Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  SMP related functions
   4 *
   5 *    Copyright IBM Corp. 1999, 2012
   6 *    Author(s): Denis Joseph Barrow,
   7 *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
 
   8 *
   9 *  based on other smp stuff by
  10 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
  11 *    (c) 1998 Ingo Molnar
  12 *
  13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
  14 * the translation of logical to physical cpu ids. All new code that
  15 * operates on physical cpu numbers needs to go into smp.c.
  16 */
  17
  18#define KMSG_COMPONENT "cpu"
  19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  20
  21#include <linux/workqueue.h>
  22#include <linux/memblock.h>
  23#include <linux/export.h>
  24#include <linux/init.h>
  25#include <linux/mm.h>
  26#include <linux/err.h>
  27#include <linux/spinlock.h>
  28#include <linux/kernel_stat.h>
  29#include <linux/delay.h>
  30#include <linux/interrupt.h>
  31#include <linux/irqflags.h>
  32#include <linux/irq_work.h>
  33#include <linux/cpu.h>
  34#include <linux/slab.h>
  35#include <linux/sched/hotplug.h>
  36#include <linux/sched/task_stack.h>
  37#include <linux/crash_dump.h>
  38#include <linux/kprobes.h>
  39#include <asm/asm-offsets.h>
  40#include <asm/diag.h>
  41#include <asm/switch_to.h>
  42#include <asm/facility.h>
  43#include <asm/ipl.h>
  44#include <asm/setup.h>
  45#include <asm/irq.h>
  46#include <asm/tlbflush.h>
  47#include <asm/vtimer.h>
  48#include <asm/abs_lowcore.h>
  49#include <asm/sclp.h>
 
  50#include <asm/debug.h>
  51#include <asm/os_info.h>
  52#include <asm/sigp.h>
  53#include <asm/idle.h>
  54#include <asm/nmi.h>
  55#include <asm/stacktrace.h>
  56#include <asm/topology.h>
  57#include <asm/vdso.h>
  58#include <asm/maccess.h>
  59#include "entry.h"
  60
  61enum {
  62	ec_schedule = 0,
  63	ec_call_function_single,
  64	ec_stop_cpu,
  65	ec_mcck_pending,
  66	ec_irq_work,
  67};
  68
  69enum {
  70	CPU_STATE_STANDBY,
  71	CPU_STATE_CONFIGURED,
  72};
  73
  74static DEFINE_PER_CPU(struct cpu *, cpu_device);
  75
  76struct pcpu {
 
 
 
 
  77	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
  78	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
  79	signed char state;		/* physical cpu state */
  80	signed char polarization;	/* physical polarization */
  81	u16 address;			/* physical cpu address */
  82};
  83
  84static u8 boot_core_type;
 
  85static struct pcpu pcpu_devices[NR_CPUS];
  86
  87unsigned int smp_cpu_mt_shift;
  88EXPORT_SYMBOL(smp_cpu_mt_shift);
  89
  90unsigned int smp_cpu_mtid;
  91EXPORT_SYMBOL(smp_cpu_mtid);
  92
  93#ifdef CONFIG_CRASH_DUMP
  94__vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
  95#endif
  96
  97static unsigned int smp_max_threads __initdata = -1U;
  98cpumask_t cpu_setup_mask;
  99
 100static int __init early_nosmt(char *s)
 101{
 102	smp_max_threads = 1;
 103	return 0;
 104}
 105early_param("nosmt", early_nosmt);
 106
 107static int __init early_smt(char *s)
 108{
 109	get_option(&s, &smp_max_threads);
 110	return 0;
 111}
 112early_param("smt", early_smt);
 113
 114/*
 115 * The smp_cpu_state_mutex must be held when changing the state or polarization
 116 * member of a pcpu data structure within the pcpu_devices arreay.
 117 */
 118DEFINE_MUTEX(smp_cpu_state_mutex);
 119
 120/*
 121 * Signal processor helper functions.
 122 */
 123static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
 124{
 125	int cc;
 126
 127	while (1) {
 128		cc = __pcpu_sigp(addr, order, parm, NULL);
 129		if (cc != SIGP_CC_BUSY)
 130			return cc;
 131		cpu_relax();
 132	}
 133}
 134
 135static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
 136{
 137	int cc, retry;
 138
 139	for (retry = 0; ; retry++) {
 140		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
 141		if (cc != SIGP_CC_BUSY)
 142			break;
 143		if (retry >= 3)
 144			udelay(10);
 145	}
 146	return cc;
 147}
 148
 149static inline int pcpu_stopped(struct pcpu *pcpu)
 150{
 151	u32 status;
 152
 153	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
 154			0, &status) != SIGP_CC_STATUS_STORED)
 155		return 0;
 156	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
 157}
 158
 159static inline int pcpu_running(struct pcpu *pcpu)
 160{
 161	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
 162			0, NULL) != SIGP_CC_STATUS_STORED)
 163		return 1;
 164	/* Status stored condition code is equivalent to cpu not running. */
 165	return 0;
 166}
 167
 168/*
 169 * Find struct pcpu by cpu address.
 170 */
 171static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
 172{
 173	int cpu;
 174
 175	for_each_cpu(cpu, mask)
 176		if (pcpu_devices[cpu].address == address)
 177			return pcpu_devices + cpu;
 178	return NULL;
 179}
 180
 181static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
 182{
 183	int order;
 184
 185	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
 186		return;
 187	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
 188	pcpu->ec_clk = get_tod_clock_fast();
 189	pcpu_sigp_retry(pcpu, order, 0);
 190}
 191
 192static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
 193{
 194	unsigned long async_stack, nodat_stack, mcck_stack;
 195	struct lowcore *lc;
 196
 197	lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
 198	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
 199	async_stack = stack_alloc();
 200	mcck_stack = stack_alloc();
 201	if (!lc || !nodat_stack || !async_stack || !mcck_stack)
 202		goto out;
 
 
 
 203	memcpy(lc, &S390_lowcore, 512);
 204	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
 205	lc->async_stack = async_stack + STACK_INIT_OFFSET;
 206	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
 207	lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
 
 208	lc->cpu_nr = cpu;
 209	lc->spinlock_lockval = arch_spin_lockval(cpu);
 210	lc->spinlock_index = 0;
 211	lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
 212	lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
 213	lc->preempt_count = PREEMPT_DISABLED;
 214	if (nmi_alloc_mcesa(&lc->mcesad))
 
 
 215		goto out;
 216	if (abs_lowcore_map(cpu, lc, true))
 217		goto out_mcesa;
 218	lowcore_ptr[cpu] = lc;
 219	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc));
 220	return 0;
 221
 222out_mcesa:
 223	nmi_free_mcesa(&lc->mcesad);
 224out:
 225	stack_free(mcck_stack);
 226	stack_free(async_stack);
 227	free_pages(nodat_stack, THREAD_SIZE_ORDER);
 228	free_pages((unsigned long) lc, LC_ORDER);
 
 229	return -ENOMEM;
 230}
 231
 
 
 232static void pcpu_free_lowcore(struct pcpu *pcpu)
 233{
 234	unsigned long async_stack, nodat_stack, mcck_stack;
 235	struct lowcore *lc;
 236	int cpu;
 237
 238	cpu = pcpu - pcpu_devices;
 239	lc = lowcore_ptr[cpu];
 240	nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
 241	async_stack = lc->async_stack - STACK_INIT_OFFSET;
 242	mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
 243	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
 244	lowcore_ptr[cpu] = NULL;
 245	abs_lowcore_unmap(cpu);
 246	nmi_free_mcesa(&lc->mcesad);
 247	stack_free(async_stack);
 248	stack_free(mcck_stack);
 249	free_pages(nodat_stack, THREAD_SIZE_ORDER);
 250	free_pages((unsigned long) lc, LC_ORDER);
 
 
 
 
 
 
 
 
 
 251}
 252
 
 
 253static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
 254{
 255	struct lowcore *lc = lowcore_ptr[cpu];
 256
 257	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
 
 258	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
 
 259	lc->cpu_nr = cpu;
 260	lc->restart_flags = RESTART_FLAG_CTLREGS;
 261	lc->spinlock_lockval = arch_spin_lockval(cpu);
 262	lc->spinlock_index = 0;
 263	lc->percpu_offset = __per_cpu_offset[cpu];
 264	lc->kernel_asce = S390_lowcore.kernel_asce;
 265	lc->user_asce = s390_invalid_asce;
 266	lc->machine_flags = S390_lowcore.machine_flags;
 267	lc->user_timer = lc->system_timer =
 268		lc->steal_timer = lc->avg_steal_timer = 0;
 269	__ctl_store(lc->cregs_save_area, 0, 15);
 270	lc->cregs_save_area[1] = lc->kernel_asce;
 271	lc->cregs_save_area[7] = lc->user_asce;
 272	save_access_regs((unsigned int *) lc->access_regs_save_area);
 273	arch_spin_lock_setup(cpu);
 
 274}
 275
 276static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
 277{
 278	struct lowcore *lc;
 279	int cpu;
 280
 281	cpu = pcpu - pcpu_devices;
 282	lc = lowcore_ptr[cpu];
 283	lc->kernel_stack = (unsigned long) task_stack_page(tsk)
 284		+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
 
 285	lc->current_task = (unsigned long) tsk;
 286	lc->lpp = LPP_MAGIC;
 287	lc->current_pid = tsk->pid;
 288	lc->user_timer = tsk->thread.user_timer;
 289	lc->guest_timer = tsk->thread.guest_timer;
 290	lc->system_timer = tsk->thread.system_timer;
 291	lc->hardirq_timer = tsk->thread.hardirq_timer;
 292	lc->softirq_timer = tsk->thread.softirq_timer;
 293	lc->steal_timer = 0;
 294}
 295
 296static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
 297{
 298	struct lowcore *lc;
 299	int cpu;
 300
 301	cpu = pcpu - pcpu_devices;
 302	lc = lowcore_ptr[cpu];
 303	lc->restart_stack = lc->kernel_stack;
 304	lc->restart_fn = (unsigned long) func;
 305	lc->restart_data = (unsigned long) data;
 306	lc->restart_source = -1U;
 307	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
 308}
 309
 310typedef void (pcpu_delegate_fn)(void *);
 311
 312/*
 313 * Call function via PSW restart on pcpu and stop the current cpu.
 314 */
 315static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
 316{
 317	func(data);	/* should not return */
 318}
 319
 320static void pcpu_delegate(struct pcpu *pcpu,
 321			  pcpu_delegate_fn *func,
 322			  void *data, unsigned long stack)
 323{
 324	struct lowcore *lc, *abs_lc;
 325	unsigned int source_cpu;
 326	unsigned long flags;
 327
 328	lc = lowcore_ptr[pcpu - pcpu_devices];
 329	source_cpu = stap();
 330	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 331	if (pcpu->address == source_cpu) {
 332		call_on_stack(2, stack, void, __pcpu_delegate,
 333			      pcpu_delegate_fn *, func, void *, data);
 334	}
 335	/* Stop target cpu (if func returns this stops the current cpu). */
 336	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 337	/* Restart func on the target cpu and stop the current cpu. */
 338	if (lc) {
 339		lc->restart_stack = stack;
 340		lc->restart_fn = (unsigned long)func;
 341		lc->restart_data = (unsigned long)data;
 342		lc->restart_source = source_cpu;
 343	} else {
 344		abs_lc = get_abs_lowcore(&flags);
 345		abs_lc->restart_stack = stack;
 346		abs_lc->restart_fn = (unsigned long)func;
 347		abs_lc->restart_data = (unsigned long)data;
 348		abs_lc->restart_source = source_cpu;
 349		put_abs_lowcore(abs_lc, flags);
 350	}
 351	__bpon();
 352	asm volatile(
 353		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
 354		"	brc	2,0b	# busy, try again\n"
 355		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
 356		"	brc	2,1b	# busy, try again\n"
 357		: : "d" (pcpu->address), "d" (source_cpu),
 358		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
 359		: "0", "1", "cc");
 360	for (;;) ;
 361}
 362
 363/*
 364 * Enable additional logical cpus for multi-threading.
 365 */
 366static int pcpu_set_smt(unsigned int mtid)
 367{
 368	int cc;
 369
 370	if (smp_cpu_mtid == mtid)
 371		return 0;
 372	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
 373	if (cc == 0) {
 374		smp_cpu_mtid = mtid;
 375		smp_cpu_mt_shift = 0;
 376		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
 377			smp_cpu_mt_shift++;
 378		pcpu_devices[0].address = stap();
 379	}
 380	return cc;
 381}
 382
 383/*
 384 * Call function on an online CPU.
 385 */
 386void smp_call_online_cpu(void (*func)(void *), void *data)
 387{
 388	struct pcpu *pcpu;
 389
 390	/* Use the current cpu if it is online. */
 391	pcpu = pcpu_find_address(cpu_online_mask, stap());
 392	if (!pcpu)
 393		/* Use the first online cpu. */
 394		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
 395	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
 396}
 397
 398/*
 399 * Call function on the ipl CPU.
 400 */
 401void smp_call_ipl_cpu(void (*func)(void *), void *data)
 402{
 403	struct lowcore *lc = lowcore_ptr[0];
 404
 405	if (pcpu_devices[0].address == stap())
 406		lc = &S390_lowcore;
 407
 408	pcpu_delegate(&pcpu_devices[0], func, data,
 409		      lc->nodat_stack);
 410}
 411
 412int smp_find_processor_id(u16 address)
 413{
 414	int cpu;
 415
 416	for_each_present_cpu(cpu)
 417		if (pcpu_devices[cpu].address == address)
 418			return cpu;
 419	return -1;
 420}
 421
 422void schedule_mcck_handler(void)
 423{
 424	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
 425}
 426
 427bool notrace arch_vcpu_is_preempted(int cpu)
 428{
 429	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
 430		return false;
 431	if (pcpu_running(pcpu_devices + cpu))
 432		return false;
 433	return true;
 434}
 435EXPORT_SYMBOL(arch_vcpu_is_preempted);
 436
 437void notrace smp_yield_cpu(int cpu)
 438{
 439	if (!MACHINE_HAS_DIAG9C)
 440		return;
 441	diag_stat_inc_norecursion(DIAG_STAT_X09C);
 442	asm volatile("diag %0,0,0x9c"
 443		     : : "d" (pcpu_devices[cpu].address));
 444}
 445EXPORT_SYMBOL_GPL(smp_yield_cpu);
 446
 447/*
 448 * Send cpus emergency shutdown signal. This gives the cpus the
 449 * opportunity to complete outstanding interrupts.
 450 */
 451void notrace smp_emergency_stop(void)
 452{
 453	static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
 454	static cpumask_t cpumask;
 455	u64 end;
 456	int cpu;
 457
 458	arch_spin_lock(&lock);
 459	cpumask_copy(&cpumask, cpu_online_mask);
 460	cpumask_clear_cpu(smp_processor_id(), &cpumask);
 461
 462	end = get_tod_clock() + (1000000UL << 12);
 463	for_each_cpu(cpu, &cpumask) {
 464		struct pcpu *pcpu = pcpu_devices + cpu;
 465		set_bit(ec_stop_cpu, &pcpu->ec_mask);
 466		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
 467				   0, NULL) == SIGP_CC_BUSY &&
 468		       get_tod_clock() < end)
 469			cpu_relax();
 470	}
 471	while (get_tod_clock() < end) {
 472		for_each_cpu(cpu, &cpumask)
 473			if (pcpu_stopped(pcpu_devices + cpu))
 474				cpumask_clear_cpu(cpu, &cpumask);
 475		if (cpumask_empty(&cpumask))
 476			break;
 477		cpu_relax();
 478	}
 479	arch_spin_unlock(&lock);
 480}
 481NOKPROBE_SYMBOL(smp_emergency_stop);
 482
 483/*
 484 * Stop all cpus but the current one.
 485 */
 486void smp_send_stop(void)
 487{
 
 488	int cpu;
 489
 490	/* Disable all interrupts/machine checks */
 491	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 492	trace_hardirqs_off();
 493
 494	debug_set_critical();
 
 
 495
 496	if (oops_in_progress)
 497		smp_emergency_stop();
 498
 499	/* stop all processors */
 500	for_each_online_cpu(cpu) {
 501		if (cpu == smp_processor_id())
 502			continue;
 503		pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
 504		while (!pcpu_stopped(pcpu_devices + cpu))
 505			cpu_relax();
 506	}
 507}
 508
 509/*
 
 
 
 
 
 
 
 
 
 510 * This is the main routine where commands issued by other
 511 * cpus are handled.
 512 */
 513static void smp_handle_ext_call(void)
 514{
 515	unsigned long bits;
 516
 517	/* handle bit signal external calls */
 518	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
 519	if (test_bit(ec_stop_cpu, &bits))
 520		smp_stop_cpu();
 521	if (test_bit(ec_schedule, &bits))
 522		scheduler_ipi();
 523	if (test_bit(ec_call_function_single, &bits))
 524		generic_smp_call_function_single_interrupt();
 525	if (test_bit(ec_mcck_pending, &bits))
 526		__s390_handle_mcck();
 527	if (test_bit(ec_irq_work, &bits))
 528		irq_work_run();
 529}
 530
 531static void do_ext_call_interrupt(struct ext_code ext_code,
 532				  unsigned int param32, unsigned long param64)
 533{
 534	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
 535	smp_handle_ext_call();
 536}
 537
 538void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 539{
 540	int cpu;
 541
 542	for_each_cpu(cpu, mask)
 543		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 544}
 545
 546void arch_send_call_function_single_ipi(int cpu)
 547{
 548	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 549}
 550
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 551/*
 552 * this function sends a 'reschedule' IPI to another CPU.
 553 * it goes straight through and wastes no time serializing
 554 * anything. Worst case is that we lose a reschedule ...
 555 */
 556void smp_send_reschedule(int cpu)
 557{
 558	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
 559}
 560
 561#ifdef CONFIG_IRQ_WORK
 562void arch_irq_work_raise(void)
 563{
 564	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
 565}
 566#endif
 567
 568/*
 569 * parameter area for the set/clear control bit callbacks
 570 */
 571struct ec_creg_mask_parms {
 572	unsigned long orval;
 573	unsigned long andval;
 574	int cr;
 575};
 576
 577/*
 578 * callback for setting/clearing control bits
 579 */
 580static void smp_ctl_bit_callback(void *info)
 581{
 582	struct ec_creg_mask_parms *pp = info;
 583	unsigned long cregs[16];
 584
 585	__ctl_store(cregs, 0, 15);
 586	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
 587	__ctl_load(cregs, 0, 15);
 588}
 589
 590static DEFINE_SPINLOCK(ctl_lock);
 
 
 
 
 
 
 
 
 
 591
 592void smp_ctl_set_clear_bit(int cr, int bit, bool set)
 
 
 
 593{
 594	struct ec_creg_mask_parms parms = { .cr = cr, };
 595	struct lowcore *abs_lc;
 596	unsigned long flags;
 597	u64 ctlreg;
 598
 599	if (set) {
 600		parms.orval = 1UL << bit;
 601		parms.andval = -1UL;
 602	} else {
 603		parms.orval = 0;
 604		parms.andval = ~(1UL << bit);
 605	}
 606	spin_lock(&ctl_lock);
 607	abs_lc = get_abs_lowcore(&flags);
 608	ctlreg = abs_lc->cregs_save_area[cr];
 609	ctlreg = (ctlreg & parms.andval) | parms.orval;
 610	abs_lc->cregs_save_area[cr] = ctlreg;
 611	put_abs_lowcore(abs_lc, flags);
 612	spin_unlock(&ctl_lock);
 613	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 614}
 615EXPORT_SYMBOL(smp_ctl_set_clear_bit);
 616
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 617#ifdef CONFIG_CRASH_DUMP
 
 
 
 
 
 
 
 
 
 
 
 618
 619int smp_store_status(int cpu)
 620{
 621	struct lowcore *lc;
 622	struct pcpu *pcpu;
 623	unsigned long pa;
 624
 625	pcpu = pcpu_devices + cpu;
 626	lc = lowcore_ptr[cpu];
 627	pa = __pa(&lc->floating_pt_save_area);
 628	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
 629			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 630		return -EIO;
 631	if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
 632		return 0;
 633	pa = lc->mcesad & MCESA_ORIGIN_MASK;
 634	if (MACHINE_HAS_GS)
 635		pa |= lc->mcesad & MCESA_LC_MASK;
 636	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
 637			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 638		return -EIO;
 639	return 0;
 640}
 641
 642/*
 643 * Collect CPU state of the previous, crashed system.
 644 * There are four cases:
 645 * 1) standard zfcp/nvme dump
 646 *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
 647 *    The state for all CPUs except the boot CPU needs to be collected
 648 *    with sigp stop-and-store-status. The boot CPU state is located in
 649 *    the absolute lowcore of the memory stored in the HSA. The zcore code
 650 *    will copy the boot CPU state from the HSA.
 651 * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
 652 *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
 653 *    The state for all CPUs except the boot CPU needs to be collected
 654 *    with sigp stop-and-store-status. The firmware or the boot-loader
 655 *    stored the registers of the boot CPU in the absolute lowcore in the
 656 *    memory of the old system.
 657 * 3) kdump and the old kernel did not store the CPU state,
 658 *    or stand-alone kdump for DASD
 659 *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
 660 *    The state for all CPUs except the boot CPU needs to be collected
 661 *    with sigp stop-and-store-status. The kexec code or the boot-loader
 662 *    stored the registers of the boot CPU in the memory of the old system.
 663 * 4) kdump and the old kernel stored the CPU state
 664 *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
 665 *    This case does not exist for s390 anymore, setup_arch explicitly
 666 *    deactivates the elfcorehdr= kernel parameter
 667 */
 668static bool dump_available(void)
 669{
 670	return oldmem_data.start || is_ipl_type_dump();
 671}
 672
 673void __init smp_save_dump_ipl_cpu(void)
 674{
 675	struct save_area *sa;
 676	void *regs;
 677
 678	if (!dump_available())
 679		return;
 680	sa = save_area_alloc(true);
 681	regs = memblock_alloc(512, 8);
 682	if (!sa || !regs)
 683		panic("could not allocate memory for boot CPU save area\n");
 684	copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
 685	save_area_add_regs(sa, regs);
 686	memblock_free(regs, 512);
 687	if (MACHINE_HAS_VX)
 688		save_area_add_vxrs(sa, boot_cpu_vector_save_area);
 689}
 690
 691void __init smp_save_dump_secondary_cpus(void)
 692{
 693	int addr, boot_cpu_addr, max_cpu_addr;
 694	struct save_area *sa;
 695	void *page;
 696
 697	if (!dump_available())
 698		return;
 699	/* Allocate a page as dumping area for the store status sigps */
 700	page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
 701	if (!page)
 702		panic("ERROR: Failed to allocate %lx bytes below %lx\n",
 703		      PAGE_SIZE, 1UL << 31);
 704
 705	/* Set multi-threading state to the previous system. */
 706	pcpu_set_smt(sclp.mtid_prev);
 707	boot_cpu_addr = stap();
 708	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
 709	for (addr = 0; addr <= max_cpu_addr; addr++) {
 710		if (addr == boot_cpu_addr)
 711			continue;
 712		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
 713		    SIGP_CC_NOT_OPERATIONAL)
 714			continue;
 715		sa = save_area_alloc(false);
 716		if (!sa)
 717			panic("could not allocate memory for save area\n");
 718		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(page));
 719		save_area_add_regs(sa, page);
 720		if (MACHINE_HAS_VX) {
 721			__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(page));
 722			save_area_add_vxrs(sa, page);
 723		}
 724	}
 725	memblock_free(page, PAGE_SIZE);
 726	diag_amode31_ops.diag308_reset();
 727	pcpu_set_smt(0);
 728}
 729#endif /* CONFIG_CRASH_DUMP */
 730
 731void smp_cpu_set_polarization(int cpu, int val)
 732{
 733	pcpu_devices[cpu].polarization = val;
 734}
 735
 736int smp_cpu_get_polarization(int cpu)
 737{
 738	return pcpu_devices[cpu].polarization;
 739}
 740
 741int smp_cpu_get_cpu_address(int cpu)
 742{
 743	return pcpu_devices[cpu].address;
 744}
 745
 746static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
 747{
 748	static int use_sigp_detection;
 
 749	int address;
 750
 751	if (use_sigp_detection || sclp_get_core_info(info, early)) {
 
 752		use_sigp_detection = 1;
 753		for (address = 0;
 754		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
 755		     address += (1U << smp_cpu_mt_shift)) {
 756			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
 757			    SIGP_CC_NOT_OPERATIONAL)
 758				continue;
 759			info->core[info->configured].core_id =
 760				address >> smp_cpu_mt_shift;
 761			info->configured++;
 762		}
 763		info->combined = info->configured;
 764	}
 
 765}
 766
 767static int smp_add_present_cpu(int cpu);
 768
 769static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
 770			bool configured, bool early)
 771{
 772	struct pcpu *pcpu;
 
 773	int cpu, nr, i;
 774	u16 address;
 775
 776	nr = 0;
 777	if (sclp.has_core_type && core->type != boot_core_type)
 778		return nr;
 779	cpu = cpumask_first(avail);
 780	address = core->core_id << smp_cpu_mt_shift;
 781	for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
 782		if (pcpu_find_address(cpu_present_mask, address + i))
 783			continue;
 784		pcpu = pcpu_devices + cpu;
 785		pcpu->address = address + i;
 786		if (configured)
 787			pcpu->state = CPU_STATE_CONFIGURED;
 788		else
 789			pcpu->state = CPU_STATE_STANDBY;
 790		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 791		set_cpu_present(cpu, true);
 792		if (!early && smp_add_present_cpu(cpu) != 0)
 793			set_cpu_present(cpu, false);
 794		else
 795			nr++;
 796		cpumask_clear_cpu(cpu, avail);
 797		cpu = cpumask_next(cpu, avail);
 798	}
 799	return nr;
 800}
 801
 802static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
 803{
 804	struct sclp_core_entry *core;
 805	static cpumask_t avail;
 806	bool configured;
 807	u16 core_id;
 808	int nr, i;
 809
 810	cpus_read_lock();
 811	mutex_lock(&smp_cpu_state_mutex);
 812	nr = 0;
 813	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
 814	/*
 815	 * Add IPL core first (which got logical CPU number 0) to make sure
 816	 * that all SMT threads get subsequent logical CPU numbers.
 817	 */
 818	if (early) {
 819		core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
 820		for (i = 0; i < info->configured; i++) {
 821			core = &info->core[i];
 822			if (core->core_id == core_id) {
 823				nr += smp_add_core(core, &avail, true, early);
 824				break;
 825			}
 826		}
 827	}
 828	for (i = 0; i < info->combined; i++) {
 829		configured = i < info->configured;
 830		nr += smp_add_core(&info->core[i], &avail, configured, early);
 831	}
 832	mutex_unlock(&smp_cpu_state_mutex);
 833	cpus_read_unlock();
 834	return nr;
 835}
 836
 837void __init smp_detect_cpus(void)
 838{
 839	unsigned int cpu, mtid, c_cpus, s_cpus;
 840	struct sclp_core_info *info;
 841	u16 address;
 842
 843	/* Get CPU information */
 844	info = memblock_alloc(sizeof(*info), 8);
 845	if (!info)
 846		panic("%s: Failed to allocate %zu bytes align=0x%x\n",
 847		      __func__, sizeof(*info), 8);
 848	smp_get_core_info(info, 1);
 849	/* Find boot CPU type */
 850	if (sclp.has_core_type) {
 851		address = stap();
 852		for (cpu = 0; cpu < info->combined; cpu++)
 853			if (info->core[cpu].core_id == address) {
 854				/* The boot cpu dictates the cpu type. */
 855				boot_core_type = info->core[cpu].type;
 856				break;
 857			}
 858		if (cpu >= info->combined)
 859			panic("Could not find boot CPU type");
 860	}
 861
 862	/* Set multi-threading state for the current system */
 863	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
 864	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
 865	pcpu_set_smt(mtid);
 866
 867	/* Print number of CPUs */
 868	c_cpus = s_cpus = 0;
 869	for (cpu = 0; cpu < info->combined; cpu++) {
 870		if (sclp.has_core_type &&
 871		    info->core[cpu].type != boot_core_type)
 872			continue;
 873		if (cpu < info->configured)
 874			c_cpus += smp_cpu_mtid + 1;
 875		else
 876			s_cpus += smp_cpu_mtid + 1;
 
 877	}
 878	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
 879
 880	/* Add CPUs present at boot */
 881	__smp_rescan_cpus(info, true);
 882	memblock_free(info, sizeof(*info));
 883}
 884
 885/*
 886 *	Activate a secondary processor.
 887 */
 888static void smp_start_secondary(void *cpuvoid)
 889{
 890	int cpu = raw_smp_processor_id();
 891
 892	S390_lowcore.last_update_clock = get_tod_clock();
 893	S390_lowcore.restart_stack = (unsigned long)restart_stack;
 894	S390_lowcore.restart_fn = (unsigned long)do_restart;
 895	S390_lowcore.restart_data = 0;
 896	S390_lowcore.restart_source = -1U;
 897	S390_lowcore.restart_flags = 0;
 898	restore_access_regs(S390_lowcore.access_regs_save_area);
 
 
 899	cpu_init();
 900	rcu_cpu_starting(cpu);
 901	init_cpu_timer();
 902	vtime_init();
 903	vdso_getcpu_init();
 904	pfault_init();
 905	cpumask_set_cpu(cpu, &cpu_setup_mask);
 906	update_cpu_masks();
 907	notify_cpu_starting(cpu);
 908	if (topology_cpu_dedicated(cpu))
 909		set_cpu_flag(CIF_DEDICATED_CPU);
 910	else
 911		clear_cpu_flag(CIF_DEDICATED_CPU);
 912	set_cpu_online(cpu, true);
 913	inc_irq_stat(CPU_RST);
 914	local_irq_enable();
 915	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 916}
 917
 918/* Upping and downing of CPUs */
 919int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 920{
 921	struct pcpu *pcpu = pcpu_devices + cpu;
 922	int rc;
 923
 
 924	if (pcpu->state != CPU_STATE_CONFIGURED)
 925		return -EIO;
 926	if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
 927	    SIGP_CC_ORDER_CODE_ACCEPTED)
 928		return -EIO;
 929
 930	rc = pcpu_alloc_lowcore(pcpu, cpu);
 931	if (rc)
 932		return rc;
 933	pcpu_prepare_secondary(pcpu, cpu);
 934	pcpu_attach_task(pcpu, tidle);
 935	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
 936	/* Wait until cpu puts itself in the online & active maps */
 937	while (!cpu_online(cpu))
 938		cpu_relax();
 939	return 0;
 940}
 941
 942static unsigned int setup_possible_cpus __initdata;
 943
 944static int __init _setup_possible_cpus(char *s)
 945{
 946	get_option(&s, &setup_possible_cpus);
 947	return 0;
 948}
 949early_param("possible_cpus", _setup_possible_cpus);
 950
 
 
 951int __cpu_disable(void)
 952{
 953	unsigned long cregs[16];
 954	int cpu;
 955
 956	/* Handle possible pending IPIs */
 957	smp_handle_ext_call();
 958	cpu = smp_processor_id();
 959	set_cpu_online(cpu, false);
 960	cpumask_clear_cpu(cpu, &cpu_setup_mask);
 961	update_cpu_masks();
 962	/* Disable pseudo page faults on this cpu. */
 963	pfault_fini();
 964	/* Disable interrupt sources via control register. */
 965	__ctl_store(cregs, 0, 15);
 966	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
 967	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
 968	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
 969	__ctl_load(cregs, 0, 15);
 970	clear_cpu_flag(CIF_NOHZ_DELAY);
 971	return 0;
 972}
 973
 974void __cpu_die(unsigned int cpu)
 975{
 976	struct pcpu *pcpu;
 977
 978	/* Wait until target cpu is down */
 979	pcpu = pcpu_devices + cpu;
 980	while (!pcpu_stopped(pcpu))
 981		cpu_relax();
 982	pcpu_free_lowcore(pcpu);
 
 983	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
 984	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
 
 985}
 986
 987void __noreturn cpu_die(void)
 988{
 989	idle_task_exit();
 990	__bpon();
 991	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
 992	for (;;) ;
 993}
 994
 
 
 995void __init smp_fill_possible_mask(void)
 996{
 997	unsigned int possible, sclp_max, cpu;
 998
 999	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
1000	sclp_max = min(smp_max_threads, sclp_max);
1001	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
1002	possible = setup_possible_cpus ?: nr_cpu_ids;
1003	possible = min(possible, sclp_max);
1004	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
1005		set_cpu_possible(cpu, true);
1006}
1007
1008void __init smp_prepare_cpus(unsigned int max_cpus)
1009{
1010	/* request the 0x1201 emergency signal external interrupt */
1011	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
1012		panic("Couldn't request external interrupt 0x1201");
1013	/* request the 0x1202 external call external interrupt */
1014	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
1015		panic("Couldn't request external interrupt 0x1202");
 
1016}
1017
1018void __init smp_prepare_boot_cpu(void)
1019{
1020	struct pcpu *pcpu = pcpu_devices;
1021
1022	WARN_ON(!cpu_present(0) || !cpu_online(0));
1023	pcpu->state = CPU_STATE_CONFIGURED;
 
 
 
 
 
 
1024	S390_lowcore.percpu_offset = __per_cpu_offset[0];
1025	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
 
 
 
 
 
 
1026}
1027
1028void __init smp_setup_processor_id(void)
1029{
1030	pcpu_devices[0].address = stap();
1031	S390_lowcore.cpu_nr = 0;
1032	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
1033	S390_lowcore.spinlock_index = 0;
1034}
1035
1036/*
1037 * the frequency of the profiling timer can be changed
1038 * by writing a multiplier value into /proc/profile.
1039 *
1040 * usually you want to run this on all CPUs ;)
1041 */
1042int setup_profiling_timer(unsigned int multiplier)
1043{
1044	return 0;
1045}
1046
 
1047static ssize_t cpu_configure_show(struct device *dev,
1048				  struct device_attribute *attr, char *buf)
1049{
1050	ssize_t count;
1051
1052	mutex_lock(&smp_cpu_state_mutex);
1053	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1054	mutex_unlock(&smp_cpu_state_mutex);
1055	return count;
1056}
1057
1058static ssize_t cpu_configure_store(struct device *dev,
1059				   struct device_attribute *attr,
1060				   const char *buf, size_t count)
1061{
1062	struct pcpu *pcpu;
1063	int cpu, val, rc, i;
1064	char delim;
1065
1066	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1067		return -EINVAL;
1068	if (val != 0 && val != 1)
1069		return -EINVAL;
1070	cpus_read_lock();
1071	mutex_lock(&smp_cpu_state_mutex);
1072	rc = -EBUSY;
1073	/* disallow configuration changes of online cpus and cpu 0 */
1074	cpu = dev->id;
1075	cpu = smp_get_base_cpu(cpu);
1076	if (cpu == 0)
1077		goto out;
1078	for (i = 0; i <= smp_cpu_mtid; i++)
1079		if (cpu_online(cpu + i))
1080			goto out;
1081	pcpu = pcpu_devices + cpu;
1082	rc = 0;
1083	switch (val) {
1084	case 0:
1085		if (pcpu->state != CPU_STATE_CONFIGURED)
1086			break;
1087		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1088		if (rc)
1089			break;
1090		for (i = 0; i <= smp_cpu_mtid; i++) {
1091			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1092				continue;
1093			pcpu[i].state = CPU_STATE_STANDBY;
1094			smp_cpu_set_polarization(cpu + i,
1095						 POLARIZATION_UNKNOWN);
1096		}
1097		topology_expect_change();
1098		break;
1099	case 1:
1100		if (pcpu->state != CPU_STATE_STANDBY)
1101			break;
1102		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1103		if (rc)
1104			break;
1105		for (i = 0; i <= smp_cpu_mtid; i++) {
1106			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1107				continue;
1108			pcpu[i].state = CPU_STATE_CONFIGURED;
1109			smp_cpu_set_polarization(cpu + i,
1110						 POLARIZATION_UNKNOWN);
1111		}
1112		topology_expect_change();
1113		break;
1114	default:
1115		break;
1116	}
1117out:
1118	mutex_unlock(&smp_cpu_state_mutex);
1119	cpus_read_unlock();
1120	return rc ? rc : count;
1121}
1122static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
 
1123
1124static ssize_t show_cpu_address(struct device *dev,
1125				struct device_attribute *attr, char *buf)
1126{
1127	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1128}
1129static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1130
1131static struct attribute *cpu_common_attrs[] = {
 
1132	&dev_attr_configure.attr,
 
1133	&dev_attr_address.attr,
1134	NULL,
1135};
1136
1137static struct attribute_group cpu_common_attr_group = {
1138	.attrs = cpu_common_attrs,
1139};
1140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1141static struct attribute *cpu_online_attrs[] = {
1142	&dev_attr_idle_count.attr,
1143	&dev_attr_idle_time_us.attr,
1144	NULL,
1145};
1146
1147static struct attribute_group cpu_online_attr_group = {
1148	.attrs = cpu_online_attrs,
1149};
1150
1151static int smp_cpu_online(unsigned int cpu)
1152{
1153	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1154
1155	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1156}
1157
1158static int smp_cpu_pre_down(unsigned int cpu)
1159{
1160	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1161
1162	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1163	return 0;
 
 
 
 
 
 
 
 
 
 
1164}
1165
1166static int smp_add_present_cpu(int cpu)
1167{
1168	struct device *s;
1169	struct cpu *c;
1170	int rc;
1171
1172	c = kzalloc(sizeof(*c), GFP_KERNEL);
1173	if (!c)
1174		return -ENOMEM;
1175	per_cpu(cpu_device, cpu) = c;
1176	s = &c->dev;
1177	c->hotpluggable = 1;
1178	rc = register_cpu(c, cpu);
1179	if (rc)
1180		goto out;
1181	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1182	if (rc)
1183		goto out_cpu;
 
 
 
 
 
1184	rc = topology_cpu_init(c);
1185	if (rc)
1186		goto out_topology;
1187	return 0;
1188
1189out_topology:
 
 
 
1190	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1191out_cpu:
 
1192	unregister_cpu(c);
 
1193out:
1194	return rc;
1195}
1196
 
 
1197int __ref smp_rescan_cpus(void)
1198{
1199	struct sclp_core_info *info;
1200	int nr;
1201
1202	info = kzalloc(sizeof(*info), GFP_KERNEL);
1203	if (!info)
1204		return -ENOMEM;
1205	smp_get_core_info(info, 0);
1206	nr = __smp_rescan_cpus(info, false);
 
 
 
1207	kfree(info);
1208	if (nr)
1209		topology_schedule_update();
1210	return 0;
1211}
1212
1213static ssize_t __ref rescan_store(struct device *dev,
1214				  struct device_attribute *attr,
1215				  const char *buf,
1216				  size_t count)
1217{
1218	int rc;
1219
1220	rc = lock_device_hotplug_sysfs();
1221	if (rc)
1222		return rc;
1223	rc = smp_rescan_cpus();
1224	unlock_device_hotplug();
1225	return rc ? rc : count;
1226}
1227static DEVICE_ATTR_WO(rescan);
 
1228
1229static int __init s390_smp_init(void)
1230{
1231	int cpu, rc = 0;
1232
 
1233	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1234	if (rc)
1235		return rc;
 
 
1236	for_each_present_cpu(cpu) {
1237		rc = smp_add_present_cpu(cpu);
1238		if (rc)
1239			goto out;
1240	}
1241
1242	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1243			       smp_cpu_online, smp_cpu_pre_down);
1244	rc = rc <= 0 ? rc : 0;
1245out:
 
1246	return rc;
1247}
1248subsys_initcall(s390_smp_init);
1249
1250static __always_inline void set_new_lowcore(struct lowcore *lc)
1251{
1252	union register_pair dst, src;
1253	u32 pfx;
1254
1255	src.even = (unsigned long) &S390_lowcore;
1256	src.odd  = sizeof(S390_lowcore);
1257	dst.even = (unsigned long) lc;
1258	dst.odd  = sizeof(*lc);
1259	pfx = __pa(lc);
1260
1261	asm volatile(
1262		"	mvcl	%[dst],%[src]\n"
1263		"	spx	%[pfx]\n"
1264		: [dst] "+&d" (dst.pair), [src] "+&d" (src.pair)
1265		: [pfx] "Q" (pfx)
1266		: "memory", "cc");
1267}
1268
1269int __init smp_reinit_ipl_cpu(void)
1270{
1271	unsigned long async_stack, nodat_stack, mcck_stack;
1272	struct lowcore *lc, *lc_ipl;
1273	unsigned long flags, cr0;
1274	u64 mcesad;
1275
1276	lc_ipl = lowcore_ptr[0];
1277	lc = (struct lowcore *)	__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
1278	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
1279	async_stack = stack_alloc();
1280	mcck_stack = stack_alloc();
1281	if (!lc || !nodat_stack || !async_stack || !mcck_stack || nmi_alloc_mcesa(&mcesad))
1282		panic("Couldn't allocate memory");
1283
1284	local_irq_save(flags);
1285	local_mcck_disable();
1286	set_new_lowcore(lc);
1287	S390_lowcore.nodat_stack = nodat_stack + STACK_INIT_OFFSET;
1288	S390_lowcore.async_stack = async_stack + STACK_INIT_OFFSET;
1289	S390_lowcore.mcck_stack = mcck_stack + STACK_INIT_OFFSET;
1290	__ctl_store(cr0, 0, 0);
1291	__ctl_clear_bit(0, 28); /* disable lowcore protection */
1292	S390_lowcore.mcesad = mcesad;
1293	__ctl_load(cr0, 0, 0);
1294	if (abs_lowcore_map(0, lc, false))
1295		panic("Couldn't remap absolute lowcore");
1296	lowcore_ptr[0] = lc;
1297	local_mcck_enable();
1298	local_irq_restore(flags);
1299
1300	free_pages(lc_ipl->async_stack - STACK_INIT_OFFSET, THREAD_SIZE_ORDER);
1301	memblock_free_late(__pa(lc_ipl->mcck_stack - STACK_INIT_OFFSET), THREAD_SIZE);
1302	memblock_free_late(__pa(lc_ipl), sizeof(*lc_ipl));
1303
1304	return 0;
1305}
v3.15
 
   1/*
   2 *  SMP related functions
   3 *
   4 *    Copyright IBM Corp. 1999, 2012
   5 *    Author(s): Denis Joseph Barrow,
   6 *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
   7 *		 Heiko Carstens <heiko.carstens@de.ibm.com>,
   8 *
   9 *  based on other smp stuff by
  10 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
  11 *    (c) 1998 Ingo Molnar
  12 *
  13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
  14 * the translation of logical to physical cpu ids. All new code that
  15 * operates on physical cpu numbers needs to go into smp.c.
  16 */
  17
  18#define KMSG_COMPONENT "cpu"
  19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  20
  21#include <linux/workqueue.h>
  22#include <linux/module.h>
 
  23#include <linux/init.h>
  24#include <linux/mm.h>
  25#include <linux/err.h>
  26#include <linux/spinlock.h>
  27#include <linux/kernel_stat.h>
  28#include <linux/delay.h>
  29#include <linux/interrupt.h>
  30#include <linux/irqflags.h>
 
  31#include <linux/cpu.h>
  32#include <linux/slab.h>
 
 
  33#include <linux/crash_dump.h>
 
  34#include <asm/asm-offsets.h>
 
  35#include <asm/switch_to.h>
  36#include <asm/facility.h>
  37#include <asm/ipl.h>
  38#include <asm/setup.h>
  39#include <asm/irq.h>
  40#include <asm/tlbflush.h>
  41#include <asm/vtimer.h>
  42#include <asm/lowcore.h>
  43#include <asm/sclp.h>
  44#include <asm/vdso.h>
  45#include <asm/debug.h>
  46#include <asm/os_info.h>
  47#include <asm/sigp.h>
 
 
 
 
 
 
  48#include "entry.h"
  49
  50enum {
  51	ec_schedule = 0,
  52	ec_call_function_single,
  53	ec_stop_cpu,
 
 
  54};
  55
  56enum {
  57	CPU_STATE_STANDBY,
  58	CPU_STATE_CONFIGURED,
  59};
  60
 
 
  61struct pcpu {
  62	struct cpu *cpu;
  63	struct _lowcore *lowcore;	/* lowcore page(s) for the cpu */
  64	unsigned long async_stack;	/* async stack for the cpu */
  65	unsigned long panic_stack;	/* panic stack for the cpu */
  66	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
  67	int state;			/* physical cpu state */
  68	int polarization;		/* physical polarization */
 
  69	u16 address;			/* physical cpu address */
  70};
  71
  72static u8 boot_cpu_type;
  73static u16 boot_cpu_address;
  74static struct pcpu pcpu_devices[NR_CPUS];
  75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76/*
  77 * The smp_cpu_state_mutex must be held when changing the state or polarization
  78 * member of a pcpu data structure within the pcpu_devices arreay.
  79 */
  80DEFINE_MUTEX(smp_cpu_state_mutex);
  81
  82/*
  83 * Signal processor helper functions.
  84 */
  85static inline int __pcpu_sigp_relax(u16 addr, u8 order, u32 parm, u32 *status)
  86{
  87	int cc;
  88
  89	while (1) {
  90		cc = __pcpu_sigp(addr, order, parm, NULL);
  91		if (cc != SIGP_CC_BUSY)
  92			return cc;
  93		cpu_relax();
  94	}
  95}
  96
  97static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
  98{
  99	int cc, retry;
 100
 101	for (retry = 0; ; retry++) {
 102		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
 103		if (cc != SIGP_CC_BUSY)
 104			break;
 105		if (retry >= 3)
 106			udelay(10);
 107	}
 108	return cc;
 109}
 110
 111static inline int pcpu_stopped(struct pcpu *pcpu)
 112{
 113	u32 uninitialized_var(status);
 114
 115	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
 116			0, &status) != SIGP_CC_STATUS_STORED)
 117		return 0;
 118	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
 119}
 120
 121static inline int pcpu_running(struct pcpu *pcpu)
 122{
 123	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
 124			0, NULL) != SIGP_CC_STATUS_STORED)
 125		return 1;
 126	/* Status stored condition code is equivalent to cpu not running. */
 127	return 0;
 128}
 129
 130/*
 131 * Find struct pcpu by cpu address.
 132 */
 133static struct pcpu *pcpu_find_address(const struct cpumask *mask, int address)
 134{
 135	int cpu;
 136
 137	for_each_cpu(cpu, mask)
 138		if (pcpu_devices[cpu].address == address)
 139			return pcpu_devices + cpu;
 140	return NULL;
 141}
 142
 143static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
 144{
 145	int order;
 146
 147	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
 148		return;
 149	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
 
 150	pcpu_sigp_retry(pcpu, order, 0);
 151}
 152
 153static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
 154{
 155	struct _lowcore *lc;
 
 156
 157	if (pcpu != &pcpu_devices[0]) {
 158		pcpu->lowcore =	(struct _lowcore *)
 159			__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
 160		pcpu->async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
 161		pcpu->panic_stack = __get_free_page(GFP_KERNEL);
 162		if (!pcpu->lowcore || !pcpu->panic_stack || !pcpu->async_stack)
 163			goto out;
 164	}
 165	lc = pcpu->lowcore;
 166	memcpy(lc, &S390_lowcore, 512);
 167	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
 168	lc->async_stack = pcpu->async_stack + ASYNC_SIZE
 169		- STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
 170	lc->panic_stack = pcpu->panic_stack + PAGE_SIZE
 171		- STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
 172	lc->cpu_nr = cpu;
 173#ifndef CONFIG_64BIT
 174	if (MACHINE_HAS_IEEE) {
 175		lc->extended_save_area_addr = get_zeroed_page(GFP_KERNEL);
 176		if (!lc->extended_save_area_addr)
 177			goto out;
 178	}
 179#else
 180	if (vdso_alloc_per_cpu(lc))
 181		goto out;
 182#endif
 
 183	lowcore_ptr[cpu] = lc;
 184	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
 185	return 0;
 
 
 
 186out:
 187	if (pcpu != &pcpu_devices[0]) {
 188		free_page(pcpu->panic_stack);
 189		free_pages(pcpu->async_stack, ASYNC_ORDER);
 190		free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
 191	}
 192	return -ENOMEM;
 193}
 194
 195#ifdef CONFIG_HOTPLUG_CPU
 196
 197static void pcpu_free_lowcore(struct pcpu *pcpu)
 198{
 
 
 
 
 
 
 
 
 
 199	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
 200	lowcore_ptr[pcpu - pcpu_devices] = NULL;
 201#ifndef CONFIG_64BIT
 202	if (MACHINE_HAS_IEEE) {
 203		struct _lowcore *lc = pcpu->lowcore;
 204
 205		free_page((unsigned long) lc->extended_save_area_addr);
 206		lc->extended_save_area_addr = 0;
 207	}
 208#else
 209	vdso_free_per_cpu(pcpu->lowcore);
 210#endif
 211	if (pcpu != &pcpu_devices[0]) {
 212		free_page(pcpu->panic_stack);
 213		free_pages(pcpu->async_stack, ASYNC_ORDER);
 214		free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
 215	}
 216}
 217
 218#endif /* CONFIG_HOTPLUG_CPU */
 219
 220static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
 221{
 222	struct _lowcore *lc = pcpu->lowcore;
 223
 224	if (MACHINE_HAS_TLB_LC)
 225		cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
 226	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
 227	atomic_inc(&init_mm.context.attach_count);
 228	lc->cpu_nr = cpu;
 
 
 
 229	lc->percpu_offset = __per_cpu_offset[cpu];
 230	lc->kernel_asce = S390_lowcore.kernel_asce;
 
 231	lc->machine_flags = S390_lowcore.machine_flags;
 232	lc->ftrace_func = S390_lowcore.ftrace_func;
 233	lc->user_timer = lc->system_timer = lc->steal_timer = 0;
 234	__ctl_store(lc->cregs_save_area, 0, 15);
 
 
 235	save_access_regs((unsigned int *) lc->access_regs_save_area);
 236	memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
 237	       MAX_FACILITY_BIT/8);
 238}
 239
 240static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
 241{
 242	struct _lowcore *lc = pcpu->lowcore;
 243	struct thread_info *ti = task_thread_info(tsk);
 244
 
 
 245	lc->kernel_stack = (unsigned long) task_stack_page(tsk)
 246		+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
 247	lc->thread_info = (unsigned long) task_thread_info(tsk);
 248	lc->current_task = (unsigned long) tsk;
 249	lc->user_timer = ti->user_timer;
 250	lc->system_timer = ti->system_timer;
 
 
 
 
 
 251	lc->steal_timer = 0;
 252}
 253
 254static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
 255{
 256	struct _lowcore *lc = pcpu->lowcore;
 
 257
 
 
 258	lc->restart_stack = lc->kernel_stack;
 259	lc->restart_fn = (unsigned long) func;
 260	lc->restart_data = (unsigned long) data;
 261	lc->restart_source = -1UL;
 262	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
 263}
 264
 
 
 265/*
 266 * Call function via PSW restart on pcpu and stop the current cpu.
 267 */
 268static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
 
 
 
 
 
 
 269			  void *data, unsigned long stack)
 270{
 271	struct _lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
 272	unsigned long source_cpu = stap();
 
 273
 274	__load_psw_mask(PSW_KERNEL_BITS);
 275	if (pcpu->address == source_cpu)
 276		func(data);	/* should not return */
 
 
 
 
 277	/* Stop target cpu (if func returns this stops the current cpu). */
 278	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 279	/* Restart func on the target cpu and stop the current cpu. */
 280	mem_assign_absolute(lc->restart_stack, stack);
 281	mem_assign_absolute(lc->restart_fn, (unsigned long) func);
 282	mem_assign_absolute(lc->restart_data, (unsigned long) data);
 283	mem_assign_absolute(lc->restart_source, source_cpu);
 
 
 
 
 
 
 
 
 
 
 284	asm volatile(
 285		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
 286		"	brc	2,0b	# busy, try again\n"
 287		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
 288		"	brc	2,1b	# busy, try again\n"
 289		: : "d" (pcpu->address), "d" (source_cpu),
 290		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
 291		: "0", "1", "cc");
 292	for (;;) ;
 293}
 294
 295/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 296 * Call function on an online CPU.
 297 */
 298void smp_call_online_cpu(void (*func)(void *), void *data)
 299{
 300	struct pcpu *pcpu;
 301
 302	/* Use the current cpu if it is online. */
 303	pcpu = pcpu_find_address(cpu_online_mask, stap());
 304	if (!pcpu)
 305		/* Use the first online cpu. */
 306		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
 307	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
 308}
 309
 310/*
 311 * Call function on the ipl CPU.
 312 */
 313void smp_call_ipl_cpu(void (*func)(void *), void *data)
 314{
 
 
 
 
 
 315	pcpu_delegate(&pcpu_devices[0], func, data,
 316		      pcpu_devices->panic_stack + PAGE_SIZE);
 317}
 318
 319int smp_find_processor_id(u16 address)
 320{
 321	int cpu;
 322
 323	for_each_present_cpu(cpu)
 324		if (pcpu_devices[cpu].address == address)
 325			return cpu;
 326	return -1;
 327}
 328
 329int smp_vcpu_scheduled(int cpu)
 330{
 331	return pcpu_running(pcpu_devices + cpu);
 332}
 333
 334void smp_yield(void)
 335{
 336	if (MACHINE_HAS_DIAG44)
 337		asm volatile("diag 0,0,0x44");
 
 
 
 338}
 
 339
 340void smp_yield_cpu(int cpu)
 341{
 342	if (MACHINE_HAS_DIAG9C)
 343		asm volatile("diag %0,0,0x9c"
 344			     : : "d" (pcpu_devices[cpu].address));
 345	else if (MACHINE_HAS_DIAG44)
 346		asm volatile("diag 0,0,0x44");
 347}
 
 348
 349/*
 350 * Send cpus emergency shutdown signal. This gives the cpus the
 351 * opportunity to complete outstanding interrupts.
 352 */
 353static void smp_emergency_stop(cpumask_t *cpumask)
 354{
 
 
 355	u64 end;
 356	int cpu;
 357
 
 
 
 
 358	end = get_tod_clock() + (1000000UL << 12);
 359	for_each_cpu(cpu, cpumask) {
 360		struct pcpu *pcpu = pcpu_devices + cpu;
 361		set_bit(ec_stop_cpu, &pcpu->ec_mask);
 362		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
 363				   0, NULL) == SIGP_CC_BUSY &&
 364		       get_tod_clock() < end)
 365			cpu_relax();
 366	}
 367	while (get_tod_clock() < end) {
 368		for_each_cpu(cpu, cpumask)
 369			if (pcpu_stopped(pcpu_devices + cpu))
 370				cpumask_clear_cpu(cpu, cpumask);
 371		if (cpumask_empty(cpumask))
 372			break;
 373		cpu_relax();
 374	}
 
 375}
 
 376
 377/*
 378 * Stop all cpus but the current one.
 379 */
 380void smp_send_stop(void)
 381{
 382	cpumask_t cpumask;
 383	int cpu;
 384
 385	/* Disable all interrupts/machine checks */
 386	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 387	trace_hardirqs_off();
 388
 389	debug_set_critical();
 390	cpumask_copy(&cpumask, cpu_online_mask);
 391	cpumask_clear_cpu(smp_processor_id(), &cpumask);
 392
 393	if (oops_in_progress)
 394		smp_emergency_stop(&cpumask);
 395
 396	/* stop all processors */
 397	for_each_cpu(cpu, &cpumask) {
 398		struct pcpu *pcpu = pcpu_devices + cpu;
 399		pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 400		while (!pcpu_stopped(pcpu))
 
 401			cpu_relax();
 402	}
 403}
 404
 405/*
 406 * Stop the current cpu.
 407 */
 408void smp_stop_cpu(void)
 409{
 410	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
 411	for (;;) ;
 412}
 413
 414/*
 415 * This is the main routine where commands issued by other
 416 * cpus are handled.
 417 */
 418static void smp_handle_ext_call(void)
 419{
 420	unsigned long bits;
 421
 422	/* handle bit signal external calls */
 423	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
 424	if (test_bit(ec_stop_cpu, &bits))
 425		smp_stop_cpu();
 426	if (test_bit(ec_schedule, &bits))
 427		scheduler_ipi();
 428	if (test_bit(ec_call_function_single, &bits))
 429		generic_smp_call_function_single_interrupt();
 
 
 
 
 430}
 431
 432static void do_ext_call_interrupt(struct ext_code ext_code,
 433				  unsigned int param32, unsigned long param64)
 434{
 435	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
 436	smp_handle_ext_call();
 437}
 438
 439void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 440{
 441	int cpu;
 442
 443	for_each_cpu(cpu, mask)
 444		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 445}
 446
 447void arch_send_call_function_single_ipi(int cpu)
 448{
 449	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 450}
 451
 452#ifndef CONFIG_64BIT
 453/*
 454 * this function sends a 'purge tlb' signal to another CPU.
 455 */
 456static void smp_ptlb_callback(void *info)
 457{
 458	__tlb_flush_local();
 459}
 460
 461void smp_ptlb_all(void)
 462{
 463	on_each_cpu(smp_ptlb_callback, NULL, 1);
 464}
 465EXPORT_SYMBOL(smp_ptlb_all);
 466#endif /* ! CONFIG_64BIT */
 467
 468/*
 469 * this function sends a 'reschedule' IPI to another CPU.
 470 * it goes straight through and wastes no time serializing
 471 * anything. Worst case is that we lose a reschedule ...
 472 */
 473void smp_send_reschedule(int cpu)
 474{
 475	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
 476}
 477
 
 
 
 
 
 
 
 478/*
 479 * parameter area for the set/clear control bit callbacks
 480 */
 481struct ec_creg_mask_parms {
 482	unsigned long orval;
 483	unsigned long andval;
 484	int cr;
 485};
 486
 487/*
 488 * callback for setting/clearing control bits
 489 */
 490static void smp_ctl_bit_callback(void *info)
 491{
 492	struct ec_creg_mask_parms *pp = info;
 493	unsigned long cregs[16];
 494
 495	__ctl_store(cregs, 0, 15);
 496	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
 497	__ctl_load(cregs, 0, 15);
 498}
 499
 500/*
 501 * Set a bit in a control register of all cpus
 502 */
 503void smp_ctl_set_bit(int cr, int bit)
 504{
 505	struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
 506
 507	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 508}
 509EXPORT_SYMBOL(smp_ctl_set_bit);
 510
 511/*
 512 * Clear a bit in a control register of all cpus
 513 */
 514void smp_ctl_clear_bit(int cr, int bit)
 515{
 516	struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
 517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 518	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 519}
 520EXPORT_SYMBOL(smp_ctl_clear_bit);
 521
 522#if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_CRASH_DUMP)
 523
 524static void __init smp_get_save_area(int cpu, u16 address)
 525{
 526	void *lc = pcpu_devices[0].lowcore;
 527	struct save_area *save_area;
 528
 529	if (is_kdump_kernel())
 530		return;
 531	if (!OLDMEM_BASE && (address == boot_cpu_address ||
 532			     ipl_info.type != IPL_TYPE_FCP_DUMP))
 533		return;
 534	save_area = dump_save_area_create(cpu);
 535	if (!save_area)
 536		panic("could not allocate memory for save area\n");
 537#ifdef CONFIG_CRASH_DUMP
 538	if (address == boot_cpu_address) {
 539		/* Copy the registers of the boot cpu. */
 540		copy_oldmem_page(1, (void *) save_area, sizeof(*save_area),
 541				 SAVE_AREA_BASE - PAGE_SIZE, 0);
 542		return;
 543	}
 544#endif
 545	/* Get the registers of a non-boot cpu. */
 546	__pcpu_sigp_relax(address, SIGP_STOP_AND_STORE_STATUS, 0, NULL);
 547	memcpy_real(save_area, lc + SAVE_AREA_BASE, sizeof(*save_area));
 548}
 549
 550int smp_store_status(int cpu)
 551{
 
 552	struct pcpu *pcpu;
 
 553
 554	pcpu = pcpu_devices + cpu;
 555	if (__pcpu_sigp_relax(pcpu->address, SIGP_STOP_AND_STORE_STATUS,
 556			      0, NULL) != SIGP_CC_ORDER_CODE_ACCEPTED)
 
 
 
 
 
 
 
 
 
 
 557		return -EIO;
 558	return 0;
 559}
 560
 561#else /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 562
 563static inline void smp_get_save_area(int cpu, u16 address) { }
 
 
 
 564
 565#endif /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 566
 567void smp_cpu_set_polarization(int cpu, int val)
 568{
 569	pcpu_devices[cpu].polarization = val;
 570}
 571
 572int smp_cpu_get_polarization(int cpu)
 573{
 574	return pcpu_devices[cpu].polarization;
 575}
 576
 577static struct sclp_cpu_info *smp_get_cpu_info(void)
 
 
 
 
 
 578{
 579	static int use_sigp_detection;
 580	struct sclp_cpu_info *info;
 581	int address;
 582
 583	info = kzalloc(sizeof(*info), GFP_KERNEL);
 584	if (info && (use_sigp_detection || sclp_get_cpu_info(info))) {
 585		use_sigp_detection = 1;
 586		for (address = 0; address <= MAX_CPU_ADDRESS; address++) {
 587			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0, NULL) ==
 
 
 588			    SIGP_CC_NOT_OPERATIONAL)
 589				continue;
 590			info->cpu[info->configured].address = address;
 
 591			info->configured++;
 592		}
 593		info->combined = info->configured;
 594	}
 595	return info;
 596}
 597
 598static int smp_add_present_cpu(int cpu);
 599
 600static int __smp_rescan_cpus(struct sclp_cpu_info *info, int sysfs_add)
 
 601{
 602	struct pcpu *pcpu;
 603	cpumask_t avail;
 604	int cpu, nr, i;
 
 605
 606	nr = 0;
 607	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
 608	cpu = cpumask_first(&avail);
 609	for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
 610		if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type)
 611			continue;
 612		if (pcpu_find_address(cpu_present_mask, info->cpu[i].address))
 613			continue;
 614		pcpu = pcpu_devices + cpu;
 615		pcpu->address = info->cpu[i].address;
 616		pcpu->state = (i >= info->configured) ?
 617			CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
 
 
 618		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 619		set_cpu_present(cpu, true);
 620		if (sysfs_add && smp_add_present_cpu(cpu) != 0)
 621			set_cpu_present(cpu, false);
 622		else
 623			nr++;
 624		cpu = cpumask_next(cpu, &avail);
 
 625	}
 626	return nr;
 627}
 628
 629static void __init smp_detect_cpus(void)
 630{
 631	unsigned int cpu, c_cpus, s_cpus;
 632	struct sclp_cpu_info *info;
 
 
 
 633
 634	info = smp_get_cpu_info();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 635	if (!info)
 636		panic("smp_detect_cpus failed to allocate memory\n");
 637	if (info->has_cpu_type) {
 638		for (cpu = 0; cpu < info->combined; cpu++) {
 639			if (info->cpu[cpu].address != boot_cpu_address)
 640				continue;
 641			/* The boot cpu dictates the cpu type. */
 642			boot_cpu_type = info->cpu[cpu].type;
 643			break;
 644		}
 
 
 
 
 
 645	}
 
 
 
 
 
 
 
 646	c_cpus = s_cpus = 0;
 647	for (cpu = 0; cpu < info->combined; cpu++) {
 648		if (info->has_cpu_type && info->cpu[cpu].type != boot_cpu_type)
 
 649			continue;
 650		if (cpu < info->configured) {
 651			smp_get_save_area(c_cpus, info->cpu[cpu].address);
 652			c_cpus++;
 653		} else
 654			s_cpus++;
 655	}
 656	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
 657	get_online_cpus();
 658	__smp_rescan_cpus(info, 0);
 659	put_online_cpus();
 660	kfree(info);
 661}
 662
 663/*
 664 *	Activate a secondary processor.
 665 */
 666static void smp_start_secondary(void *cpuvoid)
 667{
 
 
 668	S390_lowcore.last_update_clock = get_tod_clock();
 669	S390_lowcore.restart_stack = (unsigned long) restart_stack;
 670	S390_lowcore.restart_fn = (unsigned long) do_restart;
 671	S390_lowcore.restart_data = 0;
 672	S390_lowcore.restart_source = -1UL;
 
 673	restore_access_regs(S390_lowcore.access_regs_save_area);
 674	__ctl_load(S390_lowcore.cregs_save_area, 0, 15);
 675	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 676	cpu_init();
 677	preempt_disable();
 678	init_cpu_timer();
 679	init_cpu_vtimer();
 
 680	pfault_init();
 681	notify_cpu_starting(smp_processor_id());
 682	set_cpu_online(smp_processor_id(), true);
 
 
 
 
 
 
 683	inc_irq_stat(CPU_RST);
 684	local_irq_enable();
 685	cpu_startup_entry(CPUHP_ONLINE);
 686}
 687
 688/* Upping and downing of CPUs */
 689int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 690{
 691	struct pcpu *pcpu;
 692	int rc;
 693
 694	pcpu = pcpu_devices + cpu;
 695	if (pcpu->state != CPU_STATE_CONFIGURED)
 696		return -EIO;
 697	if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
 698	    SIGP_CC_ORDER_CODE_ACCEPTED)
 699		return -EIO;
 700
 701	rc = pcpu_alloc_lowcore(pcpu, cpu);
 702	if (rc)
 703		return rc;
 704	pcpu_prepare_secondary(pcpu, cpu);
 705	pcpu_attach_task(pcpu, tidle);
 706	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
 
 707	while (!cpu_online(cpu))
 708		cpu_relax();
 709	return 0;
 710}
 711
 712static unsigned int setup_possible_cpus __initdata;
 713
 714static int __init _setup_possible_cpus(char *s)
 715{
 716	get_option(&s, &setup_possible_cpus);
 717	return 0;
 718}
 719early_param("possible_cpus", _setup_possible_cpus);
 720
 721#ifdef CONFIG_HOTPLUG_CPU
 722
 723int __cpu_disable(void)
 724{
 725	unsigned long cregs[16];
 
 726
 727	/* Handle possible pending IPIs */
 728	smp_handle_ext_call();
 729	set_cpu_online(smp_processor_id(), false);
 
 
 
 730	/* Disable pseudo page faults on this cpu. */
 731	pfault_fini();
 732	/* Disable interrupt sources via control register. */
 733	__ctl_store(cregs, 0, 15);
 734	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
 735	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
 736	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
 737	__ctl_load(cregs, 0, 15);
 
 738	return 0;
 739}
 740
 741void __cpu_die(unsigned int cpu)
 742{
 743	struct pcpu *pcpu;
 744
 745	/* Wait until target cpu is down */
 746	pcpu = pcpu_devices + cpu;
 747	while (!pcpu_stopped(pcpu))
 748		cpu_relax();
 749	pcpu_free_lowcore(pcpu);
 750	atomic_dec(&init_mm.context.attach_count);
 751	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
 752	if (MACHINE_HAS_TLB_LC)
 753		cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
 754}
 755
 756void __noreturn cpu_die(void)
 757{
 758	idle_task_exit();
 
 759	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
 760	for (;;) ;
 761}
 762
 763#endif /* CONFIG_HOTPLUG_CPU */
 764
 765void __init smp_fill_possible_mask(void)
 766{
 767	unsigned int possible, sclp, cpu;
 768
 769	sclp = sclp_get_max_cpu() ?: nr_cpu_ids;
 
 
 770	possible = setup_possible_cpus ?: nr_cpu_ids;
 771	possible = min(possible, sclp);
 772	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
 773		set_cpu_possible(cpu, true);
 774}
 775
 776void __init smp_prepare_cpus(unsigned int max_cpus)
 777{
 778	/* request the 0x1201 emergency signal external interrupt */
 779	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
 780		panic("Couldn't request external interrupt 0x1201");
 781	/* request the 0x1202 external call external interrupt */
 782	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
 783		panic("Couldn't request external interrupt 0x1202");
 784	smp_detect_cpus();
 785}
 786
 787void __init smp_prepare_boot_cpu(void)
 788{
 789	struct pcpu *pcpu = pcpu_devices;
 790
 791	boot_cpu_address = stap();
 792	pcpu->state = CPU_STATE_CONFIGURED;
 793	pcpu->address = boot_cpu_address;
 794	pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix();
 795	pcpu->async_stack = S390_lowcore.async_stack - ASYNC_SIZE
 796		+ STACK_FRAME_OVERHEAD + sizeof(struct pt_regs);
 797	pcpu->panic_stack = S390_lowcore.panic_stack - PAGE_SIZE
 798		+ STACK_FRAME_OVERHEAD + sizeof(struct pt_regs);
 799	S390_lowcore.percpu_offset = __per_cpu_offset[0];
 800	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
 801	set_cpu_present(0, true);
 802	set_cpu_online(0, true);
 803}
 804
 805void __init smp_cpus_done(unsigned int max_cpus)
 806{
 807}
 808
 809void __init smp_setup_processor_id(void)
 810{
 
 811	S390_lowcore.cpu_nr = 0;
 
 
 812}
 813
 814/*
 815 * the frequency of the profiling timer can be changed
 816 * by writing a multiplier value into /proc/profile.
 817 *
 818 * usually you want to run this on all CPUs ;)
 819 */
 820int setup_profiling_timer(unsigned int multiplier)
 821{
 822	return 0;
 823}
 824
 825#ifdef CONFIG_HOTPLUG_CPU
 826static ssize_t cpu_configure_show(struct device *dev,
 827				  struct device_attribute *attr, char *buf)
 828{
 829	ssize_t count;
 830
 831	mutex_lock(&smp_cpu_state_mutex);
 832	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
 833	mutex_unlock(&smp_cpu_state_mutex);
 834	return count;
 835}
 836
 837static ssize_t cpu_configure_store(struct device *dev,
 838				   struct device_attribute *attr,
 839				   const char *buf, size_t count)
 840{
 841	struct pcpu *pcpu;
 842	int cpu, val, rc;
 843	char delim;
 844
 845	if (sscanf(buf, "%d %c", &val, &delim) != 1)
 846		return -EINVAL;
 847	if (val != 0 && val != 1)
 848		return -EINVAL;
 849	get_online_cpus();
 850	mutex_lock(&smp_cpu_state_mutex);
 851	rc = -EBUSY;
 852	/* disallow configuration changes of online cpus and cpu 0 */
 853	cpu = dev->id;
 854	if (cpu_online(cpu) || cpu == 0)
 
 855		goto out;
 
 
 
 856	pcpu = pcpu_devices + cpu;
 857	rc = 0;
 858	switch (val) {
 859	case 0:
 860		if (pcpu->state != CPU_STATE_CONFIGURED)
 861			break;
 862		rc = sclp_cpu_deconfigure(pcpu->address);
 863		if (rc)
 864			break;
 865		pcpu->state = CPU_STATE_STANDBY;
 866		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 
 
 
 
 
 867		topology_expect_change();
 868		break;
 869	case 1:
 870		if (pcpu->state != CPU_STATE_STANDBY)
 871			break;
 872		rc = sclp_cpu_configure(pcpu->address);
 873		if (rc)
 874			break;
 875		pcpu->state = CPU_STATE_CONFIGURED;
 876		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 
 
 
 
 
 877		topology_expect_change();
 878		break;
 879	default:
 880		break;
 881	}
 882out:
 883	mutex_unlock(&smp_cpu_state_mutex);
 884	put_online_cpus();
 885	return rc ? rc : count;
 886}
 887static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
 888#endif /* CONFIG_HOTPLUG_CPU */
 889
 890static ssize_t show_cpu_address(struct device *dev,
 891				struct device_attribute *attr, char *buf)
 892{
 893	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
 894}
 895static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
 896
 897static struct attribute *cpu_common_attrs[] = {
 898#ifdef CONFIG_HOTPLUG_CPU
 899	&dev_attr_configure.attr,
 900#endif
 901	&dev_attr_address.attr,
 902	NULL,
 903};
 904
 905static struct attribute_group cpu_common_attr_group = {
 906	.attrs = cpu_common_attrs,
 907};
 908
 909static ssize_t show_idle_count(struct device *dev,
 910				struct device_attribute *attr, char *buf)
 911{
 912	struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
 913	unsigned long long idle_count;
 914	unsigned int sequence;
 915
 916	do {
 917		sequence = ACCESS_ONCE(idle->sequence);
 918		idle_count = ACCESS_ONCE(idle->idle_count);
 919		if (ACCESS_ONCE(idle->clock_idle_enter))
 920			idle_count++;
 921	} while ((sequence & 1) || (ACCESS_ONCE(idle->sequence) != sequence));
 922	return sprintf(buf, "%llu\n", idle_count);
 923}
 924static DEVICE_ATTR(idle_count, 0444, show_idle_count, NULL);
 925
 926static ssize_t show_idle_time(struct device *dev,
 927				struct device_attribute *attr, char *buf)
 928{
 929	struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
 930	unsigned long long now, idle_time, idle_enter, idle_exit;
 931	unsigned int sequence;
 932
 933	do {
 934		now = get_tod_clock();
 935		sequence = ACCESS_ONCE(idle->sequence);
 936		idle_time = ACCESS_ONCE(idle->idle_time);
 937		idle_enter = ACCESS_ONCE(idle->clock_idle_enter);
 938		idle_exit = ACCESS_ONCE(idle->clock_idle_exit);
 939	} while ((sequence & 1) || (ACCESS_ONCE(idle->sequence) != sequence));
 940	idle_time += idle_enter ? ((idle_exit ? : now) - idle_enter) : 0;
 941	return sprintf(buf, "%llu\n", idle_time >> 12);
 942}
 943static DEVICE_ATTR(idle_time_us, 0444, show_idle_time, NULL);
 944
 945static struct attribute *cpu_online_attrs[] = {
 946	&dev_attr_idle_count.attr,
 947	&dev_attr_idle_time_us.attr,
 948	NULL,
 949};
 950
 951static struct attribute_group cpu_online_attr_group = {
 952	.attrs = cpu_online_attrs,
 953};
 954
 955static int smp_cpu_notify(struct notifier_block *self, unsigned long action,
 956			  void *hcpu)
 
 
 
 
 
 
 957{
 958	unsigned int cpu = (unsigned int)(long)hcpu;
 959	struct cpu *c = pcpu_devices[cpu].cpu;
 960	struct device *s = &c->dev;
 961	int err = 0;
 962
 963	switch (action & ~CPU_TASKS_FROZEN) {
 964	case CPU_ONLINE:
 965		err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
 966		break;
 967	case CPU_DEAD:
 968		sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
 969		break;
 970	}
 971	return notifier_from_errno(err);
 972}
 973
 974static int smp_add_present_cpu(int cpu)
 975{
 976	struct device *s;
 977	struct cpu *c;
 978	int rc;
 979
 980	c = kzalloc(sizeof(*c), GFP_KERNEL);
 981	if (!c)
 982		return -ENOMEM;
 983	pcpu_devices[cpu].cpu = c;
 984	s = &c->dev;
 985	c->hotpluggable = 1;
 986	rc = register_cpu(c, cpu);
 987	if (rc)
 988		goto out;
 989	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
 990	if (rc)
 991		goto out_cpu;
 992	if (cpu_online(cpu)) {
 993		rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
 994		if (rc)
 995			goto out_online;
 996	}
 997	rc = topology_cpu_init(c);
 998	if (rc)
 999		goto out_topology;
1000	return 0;
1001
1002out_topology:
1003	if (cpu_online(cpu))
1004		sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1005out_online:
1006	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1007out_cpu:
1008#ifdef CONFIG_HOTPLUG_CPU
1009	unregister_cpu(c);
1010#endif
1011out:
1012	return rc;
1013}
1014
1015#ifdef CONFIG_HOTPLUG_CPU
1016
1017int __ref smp_rescan_cpus(void)
1018{
1019	struct sclp_cpu_info *info;
1020	int nr;
1021
1022	info = smp_get_cpu_info();
1023	if (!info)
1024		return -ENOMEM;
1025	get_online_cpus();
1026	mutex_lock(&smp_cpu_state_mutex);
1027	nr = __smp_rescan_cpus(info, 1);
1028	mutex_unlock(&smp_cpu_state_mutex);
1029	put_online_cpus();
1030	kfree(info);
1031	if (nr)
1032		topology_schedule_update();
1033	return 0;
1034}
1035
1036static ssize_t __ref rescan_store(struct device *dev,
1037				  struct device_attribute *attr,
1038				  const char *buf,
1039				  size_t count)
1040{
1041	int rc;
1042
 
 
 
1043	rc = smp_rescan_cpus();
 
1044	return rc ? rc : count;
1045}
1046static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1047#endif /* CONFIG_HOTPLUG_CPU */
1048
1049static int __init s390_smp_init(void)
1050{
1051	int cpu, rc = 0;
1052
1053#ifdef CONFIG_HOTPLUG_CPU
1054	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1055	if (rc)
1056		return rc;
1057#endif
1058	cpu_notifier_register_begin();
1059	for_each_present_cpu(cpu) {
1060		rc = smp_add_present_cpu(cpu);
1061		if (rc)
1062			goto out;
1063	}
1064
1065	__hotcpu_notifier(smp_cpu_notify, 0);
1066
 
1067out:
1068	cpu_notifier_register_done();
1069	return rc;
1070}
1071subsys_initcall(s390_smp_init);