Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the kernel access vector cache (AVC).
   4 *
   5 * Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
   6 *	     James Morris <jmorris@redhat.com>
   7 *
   8 * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
   9 *	Replaced the avc_lock spinlock by RCU.
  10 *
  11 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
 
 
 
 
  12 */
  13#include <linux/types.h>
  14#include <linux/stddef.h>
  15#include <linux/kernel.h>
  16#include <linux/slab.h>
  17#include <linux/fs.h>
  18#include <linux/dcache.h>
  19#include <linux/init.h>
  20#include <linux/skbuff.h>
  21#include <linux/percpu.h>
  22#include <linux/list.h>
  23#include <net/sock.h>
  24#include <linux/un.h>
  25#include <net/af_unix.h>
  26#include <linux/ip.h>
  27#include <linux/audit.h>
  28#include <linux/ipv6.h>
  29#include <net/ipv6.h>
  30#include "avc.h"
  31#include "avc_ss.h"
  32#include "classmap.h"
  33
  34#define CREATE_TRACE_POINTS
  35#include <trace/events/avc.h>
  36
  37#define AVC_CACHE_SLOTS			512
  38#define AVC_DEF_CACHE_THRESHOLD		512
  39#define AVC_CACHE_RECLAIM		16
  40
  41#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  42#define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
  43#else
  44#define avc_cache_stats_incr(field)	do {} while (0)
  45#endif
  46
  47struct avc_entry {
  48	u32			ssid;
  49	u32			tsid;
  50	u16			tclass;
  51	struct av_decision	avd;
  52	struct avc_xperms_node	*xp_node;
  53};
  54
  55struct avc_node {
  56	struct avc_entry	ae;
  57	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
  58	struct rcu_head		rhead;
  59};
  60
  61struct avc_xperms_decision_node {
  62	struct extended_perms_decision xpd;
  63	struct list_head xpd_list; /* list of extended_perms_decision */
  64};
  65
  66struct avc_xperms_node {
  67	struct extended_perms xp;
  68	struct list_head xpd_head; /* list head of extended_perms_decision */
  69};
  70
  71struct avc_cache {
  72	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
  73	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
  74	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
  75	atomic_t		active_nodes;
  76	u32			latest_notif;	/* latest revocation notification */
  77};
  78
  79struct avc_callback_node {
  80	int (*callback) (u32 event);
 
 
  81	u32 events;
 
 
 
 
  82	struct avc_callback_node *next;
  83};
  84
 
 
 
  85#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  86DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
  87#endif
  88
  89struct selinux_avc {
  90	unsigned int avc_cache_threshold;
  91	struct avc_cache avc_cache;
  92};
  93
  94static struct selinux_avc selinux_avc;
 
 
 
  95
  96void selinux_avc_init(struct selinux_avc **avc)
 
 
 
 
 
  97{
  98	int i;
 
  99
 100	selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
 101	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 102		INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]);
 103		spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]);
 104	}
 105	atomic_set(&selinux_avc.avc_cache.active_nodes, 0);
 106	atomic_set(&selinux_avc.avc_cache.lru_hint, 0);
 107	*avc = &selinux_avc;
 108}
 109
 110unsigned int avc_get_cache_threshold(struct selinux_avc *avc)
 111{
 112	return avc->avc_cache_threshold;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 113}
 114
 115void avc_set_cache_threshold(struct selinux_avc *avc,
 116			     unsigned int cache_threshold)
 
 
 
 
 
 117{
 118	avc->avc_cache_threshold = cache_threshold;
 119}
 
 120
 121static struct avc_callback_node *avc_callbacks __ro_after_init;
 122static struct kmem_cache *avc_node_cachep __ro_after_init;
 123static struct kmem_cache *avc_xperms_data_cachep __ro_after_init;
 124static struct kmem_cache *avc_xperms_decision_cachep __ro_after_init;
 125static struct kmem_cache *avc_xperms_cachep __ro_after_init;
 
 
 126
 127static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
 128{
 129	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
 
 
 
 
 
 
 
 130}
 131
 132/**
 133 * avc_init - Initialize the AVC.
 134 *
 135 * Initialize the access vector cache.
 136 */
 137void __init avc_init(void)
 138{
 
 
 
 
 
 
 
 
 
 139	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
 140					0, SLAB_PANIC, NULL);
 141	avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
 142					sizeof(struct avc_xperms_node),
 143					0, SLAB_PANIC, NULL);
 144	avc_xperms_decision_cachep = kmem_cache_create(
 145					"avc_xperms_decision_node",
 146					sizeof(struct avc_xperms_decision_node),
 147					0, SLAB_PANIC, NULL);
 148	avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
 149					sizeof(struct extended_perms_data),
 150					0, SLAB_PANIC, NULL);
 151}
 152
 153int avc_get_hash_stats(struct selinux_avc *avc, char *page)
 154{
 155	int i, chain_len, max_chain_len, slots_used;
 156	struct avc_node *node;
 157	struct hlist_head *head;
 158
 159	rcu_read_lock();
 160
 161	slots_used = 0;
 162	max_chain_len = 0;
 163	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 164		head = &avc->avc_cache.slots[i];
 165		if (!hlist_empty(head)) {
 
 
 166			slots_used++;
 167			chain_len = 0;
 168			hlist_for_each_entry_rcu(node, head, list)
 169				chain_len++;
 170			if (chain_len > max_chain_len)
 171				max_chain_len = chain_len;
 172		}
 173	}
 174
 175	rcu_read_unlock();
 176
 177	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
 178			 "longest chain: %d\n",
 179			 atomic_read(&avc->avc_cache.active_nodes),
 180			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
 181}
 182
 183/*
 184 * using a linked list for extended_perms_decision lookup because the list is
 185 * always small. i.e. less than 5, typically 1
 186 */
 187static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
 188					struct avc_xperms_node *xp_node)
 189{
 190	struct avc_xperms_decision_node *xpd_node;
 191
 192	list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
 193		if (xpd_node->xpd.driver == driver)
 194			return &xpd_node->xpd;
 195	}
 196	return NULL;
 197}
 198
 199static inline unsigned int
 200avc_xperms_has_perm(struct extended_perms_decision *xpd,
 201					u8 perm, u8 which)
 202{
 203	unsigned int rc = 0;
 204
 205	if ((which == XPERMS_ALLOWED) &&
 206			(xpd->used & XPERMS_ALLOWED))
 207		rc = security_xperm_test(xpd->allowed->p, perm);
 208	else if ((which == XPERMS_AUDITALLOW) &&
 209			(xpd->used & XPERMS_AUDITALLOW))
 210		rc = security_xperm_test(xpd->auditallow->p, perm);
 211	else if ((which == XPERMS_DONTAUDIT) &&
 212			(xpd->used & XPERMS_DONTAUDIT))
 213		rc = security_xperm_test(xpd->dontaudit->p, perm);
 214	return rc;
 215}
 216
 217static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
 218				u8 driver, u8 perm)
 219{
 220	struct extended_perms_decision *xpd;
 221	security_xperm_set(xp_node->xp.drivers.p, driver);
 222	xpd = avc_xperms_decision_lookup(driver, xp_node);
 223	if (xpd && xpd->allowed)
 224		security_xperm_set(xpd->allowed->p, perm);
 225}
 226
 227static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
 228{
 229	struct extended_perms_decision *xpd;
 230
 231	xpd = &xpd_node->xpd;
 232	if (xpd->allowed)
 233		kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
 234	if (xpd->auditallow)
 235		kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
 236	if (xpd->dontaudit)
 237		kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
 238	kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
 239}
 240
 241static void avc_xperms_free(struct avc_xperms_node *xp_node)
 242{
 243	struct avc_xperms_decision_node *xpd_node, *tmp;
 244
 245	if (!xp_node)
 246		return;
 247
 248	list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
 249		list_del(&xpd_node->xpd_list);
 250		avc_xperms_decision_free(xpd_node);
 251	}
 252	kmem_cache_free(avc_xperms_cachep, xp_node);
 253}
 254
 255static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
 256					struct extended_perms_decision *src)
 257{
 258	dest->driver = src->driver;
 259	dest->used = src->used;
 260	if (dest->used & XPERMS_ALLOWED)
 261		memcpy(dest->allowed->p, src->allowed->p,
 262				sizeof(src->allowed->p));
 263	if (dest->used & XPERMS_AUDITALLOW)
 264		memcpy(dest->auditallow->p, src->auditallow->p,
 265				sizeof(src->auditallow->p));
 266	if (dest->used & XPERMS_DONTAUDIT)
 267		memcpy(dest->dontaudit->p, src->dontaudit->p,
 268				sizeof(src->dontaudit->p));
 269}
 270
 271/*
 272 * similar to avc_copy_xperms_decision, but only copy decision
 273 * information relevant to this perm
 274 */
 275static inline void avc_quick_copy_xperms_decision(u8 perm,
 276			struct extended_perms_decision *dest,
 277			struct extended_perms_decision *src)
 278{
 279	/*
 280	 * compute index of the u32 of the 256 bits (8 u32s) that contain this
 281	 * command permission
 282	 */
 283	u8 i = perm >> 5;
 284
 285	dest->used = src->used;
 286	if (dest->used & XPERMS_ALLOWED)
 287		dest->allowed->p[i] = src->allowed->p[i];
 288	if (dest->used & XPERMS_AUDITALLOW)
 289		dest->auditallow->p[i] = src->auditallow->p[i];
 290	if (dest->used & XPERMS_DONTAUDIT)
 291		dest->dontaudit->p[i] = src->dontaudit->p[i];
 292}
 293
 294static struct avc_xperms_decision_node
 295		*avc_xperms_decision_alloc(u8 which)
 296{
 297	struct avc_xperms_decision_node *xpd_node;
 298	struct extended_perms_decision *xpd;
 299
 300	xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep,
 301				     GFP_NOWAIT | __GFP_NOWARN);
 302	if (!xpd_node)
 303		return NULL;
 304
 305	xpd = &xpd_node->xpd;
 306	if (which & XPERMS_ALLOWED) {
 307		xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
 308						GFP_NOWAIT | __GFP_NOWARN);
 309		if (!xpd->allowed)
 310			goto error;
 311	}
 312	if (which & XPERMS_AUDITALLOW) {
 313		xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
 314						GFP_NOWAIT | __GFP_NOWARN);
 315		if (!xpd->auditallow)
 316			goto error;
 317	}
 318	if (which & XPERMS_DONTAUDIT) {
 319		xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
 320						GFP_NOWAIT | __GFP_NOWARN);
 321		if (!xpd->dontaudit)
 322			goto error;
 323	}
 324	return xpd_node;
 325error:
 326	avc_xperms_decision_free(xpd_node);
 327	return NULL;
 328}
 329
 330static int avc_add_xperms_decision(struct avc_node *node,
 331			struct extended_perms_decision *src)
 332{
 333	struct avc_xperms_decision_node *dest_xpd;
 334
 335	node->ae.xp_node->xp.len++;
 336	dest_xpd = avc_xperms_decision_alloc(src->used);
 337	if (!dest_xpd)
 338		return -ENOMEM;
 339	avc_copy_xperms_decision(&dest_xpd->xpd, src);
 340	list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
 341	return 0;
 342}
 343
 344static struct avc_xperms_node *avc_xperms_alloc(void)
 345{
 346	struct avc_xperms_node *xp_node;
 347
 348	xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT | __GFP_NOWARN);
 349	if (!xp_node)
 350		return xp_node;
 351	INIT_LIST_HEAD(&xp_node->xpd_head);
 352	return xp_node;
 353}
 354
 355static int avc_xperms_populate(struct avc_node *node,
 356				struct avc_xperms_node *src)
 357{
 358	struct avc_xperms_node *dest;
 359	struct avc_xperms_decision_node *dest_xpd;
 360	struct avc_xperms_decision_node *src_xpd;
 361
 362	if (src->xp.len == 0)
 363		return 0;
 364	dest = avc_xperms_alloc();
 365	if (!dest)
 366		return -ENOMEM;
 367
 368	memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
 369	dest->xp.len = src->xp.len;
 370
 371	/* for each source xpd allocate a destination xpd and copy */
 372	list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
 373		dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
 374		if (!dest_xpd)
 375			goto error;
 376		avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
 377		list_add(&dest_xpd->xpd_list, &dest->xpd_head);
 378	}
 379	node->ae.xp_node = dest;
 380	return 0;
 381error:
 382	avc_xperms_free(dest);
 383	return -ENOMEM;
 384
 385}
 386
 387static inline u32 avc_xperms_audit_required(u32 requested,
 388					struct av_decision *avd,
 389					struct extended_perms_decision *xpd,
 390					u8 perm,
 391					int result,
 392					u32 *deniedp)
 393{
 394	u32 denied, audited;
 395
 396	denied = requested & ~avd->allowed;
 397	if (unlikely(denied)) {
 398		audited = denied & avd->auditdeny;
 399		if (audited && xpd) {
 400			if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
 401				audited &= ~requested;
 402		}
 403	} else if (result) {
 404		audited = denied = requested;
 405	} else {
 406		audited = requested & avd->auditallow;
 407		if (audited && xpd) {
 408			if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
 409				audited &= ~requested;
 410		}
 411	}
 412
 413	*deniedp = denied;
 414	return audited;
 415}
 416
 417static inline int avc_xperms_audit(struct selinux_state *state,
 418				   u32 ssid, u32 tsid, u16 tclass,
 419				   u32 requested, struct av_decision *avd,
 420				   struct extended_perms_decision *xpd,
 421				   u8 perm, int result,
 422				   struct common_audit_data *ad)
 423{
 424	u32 audited, denied;
 425
 426	audited = avc_xperms_audit_required(
 427			requested, avd, xpd, perm, result, &denied);
 428	if (likely(!audited))
 429		return 0;
 430	return slow_avc_audit(state, ssid, tsid, tclass, requested,
 431			audited, denied, result, ad);
 432}
 433
 434static void avc_node_free(struct rcu_head *rhead)
 435{
 436	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
 437	avc_xperms_free(node->ae.xp_node);
 438	kmem_cache_free(avc_node_cachep, node);
 439	avc_cache_stats_incr(frees);
 440}
 441
 442static void avc_node_delete(struct selinux_avc *avc, struct avc_node *node)
 443{
 444	hlist_del_rcu(&node->list);
 445	call_rcu(&node->rhead, avc_node_free);
 446	atomic_dec(&avc->avc_cache.active_nodes);
 447}
 448
 449static void avc_node_kill(struct selinux_avc *avc, struct avc_node *node)
 450{
 451	avc_xperms_free(node->ae.xp_node);
 452	kmem_cache_free(avc_node_cachep, node);
 453	avc_cache_stats_incr(frees);
 454	atomic_dec(&avc->avc_cache.active_nodes);
 455}
 456
 457static void avc_node_replace(struct selinux_avc *avc,
 458			     struct avc_node *new, struct avc_node *old)
 459{
 460	hlist_replace_rcu(&old->list, &new->list);
 461	call_rcu(&old->rhead, avc_node_free);
 462	atomic_dec(&avc->avc_cache.active_nodes);
 463}
 464
 465static inline int avc_reclaim_node(struct selinux_avc *avc)
 466{
 467	struct avc_node *node;
 468	int hvalue, try, ecx;
 469	unsigned long flags;
 470	struct hlist_head *head;
 
 471	spinlock_t *lock;
 472
 473	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
 474		hvalue = atomic_inc_return(&avc->avc_cache.lru_hint) &
 475			(AVC_CACHE_SLOTS - 1);
 476		head = &avc->avc_cache.slots[hvalue];
 477		lock = &avc->avc_cache.slots_lock[hvalue];
 478
 479		if (!spin_trylock_irqsave(lock, flags))
 480			continue;
 481
 482		rcu_read_lock();
 483		hlist_for_each_entry(node, head, list) {
 484			avc_node_delete(avc, node);
 485			avc_cache_stats_incr(reclaims);
 486			ecx++;
 487			if (ecx >= AVC_CACHE_RECLAIM) {
 488				rcu_read_unlock();
 489				spin_unlock_irqrestore(lock, flags);
 490				goto out;
 491			}
 492		}
 493		rcu_read_unlock();
 494		spin_unlock_irqrestore(lock, flags);
 495	}
 496out:
 497	return ecx;
 498}
 499
 500static struct avc_node *avc_alloc_node(struct selinux_avc *avc)
 501{
 502	struct avc_node *node;
 503
 504	node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT | __GFP_NOWARN);
 505	if (!node)
 506		goto out;
 507
 508	INIT_HLIST_NODE(&node->list);
 509	avc_cache_stats_incr(allocations);
 510
 511	if (atomic_inc_return(&avc->avc_cache.active_nodes) >
 512	    avc->avc_cache_threshold)
 513		avc_reclaim_node(avc);
 514
 515out:
 516	return node;
 517}
 518
 519static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
 520{
 521	node->ae.ssid = ssid;
 522	node->ae.tsid = tsid;
 523	node->ae.tclass = tclass;
 524	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
 525}
 526
 527static inline struct avc_node *avc_search_node(struct selinux_avc *avc,
 528					       u32 ssid, u32 tsid, u16 tclass)
 529{
 530	struct avc_node *node, *ret = NULL;
 531	int hvalue;
 532	struct hlist_head *head;
 
 533
 534	hvalue = avc_hash(ssid, tsid, tclass);
 535	head = &avc->avc_cache.slots[hvalue];
 536	hlist_for_each_entry_rcu(node, head, list) {
 537		if (ssid == node->ae.ssid &&
 538		    tclass == node->ae.tclass &&
 539		    tsid == node->ae.tsid) {
 540			ret = node;
 541			break;
 542		}
 543	}
 544
 545	return ret;
 546}
 547
 548/**
 549 * avc_lookup - Look up an AVC entry.
 550 * @avc: the access vector cache
 551 * @ssid: source security identifier
 552 * @tsid: target security identifier
 553 * @tclass: target security class
 554 *
 555 * Look up an AVC entry that is valid for the
 556 * (@ssid, @tsid), interpreting the permissions
 557 * based on @tclass.  If a valid AVC entry exists,
 558 * then this function returns the avc_node.
 559 * Otherwise, this function returns NULL.
 560 */
 561static struct avc_node *avc_lookup(struct selinux_avc *avc,
 562				   u32 ssid, u32 tsid, u16 tclass)
 563{
 564	struct avc_node *node;
 565
 566	avc_cache_stats_incr(lookups);
 567	node = avc_search_node(avc, ssid, tsid, tclass);
 568
 569	if (node)
 570		return node;
 571
 572	avc_cache_stats_incr(misses);
 573	return NULL;
 574}
 575
 576static int avc_latest_notif_update(struct selinux_avc *avc,
 577				   int seqno, int is_insert)
 578{
 579	int ret = 0;
 580	static DEFINE_SPINLOCK(notif_lock);
 581	unsigned long flag;
 582
 583	spin_lock_irqsave(&notif_lock, flag);
 584	if (is_insert) {
 585		if (seqno < avc->avc_cache.latest_notif) {
 586			pr_warn("SELinux: avc:  seqno %d < latest_notif %d\n",
 587			       seqno, avc->avc_cache.latest_notif);
 588			ret = -EAGAIN;
 589		}
 590	} else {
 591		if (seqno > avc->avc_cache.latest_notif)
 592			avc->avc_cache.latest_notif = seqno;
 593	}
 594	spin_unlock_irqrestore(&notif_lock, flag);
 595
 596	return ret;
 597}
 598
 599/**
 600 * avc_insert - Insert an AVC entry.
 601 * @avc: the access vector cache
 602 * @ssid: source security identifier
 603 * @tsid: target security identifier
 604 * @tclass: target security class
 605 * @avd: resulting av decision
 606 * @xp_node: resulting extended permissions
 607 *
 608 * Insert an AVC entry for the SID pair
 609 * (@ssid, @tsid) and class @tclass.
 610 * The access vectors and the sequence number are
 611 * normally provided by the security server in
 612 * response to a security_compute_av() call.  If the
 613 * sequence number @avd->seqno is not less than the latest
 614 * revocation notification, then the function copies
 615 * the access vectors into a cache entry, returns
 616 * avc_node inserted. Otherwise, this function returns NULL.
 617 */
 618static struct avc_node *avc_insert(struct selinux_avc *avc,
 619				   u32 ssid, u32 tsid, u16 tclass,
 620				   struct av_decision *avd,
 621				   struct avc_xperms_node *xp_node)
 622{
 623	struct avc_node *pos, *node = NULL;
 624	int hvalue;
 625	unsigned long flag;
 626	spinlock_t *lock;
 627	struct hlist_head *head;
 628
 629	if (avc_latest_notif_update(avc, avd->seqno, 1))
 630		return NULL;
 631
 632	node = avc_alloc_node(avc);
 633	if (!node)
 634		return NULL;
 
 
 635
 636	avc_node_populate(node, ssid, tsid, tclass, avd);
 637	if (avc_xperms_populate(node, xp_node)) {
 638		avc_node_kill(avc, node);
 639		return NULL;
 640	}
 641
 642	hvalue = avc_hash(ssid, tsid, tclass);
 643	head = &avc->avc_cache.slots[hvalue];
 644	lock = &avc->avc_cache.slots_lock[hvalue];
 645	spin_lock_irqsave(lock, flag);
 646	hlist_for_each_entry(pos, head, list) {
 647		if (pos->ae.ssid == ssid &&
 648			pos->ae.tsid == tsid &&
 649			pos->ae.tclass == tclass) {
 650			avc_node_replace(avc, node, pos);
 651			goto found;
 
 652		}
 653	}
 654	hlist_add_head_rcu(&node->list, head);
 655found:
 656	spin_unlock_irqrestore(lock, flag);
 
 
 657	return node;
 658}
 659
 660/**
 661 * avc_audit_pre_callback - SELinux specific information
 662 * will be called by generic audit code
 663 * @ab: the audit buffer
 664 * @a: audit_data
 665 */
 666static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
 667{
 668	struct common_audit_data *ad = a;
 669	struct selinux_audit_data *sad = ad->selinux_audit_data;
 670	u32 av = sad->audited;
 671	const char *const *perms;
 672	int i, perm;
 673
 674	audit_log_format(ab, "avc:  %s ", sad->denied ? "denied" : "granted");
 675
 676	if (av == 0) {
 677		audit_log_format(ab, " null");
 678		return;
 679	}
 680
 681	perms = secclass_map[sad->tclass-1].perms;
 682
 683	audit_log_format(ab, " {");
 684	i = 0;
 685	perm = 1;
 686	while (i < (sizeof(av) * 8)) {
 687		if ((perm & av) && perms[i]) {
 688			audit_log_format(ab, " %s", perms[i]);
 689			av &= ~perm;
 690		}
 691		i++;
 692		perm <<= 1;
 693	}
 694
 695	if (av)
 696		audit_log_format(ab, " 0x%x", av);
 697
 698	audit_log_format(ab, " } for ");
 699}
 700
 701/**
 702 * avc_audit_post_callback - SELinux specific information
 703 * will be called by generic audit code
 704 * @ab: the audit buffer
 705 * @a: audit_data
 706 */
 707static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
 708{
 709	struct common_audit_data *ad = a;
 710	struct selinux_audit_data *sad = ad->selinux_audit_data;
 711	char *scontext = NULL;
 712	char *tcontext = NULL;
 713	const char *tclass = NULL;
 714	u32 scontext_len;
 715	u32 tcontext_len;
 716	int rc;
 717
 718	rc = security_sid_to_context(sad->state, sad->ssid, &scontext,
 719				     &scontext_len);
 720	if (rc)
 721		audit_log_format(ab, " ssid=%d", sad->ssid);
 722	else
 723		audit_log_format(ab, " scontext=%s", scontext);
 724
 725	rc = security_sid_to_context(sad->state, sad->tsid, &tcontext,
 726				     &tcontext_len);
 727	if (rc)
 728		audit_log_format(ab, " tsid=%d", sad->tsid);
 729	else
 730		audit_log_format(ab, " tcontext=%s", tcontext);
 731
 732	tclass = secclass_map[sad->tclass-1].name;
 733	audit_log_format(ab, " tclass=%s", tclass);
 734
 735	if (sad->denied)
 736		audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1);
 737
 738	trace_selinux_audited(sad, scontext, tcontext, tclass);
 739	kfree(tcontext);
 740	kfree(scontext);
 741
 742	/* in case of invalid context report also the actual context string */
 743	rc = security_sid_to_context_inval(sad->state, sad->ssid, &scontext,
 744					   &scontext_len);
 745	if (!rc && scontext) {
 746		if (scontext_len && scontext[scontext_len - 1] == '\0')
 747			scontext_len--;
 748		audit_log_format(ab, " srawcon=");
 749		audit_log_n_untrustedstring(ab, scontext, scontext_len);
 750		kfree(scontext);
 751	}
 752
 753	rc = security_sid_to_context_inval(sad->state, sad->tsid, &scontext,
 754					   &scontext_len);
 755	if (!rc && scontext) {
 756		if (scontext_len && scontext[scontext_len - 1] == '\0')
 757			scontext_len--;
 758		audit_log_format(ab, " trawcon=");
 759		audit_log_n_untrustedstring(ab, scontext, scontext_len);
 760		kfree(scontext);
 761	}
 762}
 763
 764/*
 765 * This is the slow part of avc audit with big stack footprint.
 766 * Note that it is non-blocking and can be called from under
 767 * rcu_read_lock().
 768 */
 769noinline int slow_avc_audit(struct selinux_state *state,
 770			    u32 ssid, u32 tsid, u16 tclass,
 771			    u32 requested, u32 audited, u32 denied, int result,
 772			    struct common_audit_data *a)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 773{
 774	struct common_audit_data stack_data;
 775	struct selinux_audit_data sad;
 776
 777	if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)))
 778		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 779
 780	if (!a) {
 781		a = &stack_data;
 782		a->type = LSM_AUDIT_DATA_NONE;
 783	}
 784
 785	sad.tclass = tclass;
 786	sad.requested = requested;
 787	sad.ssid = ssid;
 788	sad.tsid = tsid;
 789	sad.audited = audited;
 790	sad.denied = denied;
 791	sad.result = result;
 792	sad.state = state;
 793
 794	a->selinux_audit_data = &sad;
 795
 796	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
 
 
 
 
 
 
 
 
 797	return 0;
 798}
 799
 800/**
 801 * avc_add_callback - Register a callback for security events.
 802 * @callback: callback function
 803 * @events: security events
 
 
 
 
 804 *
 805 * Register a callback function for events in the set @events.
 806 * Returns %0 on success or -%ENOMEM if insufficient memory
 807 * exists to add the callback.
 808 */
 809int __init avc_add_callback(int (*callback)(u32 event), u32 events)
 
 
 
 
 
 
 810{
 811	struct avc_callback_node *c;
 812	int rc = 0;
 813
 814	c = kmalloc(sizeof(*c), GFP_KERNEL);
 815	if (!c) {
 816		rc = -ENOMEM;
 817		goto out;
 818	}
 819
 820	c->callback = callback;
 821	c->events = events;
 
 
 
 822	c->next = avc_callbacks;
 823	avc_callbacks = c;
 824out:
 825	return rc;
 826}
 827
 
 
 
 
 
 828/**
 829 * avc_update_node - Update an AVC entry
 830 * @avc: the access vector cache
 831 * @event : Updating event
 832 * @perms : Permission mask bits
 833 * @driver: xperm driver information
 834 * @xperm: xperm permissions
 835 * @ssid: AVC entry source sid
 836 * @tsid: AVC entry target sid
 837 * @tclass : AVC entry target object class
 838 * @seqno : sequence number when decision was made
 839 * @xpd: extended_perms_decision to be added to the node
 840 * @flags: the AVC_* flags, e.g. AVC_EXTENDED_PERMS, or 0.
 841 *
 842 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
 843 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
 844 * otherwise, this function updates the AVC entry. The original AVC-entry object
 845 * will release later by RCU.
 846 */
 847static int avc_update_node(struct selinux_avc *avc,
 848			   u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
 849			   u32 tsid, u16 tclass, u32 seqno,
 850			   struct extended_perms_decision *xpd,
 851			   u32 flags)
 852{
 853	int hvalue, rc = 0;
 854	unsigned long flag;
 855	struct avc_node *pos, *node, *orig = NULL;
 856	struct hlist_head *head;
 
 857	spinlock_t *lock;
 858
 859	node = avc_alloc_node(avc);
 860	if (!node) {
 861		rc = -ENOMEM;
 862		goto out;
 863	}
 864
 865	/* Lock the target slot */
 866	hvalue = avc_hash(ssid, tsid, tclass);
 867
 868	head = &avc->avc_cache.slots[hvalue];
 869	lock = &avc->avc_cache.slots_lock[hvalue];
 870
 871	spin_lock_irqsave(lock, flag);
 872
 873	hlist_for_each_entry(pos, head, list) {
 874		if (ssid == pos->ae.ssid &&
 875		    tsid == pos->ae.tsid &&
 876		    tclass == pos->ae.tclass &&
 877		    seqno == pos->ae.avd.seqno){
 878			orig = pos;
 879			break;
 880		}
 881	}
 882
 883	if (!orig) {
 884		rc = -ENOENT;
 885		avc_node_kill(avc, node);
 886		goto out_unlock;
 887	}
 888
 889	/*
 890	 * Copy and replace original node.
 891	 */
 892
 893	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
 894
 895	if (orig->ae.xp_node) {
 896		rc = avc_xperms_populate(node, orig->ae.xp_node);
 897		if (rc) {
 898			avc_node_kill(avc, node);
 899			goto out_unlock;
 900		}
 901	}
 902
 903	switch (event) {
 904	case AVC_CALLBACK_GRANT:
 905		node->ae.avd.allowed |= perms;
 906		if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
 907			avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
 908		break;
 909	case AVC_CALLBACK_TRY_REVOKE:
 910	case AVC_CALLBACK_REVOKE:
 911		node->ae.avd.allowed &= ~perms;
 912		break;
 913	case AVC_CALLBACK_AUDITALLOW_ENABLE:
 914		node->ae.avd.auditallow |= perms;
 915		break;
 916	case AVC_CALLBACK_AUDITALLOW_DISABLE:
 917		node->ae.avd.auditallow &= ~perms;
 918		break;
 919	case AVC_CALLBACK_AUDITDENY_ENABLE:
 920		node->ae.avd.auditdeny |= perms;
 921		break;
 922	case AVC_CALLBACK_AUDITDENY_DISABLE:
 923		node->ae.avd.auditdeny &= ~perms;
 924		break;
 925	case AVC_CALLBACK_ADD_XPERMS:
 926		avc_add_xperms_decision(node, xpd);
 927		break;
 928	}
 929	avc_node_replace(avc, node, orig);
 930out_unlock:
 931	spin_unlock_irqrestore(lock, flag);
 932out:
 933	return rc;
 934}
 935
 936/**
 937 * avc_flush - Flush the cache
 938 * @avc: the access vector cache
 939 */
 940static void avc_flush(struct selinux_avc *avc)
 941{
 942	struct hlist_head *head;
 
 943	struct avc_node *node;
 944	spinlock_t *lock;
 945	unsigned long flag;
 946	int i;
 947
 948	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 949		head = &avc->avc_cache.slots[i];
 950		lock = &avc->avc_cache.slots_lock[i];
 951
 952		spin_lock_irqsave(lock, flag);
 953		/*
 954		 * With preemptable RCU, the outer spinlock does not
 955		 * prevent RCU grace periods from ending.
 956		 */
 957		rcu_read_lock();
 958		hlist_for_each_entry(node, head, list)
 959			avc_node_delete(avc, node);
 960		rcu_read_unlock();
 961		spin_unlock_irqrestore(lock, flag);
 962	}
 963}
 964
 965/**
 966 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
 967 * @avc: the access vector cache
 968 * @seqno: policy sequence number
 969 */
 970int avc_ss_reset(struct selinux_avc *avc, u32 seqno)
 971{
 972	struct avc_callback_node *c;
 973	int rc = 0, tmprc;
 974
 975	avc_flush(avc);
 976
 977	for (c = avc_callbacks; c; c = c->next) {
 978		if (c->events & AVC_CALLBACK_RESET) {
 979			tmprc = c->callback(AVC_CALLBACK_RESET);
 
 980			/* save the first error encountered for the return
 981			   value and continue processing the callbacks */
 982			if (!rc)
 983				rc = tmprc;
 984		}
 985	}
 986
 987	avc_latest_notif_update(avc, seqno, 0);
 988	return rc;
 989}
 990
 991/*
 992 * Slow-path helper function for avc_has_perm_noaudit,
 993 * when the avc_node lookup fails. We get called with
 994 * the RCU read lock held, and need to return with it
 995 * still held, but drop if for the security compute.
 996 *
 997 * Don't inline this, since it's the slow-path and just
 998 * results in a bigger stack frame.
 999 */
1000static noinline
1001struct avc_node *avc_compute_av(struct selinux_state *state,
1002				u32 ssid, u32 tsid,
1003				u16 tclass, struct av_decision *avd,
1004				struct avc_xperms_node *xp_node)
1005{
1006	rcu_read_unlock();
1007	INIT_LIST_HEAD(&xp_node->xpd_head);
1008	security_compute_av(state, ssid, tsid, tclass, avd, &xp_node->xp);
1009	rcu_read_lock();
1010	return avc_insert(state->avc, ssid, tsid, tclass, avd, xp_node);
1011}
1012
1013static noinline int avc_denied(struct selinux_state *state,
1014			       u32 ssid, u32 tsid,
1015			       u16 tclass, u32 requested,
1016			       u8 driver, u8 xperm, unsigned int flags,
1017			       struct av_decision *avd)
1018{
1019	if (flags & AVC_STRICT)
1020		return -EACCES;
1021
1022	if (enforcing_enabled(state) &&
1023	    !(avd->flags & AVD_FLAGS_PERMISSIVE))
1024		return -EACCES;
1025
1026	avc_update_node(state->avc, AVC_CALLBACK_GRANT, requested, driver,
1027			xperm, ssid, tsid, tclass, avd->seqno, NULL, flags);
1028	return 0;
1029}
1030
1031/*
1032 * The avc extended permissions logic adds an additional 256 bits of
1033 * permissions to an avc node when extended permissions for that node are
1034 * specified in the avtab. If the additional 256 permissions is not adequate,
1035 * as-is the case with ioctls, then multiple may be chained together and the
1036 * driver field is used to specify which set contains the permission.
1037 */
1038int avc_has_extended_perms(struct selinux_state *state,
1039			   u32 ssid, u32 tsid, u16 tclass, u32 requested,
1040			   u8 driver, u8 xperm, struct common_audit_data *ad)
1041{
1042	struct avc_node *node;
1043	struct av_decision avd;
1044	u32 denied;
1045	struct extended_perms_decision local_xpd;
1046	struct extended_perms_decision *xpd = NULL;
1047	struct extended_perms_data allowed;
1048	struct extended_perms_data auditallow;
1049	struct extended_perms_data dontaudit;
1050	struct avc_xperms_node local_xp_node;
1051	struct avc_xperms_node *xp_node;
1052	int rc = 0, rc2;
1053
1054	xp_node = &local_xp_node;
1055	if (WARN_ON(!requested))
1056		return -EACCES;
1057
1058	rcu_read_lock();
1059
1060	node = avc_lookup(state->avc, ssid, tsid, tclass);
1061	if (unlikely(!node)) {
1062		avc_compute_av(state, ssid, tsid, tclass, &avd, xp_node);
1063	} else {
1064		memcpy(&avd, &node->ae.avd, sizeof(avd));
1065		xp_node = node->ae.xp_node;
1066	}
1067	/* if extended permissions are not defined, only consider av_decision */
1068	if (!xp_node || !xp_node->xp.len)
1069		goto decision;
1070
1071	local_xpd.allowed = &allowed;
1072	local_xpd.auditallow = &auditallow;
1073	local_xpd.dontaudit = &dontaudit;
1074
1075	xpd = avc_xperms_decision_lookup(driver, xp_node);
1076	if (unlikely(!xpd)) {
1077		/*
1078		 * Compute the extended_perms_decision only if the driver
1079		 * is flagged
1080		 */
1081		if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1082			avd.allowed &= ~requested;
1083			goto decision;
1084		}
1085		rcu_read_unlock();
1086		security_compute_xperms_decision(state, ssid, tsid, tclass,
1087						 driver, &local_xpd);
1088		rcu_read_lock();
1089		avc_update_node(state->avc, AVC_CALLBACK_ADD_XPERMS, requested,
1090				driver, xperm, ssid, tsid, tclass, avd.seqno,
1091				&local_xpd, 0);
1092	} else {
1093		avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1094	}
1095	xpd = &local_xpd;
1096
1097	if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1098		avd.allowed &= ~requested;
1099
1100decision:
1101	denied = requested & ~(avd.allowed);
1102	if (unlikely(denied))
1103		rc = avc_denied(state, ssid, tsid, tclass, requested,
1104				driver, xperm, AVC_EXTENDED_PERMS, &avd);
1105
1106	rcu_read_unlock();
1107
1108	rc2 = avc_xperms_audit(state, ssid, tsid, tclass, requested,
1109			&avd, xpd, xperm, rc, ad);
1110	if (rc2)
1111		return rc2;
1112	return rc;
1113}
1114
1115/**
1116 * avc_has_perm_noaudit - Check permissions but perform no auditing.
1117 * @state: SELinux state
1118 * @ssid: source security identifier
1119 * @tsid: target security identifier
1120 * @tclass: target security class
1121 * @requested: requested permissions, interpreted based on @tclass
1122 * @flags:  AVC_STRICT or 0
1123 * @avd: access vector decisions
1124 *
1125 * Check the AVC to determine whether the @requested permissions are granted
1126 * for the SID pair (@ssid, @tsid), interpreting the permissions
1127 * based on @tclass, and call the security server on a cache miss to obtain
1128 * a new decision and add it to the cache.  Return a copy of the decisions
1129 * in @avd.  Return %0 if all @requested permissions are granted,
1130 * -%EACCES if any permissions are denied, or another -errno upon
1131 * other errors.  This function is typically called by avc_has_perm(),
1132 * but may also be called directly to separate permission checking from
1133 * auditing, e.g. in cases where a lock must be held for the check but
1134 * should be released for the auditing.
1135 */
1136inline int avc_has_perm_noaudit(struct selinux_state *state,
1137				u32 ssid, u32 tsid,
1138				u16 tclass, u32 requested,
1139				unsigned int flags,
1140				struct av_decision *avd)
1141{
1142	struct avc_node *node;
1143	struct avc_xperms_node xp_node;
1144	int rc = 0;
1145	u32 denied;
1146
1147	if (WARN_ON(!requested))
1148		return -EACCES;
1149
1150	rcu_read_lock();
1151
1152	node = avc_lookup(state->avc, ssid, tsid, tclass);
1153	if (unlikely(!node))
1154		avc_compute_av(state, ssid, tsid, tclass, avd, &xp_node);
1155	else
 
 
 
1156		memcpy(avd, &node->ae.avd, sizeof(*avd));
 
 
1157
1158	denied = requested & ~(avd->allowed);
1159	if (unlikely(denied))
1160		rc = avc_denied(state, ssid, tsid, tclass, requested, 0, 0,
1161				flags, avd);
 
 
 
 
 
 
 
1162
1163	rcu_read_unlock();
1164	return rc;
1165}
1166
1167/**
1168 * avc_has_perm - Check permissions and perform any appropriate auditing.
1169 * @state: SELinux state
1170 * @ssid: source security identifier
1171 * @tsid: target security identifier
1172 * @tclass: target security class
1173 * @requested: requested permissions, interpreted based on @tclass
1174 * @auditdata: auxiliary audit data
 
1175 *
1176 * Check the AVC to determine whether the @requested permissions are granted
1177 * for the SID pair (@ssid, @tsid), interpreting the permissions
1178 * based on @tclass, and call the security server on a cache miss to obtain
1179 * a new decision and add it to the cache.  Audit the granting or denial of
1180 * permissions in accordance with the policy.  Return %0 if all @requested
1181 * permissions are granted, -%EACCES if any permissions are denied, or
1182 * another -errno upon other errors.
1183 */
1184int avc_has_perm(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass,
1185		 u32 requested, struct common_audit_data *auditdata)
 
1186{
1187	struct av_decision avd;
1188	int rc, rc2;
1189
1190	rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0,
1191				  &avd);
1192
1193	rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1194			auditdata);
1195	if (rc2)
1196		return rc2;
1197	return rc;
1198}
1199
1200u32 avc_policy_seqno(struct selinux_state *state)
1201{
1202	return state->avc->avc_cache.latest_notif;
1203}
1204
1205void avc_disable(void)
1206{
1207	/*
1208	 * If you are looking at this because you have realized that we are
1209	 * not destroying the avc_node_cachep it might be easy to fix, but
1210	 * I don't know the memory barrier semantics well enough to know.  It's
1211	 * possible that some other task dereferenced security_ops when
1212	 * it still pointed to selinux operations.  If that is the case it's
1213	 * possible that it is about to use the avc and is about to need the
1214	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
1215	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
1216	 * the cache and get that memory back.
1217	 */
1218	if (avc_node_cachep) {
1219		avc_flush(selinux_state.avc);
1220		/* kmem_cache_destroy(avc_node_cachep); */
1221	}
1222}
v3.1
 
  1/*
  2 * Implementation of the kernel access vector cache (AVC).
  3 *
  4 * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
  5 *	     James Morris <jmorris@redhat.com>
  6 *
  7 * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
  8 *	Replaced the avc_lock spinlock by RCU.
  9 *
 10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
 11 *
 12 *	This program is free software; you can redistribute it and/or modify
 13 *	it under the terms of the GNU General Public License version 2,
 14 *	as published by the Free Software Foundation.
 15 */
 16#include <linux/types.h>
 17#include <linux/stddef.h>
 18#include <linux/kernel.h>
 19#include <linux/slab.h>
 20#include <linux/fs.h>
 21#include <linux/dcache.h>
 22#include <linux/init.h>
 23#include <linux/skbuff.h>
 24#include <linux/percpu.h>
 
 25#include <net/sock.h>
 26#include <linux/un.h>
 27#include <net/af_unix.h>
 28#include <linux/ip.h>
 29#include <linux/audit.h>
 30#include <linux/ipv6.h>
 31#include <net/ipv6.h>
 32#include "avc.h"
 33#include "avc_ss.h"
 34#include "classmap.h"
 35
 
 
 
 36#define AVC_CACHE_SLOTS			512
 37#define AVC_DEF_CACHE_THRESHOLD		512
 38#define AVC_CACHE_RECLAIM		16
 39
 40#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
 41#define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
 42#else
 43#define avc_cache_stats_incr(field)	do {} while (0)
 44#endif
 45
 46struct avc_entry {
 47	u32			ssid;
 48	u32			tsid;
 49	u16			tclass;
 50	struct av_decision	avd;
 
 51};
 52
 53struct avc_node {
 54	struct avc_entry	ae;
 55	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
 56	struct rcu_head		rhead;
 57};
 58
 
 
 
 
 
 
 
 
 
 
 59struct avc_cache {
 60	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
 61	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
 62	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
 63	atomic_t		active_nodes;
 64	u32			latest_notif;	/* latest revocation notification */
 65};
 66
 67struct avc_callback_node {
 68	int (*callback) (u32 event, u32 ssid, u32 tsid,
 69			 u16 tclass, u32 perms,
 70			 u32 *out_retained);
 71	u32 events;
 72	u32 ssid;
 73	u32 tsid;
 74	u16 tclass;
 75	u32 perms;
 76	struct avc_callback_node *next;
 77};
 78
 79/* Exported via selinufs */
 80unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
 81
 82#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
 83DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
 84#endif
 85
 86static struct avc_cache avc_cache;
 87static struct avc_callback_node *avc_callbacks;
 88static struct kmem_cache *avc_node_cachep;
 
 89
 90static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
 91{
 92	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
 93}
 94
 95/**
 96 * avc_dump_av - Display an access vector in human-readable form.
 97 * @tclass: target security class
 98 * @av: access vector
 99 */
100static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
101{
102	const char **perms;
103	int i, perm;
104
105	if (av == 0) {
106		audit_log_format(ab, " null");
107		return;
 
108	}
 
 
 
 
109
110	perms = secclass_map[tclass-1].perms;
111
112	audit_log_format(ab, " {");
113	i = 0;
114	perm = 1;
115	while (i < (sizeof(av) * 8)) {
116		if ((perm & av) && perms[i]) {
117			audit_log_format(ab, " %s", perms[i]);
118			av &= ~perm;
119		}
120		i++;
121		perm <<= 1;
122	}
123
124	if (av)
125		audit_log_format(ab, " 0x%x", av);
126
127	audit_log_format(ab, " }");
128}
129
130/**
131 * avc_dump_query - Display a SID pair and a class in human-readable form.
132 * @ssid: source security identifier
133 * @tsid: target security identifier
134 * @tclass: target security class
135 */
136static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
137{
138	int rc;
139	char *scontext;
140	u32 scontext_len;
141
142	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
143	if (rc)
144		audit_log_format(ab, "ssid=%d", ssid);
145	else {
146		audit_log_format(ab, "scontext=%s", scontext);
147		kfree(scontext);
148	}
149
150	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
151	if (rc)
152		audit_log_format(ab, " tsid=%d", tsid);
153	else {
154		audit_log_format(ab, " tcontext=%s", scontext);
155		kfree(scontext);
156	}
157
158	BUG_ON(tclass >= ARRAY_SIZE(secclass_map));
159	audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
160}
161
162/**
163 * avc_init - Initialize the AVC.
164 *
165 * Initialize the access vector cache.
166 */
167void __init avc_init(void)
168{
169	int i;
170
171	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
172		INIT_HLIST_HEAD(&avc_cache.slots[i]);
173		spin_lock_init(&avc_cache.slots_lock[i]);
174	}
175	atomic_set(&avc_cache.active_nodes, 0);
176	atomic_set(&avc_cache.lru_hint, 0);
177
178	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
179					     0, SLAB_PANIC, NULL);
180
181	audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
 
 
 
 
 
 
 
 
182}
183
184int avc_get_hash_stats(char *page)
185{
186	int i, chain_len, max_chain_len, slots_used;
187	struct avc_node *node;
188	struct hlist_head *head;
189
190	rcu_read_lock();
191
192	slots_used = 0;
193	max_chain_len = 0;
194	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
195		head = &avc_cache.slots[i];
196		if (!hlist_empty(head)) {
197			struct hlist_node *next;
198
199			slots_used++;
200			chain_len = 0;
201			hlist_for_each_entry_rcu(node, next, head, list)
202				chain_len++;
203			if (chain_len > max_chain_len)
204				max_chain_len = chain_len;
205		}
206	}
207
208	rcu_read_unlock();
209
210	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
211			 "longest chain: %d\n",
212			 atomic_read(&avc_cache.active_nodes),
213			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
214}
215
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216static void avc_node_free(struct rcu_head *rhead)
217{
218	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
 
219	kmem_cache_free(avc_node_cachep, node);
220	avc_cache_stats_incr(frees);
221}
222
223static void avc_node_delete(struct avc_node *node)
224{
225	hlist_del_rcu(&node->list);
226	call_rcu(&node->rhead, avc_node_free);
227	atomic_dec(&avc_cache.active_nodes);
228}
229
230static void avc_node_kill(struct avc_node *node)
231{
 
232	kmem_cache_free(avc_node_cachep, node);
233	avc_cache_stats_incr(frees);
234	atomic_dec(&avc_cache.active_nodes);
235}
236
237static void avc_node_replace(struct avc_node *new, struct avc_node *old)
 
238{
239	hlist_replace_rcu(&old->list, &new->list);
240	call_rcu(&old->rhead, avc_node_free);
241	atomic_dec(&avc_cache.active_nodes);
242}
243
244static inline int avc_reclaim_node(void)
245{
246	struct avc_node *node;
247	int hvalue, try, ecx;
248	unsigned long flags;
249	struct hlist_head *head;
250	struct hlist_node *next;
251	spinlock_t *lock;
252
253	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
254		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
255		head = &avc_cache.slots[hvalue];
256		lock = &avc_cache.slots_lock[hvalue];
 
257
258		if (!spin_trylock_irqsave(lock, flags))
259			continue;
260
261		rcu_read_lock();
262		hlist_for_each_entry(node, next, head, list) {
263			avc_node_delete(node);
264			avc_cache_stats_incr(reclaims);
265			ecx++;
266			if (ecx >= AVC_CACHE_RECLAIM) {
267				rcu_read_unlock();
268				spin_unlock_irqrestore(lock, flags);
269				goto out;
270			}
271		}
272		rcu_read_unlock();
273		spin_unlock_irqrestore(lock, flags);
274	}
275out:
276	return ecx;
277}
278
279static struct avc_node *avc_alloc_node(void)
280{
281	struct avc_node *node;
282
283	node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
284	if (!node)
285		goto out;
286
287	INIT_HLIST_NODE(&node->list);
288	avc_cache_stats_incr(allocations);
289
290	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
291		avc_reclaim_node();
 
292
293out:
294	return node;
295}
296
297static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
298{
299	node->ae.ssid = ssid;
300	node->ae.tsid = tsid;
301	node->ae.tclass = tclass;
302	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
303}
304
305static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
 
306{
307	struct avc_node *node, *ret = NULL;
308	int hvalue;
309	struct hlist_head *head;
310	struct hlist_node *next;
311
312	hvalue = avc_hash(ssid, tsid, tclass);
313	head = &avc_cache.slots[hvalue];
314	hlist_for_each_entry_rcu(node, next, head, list) {
315		if (ssid == node->ae.ssid &&
316		    tclass == node->ae.tclass &&
317		    tsid == node->ae.tsid) {
318			ret = node;
319			break;
320		}
321	}
322
323	return ret;
324}
325
326/**
327 * avc_lookup - Look up an AVC entry.
 
328 * @ssid: source security identifier
329 * @tsid: target security identifier
330 * @tclass: target security class
331 *
332 * Look up an AVC entry that is valid for the
333 * (@ssid, @tsid), interpreting the permissions
334 * based on @tclass.  If a valid AVC entry exists,
335 * then this function returns the avc_node.
336 * Otherwise, this function returns NULL.
337 */
338static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
 
339{
340	struct avc_node *node;
341
342	avc_cache_stats_incr(lookups);
343	node = avc_search_node(ssid, tsid, tclass);
344
345	if (node)
346		return node;
347
348	avc_cache_stats_incr(misses);
349	return NULL;
350}
351
352static int avc_latest_notif_update(int seqno, int is_insert)
 
353{
354	int ret = 0;
355	static DEFINE_SPINLOCK(notif_lock);
356	unsigned long flag;
357
358	spin_lock_irqsave(&notif_lock, flag);
359	if (is_insert) {
360		if (seqno < avc_cache.latest_notif) {
361			printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n",
362			       seqno, avc_cache.latest_notif);
363			ret = -EAGAIN;
364		}
365	} else {
366		if (seqno > avc_cache.latest_notif)
367			avc_cache.latest_notif = seqno;
368	}
369	spin_unlock_irqrestore(&notif_lock, flag);
370
371	return ret;
372}
373
374/**
375 * avc_insert - Insert an AVC entry.
 
376 * @ssid: source security identifier
377 * @tsid: target security identifier
378 * @tclass: target security class
379 * @avd: resulting av decision
 
380 *
381 * Insert an AVC entry for the SID pair
382 * (@ssid, @tsid) and class @tclass.
383 * The access vectors and the sequence number are
384 * normally provided by the security server in
385 * response to a security_compute_av() call.  If the
386 * sequence number @avd->seqno is not less than the latest
387 * revocation notification, then the function copies
388 * the access vectors into a cache entry, returns
389 * avc_node inserted. Otherwise, this function returns NULL.
390 */
391static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
 
 
 
392{
393	struct avc_node *pos, *node = NULL;
394	int hvalue;
395	unsigned long flag;
 
 
396
397	if (avc_latest_notif_update(avd->seqno, 1))
398		goto out;
399
400	node = avc_alloc_node();
401	if (node) {
402		struct hlist_head *head;
403		struct hlist_node *next;
404		spinlock_t *lock;
405
406		hvalue = avc_hash(ssid, tsid, tclass);
407		avc_node_populate(node, ssid, tsid, tclass, avd);
 
 
 
408
409		head = &avc_cache.slots[hvalue];
410		lock = &avc_cache.slots_lock[hvalue];
411
412		spin_lock_irqsave(lock, flag);
413		hlist_for_each_entry(pos, next, head, list) {
414			if (pos->ae.ssid == ssid &&
415			    pos->ae.tsid == tsid &&
416			    pos->ae.tclass == tclass) {
417				avc_node_replace(node, pos);
418				goto found;
419			}
420		}
421		hlist_add_head_rcu(&node->list, head);
 
422found:
423		spin_unlock_irqrestore(lock, flag);
424	}
425out:
426	return node;
427}
428
429/**
430 * avc_audit_pre_callback - SELinux specific information
431 * will be called by generic audit code
432 * @ab: the audit buffer
433 * @a: audit_data
434 */
435static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
436{
437	struct common_audit_data *ad = a;
438	audit_log_format(ab, "avc:  %s ",
439			 ad->selinux_audit_data.denied ? "denied" : "granted");
440	avc_dump_av(ab, ad->selinux_audit_data.tclass,
441			ad->selinux_audit_data.audited);
442	audit_log_format(ab, " for ");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
443}
444
445/**
446 * avc_audit_post_callback - SELinux specific information
447 * will be called by generic audit code
448 * @ab: the audit buffer
449 * @a: audit_data
450 */
451static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
452{
453	struct common_audit_data *ad = a;
454	audit_log_format(ab, " ");
455	avc_dump_query(ab, ad->selinux_audit_data.ssid,
456			   ad->selinux_audit_data.tsid,
457			   ad->selinux_audit_data.tclass);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
458}
459
460/**
461 * avc_audit - Audit the granting or denial of permissions.
462 * @ssid: source security identifier
463 * @tsid: target security identifier
464 * @tclass: target security class
465 * @requested: requested permissions
466 * @avd: access vector decisions
467 * @result: result from avc_has_perm_noaudit
468 * @a:  auxiliary audit data
469 * @flags: VFS walk flags
470 *
471 * Audit the granting or denial of permissions in accordance
472 * with the policy.  This function is typically called by
473 * avc_has_perm() after a permission check, but can also be
474 * called directly by callers who use avc_has_perm_noaudit()
475 * in order to separate the permission check from the auditing.
476 * For example, this separation is useful when the permission check must
477 * be performed under a lock, to allow the lock to be released
478 * before calling the auditing code.
479 */
480int avc_audit(u32 ssid, u32 tsid,
481	       u16 tclass, u32 requested,
482	       struct av_decision *avd, int result, struct common_audit_data *a,
483	       unsigned flags)
484{
485	struct common_audit_data stack_data;
486	u32 denied, audited;
487	denied = requested & ~avd->allowed;
488	if (denied) {
489		audited = denied & avd->auditdeny;
490		/*
491		 * a->selinux_audit_data.auditdeny is TRICKY!  Setting a bit in
492		 * this field means that ANY denials should NOT be audited if
493		 * the policy contains an explicit dontaudit rule for that
494		 * permission.  Take notice that this is unrelated to the
495		 * actual permissions that were denied.  As an example lets
496		 * assume:
497		 *
498		 * denied == READ
499		 * avd.auditdeny & ACCESS == 0 (not set means explicit rule)
500		 * selinux_audit_data.auditdeny & ACCESS == 1
501		 *
502		 * We will NOT audit the denial even though the denied
503		 * permission was READ and the auditdeny checks were for
504		 * ACCESS
505		 */
506		if (a &&
507		    a->selinux_audit_data.auditdeny &&
508		    !(a->selinux_audit_data.auditdeny & avd->auditdeny))
509			audited = 0;
510	} else if (result)
511		audited = denied = requested;
512	else
513		audited = requested & avd->auditallow;
514	if (!audited)
515		return 0;
516
517	if (!a) {
518		a = &stack_data;
519		COMMON_AUDIT_DATA_INIT(a, NONE);
520	}
521
522	/*
523	 * When in a RCU walk do the audit on the RCU retry.  This is because
524	 * the collection of the dname in an inode audit message is not RCU
525	 * safe.  Note this may drop some audits when the situation changes
526	 * during retry. However this is logically just as if the operation
527	 * happened a little later.
528	 */
529	if ((a->type == LSM_AUDIT_DATA_INODE) &&
530	    (flags & MAY_NOT_BLOCK))
531		return -ECHILD;
532
533	a->selinux_audit_data.tclass = tclass;
534	a->selinux_audit_data.requested = requested;
535	a->selinux_audit_data.ssid = ssid;
536	a->selinux_audit_data.tsid = tsid;
537	a->selinux_audit_data.audited = audited;
538	a->selinux_audit_data.denied = denied;
539	a->lsm_pre_audit = avc_audit_pre_callback;
540	a->lsm_post_audit = avc_audit_post_callback;
541	common_lsm_audit(a);
542	return 0;
543}
544
545/**
546 * avc_add_callback - Register a callback for security events.
547 * @callback: callback function
548 * @events: security events
549 * @ssid: source security identifier or %SECSID_WILD
550 * @tsid: target security identifier or %SECSID_WILD
551 * @tclass: target security class
552 * @perms: permissions
553 *
554 * Register a callback function for events in the set @events
555 * related to the SID pair (@ssid, @tsid) 
556 * and the permissions @perms, interpreting
557 * @perms based on @tclass.  Returns %0 on success or
558 * -%ENOMEM if insufficient memory exists to add the callback.
559 */
560int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
561				     u16 tclass, u32 perms,
562				     u32 *out_retained),
563		     u32 events, u32 ssid, u32 tsid,
564		     u16 tclass, u32 perms)
565{
566	struct avc_callback_node *c;
567	int rc = 0;
568
569	c = kmalloc(sizeof(*c), GFP_ATOMIC);
570	if (!c) {
571		rc = -ENOMEM;
572		goto out;
573	}
574
575	c->callback = callback;
576	c->events = events;
577	c->ssid = ssid;
578	c->tsid = tsid;
579	c->perms = perms;
580	c->next = avc_callbacks;
581	avc_callbacks = c;
582out:
583	return rc;
584}
585
586static inline int avc_sidcmp(u32 x, u32 y)
587{
588	return (x == y || x == SECSID_WILD || y == SECSID_WILD);
589}
590
591/**
592 * avc_update_node Update an AVC entry
 
593 * @event : Updating event
594 * @perms : Permission mask bits
595 * @ssid,@tsid,@tclass : identifier of an AVC entry
 
 
 
 
596 * @seqno : sequence number when decision was made
 
 
597 *
598 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
599 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
600 * otherwise, this function updates the AVC entry. The original AVC-entry object
601 * will release later by RCU.
602 */
603static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
604			   u32 seqno)
 
 
 
605{
606	int hvalue, rc = 0;
607	unsigned long flag;
608	struct avc_node *pos, *node, *orig = NULL;
609	struct hlist_head *head;
610	struct hlist_node *next;
611	spinlock_t *lock;
612
613	node = avc_alloc_node();
614	if (!node) {
615		rc = -ENOMEM;
616		goto out;
617	}
618
619	/* Lock the target slot */
620	hvalue = avc_hash(ssid, tsid, tclass);
621
622	head = &avc_cache.slots[hvalue];
623	lock = &avc_cache.slots_lock[hvalue];
624
625	spin_lock_irqsave(lock, flag);
626
627	hlist_for_each_entry(pos, next, head, list) {
628		if (ssid == pos->ae.ssid &&
629		    tsid == pos->ae.tsid &&
630		    tclass == pos->ae.tclass &&
631		    seqno == pos->ae.avd.seqno){
632			orig = pos;
633			break;
634		}
635	}
636
637	if (!orig) {
638		rc = -ENOENT;
639		avc_node_kill(node);
640		goto out_unlock;
641	}
642
643	/*
644	 * Copy and replace original node.
645	 */
646
647	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
648
 
 
 
 
 
 
 
 
649	switch (event) {
650	case AVC_CALLBACK_GRANT:
651		node->ae.avd.allowed |= perms;
 
 
652		break;
653	case AVC_CALLBACK_TRY_REVOKE:
654	case AVC_CALLBACK_REVOKE:
655		node->ae.avd.allowed &= ~perms;
656		break;
657	case AVC_CALLBACK_AUDITALLOW_ENABLE:
658		node->ae.avd.auditallow |= perms;
659		break;
660	case AVC_CALLBACK_AUDITALLOW_DISABLE:
661		node->ae.avd.auditallow &= ~perms;
662		break;
663	case AVC_CALLBACK_AUDITDENY_ENABLE:
664		node->ae.avd.auditdeny |= perms;
665		break;
666	case AVC_CALLBACK_AUDITDENY_DISABLE:
667		node->ae.avd.auditdeny &= ~perms;
668		break;
 
 
 
669	}
670	avc_node_replace(node, orig);
671out_unlock:
672	spin_unlock_irqrestore(lock, flag);
673out:
674	return rc;
675}
676
677/**
678 * avc_flush - Flush the cache
 
679 */
680static void avc_flush(void)
681{
682	struct hlist_head *head;
683	struct hlist_node *next;
684	struct avc_node *node;
685	spinlock_t *lock;
686	unsigned long flag;
687	int i;
688
689	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
690		head = &avc_cache.slots[i];
691		lock = &avc_cache.slots_lock[i];
692
693		spin_lock_irqsave(lock, flag);
694		/*
695		 * With preemptable RCU, the outer spinlock does not
696		 * prevent RCU grace periods from ending.
697		 */
698		rcu_read_lock();
699		hlist_for_each_entry(node, next, head, list)
700			avc_node_delete(node);
701		rcu_read_unlock();
702		spin_unlock_irqrestore(lock, flag);
703	}
704}
705
706/**
707 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
 
708 * @seqno: policy sequence number
709 */
710int avc_ss_reset(u32 seqno)
711{
712	struct avc_callback_node *c;
713	int rc = 0, tmprc;
714
715	avc_flush();
716
717	for (c = avc_callbacks; c; c = c->next) {
718		if (c->events & AVC_CALLBACK_RESET) {
719			tmprc = c->callback(AVC_CALLBACK_RESET,
720					    0, 0, 0, 0, NULL);
721			/* save the first error encountered for the return
722			   value and continue processing the callbacks */
723			if (!rc)
724				rc = tmprc;
725		}
726	}
727
728	avc_latest_notif_update(seqno, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
729	return rc;
730}
731
732/**
733 * avc_has_perm_noaudit - Check permissions but perform no auditing.
 
734 * @ssid: source security identifier
735 * @tsid: target security identifier
736 * @tclass: target security class
737 * @requested: requested permissions, interpreted based on @tclass
738 * @flags:  AVC_STRICT or 0
739 * @avd: access vector decisions
740 *
741 * Check the AVC to determine whether the @requested permissions are granted
742 * for the SID pair (@ssid, @tsid), interpreting the permissions
743 * based on @tclass, and call the security server on a cache miss to obtain
744 * a new decision and add it to the cache.  Return a copy of the decisions
745 * in @avd.  Return %0 if all @requested permissions are granted,
746 * -%EACCES if any permissions are denied, or another -errno upon
747 * other errors.  This function is typically called by avc_has_perm(),
748 * but may also be called directly to separate permission checking from
749 * auditing, e.g. in cases where a lock must be held for the check but
750 * should be released for the auditing.
751 */
752int avc_has_perm_noaudit(u32 ssid, u32 tsid,
753			 u16 tclass, u32 requested,
754			 unsigned flags,
755			 struct av_decision *avd)
 
756{
757	struct avc_node *node;
 
758	int rc = 0;
759	u32 denied;
760
761	BUG_ON(!requested);
 
762
763	rcu_read_lock();
764
765	node = avc_lookup(ssid, tsid, tclass);
766	if (unlikely(!node)) {
767		rcu_read_unlock();
768		security_compute_av(ssid, tsid, tclass, avd);
769		rcu_read_lock();
770		node = avc_insert(ssid, tsid, tclass, avd);
771	} else {
772		memcpy(avd, &node->ae.avd, sizeof(*avd));
773		avd = &node->ae.avd;
774	}
775
776	denied = requested & ~(avd->allowed);
777
778	if (denied) {
779		if (flags & AVC_STRICT)
780			rc = -EACCES;
781		else if (!selinux_enforcing || (avd->flags & AVD_FLAGS_PERMISSIVE))
782			avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
783					tsid, tclass, avd->seqno);
784		else
785			rc = -EACCES;
786	}
787
788	rcu_read_unlock();
789	return rc;
790}
791
792/**
793 * avc_has_perm - Check permissions and perform any appropriate auditing.
 
794 * @ssid: source security identifier
795 * @tsid: target security identifier
796 * @tclass: target security class
797 * @requested: requested permissions, interpreted based on @tclass
798 * @auditdata: auxiliary audit data
799 * @flags: VFS walk flags
800 *
801 * Check the AVC to determine whether the @requested permissions are granted
802 * for the SID pair (@ssid, @tsid), interpreting the permissions
803 * based on @tclass, and call the security server on a cache miss to obtain
804 * a new decision and add it to the cache.  Audit the granting or denial of
805 * permissions in accordance with the policy.  Return %0 if all @requested
806 * permissions are granted, -%EACCES if any permissions are denied, or
807 * another -errno upon other errors.
808 */
809int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass,
810		       u32 requested, struct common_audit_data *auditdata,
811		       unsigned flags)
812{
813	struct av_decision avd;
814	int rc, rc2;
815
816	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
 
817
818	rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata,
819			flags);
820	if (rc2)
821		return rc2;
822	return rc;
823}
824
825u32 avc_policy_seqno(void)
826{
827	return avc_cache.latest_notif;
828}
829
830void avc_disable(void)
831{
832	/*
833	 * If you are looking at this because you have realized that we are
834	 * not destroying the avc_node_cachep it might be easy to fix, but
835	 * I don't know the memory barrier semantics well enough to know.  It's
836	 * possible that some other task dereferenced security_ops when
837	 * it still pointed to selinux operations.  If that is the case it's
838	 * possible that it is about to use the avc and is about to need the
839	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
840	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
841	 * the cache and get that memory back.
842	 */
843	if (avc_node_cachep) {
844		avc_flush();
845		/* kmem_cache_destroy(avc_node_cachep); */
846	}
847}