FLUSH_ON;
683
684 return 0;
685}
686early_param("l1d_flush", l1d_flush_parse_cmdline);
687
688#undef pr_fmt
689#define pr_fmt(fmt) "Spectre V1 : " fmt
690
691enum spectre_v1_mitigation {
692 SPECTRE_V1_MITIGATION_NONE,
693 SPECTRE_V1_MITIGATION_AUTO,
694};
695
696static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
697 SPECTRE_V1_MITIGATION_AUTO;
698
699static const char * const spectre_v1_strings[] = {
700 [SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
701 [SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
702};
703
704/*
705 * Does SMAP provide full mitigation against speculative kernel access to
706 * userspace?
707 */
708static bool smap_works_speculatively(void)
709{
710 if (!boot_cpu_has(X86_FEATURE_SMAP))
711 return false;
712
713 /*
714 * On CPUs which are vulnerable to Meltdown, SMAP does not
715 * prevent speculative access to user data in the L1 cache.
716 * Consider SMAP to be non-functional as a mitigation on these
717 * CPUs.
718 */
719 if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
720 return false;
721
722 return true;
723}
724
725static void __init spectre_v1_select_mitigation(void)
726{
727 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
728 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
729 return;
730 }
731
732 if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
733 /*
734 * With Spectre v1, a user can speculatively control either
735 * path of a conditional swapgs with a user-controlled GS
736 * value. The mitigation is to add lfences to both code paths.
737 *
738 * If FSGSBASE is enabled, the user can put a kernel address in
739 * GS, in which case SMAP provides no protection.
740 *
741 * If FSGSBASE is disabled, the user can only put a user space
742 * address in GS. That makes an attack harder, but still
743 * possible if there's no SMAP protection.
744 */
745 if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
746 !smap_works_speculatively()) {
747 /*
748 * Mitigation can be provided from SWAPGS itself or
749 * PTI as the CR3 write in the Meltdown mitigation
750 * is serializing.
751 *
752 * If neither is there, mitigate with an LFENCE to
753 * stop speculation through swapgs.
754 */
755 if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
756 !boot_cpu_has(X86_FEATURE_PTI))
757 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
758
759 /*
760 * Enable lfences in the kernel entry (non-swapgs)
761 * paths, to prevent user entry from speculatively
762 * skipping swapgs.
763 */
764 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
765 }
766 }
767
768 pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
769}
770
771static int __init nospectre_v1_cmdline(char *str)
772{
773 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
774 return 0;
775}
776early_param("nospectre_v1", nospectre_v1_cmdline);
777
778static enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init =
779 SPECTRE_V2_NONE;
780
781#undef pr_fmt
782#define pr_fmt(fmt) "RETBleed: " fmt
783
784enum retbleed_mitigation {
785 RETBLEED_MITIGATION_NONE,
786 RETBLEED_MITIGATION_UNRET,
787 RETBLEED_MITIGATION_IBPB,
788 RETBLEED_MITIGATION_IBRS,
789 RETBLEED_MITIGATION_EIBRS,
790 RETBLEED_MITIGATION_STUFF,
791};
792
793enum retbleed_mitigation_cmd {
794 RETBLEED_CMD_OFF,
795 RETBLEED_CMD_AUTO,
796 RETBLEED_CMD_UNRET,
797 RETBLEED_CMD_IBPB,
798 RETBLEED_CMD_STUFF,
799};
800
801static const char * const retbleed_strings[] = {
802 [RETBLEED_MITIGATION_NONE] = "Vulnerable",
803 [RETBLEED_MITIGATION_UNRET] = "Mitigation: untrained return thunk",
804 [RETBLEED_MITIGATION_IBPB] = "Mitigation: IBPB",
805 [RETBLEED_MITIGATION_IBRS] = "Mitigation: IBRS",
806 [RETBLEED_MITIGATION_EIBRS] = "Mitigation: Enhanced IBRS",
807 [RETBLEED_MITIGATION_STUFF] = "Mitigation: Stuffing",
808};
809
810static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
811 RETBLEED_MITIGATION_NONE;
812static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init =
813 RETBLEED_CMD_AUTO;
814
815static int __ro_after_init retbleed_nosmt = false;
816
817static int __init retbleed_parse_cmdline(char *str)
818{
819 if (!str)
820 return -EINVAL;
821
822 while (str) {
823 char *next = strchr(str, ',');
824 if (next) {
825 *next = 0;
826 next++;
827 }
828
829 if (!strcmp(str, "off")) {
830 retbleed_cmd = RETBLEED_CMD_OFF;
831 } else if (!strcmp(str, "auto")) {
832 retbleed_cmd = RETBLEED_CMD_AUTO;
833 } else if (!strcmp(str, "unret")) {
834 retbleed_cmd = RETBLEED_CMD_UNRET;
835 } else if (!strcmp(str, "ibpb")) {
836 retbleed_cmd = RETBLEED_CMD_IBPB;
837 } else if (!strcmp(str, "stuff")) {
838 retbleed_cmd = RETBLEED_CMD_STUFF;
839 } else if (!strcmp(str, "nosmt")) {
840 retbleed_nosmt = true;
841 } else if (!strcmp(str, "force")) {
842 setup_force_cpu_bug(X86_BUG_RETBLEED);
843 } else {
844 pr_err("Ignoring unknown retbleed option (%s).", str);
845 }
846
847 str = next;
848 }
849
850 return 0;
851}
852early_param("retbleed", retbleed_parse_cmdline);
853
854#define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
855#define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
856
857static void __init retbleed_select_mitigation(void)
858{
859 bool mitigate_smt = false;
860
861 if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
862 return;
863
864 switch (retbleed_cmd) {
865 case RETBLEED_CMD_OFF:
866 return;
867
868 case RETBLEED_CMD_UNRET:
869 if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY)) {
870 retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
871 } else {
872 pr_err("WARNING: kernel not compiled with CPU_UNRET_ENTRY.\n");
873 goto do_cmd_auto;
874 }
875 break;
876
877 case RETBLEED_CMD_IBPB:
878 if (!boot_cpu_has(X86_FEATURE_IBPB)) {
879 pr_err("WARNING: CPU does not support IBPB.\n");
880 goto do_cmd_auto;
881 } else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) {
882 retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
883 } else {
884 pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n");
885 goto do_cmd_auto;
886 }
887 break;
888
889 case RETBLEED_CMD_STUFF:
890 if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING) &&
891 spectre_v2_enabled == SPECTRE_V2_RETPOLINE) {
892 retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
893
894 } else {
895 if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING))
896 pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n");
897 else
898 pr_err("WARNING: kernel not compiled with CALL_DEPTH_TRACKING.\n");
899
900 goto do_cmd_auto;
901 }
902 break;
903
904do_cmd_auto:
905 case RETBLEED_CMD_AUTO:
906 default:
907 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
908 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
909 if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY))
910 retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
911 else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY) && boot_cpu_has(X86_FEATURE_IBPB))
912 retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
913 }
914
915 /*
916 * The Intel mitigation (IBRS or eIBRS) was already selected in
917 * spectre_v2_select_mitigation(). 'retbleed_mitigation' will
918 * be set accordingly below.
919 */
920
921 break;
922 }
923
924 switch (retbleed_mitigation) {
925 case RETBLEED_MITIGATION_UNRET:
926 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
927 setup_force_cpu_cap(X86_FEATURE_UNRET);
928
929 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
930 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
931 pr_err(RETBLEED_UNTRAIN_MSG);
932
933 mitigate_smt = true;
934 break;
935
936 case RETBLEED_MITIGATION_IBPB:
937 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
938 mitigate_smt = true;
939 break;
940
941 case RETBLEED_MITIGATION_STUFF:
942 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
943 setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
944 x86_set_skl_return_thunk();
945 break;
946
947 default:
948 break;
949 }
950
951 if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
952 (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
953 cpu_smt_disable(false);
954
955 /*
956 * Let IBRS trump all on Intel without affecting the effects of the
957 * retbleed= cmdline option except for call depth based stuffing
958 */
959 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
960 switch (spectre_v2_enabled) {
961 case SPECTRE_V2_IBRS:
962 retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
963 break;
964 case SPECTRE_V2_EIBRS:
965 case SPECTRE_V2_EIBRS_RETPOLINE:
966 case SPECTRE_V2_EIBRS_LFENCE:
967 retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
968 break;
969 default:
970 if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF)
971 pr_err(RETBLEED_INTEL_MSG);
972 }
973 }
974
975 pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
976}
977
978#undef pr_fmt
979#define pr_fmt(fmt) "Spectre V2 : " fmt
980
981static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
982 SPECTRE_V2_USER_NONE;
983static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
984 SPECTRE_V2_USER_NONE;
985
986#ifdef CONFIG_RETPOLINE
987static bool spectre_v2_bad_module;
988
989bool retpoline_module_ok(bool has_retpoline)
990{
991 if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
992 return true;
993
994 pr_err("System may be vulnerable to spectre v2\n");
995 spectre_v2_bad_module = true;
996 return false;
997}
998
999static inline const char *spectre_v2_module_string(void)
1000{
1001 return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
1002}
1003#else
1004static inline const char *spectre_v2_module_string(void) { return ""; }
1005#endif
1006
1007#define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
1008#define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
1009#define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
1010#define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
1011
1012#ifdef CONFIG_BPF_SYSCALL
1013void unpriv_ebpf_notify(int new_state)
1014{
1015 if (new_state)
1016 return;
1017
1018 /* Unprivileged eBPF is enabled */
1019
1020 switch (spectre_v2_enabled) {
1021 case SPECTRE_V2_EIBRS:
1022 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1023 break;
1024 case SPECTRE_V2_EIBRS_LFENCE:
1025 if (sched_smt_active())
1026 pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1027 break;
1028 default:
1029 break;
1030 }
1031}
1032#endif
1033
1034static inline bool match_option(const char *arg, int arglen, const char *opt)
1035{
1036 int len = strlen(opt);
1037
1038 return len == arglen && !strncmp(arg, opt, len);
1039}
1040
1041/* The kernel command line selection for spectre v2 */
1042enum spectre_v2_mitigation_cmd {
1043 SPECTRE_V2_CMD_NONE,
1044 SPECTRE_V2_CMD_AUTO,
1045 SPECTRE_V2_CMD_FORCE,
1046 SPECTRE_V2_CMD_RETPOLINE,
1047 SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1048 SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1049 SPECTRE_V2_CMD_EIBRS,
1050 SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1051 SPECTRE_V2_CMD_EIBRS_LFENCE,
1052 SPECTRE_V2_CMD_IBRS,
1053};
1054
1055enum spectre_v2_user_cmd {
1056 SPECTRE_V2_USER_CMD_NONE,
1057 SPECTRE_V2_USER_CMD_AUTO,
1058 SPECTRE_V2_USER_CMD_FORCE,
1059 SPECTRE_V2_USER_CMD_PRCTL,
1060 SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1061 SPECTRE_V2_USER_CMD_SECCOMP,
1062 SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1063};
1064
1065static const char * const spectre_v2_user_strings[] = {
1066 [SPECTRE_V2_USER_NONE] = "User space: Vulnerable",
1067 [SPECTRE_V2_USER_STRICT] = "User space: Mitigation: STIBP protection",
1068 [SPECTRE_V2_USER_STRICT_PREFERRED] = "User space: Mitigation: STIBP always-on protection",
1069 [SPECTRE_V2_USER_PRCTL] = "User space: Mitigation: STIBP via prctl",
1070 [SPECTRE_V2_USER_SECCOMP] = "User space: Mitigation: STIBP via seccomp and prctl",
1071};
1072
1073static const struct {
1074 const char *option;
1075 enum spectre_v2_user_cmd cmd;
1076 bool secure;
1077} v2_user_options[] __initconst = {
1078 { "auto", SPECTRE_V2_USER_CMD_AUTO, false },
1079 { "off", SPECTRE_V2_USER_CMD_NONE, false },
1080 { "on", SPECTRE_V2_USER_CMD_FORCE, true },
1081 { "prctl", SPECTRE_V2_USER_CMD_PRCTL, false },
1082 { "prctl,ibpb", SPECTRE_V2_USER_CMD_PRCTL_IBPB, false },
1083 { "seccomp", SPECTRE_V2_USER_CMD_SECCOMP, false },
1084 { "seccomp,ibpb", SPECTRE_V2_USER_CMD_SECCOMP_IBPB, false },
1085};
1086
1087static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1088{
1089 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1090 pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1091}
1092
1093static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd;
1094
1095static enum spectre_v2_user_cmd __init
1096spectre_v2_parse_user_cmdline(void)
1097{
1098 char arg[20];
1099 int ret, i;
1100
1101 switch (spectre_v2_cmd) {
1102 case SPECTRE_V2_CMD_NONE:
1103 return SPECTRE_V2_USER_CMD_NONE;
1104 case SPECTRE_V2_CMD_FORCE:
1105 return SPECTRE_V2_USER_CMD_FORCE;
1106 default:
1107 break;
1108 }
1109
1110 ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
1111 arg, sizeof(arg));
1112 if (ret < 0)
1113 return SPECTRE_V2_USER_CMD_AUTO;
1114
1115 for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1116 if (match_option(arg, ret, v2_user_options[i].option)) {
1117 spec_v2_user_print_cond(v2_user_options[i].option,
1118 v2_user_options[i].secure);
1119 return v2_user_options[i].cmd;
1120 }
1121 }
1122
1123 pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
1124 return SPECTRE_V2_USER_CMD_AUTO;
1125}
1126
1127static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1128{
1129 return mode == SPECTRE_V2_IBRS ||
1130 mode == SPECTRE_V2_EIBRS ||
1131 mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1132 mode == SPECTRE_V2_EIBRS_LFENCE;
1133}
1134
1135static void __init
1136spectre_v2_user_select_mitigation(void)
1137{
1138 enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
1139 bool smt_possible = IS_ENABLED(CONFIG_SMP);
1140 enum spectre_v2_user_cmd cmd;
1141
1142 if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1143 return;
1144
1145 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
1146 cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
1147 smt_possible = false;
1148
1149 cmd = spectre_v2_parse_user_cmdline();
1150 switch (cmd) {
1151 case SPECTRE_V2_USER_CMD_NONE:
1152 goto set_mode;
1153 case SPECTRE_V2_USER_CMD_FORCE:
1154 mode = SPECTRE_V2_USER_STRICT;
1155 break;
1156 case SPECTRE_V2_USER_CMD_AUTO:
1157 case SPECTRE_V2_USER_CMD_PRCTL:
1158 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1159 mode = SPECTRE_V2_USER_PRCTL;
1160 break;
1161 case SPECTRE_V2_USER_CMD_SECCOMP:
1162 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1163 if (IS_ENABLED(CONFIG_SECCOMP))
1164 mode = SPECTRE_V2_USER_SECCOMP;
1165 else
1166 mode = SPECTRE_V2_USER_PRCTL;
1167 break;
1168 }
1169
1170 /* Initialize Indirect Branch Prediction Barrier */
1171 if (boot_cpu_has(X86_FEATURE_IBPB)) {
1172 setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
1173
1174 spectre_v2_user_ibpb = mode;
1175 switch (cmd) {
1176 case SPECTRE_V2_USER_CMD_FORCE:
1177 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1178 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1179 static_branch_enable(&switch_mm_always_ibpb);
1180 spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1181 break;
1182 case SPECTRE_V2_USER_CMD_PRCTL:
1183 case SPECTRE_V2_USER_CMD_AUTO:
1184 case SPECTRE_V2_USER_CMD_SECCOMP:
1185 static_branch_enable(&switch_mm_cond_ibpb);
1186 break;
1187 default:
1188 break;
1189 }
1190
1191 pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
1192 static_key_enabled(&switch_mm_always_ibpb) ?
1193 "always-on" : "conditional");
1194 }
1195
1196 /*
1197 * If no STIBP, IBRS or enhanced IBRS is enabled, or SMT impossible,
1198 * STIBP is not required.
1199 */
1200 if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1201 !smt_possible ||
1202 spectre_v2_in_ibrs_mode(spectre_v2_enabled))
1203 return;
1204
1205 /*
1206 * At this point, an STIBP mode other than "off" has been set.
1207 * If STIBP support is not being forced, check if STIBP always-on
1208 * is preferred.
1209 */
1210 if (mode != SPECTRE_V2_USER_STRICT &&
1211 boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1212 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1213
1214 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1215 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
1216 if (mode != SPECTRE_V2_USER_STRICT &&
1217 mode != SPECTRE_V2_USER_STRICT_PREFERRED)
1218 pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1219 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1220 }
1221
1222 spectre_v2_user_stibp = mode;
1223
1224set_mode:
1225 pr_info("%s\n", spectre_v2_user_strings[mode]);
1226}
1227
1228static const char * const spectre_v2_strings[] = {
1229 [SPECTRE_V2_NONE] = "Vulnerable",
1230 [SPECTRE_V2_RETPOLINE] = "Mitigation: Retpolines",
1231 [SPECTRE_V2_LFENCE] = "Mitigation: LFENCE",
1232 [SPECTRE_V2_EIBRS] = "Mitigation: Enhanced IBRS",
1233 [SPECTRE_V2_EIBRS_LFENCE] = "Mitigation: Enhanced IBRS + LFENCE",
1234 [SPECTRE_V2_EIBRS_RETPOLINE] = "Mitigation: Enhanced IBRS + Retpolines",
1235 [SPECTRE_V2_IBRS] = "Mitigation: IBRS",
1236};
1237
1238static const struct {
1239 const char *option;
1240 enum spectre_v2_mitigation_cmd cmd;
1241 bool secure;
1242} mitigation_options[] __initconst = {
1243 { "off", SPECTRE_V2_CMD_NONE, false },
1244 { "on", SPECTRE_V2_CMD_FORCE, true },
1245 { "retpoline", SPECTRE_V2_CMD_RETPOLINE, false },
1246 { "retpoline,amd", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false },
1247 { "retpoline,lfence", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false },
1248 { "retpoline,generic", SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1249 { "eibrs", SPECTRE_V2_CMD_EIBRS, false },
1250 { "eibrs,lfence", SPECTRE_V2_CMD_EIBRS_LFENCE, false },
1251 { "eibrs,retpoline", SPECTRE_V2_CMD_EIBRS_RETPOLINE, false },
1252 { "auto", SPECTRE_V2_CMD_AUTO, false },
1253 { "ibrs", SPECTRE_V2_CMD_IBRS, false },
1254};
1255
1256static void __init spec_v2_print_cond(const char *reason, bool secure)
1257{
1258 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1259 pr_info("%s selected on command line.\n", reason);
1260}
1261
1262static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1263{
1264 enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
1265 char arg[20];
1266 int ret, i;
1267
1268 if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1269 cpu_mitigations_off())
1270 return SPECTRE_V2_CMD_NONE;
1271
1272 ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1273 if (ret < 0)
1274 return SPECTRE_V2_CMD_AUTO;
1275
1276 for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1277 if (!match_option(arg, ret, mitigation_options[i].option))
1278 continue;
1279 cmd = mitigation_options[i].cmd;
1280 break;
1281 }
1282
1283 if (i >= ARRAY_SIZE(mitigation_options)) {
1284 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1285 return SPECTRE_V2_CMD_AUTO;
1286 }
1287
1288 if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1289 cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1290 cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1291 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1292 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1293 !IS_ENABLED(CONFIG_RETPOLINE)) {
1294 pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1295 mitigation_options[i].option);
1296 return SPECTRE_V2_CMD_AUTO;
1297 }
1298
1299 if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1300 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1301 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1302 !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1303 pr_err("%s selected but CPU doesn't have eIBRS. Switching to AUTO select\n",
1304 mitigation_options[i].option);
1305 return SPECTRE_V2_CMD_AUTO;
1306 }
1307
1308 if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1309 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1310 !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1311 pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1312 mitigation_options[i].option);
1313 return SPECTRE_V2_CMD_AUTO;
1314 }
1315
1316 if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_CPU_IBRS_ENTRY)) {
1317 pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1318 mitigation_options[i].option);
1319 return SPECTRE_V2_CMD_AUTO;
1320 }
1321
1322 if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1323 pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
1324 mitigation_options[i].option);
1325 return SPECTRE_V2_CMD_AUTO;
1326 }
1327
1328 if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
1329 pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
1330 mitigation_options[i].option);
1331 return SPECTRE_V2_CMD_AUTO;
1332 }
1333
1334 if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
1335 pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
1336 mitigation_options[i].option);
1337 return SPECTRE_V2_CMD_AUTO;
1338 }
1339
1340 spec_v2_print_cond(mitigation_options[i].option,
1341 mitigation_options[i].secure);
1342 return cmd;
1343}
1344
1345static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1346{
1347 if (!IS_ENABLED(CONFIG_RETPOLINE)) {
1348 pr_err("Kernel not compiled with retpoline; no mitigation available!");
1349 return SPECTRE_V2_NONE;
1350 }
1351
1352 return SPECTRE_V2_RETPOLINE;
1353}
1354
1355/* Disable in-kernel use of non-RSB RET predictors */
1356static void __init spec_ctrl_disable_kernel_rrsba(void)
1357{
1358 u64 ia32_cap;
1359
1360 if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
1361 return;
1362
1363 ia32_cap = x86_read_arch_cap_msr();
1364
1365 if (ia32_cap & ARCH_CAP_RRSBA) {
1366 x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
1367 update_spec_ctrl(x86_spec_ctrl_base);
1368 }
1369}
1370
1371static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)
1372{
1373 /*
1374 * Similar to context switches, there are two types of RSB attacks
1375 * after VM exit:
1376 *
1377 * 1) RSB underflow
1378 *
1379 * 2) Poisoned RSB entry
1380 *
1381 * When retpoline is enabled, both are mitigated by filling/clearing
1382 * the RSB.
1383 *
1384 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
1385 * prediction isolation protections, RSB still needs to be cleared
1386 * because of #2. Note that SMEP provides no protection here, unlike
1387 * user-space-poisoned RSB entries.
1388 *
1389 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB
1390 * bug is present then a LITE version of RSB protection is required,
1391 * just a single call needs to retire before a RET is executed.
1392 */
1393 switch (mode) {
1394 case SPECTRE_V2_NONE:
1395 return;
1396
1397 case SPECTRE_V2_EIBRS_LFENCE:
1398 case SPECTRE_V2_EIBRS:
1399 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
1400 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
1401 pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
1402 }
1403 return;
1404
1405 case SPECTRE_V2_EIBRS_RETPOLINE:
1406 case SPECTRE_V2_RETPOLINE:
1407 case SPECTRE_V2_LFENCE:
1408 case SPECTRE_V2_IBRS:
1409 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1410 pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n");
1411 return;
1412 }
1413
1414 pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit");
1415 dump_stack();
1416}
1417
1418static void __init spectre_v2_select_mitigation(void)
1419{
1420 enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1421 enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1422
1423 /*
1424 * If the CPU is not affected and the command line mode is NONE or AUTO
1425 * then nothing to do.
1426 */
1427 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1428 (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1429 return;
1430
1431 switch (cmd) {
1432 case SPECTRE_V2_CMD_NONE:
1433 return;
1434
1435 case SPECTRE_V2_CMD_FORCE:
1436 case SPECTRE_V2_CMD_AUTO:
1437 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1438 mode = SPECTRE_V2_EIBRS;
1439 break;
1440 }
1441
1442 if (IS_ENABLED(CONFIG_CPU_IBRS_ENTRY) &&
1443 boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1444 retbleed_cmd != RETBLEED_CMD_OFF &&
1445 retbleed_cmd != RETBLEED_CMD_STUFF &&
1446 boot_cpu_has(X86_FEATURE_IBRS) &&
1447 boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1448 mode = SPECTRE_V2_IBRS;
1449 break;
1450 }
1451
1452 mode = spectre_v2_select_retpoline();
1453 break;
1454
1455 case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1456 pr_err(SPECTRE_V2_LFENCE_MSG);
1457 mode = SPECTRE_V2_LFENCE;
1458 break;
1459
1460 case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1461 mode = SPECTRE_V2_RETPOLINE;
1462 break;
1463
1464 case SPECTRE_V2_CMD_RETPOLINE:
1465 mode = spectre_v2_select_retpoline();
1466 break;
1467
1468 case SPECTRE_V2_CMD_IBRS:
1469 mode = SPECTRE_V2_IBRS;
1470 break;
1471
1472 case SPECTRE_V2_CMD_EIBRS:
1473 mode = SPECTRE_V2_EIBRS;
1474 break;
1475
1476 case SPECTRE_V2_CMD_EIBRS_LFENCE:
1477 mode = SPECTRE_V2_EIBRS_LFENCE;
1478 break;
1479
1480 case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1481 mode = SPECTRE_V2_EIBRS_RETPOLINE;
1482 break;
1483 }
1484
1485 if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1486 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1487
1488 if (spectre_v2_in_ibrs_mode(mode)) {
1489 x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1490 update_spec_ctrl(x86_spec_ctrl_base);
1491 }
1492
1493 switch (mode) {
1494 case SPECTRE_V2_NONE:
1495 case SPECTRE_V2_EIBRS:
1496 break;
1497
1498 case SPECTRE_V2_IBRS:
1499 setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
1500 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1501 pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
1502 break;
1503
1504 case SPECTRE_V2_LFENCE:
1505 case SPECTRE_V2_EIBRS_LFENCE:
1506 setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1507 fallthrough;
1508
1509 case SPECTRE_V2_RETPOLINE:
1510 case SPECTRE_V2_EIBRS_RETPOLINE:
1511 setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1512 break;
1513 }
1514
1515 /*
1516 * Disable alternate RSB predictions in kernel when indirect CALLs and
1517 * JMPs gets protection against BHI and Intramode-BTI, but RET
1518 * prediction from a non-RSB predictor is still a risk.
1519 */
1520 if (mode == SPECTRE_V2_EIBRS_LFENCE ||
1521 mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1522 mode == SPECTRE_V2_RETPOLINE)
1523 spec_ctrl_disable_kernel_rrsba();
1524
1525 spectre_v2_enabled = mode;
1526 pr_info("%s\n", spectre_v2_strings[mode]);
1527
1528 /*
1529 * If Spectre v2 protection has been enabled, fill the RSB during a
1530 * context switch. In general there are two types of RSB attacks
1531 * across context switches, for which the CALLs/RETs may be unbalanced.
1532 *
1533 * 1) RSB underflow
1534 *
1535 * Some Intel parts have "bottomless RSB". When the RSB is empty,
1536 * speculated return targets may come from the branch predictor,
1537 * which could have a user-poisoned BTB or BHB entry.
1538 *
1539 * AMD has it even worse: *all* returns are speculated from the BTB,
1540 * regardless of the state of the RSB.
1541 *
1542 * When IBRS or eIBRS is enabled, the "user -> kernel" attack
1543 * scenario is mitigated by the IBRS branch prediction isolation
1544 * properties, so the RSB buffer filling wouldn't be necessary to
1545 * protect against this type of attack.
1546 *
1547 * The "user -> user" attack scenario is mitigated by RSB filling.
1548 *
1549 * 2) Poisoned RSB entry
1550 *
1551 * If the 'next' in-kernel return stack is shorter than 'prev',
1552 * 'next' could be tricked into speculating with a user-poisoned RSB
1553 * entry.
1554 *
1555 * The "user -> kernel" attack scenario is mitigated by SMEP and
1556 * eIBRS.
1557 *
1558 * The "user -> user" scenario, also known as SpectreBHB, requires
1559 * RSB clearing.
1560 *
1561 * So to mitigate all cases, unconditionally fill RSB on context
1562 * switches.
1563 *
1564 * FIXME: Is this pointless for retbleed-affected AMD?
1565 */
1566 setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1567 pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1568
1569 spectre_v2_determine_rsb_fill_type_at_vmexit(mode);
1570
1571 /*
1572 * Retpoline protects the kernel, but doesn't protect firmware. IBRS
1573 * and Enhanced IBRS protect firmware too, so enable IBRS around
1574 * firmware calls only when IBRS / Enhanced IBRS aren't otherwise
1575 * enabled.
1576 *
1577 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1578 * the user might select retpoline on the kernel command line and if
1579 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1580 * enable IBRS around firmware calls.
1581 */
1582 if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1583 boot_cpu_has(X86_FEATURE_IBPB) &&
1584 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1585 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
1586
1587 if (retbleed_cmd != RETBLEED_CMD_IBPB) {
1588 setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
1589 pr_info("Enabling Speculation Barrier for firmware calls\n");
1590 }
1591
1592 } else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) {
1593 setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1594 pr_info("Enabling Restricted Speculation for firmware calls\n");
1595 }
1596
1597 /* Set up IBPB and STIBP depending on the general spectre V2 command */
1598 spectre_v2_cmd = cmd;
1599}
1600
1601static void update_stibp_msr(void * __unused)
1602{
1603 u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
1604 update_spec_ctrl(val);
1605}
1606
1607/* Update x86_spec_ctrl_base in case SMT state changed. */
1608static void update_stibp_strict(void)
1609{
1610 u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1611
1612 if (sched_smt_active())
1613 mask |= SPEC_CTRL_STIBP;
1614
1615 if (mask == x86_spec_ctrl_base)
1616 return;
1617
1618 pr_info("Update user space SMT mitigation: STIBP %s\n",
1619 mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1620 x86_spec_ctrl_base = mask;
1621 on_each_cpu(update_stibp_msr, NULL, 1);
1622}
1623
1624/* Update the static key controlling the evaluation of TIF_SPEC_IB */
1625static void update_indir_branch_cond(void)
1626{
1627 if (sched_smt_active())
1628 static_branch_enable(&switch_to_cond_stibp);
1629 else
1630 static_branch_disable(&switch_to_cond_stibp);
1631}
1632
1633#undef pr_fmt
1634#define pr_fmt(fmt) fmt
1635
1636/* Update the static key controlling the MDS CPU buffer clear in idle */
1637static void update_mds_branch_idle(void)
1638{
1639 u64 ia32_cap = x86_read_arch_cap_msr();
1640
1641 /*
1642 * Enable the idle clearing if SMT is active on CPUs which are
1643 * affected only by MSBDS and not any other MDS variant.
1644 *
1645 * The other variants cannot be mitigated when SMT is enabled, so
1646 * clearing the buffers on idle just to prevent the Store Buffer
1647 * repartitioning leak would be a window dressing exercise.
1648 */
1649 if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1650 return;
1651
1652 if (sched_smt_active()) {
1653 static_branch_enable(&mds_idle_clear);
1654 } else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1655 (ia32_cap & ARCH_CAP_FBSDP_NO)) {
1656 static_branch_disable(&mds_idle_clear);
1657 }
1658}
1659
1660#define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1661#define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1662#define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
1663
1664void cpu_bugs_smt_update(void)
1665{
1666 mutex_lock(&spec_ctrl_mutex);
1667
1668 if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1669 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1670 pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1671
1672 switch (spectre_v2_user_stibp) {
1673 case SPECTRE_V2_USER_NONE:
1674 break;
1675 case SPECTRE_V2_USER_STRICT:
1676 case SPECTRE_V2_USER_STRICT_PREFERRED:
1677 update_stibp_strict();
1678 break;
1679 case SPECTRE_V2_USER_PRCTL:
1680 case SPECTRE_V2_USER_SECCOMP:
1681 update_indir_branch_cond();
1682 break;
1683 }
1684
1685 switch (mds_mitigation) {
1686 case MDS_MITIGATION_FULL:
1687 case MDS_MITIGATION_VMWERV:
1688 if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1689 pr_warn_once(MDS_MSG_SMT);
1690 update_mds_branch_idle();
1691 break;
1692 case MDS_MITIGATION_OFF:
1693 break;
1694 }
1695
1696 switch (taa_mitigation) {
1697 case TAA_MITIGATION_VERW:
1698 case TAA_MITIGATION_UCODE_NEEDED:
1699 if (sched_smt_active())
1700 pr_warn_once(TAA_MSG_SMT);
1701 break;
1702 case TAA_MITIGATION_TSX_DISABLED:
1703 case TAA_MITIGATION_OFF:
1704 break;
1705 }
1706
1707 switch (mmio_mitigation) {
1708 case MMIO_MITIGATION_VERW:
1709 case MMIO_MITIGATION_UCODE_NEEDED:
1710 if (sched_smt_active())
1711 pr_warn_once(MMIO_MSG_SMT);
1712 break;
1713 case MMIO_MITIGATION_OFF:
1714 break;
1715 }
1716
1717 mutex_unlock(&spec_ctrl_mutex);
1718}
1719
1720#undef pr_fmt
1721#define pr_fmt(fmt) "Speculative Store Bypass: " fmt
1722
1723static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
1724
1725/* The kernel command line selection */
1726enum ssb_mitigation_cmd {
1727 SPEC_STORE_BYPASS_CMD_NONE,
1728 SPEC_STORE_BYPASS_CMD_AUTO,
1729 SPEC_STORE_BYPASS_CMD_ON,
1730 SPEC_STORE_BYPASS_CMD_PRCTL,
1731 SPEC_STORE_BYPASS_CMD_SECCOMP,
1732};
1733
1734static const char * const ssb_strings[] = {
1735 [SPEC_STORE_BYPASS_NONE] = "Vulnerable",
1736 [SPEC_STORE_BYPASS_DISABLE] = "Mitigation: Speculative Store Bypass disabled",
1737 [SPEC_STORE_BYPASS_PRCTL] = "Mitigation: Speculative Store Bypass disabled via prctl",
1738 [SPEC_STORE_BYPASS_SECCOMP] = "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
1739};
1740
1741static const struct {
1742 const char *option;
1743 enum ssb_mitigation_cmd cmd;
1744} ssb_mitigation_options[] __initconst = {
1745 { "auto", SPEC_STORE_BYPASS_CMD_AUTO }, /* Platform decides */
1746 { "on", SPEC_STORE_BYPASS_CMD_ON }, /* Disable Speculative Store Bypass */
1747 { "off", SPEC_STORE_BYPASS_CMD_NONE }, /* Don't touch Speculative Store Bypass */
1748 { "prctl", SPEC_STORE_BYPASS_CMD_PRCTL }, /* Disable Speculative Store Bypass via prctl */
1749 { "seccomp", SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
1750};
1751
1752static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
1753{
1754 enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
1755 char arg[20];
1756 int ret, i;
1757
1758 if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
1759 cpu_mitigations_off()) {
1760 return SPEC_STORE_BYPASS_CMD_NONE;
1761 } else {
1762 ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
1763 arg, sizeof(arg));
1764 if (ret < 0)
1765 return SPEC_STORE_BYPASS_CMD_AUTO;
1766
1767 for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
1768 if (!match_option(arg, ret, ssb_mitigation_options[i].option))
1769 continue;
1770
1771 cmd = ssb_mitigation_options[i].cmd;
1772 break;
1773 }
1774
1775 if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
1776 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1777 return SPEC_STORE_BYPASS_CMD_AUTO;
1778 }
1779 }
1780
1781 return cmd;
1782}
1783
1784static enum ssb_mitigation __init __ssb_select_mitigation(void)
1785{
1786 enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
1787 enum ssb_mitigation_cmd cmd;
1788
1789 if (!boot_cpu_has(X86_FEATURE_SSBD))
1790 return mode;
1791
1792 cmd = ssb_parse_cmdline();
1793 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
1794 (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
1795 cmd == SPEC_STORE_BYPASS_CMD_AUTO))
1796 return mode;
1797
1798 switch (cmd) {
1799 case SPEC_STORE_BYPASS_CMD_SECCOMP:
1800 /*
1801 * Choose prctl+seccomp as the default mode if seccomp is
1802 * enabled.
1803 */
1804 if (IS_ENABLED(CONFIG_SECCOMP))
1805 mode = SPEC_STORE_BYPASS_SECCOMP;
1806 else
1807 mode = SPEC_STORE_BYPASS_PRCTL;
1808 break;
1809 case SPEC_STORE_BYPASS_CMD_ON:
1810 mode = SPEC_STORE_BYPASS_DISABLE;
1811 break;
1812 case SPEC_STORE_BYPASS_CMD_AUTO:
1813 case SPEC_STORE_BYPASS_CMD_PRCTL:
1814 mode = SPEC_STORE_BYPASS_PRCTL;
1815 break;
1816 case SPEC_STORE_BYPASS_CMD_NONE:
1817 break;
1818 }
1819
1820 /*
1821 * We have three CPU feature flags that are in play here:
1822 * - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
1823 * - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
1824 * - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
1825 */
1826 if (mode == SPEC_STORE_BYPASS_DISABLE) {
1827 setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
1828 /*
1829 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
1830 * use a completely different MSR and bit dependent on family.
1831 */
1832 if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
1833 !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
1834 x86_amd_ssb_disable();
1835 } else {
1836 x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
1837 update_spec_ctrl(x86_spec_ctrl_base);
1838 }
1839 }
1840
1841 return mode;
1842}
1843
1844static void ssb_select_mitigation(void)
1845{
1846 ssb_mode = __ssb_select_mitigation();
1847
1848 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1849 pr_info("%s\n", ssb_strings[ssb_mode]);
1850}
1851
1852#undef pr_fmt
1853#define pr_fmt(fmt) "Speculation prctl: " fmt
1854
1855static void task_update_spec_tif(struct task_struct *tsk)
1856{
1857 /* Force the update of the real TIF bits */
1858 set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
1859
1860 /*
1861 * Immediately update the speculation control MSRs for the current
1862 * task, but for a non-current task delay setting the CPU
1863 * mitigation until it is scheduled next.
1864 *
1865 * This can only happen for SECCOMP mitigation. For PRCTL it's
1866 * always the current task.
1867 */
1868 if (tsk == current)
1869 speculation_ctrl_update_current();
1870}
1871
1872static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
1873{
1874
1875 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
1876 return -EPERM;
1877
1878 switch (ctrl) {
1879 case PR_SPEC_ENABLE:
1880 set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
1881 return 0;
1882 case PR_SPEC_DISABLE:
1883 clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
1884 return 0;
1885 default:
1886 return -ERANGE;
1887 }
1888}
1889
1890static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
1891{
1892 if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
1893 ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
1894 return -ENXIO;
1895
1896 switch (ctrl) {
1897 case PR_SPEC_ENABLE:
1898 /* If speculation is force disabled, enable is not allowed */
1899 if (task_spec_ssb_force_disable(task))
1900 return -EPERM;
1901 task_clear_spec_ssb_disable(task);
1902 task_clear_spec_ssb_noexec(task);
1903 task_update_spec_tif(task);
1904 break;
1905 case PR_SPEC_DISABLE:
1906 task_set_spec_ssb_disable(task);
1907 task_clear_spec_ssb_noexec(task);
1908 task_update_spec_tif(task);
1909 break;
1910 case PR_SPEC_FORCE_DISABLE:
1911 task_set_spec_ssb_disable(task);
1912 task_set_spec_ssb_force_disable(task);
1913 task_clear_spec_ssb_noexec(task);
1914 task_update_spec_tif(task);
1915 break;
1916 case PR_SPEC_DISABLE_NOEXEC:
1917 if (task_spec_ssb_force_disable(task))
1918 return -EPERM;
1919 task_set_spec_ssb_disable(task);
1920 task_set_spec_ssb_noexec(task);
1921 task_update_spec_tif(task);
1922 break;
1923 default:
1924 return -ERANGE;
1925 }
1926 return 0;
1927}
1928
1929static bool is_spec_ib_user_controlled(void)
1930{
1931 return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
1932 spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
1933 spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
1934 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
1935}
1936
1937static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
1938{
1939 switch (ctrl) {
1940 case PR_SPEC_ENABLE:
1941 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1942 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1943 return 0;
1944
1945 /*
1946 * With strict mode for both IBPB and STIBP, the instruction
1947 * code paths avoid checking this task flag and instead,
1948 * unconditionally run the instruction. However, STIBP and IBPB
1949 * are independent and either can be set to conditionally
1950 * enabled regardless of the mode of the other.
1951 *
1952 * If either is set to conditional, allow the task flag to be
1953 * updated, unless it was force-disabled by a previous prctl
1954 * call. Currently, this is possible on an AMD CPU which has the
1955 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
1956 * kernel is booted with 'spectre_v2_user=seccomp', then
1957 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
1958 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
1959 */
1960 if (!is_spec_ib_user_controlled() ||
1961 task_spec_ib_force_disable(task))
1962 return -EPERM;
1963
1964 task_clear_spec_ib_disable(task);
1965 task_update_spec_tif(task);
1966 break;
1967 case PR_SPEC_DISABLE:
1968 case PR_SPEC_FORCE_DISABLE:
1969 /*
1970 * Indirect branch speculation is always allowed when
1971 * mitigation is force disabled.
1972 */
1973 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1974 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1975 return -EPERM;
1976
1977 if (!is_spec_ib_user_controlled())
1978 return 0;
1979
1980 task_set_spec_ib_disable(task);
1981 if (ctrl == PR_SPEC_FORCE_DISABLE)
1982 task_set_spec_ib_force_disable(task);
1983 task_update_spec_tif(task);
1984 if (task == current)
1985 indirect_branch_prediction_barrier();
1986 break;
1987 default:
1988 return -ERANGE;
1989 }
1990 return 0;
1991}
1992
1993int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
1994 unsigned long ctrl)
1995{
1996 switch (which) {
1997 case PR_SPEC_STORE_BYPASS:
1998 return ssb_prctl_set(task, ctrl);
1999 case PR_SPEC_INDIRECT_BRANCH:
2000 return ib_prctl_set(task, ctrl);
2001 case PR_SPEC_L1D_FLUSH:
2002 return l1d_flush_prctl_set(task, ctrl);
2003 default:
2004 return -ENODEV;
2005 }
2006}
2007
2008#ifdef CONFIG_SECCOMP
2009void arch_seccomp_spec_mitigate(struct task_struct *task)
2010{
2011 if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
2012 ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2013 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2014 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
2015 ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2016}
2017#endif
2018
2019static int l1d_flush_prctl_get(struct task_struct *task)
2020{
2021 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2022 return PR_SPEC_FORCE_DISABLE;
2023
2024 if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
2025 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2026 else
2027 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2028}
2029
2030static int ssb_prctl_get(struct task_struct *task)
2031{
2032 switch (ssb_mode) {
2033 case SPEC_STORE_BYPASS_DISABLE:
2034 return PR_SPEC_DISABLE;
2035 case SPEC_STORE_BYPASS_SECCOMP:
2036 case SPEC_STORE_BYPASS_PRCTL:
2037 if (task_spec_ssb_force_disable(task))
2038 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2039 if (task_spec_ssb_noexec(task))
2040 return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2041 if (task_spec_ssb_disable(task))
2042 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2043 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2044 default:
2045 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2046 return PR_SPEC_ENABLE;
2047 return PR_SPEC_NOT_AFFECTED;
2048 }
2049}
2050
2051static int ib_prctl_get(struct task_struct *task)
2052{
2053 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2054 return PR_SPEC_NOT_AFFECTED;
2055
2056 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2057 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2058 return PR_SPEC_ENABLE;
2059 else if (is_spec_ib_user_controlled()) {
2060 if (task_spec_ib_force_disable(task))
2061 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2062 if (task_spec_ib_disable(task))
2063 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2064 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2065 } else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2066 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2067 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2068 return PR_SPEC_DISABLE;
2069 else
2070 return PR_SPEC_NOT_AFFECTED;
2071}
2072
2073int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2074{
2075 switch (which) {
2076 case PR_SPEC_STORE_BYPASS:
2077 return ssb_prctl_get(task);
2078 case PR_SPEC_INDIRECT_BRANCH:
2079 return ib_prctl_get(task);
2080 case PR_SPEC_L1D_FLUSH:
2081 return l1d_flush_prctl_get(task);
2082 default:
2083 return -ENODEV;
2084 }
2085}
2086
2087void x86_spec_ctrl_setup_ap(void)
2088{
2089 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2090 update_spec_ctrl(x86_spec_ctrl_base);
2091
2092 if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2093 x86_amd_ssb_disable();
2094}
2095
2096bool itlb_multihit_kvm_mitigation;
2097EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2098
2099#undef pr_fmt
2100#define pr_fmt(fmt) "L1TF: " fmt
2101
2102/* Default mitigation for L1TF-affected CPUs */
2103enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
2104#if IS_ENABLED(CONFIG_KVM_INTEL)
2105EXPORT_SYMBOL_GPL(l1tf_mitigation);
2106#endif
2107enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2108EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2109
2110/*
2111 * These CPUs all support 44bits physical address space internally in the
2112 * cache but CPUID can report a smaller number of physical address bits.
2113 *
2114 * The L1TF mitigation uses the top most address bit for the inversion of
2115 * non present PTEs. When the installed memory reaches into the top most
2116 * address bit due to memory holes, which has been observed on machines
2117 * which report 36bits physical address bits and have 32G RAM installed,
2118 * then the mitigation range check in l1tf_select_mitigation() triggers.
2119 * This is a false positive because the mitigation is still possible due to
2120 * the fact that the cache uses 44bit internally. Use the cache bits
2121 * instead of the reported physical bits and adjust them on the affected
2122 * machines to 44bit if the reported bits are less than 44.
2123 */
2124static void override_cache_bits(struct cpuinfo_x86 *c)
2125{
2126 if (c->x86 != 6)
2127 return;
2128
2129 switch (c->x86_model) {
2130 case INTEL_FAM6_NEHALEM:
2131 case INTEL_FAM6_WESTMERE:
2132 case INTEL_FAM6_SANDYBRIDGE:
2133 case INTEL_FAM6_IVYBRIDGE:
2134 case INTEL_FAM6_HASWELL:
2135 case INTEL_FAM6_HASWELL_L:
2136 case INTEL_FAM6_HASWELL_G:
2137 case INTEL_FAM6_BROADWELL:
2138 case INTEL_FAM6_BROADWELL_G:
2139 case INTEL_FAM6_SKYLAKE_L:
2140 case INTEL_FAM6_SKYLAKE:
2141 case INTEL_FAM6_KABYLAKE_L:
2142 case INTEL_FAM6_KABYLAKE:
2143 if (c->x86_cache_bits < 44)
2144 c->x86_cache_bits = 44;
2145 break;
2146 }
2147}
2148
2149static void __init l1tf_select_mitigation(void)
2150{
2151 u64 half_pa;
2152
2153 if (!boot_cpu_has_bug(X86_BUG_L1TF))
2154 return;
2155
2156 if (cpu_mitigations_off())
2157 l1tf_mitigation = L1TF_MITIGATION_OFF;
2158 else if (cpu_mitigations_auto_nosmt())
2159 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2160
2161 override_cache_bits(&boot_cpu_data);
2162
2163 switch (l1tf_mitigation) {
2164 case L1TF_MITIGATION_OFF:
2165 case L1TF_MITIGATION_FLUSH_NOWARN:
2166 case L1TF_MITIGATION_FLUSH:
2167 break;
2168 case L1TF_MITIGATION_FLUSH_NOSMT:
2169 case L1TF_MITIGATION_FULL:
2170 cpu_smt_disable(false);
2171 break;
2172 case L1TF_MITIGATION_FULL_FORCE:
2173 cpu_smt_disable(true);
2174 break;
2175 }
2176
2177#if CONFIG_PGTABLE_LEVELS == 2
2178 pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2179 return;
2180#endif
2181
2182 half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2183 if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2184 e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
2185 pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2186 pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2187 half_pa);
2188 pr_info("However, doing so will make a part of your RAM unusable.\n");
2189 pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2190 return;
2191 }
2192
2193 setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2194}
2195
2196static int __init l1tf_cmdline(char *str)
2197{
2198 if (!boot_cpu_has_bug(X86_BUG_L1TF))
2199 return 0;
2200
2201 if (!str)
2202 return -EINVAL;
2203
2204 if (!strcmp(str, "off"))
2205 l1tf_mitigation = L1TF_MITIGATION_OFF;
2206 else if (!strcmp(str, "flush,nowarn"))
2207 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2208 else if (!strcmp(str, "flush"))
2209 l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2210 else if (!strcmp(str, "flush,nosmt"))
2211 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2212 else if (!strcmp(str, "full"))
2213 l1tf_mitigation = L1TF_MITIGATION_FULL;
2214 else if (!strcmp(str, "full,force"))
2215 l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2216
2217 return 0;
2218}
2219early_param("l1tf", l1tf_cmdline);
2220
2221#undef pr_fmt
2222#define pr_fmt(fmt) fmt
2223
2224#ifdef CONFIG_SYSFS
2225
2226#define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
2227
2228#if IS_ENABLED(CONFIG_KVM_INTEL)
2229static const char * const l1tf_vmx_states[] = {
2230 [VMENTER_L1D_FLUSH_AUTO] = "auto",
2231 [VMENTER_L1D_FLUSH_NEVER] = "vulnerable",
2232 [VMENTER_L1D_FLUSH_COND] = "conditional cache flushes",
2233 [VMENTER_L1D_FLUSH_ALWAYS] = "cache flushes",
2234 [VMENTER_L1D_FLUSH_EPT_DISABLED] = "EPT disabled",
2235 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = "flush not necessary"
2236};
2237
2238static ssize_t l1tf_show_state(char *buf)
2239{
2240 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
2241 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2242
2243 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
2244 (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
2245 sched_smt_active())) {
2246 return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
2247 l1tf_vmx_states[l1tf_vmx_mitigation]);
2248 }
2249
2250 return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
2251 l1tf_vmx_states[l1tf_vmx_mitigation],
2252 sched_smt_active() ? "vulnerable" : "disabled");
2253}
2254
2255static ssize_t itlb_multihit_show_state(char *buf)
2256{
2257 if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2258 !boot_cpu_has(X86_FEATURE_VMX))
2259 return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n");
2260 else if (!(cr4_read_shadow() & X86_CR4_VMXE))
2261 return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n");
2262 else if (itlb_multihit_kvm_mitigation)
2263 return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n");
2264 else
2265 return sysfs_emit(buf, "KVM: Vulnerable\n");
2266}
2267#else
2268static ssize_t l1tf_show_state(char *buf)
2269{
2270 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2271}
2272
2273static ssize_t itlb_multihit_show_state(char *buf)
2274{
2275 return sysfs_emit(buf, "Processor vulnerable\n");
2276}
2277#endif
2278
2279static ssize_t mds_show_state(char *buf)
2280{
2281 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2282 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2283 mds_strings[mds_mitigation]);
2284 }
2285
2286 if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
2287 return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2288 (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
2289 sched_smt_active() ? "mitigated" : "disabled"));
2290 }
2291
2292 return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2293 sched_smt_active() ? "vulnerable" : "disabled");
2294}
2295
2296static ssize_t tsx_async_abort_show_state(char *buf)
2297{
2298 if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
2299 (taa_mitigation == TAA_MITIGATION_OFF))
2300 return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]);
2301
2302 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2303 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2304 taa_strings[taa_mitigation]);
2305 }
2306
2307 return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
2308 sched_smt_active() ? "vulnerable" : "disabled");
2309}
2310
2311static ssize_t mmio_stale_data_show_state(char *buf)
2312{
2313 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2314 return sysfs_emit(buf, "Unknown: No mitigations\n");
2315
2316 if (mmio_mitigation == MMIO_MITIGATION_OFF)
2317 return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
2318
2319 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2320 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2321 mmio_strings[mmio_mitigation]);
2322 }
2323
2324 return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
2325 sched_smt_active() ? "vulnerable" : "disabled");
2326}
2327
2328static char *stibp_state(void)
2329{
2330 if (spectre_v2_in_ibrs_mode(spectre_v2_enabled))
2331 return "";
2332
2333 switch (spectre_v2_user_stibp) {
2334 case SPECTRE_V2_USER_NONE:
2335 return ", STIBP: disabled";
2336 case SPECTRE_V2_USER_STRICT:
2337 return ", STIBP: forced";
2338 case SPECTRE_V2_USER_STRICT_PREFERRED:
2339 return ", STIBP: always-on";
2340 case SPECTRE_V2_USER_PRCTL:
2341 case SPECTRE_V2_USER_SECCOMP:
2342 if (static_key_enabled(&switch_to_cond_stibp))
2343 return ", STIBP: conditional";
2344 }
2345 return "";
2346}
2347
2348static char *ibpb_state(void)
2349{
2350 if (boot_cpu_has(X86_FEATURE_IBPB)) {
2351 if (static_key_enabled(&switch_mm_always_ibpb))
2352 return ", IBPB: always-on";
2353 if (static_key_enabled(&switch_mm_cond_ibpb))
2354 return ", IBPB: conditional";
2355 return ", IBPB: disabled";
2356 }
2357 return "";
2358}
2359
2360static char *pbrsb_eibrs_state(void)
2361{
2362 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2363 if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
2364 boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
2365 return ", PBRSB-eIBRS: SW sequence";
2366 else
2367 return ", PBRSB-eIBRS: Vulnerable";
2368 } else {
2369 return ", PBRSB-eIBRS: Not affected";
2370 }
2371}
2372
2373static ssize_t spectre_v2_show_state(char *buf)
2374{
2375 if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
2376 return sysfs_emit(buf, "Vulnerable: LFENCE\n");
2377
2378 if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2379 return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
2380
2381 if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2382 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2383 return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
2384
2385 return sysfs_emit(buf, "%s%s%s%s%s%s%s\n",
2386 spectre_v2_strings[spectre_v2_enabled],
2387 ibpb_state(),
2388 boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "",
2389 stibp_state(),
2390 boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "",
2391 pbrsb_eibrs_state(),
2392 spectre_v2_module_string());
2393}
2394
2395static ssize_t srbds_show_state(char *buf)
2396{
2397 return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]);
2398}
2399
2400static ssize_t retbleed_show_state(char *buf)
2401{
2402 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
2403 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2404 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
2405 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
2406 return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
2407
2408 return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
2409 !sched_smt_active() ? "disabled" :
2410 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2411 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
2412 "enabled with STIBP protection" : "vulnerable");
2413 }
2414
2415 return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
2416}
2417
2418static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
2419 char *buf, unsigned int bug)
2420{
2421 if (!boot_cpu_has_bug(bug))
2422 return sysfs_emit(buf, "Not affected\n");
2423
2424 switch (bug) {
2425 case X86_BUG_CPU_MELTDOWN:
2426 if (boot_cpu_has(X86_FEATURE_PTI))
2427 return sysfs_emit(buf, "Mitigation: PTI\n");
2428
2429 if (hypervisor_is_type(X86_HYPER_XEN_PV))
2430 return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
2431
2432 break;
2433
2434 case X86_BUG_SPECTRE_V1:
2435 return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
2436
2437 case X86_BUG_SPECTRE_V2:
2438 return spectre_v2_show_state(buf);
2439
2440 case X86_BUG_SPEC_STORE_BYPASS:
2441 return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]);
2442
2443 case X86_BUG_L1TF:
2444 if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
2445 return l1tf_show_state(buf);
2446 break;
2447
2448 case X86_BUG_MDS:
2449 return mds_show_state(buf);
2450
2451 case X86_BUG_TAA:
2452 return tsx_async_abort_show_state(buf);
2453
2454 case X86_BUG_ITLB_MULTIHIT:
2455 return itlb_multihit_show_state(buf);
2456
2457 case X86_BUG_SRBDS:
2458 return srbds_show_state(buf);
2459
2460 case X86_BUG_MMIO_STALE_DATA:
2461 case X86_BUG_MMIO_UNKNOWN:
2462 return mmio_stale_data_show_state(buf);
2463
2464 case X86_BUG_RETBLEED:
2465 return retbleed_show_state(buf);
2466
2467 default:
2468 break;
2469 }
2470
2471 return sysfs_emit(buf, "Vulnerable\n");
2472}
2473
2474ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
2475{
2476 return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
2477}
2478
2479ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
2480{
2481 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
2482}
2483
2484ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
2485{
2486 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
2487}
2488
2489ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
2490{
2491 return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
2492}
2493
2494ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
2495{
2496 return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
2497}
2498
2499ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
2500{
2501 return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
2502}
2503
2504ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
2505{
2506 return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
2507}
2508
2509ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
2510{
2511 return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
2512}
2513
2514ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
2515{
2516 return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
2517}
2518
2519ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
2520{
2521 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2522 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN);
2523 else
2524 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
2525}
2526
2527ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
2528{
2529 return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
2530}
2531#endif
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1994 Linus Torvalds
4 *
5 * Cyrix stuff, June 1998 by:
6 * - Rafael R. Reilova (moved everything from head.S),
7 * <rreilova@ececs.uc.edu>
8 * - Channing Corn (tests & fixes),
9 * - Andrew D. Balsa (code cleanup).
10 */
11#include <linux/init.h>
12#include <linux/cpu.h>
13#include <linux/module.h>
14#include <linux/nospec.h>
15#include <linux/prctl.h>
16#include <linux/sched/smt.h>
17#include <linux/pgtable.h>
18#include <linux/bpf.h>
19
20#include <asm/spec-ctrl.h>
21#include <asm/cmdline.h>
22#include <asm/bugs.h>
23#include <asm/processor.h>
24#include <asm/processor-flags.h>
25#include <asm/fpu/api.h>
26#include <asm/msr.h>
27#include <asm/vmx.h>
28#include <asm/paravirt.h>
29#include <asm/intel-family.h>
30#include <asm/e820/api.h>
31#include <asm/hypervisor.h>
32#include <asm/tlbflush.h>
33#include <asm/cpu.h>
34
35#include "cpu.h"
36
37static void __init spectre_v1_select_mitigation(void);
38static void __init spectre_v2_select_mitigation(void);
39static void __init retbleed_select_mitigation(void);
40static void __init spectre_v2_user_select_mitigation(void);
41static void __init ssb_select_mitigation(void);
42static void __init l1tf_select_mitigation(void);
43static void __init mds_select_mitigation(void);
44static void __init md_clear_update_mitigation(void);
45static void __init md_clear_select_mitigation(void);
46static void __init taa_select_mitigation(void);
47static void __init mmio_select_mitigation(void);
48static void __init srbds_select_mitigation(void);
49static void __init l1d_flush_select_mitigation(void);
50static void __init srso_select_mitigation(void);
51static void __init gds_select_mitigation(void);
52
53/* The base value of the SPEC_CTRL MSR without task-specific bits set */
54u64 x86_spec_ctrl_base;
55EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
56
57/* The current value of the SPEC_CTRL MSR with task-specific bits set */
58DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
59EXPORT_SYMBOL_GPL(x86_spec_ctrl_current);
60
61u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB;
62EXPORT_SYMBOL_GPL(x86_pred_cmd);
63
64static DEFINE_MUTEX(spec_ctrl_mutex);
65
66void (*x86_return_thunk)(void) __ro_after_init = __x86_return_thunk;
67
68/* Update SPEC_CTRL MSR and its cached copy unconditionally */
69static void update_spec_ctrl(u64 val)
70{
71 this_cpu_write(x86_spec_ctrl_current, val);
72 wrmsrl(MSR_IA32_SPEC_CTRL, val);
73}
74
75/*
76 * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
77 * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
78 */
79void update_spec_ctrl_cond(u64 val)
80{
81 if (this_cpu_read(x86_spec_ctrl_current) == val)
82 return;
83
84 this_cpu_write(x86_spec_ctrl_current, val);
85
86 /*
87 * When KERNEL_IBRS this MSR is written on return-to-user, unless
88 * forced the update can be delayed until that time.
89 */
90 if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
91 wrmsrl(MSR_IA32_SPEC_CTRL, val);
92}
93
94noinstr u64 spec_ctrl_current(void)
95{
96 return this_cpu_read(x86_spec_ctrl_current);
97}
98EXPORT_SYMBOL_GPL(spec_ctrl_current);
99
100/*
101 * AMD specific MSR info for Speculative Store Bypass control.
102 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
103 */
104u64 __ro_after_init x86_amd_ls_cfg_base;
105u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
106
107/* Control conditional STIBP in switch_to() */
108DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
109/* Control conditional IBPB in switch_mm() */
110DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
111/* Control unconditional IBPB in switch_mm() */
112DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
113
114/* Control MDS CPU buffer clear before idling (halt, mwait) */
115DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
116EXPORT_SYMBOL_GPL(mds_idle_clear);
117
118/*
119 * Controls whether l1d flush based mitigations are enabled,
120 * based on hw features and admin setting via boot parameter
121 * defaults to false
122 */
123DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
124
125/* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
126DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
127EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
128
129void __init cpu_select_mitigations(void)
130{
131 /*
132 * Read the SPEC_CTRL MSR to account for reserved bits which may
133 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
134 * init code as it is not enumerated and depends on the family.
135 */
136 if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) {
137 rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
138
139 /*
140 * Previously running kernel (kexec), may have some controls
141 * turned ON. Clear them and let the mitigations setup below
142 * rediscover them based on configuration.
143 */
144 x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK;
145 }
146
147 /* Select the proper CPU mitigations before patching alternatives: */
148 spectre_v1_select_mitigation();
149 spectre_v2_select_mitigation();
150 /*
151 * retbleed_select_mitigation() relies on the state set by
152 * spectre_v2_select_mitigation(); specifically it wants to know about
153 * spectre_v2=ibrs.
154 */
155 retbleed_select_mitigation();
156 /*
157 * spectre_v2_user_select_mitigation() relies on the state set by
158 * retbleed_select_mitigation(); specifically the STIBP selection is
159 * forced for UNRET or IBPB.
160 */
161 spectre_v2_user_select_mitigation();
162 ssb_select_mitigation();
163 l1tf_select_mitigation();
164 md_clear_select_mitigation();
165 srbds_select_mitigation();
166 l1d_flush_select_mitigation();
167
168 /*
169 * srso_select_mitigation() depends and must run after
170 * retbleed_select_mitigation().
171 */
172 srso_select_mitigation();
173 gds_select_mitigation();
174}
175
176/*
177 * NOTE: This function is *only* called for SVM, since Intel uses
178 * MSR_IA32_SPEC_CTRL for SSBD.
179 */
180void
181x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
182{
183 u64 guestval, hostval;
184 struct thread_info *ti = current_thread_info();
185
186 /*
187 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
188 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
189 */
190 if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
191 !static_cpu_has(X86_FEATURE_VIRT_SSBD))
192 return;
193
194 /*
195 * If the host has SSBD mitigation enabled, force it in the host's
196 * virtual MSR value. If its not permanently enabled, evaluate
197 * current's TIF_SSBD thread flag.
198 */
199 if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
200 hostval = SPEC_CTRL_SSBD;
201 else
202 hostval = ssbd_tif_to_spec_ctrl(ti->flags);
203
204 /* Sanitize the guest value */
205 guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
206
207 if (hostval != guestval) {
208 unsigned long tif;
209
210 tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
211 ssbd_spec_ctrl_to_tif(hostval);
212
213 speculation_ctrl_update(tif);
214 }
215}
216EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
217
218static void x86_amd_ssb_disable(void)
219{
220 u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
221
222 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
223 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
224 else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
225 wrmsrl(MSR_AMD64_LS_CFG, msrval);
226}
227
228#undef pr_fmt
229#define pr_fmt(fmt) "MDS: " fmt
230
231/* Default mitigation for MDS-affected CPUs */
232static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
233static bool mds_nosmt __ro_after_init = false;
234
235static const char * const mds_strings[] = {
236 [MDS_MITIGATION_OFF] = "Vulnerable",
237 [MDS_MITIGATION_FULL] = "Mitigation: Clear CPU buffers",
238 [MDS_MITIGATION_VMWERV] = "Vulnerable: Clear CPU buffers attempted, no microcode",
239};
240
241static void __init mds_select_mitigation(void)
242{
243 if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
244 mds_mitigation = MDS_MITIGATION_OFF;
245 return;
246 }
247
248 if (mds_mitigation == MDS_MITIGATION_FULL) {
249 if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
250 mds_mitigation = MDS_MITIGATION_VMWERV;
251
252 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
253
254 if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
255 (mds_nosmt || cpu_mitigations_auto_nosmt()))
256 cpu_smt_disable(false);
257 }
258}
259
260static int __init mds_cmdline(char *str)
261{
262 if (!boot_cpu_has_bug(X86_BUG_MDS))
263 return 0;
264
265 if (!str)
266 return -EINVAL;
267
268 if (!strcmp(str, "off"))
269 mds_mitigation = MDS_MITIGATION_OFF;
270 else if (!strcmp(str, "full"))
271 mds_mitigation = MDS_MITIGATION_FULL;
272 else if (!strcmp(str, "full,nosmt")) {
273 mds_mitigation = MDS_MITIGATION_FULL;
274 mds_nosmt = true;
275 }
276
277 return 0;
278}
279early_param("mds", mds_cmdline);
280
281#undef pr_fmt
282#define pr_fmt(fmt) "TAA: " fmt
283
284enum taa_mitigations {
285 TAA_MITIGATION_OFF,
286 TAA_MITIGATION_UCODE_NEEDED,
287 TAA_MITIGATION_VERW,
288 TAA_MITIGATION_TSX_DISABLED,
289};
290
291/* Default mitigation for TAA-affected CPUs */
292static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
293static bool taa_nosmt __ro_after_init;
294
295static const char * const taa_strings[] = {
296 [TAA_MITIGATION_OFF] = "Vulnerable",
297 [TAA_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
298 [TAA_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
299 [TAA_MITIGATION_TSX_DISABLED] = "Mitigation: TSX disabled",
300};
301
302static void __init taa_select_mitigation(void)
303{
304 u64 ia32_cap;
305
306 if (!boot_cpu_has_bug(X86_BUG_TAA)) {
307 taa_mitigation = TAA_MITIGATION_OFF;
308 return;
309 }
310
311 /* TSX previously disabled by tsx=off */
312 if (!boot_cpu_has(X86_FEATURE_RTM)) {
313 taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
314 return;
315 }
316
317 if (cpu_mitigations_off()) {
318 taa_mitigation = TAA_MITIGATION_OFF;
319 return;
320 }
321
322 /*
323 * TAA mitigation via VERW is turned off if both
324 * tsx_async_abort=off and mds=off are specified.
325 */
326 if (taa_mitigation == TAA_MITIGATION_OFF &&
327 mds_mitigation == MDS_MITIGATION_OFF)
328 return;
329
330 if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
331 taa_mitigation = TAA_MITIGATION_VERW;
332 else
333 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
334
335 /*
336 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
337 * A microcode update fixes this behavior to clear CPU buffers. It also
338 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
339 * ARCH_CAP_TSX_CTRL_MSR bit.
340 *
341 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
342 * update is required.
343 */
344 ia32_cap = x86_read_arch_cap_msr();
345 if ( (ia32_cap & ARCH_CAP_MDS_NO) &&
346 !(ia32_cap & ARCH_CAP_TSX_CTRL_MSR))
347 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
348
349 /*
350 * TSX is enabled, select alternate mitigation for TAA which is
351 * the same as MDS. Enable MDS static branch to clear CPU buffers.
352 *
353 * For guests that can't determine whether the correct microcode is
354 * present on host, enable the mitigation for UCODE_NEEDED as well.
355 */
356 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
357
358 if (taa_nosmt || cpu_mitigations_auto_nosmt())
359 cpu_smt_disable(false);
360}
361
362static int __init tsx_async_abort_parse_cmdline(char *str)
363{
364 if (!boot_cpu_has_bug(X86_BUG_TAA))
365 return 0;
366
367 if (!str)
368 return -EINVAL;
369
370 if (!strcmp(str, "off")) {
371 taa_mitigation = TAA_MITIGATION_OFF;
372 } else if (!strcmp(str, "full")) {
373 taa_mitigation = TAA_MITIGATION_VERW;
374 } else if (!strcmp(str, "full,nosmt")) {
375 taa_mitigation = TAA_MITIGATION_VERW;
376 taa_nosmt = true;
377 }
378
379 return 0;
380}
381early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
382
383#undef pr_fmt
384#define pr_fmt(fmt) "MMIO Stale Data: " fmt
385
386enum mmio_mitigations {
387 MMIO_MITIGATION_OFF,
388 MMIO_MITIGATION_UCODE_NEEDED,
389 MMIO_MITIGATION_VERW,
390};
391
392/* Default mitigation for Processor MMIO Stale Data vulnerabilities */
393static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW;
394static bool mmio_nosmt __ro_after_init = false;
395
396static const char * const mmio_strings[] = {
397 [MMIO_MITIGATION_OFF] = "Vulnerable",
398 [MMIO_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
399 [MMIO_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
400};
401
402static void __init mmio_select_mitigation(void)
403{
404 u64 ia32_cap;
405
406 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
407 boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) ||
408 cpu_mitigations_off()) {
409 mmio_mitigation = MMIO_MITIGATION_OFF;
410 return;
411 }
412
413 if (mmio_mitigation == MMIO_MITIGATION_OFF)
414 return;
415
416 ia32_cap = x86_read_arch_cap_msr();
417
418 /*
419 * Enable CPU buffer clear mitigation for host and VMM, if also affected
420 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
421 */
422 if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
423 boot_cpu_has(X86_FEATURE_RTM)))
424 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
425 else
426 static_branch_enable(&mmio_stale_data_clear);
427
428 /*
429 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
430 * be propagated to uncore buffers, clearing the Fill buffers on idle
431 * is required irrespective of SMT state.
432 */
433 if (!(ia32_cap & ARCH_CAP_FBSDP_NO))
434 static_branch_enable(&mds_idle_clear);
435
436 /*
437 * Check if the system has the right microcode.
438 *
439 * CPU Fill buffer clear mitigation is enumerated by either an explicit
440 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
441 * affected systems.
442 */
443 if ((ia32_cap & ARCH_CAP_FB_CLEAR) ||
444 (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
445 boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
446 !(ia32_cap & ARCH_CAP_MDS_NO)))
447 mmio_mitigation = MMIO_MITIGATION_VERW;
448 else
449 mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
450
451 if (mmio_nosmt || cpu_mitigations_auto_nosmt())
452 cpu_smt_disable(false);
453}
454
455static int __init mmio_stale_data_parse_cmdline(char *str)
456{
457 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
458 return 0;
459
460 if (!str)
461 return -EINVAL;
462
463 if (!strcmp(str, "off")) {
464 mmio_mitigation = MMIO_MITIGATION_OFF;
465 } else if (!strcmp(str, "full")) {
466 mmio_mitigation = MMIO_MITIGATION_VERW;
467 } else if (!strcmp(str, "full,nosmt")) {
468 mmio_mitigation = MMIO_MITIGATION_VERW;
469 mmio_nosmt = true;
470 }
471
472 return 0;
473}
474early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
475
476#undef pr_fmt
477#define pr_fmt(fmt) "" fmt
478
479static void __init md_clear_update_mitigation(void)
480{
481 if (cpu_mitigations_off())
482 return;
483
484 if (!boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
485 goto out;
486
487 /*
488 * X86_FEATURE_CLEAR_CPU_BUF is now enabled. Update MDS, TAA and MMIO
489 * Stale Data mitigation, if necessary.
490 */
491 if (mds_mitigation == MDS_MITIGATION_OFF &&
492 boot_cpu_has_bug(X86_BUG_MDS)) {
493 mds_mitigation = MDS_MITIGATION_FULL;
494 mds_select_mitigation();
495 }
496 if (taa_mitigation == TAA_MITIGATION_OFF &&
497 boot_cpu_has_bug(X86_BUG_TAA)) {
498 taa_mitigation = TAA_MITIGATION_VERW;
499 taa_select_mitigation();
500 }
501 if (mmio_mitigation == MMIO_MITIGATION_OFF &&
502 boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
503 mmio_mitigation = MMIO_MITIGATION_VERW;
504 mmio_select_mitigation();
505 }
506out:
507 if (boot_cpu_has_bug(X86_BUG_MDS))
508 pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
509 if (boot_cpu_has_bug(X86_BUG_TAA))
510 pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
511 if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
512 pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
513 else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
514 pr_info("MMIO Stale Data: Unknown: No mitigations\n");
515}
516
517static void __init md_clear_select_mitigation(void)
518{
519 mds_select_mitigation();
520 taa_select_mitigation();
521 mmio_select_mitigation();
522
523 /*
524 * As MDS, TAA and MMIO Stale Data mitigations are inter-related, update
525 * and print their mitigation after MDS, TAA and MMIO Stale Data
526 * mitigation selection is done.
527 */
528 md_clear_update_mitigation();
529}
530
531#undef pr_fmt
532#define pr_fmt(fmt) "SRBDS: " fmt
533
534enum srbds_mitigations {
535 SRBDS_MITIGATION_OFF,
536 SRBDS_MITIGATION_UCODE_NEEDED,
537 SRBDS_MITIGATION_FULL,
538 SRBDS_MITIGATION_TSX_OFF,
539 SRBDS_MITIGATION_HYPERVISOR,
540};
541
542static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;
543
544static const char * const srbds_strings[] = {
545 [SRBDS_MITIGATION_OFF] = "Vulnerable",
546 [SRBDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
547 [SRBDS_MITIGATION_FULL] = "Mitigation: Microcode",
548 [SRBDS_MITIGATION_TSX_OFF] = "Mitigation: TSX disabled",
549 [SRBDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status",
550};
551
552static bool srbds_off;
553
554void update_srbds_msr(void)
555{
556 u64 mcu_ctrl;
557
558 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
559 return;
560
561 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
562 return;
563
564 if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
565 return;
566
567 /*
568 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
569 * being disabled and it hasn't received the SRBDS MSR microcode.
570 */
571 if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
572 return;
573
574 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
575
576 switch (srbds_mitigation) {
577 case SRBDS_MITIGATION_OFF:
578 case SRBDS_MITIGATION_TSX_OFF:
579 mcu_ctrl |= RNGDS_MITG_DIS;
580 break;
581 case SRBDS_MITIGATION_FULL:
582 mcu_ctrl &= ~RNGDS_MITG_DIS;
583 break;
584 default:
585 break;
586 }
587
588 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
589}
590
591static void __init srbds_select_mitigation(void)
592{
593 u64 ia32_cap;
594
595 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
596 return;
597
598 /*
599 * Check to see if this is one of the MDS_NO systems supporting TSX that
600 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
601 * by Processor MMIO Stale Data vulnerability.
602 */
603 ia32_cap = x86_read_arch_cap_msr();
604 if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
605 !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
606 srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
607 else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
608 srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
609 else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
610 srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
611 else if (cpu_mitigations_off() || srbds_off)
612 srbds_mitigation = SRBDS_MITIGATION_OFF;
613
614 update_srbds_msr();
615 pr_info("%s\n", srbds_strings[srbds_mitigation]);
616}
617
618static int __init srbds_parse_cmdline(char *str)
619{
620 if (!str)
621 return -EINVAL;
622
623 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
624 return 0;
625
626 srbds_off = !strcmp(str, "off");
627 return 0;
628}
629early_param("srbds", srbds_parse_cmdline);
630
631#undef pr_fmt
632#define pr_fmt(fmt) "L1D Flush : " fmt
633
634enum l1d_flush_mitigations {
635 L1D_FLUSH_OFF = 0,
636 L1D_FLUSH_ON,
637};
638
639static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
640
641static void __init l1d_flush_select_mitigation(void)
642{
643 if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
644 return;
645
646 static_branch_enable(&switch_mm_cond_l1d_flush);
647 pr_info("Conditional flush on switch_mm() enabled\n");
648}
649
650static int __init l1d_flush_parse_cmdline(char *str)
651{
652 if (!strcmp(str, "on"))
653 l1d_flush_mitigation = L1D_FLUSH_ON;
654
655 return 0;
656}
657early_param("l1d_flush", l1d_flush_parse_cmdline);
658
659#undef pr_fmt
660#define pr_fmt(fmt) "GDS: " fmt
661
662enum gds_mitigations {
663 GDS_MITIGATION_OFF,
664 GDS_MITIGATION_UCODE_NEEDED,
665 GDS_MITIGATION_FORCE,
666 GDS_MITIGATION_FULL,
667 GDS_MITIGATION_FULL_LOCKED,
668 GDS_MITIGATION_HYPERVISOR,
669};
670
671#if IS_ENABLED(CONFIG_GDS_FORCE_MITIGATION)
672static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FORCE;
673#else
674static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FULL;
675#endif
676
677static const char * const gds_strings[] = {
678 [GDS_MITIGATION_OFF] = "Vulnerable",
679 [GDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
680 [GDS_MITIGATION_FORCE] = "Mitigation: AVX disabled, no microcode",
681 [GDS_MITIGATION_FULL] = "Mitigation: Microcode",
682 [GDS_MITIGATION_FULL_LOCKED] = "Mitigation: Microcode (locked)",
683 [GDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status",
684};
685
686bool gds_ucode_mitigated(void)
687{
688 return (gds_mitigation == GDS_MITIGATION_FULL ||
689 gds_mitigation == GDS_MITIGATION_FULL_LOCKED);
690}
691EXPORT_SYMBOL_GPL(gds_ucode_mitigated);
692
693void update_gds_msr(void)
694{
695 u64 mcu_ctrl_after;
696 u64 mcu_ctrl;
697
698 switch (gds_mitigation) {
699 case GDS_MITIGATION_OFF:
700 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
701 mcu_ctrl |= GDS_MITG_DIS;
702 break;
703 case GDS_MITIGATION_FULL_LOCKED:
704 /*
705 * The LOCKED state comes from the boot CPU. APs might not have
706 * the same state. Make sure the mitigation is enabled on all
707 * CPUs.
708 */
709 case GDS_MITIGATION_FULL:
710 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
711 mcu_ctrl &= ~GDS_MITG_DIS;
712 break;
713 case GDS_MITIGATION_FORCE:
714 case GDS_MITIGATION_UCODE_NEEDED:
715 case GDS_MITIGATION_HYPERVISOR:
716 return;
717 }
718
719 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
720
721 /*
722 * Check to make sure that the WRMSR value was not ignored. Writes to
723 * GDS_MITG_DIS will be ignored if this processor is locked but the boot
724 * processor was not.
725 */
726 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after);
727 WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after);
728}
729
730static void __init gds_select_mitigation(void)
731{
732 u64 mcu_ctrl;
733
734 if (!boot_cpu_has_bug(X86_BUG_GDS))
735 return;
736
737 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
738 gds_mitigation = GDS_MITIGATION_HYPERVISOR;
739 goto out;
740 }
741
742 if (cpu_mitigations_off())
743 gds_mitigation = GDS_MITIGATION_OFF;
744 /* Will verify below that mitigation _can_ be disabled */
745
746 /* No microcode */
747 if (!(x86_read_arch_cap_msr() & ARCH_CAP_GDS_CTRL)) {
748 if (gds_mitigation == GDS_MITIGATION_FORCE) {
749 /*
750 * This only needs to be done on the boot CPU so do it
751 * here rather than in update_gds_msr()
752 */
753 setup_clear_cpu_cap(X86_FEATURE_AVX);
754 pr_warn("Microcode update needed! Disabling AVX as mitigation.\n");
755 } else {
756 gds_mitigation = GDS_MITIGATION_UCODE_NEEDED;
757 }
758 goto out;
759 }
760
761 /* Microcode has mitigation, use it */
762 if (gds_mitigation == GDS_MITIGATION_FORCE)
763 gds_mitigation = GDS_MITIGATION_FULL;
764
765 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
766 if (mcu_ctrl & GDS_MITG_LOCKED) {
767 if (gds_mitigation == GDS_MITIGATION_OFF)
768 pr_warn("Mitigation locked. Disable failed.\n");
769
770 /*
771 * The mitigation is selected from the boot CPU. All other CPUs
772 * _should_ have the same state. If the boot CPU isn't locked
773 * but others are then update_gds_msr() will WARN() of the state
774 * mismatch. If the boot CPU is locked update_gds_msr() will
775 * ensure the other CPUs have the mitigation enabled.
776 */
777 gds_mitigation = GDS_MITIGATION_FULL_LOCKED;
778 }
779
780 update_gds_msr();
781out:
782 pr_info("%s\n", gds_strings[gds_mitigation]);
783}
784
785static int __init gds_parse_cmdline(char *str)
786{
787 if (!str)
788 return -EINVAL;
789
790 if (!boot_cpu_has_bug(X86_BUG_GDS))
791 return 0;
792
793 if (!strcmp(str, "off"))
794 gds_mitigation = GDS_MITIGATION_OFF;
795 else if (!strcmp(str, "force"))
796 gds_mitigation = GDS_MITIGATION_FORCE;
797
798 return 0;
799}
800early_param("gather_data_sampling", gds_parse_cmdline);
801
802#undef pr_fmt
803#define pr_fmt(fmt) "Spectre V1 : " fmt
804
805enum spectre_v1_mitigation {
806 SPECTRE_V1_MITIGATION_NONE,
807 SPECTRE_V1_MITIGATION_AUTO,
808};
809
810static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
811 SPECTRE_V1_MITIGATION_AUTO;
812
813static const char * const spectre_v1_strings[] = {
814 [SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
815 [SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
816};
817
818/*
819 * Does SMAP provide full mitigation against speculative kernel access to
820 * userspace?
821 */
822static bool smap_works_speculatively(void)
823{
824 if (!boot_cpu_has(X86_FEATURE_SMAP))
825 return false;
826
827 /*
828 * On CPUs which are vulnerable to Meltdown, SMAP does not
829 * prevent speculative access to user data in the L1 cache.
830 * Consider SMAP to be non-functional as a mitigation on these
831 * CPUs.
832 */
833 if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
834 return false;
835
836 return true;
837}
838
839static void __init spectre_v1_select_mitigation(void)
840{
841 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
842 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
843 return;
844 }
845
846 if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
847 /*
848 * With Spectre v1, a user can speculatively control either
849 * path of a conditional swapgs with a user-controlled GS
850 * value. The mitigation is to add lfences to both code paths.
851 *
852 * If FSGSBASE is enabled, the user can put a kernel address in
853 * GS, in which case SMAP provides no protection.
854 *
855 * If FSGSBASE is disabled, the user can only put a user space
856 * address in GS. That makes an attack harder, but still
857 * possible if there's no SMAP protection.
858 */
859 if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
860 !smap_works_speculatively()) {
861 /*
862 * Mitigation can be provided from SWAPGS itself or
863 * PTI as the CR3 write in the Meltdown mitigation
864 * is serializing.
865 *
866 * If neither is there, mitigate with an LFENCE to
867 * stop speculation through swapgs.
868 */
869 if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
870 !boot_cpu_has(X86_FEATURE_PTI))
871 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
872
873 /*
874 * Enable lfences in the kernel entry (non-swapgs)
875 * paths, to prevent user entry from speculatively
876 * skipping swapgs.
877 */
878 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
879 }
880 }
881
882 pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
883}
884
885static int __init nospectre_v1_cmdline(char *str)
886{
887 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
888 return 0;
889}
890early_param("nospectre_v1", nospectre_v1_cmdline);
891
892enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE;
893
894#undef pr_fmt
895#define pr_fmt(fmt) "RETBleed: " fmt
896
897enum retbleed_mitigation {
898 RETBLEED_MITIGATION_NONE,
899 RETBLEED_MITIGATION_UNRET,
900 RETBLEED_MITIGATION_IBPB,
901 RETBLEED_MITIGATION_IBRS,
902 RETBLEED_MITIGATION_EIBRS,
903 RETBLEED_MITIGATION_STUFF,
904};
905
906enum retbleed_mitigation_cmd {
907 RETBLEED_CMD_OFF,
908 RETBLEED_CMD_AUTO,
909 RETBLEED_CMD_UNRET,
910 RETBLEED_CMD_IBPB,
911 RETBLEED_CMD_STUFF,
912};
913
914static const char * const retbleed_strings[] = {
915 [RETBLEED_MITIGATION_NONE] = "Vulnerable",
916 [RETBLEED_MITIGATION_UNRET] = "Mitigation: untrained return thunk",
917 [RETBLEED_MITIGATION_IBPB] = "Mitigation: IBPB",
918 [RETBLEED_MITIGATION_IBRS] = "Mitigation: IBRS",
919 [RETBLEED_MITIGATION_EIBRS] = "Mitigation: Enhanced IBRS",
920 [RETBLEED_MITIGATION_STUFF] = "Mitigation: Stuffing",
921};
922
923static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
924 RETBLEED_MITIGATION_NONE;
925static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init =
926 RETBLEED_CMD_AUTO;
927
928static int __ro_after_init retbleed_nosmt = false;
929
930static int __init retbleed_parse_cmdline(char *str)
931{
932 if (!str)
933 return -EINVAL;
934
935 while (str) {
936 char *next = strchr(str, ',');
937 if (next) {
938 *next = 0;
939 next++;
940 }
941
942 if (!strcmp(str, "off")) {
943 retbleed_cmd = RETBLEED_CMD_OFF;
944 } else if (!strcmp(str, "auto")) {
945 retbleed_cmd = RETBLEED_CMD_AUTO;
946 } else if (!strcmp(str, "unret")) {
947 retbleed_cmd = RETBLEED_CMD_UNRET;
948 } else if (!strcmp(str, "ibpb")) {
949 retbleed_cmd = RETBLEED_CMD_IBPB;
950 } else if (!strcmp(str, "stuff")) {
951 retbleed_cmd = RETBLEED_CMD_STUFF;
952 } else if (!strcmp(str, "nosmt")) {
953 retbleed_nosmt = true;
954 } else if (!strcmp(str, "force")) {
955 setup_force_cpu_bug(X86_BUG_RETBLEED);
956 } else {
957 pr_err("Ignoring unknown retbleed option (%s).", str);
958 }
959
960 str = next;
961 }
962
963 return 0;
964}
965early_param("retbleed", retbleed_parse_cmdline);
966
967#define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
968#define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
969
970static void __init retbleed_select_mitigation(void)
971{
972 bool mitigate_smt = false;
973
974 if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
975 return;
976
977 switch (retbleed_cmd) {
978 case RETBLEED_CMD_OFF:
979 return;
980
981 case RETBLEED_CMD_UNRET:
982 if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY)) {
983 retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
984 } else {
985 pr_err("WARNING: kernel not compiled with CPU_UNRET_ENTRY.\n");
986 goto do_cmd_auto;
987 }
988 break;
989
990 case RETBLEED_CMD_IBPB:
991 if (!boot_cpu_has(X86_FEATURE_IBPB)) {
992 pr_err("WARNING: CPU does not support IBPB.\n");
993 goto do_cmd_auto;
994 } else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) {
995 retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
996 } else {
997 pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n");
998 goto do_cmd_auto;
999 }
1000 break;
1001
1002 case RETBLEED_CMD_STUFF:
1003 if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING) &&
1004 spectre_v2_enabled == SPECTRE_V2_RETPOLINE) {
1005 retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
1006
1007 } else {
1008 if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING))
1009 pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n");
1010 else
1011 pr_err("WARNING: kernel not compiled with CALL_DEPTH_TRACKING.\n");
1012
1013 goto do_cmd_auto;
1014 }
1015 break;
1016
1017do_cmd_auto:
1018 case RETBLEED_CMD_AUTO:
1019 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1020 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
1021 if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY))
1022 retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1023 else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY) && boot_cpu_has(X86_FEATURE_IBPB))
1024 retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1025 }
1026
1027 /*
1028 * The Intel mitigation (IBRS or eIBRS) was already selected in
1029 * spectre_v2_select_mitigation(). 'retbleed_mitigation' will
1030 * be set accordingly below.
1031 */
1032
1033 break;
1034 }
1035
1036 switch (retbleed_mitigation) {
1037 case RETBLEED_MITIGATION_UNRET:
1038 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1039 setup_force_cpu_cap(X86_FEATURE_UNRET);
1040
1041 x86_return_thunk = retbleed_return_thunk;
1042
1043 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
1044 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
1045 pr_err(RETBLEED_UNTRAIN_MSG);
1046
1047 mitigate_smt = true;
1048 break;
1049
1050 case RETBLEED_MITIGATION_IBPB:
1051 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
1052 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
1053 mitigate_smt = true;
1054 break;
1055
1056 case RETBLEED_MITIGATION_STUFF:
1057 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1058 setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
1059
1060 x86_return_thunk = call_depth_return_thunk;
1061 break;
1062
1063 default:
1064 break;
1065 }
1066
1067 if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
1068 (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
1069 cpu_smt_disable(false);
1070
1071 /*
1072 * Let IBRS trump all on Intel without affecting the effects of the
1073 * retbleed= cmdline option except for call depth based stuffing
1074 */
1075 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1076 switch (spectre_v2_enabled) {
1077 case SPECTRE_V2_IBRS:
1078 retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
1079 break;
1080 case SPECTRE_V2_EIBRS:
1081 case SPECTRE_V2_EIBRS_RETPOLINE:
1082 case SPECTRE_V2_EIBRS_LFENCE:
1083 retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
1084 break;
1085 default:
1086 if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF)
1087 pr_err(RETBLEED_INTEL_MSG);
1088 }
1089 }
1090
1091 pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
1092}
1093
1094#undef pr_fmt
1095#define pr_fmt(fmt) "Spectre V2 : " fmt
1096
1097static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
1098 SPECTRE_V2_USER_NONE;
1099static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
1100 SPECTRE_V2_USER_NONE;
1101
1102#ifdef CONFIG_RETPOLINE
1103static bool spectre_v2_bad_module;
1104
1105bool retpoline_module_ok(bool has_retpoline)
1106{
1107 if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
1108 return true;
1109
1110 pr_err("System may be vulnerable to spectre v2\n");
1111 spectre_v2_bad_module = true;
1112 return false;
1113}
1114
1115static inline const char *spectre_v2_module_string(void)
1116{
1117 return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
1118}
1119#else
1120static inline const char *spectre_v2_module_string(void) { return ""; }
1121#endif
1122
1123#define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
1124#define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
1125#define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
1126#define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
1127
1128#ifdef CONFIG_BPF_SYSCALL
1129void unpriv_ebpf_notify(int new_state)
1130{
1131 if (new_state)
1132 return;
1133
1134 /* Unprivileged eBPF is enabled */
1135
1136 switch (spectre_v2_enabled) {
1137 case SPECTRE_V2_EIBRS:
1138 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1139 break;
1140 case SPECTRE_V2_EIBRS_LFENCE:
1141 if (sched_smt_active())
1142 pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1143 break;
1144 default:
1145 break;
1146 }
1147}
1148#endif
1149
1150static inline bool match_option(const char *arg, int arglen, const char *opt)
1151{
1152 int len = strlen(opt);
1153
1154 return len == arglen && !strncmp(arg, opt, len);
1155}
1156
1157/* The kernel command line selection for spectre v2 */
1158enum spectre_v2_mitigation_cmd {
1159 SPECTRE_V2_CMD_NONE,
1160 SPECTRE_V2_CMD_AUTO,
1161 SPECTRE_V2_CMD_FORCE,
1162 SPECTRE_V2_CMD_RETPOLINE,
1163 SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1164 SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1165 SPECTRE_V2_CMD_EIBRS,
1166 SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1167 SPECTRE_V2_CMD_EIBRS_LFENCE,
1168 SPECTRE_V2_CMD_IBRS,
1169};
1170
1171enum spectre_v2_user_cmd {
1172 SPECTRE_V2_USER_CMD_NONE,
1173 SPECTRE_V2_USER_CMD_AUTO,
1174 SPECTRE_V2_USER_CMD_FORCE,
1175 SPECTRE_V2_USER_CMD_PRCTL,
1176 SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1177 SPECTRE_V2_USER_CMD_SECCOMP,
1178 SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1179};
1180
1181static const char * const spectre_v2_user_strings[] = {
1182 [SPECTRE_V2_USER_NONE] = "User space: Vulnerable",
1183 [SPECTRE_V2_USER_STRICT] = "User space: Mitigation: STIBP protection",
1184 [SPECTRE_V2_USER_STRICT_PREFERRED] = "User space: Mitigation: STIBP always-on protection",
1185 [SPECTRE_V2_USER_PRCTL] = "User space: Mitigation: STIBP via prctl",
1186 [SPECTRE_V2_USER_SECCOMP] = "User space: Mitigation: STIBP via seccomp and prctl",
1187};
1188
1189static const struct {
1190 const char *option;
1191 enum spectre_v2_user_cmd cmd;
1192 bool secure;
1193} v2_user_options[] __initconst = {
1194 { "auto", SPECTRE_V2_USER_CMD_AUTO, false },
1195 { "off", SPECTRE_V2_USER_CMD_NONE, false },
1196 { "on", SPECTRE_V2_USER_CMD_FORCE, true },
1197 { "prctl", SPECTRE_V2_USER_CMD_PRCTL, false },
1198 { "prctl,ibpb", SPECTRE_V2_USER_CMD_PRCTL_IBPB, false },
1199 { "seccomp", SPECTRE_V2_USER_CMD_SECCOMP, false },
1200 { "seccomp,ibpb", SPECTRE_V2_USER_CMD_SECCOMP_IBPB, false },
1201};
1202
1203static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1204{
1205 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1206 pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1207}
1208
1209static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd;
1210
1211static enum spectre_v2_user_cmd __init
1212spectre_v2_parse_user_cmdline(void)
1213{
1214 char arg[20];
1215 int ret, i;
1216
1217 switch (spectre_v2_cmd) {
1218 case SPECTRE_V2_CMD_NONE:
1219 return SPECTRE_V2_USER_CMD_NONE;
1220 case SPECTRE_V2_CMD_FORCE:
1221 return SPECTRE_V2_USER_CMD_FORCE;
1222 default:
1223 break;
1224 }
1225
1226 ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
1227 arg, sizeof(arg));
1228 if (ret < 0)
1229 return SPECTRE_V2_USER_CMD_AUTO;
1230
1231 for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1232 if (match_option(arg, ret, v2_user_options[i].option)) {
1233 spec_v2_user_print_cond(v2_user_options[i].option,
1234 v2_user_options[i].secure);
1235 return v2_user_options[i].cmd;
1236 }
1237 }
1238
1239 pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
1240 return SPECTRE_V2_USER_CMD_AUTO;
1241}
1242
1243static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1244{
1245 return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS;
1246}
1247
1248static void __init
1249spectre_v2_user_select_mitigation(void)
1250{
1251 enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
1252 bool smt_possible = IS_ENABLED(CONFIG_SMP);
1253 enum spectre_v2_user_cmd cmd;
1254
1255 if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1256 return;
1257
1258 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
1259 cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
1260 smt_possible = false;
1261
1262 cmd = spectre_v2_parse_user_cmdline();
1263 switch (cmd) {
1264 case SPECTRE_V2_USER_CMD_NONE:
1265 goto set_mode;
1266 case SPECTRE_V2_USER_CMD_FORCE:
1267 mode = SPECTRE_V2_USER_STRICT;
1268 break;
1269 case SPECTRE_V2_USER_CMD_AUTO:
1270 case SPECTRE_V2_USER_CMD_PRCTL:
1271 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1272 mode = SPECTRE_V2_USER_PRCTL;
1273 break;
1274 case SPECTRE_V2_USER_CMD_SECCOMP:
1275 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1276 if (IS_ENABLED(CONFIG_SECCOMP))
1277 mode = SPECTRE_V2_USER_SECCOMP;
1278 else
1279 mode = SPECTRE_V2_USER_PRCTL;
1280 break;
1281 }
1282
1283 /* Initialize Indirect Branch Prediction Barrier */
1284 if (boot_cpu_has(X86_FEATURE_IBPB)) {
1285 setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
1286
1287 spectre_v2_user_ibpb = mode;
1288 switch (cmd) {
1289 case SPECTRE_V2_USER_CMD_NONE:
1290 break;
1291 case SPECTRE_V2_USER_CMD_FORCE:
1292 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1293 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1294 static_branch_enable(&switch_mm_always_ibpb);
1295 spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1296 break;
1297 case SPECTRE_V2_USER_CMD_PRCTL:
1298 case SPECTRE_V2_USER_CMD_AUTO:
1299 case SPECTRE_V2_USER_CMD_SECCOMP:
1300 static_branch_enable(&switch_mm_cond_ibpb);
1301 break;
1302 }
1303
1304 pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
1305 static_key_enabled(&switch_mm_always_ibpb) ?
1306 "always-on" : "conditional");
1307 }
1308
1309 /*
1310 * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP
1311 * is not required.
1312 *
1313 * Intel's Enhanced IBRS also protects against cross-thread branch target
1314 * injection in user-mode as the IBRS bit remains always set which
1315 * implicitly enables cross-thread protections. However, in legacy IBRS
1316 * mode, the IBRS bit is set only on kernel entry and cleared on return
1317 * to userspace. AMD Automatic IBRS also does not protect userspace.
1318 * These modes therefore disable the implicit cross-thread protection,
1319 * so allow for STIBP to be selected in those cases.
1320 */
1321 if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1322 !smt_possible ||
1323 (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
1324 !boot_cpu_has(X86_FEATURE_AUTOIBRS)))
1325 return;
1326
1327 /*
1328 * At this point, an STIBP mode other than "off" has been set.
1329 * If STIBP support is not being forced, check if STIBP always-on
1330 * is preferred.
1331 */
1332 if (mode != SPECTRE_V2_USER_STRICT &&
1333 boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1334 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1335
1336 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1337 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
1338 if (mode != SPECTRE_V2_USER_STRICT &&
1339 mode != SPECTRE_V2_USER_STRICT_PREFERRED)
1340 pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1341 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1342 }
1343
1344 spectre_v2_user_stibp = mode;
1345
1346set_mode:
1347 pr_info("%s\n", spectre_v2_user_strings[mode]);
1348}
1349
1350static const char * const spectre_v2_strings[] = {
1351 [SPECTRE_V2_NONE] = "Vulnerable",
1352 [SPECTRE_V2_RETPOLINE] = "Mitigation: Retpolines",
1353 [SPECTRE_V2_LFENCE] = "Mitigation: LFENCE",
1354 [SPECTRE_V2_EIBRS] = "Mitigation: Enhanced / Automatic IBRS",
1355 [SPECTRE_V2_EIBRS_LFENCE] = "Mitigation: Enhanced / Automatic IBRS + LFENCE",
1356 [SPECTRE_V2_EIBRS_RETPOLINE] = "Mitigation: Enhanced / Automatic IBRS + Retpolines",
1357 [SPECTRE_V2_IBRS] = "Mitigation: IBRS",
1358};
1359
1360static const struct {
1361 const char *option;
1362 enum spectre_v2_mitigation_cmd cmd;
1363 bool secure;
1364} mitigation_options[] __initconst = {
1365 { "off", SPECTRE_V2_CMD_NONE, false },
1366 { "on", SPECTRE_V2_CMD_FORCE, true },
1367 { "retpoline", SPECTRE_V2_CMD_RETPOLINE, false },
1368 { "retpoline,amd", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false },
1369 { "retpoline,lfence", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false },
1370 { "retpoline,generic", SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1371 { "eibrs", SPECTRE_V2_CMD_EIBRS, false },
1372 { "eibrs,lfence", SPECTRE_V2_CMD_EIBRS_LFENCE, false },
1373 { "eibrs,retpoline", SPECTRE_V2_CMD_EIBRS_RETPOLINE, false },
1374 { "auto", SPECTRE_V2_CMD_AUTO, false },
1375 { "ibrs", SPECTRE_V2_CMD_IBRS, false },
1376};
1377
1378static void __init spec_v2_print_cond(const char *reason, bool secure)
1379{
1380 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1381 pr_info("%s selected on command line.\n", reason);
1382}
1383
1384static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1385{
1386 enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
1387 char arg[20];
1388 int ret, i;
1389
1390 if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1391 cpu_mitigations_off())
1392 return SPECTRE_V2_CMD_NONE;
1393
1394 ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1395 if (ret < 0)
1396 return SPECTRE_V2_CMD_AUTO;
1397
1398 for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1399 if (!match_option(arg, ret, mitigation_options[i].option))
1400 continue;
1401 cmd = mitigation_options[i].cmd;
1402 break;
1403 }
1404
1405 if (i >= ARRAY_SIZE(mitigation_options)) {
1406 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1407 return SPECTRE_V2_CMD_AUTO;
1408 }
1409
1410 if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1411 cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1412 cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1413 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1414 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1415 !IS_ENABLED(CONFIG_RETPOLINE)) {
1416 pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1417 mitigation_options[i].option);
1418 return SPECTRE_V2_CMD_AUTO;
1419 }
1420
1421 if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1422 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1423 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1424 !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1425 pr_err("%s selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n",
1426 mitigation_options[i].option);
1427 return SPECTRE_V2_CMD_AUTO;
1428 }
1429
1430 if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1431 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1432 !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1433 pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1434 mitigation_options[i].option);
1435 return SPECTRE_V2_CMD_AUTO;
1436 }
1437
1438 if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_CPU_IBRS_ENTRY)) {
1439 pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1440 mitigation_options[i].option);
1441 return SPECTRE_V2_CMD_AUTO;
1442 }
1443
1444 if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1445 pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
1446 mitigation_options[i].option);
1447 return SPECTRE_V2_CMD_AUTO;
1448 }
1449
1450 if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
1451 pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
1452 mitigation_options[i].option);
1453 return SPECTRE_V2_CMD_AUTO;
1454 }
1455
1456 if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
1457 pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
1458 mitigation_options[i].option);
1459 return SPECTRE_V2_CMD_AUTO;
1460 }
1461
1462 spec_v2_print_cond(mitigation_options[i].option,
1463 mitigation_options[i].secure);
1464 return cmd;
1465}
1466
1467static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1468{
1469 if (!IS_ENABLED(CONFIG_RETPOLINE)) {
1470 pr_err("Kernel not compiled with retpoline; no mitigation available!");
1471 return SPECTRE_V2_NONE;
1472 }
1473
1474 return SPECTRE_V2_RETPOLINE;
1475}
1476
1477/* Disable in-kernel use of non-RSB RET predictors */
1478static void __init spec_ctrl_disable_kernel_rrsba(void)
1479{
1480 u64 ia32_cap;
1481
1482 if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
1483 return;
1484
1485 ia32_cap = x86_read_arch_cap_msr();
1486
1487 if (ia32_cap & ARCH_CAP_RRSBA) {
1488 x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
1489 update_spec_ctrl(x86_spec_ctrl_base);
1490 }
1491}
1492
1493static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)
1494{
1495 /*
1496 * Similar to context switches, there are two types of RSB attacks
1497 * after VM exit:
1498 *
1499 * 1) RSB underflow
1500 *
1501 * 2) Poisoned RSB entry
1502 *
1503 * When retpoline is enabled, both are mitigated by filling/clearing
1504 * the RSB.
1505 *
1506 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
1507 * prediction isolation protections, RSB still needs to be cleared
1508 * because of #2. Note that SMEP provides no protection here, unlike
1509 * user-space-poisoned RSB entries.
1510 *
1511 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB
1512 * bug is present then a LITE version of RSB protection is required,
1513 * just a single call needs to retire before a RET is executed.
1514 */
1515 switch (mode) {
1516 case SPECTRE_V2_NONE:
1517 return;
1518
1519 case SPECTRE_V2_EIBRS_LFENCE:
1520 case SPECTRE_V2_EIBRS:
1521 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
1522 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
1523 pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
1524 }
1525 return;
1526
1527 case SPECTRE_V2_EIBRS_RETPOLINE:
1528 case SPECTRE_V2_RETPOLINE:
1529 case SPECTRE_V2_LFENCE:
1530 case SPECTRE_V2_IBRS:
1531 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1532 pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n");
1533 return;
1534 }
1535
1536 pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit");
1537 dump_stack();
1538}
1539
1540static void __init spectre_v2_select_mitigation(void)
1541{
1542 enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1543 enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1544
1545 /*
1546 * If the CPU is not affected and the command line mode is NONE or AUTO
1547 * then nothing to do.
1548 */
1549 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1550 (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1551 return;
1552
1553 switch (cmd) {
1554 case SPECTRE_V2_CMD_NONE:
1555 return;
1556
1557 case SPECTRE_V2_CMD_FORCE:
1558 case SPECTRE_V2_CMD_AUTO:
1559 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1560 mode = SPECTRE_V2_EIBRS;
1561 break;
1562 }
1563
1564 if (IS_ENABLED(CONFIG_CPU_IBRS_ENTRY) &&
1565 boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1566 retbleed_cmd != RETBLEED_CMD_OFF &&
1567 retbleed_cmd != RETBLEED_CMD_STUFF &&
1568 boot_cpu_has(X86_FEATURE_IBRS) &&
1569 boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1570 mode = SPECTRE_V2_IBRS;
1571 break;
1572 }
1573
1574 mode = spectre_v2_select_retpoline();
1575 break;
1576
1577 case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1578 pr_err(SPECTRE_V2_LFENCE_MSG);
1579 mode = SPECTRE_V2_LFENCE;
1580 break;
1581
1582 case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1583 mode = SPECTRE_V2_RETPOLINE;
1584 break;
1585
1586 case SPECTRE_V2_CMD_RETPOLINE:
1587 mode = spectre_v2_select_retpoline();
1588 break;
1589
1590 case SPECTRE_V2_CMD_IBRS:
1591 mode = SPECTRE_V2_IBRS;
1592 break;
1593
1594 case SPECTRE_V2_CMD_EIBRS:
1595 mode = SPECTRE_V2_EIBRS;
1596 break;
1597
1598 case SPECTRE_V2_CMD_EIBRS_LFENCE:
1599 mode = SPECTRE_V2_EIBRS_LFENCE;
1600 break;
1601
1602 case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1603 mode = SPECTRE_V2_EIBRS_RETPOLINE;
1604 break;
1605 }
1606
1607 if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1608 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1609
1610 if (spectre_v2_in_ibrs_mode(mode)) {
1611 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) {
1612 msr_set_bit(MSR_EFER, _EFER_AUTOIBRS);
1613 } else {
1614 x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1615 update_spec_ctrl(x86_spec_ctrl_base);
1616 }
1617 }
1618
1619 switch (mode) {
1620 case SPECTRE_V2_NONE:
1621 case SPECTRE_V2_EIBRS:
1622 break;
1623
1624 case SPECTRE_V2_IBRS:
1625 setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
1626 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1627 pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
1628 break;
1629
1630 case SPECTRE_V2_LFENCE:
1631 case SPECTRE_V2_EIBRS_LFENCE:
1632 setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1633 fallthrough;
1634
1635 case SPECTRE_V2_RETPOLINE:
1636 case SPECTRE_V2_EIBRS_RETPOLINE:
1637 setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1638 break;
1639 }
1640
1641 /*
1642 * Disable alternate RSB predictions in kernel when indirect CALLs and
1643 * JMPs gets protection against BHI and Intramode-BTI, but RET
1644 * prediction from a non-RSB predictor is still a risk.
1645 */
1646 if (mode == SPECTRE_V2_EIBRS_LFENCE ||
1647 mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1648 mode == SPECTRE_V2_RETPOLINE)
1649 spec_ctrl_disable_kernel_rrsba();
1650
1651 spectre_v2_enabled = mode;
1652 pr_info("%s\n", spectre_v2_strings[mode]);
1653
1654 /*
1655 * If Spectre v2 protection has been enabled, fill the RSB during a
1656 * context switch. In general there are two types of RSB attacks
1657 * across context switches, for which the CALLs/RETs may be unbalanced.
1658 *
1659 * 1) RSB underflow
1660 *
1661 * Some Intel parts have "bottomless RSB". When the RSB is empty,
1662 * speculated return targets may come from the branch predictor,
1663 * which could have a user-poisoned BTB or BHB entry.
1664 *
1665 * AMD has it even worse: *all* returns are speculated from the BTB,
1666 * regardless of the state of the RSB.
1667 *
1668 * When IBRS or eIBRS is enabled, the "user -> kernel" attack
1669 * scenario is mitigated by the IBRS branch prediction isolation
1670 * properties, so the RSB buffer filling wouldn't be necessary to
1671 * protect against this type of attack.
1672 *
1673 * The "user -> user" attack scenario is mitigated by RSB filling.
1674 *
1675 * 2) Poisoned RSB entry
1676 *
1677 * If the 'next' in-kernel return stack is shorter than 'prev',
1678 * 'next' could be tricked into speculating with a user-poisoned RSB
1679 * entry.
1680 *
1681 * The "user -> kernel" attack scenario is mitigated by SMEP and
1682 * eIBRS.
1683 *
1684 * The "user -> user" scenario, also known as SpectreBHB, requires
1685 * RSB clearing.
1686 *
1687 * So to mitigate all cases, unconditionally fill RSB on context
1688 * switches.
1689 *
1690 * FIXME: Is this pointless for retbleed-affected AMD?
1691 */
1692 setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1693 pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1694
1695 spectre_v2_determine_rsb_fill_type_at_vmexit(mode);
1696
1697 /*
1698 * Retpoline protects the kernel, but doesn't protect firmware. IBRS
1699 * and Enhanced IBRS protect firmware too, so enable IBRS around
1700 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't
1701 * otherwise enabled.
1702 *
1703 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1704 * the user might select retpoline on the kernel command line and if
1705 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1706 * enable IBRS around firmware calls.
1707 */
1708 if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1709 boot_cpu_has(X86_FEATURE_IBPB) &&
1710 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1711 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
1712
1713 if (retbleed_cmd != RETBLEED_CMD_IBPB) {
1714 setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
1715 pr_info("Enabling Speculation Barrier for firmware calls\n");
1716 }
1717
1718 } else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) {
1719 setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1720 pr_info("Enabling Restricted Speculation for firmware calls\n");
1721 }
1722
1723 /* Set up IBPB and STIBP depending on the general spectre V2 command */
1724 spectre_v2_cmd = cmd;
1725}
1726
1727static void update_stibp_msr(void * __unused)
1728{
1729 u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
1730 update_spec_ctrl(val);
1731}
1732
1733/* Update x86_spec_ctrl_base in case SMT state changed. */
1734static void update_stibp_strict(void)
1735{
1736 u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1737
1738 if (sched_smt_active())
1739 mask |= SPEC_CTRL_STIBP;
1740
1741 if (mask == x86_spec_ctrl_base)
1742 return;
1743
1744 pr_info("Update user space SMT mitigation: STIBP %s\n",
1745 mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1746 x86_spec_ctrl_base = mask;
1747 on_each_cpu(update_stibp_msr, NULL, 1);
1748}
1749
1750/* Update the static key controlling the evaluation of TIF_SPEC_IB */
1751static void update_indir_branch_cond(void)
1752{
1753 if (sched_smt_active())
1754 static_branch_enable(&switch_to_cond_stibp);
1755 else
1756 static_branch_disable(&switch_to_cond_stibp);
1757}
1758
1759#undef pr_fmt
1760#define pr_fmt(fmt) fmt
1761
1762/* Update the static key controlling the MDS CPU buffer clear in idle */
1763static void update_mds_branch_idle(void)
1764{
1765 u64 ia32_cap = x86_read_arch_cap_msr();
1766
1767 /*
1768 * Enable the idle clearing if SMT is active on CPUs which are
1769 * affected only by MSBDS and not any other MDS variant.
1770 *
1771 * The other variants cannot be mitigated when SMT is enabled, so
1772 * clearing the buffers on idle just to prevent the Store Buffer
1773 * repartitioning leak would be a window dressing exercise.
1774 */
1775 if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1776 return;
1777
1778 if (sched_smt_active()) {
1779 static_branch_enable(&mds_idle_clear);
1780 } else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1781 (ia32_cap & ARCH_CAP_FBSDP_NO)) {
1782 static_branch_disable(&mds_idle_clear);
1783 }
1784}
1785
1786#define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1787#define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1788#define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
1789
1790void cpu_bugs_smt_update(void)
1791{
1792 mutex_lock(&spec_ctrl_mutex);
1793
1794 if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1795 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1796 pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1797
1798 switch (spectre_v2_user_stibp) {
1799 case SPECTRE_V2_USER_NONE:
1800 break;
1801 case SPECTRE_V2_USER_STRICT:
1802 case SPECTRE_V2_USER_STRICT_PREFERRED:
1803 update_stibp_strict();
1804 break;
1805 case SPECTRE_V2_USER_PRCTL:
1806 case SPECTRE_V2_USER_SECCOMP:
1807 update_indir_branch_cond();
1808 break;
1809 }
1810
1811 switch (mds_mitigation) {
1812 case MDS_MITIGATION_FULL:
1813 case MDS_MITIGATION_VMWERV:
1814 if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1815 pr_warn_once(MDS_MSG_SMT);
1816 update_mds_branch_idle();
1817 break;
1818 case MDS_MITIGATION_OFF:
1819 break;
1820 }
1821
1822 switch (taa_mitigation) {
1823 case TAA_MITIGATION_VERW:
1824 case TAA_MITIGATION_UCODE_NEEDED:
1825 if (sched_smt_active())
1826 pr_warn_once(TAA_MSG_SMT);
1827 break;
1828 case TAA_MITIGATION_TSX_DISABLED:
1829 case TAA_MITIGATION_OFF:
1830 break;
1831 }
1832
1833 switch (mmio_mitigation) {
1834 case MMIO_MITIGATION_VERW:
1835 case MMIO_MITIGATION_UCODE_NEEDED:
1836 if (sched_smt_active())
1837 pr_warn_once(MMIO_MSG_SMT);
1838 break;
1839 case MMIO_MITIGATION_OFF:
1840 break;
1841 }
1842
1843 mutex_unlock(&spec_ctrl_mutex);
1844}
1845
1846#undef pr_fmt
1847#define pr_fmt(fmt) "Speculative Store Bypass: " fmt
1848
1849static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
1850
1851/* The kernel command line selection */
1852enum ssb_mitigation_cmd {
1853 SPEC_STORE_BYPASS_CMD_NONE,
1854 SPEC_STORE_BYPASS_CMD_AUTO,
1855 SPEC_STORE_BYPASS_CMD_ON,
1856 SPEC_STORE_BYPASS_CMD_PRCTL,
1857 SPEC_STORE_BYPASS_CMD_SECCOMP,
1858};
1859
1860static const char * const ssb_strings[] = {
1861 [SPEC_STORE_BYPASS_NONE] = "Vulnerable",
1862 [SPEC_STORE_BYPASS_DISABLE] = "Mitigation: Speculative Store Bypass disabled",
1863 [SPEC_STORE_BYPASS_PRCTL] = "Mitigation: Speculative Store Bypass disabled via prctl",
1864 [SPEC_STORE_BYPASS_SECCOMP] = "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
1865};
1866
1867static const struct {
1868 const char *option;
1869 enum ssb_mitigation_cmd cmd;
1870} ssb_mitigation_options[] __initconst = {
1871 { "auto", SPEC_STORE_BYPASS_CMD_AUTO }, /* Platform decides */
1872 { "on", SPEC_STORE_BYPASS_CMD_ON }, /* Disable Speculative Store Bypass */
1873 { "off", SPEC_STORE_BYPASS_CMD_NONE }, /* Don't touch Speculative Store Bypass */
1874 { "prctl", SPEC_STORE_BYPASS_CMD_PRCTL }, /* Disable Speculative Store Bypass via prctl */
1875 { "seccomp", SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
1876};
1877
1878static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
1879{
1880 enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
1881 char arg[20];
1882 int ret, i;
1883
1884 if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
1885 cpu_mitigations_off()) {
1886 return SPEC_STORE_BYPASS_CMD_NONE;
1887 } else {
1888 ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
1889 arg, sizeof(arg));
1890 if (ret < 0)
1891 return SPEC_STORE_BYPASS_CMD_AUTO;
1892
1893 for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
1894 if (!match_option(arg, ret, ssb_mitigation_options[i].option))
1895 continue;
1896
1897 cmd = ssb_mitigation_options[i].cmd;
1898 break;
1899 }
1900
1901 if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
1902 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1903 return SPEC_STORE_BYPASS_CMD_AUTO;
1904 }
1905 }
1906
1907 return cmd;
1908}
1909
1910static enum ssb_mitigation __init __ssb_select_mitigation(void)
1911{
1912 enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
1913 enum ssb_mitigation_cmd cmd;
1914
1915 if (!boot_cpu_has(X86_FEATURE_SSBD))
1916 return mode;
1917
1918 cmd = ssb_parse_cmdline();
1919 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
1920 (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
1921 cmd == SPEC_STORE_BYPASS_CMD_AUTO))
1922 return mode;
1923
1924 switch (cmd) {
1925 case SPEC_STORE_BYPASS_CMD_SECCOMP:
1926 /*
1927 * Choose prctl+seccomp as the default mode if seccomp is
1928 * enabled.
1929 */
1930 if (IS_ENABLED(CONFIG_SECCOMP))
1931 mode = SPEC_STORE_BYPASS_SECCOMP;
1932 else
1933 mode = SPEC_STORE_BYPASS_PRCTL;
1934 break;
1935 case SPEC_STORE_BYPASS_CMD_ON:
1936 mode = SPEC_STORE_BYPASS_DISABLE;
1937 break;
1938 case SPEC_STORE_BYPASS_CMD_AUTO:
1939 case SPEC_STORE_BYPASS_CMD_PRCTL:
1940 mode = SPEC_STORE_BYPASS_PRCTL;
1941 break;
1942 case SPEC_STORE_BYPASS_CMD_NONE:
1943 break;
1944 }
1945
1946 /*
1947 * We have three CPU feature flags that are in play here:
1948 * - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
1949 * - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
1950 * - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
1951 */
1952 if (mode == SPEC_STORE_BYPASS_DISABLE) {
1953 setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
1954 /*
1955 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
1956 * use a completely different MSR and bit dependent on family.
1957 */
1958 if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
1959 !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
1960 x86_amd_ssb_disable();
1961 } else {
1962 x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
1963 update_spec_ctrl(x86_spec_ctrl_base);
1964 }
1965 }
1966
1967 return mode;
1968}
1969
1970static void ssb_select_mitigation(void)
1971{
1972 ssb_mode = __ssb_select_mitigation();
1973
1974 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1975 pr_info("%s\n", ssb_strings[ssb_mode]);
1976}
1977
1978#undef pr_fmt
1979#define pr_fmt(fmt) "Speculation prctl: " fmt
1980
1981static void task_update_spec_tif(struct task_struct *tsk)
1982{
1983 /* Force the update of the real TIF bits */
1984 set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
1985
1986 /*
1987 * Immediately update the speculation control MSRs for the current
1988 * task, but for a non-current task delay setting the CPU
1989 * mitigation until it is scheduled next.
1990 *
1991 * This can only happen for SECCOMP mitigation. For PRCTL it's
1992 * always the current task.
1993 */
1994 if (tsk == current)
1995 speculation_ctrl_update_current();
1996}
1997
1998static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
1999{
2000
2001 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2002 return -EPERM;
2003
2004 switch (ctrl) {
2005 case PR_SPEC_ENABLE:
2006 set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2007 return 0;
2008 case PR_SPEC_DISABLE:
2009 clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2010 return 0;
2011 default:
2012 return -ERANGE;
2013 }
2014}
2015
2016static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
2017{
2018 if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
2019 ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
2020 return -ENXIO;
2021
2022 switch (ctrl) {
2023 case PR_SPEC_ENABLE:
2024 /* If speculation is force disabled, enable is not allowed */
2025 if (task_spec_ssb_force_disable(task))
2026 return -EPERM;
2027 task_clear_spec_ssb_disable(task);
2028 task_clear_spec_ssb_noexec(task);
2029 task_update_spec_tif(task);
2030 break;
2031 case PR_SPEC_DISABLE:
2032 task_set_spec_ssb_disable(task);
2033 task_clear_spec_ssb_noexec(task);
2034 task_update_spec_tif(task);
2035 break;
2036 case PR_SPEC_FORCE_DISABLE:
2037 task_set_spec_ssb_disable(task);
2038 task_set_spec_ssb_force_disable(task);
2039 task_clear_spec_ssb_noexec(task);
2040 task_update_spec_tif(task);
2041 break;
2042 case PR_SPEC_DISABLE_NOEXEC:
2043 if (task_spec_ssb_force_disable(task))
2044 return -EPERM;
2045 task_set_spec_ssb_disable(task);
2046 task_set_spec_ssb_noexec(task);
2047 task_update_spec_tif(task);
2048 break;
2049 default:
2050 return -ERANGE;
2051 }
2052 return 0;
2053}
2054
2055static bool is_spec_ib_user_controlled(void)
2056{
2057 return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
2058 spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2059 spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
2060 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
2061}
2062
2063static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
2064{
2065 switch (ctrl) {
2066 case PR_SPEC_ENABLE:
2067 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2068 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2069 return 0;
2070
2071 /*
2072 * With strict mode for both IBPB and STIBP, the instruction
2073 * code paths avoid checking this task flag and instead,
2074 * unconditionally run the instruction. However, STIBP and IBPB
2075 * are independent and either can be set to conditionally
2076 * enabled regardless of the mode of the other.
2077 *
2078 * If either is set to conditional, allow the task flag to be
2079 * updated, unless it was force-disabled by a previous prctl
2080 * call. Currently, this is possible on an AMD CPU which has the
2081 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
2082 * kernel is booted with 'spectre_v2_user=seccomp', then
2083 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
2084 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
2085 */
2086 if (!is_spec_ib_user_controlled() ||
2087 task_spec_ib_force_disable(task))
2088 return -EPERM;
2089
2090 task_clear_spec_ib_disable(task);
2091 task_update_spec_tif(task);
2092 break;
2093 case PR_SPEC_DISABLE:
2094 case PR_SPEC_FORCE_DISABLE:
2095 /*
2096 * Indirect branch speculation is always allowed when
2097 * mitigation is force disabled.
2098 */
2099 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2100 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2101 return -EPERM;
2102
2103 if (!is_spec_ib_user_controlled())
2104 return 0;
2105
2106 task_set_spec_ib_disable(task);
2107 if (ctrl == PR_SPEC_FORCE_DISABLE)
2108 task_set_spec_ib_force_disable(task);
2109 task_update_spec_tif(task);
2110 if (task == current)
2111 indirect_branch_prediction_barrier();
2112 break;
2113 default:
2114 return -ERANGE;
2115 }
2116 return 0;
2117}
2118
2119int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
2120 unsigned long ctrl)
2121{
2122 switch (which) {
2123 case PR_SPEC_STORE_BYPASS:
2124 return ssb_prctl_set(task, ctrl);
2125 case PR_SPEC_INDIRECT_BRANCH:
2126 return ib_prctl_set(task, ctrl);
2127 case PR_SPEC_L1D_FLUSH:
2128 return l1d_flush_prctl_set(task, ctrl);
2129 default:
2130 return -ENODEV;
2131 }
2132}
2133
2134#ifdef CONFIG_SECCOMP
2135void arch_seccomp_spec_mitigate(struct task_struct *task)
2136{
2137 if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
2138 ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2139 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2140 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
2141 ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2142}
2143#endif
2144
2145static int l1d_flush_prctl_get(struct task_struct *task)
2146{
2147 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2148 return PR_SPEC_FORCE_DISABLE;
2149
2150 if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
2151 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2152 else
2153 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2154}
2155
2156static int ssb_prctl_get(struct task_struct *task)
2157{
2158 switch (ssb_mode) {
2159 case SPEC_STORE_BYPASS_NONE:
2160 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2161 return PR_SPEC_ENABLE;
2162 return PR_SPEC_NOT_AFFECTED;
2163 case SPEC_STORE_BYPASS_DISABLE:
2164 return PR_SPEC_DISABLE;
2165 case SPEC_STORE_BYPASS_SECCOMP:
2166 case SPEC_STORE_BYPASS_PRCTL:
2167 if (task_spec_ssb_force_disable(task))
2168 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2169 if (task_spec_ssb_noexec(task))
2170 return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2171 if (task_spec_ssb_disable(task))
2172 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2173 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2174 }
2175 BUG();
2176}
2177
2178static int ib_prctl_get(struct task_struct *task)
2179{
2180 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2181 return PR_SPEC_NOT_AFFECTED;
2182
2183 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2184 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2185 return PR_SPEC_ENABLE;
2186 else if (is_spec_ib_user_controlled()) {
2187 if (task_spec_ib_force_disable(task))
2188 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2189 if (task_spec_ib_disable(task))
2190 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2191 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2192 } else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2193 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2194 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2195 return PR_SPEC_DISABLE;
2196 else
2197 return PR_SPEC_NOT_AFFECTED;
2198}
2199
2200int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2201{
2202 switch (which) {
2203 case PR_SPEC_STORE_BYPASS:
2204 return ssb_prctl_get(task);
2205 case PR_SPEC_INDIRECT_BRANCH:
2206 return ib_prctl_get(task);
2207 case PR_SPEC_L1D_FLUSH:
2208 return l1d_flush_prctl_get(task);
2209 default:
2210 return -ENODEV;
2211 }
2212}
2213
2214void x86_spec_ctrl_setup_ap(void)
2215{
2216 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2217 update_spec_ctrl(x86_spec_ctrl_base);
2218
2219 if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2220 x86_amd_ssb_disable();
2221}
2222
2223bool itlb_multihit_kvm_mitigation;
2224EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2225
2226#undef pr_fmt
2227#define pr_fmt(fmt) "L1TF: " fmt
2228
2229/* Default mitigation for L1TF-affected CPUs */
2230enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
2231#if IS_ENABLED(CONFIG_KVM_INTEL)
2232EXPORT_SYMBOL_GPL(l1tf_mitigation);
2233#endif
2234enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2235EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2236
2237/*
2238 * These CPUs all support 44bits physical address space internally in the
2239 * cache but CPUID can report a smaller number of physical address bits.
2240 *
2241 * The L1TF mitigation uses the top most address bit for the inversion of
2242 * non present PTEs. When the installed memory reaches into the top most
2243 * address bit due to memory holes, which has been observed on machines
2244 * which report 36bits physical address bits and have 32G RAM installed,
2245 * then the mitigation range check in l1tf_select_mitigation() triggers.
2246 * This is a false positive because the mitigation is still possible due to
2247 * the fact that the cache uses 44bit internally. Use the cache bits
2248 * instead of the reported physical bits and adjust them on the affected
2249 * machines to 44bit if the reported bits are less than 44.
2250 */
2251static void override_cache_bits(struct cpuinfo_x86 *c)
2252{
2253 if (c->x86 != 6)
2254 return;
2255
2256 switch (c->x86_model) {
2257 case INTEL_FAM6_NEHALEM:
2258 case INTEL_FAM6_WESTMERE:
2259 case INTEL_FAM6_SANDYBRIDGE:
2260 case INTEL_FAM6_IVYBRIDGE:
2261 case INTEL_FAM6_HASWELL:
2262 case INTEL_FAM6_HASWELL_L:
2263 case INTEL_FAM6_HASWELL_G:
2264 case INTEL_FAM6_BROADWELL:
2265 case INTEL_FAM6_BROADWELL_G:
2266 case INTEL_FAM6_SKYLAKE_L:
2267 case INTEL_FAM6_SKYLAKE:
2268 case INTEL_FAM6_KABYLAKE_L:
2269 case INTEL_FAM6_KABYLAKE:
2270 if (c->x86_cache_bits < 44)
2271 c->x86_cache_bits = 44;
2272 break;
2273 }
2274}
2275
2276static void __init l1tf_select_mitigation(void)
2277{
2278 u64 half_pa;
2279
2280 if (!boot_cpu_has_bug(X86_BUG_L1TF))
2281 return;
2282
2283 if (cpu_mitigations_off())
2284 l1tf_mitigation = L1TF_MITIGATION_OFF;
2285 else if (cpu_mitigations_auto_nosmt())
2286 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2287
2288 override_cache_bits(&boot_cpu_data);
2289
2290 switch (l1tf_mitigation) {
2291 case L1TF_MITIGATION_OFF:
2292 case L1TF_MITIGATION_FLUSH_NOWARN:
2293 case L1TF_MITIGATION_FLUSH:
2294 break;
2295 case L1TF_MITIGATION_FLUSH_NOSMT:
2296 case L1TF_MITIGATION_FULL:
2297 cpu_smt_disable(false);
2298 break;
2299 case L1TF_MITIGATION_FULL_FORCE:
2300 cpu_smt_disable(true);
2301 break;
2302 }
2303
2304#if CONFIG_PGTABLE_LEVELS == 2
2305 pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2306 return;
2307#endif
2308
2309 half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2310 if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2311 e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
2312 pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2313 pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2314 half_pa);
2315 pr_info("However, doing so will make a part of your RAM unusable.\n");
2316 pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2317 return;
2318 }
2319
2320 setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2321}
2322
2323static int __init l1tf_cmdline(char *str)
2324{
2325 if (!boot_cpu_has_bug(X86_BUG_L1TF))
2326 return 0;
2327
2328 if (!str)
2329 return -EINVAL;
2330
2331 if (!strcmp(str, "off"))
2332 l1tf_mitigation = L1TF_MITIGATION_OFF;
2333 else if (!strcmp(str, "flush,nowarn"))
2334 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2335 else if (!strcmp(str, "flush"))
2336 l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2337 else if (!strcmp(str, "flush,nosmt"))
2338 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2339 else if (!strcmp(str, "full"))
2340 l1tf_mitigation = L1TF_MITIGATION_FULL;
2341 else if (!strcmp(str, "full,force"))
2342 l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2343
2344 return 0;
2345}
2346early_param("l1tf", l1tf_cmdline);
2347
2348#undef pr_fmt
2349#define pr_fmt(fmt) "Speculative Return Stack Overflow: " fmt
2350
2351enum srso_mitigation {
2352 SRSO_MITIGATION_NONE,
2353 SRSO_MITIGATION_UCODE_NEEDED,
2354 SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED,
2355 SRSO_MITIGATION_MICROCODE,
2356 SRSO_MITIGATION_SAFE_RET,
2357 SRSO_MITIGATION_IBPB,
2358 SRSO_MITIGATION_IBPB_ON_VMEXIT,
2359};
2360
2361enum srso_mitigation_cmd {
2362 SRSO_CMD_OFF,
2363 SRSO_CMD_MICROCODE,
2364 SRSO_CMD_SAFE_RET,
2365 SRSO_CMD_IBPB,
2366 SRSO_CMD_IBPB_ON_VMEXIT,
2367};
2368
2369static const char * const srso_strings[] = {
2370 [SRSO_MITIGATION_NONE] = "Vulnerable",
2371 [SRSO_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
2372 [SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED] = "Vulnerable: Safe RET, no microcode",
2373 [SRSO_MITIGATION_MICROCODE] = "Vulnerable: Microcode, no safe RET",
2374 [SRSO_MITIGATION_SAFE_RET] = "Mitigation: Safe RET",
2375 [SRSO_MITIGATION_IBPB] = "Mitigation: IBPB",
2376 [SRSO_MITIGATION_IBPB_ON_VMEXIT] = "Mitigation: IBPB on VMEXIT only"
2377};
2378
2379static enum srso_mitigation srso_mitigation __ro_after_init = SRSO_MITIGATION_NONE;
2380static enum srso_mitigation_cmd srso_cmd __ro_after_init = SRSO_CMD_SAFE_RET;
2381
2382static int __init srso_parse_cmdline(char *str)
2383{
2384 if (!str)
2385 return -EINVAL;
2386
2387 if (!strcmp(str, "off"))
2388 srso_cmd = SRSO_CMD_OFF;
2389 else if (!strcmp(str, "microcode"))
2390 srso_cmd = SRSO_CMD_MICROCODE;
2391 else if (!strcmp(str, "safe-ret"))
2392 srso_cmd = SRSO_CMD_SAFE_RET;
2393 else if (!strcmp(str, "ibpb"))
2394 srso_cmd = SRSO_CMD_IBPB;
2395 else if (!strcmp(str, "ibpb-vmexit"))
2396 srso_cmd = SRSO_CMD_IBPB_ON_VMEXIT;
2397 else
2398 pr_err("Ignoring unknown SRSO option (%s).", str);
2399
2400 return 0;
2401}
2402early_param("spec_rstack_overflow", srso_parse_cmdline);
2403
2404#define SRSO_NOTICE "WARNING: See https://kernel.org/doc/html/latest/admin-guide/hw-vuln/srso.html for mitigation options."
2405
2406static void __init srso_select_mitigation(void)
2407{
2408 bool has_microcode = boot_cpu_has(X86_FEATURE_IBPB_BRTYPE);
2409
2410 if (cpu_mitigations_off())
2411 return;
2412
2413 if (!boot_cpu_has_bug(X86_BUG_SRSO)) {
2414 if (boot_cpu_has(X86_FEATURE_SBPB))
2415 x86_pred_cmd = PRED_CMD_SBPB;
2416 return;
2417 }
2418
2419 if (has_microcode) {
2420 /*
2421 * Zen1/2 with SMT off aren't vulnerable after the right
2422 * IBPB microcode has been applied.
2423 *
2424 * Zen1/2 don't have SBPB, no need to try to enable it here.
2425 */
2426 if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) {
2427 setup_force_cpu_cap(X86_FEATURE_SRSO_NO);
2428 return;
2429 }
2430
2431 if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2432 srso_mitigation = SRSO_MITIGATION_IBPB;
2433 goto out;
2434 }
2435 } else {
2436 pr_warn("IBPB-extending microcode not applied!\n");
2437 pr_warn(SRSO_NOTICE);
2438
2439 /* may be overwritten by SRSO_CMD_SAFE_RET below */
2440 srso_mitigation = SRSO_MITIGATION_UCODE_NEEDED;
2441 }
2442
2443 switch (srso_cmd) {
2444 case SRSO_CMD_OFF:
2445 if (boot_cpu_has(X86_FEATURE_SBPB))
2446 x86_pred_cmd = PRED_CMD_SBPB;
2447 return;
2448
2449 case SRSO_CMD_MICROCODE:
2450 if (has_microcode) {
2451 srso_mitigation = SRSO_MITIGATION_MICROCODE;
2452 pr_warn(SRSO_NOTICE);
2453 }
2454 break;
2455
2456 case SRSO_CMD_SAFE_RET:
2457 if (IS_ENABLED(CONFIG_CPU_SRSO)) {
2458 /*
2459 * Enable the return thunk for generated code
2460 * like ftrace, static_call, etc.
2461 */
2462 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
2463 setup_force_cpu_cap(X86_FEATURE_UNRET);
2464
2465 if (boot_cpu_data.x86 == 0x19) {
2466 setup_force_cpu_cap(X86_FEATURE_SRSO_ALIAS);
2467 x86_return_thunk = srso_alias_return_thunk;
2468 } else {
2469 setup_force_cpu_cap(X86_FEATURE_SRSO);
2470 x86_return_thunk = srso_return_thunk;
2471 }
2472 if (has_microcode)
2473 srso_mitigation = SRSO_MITIGATION_SAFE_RET;
2474 else
2475 srso_mitigation = SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED;
2476 } else {
2477 pr_err("WARNING: kernel not compiled with CPU_SRSO.\n");
2478 }
2479 break;
2480
2481 case SRSO_CMD_IBPB:
2482 if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) {
2483 if (has_microcode) {
2484 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
2485 srso_mitigation = SRSO_MITIGATION_IBPB;
2486 }
2487 } else {
2488 pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n");
2489 }
2490 break;
2491
2492 case SRSO_CMD_IBPB_ON_VMEXIT:
2493 if (IS_ENABLED(CONFIG_CPU_SRSO)) {
2494 if (!boot_cpu_has(X86_FEATURE_ENTRY_IBPB) && has_microcode) {
2495 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
2496 srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT;
2497 }
2498 } else {
2499 pr_err("WARNING: kernel not compiled with CPU_SRSO.\n");
2500 }
2501 break;
2502 }
2503
2504out:
2505 pr_info("%s\n", srso_strings[srso_mitigation]);
2506}
2507
2508#undef pr_fmt
2509#define pr_fmt(fmt) fmt
2510
2511#ifdef CONFIG_SYSFS
2512
2513#define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
2514
2515#if IS_ENABLED(CONFIG_KVM_INTEL)
2516static const char * const l1tf_vmx_states[] = {
2517 [VMENTER_L1D_FLUSH_AUTO] = "auto",
2518 [VMENTER_L1D_FLUSH_NEVER] = "vulnerable",
2519 [VMENTER_L1D_FLUSH_COND] = "conditional cache flushes",
2520 [VMENTER_L1D_FLUSH_ALWAYS] = "cache flushes",
2521 [VMENTER_L1D_FLUSH_EPT_DISABLED] = "EPT disabled",
2522 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = "flush not necessary"
2523};
2524
2525static ssize_t l1tf_show_state(char *buf)
2526{
2527 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
2528 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2529
2530 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
2531 (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
2532 sched_smt_active())) {
2533 return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
2534 l1tf_vmx_states[l1tf_vmx_mitigation]);
2535 }
2536
2537 return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
2538 l1tf_vmx_states[l1tf_vmx_mitigation],
2539 sched_smt_active() ? "vulnerable" : "disabled");
2540}
2541
2542static ssize_t itlb_multihit_show_state(char *buf)
2543{
2544 if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2545 !boot_cpu_has(X86_FEATURE_VMX))
2546 return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n");
2547 else if (!(cr4_read_shadow() & X86_CR4_VMXE))
2548 return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n");
2549 else if (itlb_multihit_kvm_mitigation)
2550 return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n");
2551 else
2552 return sysfs_emit(buf, "KVM: Vulnerable\n");
2553}
2554#else
2555static ssize_t l1tf_show_state(char *buf)
2556{
2557 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2558}
2559
2560static ssize_t itlb_multihit_show_state(char *buf)
2561{
2562 return sysfs_emit(buf, "Processor vulnerable\n");
2563}
2564#endif
2565
2566static ssize_t mds_show_state(char *buf)
2567{
2568 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2569 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2570 mds_strings[mds_mitigation]);
2571 }
2572
2573 if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
2574 return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2575 (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
2576 sched_smt_active() ? "mitigated" : "disabled"));
2577 }
2578
2579 return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2580 sched_smt_active() ? "vulnerable" : "disabled");
2581}
2582
2583static ssize_t tsx_async_abort_show_state(char *buf)
2584{
2585 if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
2586 (taa_mitigation == TAA_MITIGATION_OFF))
2587 return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]);
2588
2589 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2590 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2591 taa_strings[taa_mitigation]);
2592 }
2593
2594 return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
2595 sched_smt_active() ? "vulnerable" : "disabled");
2596}
2597
2598static ssize_t mmio_stale_data_show_state(char *buf)
2599{
2600 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2601 return sysfs_emit(buf, "Unknown: No mitigations\n");
2602
2603 if (mmio_mitigation == MMIO_MITIGATION_OFF)
2604 return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
2605
2606 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2607 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2608 mmio_strings[mmio_mitigation]);
2609 }
2610
2611 return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
2612 sched_smt_active() ? "vulnerable" : "disabled");
2613}
2614
2615static char *stibp_state(void)
2616{
2617 if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
2618 !boot_cpu_has(X86_FEATURE_AUTOIBRS))
2619 return "";
2620
2621 switch (spectre_v2_user_stibp) {
2622 case SPECTRE_V2_USER_NONE:
2623 return ", STIBP: disabled";
2624 case SPECTRE_V2_USER_STRICT:
2625 return ", STIBP: forced";
2626 case SPECTRE_V2_USER_STRICT_PREFERRED:
2627 return ", STIBP: always-on";
2628 case SPECTRE_V2_USER_PRCTL:
2629 case SPECTRE_V2_USER_SECCOMP:
2630 if (static_key_enabled(&switch_to_cond_stibp))
2631 return ", STIBP: conditional";
2632 }
2633 return "";
2634}
2635
2636static char *ibpb_state(void)
2637{
2638 if (boot_cpu_has(X86_FEATURE_IBPB)) {
2639 if (static_key_enabled(&switch_mm_always_ibpb))
2640 return ", IBPB: always-on";
2641 if (static_key_enabled(&switch_mm_cond_ibpb))
2642 return ", IBPB: conditional";
2643 return ", IBPB: disabled";
2644 }
2645 return "";
2646}
2647
2648static char *pbrsb_eibrs_state(void)
2649{
2650 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2651 if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
2652 boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
2653 return ", PBRSB-eIBRS: SW sequence";
2654 else
2655 return ", PBRSB-eIBRS: Vulnerable";
2656 } else {
2657 return ", PBRSB-eIBRS: Not affected";
2658 }
2659}
2660
2661static ssize_t spectre_v2_show_state(char *buf)
2662{
2663 if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
2664 return sysfs_emit(buf, "Vulnerable: LFENCE\n");
2665
2666 if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2667 return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
2668
2669 if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2670 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2671 return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
2672
2673 return sysfs_emit(buf, "%s%s%s%s%s%s%s\n",
2674 spectre_v2_strings[spectre_v2_enabled],
2675 ibpb_state(),
2676 boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "",
2677 stibp_state(),
2678 boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "",
2679 pbrsb_eibrs_state(),
2680 spectre_v2_module_string());
2681}
2682
2683static ssize_t srbds_show_state(char *buf)
2684{
2685 return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]);
2686}
2687
2688static ssize_t retbleed_show_state(char *buf)
2689{
2690 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
2691 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2692 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
2693 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
2694 return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
2695
2696 return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
2697 !sched_smt_active() ? "disabled" :
2698 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2699 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
2700 "enabled with STIBP protection" : "vulnerable");
2701 }
2702
2703 return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
2704}
2705
2706static ssize_t srso_show_state(char *buf)
2707{
2708 if (boot_cpu_has(X86_FEATURE_SRSO_NO))
2709 return sysfs_emit(buf, "Mitigation: SMT disabled\n");
2710
2711 return sysfs_emit(buf, "%s\n", srso_strings[srso_mitigation]);
2712}
2713
2714static ssize_t gds_show_state(char *buf)
2715{
2716 return sysfs_emit(buf, "%s\n", gds_strings[gds_mitigation]);
2717}
2718
2719static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
2720 char *buf, unsigned int bug)
2721{
2722 if (!boot_cpu_has_bug(bug))
2723 return sysfs_emit(buf, "Not affected\n");
2724
2725 switch (bug) {
2726 case X86_BUG_CPU_MELTDOWN:
2727 if (boot_cpu_has(X86_FEATURE_PTI))
2728 return sysfs_emit(buf, "Mitigation: PTI\n");
2729
2730 if (hypervisor_is_type(X86_HYPER_XEN_PV))
2731 return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
2732
2733 break;
2734
2735 case X86_BUG_SPECTRE_V1:
2736 return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
2737
2738 case X86_BUG_SPECTRE_V2:
2739 return spectre_v2_show_state(buf);
2740
2741 case X86_BUG_SPEC_STORE_BYPASS:
2742 return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]);
2743
2744 case X86_BUG_L1TF:
2745 if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
2746 return l1tf_show_state(buf);
2747 break;
2748
2749 case X86_BUG_MDS:
2750 return mds_show_state(buf);
2751
2752 case X86_BUG_TAA:
2753 return tsx_async_abort_show_state(buf);
2754
2755 case X86_BUG_ITLB_MULTIHIT:
2756 return itlb_multihit_show_state(buf);
2757
2758 case X86_BUG_SRBDS:
2759 return srbds_show_state(buf);
2760
2761 case X86_BUG_MMIO_STALE_DATA:
2762 case X86_BUG_MMIO_UNKNOWN:
2763 return mmio_stale_data_show_state(buf);
2764
2765 case X86_BUG_RETBLEED:
2766 return retbleed_show_state(buf);
2767
2768 case X86_BUG_SRSO:
2769 return srso_show_state(buf);
2770
2771 case X86_BUG_GDS:
2772 return gds_show_state(buf);
2773
2774 default:
2775 break;
2776 }
2777
2778 return sysfs_emit(buf, "Vulnerable\n");
2779}
2780
2781ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
2782{
2783 return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
2784}
2785
2786ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
2787{
2788 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
2789}
2790
2791ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
2792{
2793 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
2794}
2795
2796ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
2797{
2798 return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
2799}
2800
2801ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
2802{
2803 return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
2804}
2805
2806ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
2807{
2808 return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
2809}
2810
2811ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
2812{
2813 return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
2814}
2815
2816ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
2817{
2818 return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
2819}
2820
2821ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
2822{
2823 return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
2824}
2825
2826ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
2827{
2828 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2829 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN);
2830 else
2831 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
2832}
2833
2834ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
2835{
2836 return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
2837}
2838
2839ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf)
2840{
2841 return cpu_show_common(dev, attr, buf, X86_BUG_SRSO);
2842}
2843
2844ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf)
2845{
2846 return cpu_show_common(dev, attr, buf, X86_BUG_GDS);
2847}
2848#endif