Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *		Changes to use preallocated sigqueue structures
  11 *		to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/proc_fs.h>
  26#include <linux/tty.h>
  27#include <linux/binfmts.h>
  28#include <linux/coredump.h>
  29#include <linux/security.h>
  30#include <linux/syscalls.h>
  31#include <linux/ptrace.h>
  32#include <linux/signal.h>
  33#include <linux/signalfd.h>
  34#include <linux/ratelimit.h>
  35#include <linux/task_work.h>
  36#include <linux/capability.h>
  37#include <linux/freezer.h>
  38#include <linux/pid_namespace.h>
  39#include <linux/nsproxy.h>
  40#include <linux/user_namespace.h>
  41#include <linux/uprobes.h>
  42#include <linux/compat.h>
  43#include <linux/cn_proc.h>
  44#include <linux/compiler.h>
  45#include <linux/posix-timers.h>
  46#include <linux/cgroup.h>
  47#include <linux/audit.h>
  48
  49#define CREATE_TRACE_POINTS
  50#include <trace/events/signal.h>
  51
  52#include <asm/param.h>
  53#include <linux/uaccess.h>
  54#include <asm/unistd.h>
  55#include <asm/siginfo.h>
  56#include <asm/cacheflush.h>
  57#include <asm/syscall.h>	/* for syscall_get_* */
  58
  59/*
  60 * SLAB caches for signal bits.
  61 */
  62
  63static struct kmem_cache *sigqueue_cachep;
  64
  65int print_fatal_signals __read_mostly;
  66
  67static void __user *sig_handler(struct task_struct *t, int sig)
  68{
  69	return t->sighand->action[sig - 1].sa.sa_handler;
  70}
  71
  72static inline bool sig_handler_ignored(void __user *handler, int sig)
  73{
  74	/* Is it explicitly or implicitly ignored? */
  75	return handler == SIG_IGN ||
  76	       (handler == SIG_DFL && sig_kernel_ignore(sig));
  77}
  78
  79static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
 
  80{
  81	void __user *handler;
  82
  83	handler = sig_handler(t, sig);
  84
  85	/* SIGKILL and SIGSTOP may not be sent to the global init */
  86	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  87		return true;
  88
  89	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  90	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  91		return true;
  92
  93	/* Only allow kernel generated signals to this kthread */
  94	if (unlikely((t->flags & PF_KTHREAD) &&
  95		     (handler == SIG_KTHREAD_KERNEL) && !force))
  96		return true;
  97
  98	return sig_handler_ignored(handler, sig);
  99}
 100
 101static bool sig_ignored(struct task_struct *t, int sig, bool force)
 102{
 103	/*
 104	 * Blocked signals are never ignored, since the
 105	 * signal handler may change by the time it is
 106	 * unblocked.
 107	 */
 108	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 109		return false;
 
 
 
 110
 111	/*
 112	 * Tracers may want to know about even ignored signal unless it
 113	 * is SIGKILL which can't be reported anyway but can be ignored
 114	 * by SIGNAL_UNKILLABLE task.
 115	 */
 116	if (t->ptrace && sig != SIGKILL)
 117		return false;
 118
 119	return sig_task_ignored(t, sig, force);
 120}
 121
 122/*
 123 * Re-calculate pending state from the set of locally pending
 124 * signals, globally pending signals, and blocked signals.
 125 */
 126static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 127{
 128	unsigned long ready;
 129	long i;
 130
 131	switch (_NSIG_WORDS) {
 132	default:
 133		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 134			ready |= signal->sig[i] &~ blocked->sig[i];
 135		break;
 136
 137	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 138		ready |= signal->sig[2] &~ blocked->sig[2];
 139		ready |= signal->sig[1] &~ blocked->sig[1];
 140		ready |= signal->sig[0] &~ blocked->sig[0];
 141		break;
 142
 143	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 144		ready |= signal->sig[0] &~ blocked->sig[0];
 145		break;
 146
 147	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 148	}
 149	return ready !=	0;
 150}
 151
 152#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 153
 154static bool recalc_sigpending_tsk(struct task_struct *t)
 155{
 156	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 157	    PENDING(&t->pending, &t->blocked) ||
 158	    PENDING(&t->signal->shared_pending, &t->blocked) ||
 159	    cgroup_task_frozen(t)) {
 160		set_tsk_thread_flag(t, TIF_SIGPENDING);
 161		return true;
 162	}
 163
 164	/*
 165	 * We must never clear the flag in another thread, or in current
 166	 * when it's possible the current syscall is returning -ERESTART*.
 167	 * So we don't clear it here, and only callers who know they should do.
 168	 */
 169	return false;
 170}
 171
 172/*
 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 174 * This is superfluous when called on current, the wakeup is a harmless no-op.
 175 */
 176void recalc_sigpending_and_wake(struct task_struct *t)
 177{
 178	if (recalc_sigpending_tsk(t))
 179		signal_wake_up(t, 0);
 180}
 181
 182void recalc_sigpending(void)
 183{
 184	if (!recalc_sigpending_tsk(current) && !freezing(current))
 185		clear_thread_flag(TIF_SIGPENDING);
 186
 187}
 188EXPORT_SYMBOL(recalc_sigpending);
 189
 190void calculate_sigpending(void)
 191{
 192	/* Have any signals or users of TIF_SIGPENDING been delayed
 193	 * until after fork?
 194	 */
 195	spin_lock_irq(&current->sighand->siglock);
 196	set_tsk_thread_flag(current, TIF_SIGPENDING);
 197	recalc_sigpending();
 198	spin_unlock_irq(&current->sighand->siglock);
 199}
 200
 201/* Given the mask, find the first available signal that should be serviced. */
 202
 203#define SYNCHRONOUS_MASK \
 204	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 205	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 206
 207int next_signal(struct sigpending *pending, sigset_t *mask)
 208{
 209	unsigned long i, *s, *m, x;
 210	int sig = 0;
 211
 212	s = pending->signal.sig;
 213	m = mask->sig;
 214
 215	/*
 216	 * Handle the first word specially: it contains the
 217	 * synchronous signals that need to be dequeued first.
 218	 */
 219	x = *s &~ *m;
 220	if (x) {
 221		if (x & SYNCHRONOUS_MASK)
 222			x &= SYNCHRONOUS_MASK;
 223		sig = ffz(~x) + 1;
 224		return sig;
 225	}
 226
 227	switch (_NSIG_WORDS) {
 228	default:
 229		for (i = 1; i < _NSIG_WORDS; ++i) {
 230			x = *++s &~ *++m;
 231			if (!x)
 232				continue;
 233			sig = ffz(~x) + i*_NSIG_BPW + 1;
 234			break;
 235		}
 236		break;
 237
 238	case 2:
 239		x = s[1] &~ m[1];
 240		if (!x)
 241			break;
 242		sig = ffz(~x) + _NSIG_BPW + 1;
 243		break;
 244
 245	case 1:
 246		/* Nothing to do */
 247		break;
 248	}
 249
 250	return sig;
 251}
 252
 253static inline void print_dropped_signal(int sig)
 254{
 255	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 256
 257	if (!print_fatal_signals)
 258		return;
 259
 260	if (!__ratelimit(&ratelimit_state))
 261		return;
 262
 263	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 264				current->comm, current->pid, sig);
 265}
 266
 267/**
 268 * task_set_jobctl_pending - set jobctl pending bits
 269 * @task: target task
 270 * @mask: pending bits to set
 271 *
 272 * Clear @mask from @task->jobctl.  @mask must be subset of
 273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 274 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 275 * cleared.  If @task is already being killed or exiting, this function
 276 * becomes noop.
 277 *
 278 * CONTEXT:
 279 * Must be called with @task->sighand->siglock held.
 280 *
 281 * RETURNS:
 282 * %true if @mask is set, %false if made noop because @task was dying.
 283 */
 284bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 285{
 286	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 287			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 288	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 289
 290	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 291		return false;
 292
 293	if (mask & JOBCTL_STOP_SIGMASK)
 294		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 295
 296	task->jobctl |= mask;
 297	return true;
 298}
 299
 300/**
 301 * task_clear_jobctl_trapping - clear jobctl trapping bit
 302 * @task: target task
 303 *
 304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 305 * Clear it and wake up the ptracer.  Note that we don't need any further
 306 * locking.  @task->siglock guarantees that @task->parent points to the
 307 * ptracer.
 308 *
 309 * CONTEXT:
 310 * Must be called with @task->sighand->siglock held.
 311 */
 312void task_clear_jobctl_trapping(struct task_struct *task)
 313{
 314	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 315		task->jobctl &= ~JOBCTL_TRAPPING;
 316		smp_mb();	/* advised by wake_up_bit() */
 317		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 318	}
 319}
 320
 321/**
 322 * task_clear_jobctl_pending - clear jobctl pending bits
 323 * @task: target task
 324 * @mask: pending bits to clear
 325 *
 326 * Clear @mask from @task->jobctl.  @mask must be subset of
 327 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 328 * STOP bits are cleared together.
 329 *
 330 * If clearing of @mask leaves no stop or trap pending, this function calls
 331 * task_clear_jobctl_trapping().
 332 *
 333 * CONTEXT:
 334 * Must be called with @task->sighand->siglock held.
 335 */
 336void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 337{
 338	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 339
 340	if (mask & JOBCTL_STOP_PENDING)
 341		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 342
 343	task->jobctl &= ~mask;
 344
 345	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 346		task_clear_jobctl_trapping(task);
 347}
 348
 349/**
 350 * task_participate_group_stop - participate in a group stop
 351 * @task: task participating in a group stop
 352 *
 353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 354 * Group stop states are cleared and the group stop count is consumed if
 355 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 356 * stop, the appropriate `SIGNAL_*` flags are set.
 357 *
 358 * CONTEXT:
 359 * Must be called with @task->sighand->siglock held.
 360 *
 361 * RETURNS:
 362 * %true if group stop completion should be notified to the parent, %false
 363 * otherwise.
 364 */
 365static bool task_participate_group_stop(struct task_struct *task)
 366{
 367	struct signal_struct *sig = task->signal;
 368	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 369
 370	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 371
 372	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 373
 374	if (!consume)
 375		return false;
 376
 377	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 378		sig->group_stop_count--;
 379
 380	/*
 381	 * Tell the caller to notify completion iff we are entering into a
 382	 * fresh group stop.  Read comment in do_signal_stop() for details.
 383	 */
 384	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 385		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 386		return true;
 387	}
 388	return false;
 389}
 390
 391void task_join_group_stop(struct task_struct *task)
 392{
 393	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
 394	struct signal_struct *sig = current->signal;
 395
 396	if (sig->group_stop_count) {
 397		sig->group_stop_count++;
 398		mask |= JOBCTL_STOP_CONSUME;
 399	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
 400		return;
 401
 402	/* Have the new thread join an on-going signal group stop */
 403	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
 404}
 405
 406/*
 407 * allocate a new signal queue record
 408 * - this may be called without locks if and only if t == current, otherwise an
 409 *   appropriate lock must be held to stop the target task from exiting
 410 */
 411static struct sigqueue *
 412__sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
 413		 int override_rlimit, const unsigned int sigqueue_flags)
 414{
 415	struct sigqueue *q = NULL;
 416	struct ucounts *ucounts = NULL;
 417	long sigpending;
 418
 419	/*
 420	 * Protect access to @t credentials. This can go away when all
 421	 * callers hold rcu read lock.
 422	 *
 423	 * NOTE! A pending signal will hold on to the user refcount,
 424	 * and we get/put the refcount only when the sigpending count
 425	 * changes from/to zero.
 426	 */
 427	rcu_read_lock();
 428	ucounts = task_ucounts(t);
 429	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 430	rcu_read_unlock();
 431	if (!sigpending)
 432		return NULL;
 433
 434	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
 435		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
 
 
 436	} else {
 437		print_dropped_signal(sig);
 438	}
 439
 440	if (unlikely(q == NULL)) {
 441		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 
 442	} else {
 443		INIT_LIST_HEAD(&q->list);
 444		q->flags = sigqueue_flags;
 445		q->ucounts = ucounts;
 446	}
 
 447	return q;
 448}
 449
 450static void __sigqueue_free(struct sigqueue *q)
 451{
 452	if (q->flags & SIGQUEUE_PREALLOC)
 453		return;
 454	if (q->ucounts) {
 455		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
 456		q->ucounts = NULL;
 457	}
 458	kmem_cache_free(sigqueue_cachep, q);
 459}
 460
 461void flush_sigqueue(struct sigpending *queue)
 462{
 463	struct sigqueue *q;
 464
 465	sigemptyset(&queue->signal);
 466	while (!list_empty(&queue->list)) {
 467		q = list_entry(queue->list.next, struct sigqueue , list);
 468		list_del_init(&q->list);
 469		__sigqueue_free(q);
 470	}
 471}
 472
 473/*
 474 * Flush all pending signals for this kthread.
 475 */
 
 
 
 
 
 
 
 476void flush_signals(struct task_struct *t)
 477{
 478	unsigned long flags;
 479
 480	spin_lock_irqsave(&t->sighand->siglock, flags);
 481	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 482	flush_sigqueue(&t->pending);
 483	flush_sigqueue(&t->signal->shared_pending);
 484	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 485}
 486EXPORT_SYMBOL(flush_signals);
 487
 488#ifdef CONFIG_POSIX_TIMERS
 489static void __flush_itimer_signals(struct sigpending *pending)
 490{
 491	sigset_t signal, retain;
 492	struct sigqueue *q, *n;
 493
 494	signal = pending->signal;
 495	sigemptyset(&retain);
 496
 497	list_for_each_entry_safe(q, n, &pending->list, list) {
 498		int sig = q->info.si_signo;
 499
 500		if (likely(q->info.si_code != SI_TIMER)) {
 501			sigaddset(&retain, sig);
 502		} else {
 503			sigdelset(&signal, sig);
 504			list_del_init(&q->list);
 505			__sigqueue_free(q);
 506		}
 507	}
 508
 509	sigorsets(&pending->signal, &signal, &retain);
 510}
 511
 512void flush_itimer_signals(void)
 513{
 514	struct task_struct *tsk = current;
 515	unsigned long flags;
 516
 517	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 518	__flush_itimer_signals(&tsk->pending);
 519	__flush_itimer_signals(&tsk->signal->shared_pending);
 520	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 521}
 522#endif
 523
 524void ignore_signals(struct task_struct *t)
 525{
 526	int i;
 527
 528	for (i = 0; i < _NSIG; ++i)
 529		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 530
 531	flush_signals(t);
 532}
 533
 534/*
 535 * Flush all handlers for a task.
 536 */
 537
 538void
 539flush_signal_handlers(struct task_struct *t, int force_default)
 540{
 541	int i;
 542	struct k_sigaction *ka = &t->sighand->action[0];
 543	for (i = _NSIG ; i != 0 ; i--) {
 544		if (force_default || ka->sa.sa_handler != SIG_IGN)
 545			ka->sa.sa_handler = SIG_DFL;
 546		ka->sa.sa_flags = 0;
 547#ifdef __ARCH_HAS_SA_RESTORER
 548		ka->sa.sa_restorer = NULL;
 549#endif
 550		sigemptyset(&ka->sa.sa_mask);
 551		ka++;
 552	}
 553}
 554
 555bool unhandled_signal(struct task_struct *tsk, int sig)
 556{
 557	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 558	if (is_global_init(tsk))
 559		return true;
 560
 561	if (handler != SIG_IGN && handler != SIG_DFL)
 562		return false;
 563
 564	/* if ptraced, let the tracer determine */
 565	return !tsk->ptrace;
 566}
 567
 568static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 569			   bool *resched_timer)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 570{
 571	struct sigqueue *q, *first = NULL;
 572
 573	/*
 574	 * Collect the siginfo appropriate to this signal.  Check if
 575	 * there is another siginfo for the same signal.
 576	*/
 577	list_for_each_entry(q, &list->list, list) {
 578		if (q->info.si_signo == sig) {
 579			if (first)
 580				goto still_pending;
 581			first = q;
 582		}
 583	}
 584
 585	sigdelset(&list->signal, sig);
 586
 587	if (first) {
 588still_pending:
 589		list_del_init(&first->list);
 590		copy_siginfo(info, &first->info);
 591
 592		*resched_timer =
 593			(first->flags & SIGQUEUE_PREALLOC) &&
 594			(info->si_code == SI_TIMER) &&
 595			(info->si_sys_private);
 596
 597		__sigqueue_free(first);
 598	} else {
 599		/*
 600		 * Ok, it wasn't in the queue.  This must be
 601		 * a fast-pathed signal or we must have been
 602		 * out of queue space.  So zero out the info.
 603		 */
 604		clear_siginfo(info);
 605		info->si_signo = sig;
 606		info->si_errno = 0;
 607		info->si_code = SI_USER;
 608		info->si_pid = 0;
 609		info->si_uid = 0;
 610	}
 611}
 612
 613static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 614			kernel_siginfo_t *info, bool *resched_timer)
 615{
 616	int sig = next_signal(pending, mask);
 617
 618	if (sig)
 619		collect_signal(sig, pending, info, resched_timer);
 
 
 
 
 
 
 
 
 
 
 
 620	return sig;
 621}
 622
 623/*
 624 * Dequeue a signal and return the element to the caller, which is
 625 * expected to free it.
 626 *
 627 * All callers have to hold the siglock.
 628 */
 629int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
 630		   kernel_siginfo_t *info, enum pid_type *type)
 631{
 632	bool resched_timer = false;
 633	int signr;
 634
 635	/* We only dequeue private signals from ourselves, we don't let
 636	 * signalfd steal them
 637	 */
 638	*type = PIDTYPE_PID;
 639	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 640	if (!signr) {
 641		*type = PIDTYPE_TGID;
 642		signr = __dequeue_signal(&tsk->signal->shared_pending,
 643					 mask, info, &resched_timer);
 644#ifdef CONFIG_POSIX_TIMERS
 645		/*
 646		 * itimer signal ?
 647		 *
 648		 * itimers are process shared and we restart periodic
 649		 * itimers in the signal delivery path to prevent DoS
 650		 * attacks in the high resolution timer case. This is
 651		 * compliant with the old way of self-restarting
 652		 * itimers, as the SIGALRM is a legacy signal and only
 653		 * queued once. Changing the restart behaviour to
 654		 * restart the timer in the signal dequeue path is
 655		 * reducing the timer noise on heavy loaded !highres
 656		 * systems too.
 657		 */
 658		if (unlikely(signr == SIGALRM)) {
 659			struct hrtimer *tmr = &tsk->signal->real_timer;
 660
 661			if (!hrtimer_is_queued(tmr) &&
 662			    tsk->signal->it_real_incr != 0) {
 663				hrtimer_forward(tmr, tmr->base->get_time(),
 664						tsk->signal->it_real_incr);
 665				hrtimer_restart(tmr);
 666			}
 667		}
 668#endif
 669	}
 670
 671	recalc_sigpending();
 672	if (!signr)
 673		return 0;
 674
 675	if (unlikely(sig_kernel_stop(signr))) {
 676		/*
 677		 * Set a marker that we have dequeued a stop signal.  Our
 678		 * caller might release the siglock and then the pending
 679		 * stop signal it is about to process is no longer in the
 680		 * pending bitmasks, but must still be cleared by a SIGCONT
 681		 * (and overruled by a SIGKILL).  So those cases clear this
 682		 * shared flag after we've set it.  Note that this flag may
 683		 * remain set after the signal we return is ignored or
 684		 * handled.  That doesn't matter because its only purpose
 685		 * is to alert stop-signal processing code when another
 686		 * processor has come along and cleared the flag.
 687		 */
 688		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 689	}
 690#ifdef CONFIG_POSIX_TIMERS
 691	if (resched_timer) {
 692		/*
 693		 * Release the siglock to ensure proper locking order
 694		 * of timer locks outside of siglocks.  Note, we leave
 695		 * irqs disabled here, since the posix-timers code is
 696		 * about to disable them again anyway.
 697		 */
 698		spin_unlock(&tsk->sighand->siglock);
 699		posixtimer_rearm(info);
 700		spin_lock(&tsk->sighand->siglock);
 701
 702		/* Don't expose the si_sys_private value to userspace */
 703		info->si_sys_private = 0;
 704	}
 705#endif
 706	return signr;
 707}
 708EXPORT_SYMBOL_GPL(dequeue_signal);
 709
 710static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 711{
 712	struct task_struct *tsk = current;
 713	struct sigpending *pending = &tsk->pending;
 714	struct sigqueue *q, *sync = NULL;
 715
 716	/*
 717	 * Might a synchronous signal be in the queue?
 718	 */
 719	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 720		return 0;
 721
 722	/*
 723	 * Return the first synchronous signal in the queue.
 724	 */
 725	list_for_each_entry(q, &pending->list, list) {
 726		/* Synchronous signals have a positive si_code */
 727		if ((q->info.si_code > SI_USER) &&
 728		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 729			sync = q;
 730			goto next;
 731		}
 732	}
 733	return 0;
 734next:
 735	/*
 736	 * Check if there is another siginfo for the same signal.
 737	 */
 738	list_for_each_entry_continue(q, &pending->list, list) {
 739		if (q->info.si_signo == sync->info.si_signo)
 740			goto still_pending;
 741	}
 742
 743	sigdelset(&pending->signal, sync->info.si_signo);
 744	recalc_sigpending();
 745still_pending:
 746	list_del_init(&sync->list);
 747	copy_siginfo(info, &sync->info);
 748	__sigqueue_free(sync);
 749	return info->si_signo;
 750}
 751
 752/*
 753 * Tell a process that it has a new active signal..
 754 *
 755 * NOTE! we rely on the previous spin_lock to
 756 * lock interrupts for us! We can only be called with
 757 * "siglock" held, and the local interrupt must
 758 * have been disabled when that got acquired!
 759 *
 760 * No need to set need_resched since signal event passing
 761 * goes through ->blocked
 762 */
 763void signal_wake_up_state(struct task_struct *t, unsigned int state)
 764{
 765	lockdep_assert_held(&t->sighand->siglock);
 766
 767	set_tsk_thread_flag(t, TIF_SIGPENDING);
 768
 769	/*
 770	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 771	 * case. We don't check t->state here because there is a race with it
 772	 * executing another processor and just now entering stopped state.
 773	 * By using wake_up_state, we ensure the process will wake up and
 774	 * handle its death signal.
 775	 */
 776	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 
 
 
 777		kick_process(t);
 778}
 779
 780/*
 781 * Remove signals in mask from the pending set and queue.
 782 * Returns 1 if any signals were found.
 783 *
 784 * All callers must be holding the siglock.
 
 
 
 785 */
 786static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 787{
 788	struct sigqueue *q, *n;
 789	sigset_t m;
 790
 791	sigandsets(&m, mask, &s->signal);
 792	if (sigisemptyset(&m))
 793		return;
 794
 795	sigandnsets(&s->signal, &s->signal, mask);
 796	list_for_each_entry_safe(q, n, &s->list, list) {
 797		if (sigismember(mask, q->info.si_signo)) {
 798			list_del_init(&q->list);
 799			__sigqueue_free(q);
 800		}
 801	}
 
 802}
 
 
 
 
 
 
 
 
 
 
 
 
 803
 804static inline int is_si_special(const struct kernel_siginfo *info)
 
 
 
 
 
 
 
 
 
 
 
 805{
 806	return info <= SEND_SIG_PRIV;
 807}
 808
 809static inline bool si_fromuser(const struct kernel_siginfo *info)
 810{
 811	return info == SEND_SIG_NOINFO ||
 812		(!is_si_special(info) && SI_FROMUSER(info));
 813}
 814
 815/*
 816 * called with RCU read lock from check_kill_permission()
 817 */
 818static bool kill_ok_by_cred(struct task_struct *t)
 819{
 820	const struct cred *cred = current_cred();
 821	const struct cred *tcred = __task_cred(t);
 822
 823	return uid_eq(cred->euid, tcred->suid) ||
 824	       uid_eq(cred->euid, tcred->uid) ||
 825	       uid_eq(cred->uid, tcred->suid) ||
 826	       uid_eq(cred->uid, tcred->uid) ||
 827	       ns_capable(tcred->user_ns, CAP_KILL);
 
 
 
 
 
 
 828}
 829
 830/*
 831 * Bad permissions for sending the signal
 832 * - the caller must hold the RCU read lock
 833 */
 834static int check_kill_permission(int sig, struct kernel_siginfo *info,
 835				 struct task_struct *t)
 836{
 837	struct pid *sid;
 838	int error;
 839
 840	if (!valid_signal(sig))
 841		return -EINVAL;
 842
 843	if (!si_fromuser(info))
 844		return 0;
 845
 846	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 847	if (error)
 848		return error;
 849
 850	if (!same_thread_group(current, t) &&
 851	    !kill_ok_by_cred(t)) {
 852		switch (sig) {
 853		case SIGCONT:
 854			sid = task_session(t);
 855			/*
 856			 * We don't return the error if sid == NULL. The
 857			 * task was unhashed, the caller must notice this.
 858			 */
 859			if (!sid || sid == task_session(current))
 860				break;
 861			fallthrough;
 862		default:
 863			return -EPERM;
 864		}
 865	}
 866
 867	return security_task_kill(t, info, sig, NULL);
 868}
 869
 870/**
 871 * ptrace_trap_notify - schedule trap to notify ptracer
 872 * @t: tracee wanting to notify tracer
 873 *
 874 * This function schedules sticky ptrace trap which is cleared on the next
 875 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 876 * ptracer.
 877 *
 878 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 879 * ptracer is listening for events, tracee is woken up so that it can
 880 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 881 * eventually taken without returning to userland after the existing traps
 882 * are finished by PTRACE_CONT.
 883 *
 884 * CONTEXT:
 885 * Must be called with @task->sighand->siglock held.
 886 */
 887static void ptrace_trap_notify(struct task_struct *t)
 888{
 889	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 890	lockdep_assert_held(&t->sighand->siglock);
 891
 892	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 893	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 894}
 895
 896/*
 897 * Handle magic process-wide effects of stop/continue signals. Unlike
 898 * the signal actions, these happen immediately at signal-generation
 899 * time regardless of blocking, ignoring, or handling.  This does the
 900 * actual continuing for SIGCONT, but not the actual stopping for stop
 901 * signals. The process stop is done as a signal action for SIG_DFL.
 902 *
 903 * Returns true if the signal should be actually delivered, otherwise
 904 * it should be dropped.
 905 */
 906static bool prepare_signal(int sig, struct task_struct *p, bool force)
 907{
 908	struct signal_struct *signal = p->signal;
 909	struct task_struct *t;
 910	sigset_t flush;
 911
 912	if (signal->flags & SIGNAL_GROUP_EXIT) {
 913		if (signal->core_state)
 914			return sig == SIGKILL;
 915		/*
 916		 * The process is in the middle of dying, drop the signal.
 917		 */
 918		return false;
 919	} else if (sig_kernel_stop(sig)) {
 920		/*
 921		 * This is a stop signal.  Remove SIGCONT from all queues.
 922		 */
 923		siginitset(&flush, sigmask(SIGCONT));
 924		flush_sigqueue_mask(&flush, &signal->shared_pending);
 925		for_each_thread(p, t)
 926			flush_sigqueue_mask(&flush, &t->pending);
 
 927	} else if (sig == SIGCONT) {
 928		unsigned int why;
 929		/*
 930		 * Remove all stop signals from all queues, wake all threads.
 931		 */
 932		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 933		flush_sigqueue_mask(&flush, &signal->shared_pending);
 934		for_each_thread(p, t) {
 935			flush_sigqueue_mask(&flush, &t->pending);
 936			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 937			if (likely(!(t->ptrace & PT_SEIZED))) {
 938				t->jobctl &= ~JOBCTL_STOPPED;
 939				wake_up_state(t, __TASK_STOPPED);
 940			} else
 941				ptrace_trap_notify(t);
 942		}
 943
 944		/*
 945		 * Notify the parent with CLD_CONTINUED if we were stopped.
 946		 *
 947		 * If we were in the middle of a group stop, we pretend it
 948		 * was already finished, and then continued. Since SIGCHLD
 949		 * doesn't queue we report only CLD_STOPPED, as if the next
 950		 * CLD_CONTINUED was dropped.
 951		 */
 952		why = 0;
 953		if (signal->flags & SIGNAL_STOP_STOPPED)
 954			why |= SIGNAL_CLD_CONTINUED;
 955		else if (signal->group_stop_count)
 956			why |= SIGNAL_CLD_STOPPED;
 957
 958		if (why) {
 959			/*
 960			 * The first thread which returns from do_signal_stop()
 961			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 962			 * notify its parent. See get_signal().
 963			 */
 964			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 965			signal->group_stop_count = 0;
 966			signal->group_exit_code = 0;
 967		}
 968	}
 969
 970	return !sig_ignored(p, sig, force);
 971}
 972
 973/*
 974 * Test if P wants to take SIG.  After we've checked all threads with this,
 975 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 976 * blocking SIG were ruled out because they are not running and already
 977 * have pending signals.  Such threads will dequeue from the shared queue
 978 * as soon as they're available, so putting the signal on the shared queue
 979 * will be equivalent to sending it to one such thread.
 980 */
 981static inline bool wants_signal(int sig, struct task_struct *p)
 982{
 983	if (sigismember(&p->blocked, sig))
 984		return false;
 985
 986	if (p->flags & PF_EXITING)
 987		return false;
 988
 989	if (sig == SIGKILL)
 990		return true;
 991
 992	if (task_is_stopped_or_traced(p))
 993		return false;
 994
 995	return task_curr(p) || !task_sigpending(p);
 996}
 997
 998static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 999{
1000	struct signal_struct *signal = p->signal;
1001	struct task_struct *t;
1002
1003	/*
1004	 * Now find a thread we can wake up to take the signal off the queue.
1005	 *
1006	 * If the main thread wants the signal, it gets first crack.
1007	 * Probably the least surprising to the average bear.
1008	 */
1009	if (wants_signal(sig, p))
1010		t = p;
1011	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1012		/*
1013		 * There is just one thread and it does not need to be woken.
1014		 * It will dequeue unblocked signals before it runs again.
1015		 */
1016		return;
1017	else {
1018		/*
1019		 * Otherwise try to find a suitable thread.
1020		 */
1021		t = signal->curr_target;
1022		while (!wants_signal(sig, t)) {
1023			t = next_thread(t);
1024			if (t == signal->curr_target)
1025				/*
1026				 * No thread needs to be woken.
1027				 * Any eligible threads will see
1028				 * the signal in the queue soon.
1029				 */
1030				return;
1031		}
1032		signal->curr_target = t;
1033	}
1034
1035	/*
1036	 * Found a killable thread.  If the signal will be fatal,
1037	 * then start taking the whole group down immediately.
1038	 */
1039	if (sig_fatal(p, sig) &&
1040	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1041	    !sigismember(&t->real_blocked, sig) &&
1042	    (sig == SIGKILL || !p->ptrace)) {
1043		/*
1044		 * This signal will be fatal to the whole group.
1045		 */
1046		if (!sig_kernel_coredump(sig)) {
1047			/*
1048			 * Start a group exit and wake everybody up.
1049			 * This way we don't have other threads
1050			 * running and doing things after a slower
1051			 * thread has the fatal signal pending.
1052			 */
1053			signal->flags = SIGNAL_GROUP_EXIT;
1054			signal->group_exit_code = sig;
1055			signal->group_stop_count = 0;
1056			t = p;
1057			do {
1058				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1059				sigaddset(&t->pending.signal, SIGKILL);
1060				signal_wake_up(t, 1);
1061			} while_each_thread(p, t);
1062			return;
1063		}
1064	}
1065
1066	/*
1067	 * The signal is already in the shared-pending queue.
1068	 * Tell the chosen thread to wake up and dequeue it.
1069	 */
1070	signal_wake_up(t, sig == SIGKILL);
1071	return;
1072}
1073
1074static inline bool legacy_queue(struct sigpending *signals, int sig)
1075{
1076	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1077}
1078
1079static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1080				struct task_struct *t, enum pid_type type, bool force)
1081{
1082	struct sigpending *pending;
1083	struct sigqueue *q;
1084	int override_rlimit;
1085	int ret = 0, result;
1086
1087	lockdep_assert_held(&t->sighand->siglock);
1088
1089	result = TRACE_SIGNAL_IGNORED;
1090	if (!prepare_signal(sig, t, force))
1091		goto ret;
1092
1093	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
 
 
 
1094	/*
1095	 * Short-circuit ignored signals and support queuing
1096	 * exactly one non-rt signal, so that we can get more
1097	 * detailed information about the cause of the signal.
1098	 */
1099	result = TRACE_SIGNAL_ALREADY_PENDING;
1100	if (legacy_queue(pending, sig))
1101		goto ret;
1102
1103	result = TRACE_SIGNAL_DELIVERED;
1104	/*
1105	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
 
1106	 */
1107	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1108		goto out_set;
1109
1110	/*
1111	 * Real-time signals must be queued if sent by sigqueue, or
1112	 * some other real-time mechanism.  It is implementation
1113	 * defined whether kill() does so.  We attempt to do so, on
1114	 * the principle of least surprise, but since kill is not
1115	 * allowed to fail with EAGAIN when low on memory we just
1116	 * make sure at least one signal gets delivered and don't
1117	 * pass on the info struct.
1118	 */
1119	if (sig < SIGRTMIN)
1120		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1121	else
1122		override_rlimit = 0;
1123
1124	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1125
1126	if (q) {
1127		list_add_tail(&q->list, &pending->list);
1128		switch ((unsigned long) info) {
1129		case (unsigned long) SEND_SIG_NOINFO:
1130			clear_siginfo(&q->info);
1131			q->info.si_signo = sig;
1132			q->info.si_errno = 0;
1133			q->info.si_code = SI_USER;
1134			q->info.si_pid = task_tgid_nr_ns(current,
1135							task_active_pid_ns(t));
1136			rcu_read_lock();
1137			q->info.si_uid =
1138				from_kuid_munged(task_cred_xxx(t, user_ns),
1139						 current_uid());
1140			rcu_read_unlock();
1141			break;
1142		case (unsigned long) SEND_SIG_PRIV:
1143			clear_siginfo(&q->info);
1144			q->info.si_signo = sig;
1145			q->info.si_errno = 0;
1146			q->info.si_code = SI_KERNEL;
1147			q->info.si_pid = 0;
1148			q->info.si_uid = 0;
1149			break;
1150		default:
1151			copy_siginfo(&q->info, info);
 
 
1152			break;
1153		}
1154	} else if (!is_si_special(info) &&
1155		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1156		/*
1157		 * Queue overflow, abort.  We may abort if the
1158		 * signal was rt and sent by user using something
1159		 * other than kill().
1160		 */
1161		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1162		ret = -EAGAIN;
1163		goto ret;
1164	} else {
1165		/*
1166		 * This is a silent loss of information.  We still
1167		 * send the signal, but the *info bits are lost.
1168		 */
1169		result = TRACE_SIGNAL_LOSE_INFO;
1170	}
1171
1172out_set:
1173	signalfd_notify(t, sig);
1174	sigaddset(&pending->signal, sig);
1175
1176	/* Let multiprocess signals appear after on-going forks */
1177	if (type > PIDTYPE_TGID) {
1178		struct multiprocess_signals *delayed;
1179		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1180			sigset_t *signal = &delayed->signal;
1181			/* Can't queue both a stop and a continue signal */
1182			if (sig == SIGCONT)
1183				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1184			else if (sig_kernel_stop(sig))
1185				sigdelset(signal, SIGCONT);
1186			sigaddset(signal, sig);
1187		}
1188	}
1189
1190	complete_signal(sig, t, type);
1191ret:
1192	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1193	return ret;
1194}
1195
1196static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1197{
1198	bool ret = false;
1199	switch (siginfo_layout(info->si_signo, info->si_code)) {
1200	case SIL_KILL:
1201	case SIL_CHLD:
1202	case SIL_RT:
1203		ret = true;
1204		break;
1205	case SIL_TIMER:
1206	case SIL_POLL:
1207	case SIL_FAULT:
1208	case SIL_FAULT_TRAPNO:
1209	case SIL_FAULT_MCEERR:
1210	case SIL_FAULT_BNDERR:
1211	case SIL_FAULT_PKUERR:
1212	case SIL_FAULT_PERF_EVENT:
1213	case SIL_SYS:
1214		ret = false;
1215		break;
1216	}
1217	return ret;
1218}
1219
1220int send_signal_locked(int sig, struct kernel_siginfo *info,
1221		       struct task_struct *t, enum pid_type type)
1222{
1223	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1224	bool force = false;
1225
1226	if (info == SEND_SIG_NOINFO) {
1227		/* Force if sent from an ancestor pid namespace */
1228		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1229	} else if (info == SEND_SIG_PRIV) {
1230		/* Don't ignore kernel generated signals */
1231		force = true;
1232	} else if (has_si_pid_and_uid(info)) {
1233		/* SIGKILL and SIGSTOP is special or has ids */
1234		struct user_namespace *t_user_ns;
1235
1236		rcu_read_lock();
1237		t_user_ns = task_cred_xxx(t, user_ns);
1238		if (current_user_ns() != t_user_ns) {
1239			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1240			info->si_uid = from_kuid_munged(t_user_ns, uid);
1241		}
1242		rcu_read_unlock();
1243
1244		/* A kernel generated signal? */
1245		force = (info->si_code == SI_KERNEL);
 
 
1246
1247		/* From an ancestor pid namespace? */
1248		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1249			info->si_pid = 0;
1250			force = true;
1251		}
1252	}
1253	return __send_signal_locked(sig, info, t, type, force);
1254}
1255
1256static void print_fatal_signal(int signr)
1257{
1258	struct pt_regs *regs = task_pt_regs(current);
1259	pr_info("potentially unexpected fatal signal %d.\n", signr);
1260
1261#if defined(__i386__) && !defined(__arch_um__)
1262	pr_info("code at %08lx: ", regs->ip);
1263	{
1264		int i;
1265		for (i = 0; i < 16; i++) {
1266			unsigned char insn;
1267
1268			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1269				break;
1270			pr_cont("%02x ", insn);
1271		}
1272	}
1273	pr_cont("\n");
1274#endif
 
1275	preempt_disable();
1276	show_regs(regs);
1277	preempt_enable();
1278}
1279
1280static int __init setup_print_fatal_signals(char *str)
1281{
1282	get_option (&str, &print_fatal_signals);
1283
1284	return 1;
1285}
1286
1287__setup("print-fatal-signals=", setup_print_fatal_signals);
1288
1289int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1290			enum pid_type type)
 
 
 
 
 
 
 
 
 
 
 
 
1291{
1292	unsigned long flags;
1293	int ret = -ESRCH;
1294
1295	if (lock_task_sighand(p, &flags)) {
1296		ret = send_signal_locked(sig, info, p, type);
1297		unlock_task_sighand(p, &flags);
1298	}
1299
1300	return ret;
1301}
1302
1303enum sig_handler {
1304	HANDLER_CURRENT, /* If reachable use the current handler */
1305	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1306	HANDLER_EXIT,	 /* Only visible as the process exit code */
1307};
1308
1309/*
1310 * Force a signal that the process can't ignore: if necessary
1311 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1312 *
1313 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1314 * since we do not want to have a signal handler that was blocked
1315 * be invoked when user space had explicitly blocked it.
1316 *
1317 * We don't want to have recursive SIGSEGV's etc, for example,
1318 * that is why we also clear SIGNAL_UNKILLABLE.
1319 */
1320static int
1321force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1322	enum sig_handler handler)
1323{
1324	unsigned long int flags;
1325	int ret, blocked, ignored;
1326	struct k_sigaction *action;
1327	int sig = info->si_signo;
1328
1329	spin_lock_irqsave(&t->sighand->siglock, flags);
1330	action = &t->sighand->action[sig-1];
1331	ignored = action->sa.sa_handler == SIG_IGN;
1332	blocked = sigismember(&t->blocked, sig);
1333	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1334		action->sa.sa_handler = SIG_DFL;
1335		if (handler == HANDLER_EXIT)
1336			action->sa.sa_flags |= SA_IMMUTABLE;
1337		if (blocked) {
1338			sigdelset(&t->blocked, sig);
1339			recalc_sigpending_and_wake(t);
1340		}
1341	}
1342	/*
1343	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1344	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1345	 */
1346	if (action->sa.sa_handler == SIG_DFL &&
1347	    (!t->ptrace || (handler == HANDLER_EXIT)))
1348		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1349	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1350	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1351
1352	return ret;
1353}
1354
1355int force_sig_info(struct kernel_siginfo *info)
1356{
1357	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1358}
1359
1360/*
1361 * Nuke all other threads in the group.
1362 */
1363int zap_other_threads(struct task_struct *p)
1364{
1365	struct task_struct *t = p;
1366	int count = 0;
1367
1368	p->signal->group_stop_count = 0;
1369
1370	while_each_thread(p, t) {
1371		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1372		count++;
1373
1374		/* Don't bother with already dead threads */
1375		if (t->exit_state)
1376			continue;
1377		sigaddset(&t->pending.signal, SIGKILL);
1378		signal_wake_up(t, 1);
1379	}
1380
1381	return count;
1382}
1383
1384struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1385					   unsigned long *flags)
1386{
1387	struct sighand_struct *sighand;
1388
1389	rcu_read_lock();
1390	for (;;) {
 
 
1391		sighand = rcu_dereference(tsk->sighand);
1392		if (unlikely(sighand == NULL))
 
 
1393			break;
 
1394
1395		/*
1396		 * This sighand can be already freed and even reused, but
1397		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1398		 * initializes ->siglock: this slab can't go away, it has
1399		 * the same object type, ->siglock can't be reinitialized.
1400		 *
1401		 * We need to ensure that tsk->sighand is still the same
1402		 * after we take the lock, we can race with de_thread() or
1403		 * __exit_signal(). In the latter case the next iteration
1404		 * must see ->sighand == NULL.
1405		 */
1406		spin_lock_irqsave(&sighand->siglock, *flags);
1407		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1408			break;
1409		spin_unlock_irqrestore(&sighand->siglock, *flags);
 
 
 
1410	}
1411	rcu_read_unlock();
1412
1413	return sighand;
1414}
1415
1416#ifdef CONFIG_LOCKDEP
1417void lockdep_assert_task_sighand_held(struct task_struct *task)
1418{
1419	struct sighand_struct *sighand;
1420
1421	rcu_read_lock();
1422	sighand = rcu_dereference(task->sighand);
1423	if (sighand)
1424		lockdep_assert_held(&sighand->siglock);
1425	else
1426		WARN_ON_ONCE(1);
1427	rcu_read_unlock();
1428}
1429#endif
1430
1431/*
1432 * send signal info to all the members of a group
1433 */
1434int group_send_sig_info(int sig, struct kernel_siginfo *info,
1435			struct task_struct *p, enum pid_type type)
1436{
1437	int ret;
1438
1439	rcu_read_lock();
1440	ret = check_kill_permission(sig, info, p);
1441	rcu_read_unlock();
1442
1443	if (!ret && sig)
1444		ret = do_send_sig_info(sig, info, p, type);
1445
1446	return ret;
1447}
1448
1449/*
1450 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1451 * control characters do (^C, ^Z etc)
1452 * - the caller must hold at least a readlock on tasklist_lock
1453 */
1454int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1455{
1456	struct task_struct *p = NULL;
1457	int retval, success;
1458
1459	success = 0;
1460	retval = -ESRCH;
1461	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1462		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1463		success |= !err;
1464		retval = err;
1465	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1466	return success ? 0 : retval;
1467}
1468
1469int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1470{
1471	int error = -ESRCH;
1472	struct task_struct *p;
1473
1474	for (;;) {
1475		rcu_read_lock();
1476		p = pid_task(pid, PIDTYPE_PID);
1477		if (p)
1478			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1479		rcu_read_unlock();
1480		if (likely(!p || error != -ESRCH))
1481			return error;
1482
1483		/*
1484		 * The task was unhashed in between, try again.  If it
1485		 * is dead, pid_task() will return NULL, if we race with
1486		 * de_thread() it will find the new leader.
1487		 */
1488	}
 
 
 
1489}
1490
1491static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1492{
1493	int error;
1494	rcu_read_lock();
1495	error = kill_pid_info(sig, info, find_vpid(pid));
1496	rcu_read_unlock();
1497	return error;
1498}
1499
1500static inline bool kill_as_cred_perm(const struct cred *cred,
1501				     struct task_struct *target)
 
1502{
1503	const struct cred *pcred = __task_cred(target);
1504
1505	return uid_eq(cred->euid, pcred->suid) ||
1506	       uid_eq(cred->euid, pcred->uid) ||
1507	       uid_eq(cred->uid, pcred->suid) ||
1508	       uid_eq(cred->uid, pcred->uid);
1509}
1510
1511/*
1512 * The usb asyncio usage of siginfo is wrong.  The glibc support
1513 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1514 * AKA after the generic fields:
1515 *	kernel_pid_t	si_pid;
1516 *	kernel_uid32_t	si_uid;
1517 *	sigval_t	si_value;
1518 *
1519 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1520 * after the generic fields is:
1521 *	void __user 	*si_addr;
1522 *
1523 * This is a practical problem when there is a 64bit big endian kernel
1524 * and a 32bit userspace.  As the 32bit address will encoded in the low
1525 * 32bits of the pointer.  Those low 32bits will be stored at higher
1526 * address than appear in a 32 bit pointer.  So userspace will not
1527 * see the address it was expecting for it's completions.
1528 *
1529 * There is nothing in the encoding that can allow
1530 * copy_siginfo_to_user32 to detect this confusion of formats, so
1531 * handle this by requiring the caller of kill_pid_usb_asyncio to
1532 * notice when this situration takes place and to store the 32bit
1533 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1534 * parameter.
1535 */
1536int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1537			 struct pid *pid, const struct cred *cred)
1538{
1539	struct kernel_siginfo info;
1540	struct task_struct *p;
 
1541	unsigned long flags;
1542	int ret = -EINVAL;
1543
1544	if (!valid_signal(sig))
1545		return ret;
1546
1547	clear_siginfo(&info);
1548	info.si_signo = sig;
1549	info.si_errno = errno;
1550	info.si_code = SI_ASYNCIO;
1551	*((sigval_t *)&info.si_pid) = addr;
1552
1553	rcu_read_lock();
1554	p = pid_task(pid, PIDTYPE_PID);
1555	if (!p) {
1556		ret = -ESRCH;
1557		goto out_unlock;
1558	}
1559	if (!kill_as_cred_perm(cred, p)) {
 
 
 
1560		ret = -EPERM;
1561		goto out_unlock;
1562	}
1563	ret = security_task_kill(p, &info, sig, cred);
1564	if (ret)
1565		goto out_unlock;
1566
1567	if (sig) {
1568		if (lock_task_sighand(p, &flags)) {
1569			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1570			unlock_task_sighand(p, &flags);
1571		} else
1572			ret = -ESRCH;
1573	}
1574out_unlock:
1575	rcu_read_unlock();
1576	return ret;
1577}
1578EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1579
1580/*
1581 * kill_something_info() interprets pid in interesting ways just like kill(2).
1582 *
1583 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1584 * is probably wrong.  Should make it like BSD or SYSV.
1585 */
1586
1587static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1588{
1589	int ret;
1590
1591	if (pid > 0)
1592		return kill_proc_info(sig, info, pid);
1593
1594	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1595	if (pid == INT_MIN)
1596		return -ESRCH;
1597
1598	read_lock(&tasklist_lock);
1599	if (pid != -1) {
1600		ret = __kill_pgrp_info(sig, info,
1601				pid ? find_vpid(-pid) : task_pgrp(current));
1602	} else {
1603		int retval = 0, count = 0;
1604		struct task_struct * p;
1605
1606		for_each_process(p) {
1607			if (task_pid_vnr(p) > 1 &&
1608					!same_thread_group(p, current)) {
1609				int err = group_send_sig_info(sig, info, p,
1610							      PIDTYPE_MAX);
1611				++count;
1612				if (err != -EPERM)
1613					retval = err;
1614			}
1615		}
1616		ret = count ? retval : -ESRCH;
1617	}
1618	read_unlock(&tasklist_lock);
1619
1620	return ret;
1621}
1622
1623/*
1624 * These are for backward compatibility with the rest of the kernel source.
1625 */
1626
1627int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1628{
1629	/*
1630	 * Make sure legacy kernel users don't send in bad values
1631	 * (normal paths check this in check_kill_permission).
1632	 */
1633	if (!valid_signal(sig))
1634		return -EINVAL;
1635
1636	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1637}
1638EXPORT_SYMBOL(send_sig_info);
1639
1640#define __si_special(priv) \
1641	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1642
1643int
1644send_sig(int sig, struct task_struct *p, int priv)
1645{
1646	return send_sig_info(sig, __si_special(priv), p);
1647}
1648EXPORT_SYMBOL(send_sig);
1649
1650void force_sig(int sig)
1651{
1652	struct kernel_siginfo info;
1653
1654	clear_siginfo(&info);
1655	info.si_signo = sig;
1656	info.si_errno = 0;
1657	info.si_code = SI_KERNEL;
1658	info.si_pid = 0;
1659	info.si_uid = 0;
1660	force_sig_info(&info);
1661}
1662EXPORT_SYMBOL(force_sig);
1663
1664void force_fatal_sig(int sig)
1665{
1666	struct kernel_siginfo info;
1667
1668	clear_siginfo(&info);
1669	info.si_signo = sig;
1670	info.si_errno = 0;
1671	info.si_code = SI_KERNEL;
1672	info.si_pid = 0;
1673	info.si_uid = 0;
1674	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1675}
1676
1677void force_exit_sig(int sig)
 
1678{
1679	struct kernel_siginfo info;
1680
1681	clear_siginfo(&info);
1682	info.si_signo = sig;
1683	info.si_errno = 0;
1684	info.si_code = SI_KERNEL;
1685	info.si_pid = 0;
1686	info.si_uid = 0;
1687	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1688}
1689
1690/*
1691 * When things go south during signal handling, we
1692 * will force a SIGSEGV. And if the signal that caused
1693 * the problem was already a SIGSEGV, we'll want to
1694 * make sure we don't even try to deliver the signal..
1695 */
1696void force_sigsegv(int sig)
1697{
1698	if (sig == SIGSEGV)
1699		force_fatal_sig(SIGSEGV);
1700	else
1701		force_sig(SIGSEGV);
1702}
1703
1704int force_sig_fault_to_task(int sig, int code, void __user *addr
1705	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1706	, struct task_struct *t)
1707{
1708	struct kernel_siginfo info;
1709
1710	clear_siginfo(&info);
1711	info.si_signo = sig;
1712	info.si_errno = 0;
1713	info.si_code  = code;
1714	info.si_addr  = addr;
1715#ifdef __ia64__
1716	info.si_imm = imm;
1717	info.si_flags = flags;
1718	info.si_isr = isr;
1719#endif
1720	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1721}
1722
1723int force_sig_fault(int sig, int code, void __user *addr
1724	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1725{
1726	return force_sig_fault_to_task(sig, code, addr
1727				       ___ARCH_SI_IA64(imm, flags, isr), current);
1728}
1729
1730int send_sig_fault(int sig, int code, void __user *addr
1731	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1732	, struct task_struct *t)
1733{
1734	struct kernel_siginfo info;
1735
1736	clear_siginfo(&info);
1737	info.si_signo = sig;
1738	info.si_errno = 0;
1739	info.si_code  = code;
1740	info.si_addr  = addr;
1741#ifdef __ia64__
1742	info.si_imm = imm;
1743	info.si_flags = flags;
1744	info.si_isr = isr;
1745#endif
1746	return send_sig_info(info.si_signo, &info, t);
1747}
1748
1749int force_sig_mceerr(int code, void __user *addr, short lsb)
1750{
1751	struct kernel_siginfo info;
1752
1753	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1754	clear_siginfo(&info);
1755	info.si_signo = SIGBUS;
1756	info.si_errno = 0;
1757	info.si_code = code;
1758	info.si_addr = addr;
1759	info.si_addr_lsb = lsb;
1760	return force_sig_info(&info);
1761}
1762
1763int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1764{
1765	struct kernel_siginfo info;
1766
1767	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1768	clear_siginfo(&info);
1769	info.si_signo = SIGBUS;
1770	info.si_errno = 0;
1771	info.si_code = code;
1772	info.si_addr = addr;
1773	info.si_addr_lsb = lsb;
1774	return send_sig_info(info.si_signo, &info, t);
1775}
1776EXPORT_SYMBOL(send_sig_mceerr);
1777
1778int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1779{
1780	struct kernel_siginfo info;
1781
1782	clear_siginfo(&info);
1783	info.si_signo = SIGSEGV;
1784	info.si_errno = 0;
1785	info.si_code  = SEGV_BNDERR;
1786	info.si_addr  = addr;
1787	info.si_lower = lower;
1788	info.si_upper = upper;
1789	return force_sig_info(&info);
1790}
1791
1792#ifdef SEGV_PKUERR
1793int force_sig_pkuerr(void __user *addr, u32 pkey)
1794{
1795	struct kernel_siginfo info;
1796
1797	clear_siginfo(&info);
1798	info.si_signo = SIGSEGV;
1799	info.si_errno = 0;
1800	info.si_code  = SEGV_PKUERR;
1801	info.si_addr  = addr;
1802	info.si_pkey  = pkey;
1803	return force_sig_info(&info);
1804}
1805#endif
1806
1807int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1808{
1809	struct kernel_siginfo info;
1810
1811	clear_siginfo(&info);
1812	info.si_signo     = SIGTRAP;
1813	info.si_errno     = 0;
1814	info.si_code      = TRAP_PERF;
1815	info.si_addr      = addr;
1816	info.si_perf_data = sig_data;
1817	info.si_perf_type = type;
1818
1819	/*
1820	 * Signals generated by perf events should not terminate the whole
1821	 * process if SIGTRAP is blocked, however, delivering the signal
1822	 * asynchronously is better than not delivering at all. But tell user
1823	 * space if the signal was asynchronous, so it can clearly be
1824	 * distinguished from normal synchronous ones.
1825	 */
1826	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1827				     TRAP_PERF_FLAG_ASYNC :
1828				     0;
1829
1830	return send_sig_info(info.si_signo, &info, current);
1831}
1832
1833/**
1834 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1835 * @syscall: syscall number to send to userland
1836 * @reason: filter-supplied reason code to send to userland (via si_errno)
1837 * @force_coredump: true to trigger a coredump
1838 *
1839 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1840 */
1841int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1842{
1843	struct kernel_siginfo info;
1844
1845	clear_siginfo(&info);
1846	info.si_signo = SIGSYS;
1847	info.si_code = SYS_SECCOMP;
1848	info.si_call_addr = (void __user *)KSTK_EIP(current);
1849	info.si_errno = reason;
1850	info.si_arch = syscall_get_arch(current);
1851	info.si_syscall = syscall;
1852	return force_sig_info_to_task(&info, current,
1853		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1854}
1855
1856/* For the crazy architectures that include trap information in
1857 * the errno field, instead of an actual errno value.
1858 */
1859int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1860{
1861	struct kernel_siginfo info;
1862
1863	clear_siginfo(&info);
1864	info.si_signo = SIGTRAP;
1865	info.si_errno = errno;
1866	info.si_code  = TRAP_HWBKPT;
1867	info.si_addr  = addr;
1868	return force_sig_info(&info);
1869}
1870
1871/* For the rare architectures that include trap information using
1872 * si_trapno.
1873 */
1874int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1875{
1876	struct kernel_siginfo info;
1877
1878	clear_siginfo(&info);
1879	info.si_signo = sig;
1880	info.si_errno = 0;
1881	info.si_code  = code;
1882	info.si_addr  = addr;
1883	info.si_trapno = trapno;
1884	return force_sig_info(&info);
1885}
1886
1887/* For the rare architectures that include trap information using
1888 * si_trapno.
1889 */
1890int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1891			  struct task_struct *t)
1892{
1893	struct kernel_siginfo info;
1894
1895	clear_siginfo(&info);
1896	info.si_signo = sig;
1897	info.si_errno = 0;
1898	info.si_code  = code;
1899	info.si_addr  = addr;
1900	info.si_trapno = trapno;
1901	return send_sig_info(info.si_signo, &info, t);
1902}
1903
1904int kill_pgrp(struct pid *pid, int sig, int priv)
1905{
1906	int ret;
1907
1908	read_lock(&tasklist_lock);
1909	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1910	read_unlock(&tasklist_lock);
1911
1912	return ret;
1913}
1914EXPORT_SYMBOL(kill_pgrp);
1915
1916int kill_pid(struct pid *pid, int sig, int priv)
1917{
1918	return kill_pid_info(sig, __si_special(priv), pid);
1919}
1920EXPORT_SYMBOL(kill_pid);
1921
1922/*
1923 * These functions support sending signals using preallocated sigqueue
1924 * structures.  This is needed "because realtime applications cannot
1925 * afford to lose notifications of asynchronous events, like timer
1926 * expirations or I/O completions".  In the case of POSIX Timers
1927 * we allocate the sigqueue structure from the timer_create.  If this
1928 * allocation fails we are able to report the failure to the application
1929 * with an EAGAIN error.
1930 */
1931struct sigqueue *sigqueue_alloc(void)
1932{
1933	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
 
 
 
 
 
1934}
1935
1936void sigqueue_free(struct sigqueue *q)
1937{
1938	unsigned long flags;
1939	spinlock_t *lock = &current->sighand->siglock;
1940
1941	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1942	/*
1943	 * We must hold ->siglock while testing q->list
1944	 * to serialize with collect_signal() or with
1945	 * __exit_signal()->flush_sigqueue().
1946	 */
1947	spin_lock_irqsave(lock, flags);
1948	q->flags &= ~SIGQUEUE_PREALLOC;
1949	/*
1950	 * If it is queued it will be freed when dequeued,
1951	 * like the "regular" sigqueue.
1952	 */
1953	if (!list_empty(&q->list))
1954		q = NULL;
1955	spin_unlock_irqrestore(lock, flags);
1956
1957	if (q)
1958		__sigqueue_free(q);
1959}
1960
1961int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1962{
1963	int sig = q->info.si_signo;
1964	struct sigpending *pending;
1965	struct task_struct *t;
1966	unsigned long flags;
1967	int ret, result;
1968
1969	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1970
1971	ret = -1;
1972	rcu_read_lock();
1973	t = pid_task(pid, type);
1974	if (!t || !likely(lock_task_sighand(t, &flags)))
1975		goto ret;
1976
1977	ret = 1; /* the signal is ignored */
1978	result = TRACE_SIGNAL_IGNORED;
1979	if (!prepare_signal(sig, t, false))
1980		goto out;
1981
1982	ret = 0;
1983	if (unlikely(!list_empty(&q->list))) {
1984		/*
1985		 * If an SI_TIMER entry is already queue just increment
1986		 * the overrun count.
1987		 */
1988		BUG_ON(q->info.si_code != SI_TIMER);
1989		q->info.si_overrun++;
1990		result = TRACE_SIGNAL_ALREADY_PENDING;
1991		goto out;
1992	}
1993	q->info.si_overrun = 0;
1994
1995	signalfd_notify(t, sig);
1996	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1997	list_add_tail(&q->list, &pending->list);
1998	sigaddset(&pending->signal, sig);
1999	complete_signal(sig, t, type);
2000	result = TRACE_SIGNAL_DELIVERED;
2001out:
2002	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2003	unlock_task_sighand(t, &flags);
2004ret:
2005	rcu_read_unlock();
2006	return ret;
2007}
2008
2009static void do_notify_pidfd(struct task_struct *task)
2010{
2011	struct pid *pid;
2012
2013	WARN_ON(task->exit_state == 0);
2014	pid = task_pid(task);
2015	wake_up_all(&pid->wait_pidfd);
2016}
2017
2018/*
2019 * Let a parent know about the death of a child.
2020 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2021 *
2022 * Returns true if our parent ignored us and so we've switched to
2023 * self-reaping.
2024 */
2025bool do_notify_parent(struct task_struct *tsk, int sig)
2026{
2027	struct kernel_siginfo info;
2028	unsigned long flags;
2029	struct sighand_struct *psig;
2030	bool autoreap = false;
2031	u64 utime, stime;
2032
2033	WARN_ON_ONCE(sig == -1);
2034
2035	/* do_notify_parent_cldstop should have been called instead.  */
2036	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2037
2038	WARN_ON_ONCE(!tsk->ptrace &&
2039	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2040
2041	/* Wake up all pidfd waiters */
2042	do_notify_pidfd(tsk);
2043
2044	if (sig != SIGCHLD) {
2045		/*
2046		 * This is only possible if parent == real_parent.
2047		 * Check if it has changed security domain.
2048		 */
2049		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2050			sig = SIGCHLD;
2051	}
2052
2053	clear_siginfo(&info);
2054	info.si_signo = sig;
2055	info.si_errno = 0;
2056	/*
2057	 * We are under tasklist_lock here so our parent is tied to
2058	 * us and cannot change.
2059	 *
2060	 * task_active_pid_ns will always return the same pid namespace
2061	 * until a task passes through release_task.
 
2062	 *
2063	 * write_lock() currently calls preempt_disable() which is the
2064	 * same as rcu_read_lock(), but according to Oleg, this is not
2065	 * correct to rely on this
2066	 */
2067	rcu_read_lock();
2068	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2069	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2070				       task_uid(tsk));
2071	rcu_read_unlock();
2072
2073	task_cputime(tsk, &utime, &stime);
2074	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2075	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
 
2076
2077	info.si_status = tsk->exit_code & 0x7f;
2078	if (tsk->exit_code & 0x80)
2079		info.si_code = CLD_DUMPED;
2080	else if (tsk->exit_code & 0x7f)
2081		info.si_code = CLD_KILLED;
2082	else {
2083		info.si_code = CLD_EXITED;
2084		info.si_status = tsk->exit_code >> 8;
2085	}
2086
2087	psig = tsk->parent->sighand;
2088	spin_lock_irqsave(&psig->siglock, flags);
2089	if (!tsk->ptrace && sig == SIGCHLD &&
2090	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2091	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2092		/*
2093		 * We are exiting and our parent doesn't care.  POSIX.1
2094		 * defines special semantics for setting SIGCHLD to SIG_IGN
2095		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2096		 * automatically and not left for our parent's wait4 call.
2097		 * Rather than having the parent do it as a magic kind of
2098		 * signal handler, we just set this to tell do_exit that we
2099		 * can be cleaned up without becoming a zombie.  Note that
2100		 * we still call __wake_up_parent in this case, because a
2101		 * blocked sys_wait4 might now return -ECHILD.
2102		 *
2103		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2104		 * is implementation-defined: we do (if you don't want
2105		 * it, just use SIG_IGN instead).
2106		 */
2107		autoreap = true;
2108		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2109			sig = 0;
2110	}
2111	/*
2112	 * Send with __send_signal as si_pid and si_uid are in the
2113	 * parent's namespaces.
2114	 */
2115	if (valid_signal(sig) && sig)
2116		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2117	__wake_up_parent(tsk, tsk->parent);
2118	spin_unlock_irqrestore(&psig->siglock, flags);
2119
2120	return autoreap;
2121}
2122
2123/**
2124 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2125 * @tsk: task reporting the state change
2126 * @for_ptracer: the notification is for ptracer
2127 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2128 *
2129 * Notify @tsk's parent that the stopped/continued state has changed.  If
2130 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2131 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2132 *
2133 * CONTEXT:
2134 * Must be called with tasklist_lock at least read locked.
2135 */
2136static void do_notify_parent_cldstop(struct task_struct *tsk,
2137				     bool for_ptracer, int why)
2138{
2139	struct kernel_siginfo info;
2140	unsigned long flags;
2141	struct task_struct *parent;
2142	struct sighand_struct *sighand;
2143	u64 utime, stime;
2144
2145	if (for_ptracer) {
2146		parent = tsk->parent;
2147	} else {
2148		tsk = tsk->group_leader;
2149		parent = tsk->real_parent;
2150	}
2151
2152	clear_siginfo(&info);
2153	info.si_signo = SIGCHLD;
2154	info.si_errno = 0;
2155	/*
2156	 * see comment in do_notify_parent() about the following 4 lines
2157	 */
2158	rcu_read_lock();
2159	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2160	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2161	rcu_read_unlock();
2162
2163	task_cputime(tsk, &utime, &stime);
2164	info.si_utime = nsec_to_clock_t(utime);
2165	info.si_stime = nsec_to_clock_t(stime);
2166
2167 	info.si_code = why;
2168 	switch (why) {
2169 	case CLD_CONTINUED:
2170 		info.si_status = SIGCONT;
2171 		break;
2172 	case CLD_STOPPED:
2173 		info.si_status = tsk->signal->group_exit_code & 0x7f;
2174 		break;
2175 	case CLD_TRAPPED:
2176 		info.si_status = tsk->exit_code & 0x7f;
2177 		break;
2178 	default:
2179 		BUG();
2180 	}
2181
2182	sighand = parent->sighand;
2183	spin_lock_irqsave(&sighand->siglock, flags);
2184	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2185	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2186		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2187	/*
2188	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2189	 */
2190	__wake_up_parent(tsk, parent);
2191	spin_unlock_irqrestore(&sighand->siglock, flags);
2192}
2193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2194/*
2195 * This must be called with current->sighand->siglock held.
2196 *
2197 * This should be the path for all ptrace stops.
2198 * We always set current->last_siginfo while stopped here.
2199 * That makes it a way to test a stopped process for
2200 * being ptrace-stopped vs being job-control-stopped.
2201 *
2202 * Returns the signal the ptracer requested the code resume
2203 * with.  If the code did not stop because the tracer is gone,
2204 * the stop signal remains unchanged unless clear_code.
2205 */
2206static int ptrace_stop(int exit_code, int why, unsigned long message,
2207		       kernel_siginfo_t *info)
2208	__releases(&current->sighand->siglock)
2209	__acquires(&current->sighand->siglock)
2210{
2211	bool gstop_done = false;
2212
2213	if (arch_ptrace_stop_needed()) {
2214		/*
2215		 * The arch code has something special to do before a
2216		 * ptrace stop.  This is allowed to block, e.g. for faults
2217		 * on user stack pages.  We can't keep the siglock while
2218		 * calling arch_ptrace_stop, so we must release it now.
2219		 * To preserve proper semantics, we must do this before
2220		 * any signal bookkeeping like checking group_stop_count.
 
 
 
2221		 */
2222		spin_unlock_irq(&current->sighand->siglock);
2223		arch_ptrace_stop();
2224		spin_lock_irq(&current->sighand->siglock);
 
 
2225	}
2226
2227	/*
2228	 * After this point ptrace_signal_wake_up or signal_wake_up
2229	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2230	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2231	 * signals here to prevent ptrace_stop sleeping in schedule.
2232	 */
2233	if (!current->ptrace || __fatal_signal_pending(current))
2234		return exit_code;
2235
2236	set_special_state(TASK_TRACED);
2237	current->jobctl |= JOBCTL_TRACED;
2238
2239	/*
2240	 * We're committing to trapping.  TRACED should be visible before
2241	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2242	 * Also, transition to TRACED and updates to ->jobctl should be
2243	 * atomic with respect to siglock and should be done after the arch
2244	 * hook as siglock is released and regrabbed across it.
2245	 *
2246	 *     TRACER				    TRACEE
2247	 *
2248	 *     ptrace_attach()
2249	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2250	 *     do_wait()
2251	 *       set_current_state()                smp_wmb();
2252	 *       ptrace_do_wait()
2253	 *         wait_task_stopped()
2254	 *           task_stopped_code()
2255	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2256	 */
2257	smp_wmb();
2258
2259	current->ptrace_message = message;
2260	current->last_siginfo = info;
2261	current->exit_code = exit_code;
2262
2263	/*
2264	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2265	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2266	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2267	 * could be clear now.  We act as if SIGCONT is received after
2268	 * TASK_TRACED is entered - ignore it.
2269	 */
2270	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2271		gstop_done = task_participate_group_stop(current);
2272
2273	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2274	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2275	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2276		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2277
2278	/* entering a trap, clear TRAPPING */
2279	task_clear_jobctl_trapping(current);
2280
2281	spin_unlock_irq(&current->sighand->siglock);
2282	read_lock(&tasklist_lock);
2283	/*
2284	 * Notify parents of the stop.
2285	 *
2286	 * While ptraced, there are two parents - the ptracer and
2287	 * the real_parent of the group_leader.  The ptracer should
2288	 * know about every stop while the real parent is only
2289	 * interested in the completion of group stop.  The states
2290	 * for the two don't interact with each other.  Notify
2291	 * separately unless they're gonna be duplicates.
2292	 */
2293	if (current->ptrace)
2294		do_notify_parent_cldstop(current, true, why);
2295	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2296		do_notify_parent_cldstop(current, false, why);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2297
2298	/*
2299	 * Don't want to allow preemption here, because
2300	 * sys_ptrace() needs this task to be inactive.
2301	 *
2302	 * XXX: implement read_unlock_no_resched().
2303	 */
2304	preempt_disable();
2305	read_unlock(&tasklist_lock);
2306	cgroup_enter_frozen();
2307	preempt_enable_no_resched();
2308	schedule();
2309	cgroup_leave_frozen(true);
2310
2311	/*
2312	 * We are back.  Now reacquire the siglock before touching
2313	 * last_siginfo, so that we are sure to have synchronized with
2314	 * any signal-sending on another CPU that wants to examine it.
2315	 */
2316	spin_lock_irq(&current->sighand->siglock);
2317	exit_code = current->exit_code;
2318	current->last_siginfo = NULL;
2319	current->ptrace_message = 0;
2320	current->exit_code = 0;
2321
2322	/* LISTENING can be set only during STOP traps, clear it */
2323	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2324
2325	/*
2326	 * Queued signals ignored us while we were stopped for tracing.
2327	 * So check for any that we should take before resuming user mode.
2328	 * This sets TIF_SIGPENDING, but never clears it.
2329	 */
2330	recalc_sigpending_tsk(current);
2331	return exit_code;
2332}
2333
2334static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2335{
2336	kernel_siginfo_t info;
2337
2338	clear_siginfo(&info);
2339	info.si_signo = signr;
2340	info.si_code = exit_code;
2341	info.si_pid = task_pid_vnr(current);
2342	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2343
2344	/* Let the debugger run.  */
2345	return ptrace_stop(exit_code, why, message, &info);
2346}
2347
2348int ptrace_notify(int exit_code, unsigned long message)
2349{
2350	int signr;
2351
2352	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2353	if (unlikely(task_work_pending(current)))
2354		task_work_run();
2355
2356	spin_lock_irq(&current->sighand->siglock);
2357	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2358	spin_unlock_irq(&current->sighand->siglock);
2359	return signr;
2360}
2361
2362/**
2363 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2364 * @signr: signr causing group stop if initiating
2365 *
2366 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2367 * and participate in it.  If already set, participate in the existing
2368 * group stop.  If participated in a group stop (and thus slept), %true is
2369 * returned with siglock released.
2370 *
2371 * If ptraced, this function doesn't handle stop itself.  Instead,
2372 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2373 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2374 * places afterwards.
2375 *
2376 * CONTEXT:
2377 * Must be called with @current->sighand->siglock held, which is released
2378 * on %true return.
2379 *
2380 * RETURNS:
2381 * %false if group stop is already cancelled or ptrace trap is scheduled.
2382 * %true if participated in group stop.
2383 */
2384static bool do_signal_stop(int signr)
2385	__releases(&current->sighand->siglock)
2386{
2387	struct signal_struct *sig = current->signal;
2388
2389	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2390		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2391		struct task_struct *t;
2392
2393		/* signr will be recorded in task->jobctl for retries */
2394		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2395
2396		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2397		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2398		    unlikely(sig->group_exec_task))
2399			return false;
2400		/*
2401		 * There is no group stop already in progress.  We must
2402		 * initiate one now.
2403		 *
2404		 * While ptraced, a task may be resumed while group stop is
2405		 * still in effect and then receive a stop signal and
2406		 * initiate another group stop.  This deviates from the
2407		 * usual behavior as two consecutive stop signals can't
2408		 * cause two group stops when !ptraced.  That is why we
2409		 * also check !task_is_stopped(t) below.
2410		 *
2411		 * The condition can be distinguished by testing whether
2412		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2413		 * group_exit_code in such case.
2414		 *
2415		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2416		 * an intervening stop signal is required to cause two
2417		 * continued events regardless of ptrace.
2418		 */
2419		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2420			sig->group_exit_code = signr;
 
 
2421
2422		sig->group_stop_count = 0;
2423
2424		if (task_set_jobctl_pending(current, signr | gstop))
2425			sig->group_stop_count++;
2426
2427		t = current;
2428		while_each_thread(current, t) {
2429			/*
2430			 * Setting state to TASK_STOPPED for a group
2431			 * stop is always done with the siglock held,
2432			 * so this check has no races.
2433			 */
2434			if (!task_is_stopped(t) &&
2435			    task_set_jobctl_pending(t, signr | gstop)) {
2436				sig->group_stop_count++;
2437				if (likely(!(t->ptrace & PT_SEIZED)))
2438					signal_wake_up(t, 0);
2439				else
2440					ptrace_trap_notify(t);
2441			}
2442		}
2443	}
2444
2445	if (likely(!current->ptrace)) {
2446		int notify = 0;
2447
2448		/*
2449		 * If there are no other threads in the group, or if there
2450		 * is a group stop in progress and we are the last to stop,
2451		 * report to the parent.
2452		 */
2453		if (task_participate_group_stop(current))
2454			notify = CLD_STOPPED;
2455
2456		current->jobctl |= JOBCTL_STOPPED;
2457		set_special_state(TASK_STOPPED);
2458		spin_unlock_irq(&current->sighand->siglock);
2459
2460		/*
2461		 * Notify the parent of the group stop completion.  Because
2462		 * we're not holding either the siglock or tasklist_lock
2463		 * here, ptracer may attach inbetween; however, this is for
2464		 * group stop and should always be delivered to the real
2465		 * parent of the group leader.  The new ptracer will get
2466		 * its notification when this task transitions into
2467		 * TASK_TRACED.
2468		 */
2469		if (notify) {
2470			read_lock(&tasklist_lock);
2471			do_notify_parent_cldstop(current, false, notify);
2472			read_unlock(&tasklist_lock);
2473		}
2474
2475		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2476		cgroup_enter_frozen();
2477		schedule();
2478		return true;
2479	} else {
2480		/*
2481		 * While ptraced, group stop is handled by STOP trap.
2482		 * Schedule it and let the caller deal with it.
2483		 */
2484		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2485		return false;
2486	}
2487}
2488
2489/**
2490 * do_jobctl_trap - take care of ptrace jobctl traps
2491 *
2492 * When PT_SEIZED, it's used for both group stop and explicit
2493 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2494 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2495 * the stop signal; otherwise, %SIGTRAP.
2496 *
2497 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2498 * number as exit_code and no siginfo.
2499 *
2500 * CONTEXT:
2501 * Must be called with @current->sighand->siglock held, which may be
2502 * released and re-acquired before returning with intervening sleep.
2503 */
2504static void do_jobctl_trap(void)
2505{
2506	struct signal_struct *signal = current->signal;
2507	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2508
2509	if (current->ptrace & PT_SEIZED) {
2510		if (!signal->group_stop_count &&
2511		    !(signal->flags & SIGNAL_STOP_STOPPED))
2512			signr = SIGTRAP;
2513		WARN_ON_ONCE(!signr);
2514		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2515				 CLD_STOPPED, 0);
2516	} else {
2517		WARN_ON_ONCE(!signr);
2518		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
 
2519	}
2520}
2521
2522/**
2523 * do_freezer_trap - handle the freezer jobctl trap
2524 *
2525 * Puts the task into frozen state, if only the task is not about to quit.
2526 * In this case it drops JOBCTL_TRAP_FREEZE.
2527 *
2528 * CONTEXT:
2529 * Must be called with @current->sighand->siglock held,
2530 * which is always released before returning.
2531 */
2532static void do_freezer_trap(void)
2533	__releases(&current->sighand->siglock)
2534{
2535	/*
2536	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2537	 * let's make another loop to give it a chance to be handled.
2538	 * In any case, we'll return back.
2539	 */
2540	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2541	     JOBCTL_TRAP_FREEZE) {
2542		spin_unlock_irq(&current->sighand->siglock);
2543		return;
2544	}
2545
2546	/*
2547	 * Now we're sure that there is no pending fatal signal and no
2548	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2549	 * immediately (if there is a non-fatal signal pending), and
2550	 * put the task into sleep.
2551	 */
2552	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2553	clear_thread_flag(TIF_SIGPENDING);
2554	spin_unlock_irq(&current->sighand->siglock);
2555	cgroup_enter_frozen();
2556	schedule();
2557}
2558
2559static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2560{
 
2561	/*
2562	 * We do not check sig_kernel_stop(signr) but set this marker
2563	 * unconditionally because we do not know whether debugger will
2564	 * change signr. This flag has no meaning unless we are going
2565	 * to stop after return from ptrace_stop(). In this case it will
2566	 * be checked in do_signal_stop(), we should only stop if it was
2567	 * not cleared by SIGCONT while we were sleeping. See also the
2568	 * comment in dequeue_signal().
2569	 */
2570	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2571	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2572
2573	/* We're back.  Did the debugger cancel the sig?  */
 
2574	if (signr == 0)
2575		return signr;
2576
 
 
2577	/*
2578	 * Update the siginfo structure if the signal has
2579	 * changed.  If the debugger wanted something
2580	 * specific in the siginfo structure then it should
2581	 * have updated *info via PTRACE_SETSIGINFO.
2582	 */
2583	if (signr != info->si_signo) {
2584		clear_siginfo(info);
2585		info->si_signo = signr;
2586		info->si_errno = 0;
2587		info->si_code = SI_USER;
2588		rcu_read_lock();
2589		info->si_pid = task_pid_vnr(current->parent);
2590		info->si_uid = from_kuid_munged(current_user_ns(),
2591						task_uid(current->parent));
2592		rcu_read_unlock();
2593	}
2594
2595	/* If the (new) signal is now blocked, requeue it.  */
2596	if (sigismember(&current->blocked, signr) ||
2597	    fatal_signal_pending(current)) {
2598		send_signal_locked(signr, info, current, type);
2599		signr = 0;
2600	}
2601
2602	return signr;
2603}
2604
2605static void hide_si_addr_tag_bits(struct ksignal *ksig)
2606{
2607	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2608	case SIL_FAULT:
2609	case SIL_FAULT_TRAPNO:
2610	case SIL_FAULT_MCEERR:
2611	case SIL_FAULT_BNDERR:
2612	case SIL_FAULT_PKUERR:
2613	case SIL_FAULT_PERF_EVENT:
2614		ksig->info.si_addr = arch_untagged_si_addr(
2615			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2616		break;
2617	case SIL_KILL:
2618	case SIL_TIMER:
2619	case SIL_POLL:
2620	case SIL_CHLD:
2621	case SIL_RT:
2622	case SIL_SYS:
2623		break;
2624	}
2625}
2626
2627bool get_signal(struct ksignal *ksig)
2628{
2629	struct sighand_struct *sighand = current->sighand;
2630	struct signal_struct *signal = current->signal;
2631	int signr;
2632
2633	clear_notify_signal();
2634	if (unlikely(task_work_pending(current)))
2635		task_work_run();
2636
2637	if (!task_sigpending(current))
2638		return false;
2639
2640	if (unlikely(uprobe_deny_signal()))
2641		return false;
2642
2643	/*
2644	 * Do this once, we can't return to user-mode if freezing() == T.
2645	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2646	 * thus do not need another check after return.
 
2647	 */
2648	try_to_freeze();
2649
2650relock:
2651	spin_lock_irq(&sighand->siglock);
2652
2653	/*
2654	 * Every stopped thread goes here after wakeup. Check to see if
2655	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2656	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2657	 */
2658	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2659		int why;
2660
2661		if (signal->flags & SIGNAL_CLD_CONTINUED)
2662			why = CLD_CONTINUED;
2663		else
2664			why = CLD_STOPPED;
2665
2666		signal->flags &= ~SIGNAL_CLD_MASK;
2667
2668		spin_unlock_irq(&sighand->siglock);
2669
2670		/*
2671		 * Notify the parent that we're continuing.  This event is
2672		 * always per-process and doesn't make whole lot of sense
2673		 * for ptracers, who shouldn't consume the state via
2674		 * wait(2) either, but, for backward compatibility, notify
2675		 * the ptracer of the group leader too unless it's gonna be
2676		 * a duplicate.
2677		 */
2678		read_lock(&tasklist_lock);
2679		do_notify_parent_cldstop(current, false, why);
2680
2681		if (ptrace_reparented(current->group_leader))
2682			do_notify_parent_cldstop(current->group_leader,
2683						true, why);
2684		read_unlock(&tasklist_lock);
2685
2686		goto relock;
2687	}
2688
2689	for (;;) {
2690		struct k_sigaction *ka;
2691		enum pid_type type;
2692
2693		/* Has this task already been marked for death? */
2694		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2695		     signal->group_exec_task) {
2696			clear_siginfo(&ksig->info);
2697			ksig->info.si_signo = signr = SIGKILL;
2698			sigdelset(&current->pending.signal, SIGKILL);
2699			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2700				&sighand->action[SIGKILL - 1]);
2701			recalc_sigpending();
2702			goto fatal;
2703		}
2704
2705		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2706		    do_signal_stop(0))
2707			goto relock;
2708
2709		if (unlikely(current->jobctl &
2710			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2711			if (current->jobctl & JOBCTL_TRAP_MASK) {
2712				do_jobctl_trap();
2713				spin_unlock_irq(&sighand->siglock);
2714			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2715				do_freezer_trap();
2716
2717			goto relock;
2718		}
2719
2720		/*
2721		 * If the task is leaving the frozen state, let's update
2722		 * cgroup counters and reset the frozen bit.
2723		 */
2724		if (unlikely(cgroup_task_frozen(current))) {
2725			spin_unlock_irq(&sighand->siglock);
2726			cgroup_leave_frozen(false);
2727			goto relock;
2728		}
2729
2730		/*
2731		 * Signals generated by the execution of an instruction
2732		 * need to be delivered before any other pending signals
2733		 * so that the instruction pointer in the signal stack
2734		 * frame points to the faulting instruction.
2735		 */
2736		type = PIDTYPE_PID;
2737		signr = dequeue_synchronous_signal(&ksig->info);
2738		if (!signr)
2739			signr = dequeue_signal(current, &current->blocked,
2740					       &ksig->info, &type);
2741
2742		if (!signr)
2743			break; /* will return 0 */
2744
2745		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2746		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2747			signr = ptrace_signal(signr, &ksig->info, type);
2748			if (!signr)
2749				continue;
2750		}
2751
2752		ka = &sighand->action[signr-1];
2753
2754		/* Trace actually delivered signals. */
2755		trace_signal_deliver(signr, &ksig->info, ka);
2756
2757		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2758			continue;
2759		if (ka->sa.sa_handler != SIG_DFL) {
2760			/* Run the handler.  */
2761			ksig->ka = *ka;
2762
2763			if (ka->sa.sa_flags & SA_ONESHOT)
2764				ka->sa.sa_handler = SIG_DFL;
2765
2766			break; /* will return non-zero "signr" value */
2767		}
2768
2769		/*
2770		 * Now we are doing the default action for this signal.
2771		 */
2772		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2773			continue;
2774
2775		/*
2776		 * Global init gets no signals it doesn't want.
2777		 * Container-init gets no signals it doesn't want from same
2778		 * container.
2779		 *
2780		 * Note that if global/container-init sees a sig_kernel_only()
2781		 * signal here, the signal must have been generated internally
2782		 * or must have come from an ancestor namespace. In either
2783		 * case, the signal cannot be dropped.
2784		 */
2785		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2786				!sig_kernel_only(signr))
2787			continue;
2788
2789		if (sig_kernel_stop(signr)) {
2790			/*
2791			 * The default action is to stop all threads in
2792			 * the thread group.  The job control signals
2793			 * do nothing in an orphaned pgrp, but SIGSTOP
2794			 * always works.  Note that siglock needs to be
2795			 * dropped during the call to is_orphaned_pgrp()
2796			 * because of lock ordering with tasklist_lock.
2797			 * This allows an intervening SIGCONT to be posted.
2798			 * We need to check for that and bail out if necessary.
2799			 */
2800			if (signr != SIGSTOP) {
2801				spin_unlock_irq(&sighand->siglock);
2802
2803				/* signals can be posted during this window */
2804
2805				if (is_current_pgrp_orphaned())
2806					goto relock;
2807
2808				spin_lock_irq(&sighand->siglock);
2809			}
2810
2811			if (likely(do_signal_stop(ksig->info.si_signo))) {
2812				/* It released the siglock.  */
2813				goto relock;
2814			}
2815
2816			/*
2817			 * We didn't actually stop, due to a race
2818			 * with SIGCONT or something like that.
2819			 */
2820			continue;
2821		}
2822
2823	fatal:
2824		spin_unlock_irq(&sighand->siglock);
2825		if (unlikely(cgroup_task_frozen(current)))
2826			cgroup_leave_frozen(true);
2827
2828		/*
2829		 * Anything else is fatal, maybe with a core dump.
2830		 */
2831		current->flags |= PF_SIGNALED;
2832
2833		if (sig_kernel_coredump(signr)) {
2834			if (print_fatal_signals)
2835				print_fatal_signal(ksig->info.si_signo);
2836			proc_coredump_connector(current);
2837			/*
2838			 * If it was able to dump core, this kills all
2839			 * other threads in the group and synchronizes with
2840			 * their demise.  If we lost the race with another
2841			 * thread getting here, it set group_exit_code
2842			 * first and our do_group_exit call below will use
2843			 * that value and ignore the one we pass it.
2844			 */
2845			do_coredump(&ksig->info);
2846		}
2847
2848		/*
2849		 * PF_IO_WORKER threads will catch and exit on fatal signals
2850		 * themselves. They have cleanup that must be performed, so
2851		 * we cannot call do_exit() on their behalf.
2852		 */
2853		if (current->flags & PF_IO_WORKER)
2854			goto out;
2855
2856		/*
2857		 * Death signals, no core dump.
2858		 */
2859		do_group_exit(ksig->info.si_signo);
2860		/* NOTREACHED */
2861	}
2862	spin_unlock_irq(&sighand->siglock);
2863out:
2864	ksig->sig = signr;
2865
2866	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2867		hide_si_addr_tag_bits(ksig);
2868
2869	return ksig->sig > 0;
2870}
2871
2872/**
2873 * signal_delivered - called after signal delivery to update blocked signals
2874 * @ksig:		kernel signal struct
2875 * @stepping:		nonzero if debugger single-step or block-step in use
2876 *
2877 * This function should be called when a signal has successfully been
2878 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2879 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2880 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2881 */
2882static void signal_delivered(struct ksignal *ksig, int stepping)
2883{
2884	sigset_t blocked;
2885
2886	/* A signal was successfully delivered, and the
2887	   saved sigmask was stored on the signal frame,
2888	   and will be restored by sigreturn.  So we can
2889	   simply clear the restore sigmask flag.  */
2890	clear_restore_sigmask();
2891
2892	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2893	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2894		sigaddset(&blocked, ksig->sig);
2895	set_current_blocked(&blocked);
2896	if (current->sas_ss_flags & SS_AUTODISARM)
2897		sas_ss_reset(current);
2898	if (stepping)
2899		ptrace_notify(SIGTRAP, 0);
2900}
2901
2902void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2903{
2904	if (failed)
2905		force_sigsegv(ksig->sig);
2906	else
2907		signal_delivered(ksig, stepping);
2908}
2909
2910/*
2911 * It could be that complete_signal() picked us to notify about the
2912 * group-wide signal. Other threads should be notified now to take
2913 * the shared signals in @which since we will not.
2914 */
2915static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2916{
2917	sigset_t retarget;
2918	struct task_struct *t;
2919
2920	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2921	if (sigisemptyset(&retarget))
2922		return;
2923
2924	t = tsk;
2925	while_each_thread(tsk, t) {
2926		if (t->flags & PF_EXITING)
2927			continue;
2928
2929		if (!has_pending_signals(&retarget, &t->blocked))
2930			continue;
2931		/* Remove the signals this thread can handle. */
2932		sigandsets(&retarget, &retarget, &t->blocked);
2933
2934		if (!task_sigpending(t))
2935			signal_wake_up(t, 0);
2936
2937		if (sigisemptyset(&retarget))
2938			break;
2939	}
2940}
2941
2942void exit_signals(struct task_struct *tsk)
2943{
2944	int group_stop = 0;
2945	sigset_t unblocked;
2946
2947	/*
2948	 * @tsk is about to have PF_EXITING set - lock out users which
2949	 * expect stable threadgroup.
2950	 */
2951	cgroup_threadgroup_change_begin(tsk);
2952
2953	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
2954		tsk->flags |= PF_EXITING;
2955		cgroup_threadgroup_change_end(tsk);
2956		return;
2957	}
2958
2959	spin_lock_irq(&tsk->sighand->siglock);
2960	/*
2961	 * From now this task is not visible for group-wide signals,
2962	 * see wants_signal(), do_signal_stop().
2963	 */
2964	tsk->flags |= PF_EXITING;
2965
2966	cgroup_threadgroup_change_end(tsk);
2967
2968	if (!task_sigpending(tsk))
2969		goto out;
2970
2971	unblocked = tsk->blocked;
2972	signotset(&unblocked);
2973	retarget_shared_pending(tsk, &unblocked);
2974
2975	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2976	    task_participate_group_stop(tsk))
2977		group_stop = CLD_STOPPED;
2978out:
2979	spin_unlock_irq(&tsk->sighand->siglock);
2980
2981	/*
2982	 * If group stop has completed, deliver the notification.  This
2983	 * should always go to the real parent of the group leader.
2984	 */
2985	if (unlikely(group_stop)) {
2986		read_lock(&tasklist_lock);
2987		do_notify_parent_cldstop(tsk, false, group_stop);
2988		read_unlock(&tasklist_lock);
2989	}
2990}
2991
 
 
 
 
 
 
 
 
 
 
 
2992/*
2993 * System call entry points.
2994 */
2995
2996/**
2997 *  sys_restart_syscall - restart a system call
2998 */
2999SYSCALL_DEFINE0(restart_syscall)
3000{
3001	struct restart_block *restart = &current->restart_block;
3002	return restart->fn(restart);
3003}
3004
3005long do_no_restart_syscall(struct restart_block *param)
3006{
3007	return -EINTR;
3008}
3009
3010static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3011{
3012	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3013		sigset_t newblocked;
3014		/* A set of now blocked but previously unblocked signals. */
3015		sigandnsets(&newblocked, newset, &current->blocked);
3016		retarget_shared_pending(tsk, &newblocked);
3017	}
3018	tsk->blocked = *newset;
3019	recalc_sigpending();
3020}
3021
3022/**
3023 * set_current_blocked - change current->blocked mask
3024 * @newset: new mask
3025 *
3026 * It is wrong to change ->blocked directly, this helper should be used
3027 * to ensure the process can't miss a shared signal we are going to block.
3028 */
3029void set_current_blocked(sigset_t *newset)
3030{
3031	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3032	__set_current_blocked(newset);
3033}
3034
3035void __set_current_blocked(const sigset_t *newset)
3036{
3037	struct task_struct *tsk = current;
3038
3039	/*
3040	 * In case the signal mask hasn't changed, there is nothing we need
3041	 * to do. The current->blocked shouldn't be modified by other task.
3042	 */
3043	if (sigequalsets(&tsk->blocked, newset))
3044		return;
3045
3046	spin_lock_irq(&tsk->sighand->siglock);
3047	__set_task_blocked(tsk, newset);
3048	spin_unlock_irq(&tsk->sighand->siglock);
3049}
3050
3051/*
3052 * This is also useful for kernel threads that want to temporarily
3053 * (or permanently) block certain signals.
3054 *
3055 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3056 * interface happily blocks "unblockable" signals like SIGKILL
3057 * and friends.
3058 */
3059int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3060{
3061	struct task_struct *tsk = current;
3062	sigset_t newset;
3063
3064	/* Lockless, only current can change ->blocked, never from irq */
3065	if (oldset)
3066		*oldset = tsk->blocked;
3067
3068	switch (how) {
3069	case SIG_BLOCK:
3070		sigorsets(&newset, &tsk->blocked, set);
3071		break;
3072	case SIG_UNBLOCK:
3073		sigandnsets(&newset, &tsk->blocked, set);
3074		break;
3075	case SIG_SETMASK:
3076		newset = *set;
3077		break;
3078	default:
3079		return -EINVAL;
3080	}
3081
3082	__set_current_blocked(&newset);
3083	return 0;
3084}
3085EXPORT_SYMBOL(sigprocmask);
3086
3087/*
3088 * The api helps set app-provided sigmasks.
3089 *
3090 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3091 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3092 *
3093 * Note that it does set_restore_sigmask() in advance, so it must be always
3094 * paired with restore_saved_sigmask_unless() before return from syscall.
3095 */
3096int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3097{
3098	sigset_t kmask;
3099
3100	if (!umask)
3101		return 0;
3102	if (sigsetsize != sizeof(sigset_t))
3103		return -EINVAL;
3104	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3105		return -EFAULT;
3106
3107	set_restore_sigmask();
3108	current->saved_sigmask = current->blocked;
3109	set_current_blocked(&kmask);
3110
3111	return 0;
3112}
3113
3114#ifdef CONFIG_COMPAT
3115int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3116			    size_t sigsetsize)
3117{
3118	sigset_t kmask;
3119
3120	if (!umask)
3121		return 0;
3122	if (sigsetsize != sizeof(compat_sigset_t))
3123		return -EINVAL;
3124	if (get_compat_sigset(&kmask, umask))
3125		return -EFAULT;
3126
3127	set_restore_sigmask();
3128	current->saved_sigmask = current->blocked;
3129	set_current_blocked(&kmask);
3130
3131	return 0;
3132}
3133#endif
3134
3135/**
3136 *  sys_rt_sigprocmask - change the list of currently blocked signals
3137 *  @how: whether to add, remove, or set signals
3138 *  @nset: stores pending signals
3139 *  @oset: previous value of signal mask if non-null
3140 *  @sigsetsize: size of sigset_t type
3141 */
3142SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3143		sigset_t __user *, oset, size_t, sigsetsize)
3144{
3145	sigset_t old_set, new_set;
3146	int error;
3147
3148	/* XXX: Don't preclude handling different sized sigset_t's.  */
3149	if (sigsetsize != sizeof(sigset_t))
3150		return -EINVAL;
3151
3152	old_set = current->blocked;
3153
3154	if (nset) {
3155		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3156			return -EFAULT;
3157		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3158
3159		error = sigprocmask(how, &new_set, NULL);
3160		if (error)
3161			return error;
3162	}
3163
3164	if (oset) {
3165		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3166			return -EFAULT;
3167	}
3168
3169	return 0;
3170}
3171
3172#ifdef CONFIG_COMPAT
3173COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3174		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3175{
3176	sigset_t old_set = current->blocked;
3177
3178	/* XXX: Don't preclude handling different sized sigset_t's.  */
3179	if (sigsetsize != sizeof(sigset_t))
3180		return -EINVAL;
3181
3182	if (nset) {
3183		sigset_t new_set;
3184		int error;
3185		if (get_compat_sigset(&new_set, nset))
3186			return -EFAULT;
3187		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3188
3189		error = sigprocmask(how, &new_set, NULL);
3190		if (error)
3191			return error;
3192	}
3193	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3194}
3195#endif
3196
3197static void do_sigpending(sigset_t *set)
3198{
3199	spin_lock_irq(&current->sighand->siglock);
3200	sigorsets(set, &current->pending.signal,
3201		  &current->signal->shared_pending.signal);
3202	spin_unlock_irq(&current->sighand->siglock);
3203
3204	/* Outside the lock because only this thread touches it.  */
3205	sigandsets(set, &current->blocked, set);
 
 
 
 
 
 
 
3206}
3207
3208/**
3209 *  sys_rt_sigpending - examine a pending signal that has been raised
3210 *			while blocked
3211 *  @uset: stores pending signals
3212 *  @sigsetsize: size of sigset_t type or larger
3213 */
3214SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3215{
3216	sigset_t set;
3217
3218	if (sigsetsize > sizeof(*uset))
3219		return -EINVAL;
3220
3221	do_sigpending(&set);
3222
3223	if (copy_to_user(uset, &set, sigsetsize))
3224		return -EFAULT;
3225
3226	return 0;
3227}
3228
3229#ifdef CONFIG_COMPAT
3230COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3231		compat_size_t, sigsetsize)
3232{
3233	sigset_t set;
3234
3235	if (sigsetsize > sizeof(*uset))
3236		return -EINVAL;
3237
3238	do_sigpending(&set);
3239
3240	return put_compat_sigset(uset, &set, sigsetsize);
3241}
3242#endif
3243
3244static const struct {
3245	unsigned char limit, layout;
3246} sig_sicodes[] = {
3247	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3248	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3249	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3250	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3251	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3252#if defined(SIGEMT)
3253	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3254#endif
3255	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3256	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3257	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3258};
3259
3260static bool known_siginfo_layout(unsigned sig, int si_code)
3261{
3262	if (si_code == SI_KERNEL)
3263		return true;
3264	else if ((si_code > SI_USER)) {
3265		if (sig_specific_sicodes(sig)) {
3266			if (si_code <= sig_sicodes[sig].limit)
3267				return true;
3268		}
3269		else if (si_code <= NSIGPOLL)
3270			return true;
3271	}
3272	else if (si_code >= SI_DETHREAD)
3273		return true;
3274	else if (si_code == SI_ASYNCNL)
3275		return true;
3276	return false;
3277}
3278
3279enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3280{
3281	enum siginfo_layout layout = SIL_KILL;
3282	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3283		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3284		    (si_code <= sig_sicodes[sig].limit)) {
3285			layout = sig_sicodes[sig].layout;
3286			/* Handle the exceptions */
3287			if ((sig == SIGBUS) &&
3288			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3289				layout = SIL_FAULT_MCEERR;
3290			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3291				layout = SIL_FAULT_BNDERR;
3292#ifdef SEGV_PKUERR
3293			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3294				layout = SIL_FAULT_PKUERR;
3295#endif
3296			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3297				layout = SIL_FAULT_PERF_EVENT;
3298			else if (IS_ENABLED(CONFIG_SPARC) &&
3299				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3300				layout = SIL_FAULT_TRAPNO;
3301			else if (IS_ENABLED(CONFIG_ALPHA) &&
3302				 ((sig == SIGFPE) ||
3303				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3304				layout = SIL_FAULT_TRAPNO;
3305		}
3306		else if (si_code <= NSIGPOLL)
3307			layout = SIL_POLL;
3308	} else {
3309		if (si_code == SI_TIMER)
3310			layout = SIL_TIMER;
3311		else if (si_code == SI_SIGIO)
3312			layout = SIL_POLL;
3313		else if (si_code < 0)
3314			layout = SIL_RT;
3315	}
3316	return layout;
3317}
3318
3319static inline char __user *si_expansion(const siginfo_t __user *info)
3320{
3321	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3322}
3323
3324int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3325{
3326	char __user *expansion = si_expansion(to);
3327	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3328		return -EFAULT;
3329	if (clear_user(expansion, SI_EXPANSION_SIZE))
3330		return -EFAULT;
3331	return 0;
3332}
3333
3334static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3335				       const siginfo_t __user *from)
3336{
3337	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3338		char __user *expansion = si_expansion(from);
3339		char buf[SI_EXPANSION_SIZE];
3340		int i;
3341		/*
3342		 * An unknown si_code might need more than
3343		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3344		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3345		 * will return this data to userspace exactly.
3346		 */
3347		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3348			return -EFAULT;
3349		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3350			if (buf[i] != 0)
3351				return -E2BIG;
3352		}
3353	}
3354	return 0;
3355}
3356
3357static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3358				    const siginfo_t __user *from)
3359{
3360	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3361		return -EFAULT;
3362	to->si_signo = signo;
3363	return post_copy_siginfo_from_user(to, from);
3364}
3365
3366int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3367{
3368	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3369		return -EFAULT;
3370	return post_copy_siginfo_from_user(to, from);
3371}
3372
3373#ifdef CONFIG_COMPAT
3374/**
3375 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3376 * @to: compat siginfo destination
3377 * @from: kernel siginfo source
3378 *
3379 * Note: This function does not work properly for the SIGCHLD on x32, but
3380 * fortunately it doesn't have to.  The only valid callers for this function are
3381 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3382 * The latter does not care because SIGCHLD will never cause a coredump.
3383 */
3384void copy_siginfo_to_external32(struct compat_siginfo *to,
3385		const struct kernel_siginfo *from)
3386{
3387	memset(to, 0, sizeof(*to));
3388
3389	to->si_signo = from->si_signo;
3390	to->si_errno = from->si_errno;
3391	to->si_code  = from->si_code;
3392	switch(siginfo_layout(from->si_signo, from->si_code)) {
3393	case SIL_KILL:
3394		to->si_pid = from->si_pid;
3395		to->si_uid = from->si_uid;
3396		break;
3397	case SIL_TIMER:
3398		to->si_tid     = from->si_tid;
3399		to->si_overrun = from->si_overrun;
3400		to->si_int     = from->si_int;
3401		break;
3402	case SIL_POLL:
3403		to->si_band = from->si_band;
3404		to->si_fd   = from->si_fd;
3405		break;
3406	case SIL_FAULT:
3407		to->si_addr = ptr_to_compat(from->si_addr);
3408		break;
3409	case SIL_FAULT_TRAPNO:
3410		to->si_addr = ptr_to_compat(from->si_addr);
3411		to->si_trapno = from->si_trapno;
3412		break;
3413	case SIL_FAULT_MCEERR:
3414		to->si_addr = ptr_to_compat(from->si_addr);
3415		to->si_addr_lsb = from->si_addr_lsb;
3416		break;
3417	case SIL_FAULT_BNDERR:
3418		to->si_addr = ptr_to_compat(from->si_addr);
3419		to->si_lower = ptr_to_compat(from->si_lower);
3420		to->si_upper = ptr_to_compat(from->si_upper);
3421		break;
3422	case SIL_FAULT_PKUERR:
3423		to->si_addr = ptr_to_compat(from->si_addr);
3424		to->si_pkey = from->si_pkey;
3425		break;
3426	case SIL_FAULT_PERF_EVENT:
3427		to->si_addr = ptr_to_compat(from->si_addr);
3428		to->si_perf_data = from->si_perf_data;
3429		to->si_perf_type = from->si_perf_type;
3430		to->si_perf_flags = from->si_perf_flags;
3431		break;
3432	case SIL_CHLD:
3433		to->si_pid = from->si_pid;
3434		to->si_uid = from->si_uid;
3435		to->si_status = from->si_status;
3436		to->si_utime = from->si_utime;
3437		to->si_stime = from->si_stime;
3438		break;
3439	case SIL_RT:
3440		to->si_pid = from->si_pid;
3441		to->si_uid = from->si_uid;
3442		to->si_int = from->si_int;
3443		break;
3444	case SIL_SYS:
3445		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3446		to->si_syscall   = from->si_syscall;
3447		to->si_arch      = from->si_arch;
3448		break;
3449	}
 
3450}
3451
3452int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3453			   const struct kernel_siginfo *from)
3454{
3455	struct compat_siginfo new;
3456
3457	copy_siginfo_to_external32(&new, from);
3458	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3459		return -EFAULT;
3460	return 0;
3461}
3462
3463static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3464					 const struct compat_siginfo *from)
3465{
3466	clear_siginfo(to);
3467	to->si_signo = from->si_signo;
3468	to->si_errno = from->si_errno;
3469	to->si_code  = from->si_code;
3470	switch(siginfo_layout(from->si_signo, from->si_code)) {
3471	case SIL_KILL:
3472		to->si_pid = from->si_pid;
3473		to->si_uid = from->si_uid;
3474		break;
3475	case SIL_TIMER:
3476		to->si_tid     = from->si_tid;
3477		to->si_overrun = from->si_overrun;
3478		to->si_int     = from->si_int;
3479		break;
3480	case SIL_POLL:
3481		to->si_band = from->si_band;
3482		to->si_fd   = from->si_fd;
3483		break;
3484	case SIL_FAULT:
3485		to->si_addr = compat_ptr(from->si_addr);
3486		break;
3487	case SIL_FAULT_TRAPNO:
3488		to->si_addr = compat_ptr(from->si_addr);
3489		to->si_trapno = from->si_trapno;
3490		break;
3491	case SIL_FAULT_MCEERR:
3492		to->si_addr = compat_ptr(from->si_addr);
3493		to->si_addr_lsb = from->si_addr_lsb;
3494		break;
3495	case SIL_FAULT_BNDERR:
3496		to->si_addr = compat_ptr(from->si_addr);
3497		to->si_lower = compat_ptr(from->si_lower);
3498		to->si_upper = compat_ptr(from->si_upper);
3499		break;
3500	case SIL_FAULT_PKUERR:
3501		to->si_addr = compat_ptr(from->si_addr);
3502		to->si_pkey = from->si_pkey;
3503		break;
3504	case SIL_FAULT_PERF_EVENT:
3505		to->si_addr = compat_ptr(from->si_addr);
3506		to->si_perf_data = from->si_perf_data;
3507		to->si_perf_type = from->si_perf_type;
3508		to->si_perf_flags = from->si_perf_flags;
3509		break;
3510	case SIL_CHLD:
3511		to->si_pid    = from->si_pid;
3512		to->si_uid    = from->si_uid;
3513		to->si_status = from->si_status;
3514#ifdef CONFIG_X86_X32_ABI
3515		if (in_x32_syscall()) {
3516			to->si_utime = from->_sifields._sigchld_x32._utime;
3517			to->si_stime = from->_sifields._sigchld_x32._stime;
3518		} else
3519#endif
3520		{
3521			to->si_utime = from->si_utime;
3522			to->si_stime = from->si_stime;
3523		}
3524		break;
3525	case SIL_RT:
3526		to->si_pid = from->si_pid;
3527		to->si_uid = from->si_uid;
3528		to->si_int = from->si_int;
3529		break;
3530	case SIL_SYS:
3531		to->si_call_addr = compat_ptr(from->si_call_addr);
3532		to->si_syscall   = from->si_syscall;
3533		to->si_arch      = from->si_arch;
3534		break;
3535	}
3536	return 0;
3537}
3538
3539static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3540				      const struct compat_siginfo __user *ufrom)
3541{
3542	struct compat_siginfo from;
3543
3544	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3545		return -EFAULT;
3546
3547	from.si_signo = signo;
3548	return post_copy_siginfo_from_user32(to, &from);
3549}
3550
3551int copy_siginfo_from_user32(struct kernel_siginfo *to,
3552			     const struct compat_siginfo __user *ufrom)
3553{
3554	struct compat_siginfo from;
3555
3556	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3557		return -EFAULT;
3558
3559	return post_copy_siginfo_from_user32(to, &from);
3560}
3561#endif /* CONFIG_COMPAT */
3562
3563/**
3564 *  do_sigtimedwait - wait for queued signals specified in @which
3565 *  @which: queued signals to wait for
3566 *  @info: if non-null, the signal's siginfo is returned here
3567 *  @ts: upper bound on process time suspension
3568 */
3569static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3570		    const struct timespec64 *ts)
3571{
3572	ktime_t *to = NULL, timeout = KTIME_MAX;
3573	struct task_struct *tsk = current;
 
3574	sigset_t mask = *which;
3575	enum pid_type type;
3576	int sig, ret = 0;
3577
3578	if (ts) {
3579		if (!timespec64_valid(ts))
3580			return -EINVAL;
3581		timeout = timespec64_to_ktime(*ts);
3582		to = &timeout;
 
 
 
 
 
3583	}
3584
3585	/*
3586	 * Invert the set of allowed signals to get those we want to block.
3587	 */
3588	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3589	signotset(&mask);
3590
3591	spin_lock_irq(&tsk->sighand->siglock);
3592	sig = dequeue_signal(tsk, &mask, info, &type);
3593	if (!sig && timeout) {
3594		/*
3595		 * None ready, temporarily unblock those we're interested
3596		 * while we are sleeping in so that we'll be awakened when
3597		 * they arrive. Unblocking is always fine, we can avoid
3598		 * set_current_blocked().
3599		 */
3600		tsk->real_blocked = tsk->blocked;
3601		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3602		recalc_sigpending();
3603		spin_unlock_irq(&tsk->sighand->siglock);
3604
3605		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3606		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3607					       HRTIMER_MODE_REL);
3608		spin_lock_irq(&tsk->sighand->siglock);
3609		__set_task_blocked(tsk, &tsk->real_blocked);
3610		sigemptyset(&tsk->real_blocked);
3611		sig = dequeue_signal(tsk, &mask, info, &type);
3612	}
3613	spin_unlock_irq(&tsk->sighand->siglock);
3614
3615	if (sig)
3616		return sig;
3617	return ret ? -EINTR : -EAGAIN;
3618}
3619
3620/**
3621 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3622 *			in @uthese
3623 *  @uthese: queued signals to wait for
3624 *  @uinfo: if non-null, the signal's siginfo is returned here
3625 *  @uts: upper bound on process time suspension
3626 *  @sigsetsize: size of sigset_t type
3627 */
3628SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3629		siginfo_t __user *, uinfo,
3630		const struct __kernel_timespec __user *, uts,
3631		size_t, sigsetsize)
3632{
3633	sigset_t these;
3634	struct timespec64 ts;
3635	kernel_siginfo_t info;
3636	int ret;
3637
3638	/* XXX: Don't preclude handling different sized sigset_t's.  */
3639	if (sigsetsize != sizeof(sigset_t))
3640		return -EINVAL;
3641
3642	if (copy_from_user(&these, uthese, sizeof(these)))
3643		return -EFAULT;
3644
3645	if (uts) {
3646		if (get_timespec64(&ts, uts))
3647			return -EFAULT;
3648	}
3649
3650	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3651
3652	if (ret > 0 && uinfo) {
3653		if (copy_siginfo_to_user(uinfo, &info))
3654			ret = -EFAULT;
3655	}
3656
3657	return ret;
3658}
3659
3660#ifdef CONFIG_COMPAT_32BIT_TIME
3661SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3662		siginfo_t __user *, uinfo,
3663		const struct old_timespec32 __user *, uts,
3664		size_t, sigsetsize)
3665{
3666	sigset_t these;
3667	struct timespec64 ts;
3668	kernel_siginfo_t info;
3669	int ret;
3670
3671	if (sigsetsize != sizeof(sigset_t))
3672		return -EINVAL;
3673
3674	if (copy_from_user(&these, uthese, sizeof(these)))
3675		return -EFAULT;
3676
3677	if (uts) {
3678		if (get_old_timespec32(&ts, uts))
3679			return -EFAULT;
3680	}
3681
3682	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3683
3684	if (ret > 0 && uinfo) {
3685		if (copy_siginfo_to_user(uinfo, &info))
3686			ret = -EFAULT;
3687	}
3688
3689	return ret;
3690}
3691#endif
3692
3693#ifdef CONFIG_COMPAT
3694COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3695		struct compat_siginfo __user *, uinfo,
3696		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3697{
3698	sigset_t s;
3699	struct timespec64 t;
3700	kernel_siginfo_t info;
3701	long ret;
3702
3703	if (sigsetsize != sizeof(sigset_t))
3704		return -EINVAL;
3705
3706	if (get_compat_sigset(&s, uthese))
3707		return -EFAULT;
3708
3709	if (uts) {
3710		if (get_timespec64(&t, uts))
3711			return -EFAULT;
3712	}
3713
3714	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3715
3716	if (ret > 0 && uinfo) {
3717		if (copy_siginfo_to_user32(uinfo, &info))
3718			ret = -EFAULT;
3719	}
3720
3721	return ret;
3722}
3723
3724#ifdef CONFIG_COMPAT_32BIT_TIME
3725COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3726		struct compat_siginfo __user *, uinfo,
3727		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3728{
3729	sigset_t s;
3730	struct timespec64 t;
3731	kernel_siginfo_t info;
3732	long ret;
3733
3734	if (sigsetsize != sizeof(sigset_t))
3735		return -EINVAL;
3736
3737	if (get_compat_sigset(&s, uthese))
3738		return -EFAULT;
3739
3740	if (uts) {
3741		if (get_old_timespec32(&t, uts))
3742			return -EFAULT;
3743	}
3744
3745	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3746
3747	if (ret > 0 && uinfo) {
3748		if (copy_siginfo_to_user32(uinfo, &info))
3749			ret = -EFAULT;
3750	}
3751
3752	return ret;
3753}
3754#endif
3755#endif
3756
3757static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3758{
3759	clear_siginfo(info);
3760	info->si_signo = sig;
3761	info->si_errno = 0;
3762	info->si_code = SI_USER;
3763	info->si_pid = task_tgid_vnr(current);
3764	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3765}
3766
3767/**
3768 *  sys_kill - send a signal to a process
3769 *  @pid: the PID of the process
3770 *  @sig: signal to be sent
3771 */
3772SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3773{
3774	struct kernel_siginfo info;
3775
3776	prepare_kill_siginfo(sig, &info);
 
 
 
 
3777
3778	return kill_something_info(sig, &info, pid);
3779}
3780
3781/*
3782 * Verify that the signaler and signalee either are in the same pid namespace
3783 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3784 * namespace.
3785 */
3786static bool access_pidfd_pidns(struct pid *pid)
3787{
3788	struct pid_namespace *active = task_active_pid_ns(current);
3789	struct pid_namespace *p = ns_of_pid(pid);
3790
3791	for (;;) {
3792		if (!p)
3793			return false;
3794		if (p == active)
3795			break;
3796		p = p->parent;
3797	}
3798
3799	return true;
3800}
3801
3802static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3803		siginfo_t __user *info)
3804{
3805#ifdef CONFIG_COMPAT
3806	/*
3807	 * Avoid hooking up compat syscalls and instead handle necessary
3808	 * conversions here. Note, this is a stop-gap measure and should not be
3809	 * considered a generic solution.
3810	 */
3811	if (in_compat_syscall())
3812		return copy_siginfo_from_user32(
3813			kinfo, (struct compat_siginfo __user *)info);
3814#endif
3815	return copy_siginfo_from_user(kinfo, info);
3816}
3817
3818static struct pid *pidfd_to_pid(const struct file *file)
3819{
3820	struct pid *pid;
3821
3822	pid = pidfd_pid(file);
3823	if (!IS_ERR(pid))
3824		return pid;
3825
3826	return tgid_pidfd_to_pid(file);
3827}
3828
3829/**
3830 * sys_pidfd_send_signal - Signal a process through a pidfd
3831 * @pidfd:  file descriptor of the process
3832 * @sig:    signal to send
3833 * @info:   signal info
3834 * @flags:  future flags
3835 *
3836 * The syscall currently only signals via PIDTYPE_PID which covers
3837 * kill(<positive-pid>, <signal>. It does not signal threads or process
3838 * groups.
3839 * In order to extend the syscall to threads and process groups the @flags
3840 * argument should be used. In essence, the @flags argument will determine
3841 * what is signaled and not the file descriptor itself. Put in other words,
3842 * grouping is a property of the flags argument not a property of the file
3843 * descriptor.
3844 *
3845 * Return: 0 on success, negative errno on failure
3846 */
3847SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3848		siginfo_t __user *, info, unsigned int, flags)
3849{
3850	int ret;
3851	struct fd f;
3852	struct pid *pid;
3853	kernel_siginfo_t kinfo;
3854
3855	/* Enforce flags be set to 0 until we add an extension. */
3856	if (flags)
3857		return -EINVAL;
3858
3859	f = fdget(pidfd);
3860	if (!f.file)
3861		return -EBADF;
3862
3863	/* Is this a pidfd? */
3864	pid = pidfd_to_pid(f.file);
3865	if (IS_ERR(pid)) {
3866		ret = PTR_ERR(pid);
3867		goto err;
3868	}
3869
3870	ret = -EINVAL;
3871	if (!access_pidfd_pidns(pid))
3872		goto err;
3873
3874	if (info) {
3875		ret = copy_siginfo_from_user_any(&kinfo, info);
3876		if (unlikely(ret))
3877			goto err;
3878
3879		ret = -EINVAL;
3880		if (unlikely(sig != kinfo.si_signo))
3881			goto err;
3882
3883		/* Only allow sending arbitrary signals to yourself. */
3884		ret = -EPERM;
3885		if ((task_pid(current) != pid) &&
3886		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3887			goto err;
3888	} else {
3889		prepare_kill_siginfo(sig, &kinfo);
3890	}
3891
3892	ret = kill_pid_info(sig, &kinfo, pid);
3893
3894err:
3895	fdput(f);
3896	return ret;
3897}
3898
3899static int
3900do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3901{
3902	struct task_struct *p;
3903	int error = -ESRCH;
3904
3905	rcu_read_lock();
3906	p = find_task_by_vpid(pid);
3907	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3908		error = check_kill_permission(sig, info, p);
3909		/*
3910		 * The null signal is a permissions and process existence
3911		 * probe.  No signal is actually delivered.
3912		 */
3913		if (!error && sig) {
3914			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3915			/*
3916			 * If lock_task_sighand() failed we pretend the task
3917			 * dies after receiving the signal. The window is tiny,
3918			 * and the signal is private anyway.
3919			 */
3920			if (unlikely(error == -ESRCH))
3921				error = 0;
3922		}
3923	}
3924	rcu_read_unlock();
3925
3926	return error;
3927}
3928
3929static int do_tkill(pid_t tgid, pid_t pid, int sig)
3930{
3931	struct kernel_siginfo info;
3932
3933	clear_siginfo(&info);
3934	info.si_signo = sig;
3935	info.si_errno = 0;
3936	info.si_code = SI_TKILL;
3937	info.si_pid = task_tgid_vnr(current);
3938	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3939
3940	return do_send_specific(tgid, pid, sig, &info);
3941}
3942
3943/**
3944 *  sys_tgkill - send signal to one specific thread
3945 *  @tgid: the thread group ID of the thread
3946 *  @pid: the PID of the thread
3947 *  @sig: signal to be sent
3948 *
3949 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3950 *  exists but it's not belonging to the target process anymore. This
3951 *  method solves the problem of threads exiting and PIDs getting reused.
3952 */
3953SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3954{
3955	/* This is only valid for single tasks */
3956	if (pid <= 0 || tgid <= 0)
3957		return -EINVAL;
3958
3959	return do_tkill(tgid, pid, sig);
3960}
3961
3962/**
3963 *  sys_tkill - send signal to one specific task
3964 *  @pid: the PID of the task
3965 *  @sig: signal to be sent
3966 *
3967 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3968 */
3969SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3970{
3971	/* This is only valid for single tasks */
3972	if (pid <= 0)
3973		return -EINVAL;
3974
3975	return do_tkill(0, pid, sig);
3976}
3977
3978static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3979{
3980	/* Not even root can pretend to send signals from the kernel.
3981	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3982	 */
3983	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3984	    (task_pid_vnr(current) != pid))
3985		return -EPERM;
3986
3987	/* POSIX.1b doesn't mention process groups.  */
3988	return kill_proc_info(sig, info, pid);
3989}
3990
3991/**
3992 *  sys_rt_sigqueueinfo - send signal information to a signal
3993 *  @pid: the PID of the thread
3994 *  @sig: signal to be sent
3995 *  @uinfo: signal info to be sent
3996 */
3997SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3998		siginfo_t __user *, uinfo)
3999{
4000	kernel_siginfo_t info;
4001	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4002	if (unlikely(ret))
4003		return ret;
4004	return do_rt_sigqueueinfo(pid, sig, &info);
4005}
4006
4007#ifdef CONFIG_COMPAT
4008COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4009			compat_pid_t, pid,
4010			int, sig,
4011			struct compat_siginfo __user *, uinfo)
4012{
4013	kernel_siginfo_t info;
4014	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4015	if (unlikely(ret))
4016		return ret;
4017	return do_rt_sigqueueinfo(pid, sig, &info);
 
 
 
 
4018}
4019#endif
4020
4021static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4022{
4023	/* This is only valid for single tasks */
4024	if (pid <= 0 || tgid <= 0)
4025		return -EINVAL;
4026
4027	/* Not even root can pretend to send signals from the kernel.
4028	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4029	 */
4030	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4031	    (task_pid_vnr(current) != pid))
 
4032		return -EPERM;
 
 
4033
4034	return do_send_specific(tgid, pid, sig, info);
4035}
4036
4037SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4038		siginfo_t __user *, uinfo)
4039{
4040	kernel_siginfo_t info;
4041	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4042	if (unlikely(ret))
4043		return ret;
4044	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4045}
4046
4047#ifdef CONFIG_COMPAT
4048COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4049			compat_pid_t, tgid,
4050			compat_pid_t, pid,
4051			int, sig,
4052			struct compat_siginfo __user *, uinfo)
4053{
4054	kernel_siginfo_t info;
4055	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4056	if (unlikely(ret))
4057		return ret;
4058	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4059}
4060#endif
4061
4062/*
4063 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4064 */
4065void kernel_sigaction(int sig, __sighandler_t action)
4066{
4067	spin_lock_irq(&current->sighand->siglock);
4068	current->sighand->action[sig - 1].sa.sa_handler = action;
4069	if (action == SIG_IGN) {
4070		sigset_t mask;
4071
4072		sigemptyset(&mask);
4073		sigaddset(&mask, sig);
4074
4075		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4076		flush_sigqueue_mask(&mask, &current->pending);
4077		recalc_sigpending();
4078	}
4079	spin_unlock_irq(&current->sighand->siglock);
4080}
4081EXPORT_SYMBOL(kernel_sigaction);
4082
4083void __weak sigaction_compat_abi(struct k_sigaction *act,
4084		struct k_sigaction *oact)
4085{
4086}
4087
4088int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4089{
4090	struct task_struct *p = current, *t;
4091	struct k_sigaction *k;
4092	sigset_t mask;
4093
4094	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4095		return -EINVAL;
4096
4097	k = &p->sighand->action[sig-1];
4098
4099	spin_lock_irq(&p->sighand->siglock);
4100	if (k->sa.sa_flags & SA_IMMUTABLE) {
4101		spin_unlock_irq(&p->sighand->siglock);
4102		return -EINVAL;
4103	}
4104	if (oact)
4105		*oact = *k;
4106
4107	/*
4108	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4109	 * e.g. by having an architecture use the bit in their uapi.
4110	 */
4111	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4112
4113	/*
4114	 * Clear unknown flag bits in order to allow userspace to detect missing
4115	 * support for flag bits and to allow the kernel to use non-uapi bits
4116	 * internally.
4117	 */
4118	if (act)
4119		act->sa.sa_flags &= UAPI_SA_FLAGS;
4120	if (oact)
4121		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4122
4123	sigaction_compat_abi(act, oact);
4124
4125	if (act) {
4126		sigdelsetmask(&act->sa.sa_mask,
4127			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4128		*k = *act;
4129		/*
4130		 * POSIX 3.3.1.3:
4131		 *  "Setting a signal action to SIG_IGN for a signal that is
4132		 *   pending shall cause the pending signal to be discarded,
4133		 *   whether or not it is blocked."
4134		 *
4135		 *  "Setting a signal action to SIG_DFL for a signal that is
4136		 *   pending and whose default action is to ignore the signal
4137		 *   (for example, SIGCHLD), shall cause the pending signal to
4138		 *   be discarded, whether or not it is blocked"
4139		 */
4140		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4141			sigemptyset(&mask);
4142			sigaddset(&mask, sig);
4143			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4144			for_each_thread(p, t)
4145				flush_sigqueue_mask(&mask, &t->pending);
 
 
4146		}
4147	}
4148
4149	spin_unlock_irq(&p->sighand->siglock);
4150	return 0;
4151}
4152
4153#ifdef CONFIG_DYNAMIC_SIGFRAME
4154static inline void sigaltstack_lock(void)
4155	__acquires(&current->sighand->siglock)
4156{
4157	spin_lock_irq(&current->sighand->siglock);
4158}
4159
4160static inline void sigaltstack_unlock(void)
4161	__releases(&current->sighand->siglock)
4162{
4163	spin_unlock_irq(&current->sighand->siglock);
 
4164}
4165#else
4166static inline void sigaltstack_lock(void) { }
4167static inline void sigaltstack_unlock(void) { }
4168#endif
4169
4170static int
4171do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4172		size_t min_ss_size)
4173{
4174	struct task_struct *t = current;
4175	int ret = 0;
4176
4177	if (oss) {
4178		memset(oss, 0, sizeof(stack_t));
4179		oss->ss_sp = (void __user *) t->sas_ss_sp;
4180		oss->ss_size = t->sas_ss_size;
4181		oss->ss_flags = sas_ss_flags(sp) |
4182			(current->sas_ss_flags & SS_FLAG_BITS);
4183	}
4184
4185	if (ss) {
4186		void __user *ss_sp = ss->ss_sp;
4187		size_t ss_size = ss->ss_size;
4188		unsigned ss_flags = ss->ss_flags;
4189		int ss_mode;
4190
4191		if (unlikely(on_sig_stack(sp)))
4192			return -EPERM;
 
 
 
 
 
 
4193
4194		ss_mode = ss_flags & ~SS_FLAG_BITS;
4195		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4196				ss_mode != 0))
4197			return -EINVAL;
4198
 
4199		/*
4200		 * Return before taking any locks if no actual
4201		 * sigaltstack changes were requested.
 
 
 
4202		 */
4203		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4204		    t->sas_ss_size == ss_size &&
4205		    t->sas_ss_flags == ss_flags)
4206			return 0;
4207
4208		sigaltstack_lock();
4209		if (ss_mode == SS_DISABLE) {
4210			ss_size = 0;
4211			ss_sp = NULL;
4212		} else {
4213			if (unlikely(ss_size < min_ss_size))
4214				ret = -ENOMEM;
4215			if (!sigaltstack_size_valid(ss_size))
4216				ret = -ENOMEM;
4217		}
4218		if (!ret) {
4219			t->sas_ss_sp = (unsigned long) ss_sp;
4220			t->sas_ss_size = ss_size;
4221			t->sas_ss_flags = ss_flags;
4222		}
4223		sigaltstack_unlock();
4224	}
4225	return ret;
4226}
4227
4228SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4229{
4230	stack_t new, old;
4231	int err;
4232	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4233		return -EFAULT;
4234	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4235			      current_user_stack_pointer(),
4236			      MINSIGSTKSZ);
4237	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4238		err = -EFAULT;
4239	return err;
4240}
4241
4242int restore_altstack(const stack_t __user *uss)
4243{
4244	stack_t new;
4245	if (copy_from_user(&new, uss, sizeof(stack_t)))
4246		return -EFAULT;
4247	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4248			     MINSIGSTKSZ);
4249	/* squash all but EFAULT for now */
4250	return 0;
4251}
4252
4253int __save_altstack(stack_t __user *uss, unsigned long sp)
4254{
4255	struct task_struct *t = current;
4256	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4257		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4258		__put_user(t->sas_ss_size, &uss->ss_size);
4259	return err;
4260}
4261
4262#ifdef CONFIG_COMPAT
4263static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4264				 compat_stack_t __user *uoss_ptr)
4265{
4266	stack_t uss, uoss;
4267	int ret;
4268
4269	if (uss_ptr) {
4270		compat_stack_t uss32;
4271		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4272			return -EFAULT;
4273		uss.ss_sp = compat_ptr(uss32.ss_sp);
4274		uss.ss_flags = uss32.ss_flags;
4275		uss.ss_size = uss32.ss_size;
4276	}
4277	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4278			     compat_user_stack_pointer(),
4279			     COMPAT_MINSIGSTKSZ);
4280	if (ret >= 0 && uoss_ptr)  {
4281		compat_stack_t old;
4282		memset(&old, 0, sizeof(old));
4283		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4284		old.ss_flags = uoss.ss_flags;
4285		old.ss_size = uoss.ss_size;
4286		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4287			ret = -EFAULT;
4288	}
4289	return ret;
4290}
4291
4292COMPAT_SYSCALL_DEFINE2(sigaltstack,
4293			const compat_stack_t __user *, uss_ptr,
4294			compat_stack_t __user *, uoss_ptr)
4295{
4296	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4297}
4298
4299int compat_restore_altstack(const compat_stack_t __user *uss)
4300{
4301	int err = do_compat_sigaltstack(uss, NULL);
4302	/* squash all but -EFAULT for now */
4303	return err == -EFAULT ? err : 0;
4304}
4305
4306int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4307{
4308	int err;
4309	struct task_struct *t = current;
4310	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4311			 &uss->ss_sp) |
4312		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4313		__put_user(t->sas_ss_size, &uss->ss_size);
4314	return err;
4315}
4316#endif
4317
4318#ifdef __ARCH_WANT_SYS_SIGPENDING
4319
4320/**
4321 *  sys_sigpending - examine pending signals
4322 *  @uset: where mask of pending signal is returned
4323 */
4324SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4325{
4326	sigset_t set;
4327
4328	if (sizeof(old_sigset_t) > sizeof(*uset))
4329		return -EINVAL;
4330
4331	do_sigpending(&set);
4332
4333	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4334		return -EFAULT;
4335
4336	return 0;
4337}
4338
4339#ifdef CONFIG_COMPAT
4340COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4341{
4342	sigset_t set;
4343
4344	do_sigpending(&set);
4345
4346	return put_user(set.sig[0], set32);
4347}
4348#endif
4349
4350#endif
4351
4352#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4353/**
4354 *  sys_sigprocmask - examine and change blocked signals
4355 *  @how: whether to add, remove, or set signals
4356 *  @nset: signals to add or remove (if non-null)
4357 *  @oset: previous value of signal mask if non-null
4358 *
4359 * Some platforms have their own version with special arguments;
4360 * others support only sys_rt_sigprocmask.
4361 */
4362
4363SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4364		old_sigset_t __user *, oset)
4365{
4366	old_sigset_t old_set, new_set;
4367	sigset_t new_blocked;
4368
4369	old_set = current->blocked.sig[0];
4370
4371	if (nset) {
4372		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4373			return -EFAULT;
 
4374
4375		new_blocked = current->blocked;
4376
4377		switch (how) {
4378		case SIG_BLOCK:
4379			sigaddsetmask(&new_blocked, new_set);
4380			break;
4381		case SIG_UNBLOCK:
4382			sigdelsetmask(&new_blocked, new_set);
4383			break;
4384		case SIG_SETMASK:
4385			new_blocked.sig[0] = new_set;
4386			break;
4387		default:
4388			return -EINVAL;
4389		}
4390
4391		set_current_blocked(&new_blocked);
4392	}
4393
4394	if (oset) {
4395		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4396			return -EFAULT;
4397	}
4398
4399	return 0;
4400}
4401#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4402
4403#ifndef CONFIG_ODD_RT_SIGACTION
4404/**
4405 *  sys_rt_sigaction - alter an action taken by a process
4406 *  @sig: signal to be sent
4407 *  @act: new sigaction
4408 *  @oact: used to save the previous sigaction
4409 *  @sigsetsize: size of sigset_t type
4410 */
4411SYSCALL_DEFINE4(rt_sigaction, int, sig,
4412		const struct sigaction __user *, act,
4413		struct sigaction __user *, oact,
4414		size_t, sigsetsize)
4415{
4416	struct k_sigaction new_sa, old_sa;
4417	int ret;
4418
4419	/* XXX: Don't preclude handling different sized sigset_t's.  */
4420	if (sigsetsize != sizeof(sigset_t))
4421		return -EINVAL;
4422
4423	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4424		return -EFAULT;
4425
4426	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4427	if (ret)
4428		return ret;
4429
4430	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4431		return -EFAULT;
4432
4433	return 0;
4434}
4435#ifdef CONFIG_COMPAT
4436COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4437		const struct compat_sigaction __user *, act,
4438		struct compat_sigaction __user *, oact,
4439		compat_size_t, sigsetsize)
4440{
4441	struct k_sigaction new_ka, old_ka;
4442#ifdef __ARCH_HAS_SA_RESTORER
4443	compat_uptr_t restorer;
4444#endif
4445	int ret;
4446
4447	/* XXX: Don't preclude handling different sized sigset_t's.  */
4448	if (sigsetsize != sizeof(compat_sigset_t))
4449		return -EINVAL;
4450
4451	if (act) {
4452		compat_uptr_t handler;
4453		ret = get_user(handler, &act->sa_handler);
4454		new_ka.sa.sa_handler = compat_ptr(handler);
4455#ifdef __ARCH_HAS_SA_RESTORER
4456		ret |= get_user(restorer, &act->sa_restorer);
4457		new_ka.sa.sa_restorer = compat_ptr(restorer);
4458#endif
4459		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4460		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4461		if (ret)
4462			return -EFAULT;
4463	}
4464
4465	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4466	if (!ret && oact) {
4467		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4468			       &oact->sa_handler);
4469		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4470					 sizeof(oact->sa_mask));
4471		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4472#ifdef __ARCH_HAS_SA_RESTORER
4473		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4474				&oact->sa_restorer);
4475#endif
4476	}
4477	return ret;
4478}
4479#endif
4480#endif /* !CONFIG_ODD_RT_SIGACTION */
4481
4482#ifdef CONFIG_OLD_SIGACTION
4483SYSCALL_DEFINE3(sigaction, int, sig,
4484		const struct old_sigaction __user *, act,
4485	        struct old_sigaction __user *, oact)
4486{
4487	struct k_sigaction new_ka, old_ka;
4488	int ret;
4489
4490	if (act) {
4491		old_sigset_t mask;
4492		if (!access_ok(act, sizeof(*act)) ||
4493		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4494		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4495		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4496		    __get_user(mask, &act->sa_mask))
4497			return -EFAULT;
4498#ifdef __ARCH_HAS_KA_RESTORER
4499		new_ka.ka_restorer = NULL;
4500#endif
4501		siginitset(&new_ka.sa.sa_mask, mask);
4502	}
4503
4504	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4505
4506	if (!ret && oact) {
4507		if (!access_ok(oact, sizeof(*oact)) ||
4508		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4509		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4510		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4511		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4512			return -EFAULT;
4513	}
4514
4515	return ret;
4516}
4517#endif
4518#ifdef CONFIG_COMPAT_OLD_SIGACTION
4519COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4520		const struct compat_old_sigaction __user *, act,
4521	        struct compat_old_sigaction __user *, oact)
4522{
4523	struct k_sigaction new_ka, old_ka;
4524	int ret;
4525	compat_old_sigset_t mask;
4526	compat_uptr_t handler, restorer;
4527
4528	if (act) {
4529		if (!access_ok(act, sizeof(*act)) ||
4530		    __get_user(handler, &act->sa_handler) ||
4531		    __get_user(restorer, &act->sa_restorer) ||
4532		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4533		    __get_user(mask, &act->sa_mask))
4534			return -EFAULT;
4535
4536#ifdef __ARCH_HAS_KA_RESTORER
4537		new_ka.ka_restorer = NULL;
4538#endif
4539		new_ka.sa.sa_handler = compat_ptr(handler);
4540		new_ka.sa.sa_restorer = compat_ptr(restorer);
4541		siginitset(&new_ka.sa.sa_mask, mask);
4542	}
4543
4544	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4545
4546	if (!ret && oact) {
4547		if (!access_ok(oact, sizeof(*oact)) ||
4548		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4549			       &oact->sa_handler) ||
4550		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4551			       &oact->sa_restorer) ||
4552		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4553		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4554			return -EFAULT;
4555	}
 
4556	return ret;
4557}
4558#endif
4559
4560#ifdef CONFIG_SGETMASK_SYSCALL
4561
4562/*
4563 * For backwards compatibility.  Functionality superseded by sigprocmask.
4564 */
4565SYSCALL_DEFINE0(sgetmask)
4566{
4567	/* SMP safe */
4568	return current->blocked.sig[0];
4569}
4570
4571SYSCALL_DEFINE1(ssetmask, int, newmask)
4572{
4573	int old = current->blocked.sig[0];
4574	sigset_t newset;
4575
4576	siginitset(&newset, newmask);
4577	set_current_blocked(&newset);
4578
4579	return old;
4580}
4581#endif /* CONFIG_SGETMASK_SYSCALL */
4582
4583#ifdef __ARCH_WANT_SYS_SIGNAL
4584/*
4585 * For backwards compatibility.  Functionality superseded by sigaction.
4586 */
4587SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4588{
4589	struct k_sigaction new_sa, old_sa;
4590	int ret;
4591
4592	new_sa.sa.sa_handler = handler;
4593	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4594	sigemptyset(&new_sa.sa.sa_mask);
4595
4596	ret = do_sigaction(sig, &new_sa, &old_sa);
4597
4598	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4599}
4600#endif /* __ARCH_WANT_SYS_SIGNAL */
4601
4602#ifdef __ARCH_WANT_SYS_PAUSE
4603
4604SYSCALL_DEFINE0(pause)
4605{
4606	while (!signal_pending(current)) {
4607		__set_current_state(TASK_INTERRUPTIBLE);
4608		schedule();
4609	}
4610	return -ERESTARTNOHAND;
4611}
4612
4613#endif
4614
4615static int sigsuspend(sigset_t *set)
4616{
4617	current->saved_sigmask = current->blocked;
4618	set_current_blocked(set);
4619
4620	while (!signal_pending(current)) {
4621		__set_current_state(TASK_INTERRUPTIBLE);
4622		schedule();
4623	}
4624	set_restore_sigmask();
4625	return -ERESTARTNOHAND;
4626}
4627
4628/**
4629 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4630 *	@unewset value until a signal is received
4631 *  @unewset: new signal mask value
4632 *  @sigsetsize: size of sigset_t type
4633 */
4634SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4635{
4636	sigset_t newset;
4637
4638	/* XXX: Don't preclude handling different sized sigset_t's.  */
4639	if (sigsetsize != sizeof(sigset_t))
4640		return -EINVAL;
4641
4642	if (copy_from_user(&newset, unewset, sizeof(newset)))
4643		return -EFAULT;
4644	return sigsuspend(&newset);
4645}
4646 
4647#ifdef CONFIG_COMPAT
4648COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4649{
4650	sigset_t newset;
4651
4652	/* XXX: Don't preclude handling different sized sigset_t's.  */
4653	if (sigsetsize != sizeof(sigset_t))
4654		return -EINVAL;
4655
4656	if (get_compat_sigset(&newset, unewset))
4657		return -EFAULT;
4658	return sigsuspend(&newset);
4659}
4660#endif
4661
4662#ifdef CONFIG_OLD_SIGSUSPEND
4663SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4664{
4665	sigset_t blocked;
4666	siginitset(&blocked, mask);
4667	return sigsuspend(&blocked);
4668}
4669#endif
4670#ifdef CONFIG_OLD_SIGSUSPEND3
4671SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4672{
4673	sigset_t blocked;
4674	siginitset(&blocked, mask);
4675	return sigsuspend(&blocked);
4676}
4677#endif
4678
4679__weak const char *arch_vma_name(struct vm_area_struct *vma)
4680{
4681	return NULL;
4682}
4683
4684static inline void siginfo_buildtime_checks(void)
4685{
4686	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4687
4688	/* Verify the offsets in the two siginfos match */
4689#define CHECK_OFFSET(field) \
4690	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4691
4692	/* kill */
4693	CHECK_OFFSET(si_pid);
4694	CHECK_OFFSET(si_uid);
4695
4696	/* timer */
4697	CHECK_OFFSET(si_tid);
4698	CHECK_OFFSET(si_overrun);
4699	CHECK_OFFSET(si_value);
4700
4701	/* rt */
4702	CHECK_OFFSET(si_pid);
4703	CHECK_OFFSET(si_uid);
4704	CHECK_OFFSET(si_value);
4705
4706	/* sigchld */
4707	CHECK_OFFSET(si_pid);
4708	CHECK_OFFSET(si_uid);
4709	CHECK_OFFSET(si_status);
4710	CHECK_OFFSET(si_utime);
4711	CHECK_OFFSET(si_stime);
4712
4713	/* sigfault */
4714	CHECK_OFFSET(si_addr);
4715	CHECK_OFFSET(si_trapno);
4716	CHECK_OFFSET(si_addr_lsb);
4717	CHECK_OFFSET(si_lower);
4718	CHECK_OFFSET(si_upper);
4719	CHECK_OFFSET(si_pkey);
4720	CHECK_OFFSET(si_perf_data);
4721	CHECK_OFFSET(si_perf_type);
4722	CHECK_OFFSET(si_perf_flags);
4723
4724	/* sigpoll */
4725	CHECK_OFFSET(si_band);
4726	CHECK_OFFSET(si_fd);
4727
4728	/* sigsys */
4729	CHECK_OFFSET(si_call_addr);
4730	CHECK_OFFSET(si_syscall);
4731	CHECK_OFFSET(si_arch);
4732#undef CHECK_OFFSET
4733
4734	/* usb asyncio */
4735	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4736		     offsetof(struct siginfo, si_addr));
4737	if (sizeof(int) == sizeof(void __user *)) {
4738		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4739			     sizeof(void __user *));
4740	} else {
4741		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4742			      sizeof_field(struct siginfo, si_uid)) !=
4743			     sizeof(void __user *));
4744		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4745			     offsetof(struct siginfo, si_uid));
4746	}
4747#ifdef CONFIG_COMPAT
4748	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4749		     offsetof(struct compat_siginfo, si_addr));
4750	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4751		     sizeof(compat_uptr_t));
4752	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4753		     sizeof_field(struct siginfo, si_pid));
4754#endif
4755}
4756
4757void __init signals_init(void)
4758{
4759	siginfo_buildtime_checks();
4760
4761	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4762}
4763
4764#ifdef CONFIG_KGDB_KDB
4765#include <linux/kdb.h>
4766/*
4767 * kdb_send_sig - Allows kdb to send signals without exposing
4768 * signal internals.  This function checks if the required locks are
4769 * available before calling the main signal code, to avoid kdb
4770 * deadlocks.
4771 */
4772void kdb_send_sig(struct task_struct *t, int sig)
 
4773{
4774	static struct task_struct *kdb_prev_t;
4775	int new_t, ret;
4776	if (!spin_trylock(&t->sighand->siglock)) {
4777		kdb_printf("Can't do kill command now.\n"
4778			   "The sigmask lock is held somewhere else in "
4779			   "kernel, try again later\n");
4780		return;
4781	}
 
4782	new_t = kdb_prev_t != t;
4783	kdb_prev_t = t;
4784	if (!task_is_running(t) && new_t) {
4785		spin_unlock(&t->sighand->siglock);
4786		kdb_printf("Process is not RUNNING, sending a signal from "
4787			   "kdb risks deadlock\n"
4788			   "on the run queue locks. "
4789			   "The signal has _not_ been sent.\n"
4790			   "Reissue the kill command if you want to risk "
4791			   "the deadlock.\n");
4792		return;
4793	}
4794	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4795	spin_unlock(&t->sighand->siglock);
4796	if (ret)
4797		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4798			   sig, t->pid);
4799	else
4800		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4801}
4802#endif	/* CONFIG_KGDB_KDB */
v3.1
 
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *		Changes to use preallocated sigqueue structures
  10 *		to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/module.h>
  15#include <linux/init.h>
  16#include <linux/sched.h>
 
 
 
 
 
 
  17#include <linux/fs.h>
 
  18#include <linux/tty.h>
  19#include <linux/binfmts.h>
 
  20#include <linux/security.h>
  21#include <linux/syscalls.h>
  22#include <linux/ptrace.h>
  23#include <linux/signal.h>
  24#include <linux/signalfd.h>
  25#include <linux/ratelimit.h>
  26#include <linux/tracehook.h>
  27#include <linux/capability.h>
  28#include <linux/freezer.h>
  29#include <linux/pid_namespace.h>
  30#include <linux/nsproxy.h>
 
 
 
 
 
 
 
 
 
  31#define CREATE_TRACE_POINTS
  32#include <trace/events/signal.h>
  33
  34#include <asm/param.h>
  35#include <asm/uaccess.h>
  36#include <asm/unistd.h>
  37#include <asm/siginfo.h>
  38#include "audit.h"	/* audit_signal_info() */
 
  39
  40/*
  41 * SLAB caches for signal bits.
  42 */
  43
  44static struct kmem_cache *sigqueue_cachep;
  45
  46int print_fatal_signals __read_mostly;
  47
  48static void __user *sig_handler(struct task_struct *t, int sig)
  49{
  50	return t->sighand->action[sig - 1].sa.sa_handler;
  51}
  52
  53static int sig_handler_ignored(void __user *handler, int sig)
  54{
  55	/* Is it explicitly or implicitly ignored? */
  56	return handler == SIG_IGN ||
  57		(handler == SIG_DFL && sig_kernel_ignore(sig));
  58}
  59
  60static int sig_task_ignored(struct task_struct *t, int sig,
  61		int from_ancestor_ns)
  62{
  63	void __user *handler;
  64
  65	handler = sig_handler(t, sig);
  66
 
 
 
 
  67	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  68			handler == SIG_DFL && !from_ancestor_ns)
  69		return 1;
 
 
 
 
 
  70
  71	return sig_handler_ignored(handler, sig);
  72}
  73
  74static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns)
  75{
  76	/*
  77	 * Blocked signals are never ignored, since the
  78	 * signal handler may change by the time it is
  79	 * unblocked.
  80	 */
  81	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  82		return 0;
  83
  84	if (!sig_task_ignored(t, sig, from_ancestor_ns))
  85		return 0;
  86
  87	/*
  88	 * Tracers may want to know about even ignored signals.
 
 
  89	 */
  90	return !t->ptrace;
 
 
 
  91}
  92
  93/*
  94 * Re-calculate pending state from the set of locally pending
  95 * signals, globally pending signals, and blocked signals.
  96 */
  97static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
  98{
  99	unsigned long ready;
 100	long i;
 101
 102	switch (_NSIG_WORDS) {
 103	default:
 104		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 105			ready |= signal->sig[i] &~ blocked->sig[i];
 106		break;
 107
 108	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 109		ready |= signal->sig[2] &~ blocked->sig[2];
 110		ready |= signal->sig[1] &~ blocked->sig[1];
 111		ready |= signal->sig[0] &~ blocked->sig[0];
 112		break;
 113
 114	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 115		ready |= signal->sig[0] &~ blocked->sig[0];
 116		break;
 117
 118	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 119	}
 120	return ready !=	0;
 121}
 122
 123#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 124
 125static int recalc_sigpending_tsk(struct task_struct *t)
 126{
 127	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 128	    PENDING(&t->pending, &t->blocked) ||
 129	    PENDING(&t->signal->shared_pending, &t->blocked)) {
 
 130		set_tsk_thread_flag(t, TIF_SIGPENDING);
 131		return 1;
 132	}
 
 133	/*
 134	 * We must never clear the flag in another thread, or in current
 135	 * when it's possible the current syscall is returning -ERESTART*.
 136	 * So we don't clear it here, and only callers who know they should do.
 137	 */
 138	return 0;
 139}
 140
 141/*
 142 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 143 * This is superfluous when called on current, the wakeup is a harmless no-op.
 144 */
 145void recalc_sigpending_and_wake(struct task_struct *t)
 146{
 147	if (recalc_sigpending_tsk(t))
 148		signal_wake_up(t, 0);
 149}
 150
 151void recalc_sigpending(void)
 152{
 153	if (!recalc_sigpending_tsk(current) && !freezing(current))
 154		clear_thread_flag(TIF_SIGPENDING);
 155
 156}
 
 
 
 
 
 
 
 
 
 
 
 
 157
 158/* Given the mask, find the first available signal that should be serviced. */
 159
 160#define SYNCHRONOUS_MASK \
 161	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 162	 sigmask(SIGTRAP) | sigmask(SIGFPE))
 163
 164int next_signal(struct sigpending *pending, sigset_t *mask)
 165{
 166	unsigned long i, *s, *m, x;
 167	int sig = 0;
 168
 169	s = pending->signal.sig;
 170	m = mask->sig;
 171
 172	/*
 173	 * Handle the first word specially: it contains the
 174	 * synchronous signals that need to be dequeued first.
 175	 */
 176	x = *s &~ *m;
 177	if (x) {
 178		if (x & SYNCHRONOUS_MASK)
 179			x &= SYNCHRONOUS_MASK;
 180		sig = ffz(~x) + 1;
 181		return sig;
 182	}
 183
 184	switch (_NSIG_WORDS) {
 185	default:
 186		for (i = 1; i < _NSIG_WORDS; ++i) {
 187			x = *++s &~ *++m;
 188			if (!x)
 189				continue;
 190			sig = ffz(~x) + i*_NSIG_BPW + 1;
 191			break;
 192		}
 193		break;
 194
 195	case 2:
 196		x = s[1] &~ m[1];
 197		if (!x)
 198			break;
 199		sig = ffz(~x) + _NSIG_BPW + 1;
 200		break;
 201
 202	case 1:
 203		/* Nothing to do */
 204		break;
 205	}
 206
 207	return sig;
 208}
 209
 210static inline void print_dropped_signal(int sig)
 211{
 212	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 213
 214	if (!print_fatal_signals)
 215		return;
 216
 217	if (!__ratelimit(&ratelimit_state))
 218		return;
 219
 220	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 221				current->comm, current->pid, sig);
 222}
 223
 224/**
 225 * task_set_jobctl_pending - set jobctl pending bits
 226 * @task: target task
 227 * @mask: pending bits to set
 228 *
 229 * Clear @mask from @task->jobctl.  @mask must be subset of
 230 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 231 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 232 * cleared.  If @task is already being killed or exiting, this function
 233 * becomes noop.
 234 *
 235 * CONTEXT:
 236 * Must be called with @task->sighand->siglock held.
 237 *
 238 * RETURNS:
 239 * %true if @mask is set, %false if made noop because @task was dying.
 240 */
 241bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
 242{
 243	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 244			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 245	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 246
 247	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 248		return false;
 249
 250	if (mask & JOBCTL_STOP_SIGMASK)
 251		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 252
 253	task->jobctl |= mask;
 254	return true;
 255}
 256
 257/**
 258 * task_clear_jobctl_trapping - clear jobctl trapping bit
 259 * @task: target task
 260 *
 261 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 262 * Clear it and wake up the ptracer.  Note that we don't need any further
 263 * locking.  @task->siglock guarantees that @task->parent points to the
 264 * ptracer.
 265 *
 266 * CONTEXT:
 267 * Must be called with @task->sighand->siglock held.
 268 */
 269void task_clear_jobctl_trapping(struct task_struct *task)
 270{
 271	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 272		task->jobctl &= ~JOBCTL_TRAPPING;
 
 273		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 274	}
 275}
 276
 277/**
 278 * task_clear_jobctl_pending - clear jobctl pending bits
 279 * @task: target task
 280 * @mask: pending bits to clear
 281 *
 282 * Clear @mask from @task->jobctl.  @mask must be subset of
 283 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 284 * STOP bits are cleared together.
 285 *
 286 * If clearing of @mask leaves no stop or trap pending, this function calls
 287 * task_clear_jobctl_trapping().
 288 *
 289 * CONTEXT:
 290 * Must be called with @task->sighand->siglock held.
 291 */
 292void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
 293{
 294	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 295
 296	if (mask & JOBCTL_STOP_PENDING)
 297		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 298
 299	task->jobctl &= ~mask;
 300
 301	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 302		task_clear_jobctl_trapping(task);
 303}
 304
 305/**
 306 * task_participate_group_stop - participate in a group stop
 307 * @task: task participating in a group stop
 308 *
 309 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 310 * Group stop states are cleared and the group stop count is consumed if
 311 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 312 * stop, the appropriate %SIGNAL_* flags are set.
 313 *
 314 * CONTEXT:
 315 * Must be called with @task->sighand->siglock held.
 316 *
 317 * RETURNS:
 318 * %true if group stop completion should be notified to the parent, %false
 319 * otherwise.
 320 */
 321static bool task_participate_group_stop(struct task_struct *task)
 322{
 323	struct signal_struct *sig = task->signal;
 324	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 325
 326	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 327
 328	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 329
 330	if (!consume)
 331		return false;
 332
 333	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 334		sig->group_stop_count--;
 335
 336	/*
 337	 * Tell the caller to notify completion iff we are entering into a
 338	 * fresh group stop.  Read comment in do_signal_stop() for details.
 339	 */
 340	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 341		sig->flags = SIGNAL_STOP_STOPPED;
 342		return true;
 343	}
 344	return false;
 345}
 346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 347/*
 348 * allocate a new signal queue record
 349 * - this may be called without locks if and only if t == current, otherwise an
 350 *   appropriate lock must be held to stop the target task from exiting
 351 */
 352static struct sigqueue *
 353__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 
 354{
 355	struct sigqueue *q = NULL;
 356	struct user_struct *user;
 
 357
 358	/*
 359	 * Protect access to @t credentials. This can go away when all
 360	 * callers hold rcu read lock.
 
 
 
 
 361	 */
 362	rcu_read_lock();
 363	user = get_uid(__task_cred(t)->user);
 364	atomic_inc(&user->sigpending);
 365	rcu_read_unlock();
 
 
 366
 367	if (override_rlimit ||
 368	    atomic_read(&user->sigpending) <=
 369			task_rlimit(t, RLIMIT_SIGPENDING)) {
 370		q = kmem_cache_alloc(sigqueue_cachep, flags);
 371	} else {
 372		print_dropped_signal(sig);
 373	}
 374
 375	if (unlikely(q == NULL)) {
 376		atomic_dec(&user->sigpending);
 377		free_uid(user);
 378	} else {
 379		INIT_LIST_HEAD(&q->list);
 380		q->flags = 0;
 381		q->user = user;
 382	}
 383
 384	return q;
 385}
 386
 387static void __sigqueue_free(struct sigqueue *q)
 388{
 389	if (q->flags & SIGQUEUE_PREALLOC)
 390		return;
 391	atomic_dec(&q->user->sigpending);
 392	free_uid(q->user);
 
 
 393	kmem_cache_free(sigqueue_cachep, q);
 394}
 395
 396void flush_sigqueue(struct sigpending *queue)
 397{
 398	struct sigqueue *q;
 399
 400	sigemptyset(&queue->signal);
 401	while (!list_empty(&queue->list)) {
 402		q = list_entry(queue->list.next, struct sigqueue , list);
 403		list_del_init(&q->list);
 404		__sigqueue_free(q);
 405	}
 406}
 407
 408/*
 409 * Flush all pending signals for a task.
 410 */
 411void __flush_signals(struct task_struct *t)
 412{
 413	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 414	flush_sigqueue(&t->pending);
 415	flush_sigqueue(&t->signal->shared_pending);
 416}
 417
 418void flush_signals(struct task_struct *t)
 419{
 420	unsigned long flags;
 421
 422	spin_lock_irqsave(&t->sighand->siglock, flags);
 423	__flush_signals(t);
 
 
 424	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 425}
 
 426
 
 427static void __flush_itimer_signals(struct sigpending *pending)
 428{
 429	sigset_t signal, retain;
 430	struct sigqueue *q, *n;
 431
 432	signal = pending->signal;
 433	sigemptyset(&retain);
 434
 435	list_for_each_entry_safe(q, n, &pending->list, list) {
 436		int sig = q->info.si_signo;
 437
 438		if (likely(q->info.si_code != SI_TIMER)) {
 439			sigaddset(&retain, sig);
 440		} else {
 441			sigdelset(&signal, sig);
 442			list_del_init(&q->list);
 443			__sigqueue_free(q);
 444		}
 445	}
 446
 447	sigorsets(&pending->signal, &signal, &retain);
 448}
 449
 450void flush_itimer_signals(void)
 451{
 452	struct task_struct *tsk = current;
 453	unsigned long flags;
 454
 455	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 456	__flush_itimer_signals(&tsk->pending);
 457	__flush_itimer_signals(&tsk->signal->shared_pending);
 458	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 459}
 
 460
 461void ignore_signals(struct task_struct *t)
 462{
 463	int i;
 464
 465	for (i = 0; i < _NSIG; ++i)
 466		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 467
 468	flush_signals(t);
 469}
 470
 471/*
 472 * Flush all handlers for a task.
 473 */
 474
 475void
 476flush_signal_handlers(struct task_struct *t, int force_default)
 477{
 478	int i;
 479	struct k_sigaction *ka = &t->sighand->action[0];
 480	for (i = _NSIG ; i != 0 ; i--) {
 481		if (force_default || ka->sa.sa_handler != SIG_IGN)
 482			ka->sa.sa_handler = SIG_DFL;
 483		ka->sa.sa_flags = 0;
 
 
 
 484		sigemptyset(&ka->sa.sa_mask);
 485		ka++;
 486	}
 487}
 488
 489int unhandled_signal(struct task_struct *tsk, int sig)
 490{
 491	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 492	if (is_global_init(tsk))
 493		return 1;
 
 494	if (handler != SIG_IGN && handler != SIG_DFL)
 495		return 0;
 
 496	/* if ptraced, let the tracer determine */
 497	return !tsk->ptrace;
 498}
 499
 500/*
 501 * Notify the system that a driver wants to block all signals for this
 502 * process, and wants to be notified if any signals at all were to be
 503 * sent/acted upon.  If the notifier routine returns non-zero, then the
 504 * signal will be acted upon after all.  If the notifier routine returns 0,
 505 * then then signal will be blocked.  Only one block per process is
 506 * allowed.  priv is a pointer to private data that the notifier routine
 507 * can use to determine if the signal should be blocked or not.
 508 */
 509void
 510block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
 511{
 512	unsigned long flags;
 513
 514	spin_lock_irqsave(&current->sighand->siglock, flags);
 515	current->notifier_mask = mask;
 516	current->notifier_data = priv;
 517	current->notifier = notifier;
 518	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 519}
 520
 521/* Notify the system that blocking has ended. */
 522
 523void
 524unblock_all_signals(void)
 525{
 526	unsigned long flags;
 527
 528	spin_lock_irqsave(&current->sighand->siglock, flags);
 529	current->notifier = NULL;
 530	current->notifier_data = NULL;
 531	recalc_sigpending();
 532	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 533}
 534
 535static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
 536{
 537	struct sigqueue *q, *first = NULL;
 538
 539	/*
 540	 * Collect the siginfo appropriate to this signal.  Check if
 541	 * there is another siginfo for the same signal.
 542	*/
 543	list_for_each_entry(q, &list->list, list) {
 544		if (q->info.si_signo == sig) {
 545			if (first)
 546				goto still_pending;
 547			first = q;
 548		}
 549	}
 550
 551	sigdelset(&list->signal, sig);
 552
 553	if (first) {
 554still_pending:
 555		list_del_init(&first->list);
 556		copy_siginfo(info, &first->info);
 
 
 
 
 
 
 557		__sigqueue_free(first);
 558	} else {
 559		/*
 560		 * Ok, it wasn't in the queue.  This must be
 561		 * a fast-pathed signal or we must have been
 562		 * out of queue space.  So zero out the info.
 563		 */
 
 564		info->si_signo = sig;
 565		info->si_errno = 0;
 566		info->si_code = SI_USER;
 567		info->si_pid = 0;
 568		info->si_uid = 0;
 569	}
 570}
 571
 572static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 573			siginfo_t *info)
 574{
 575	int sig = next_signal(pending, mask);
 576
 577	if (sig) {
 578		if (current->notifier) {
 579			if (sigismember(current->notifier_mask, sig)) {
 580				if (!(current->notifier)(current->notifier_data)) {
 581					clear_thread_flag(TIF_SIGPENDING);
 582					return 0;
 583				}
 584			}
 585		}
 586
 587		collect_signal(sig, pending, info);
 588	}
 589
 590	return sig;
 591}
 592
 593/*
 594 * Dequeue a signal and return the element to the caller, which is
 595 * expected to free it.
 596 *
 597 * All callers have to hold the siglock.
 598 */
 599int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 
 600{
 
 601	int signr;
 602
 603	/* We only dequeue private signals from ourselves, we don't let
 604	 * signalfd steal them
 605	 */
 606	signr = __dequeue_signal(&tsk->pending, mask, info);
 
 607	if (!signr) {
 
 608		signr = __dequeue_signal(&tsk->signal->shared_pending,
 609					 mask, info);
 
 610		/*
 611		 * itimer signal ?
 612		 *
 613		 * itimers are process shared and we restart periodic
 614		 * itimers in the signal delivery path to prevent DoS
 615		 * attacks in the high resolution timer case. This is
 616		 * compliant with the old way of self-restarting
 617		 * itimers, as the SIGALRM is a legacy signal and only
 618		 * queued once. Changing the restart behaviour to
 619		 * restart the timer in the signal dequeue path is
 620		 * reducing the timer noise on heavy loaded !highres
 621		 * systems too.
 622		 */
 623		if (unlikely(signr == SIGALRM)) {
 624			struct hrtimer *tmr = &tsk->signal->real_timer;
 625
 626			if (!hrtimer_is_queued(tmr) &&
 627			    tsk->signal->it_real_incr.tv64 != 0) {
 628				hrtimer_forward(tmr, tmr->base->get_time(),
 629						tsk->signal->it_real_incr);
 630				hrtimer_restart(tmr);
 631			}
 632		}
 
 633	}
 634
 635	recalc_sigpending();
 636	if (!signr)
 637		return 0;
 638
 639	if (unlikely(sig_kernel_stop(signr))) {
 640		/*
 641		 * Set a marker that we have dequeued a stop signal.  Our
 642		 * caller might release the siglock and then the pending
 643		 * stop signal it is about to process is no longer in the
 644		 * pending bitmasks, but must still be cleared by a SIGCONT
 645		 * (and overruled by a SIGKILL).  So those cases clear this
 646		 * shared flag after we've set it.  Note that this flag may
 647		 * remain set after the signal we return is ignored or
 648		 * handled.  That doesn't matter because its only purpose
 649		 * is to alert stop-signal processing code when another
 650		 * processor has come along and cleared the flag.
 651		 */
 652		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 653	}
 654	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
 
 655		/*
 656		 * Release the siglock to ensure proper locking order
 657		 * of timer locks outside of siglocks.  Note, we leave
 658		 * irqs disabled here, since the posix-timers code is
 659		 * about to disable them again anyway.
 660		 */
 661		spin_unlock(&tsk->sighand->siglock);
 662		do_schedule_next_timer(info);
 663		spin_lock(&tsk->sighand->siglock);
 
 
 
 664	}
 
 665	return signr;
 666}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 667
 668/*
 669 * Tell a process that it has a new active signal..
 670 *
 671 * NOTE! we rely on the previous spin_lock to
 672 * lock interrupts for us! We can only be called with
 673 * "siglock" held, and the local interrupt must
 674 * have been disabled when that got acquired!
 675 *
 676 * No need to set need_resched since signal event passing
 677 * goes through ->blocked
 678 */
 679void signal_wake_up(struct task_struct *t, int resume)
 680{
 681	unsigned int mask;
 682
 683	set_tsk_thread_flag(t, TIF_SIGPENDING);
 684
 685	/*
 686	 * For SIGKILL, we want to wake it up in the stopped/traced/killable
 687	 * case. We don't check t->state here because there is a race with it
 688	 * executing another processor and just now entering stopped state.
 689	 * By using wake_up_state, we ensure the process will wake up and
 690	 * handle its death signal.
 691	 */
 692	mask = TASK_INTERRUPTIBLE;
 693	if (resume)
 694		mask |= TASK_WAKEKILL;
 695	if (!wake_up_state(t, mask))
 696		kick_process(t);
 697}
 698
 699/*
 700 * Remove signals in mask from the pending set and queue.
 701 * Returns 1 if any signals were found.
 702 *
 703 * All callers must be holding the siglock.
 704 *
 705 * This version takes a sigset mask and looks at all signals,
 706 * not just those in the first mask word.
 707 */
 708static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
 709{
 710	struct sigqueue *q, *n;
 711	sigset_t m;
 712
 713	sigandsets(&m, mask, &s->signal);
 714	if (sigisemptyset(&m))
 715		return 0;
 716
 717	sigandnsets(&s->signal, &s->signal, mask);
 718	list_for_each_entry_safe(q, n, &s->list, list) {
 719		if (sigismember(mask, q->info.si_signo)) {
 720			list_del_init(&q->list);
 721			__sigqueue_free(q);
 722		}
 723	}
 724	return 1;
 725}
 726/*
 727 * Remove signals in mask from the pending set and queue.
 728 * Returns 1 if any signals were found.
 729 *
 730 * All callers must be holding the siglock.
 731 */
 732static int rm_from_queue(unsigned long mask, struct sigpending *s)
 733{
 734	struct sigqueue *q, *n;
 735
 736	if (!sigtestsetmask(&s->signal, mask))
 737		return 0;
 738
 739	sigdelsetmask(&s->signal, mask);
 740	list_for_each_entry_safe(q, n, &s->list, list) {
 741		if (q->info.si_signo < SIGRTMIN &&
 742		    (mask & sigmask(q->info.si_signo))) {
 743			list_del_init(&q->list);
 744			__sigqueue_free(q);
 745		}
 746	}
 747	return 1;
 748}
 749
 750static inline int is_si_special(const struct siginfo *info)
 751{
 752	return info <= SEND_SIG_FORCED;
 753}
 754
 755static inline bool si_fromuser(const struct siginfo *info)
 756{
 757	return info == SEND_SIG_NOINFO ||
 758		(!is_si_special(info) && SI_FROMUSER(info));
 759}
 760
 761/*
 762 * called with RCU read lock from check_kill_permission()
 763 */
 764static int kill_ok_by_cred(struct task_struct *t)
 765{
 766	const struct cred *cred = current_cred();
 767	const struct cred *tcred = __task_cred(t);
 768
 769	if (cred->user->user_ns == tcred->user->user_ns &&
 770	    (cred->euid == tcred->suid ||
 771	     cred->euid == tcred->uid ||
 772	     cred->uid  == tcred->suid ||
 773	     cred->uid  == tcred->uid))
 774		return 1;
 775
 776	if (ns_capable(tcred->user->user_ns, CAP_KILL))
 777		return 1;
 778
 779	return 0;
 780}
 781
 782/*
 783 * Bad permissions for sending the signal
 784 * - the caller must hold the RCU read lock
 785 */
 786static int check_kill_permission(int sig, struct siginfo *info,
 787				 struct task_struct *t)
 788{
 789	struct pid *sid;
 790	int error;
 791
 792	if (!valid_signal(sig))
 793		return -EINVAL;
 794
 795	if (!si_fromuser(info))
 796		return 0;
 797
 798	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 799	if (error)
 800		return error;
 801
 802	if (!same_thread_group(current, t) &&
 803	    !kill_ok_by_cred(t)) {
 804		switch (sig) {
 805		case SIGCONT:
 806			sid = task_session(t);
 807			/*
 808			 * We don't return the error if sid == NULL. The
 809			 * task was unhashed, the caller must notice this.
 810			 */
 811			if (!sid || sid == task_session(current))
 812				break;
 
 813		default:
 814			return -EPERM;
 815		}
 816	}
 817
 818	return security_task_kill(t, info, sig, 0);
 819}
 820
 821/**
 822 * ptrace_trap_notify - schedule trap to notify ptracer
 823 * @t: tracee wanting to notify tracer
 824 *
 825 * This function schedules sticky ptrace trap which is cleared on the next
 826 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 827 * ptracer.
 828 *
 829 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 830 * ptracer is listening for events, tracee is woken up so that it can
 831 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 832 * eventually taken without returning to userland after the existing traps
 833 * are finished by PTRACE_CONT.
 834 *
 835 * CONTEXT:
 836 * Must be called with @task->sighand->siglock held.
 837 */
 838static void ptrace_trap_notify(struct task_struct *t)
 839{
 840	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 841	assert_spin_locked(&t->sighand->siglock);
 842
 843	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 844	signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 845}
 846
 847/*
 848 * Handle magic process-wide effects of stop/continue signals. Unlike
 849 * the signal actions, these happen immediately at signal-generation
 850 * time regardless of blocking, ignoring, or handling.  This does the
 851 * actual continuing for SIGCONT, but not the actual stopping for stop
 852 * signals. The process stop is done as a signal action for SIG_DFL.
 853 *
 854 * Returns true if the signal should be actually delivered, otherwise
 855 * it should be dropped.
 856 */
 857static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns)
 858{
 859	struct signal_struct *signal = p->signal;
 860	struct task_struct *t;
 
 861
 862	if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
 
 
 863		/*
 864		 * The process is in the middle of dying, nothing to do.
 865		 */
 
 866	} else if (sig_kernel_stop(sig)) {
 867		/*
 868		 * This is a stop signal.  Remove SIGCONT from all queues.
 869		 */
 870		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
 871		t = p;
 872		do {
 873			rm_from_queue(sigmask(SIGCONT), &t->pending);
 874		} while_each_thread(p, t);
 875	} else if (sig == SIGCONT) {
 876		unsigned int why;
 877		/*
 878		 * Remove all stop signals from all queues, wake all threads.
 879		 */
 880		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
 881		t = p;
 882		do {
 
 883			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 884			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
 885			if (likely(!(t->ptrace & PT_SEIZED)))
 886				wake_up_state(t, __TASK_STOPPED);
 887			else
 888				ptrace_trap_notify(t);
 889		} while_each_thread(p, t);
 890
 891		/*
 892		 * Notify the parent with CLD_CONTINUED if we were stopped.
 893		 *
 894		 * If we were in the middle of a group stop, we pretend it
 895		 * was already finished, and then continued. Since SIGCHLD
 896		 * doesn't queue we report only CLD_STOPPED, as if the next
 897		 * CLD_CONTINUED was dropped.
 898		 */
 899		why = 0;
 900		if (signal->flags & SIGNAL_STOP_STOPPED)
 901			why |= SIGNAL_CLD_CONTINUED;
 902		else if (signal->group_stop_count)
 903			why |= SIGNAL_CLD_STOPPED;
 904
 905		if (why) {
 906			/*
 907			 * The first thread which returns from do_signal_stop()
 908			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 909			 * notify its parent. See get_signal_to_deliver().
 910			 */
 911			signal->flags = why | SIGNAL_STOP_CONTINUED;
 912			signal->group_stop_count = 0;
 913			signal->group_exit_code = 0;
 914		}
 915	}
 916
 917	return !sig_ignored(p, sig, from_ancestor_ns);
 918}
 919
 920/*
 921 * Test if P wants to take SIG.  After we've checked all threads with this,
 922 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 923 * blocking SIG were ruled out because they are not running and already
 924 * have pending signals.  Such threads will dequeue from the shared queue
 925 * as soon as they're available, so putting the signal on the shared queue
 926 * will be equivalent to sending it to one such thread.
 927 */
 928static inline int wants_signal(int sig, struct task_struct *p)
 929{
 930	if (sigismember(&p->blocked, sig))
 931		return 0;
 
 932	if (p->flags & PF_EXITING)
 933		return 0;
 
 934	if (sig == SIGKILL)
 935		return 1;
 
 936	if (task_is_stopped_or_traced(p))
 937		return 0;
 938	return task_curr(p) || !signal_pending(p);
 
 939}
 940
 941static void complete_signal(int sig, struct task_struct *p, int group)
 942{
 943	struct signal_struct *signal = p->signal;
 944	struct task_struct *t;
 945
 946	/*
 947	 * Now find a thread we can wake up to take the signal off the queue.
 948	 *
 949	 * If the main thread wants the signal, it gets first crack.
 950	 * Probably the least surprising to the average bear.
 951	 */
 952	if (wants_signal(sig, p))
 953		t = p;
 954	else if (!group || thread_group_empty(p))
 955		/*
 956		 * There is just one thread and it does not need to be woken.
 957		 * It will dequeue unblocked signals before it runs again.
 958		 */
 959		return;
 960	else {
 961		/*
 962		 * Otherwise try to find a suitable thread.
 963		 */
 964		t = signal->curr_target;
 965		while (!wants_signal(sig, t)) {
 966			t = next_thread(t);
 967			if (t == signal->curr_target)
 968				/*
 969				 * No thread needs to be woken.
 970				 * Any eligible threads will see
 971				 * the signal in the queue soon.
 972				 */
 973				return;
 974		}
 975		signal->curr_target = t;
 976	}
 977
 978	/*
 979	 * Found a killable thread.  If the signal will be fatal,
 980	 * then start taking the whole group down immediately.
 981	 */
 982	if (sig_fatal(p, sig) &&
 983	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
 984	    !sigismember(&t->real_blocked, sig) &&
 985	    (sig == SIGKILL || !t->ptrace)) {
 986		/*
 987		 * This signal will be fatal to the whole group.
 988		 */
 989		if (!sig_kernel_coredump(sig)) {
 990			/*
 991			 * Start a group exit and wake everybody up.
 992			 * This way we don't have other threads
 993			 * running and doing things after a slower
 994			 * thread has the fatal signal pending.
 995			 */
 996			signal->flags = SIGNAL_GROUP_EXIT;
 997			signal->group_exit_code = sig;
 998			signal->group_stop_count = 0;
 999			t = p;
1000			do {
1001				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1002				sigaddset(&t->pending.signal, SIGKILL);
1003				signal_wake_up(t, 1);
1004			} while_each_thread(p, t);
1005			return;
1006		}
1007	}
1008
1009	/*
1010	 * The signal is already in the shared-pending queue.
1011	 * Tell the chosen thread to wake up and dequeue it.
1012	 */
1013	signal_wake_up(t, sig == SIGKILL);
1014	return;
1015}
1016
1017static inline int legacy_queue(struct sigpending *signals, int sig)
1018{
1019	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1020}
1021
1022static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1023			int group, int from_ancestor_ns)
1024{
1025	struct sigpending *pending;
1026	struct sigqueue *q;
1027	int override_rlimit;
 
1028
1029	trace_signal_generate(sig, info, t);
1030
1031	assert_spin_locked(&t->sighand->siglock);
 
 
1032
1033	if (!prepare_signal(sig, t, from_ancestor_ns))
1034		return 0;
1035
1036	pending = group ? &t->signal->shared_pending : &t->pending;
1037	/*
1038	 * Short-circuit ignored signals and support queuing
1039	 * exactly one non-rt signal, so that we can get more
1040	 * detailed information about the cause of the signal.
1041	 */
 
1042	if (legacy_queue(pending, sig))
1043		return 0;
 
 
1044	/*
1045	 * fast-pathed signals for kernel-internal things like SIGSTOP
1046	 * or SIGKILL.
1047	 */
1048	if (info == SEND_SIG_FORCED)
1049		goto out_set;
1050
1051	/*
1052	 * Real-time signals must be queued if sent by sigqueue, or
1053	 * some other real-time mechanism.  It is implementation
1054	 * defined whether kill() does so.  We attempt to do so, on
1055	 * the principle of least surprise, but since kill is not
1056	 * allowed to fail with EAGAIN when low on memory we just
1057	 * make sure at least one signal gets delivered and don't
1058	 * pass on the info struct.
1059	 */
1060	if (sig < SIGRTMIN)
1061		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1062	else
1063		override_rlimit = 0;
1064
1065	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1066		override_rlimit);
1067	if (q) {
1068		list_add_tail(&q->list, &pending->list);
1069		switch ((unsigned long) info) {
1070		case (unsigned long) SEND_SIG_NOINFO:
 
1071			q->info.si_signo = sig;
1072			q->info.si_errno = 0;
1073			q->info.si_code = SI_USER;
1074			q->info.si_pid = task_tgid_nr_ns(current,
1075							task_active_pid_ns(t));
1076			q->info.si_uid = current_uid();
 
 
 
 
1077			break;
1078		case (unsigned long) SEND_SIG_PRIV:
 
1079			q->info.si_signo = sig;
1080			q->info.si_errno = 0;
1081			q->info.si_code = SI_KERNEL;
1082			q->info.si_pid = 0;
1083			q->info.si_uid = 0;
1084			break;
1085		default:
1086			copy_siginfo(&q->info, info);
1087			if (from_ancestor_ns)
1088				q->info.si_pid = 0;
1089			break;
1090		}
1091	} else if (!is_si_special(info)) {
1092		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1093			/*
1094			 * Queue overflow, abort.  We may abort if the
1095			 * signal was rt and sent by user using something
1096			 * other than kill().
1097			 */
1098			trace_signal_overflow_fail(sig, group, info);
1099			return -EAGAIN;
1100		} else {
1101			/*
1102			 * This is a silent loss of information.  We still
1103			 * send the signal, but the *info bits are lost.
1104			 */
1105			trace_signal_lose_info(sig, group, info);
1106		}
1107	}
1108
1109out_set:
1110	signalfd_notify(t, sig);
1111	sigaddset(&pending->signal, sig);
1112	complete_signal(sig, t, group);
1113	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1114}
1115
1116static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1117			int group)
1118{
1119	int from_ancestor_ns = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1120
1121#ifdef CONFIG_PID_NS
1122	from_ancestor_ns = si_fromuser(info) &&
1123			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1124#endif
1125
1126	return __send_signal(sig, info, t, group, from_ancestor_ns);
 
 
 
 
 
 
1127}
1128
1129static void print_fatal_signal(struct pt_regs *regs, int signr)
1130{
1131	printk("%s/%d: potentially unexpected fatal signal %d.\n",
1132		current->comm, task_pid_nr(current), signr);
1133
1134#if defined(__i386__) && !defined(__arch_um__)
1135	printk("code at %08lx: ", regs->ip);
1136	{
1137		int i;
1138		for (i = 0; i < 16; i++) {
1139			unsigned char insn;
1140
1141			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1142				break;
1143			printk("%02x ", insn);
1144		}
1145	}
 
1146#endif
1147	printk("\n");
1148	preempt_disable();
1149	show_regs(regs);
1150	preempt_enable();
1151}
1152
1153static int __init setup_print_fatal_signals(char *str)
1154{
1155	get_option (&str, &print_fatal_signals);
1156
1157	return 1;
1158}
1159
1160__setup("print-fatal-signals=", setup_print_fatal_signals);
1161
1162int
1163__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1164{
1165	return send_signal(sig, info, p, 1);
1166}
1167
1168static int
1169specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1170{
1171	return send_signal(sig, info, t, 0);
1172}
1173
1174int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1175			bool group)
1176{
1177	unsigned long flags;
1178	int ret = -ESRCH;
1179
1180	if (lock_task_sighand(p, &flags)) {
1181		ret = send_signal(sig, info, p, group);
1182		unlock_task_sighand(p, &flags);
1183	}
1184
1185	return ret;
1186}
1187
 
 
 
 
 
 
1188/*
1189 * Force a signal that the process can't ignore: if necessary
1190 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1191 *
1192 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1193 * since we do not want to have a signal handler that was blocked
1194 * be invoked when user space had explicitly blocked it.
1195 *
1196 * We don't want to have recursive SIGSEGV's etc, for example,
1197 * that is why we also clear SIGNAL_UNKILLABLE.
1198 */
1199int
1200force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
 
1201{
1202	unsigned long int flags;
1203	int ret, blocked, ignored;
1204	struct k_sigaction *action;
 
1205
1206	spin_lock_irqsave(&t->sighand->siglock, flags);
1207	action = &t->sighand->action[sig-1];
1208	ignored = action->sa.sa_handler == SIG_IGN;
1209	blocked = sigismember(&t->blocked, sig);
1210	if (blocked || ignored) {
1211		action->sa.sa_handler = SIG_DFL;
 
 
1212		if (blocked) {
1213			sigdelset(&t->blocked, sig);
1214			recalc_sigpending_and_wake(t);
1215		}
1216	}
1217	if (action->sa.sa_handler == SIG_DFL)
 
 
 
 
 
1218		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1219	ret = specific_send_sig_info(sig, info, t);
1220	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1221
1222	return ret;
1223}
1224
 
 
 
 
 
1225/*
1226 * Nuke all other threads in the group.
1227 */
1228int zap_other_threads(struct task_struct *p)
1229{
1230	struct task_struct *t = p;
1231	int count = 0;
1232
1233	p->signal->group_stop_count = 0;
1234
1235	while_each_thread(p, t) {
1236		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1237		count++;
1238
1239		/* Don't bother with already dead threads */
1240		if (t->exit_state)
1241			continue;
1242		sigaddset(&t->pending.signal, SIGKILL);
1243		signal_wake_up(t, 1);
1244	}
1245
1246	return count;
1247}
1248
1249struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1250					   unsigned long *flags)
1251{
1252	struct sighand_struct *sighand;
1253
 
1254	for (;;) {
1255		local_irq_save(*flags);
1256		rcu_read_lock();
1257		sighand = rcu_dereference(tsk->sighand);
1258		if (unlikely(sighand == NULL)) {
1259			rcu_read_unlock();
1260			local_irq_restore(*flags);
1261			break;
1262		}
1263
1264		spin_lock(&sighand->siglock);
1265		if (likely(sighand == tsk->sighand)) {
1266			rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
1267			break;
1268		}
1269		spin_unlock(&sighand->siglock);
1270		rcu_read_unlock();
1271		local_irq_restore(*flags);
1272	}
 
1273
1274	return sighand;
1275}
1276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1277/*
1278 * send signal info to all the members of a group
1279 */
1280int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
 
1281{
1282	int ret;
1283
1284	rcu_read_lock();
1285	ret = check_kill_permission(sig, info, p);
1286	rcu_read_unlock();
1287
1288	if (!ret && sig)
1289		ret = do_send_sig_info(sig, info, p, true);
1290
1291	return ret;
1292}
1293
1294/*
1295 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1296 * control characters do (^C, ^Z etc)
1297 * - the caller must hold at least a readlock on tasklist_lock
1298 */
1299int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1300{
1301	struct task_struct *p = NULL;
1302	int retval, success;
1303
1304	success = 0;
1305	retval = -ESRCH;
1306	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1307		int err = group_send_sig_info(sig, info, p);
1308		success |= !err;
1309		retval = err;
1310	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1311	return success ? 0 : retval;
1312}
1313
1314int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1315{
1316	int error = -ESRCH;
1317	struct task_struct *p;
1318
1319	rcu_read_lock();
1320retry:
1321	p = pid_task(pid, PIDTYPE_PID);
1322	if (p) {
1323		error = group_send_sig_info(sig, info, p);
1324		if (unlikely(error == -ESRCH))
1325			/*
1326			 * The task was unhashed in between, try again.
1327			 * If it is dead, pid_task() will return NULL,
1328			 * if we race with de_thread() it will find the
1329			 * new leader.
1330			 */
1331			goto retry;
 
1332	}
1333	rcu_read_unlock();
1334
1335	return error;
1336}
1337
1338int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1339{
1340	int error;
1341	rcu_read_lock();
1342	error = kill_pid_info(sig, info, find_vpid(pid));
1343	rcu_read_unlock();
1344	return error;
1345}
1346
1347/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1348int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1349		      uid_t uid, uid_t euid, u32 secid)
1350{
1351	int ret = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1352	struct task_struct *p;
1353	const struct cred *pcred;
1354	unsigned long flags;
 
1355
1356	if (!valid_signal(sig))
1357		return ret;
1358
 
 
 
 
 
 
1359	rcu_read_lock();
1360	p = pid_task(pid, PIDTYPE_PID);
1361	if (!p) {
1362		ret = -ESRCH;
1363		goto out_unlock;
1364	}
1365	pcred = __task_cred(p);
1366	if (si_fromuser(info) &&
1367	    euid != pcred->suid && euid != pcred->uid &&
1368	    uid  != pcred->suid && uid  != pcred->uid) {
1369		ret = -EPERM;
1370		goto out_unlock;
1371	}
1372	ret = security_task_kill(p, info, sig, secid);
1373	if (ret)
1374		goto out_unlock;
1375
1376	if (sig) {
1377		if (lock_task_sighand(p, &flags)) {
1378			ret = __send_signal(sig, info, p, 1, 0);
1379			unlock_task_sighand(p, &flags);
1380		} else
1381			ret = -ESRCH;
1382	}
1383out_unlock:
1384	rcu_read_unlock();
1385	return ret;
1386}
1387EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1388
1389/*
1390 * kill_something_info() interprets pid in interesting ways just like kill(2).
1391 *
1392 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1393 * is probably wrong.  Should make it like BSD or SYSV.
1394 */
1395
1396static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1397{
1398	int ret;
1399
1400	if (pid > 0) {
1401		rcu_read_lock();
1402		ret = kill_pid_info(sig, info, find_vpid(pid));
1403		rcu_read_unlock();
1404		return ret;
1405	}
1406
1407	read_lock(&tasklist_lock);
1408	if (pid != -1) {
1409		ret = __kill_pgrp_info(sig, info,
1410				pid ? find_vpid(-pid) : task_pgrp(current));
1411	} else {
1412		int retval = 0, count = 0;
1413		struct task_struct * p;
1414
1415		for_each_process(p) {
1416			if (task_pid_vnr(p) > 1 &&
1417					!same_thread_group(p, current)) {
1418				int err = group_send_sig_info(sig, info, p);
 
1419				++count;
1420				if (err != -EPERM)
1421					retval = err;
1422			}
1423		}
1424		ret = count ? retval : -ESRCH;
1425	}
1426	read_unlock(&tasklist_lock);
1427
1428	return ret;
1429}
1430
1431/*
1432 * These are for backward compatibility with the rest of the kernel source.
1433 */
1434
1435int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1436{
1437	/*
1438	 * Make sure legacy kernel users don't send in bad values
1439	 * (normal paths check this in check_kill_permission).
1440	 */
1441	if (!valid_signal(sig))
1442		return -EINVAL;
1443
1444	return do_send_sig_info(sig, info, p, false);
1445}
 
1446
1447#define __si_special(priv) \
1448	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1449
1450int
1451send_sig(int sig, struct task_struct *p, int priv)
1452{
1453	return send_sig_info(sig, __si_special(priv), p);
1454}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1455
1456void
1457force_sig(int sig, struct task_struct *p)
1458{
1459	force_sig_info(sig, SEND_SIG_PRIV, p);
 
 
 
 
 
 
 
 
1460}
1461
1462/*
1463 * When things go south during signal handling, we
1464 * will force a SIGSEGV. And if the signal that caused
1465 * the problem was already a SIGSEGV, we'll want to
1466 * make sure we don't even try to deliver the signal..
1467 */
1468int
1469force_sigsegv(int sig, struct task_struct *p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1470{
1471	if (sig == SIGSEGV) {
1472		unsigned long flags;
1473		spin_lock_irqsave(&p->sighand->siglock, flags);
1474		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1475		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1476	}
1477	force_sig(SIGSEGV, p);
1478	return 0;
 
1479}
1480
1481int kill_pgrp(struct pid *pid, int sig, int priv)
1482{
1483	int ret;
1484
1485	read_lock(&tasklist_lock);
1486	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1487	read_unlock(&tasklist_lock);
1488
1489	return ret;
1490}
1491EXPORT_SYMBOL(kill_pgrp);
1492
1493int kill_pid(struct pid *pid, int sig, int priv)
1494{
1495	return kill_pid_info(sig, __si_special(priv), pid);
1496}
1497EXPORT_SYMBOL(kill_pid);
1498
1499/*
1500 * These functions support sending signals using preallocated sigqueue
1501 * structures.  This is needed "because realtime applications cannot
1502 * afford to lose notifications of asynchronous events, like timer
1503 * expirations or I/O completions".  In the case of POSIX Timers
1504 * we allocate the sigqueue structure from the timer_create.  If this
1505 * allocation fails we are able to report the failure to the application
1506 * with an EAGAIN error.
1507 */
1508struct sigqueue *sigqueue_alloc(void)
1509{
1510	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1511
1512	if (q)
1513		q->flags |= SIGQUEUE_PREALLOC;
1514
1515	return q;
1516}
1517
1518void sigqueue_free(struct sigqueue *q)
1519{
1520	unsigned long flags;
1521	spinlock_t *lock = &current->sighand->siglock;
1522
1523	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1524	/*
1525	 * We must hold ->siglock while testing q->list
1526	 * to serialize with collect_signal() or with
1527	 * __exit_signal()->flush_sigqueue().
1528	 */
1529	spin_lock_irqsave(lock, flags);
1530	q->flags &= ~SIGQUEUE_PREALLOC;
1531	/*
1532	 * If it is queued it will be freed when dequeued,
1533	 * like the "regular" sigqueue.
1534	 */
1535	if (!list_empty(&q->list))
1536		q = NULL;
1537	spin_unlock_irqrestore(lock, flags);
1538
1539	if (q)
1540		__sigqueue_free(q);
1541}
1542
1543int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1544{
1545	int sig = q->info.si_signo;
1546	struct sigpending *pending;
 
1547	unsigned long flags;
1548	int ret;
1549
1550	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1551
1552	ret = -1;
1553	if (!likely(lock_task_sighand(t, &flags)))
 
 
1554		goto ret;
1555
1556	ret = 1; /* the signal is ignored */
1557	if (!prepare_signal(sig, t, 0))
 
1558		goto out;
1559
1560	ret = 0;
1561	if (unlikely(!list_empty(&q->list))) {
1562		/*
1563		 * If an SI_TIMER entry is already queue just increment
1564		 * the overrun count.
1565		 */
1566		BUG_ON(q->info.si_code != SI_TIMER);
1567		q->info.si_overrun++;
 
1568		goto out;
1569	}
1570	q->info.si_overrun = 0;
1571
1572	signalfd_notify(t, sig);
1573	pending = group ? &t->signal->shared_pending : &t->pending;
1574	list_add_tail(&q->list, &pending->list);
1575	sigaddset(&pending->signal, sig);
1576	complete_signal(sig, t, group);
 
1577out:
 
1578	unlock_task_sighand(t, &flags);
1579ret:
 
1580	return ret;
1581}
1582
 
 
 
 
 
 
 
 
 
1583/*
1584 * Let a parent know about the death of a child.
1585 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1586 *
1587 * Returns true if our parent ignored us and so we've switched to
1588 * self-reaping.
1589 */
1590bool do_notify_parent(struct task_struct *tsk, int sig)
1591{
1592	struct siginfo info;
1593	unsigned long flags;
1594	struct sighand_struct *psig;
1595	bool autoreap = false;
 
1596
1597	BUG_ON(sig == -1);
1598
1599 	/* do_notify_parent_cldstop should have been called instead.  */
1600 	BUG_ON(task_is_stopped_or_traced(tsk));
1601
1602	BUG_ON(!tsk->ptrace &&
1603	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1604
 
 
 
 
 
 
 
 
 
 
 
 
 
1605	info.si_signo = sig;
1606	info.si_errno = 0;
1607	/*
1608	 * we are under tasklist_lock here so our parent is tied to
1609	 * us and cannot exit and release its namespace.
1610	 *
1611	 * the only it can is to switch its nsproxy with sys_unshare,
1612	 * bu uncharing pid namespaces is not allowed, so we'll always
1613	 * see relevant namespace
1614	 *
1615	 * write_lock() currently calls preempt_disable() which is the
1616	 * same as rcu_read_lock(), but according to Oleg, this is not
1617	 * correct to rely on this
1618	 */
1619	rcu_read_lock();
1620	info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1621	info.si_uid = __task_cred(tsk)->uid;
 
1622	rcu_read_unlock();
1623
1624	info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1625				tsk->signal->utime));
1626	info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1627				tsk->signal->stime));
1628
1629	info.si_status = tsk->exit_code & 0x7f;
1630	if (tsk->exit_code & 0x80)
1631		info.si_code = CLD_DUMPED;
1632	else if (tsk->exit_code & 0x7f)
1633		info.si_code = CLD_KILLED;
1634	else {
1635		info.si_code = CLD_EXITED;
1636		info.si_status = tsk->exit_code >> 8;
1637	}
1638
1639	psig = tsk->parent->sighand;
1640	spin_lock_irqsave(&psig->siglock, flags);
1641	if (!tsk->ptrace && sig == SIGCHLD &&
1642	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1643	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1644		/*
1645		 * We are exiting and our parent doesn't care.  POSIX.1
1646		 * defines special semantics for setting SIGCHLD to SIG_IGN
1647		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1648		 * automatically and not left for our parent's wait4 call.
1649		 * Rather than having the parent do it as a magic kind of
1650		 * signal handler, we just set this to tell do_exit that we
1651		 * can be cleaned up without becoming a zombie.  Note that
1652		 * we still call __wake_up_parent in this case, because a
1653		 * blocked sys_wait4 might now return -ECHILD.
1654		 *
1655		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1656		 * is implementation-defined: we do (if you don't want
1657		 * it, just use SIG_IGN instead).
1658		 */
1659		autoreap = true;
1660		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1661			sig = 0;
1662	}
 
 
 
 
1663	if (valid_signal(sig) && sig)
1664		__group_send_sig_info(sig, &info, tsk->parent);
1665	__wake_up_parent(tsk, tsk->parent);
1666	spin_unlock_irqrestore(&psig->siglock, flags);
1667
1668	return autoreap;
1669}
1670
1671/**
1672 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1673 * @tsk: task reporting the state change
1674 * @for_ptracer: the notification is for ptracer
1675 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1676 *
1677 * Notify @tsk's parent that the stopped/continued state has changed.  If
1678 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1679 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1680 *
1681 * CONTEXT:
1682 * Must be called with tasklist_lock at least read locked.
1683 */
1684static void do_notify_parent_cldstop(struct task_struct *tsk,
1685				     bool for_ptracer, int why)
1686{
1687	struct siginfo info;
1688	unsigned long flags;
1689	struct task_struct *parent;
1690	struct sighand_struct *sighand;
 
1691
1692	if (for_ptracer) {
1693		parent = tsk->parent;
1694	} else {
1695		tsk = tsk->group_leader;
1696		parent = tsk->real_parent;
1697	}
1698
 
1699	info.si_signo = SIGCHLD;
1700	info.si_errno = 0;
1701	/*
1702	 * see comment in do_notify_parent() about the following 4 lines
1703	 */
1704	rcu_read_lock();
1705	info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1706	info.si_uid = __task_cred(tsk)->uid;
1707	rcu_read_unlock();
1708
1709	info.si_utime = cputime_to_clock_t(tsk->utime);
1710	info.si_stime = cputime_to_clock_t(tsk->stime);
 
1711
1712 	info.si_code = why;
1713 	switch (why) {
1714 	case CLD_CONTINUED:
1715 		info.si_status = SIGCONT;
1716 		break;
1717 	case CLD_STOPPED:
1718 		info.si_status = tsk->signal->group_exit_code & 0x7f;
1719 		break;
1720 	case CLD_TRAPPED:
1721 		info.si_status = tsk->exit_code & 0x7f;
1722 		break;
1723 	default:
1724 		BUG();
1725 	}
1726
1727	sighand = parent->sighand;
1728	spin_lock_irqsave(&sighand->siglock, flags);
1729	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1730	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1731		__group_send_sig_info(SIGCHLD, &info, parent);
1732	/*
1733	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1734	 */
1735	__wake_up_parent(tsk, parent);
1736	spin_unlock_irqrestore(&sighand->siglock, flags);
1737}
1738
1739static inline int may_ptrace_stop(void)
1740{
1741	if (!likely(current->ptrace))
1742		return 0;
1743	/*
1744	 * Are we in the middle of do_coredump?
1745	 * If so and our tracer is also part of the coredump stopping
1746	 * is a deadlock situation, and pointless because our tracer
1747	 * is dead so don't allow us to stop.
1748	 * If SIGKILL was already sent before the caller unlocked
1749	 * ->siglock we must see ->core_state != NULL. Otherwise it
1750	 * is safe to enter schedule().
1751	 */
1752	if (unlikely(current->mm->core_state) &&
1753	    unlikely(current->mm == current->parent->mm))
1754		return 0;
1755
1756	return 1;
1757}
1758
1759/*
1760 * Return non-zero if there is a SIGKILL that should be waking us up.
1761 * Called with the siglock held.
1762 */
1763static int sigkill_pending(struct task_struct *tsk)
1764{
1765	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1766		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1767}
1768
1769/*
1770 * This must be called with current->sighand->siglock held.
1771 *
1772 * This should be the path for all ptrace stops.
1773 * We always set current->last_siginfo while stopped here.
1774 * That makes it a way to test a stopped process for
1775 * being ptrace-stopped vs being job-control-stopped.
1776 *
1777 * If we actually decide not to stop at all because the tracer
1778 * is gone, we keep current->exit_code unless clear_code.
 
1779 */
1780static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
 
1781	__releases(&current->sighand->siglock)
1782	__acquires(&current->sighand->siglock)
1783{
1784	bool gstop_done = false;
1785
1786	if (arch_ptrace_stop_needed(exit_code, info)) {
1787		/*
1788		 * The arch code has something special to do before a
1789		 * ptrace stop.  This is allowed to block, e.g. for faults
1790		 * on user stack pages.  We can't keep the siglock while
1791		 * calling arch_ptrace_stop, so we must release it now.
1792		 * To preserve proper semantics, we must do this before
1793		 * any signal bookkeeping like checking group_stop_count.
1794		 * Meanwhile, a SIGKILL could come in before we retake the
1795		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1796		 * So after regaining the lock, we must check for SIGKILL.
1797		 */
1798		spin_unlock_irq(&current->sighand->siglock);
1799		arch_ptrace_stop(exit_code, info);
1800		spin_lock_irq(&current->sighand->siglock);
1801		if (sigkill_pending(current))
1802			return;
1803	}
1804
1805	/*
 
 
 
 
 
 
 
 
 
 
 
 
1806	 * We're committing to trapping.  TRACED should be visible before
1807	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1808	 * Also, transition to TRACED and updates to ->jobctl should be
1809	 * atomic with respect to siglock and should be done after the arch
1810	 * hook as siglock is released and regrabbed across it.
 
 
 
 
 
 
 
 
 
 
 
1811	 */
1812	set_current_state(TASK_TRACED);
1813
 
1814	current->last_siginfo = info;
1815	current->exit_code = exit_code;
1816
1817	/*
1818	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1819	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1820	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1821	 * could be clear now.  We act as if SIGCONT is received after
1822	 * TASK_TRACED is entered - ignore it.
1823	 */
1824	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1825		gstop_done = task_participate_group_stop(current);
1826
1827	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1828	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1829	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1830		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1831
1832	/* entering a trap, clear TRAPPING */
1833	task_clear_jobctl_trapping(current);
1834
1835	spin_unlock_irq(&current->sighand->siglock);
1836	read_lock(&tasklist_lock);
1837	if (may_ptrace_stop()) {
1838		/*
1839		 * Notify parents of the stop.
1840		 *
1841		 * While ptraced, there are two parents - the ptracer and
1842		 * the real_parent of the group_leader.  The ptracer should
1843		 * know about every stop while the real parent is only
1844		 * interested in the completion of group stop.  The states
1845		 * for the two don't interact with each other.  Notify
1846		 * separately unless they're gonna be duplicates.
1847		 */
1848		do_notify_parent_cldstop(current, true, why);
1849		if (gstop_done && ptrace_reparented(current))
1850			do_notify_parent_cldstop(current, false, why);
1851
1852		/*
1853		 * Don't want to allow preemption here, because
1854		 * sys_ptrace() needs this task to be inactive.
1855		 *
1856		 * XXX: implement read_unlock_no_resched().
1857		 */
1858		preempt_disable();
1859		read_unlock(&tasklist_lock);
1860		preempt_enable_no_resched();
1861		schedule();
1862	} else {
1863		/*
1864		 * By the time we got the lock, our tracer went away.
1865		 * Don't drop the lock yet, another tracer may come.
1866		 *
1867		 * If @gstop_done, the ptracer went away between group stop
1868		 * completion and here.  During detach, it would have set
1869		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1870		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1871		 * the real parent of the group stop completion is enough.
1872		 */
1873		if (gstop_done)
1874			do_notify_parent_cldstop(current, false, why);
1875
1876		__set_current_state(TASK_RUNNING);
1877		if (clear_code)
1878			current->exit_code = 0;
1879		read_unlock(&tasklist_lock);
1880	}
1881
1882	/*
1883	 * While in TASK_TRACED, we were considered "frozen enough".
1884	 * Now that we woke up, it's crucial if we're supposed to be
1885	 * frozen that we freeze now before running anything substantial.
 
1886	 */
1887	try_to_freeze();
 
 
 
 
 
1888
1889	/*
1890	 * We are back.  Now reacquire the siglock before touching
1891	 * last_siginfo, so that we are sure to have synchronized with
1892	 * any signal-sending on another CPU that wants to examine it.
1893	 */
1894	spin_lock_irq(&current->sighand->siglock);
 
1895	current->last_siginfo = NULL;
 
 
1896
1897	/* LISTENING can be set only during STOP traps, clear it */
1898	current->jobctl &= ~JOBCTL_LISTENING;
1899
1900	/*
1901	 * Queued signals ignored us while we were stopped for tracing.
1902	 * So check for any that we should take before resuming user mode.
1903	 * This sets TIF_SIGPENDING, but never clears it.
1904	 */
1905	recalc_sigpending_tsk(current);
 
1906}
1907
1908static void ptrace_do_notify(int signr, int exit_code, int why)
1909{
1910	siginfo_t info;
1911
1912	memset(&info, 0, sizeof info);
1913	info.si_signo = signr;
1914	info.si_code = exit_code;
1915	info.si_pid = task_pid_vnr(current);
1916	info.si_uid = current_uid();
1917
1918	/* Let the debugger run.  */
1919	ptrace_stop(exit_code, why, 1, &info);
1920}
1921
1922void ptrace_notify(int exit_code)
1923{
 
 
1924	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
 
 
1925
1926	spin_lock_irq(&current->sighand->siglock);
1927	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1928	spin_unlock_irq(&current->sighand->siglock);
 
1929}
1930
1931/**
1932 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1933 * @signr: signr causing group stop if initiating
1934 *
1935 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1936 * and participate in it.  If already set, participate in the existing
1937 * group stop.  If participated in a group stop (and thus slept), %true is
1938 * returned with siglock released.
1939 *
1940 * If ptraced, this function doesn't handle stop itself.  Instead,
1941 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1942 * untouched.  The caller must ensure that INTERRUPT trap handling takes
1943 * places afterwards.
1944 *
1945 * CONTEXT:
1946 * Must be called with @current->sighand->siglock held, which is released
1947 * on %true return.
1948 *
1949 * RETURNS:
1950 * %false if group stop is already cancelled or ptrace trap is scheduled.
1951 * %true if participated in group stop.
1952 */
1953static bool do_signal_stop(int signr)
1954	__releases(&current->sighand->siglock)
1955{
1956	struct signal_struct *sig = current->signal;
1957
1958	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1959		unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1960		struct task_struct *t;
1961
1962		/* signr will be recorded in task->jobctl for retries */
1963		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1964
1965		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1966		    unlikely(signal_group_exit(sig)))
 
1967			return false;
1968		/*
1969		 * There is no group stop already in progress.  We must
1970		 * initiate one now.
1971		 *
1972		 * While ptraced, a task may be resumed while group stop is
1973		 * still in effect and then receive a stop signal and
1974		 * initiate another group stop.  This deviates from the
1975		 * usual behavior as two consecutive stop signals can't
1976		 * cause two group stops when !ptraced.  That is why we
1977		 * also check !task_is_stopped(t) below.
1978		 *
1979		 * The condition can be distinguished by testing whether
1980		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
1981		 * group_exit_code in such case.
1982		 *
1983		 * This is not necessary for SIGNAL_STOP_CONTINUED because
1984		 * an intervening stop signal is required to cause two
1985		 * continued events regardless of ptrace.
1986		 */
1987		if (!(sig->flags & SIGNAL_STOP_STOPPED))
1988			sig->group_exit_code = signr;
1989		else
1990			WARN_ON_ONCE(!current->ptrace);
1991
1992		sig->group_stop_count = 0;
1993
1994		if (task_set_jobctl_pending(current, signr | gstop))
1995			sig->group_stop_count++;
1996
1997		for (t = next_thread(current); t != current;
1998		     t = next_thread(t)) {
1999			/*
2000			 * Setting state to TASK_STOPPED for a group
2001			 * stop is always done with the siglock held,
2002			 * so this check has no races.
2003			 */
2004			if (!task_is_stopped(t) &&
2005			    task_set_jobctl_pending(t, signr | gstop)) {
2006				sig->group_stop_count++;
2007				if (likely(!(t->ptrace & PT_SEIZED)))
2008					signal_wake_up(t, 0);
2009				else
2010					ptrace_trap_notify(t);
2011			}
2012		}
2013	}
2014
2015	if (likely(!current->ptrace)) {
2016		int notify = 0;
2017
2018		/*
2019		 * If there are no other threads in the group, or if there
2020		 * is a group stop in progress and we are the last to stop,
2021		 * report to the parent.
2022		 */
2023		if (task_participate_group_stop(current))
2024			notify = CLD_STOPPED;
2025
2026		__set_current_state(TASK_STOPPED);
 
2027		spin_unlock_irq(&current->sighand->siglock);
2028
2029		/*
2030		 * Notify the parent of the group stop completion.  Because
2031		 * we're not holding either the siglock or tasklist_lock
2032		 * here, ptracer may attach inbetween; however, this is for
2033		 * group stop and should always be delivered to the real
2034		 * parent of the group leader.  The new ptracer will get
2035		 * its notification when this task transitions into
2036		 * TASK_TRACED.
2037		 */
2038		if (notify) {
2039			read_lock(&tasklist_lock);
2040			do_notify_parent_cldstop(current, false, notify);
2041			read_unlock(&tasklist_lock);
2042		}
2043
2044		/* Now we don't run again until woken by SIGCONT or SIGKILL */
 
2045		schedule();
2046		return true;
2047	} else {
2048		/*
2049		 * While ptraced, group stop is handled by STOP trap.
2050		 * Schedule it and let the caller deal with it.
2051		 */
2052		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2053		return false;
2054	}
2055}
2056
2057/**
2058 * do_jobctl_trap - take care of ptrace jobctl traps
2059 *
2060 * When PT_SEIZED, it's used for both group stop and explicit
2061 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2062 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2063 * the stop signal; otherwise, %SIGTRAP.
2064 *
2065 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2066 * number as exit_code and no siginfo.
2067 *
2068 * CONTEXT:
2069 * Must be called with @current->sighand->siglock held, which may be
2070 * released and re-acquired before returning with intervening sleep.
2071 */
2072static void do_jobctl_trap(void)
2073{
2074	struct signal_struct *signal = current->signal;
2075	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2076
2077	if (current->ptrace & PT_SEIZED) {
2078		if (!signal->group_stop_count &&
2079		    !(signal->flags & SIGNAL_STOP_STOPPED))
2080			signr = SIGTRAP;
2081		WARN_ON_ONCE(!signr);
2082		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2083				 CLD_STOPPED);
2084	} else {
2085		WARN_ON_ONCE(!signr);
2086		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2087		current->exit_code = 0;
2088	}
2089}
2090
2091static int ptrace_signal(int signr, siginfo_t *info,
2092			 struct pt_regs *regs, void *cookie)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2093{
2094	ptrace_signal_deliver(regs, cookie);
2095	/*
2096	 * We do not check sig_kernel_stop(signr) but set this marker
2097	 * unconditionally because we do not know whether debugger will
2098	 * change signr. This flag has no meaning unless we are going
2099	 * to stop after return from ptrace_stop(). In this case it will
2100	 * be checked in do_signal_stop(), we should only stop if it was
2101	 * not cleared by SIGCONT while we were sleeping. See also the
2102	 * comment in dequeue_signal().
2103	 */
2104	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2105	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2106
2107	/* We're back.  Did the debugger cancel the sig?  */
2108	signr = current->exit_code;
2109	if (signr == 0)
2110		return signr;
2111
2112	current->exit_code = 0;
2113
2114	/*
2115	 * Update the siginfo structure if the signal has
2116	 * changed.  If the debugger wanted something
2117	 * specific in the siginfo structure then it should
2118	 * have updated *info via PTRACE_SETSIGINFO.
2119	 */
2120	if (signr != info->si_signo) {
 
2121		info->si_signo = signr;
2122		info->si_errno = 0;
2123		info->si_code = SI_USER;
 
2124		info->si_pid = task_pid_vnr(current->parent);
2125		info->si_uid = task_uid(current->parent);
 
 
2126	}
2127
2128	/* If the (new) signal is now blocked, requeue it.  */
2129	if (sigismember(&current->blocked, signr)) {
2130		specific_send_sig_info(signr, info, current);
 
2131		signr = 0;
2132	}
2133
2134	return signr;
2135}
2136
2137int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2138			  struct pt_regs *regs, void *cookie)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2139{
2140	struct sighand_struct *sighand = current->sighand;
2141	struct signal_struct *signal = current->signal;
2142	int signr;
2143
2144relock:
 
 
 
 
 
 
 
 
 
2145	/*
2146	 * We'll jump back here after any time we were stopped in TASK_STOPPED.
2147	 * While in TASK_STOPPED, we were considered "frozen enough".
2148	 * Now that we woke up, it's crucial if we're supposed to be
2149	 * frozen that we freeze now before running anything substantial.
2150	 */
2151	try_to_freeze();
2152
 
2153	spin_lock_irq(&sighand->siglock);
 
2154	/*
2155	 * Every stopped thread goes here after wakeup. Check to see if
2156	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2157	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2158	 */
2159	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2160		int why;
2161
2162		if (signal->flags & SIGNAL_CLD_CONTINUED)
2163			why = CLD_CONTINUED;
2164		else
2165			why = CLD_STOPPED;
2166
2167		signal->flags &= ~SIGNAL_CLD_MASK;
2168
2169		spin_unlock_irq(&sighand->siglock);
2170
2171		/*
2172		 * Notify the parent that we're continuing.  This event is
2173		 * always per-process and doesn't make whole lot of sense
2174		 * for ptracers, who shouldn't consume the state via
2175		 * wait(2) either, but, for backward compatibility, notify
2176		 * the ptracer of the group leader too unless it's gonna be
2177		 * a duplicate.
2178		 */
2179		read_lock(&tasklist_lock);
2180		do_notify_parent_cldstop(current, false, why);
2181
2182		if (ptrace_reparented(current->group_leader))
2183			do_notify_parent_cldstop(current->group_leader,
2184						true, why);
2185		read_unlock(&tasklist_lock);
2186
2187		goto relock;
2188	}
2189
2190	for (;;) {
2191		struct k_sigaction *ka;
 
 
 
 
 
 
 
 
 
 
 
 
 
2192
2193		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2194		    do_signal_stop(0))
2195			goto relock;
2196
2197		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2198			do_jobctl_trap();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2199			spin_unlock_irq(&sighand->siglock);
 
2200			goto relock;
2201		}
2202
2203		signr = dequeue_signal(current, &current->blocked, info);
 
 
 
 
 
 
 
 
 
 
2204
2205		if (!signr)
2206			break; /* will return 0 */
2207
2208		if (unlikely(current->ptrace) && signr != SIGKILL) {
2209			signr = ptrace_signal(signr, info,
2210					      regs, cookie);
2211			if (!signr)
2212				continue;
2213		}
2214
2215		ka = &sighand->action[signr-1];
2216
2217		/* Trace actually delivered signals. */
2218		trace_signal_deliver(signr, info, ka);
2219
2220		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2221			continue;
2222		if (ka->sa.sa_handler != SIG_DFL) {
2223			/* Run the handler.  */
2224			*return_ka = *ka;
2225
2226			if (ka->sa.sa_flags & SA_ONESHOT)
2227				ka->sa.sa_handler = SIG_DFL;
2228
2229			break; /* will return non-zero "signr" value */
2230		}
2231
2232		/*
2233		 * Now we are doing the default action for this signal.
2234		 */
2235		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2236			continue;
2237
2238		/*
2239		 * Global init gets no signals it doesn't want.
2240		 * Container-init gets no signals it doesn't want from same
2241		 * container.
2242		 *
2243		 * Note that if global/container-init sees a sig_kernel_only()
2244		 * signal here, the signal must have been generated internally
2245		 * or must have come from an ancestor namespace. In either
2246		 * case, the signal cannot be dropped.
2247		 */
2248		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2249				!sig_kernel_only(signr))
2250			continue;
2251
2252		if (sig_kernel_stop(signr)) {
2253			/*
2254			 * The default action is to stop all threads in
2255			 * the thread group.  The job control signals
2256			 * do nothing in an orphaned pgrp, but SIGSTOP
2257			 * always works.  Note that siglock needs to be
2258			 * dropped during the call to is_orphaned_pgrp()
2259			 * because of lock ordering with tasklist_lock.
2260			 * This allows an intervening SIGCONT to be posted.
2261			 * We need to check for that and bail out if necessary.
2262			 */
2263			if (signr != SIGSTOP) {
2264				spin_unlock_irq(&sighand->siglock);
2265
2266				/* signals can be posted during this window */
2267
2268				if (is_current_pgrp_orphaned())
2269					goto relock;
2270
2271				spin_lock_irq(&sighand->siglock);
2272			}
2273
2274			if (likely(do_signal_stop(info->si_signo))) {
2275				/* It released the siglock.  */
2276				goto relock;
2277			}
2278
2279			/*
2280			 * We didn't actually stop, due to a race
2281			 * with SIGCONT or something like that.
2282			 */
2283			continue;
2284		}
2285
 
2286		spin_unlock_irq(&sighand->siglock);
 
 
2287
2288		/*
2289		 * Anything else is fatal, maybe with a core dump.
2290		 */
2291		current->flags |= PF_SIGNALED;
2292
2293		if (sig_kernel_coredump(signr)) {
2294			if (print_fatal_signals)
2295				print_fatal_signal(regs, info->si_signo);
 
2296			/*
2297			 * If it was able to dump core, this kills all
2298			 * other threads in the group and synchronizes with
2299			 * their demise.  If we lost the race with another
2300			 * thread getting here, it set group_exit_code
2301			 * first and our do_group_exit call below will use
2302			 * that value and ignore the one we pass it.
2303			 */
2304			do_coredump(info->si_signo, info->si_signo, regs);
2305		}
2306
2307		/*
 
 
 
 
 
 
 
 
2308		 * Death signals, no core dump.
2309		 */
2310		do_group_exit(info->si_signo);
2311		/* NOTREACHED */
2312	}
2313	spin_unlock_irq(&sighand->siglock);
2314	return signr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2315}
2316
2317/*
2318 * It could be that complete_signal() picked us to notify about the
2319 * group-wide signal. Other threads should be notified now to take
2320 * the shared signals in @which since we will not.
2321 */
2322static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2323{
2324	sigset_t retarget;
2325	struct task_struct *t;
2326
2327	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2328	if (sigisemptyset(&retarget))
2329		return;
2330
2331	t = tsk;
2332	while_each_thread(tsk, t) {
2333		if (t->flags & PF_EXITING)
2334			continue;
2335
2336		if (!has_pending_signals(&retarget, &t->blocked))
2337			continue;
2338		/* Remove the signals this thread can handle. */
2339		sigandsets(&retarget, &retarget, &t->blocked);
2340
2341		if (!signal_pending(t))
2342			signal_wake_up(t, 0);
2343
2344		if (sigisemptyset(&retarget))
2345			break;
2346	}
2347}
2348
2349void exit_signals(struct task_struct *tsk)
2350{
2351	int group_stop = 0;
2352	sigset_t unblocked;
2353
2354	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
 
 
 
 
 
 
2355		tsk->flags |= PF_EXITING;
 
2356		return;
2357	}
2358
2359	spin_lock_irq(&tsk->sighand->siglock);
2360	/*
2361	 * From now this task is not visible for group-wide signals,
2362	 * see wants_signal(), do_signal_stop().
2363	 */
2364	tsk->flags |= PF_EXITING;
2365	if (!signal_pending(tsk))
 
 
 
2366		goto out;
2367
2368	unblocked = tsk->blocked;
2369	signotset(&unblocked);
2370	retarget_shared_pending(tsk, &unblocked);
2371
2372	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2373	    task_participate_group_stop(tsk))
2374		group_stop = CLD_STOPPED;
2375out:
2376	spin_unlock_irq(&tsk->sighand->siglock);
2377
2378	/*
2379	 * If group stop has completed, deliver the notification.  This
2380	 * should always go to the real parent of the group leader.
2381	 */
2382	if (unlikely(group_stop)) {
2383		read_lock(&tasklist_lock);
2384		do_notify_parent_cldstop(tsk, false, group_stop);
2385		read_unlock(&tasklist_lock);
2386	}
2387}
2388
2389EXPORT_SYMBOL(recalc_sigpending);
2390EXPORT_SYMBOL_GPL(dequeue_signal);
2391EXPORT_SYMBOL(flush_signals);
2392EXPORT_SYMBOL(force_sig);
2393EXPORT_SYMBOL(send_sig);
2394EXPORT_SYMBOL(send_sig_info);
2395EXPORT_SYMBOL(sigprocmask);
2396EXPORT_SYMBOL(block_all_signals);
2397EXPORT_SYMBOL(unblock_all_signals);
2398
2399
2400/*
2401 * System call entry points.
2402 */
2403
2404/**
2405 *  sys_restart_syscall - restart a system call
2406 */
2407SYSCALL_DEFINE0(restart_syscall)
2408{
2409	struct restart_block *restart = &current_thread_info()->restart_block;
2410	return restart->fn(restart);
2411}
2412
2413long do_no_restart_syscall(struct restart_block *param)
2414{
2415	return -EINTR;
2416}
2417
2418static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2419{
2420	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2421		sigset_t newblocked;
2422		/* A set of now blocked but previously unblocked signals. */
2423		sigandnsets(&newblocked, newset, &current->blocked);
2424		retarget_shared_pending(tsk, &newblocked);
2425	}
2426	tsk->blocked = *newset;
2427	recalc_sigpending();
2428}
2429
2430/**
2431 * set_current_blocked - change current->blocked mask
2432 * @newset: new mask
2433 *
2434 * It is wrong to change ->blocked directly, this helper should be used
2435 * to ensure the process can't miss a shared signal we are going to block.
2436 */
2437void set_current_blocked(const sigset_t *newset)
 
 
 
 
 
 
2438{
2439	struct task_struct *tsk = current;
2440
 
 
 
 
 
 
 
2441	spin_lock_irq(&tsk->sighand->siglock);
2442	__set_task_blocked(tsk, newset);
2443	spin_unlock_irq(&tsk->sighand->siglock);
2444}
2445
2446/*
2447 * This is also useful for kernel threads that want to temporarily
2448 * (or permanently) block certain signals.
2449 *
2450 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2451 * interface happily blocks "unblockable" signals like SIGKILL
2452 * and friends.
2453 */
2454int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2455{
2456	struct task_struct *tsk = current;
2457	sigset_t newset;
2458
2459	/* Lockless, only current can change ->blocked, never from irq */
2460	if (oldset)
2461		*oldset = tsk->blocked;
2462
2463	switch (how) {
2464	case SIG_BLOCK:
2465		sigorsets(&newset, &tsk->blocked, set);
2466		break;
2467	case SIG_UNBLOCK:
2468		sigandnsets(&newset, &tsk->blocked, set);
2469		break;
2470	case SIG_SETMASK:
2471		newset = *set;
2472		break;
2473	default:
2474		return -EINVAL;
2475	}
2476
2477	set_current_blocked(&newset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2478	return 0;
2479}
 
2480
2481/**
2482 *  sys_rt_sigprocmask - change the list of currently blocked signals
2483 *  @how: whether to add, remove, or set signals
2484 *  @nset: stores pending signals
2485 *  @oset: previous value of signal mask if non-null
2486 *  @sigsetsize: size of sigset_t type
2487 */
2488SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2489		sigset_t __user *, oset, size_t, sigsetsize)
2490{
2491	sigset_t old_set, new_set;
2492	int error;
2493
2494	/* XXX: Don't preclude handling different sized sigset_t's.  */
2495	if (sigsetsize != sizeof(sigset_t))
2496		return -EINVAL;
2497
2498	old_set = current->blocked;
2499
2500	if (nset) {
2501		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2502			return -EFAULT;
2503		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2504
2505		error = sigprocmask(how, &new_set, NULL);
2506		if (error)
2507			return error;
2508	}
2509
2510	if (oset) {
2511		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2512			return -EFAULT;
2513	}
2514
2515	return 0;
2516}
2517
2518long do_sigpending(void __user *set, unsigned long sigsetsize)
 
 
2519{
2520	long error = -EINVAL;
2521	sigset_t pending;
 
 
 
2522
2523	if (sigsetsize > sizeof(sigset_t))
2524		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
2525
 
 
2526	spin_lock_irq(&current->sighand->siglock);
2527	sigorsets(&pending, &current->pending.signal,
2528		  &current->signal->shared_pending.signal);
2529	spin_unlock_irq(&current->sighand->siglock);
2530
2531	/* Outside the lock because only this thread touches it.  */
2532	sigandsets(&pending, &current->blocked, &pending);
2533
2534	error = -EFAULT;
2535	if (!copy_to_user(set, &pending, sigsetsize))
2536		error = 0;
2537
2538out:
2539	return error;
2540}
2541
2542/**
2543 *  sys_rt_sigpending - examine a pending signal that has been raised
2544 *			while blocked
2545 *  @set: stores pending signals
2546 *  @sigsetsize: size of sigset_t type or larger
2547 */
2548SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2549{
2550	return do_sigpending(set, sigsetsize);
 
 
 
 
 
 
 
 
 
 
2551}
2552
2553#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2554
2555int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2556{
2557	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2558
2559	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
 
 
2560		return -EFAULT;
2561	if (from->si_code < 0)
2562		return __copy_to_user(to, from, sizeof(siginfo_t))
2563			? -EFAULT : 0;
2564	/*
2565	 * If you change siginfo_t structure, please be sure
2566	 * this code is fixed accordingly.
2567	 * Please remember to update the signalfd_copyinfo() function
2568	 * inside fs/signalfd.c too, in case siginfo_t changes.
2569	 * It should never copy any pad contained in the structure
2570	 * to avoid security leaks, but must copy the generic
2571	 * 3 ints plus the relevant union member.
2572	 */
2573	err = __put_user(from->si_signo, &to->si_signo);
2574	err |= __put_user(from->si_errno, &to->si_errno);
2575	err |= __put_user((short)from->si_code, &to->si_code);
2576	switch (from->si_code & __SI_MASK) {
2577	case __SI_KILL:
2578		err |= __put_user(from->si_pid, &to->si_pid);
2579		err |= __put_user(from->si_uid, &to->si_uid);
2580		break;
2581	case __SI_TIMER:
2582		 err |= __put_user(from->si_tid, &to->si_tid);
2583		 err |= __put_user(from->si_overrun, &to->si_overrun);
2584		 err |= __put_user(from->si_ptr, &to->si_ptr);
2585		break;
2586	case __SI_POLL:
2587		err |= __put_user(from->si_band, &to->si_band);
2588		err |= __put_user(from->si_fd, &to->si_fd);
2589		break;
2590	case __SI_FAULT:
2591		err |= __put_user(from->si_addr, &to->si_addr);
2592#ifdef __ARCH_SI_TRAPNO
2593		err |= __put_user(from->si_trapno, &to->si_trapno);
2594#endif
2595#ifdef BUS_MCEERR_AO
2596		/*
2597		 * Other callers might not initialize the si_lsb field,
2598		 * so check explicitly for the right codes here.
2599		 */
2600		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2601			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2602#endif
2603		break;
2604	case __SI_CHLD:
2605		err |= __put_user(from->si_pid, &to->si_pid);
2606		err |= __put_user(from->si_uid, &to->si_uid);
2607		err |= __put_user(from->si_status, &to->si_status);
2608		err |= __put_user(from->si_utime, &to->si_utime);
2609		err |= __put_user(from->si_stime, &to->si_stime);
2610		break;
2611	case __SI_RT: /* This is not generated by the kernel as of now. */
2612	case __SI_MESGQ: /* But this is */
2613		err |= __put_user(from->si_pid, &to->si_pid);
2614		err |= __put_user(from->si_uid, &to->si_uid);
2615		err |= __put_user(from->si_ptr, &to->si_ptr);
2616		break;
2617	default: /* this is just in case for now ... */
2618		err |= __put_user(from->si_pid, &to->si_pid);
2619		err |= __put_user(from->si_uid, &to->si_uid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2620		break;
2621	}
2622	return err;
2623}
2624
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2625#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2626
2627/**
2628 *  do_sigtimedwait - wait for queued signals specified in @which
2629 *  @which: queued signals to wait for
2630 *  @info: if non-null, the signal's siginfo is returned here
2631 *  @ts: upper bound on process time suspension
2632 */
2633int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2634			const struct timespec *ts)
2635{
 
2636	struct task_struct *tsk = current;
2637	long timeout = MAX_SCHEDULE_TIMEOUT;
2638	sigset_t mask = *which;
2639	int sig;
 
2640
2641	if (ts) {
2642		if (!timespec_valid(ts))
2643			return -EINVAL;
2644		timeout = timespec_to_jiffies(ts);
2645		/*
2646		 * We can be close to the next tick, add another one
2647		 * to ensure we will wait at least the time asked for.
2648		 */
2649		if (ts->tv_sec || ts->tv_nsec)
2650			timeout++;
2651	}
2652
2653	/*
2654	 * Invert the set of allowed signals to get those we want to block.
2655	 */
2656	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2657	signotset(&mask);
2658
2659	spin_lock_irq(&tsk->sighand->siglock);
2660	sig = dequeue_signal(tsk, &mask, info);
2661	if (!sig && timeout) {
2662		/*
2663		 * None ready, temporarily unblock those we're interested
2664		 * while we are sleeping in so that we'll be awakened when
2665		 * they arrive. Unblocking is always fine, we can avoid
2666		 * set_current_blocked().
2667		 */
2668		tsk->real_blocked = tsk->blocked;
2669		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2670		recalc_sigpending();
2671		spin_unlock_irq(&tsk->sighand->siglock);
2672
2673		timeout = schedule_timeout_interruptible(timeout);
2674
 
2675		spin_lock_irq(&tsk->sighand->siglock);
2676		__set_task_blocked(tsk, &tsk->real_blocked);
2677		siginitset(&tsk->real_blocked, 0);
2678		sig = dequeue_signal(tsk, &mask, info);
2679	}
2680	spin_unlock_irq(&tsk->sighand->siglock);
2681
2682	if (sig)
2683		return sig;
2684	return timeout ? -EINTR : -EAGAIN;
2685}
2686
2687/**
2688 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2689 *			in @uthese
2690 *  @uthese: queued signals to wait for
2691 *  @uinfo: if non-null, the signal's siginfo is returned here
2692 *  @uts: upper bound on process time suspension
2693 *  @sigsetsize: size of sigset_t type
2694 */
2695SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2696		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
 
2697		size_t, sigsetsize)
2698{
2699	sigset_t these;
2700	struct timespec ts;
2701	siginfo_t info;
2702	int ret;
2703
2704	/* XXX: Don't preclude handling different sized sigset_t's.  */
2705	if (sigsetsize != sizeof(sigset_t))
2706		return -EINVAL;
2707
2708	if (copy_from_user(&these, uthese, sizeof(these)))
2709		return -EFAULT;
2710
2711	if (uts) {
2712		if (copy_from_user(&ts, uts, sizeof(ts)))
2713			return -EFAULT;
2714	}
2715
2716	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2717
2718	if (ret > 0 && uinfo) {
2719		if (copy_siginfo_to_user(uinfo, &info))
2720			ret = -EFAULT;
2721	}
2722
2723	return ret;
2724}
2725
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2726/**
2727 *  sys_kill - send a signal to a process
2728 *  @pid: the PID of the process
2729 *  @sig: signal to be sent
2730 */
2731SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2732{
2733	struct siginfo info;
2734
2735	info.si_signo = sig;
2736	info.si_errno = 0;
2737	info.si_code = SI_USER;
2738	info.si_pid = task_tgid_vnr(current);
2739	info.si_uid = current_uid();
2740
2741	return kill_something_info(sig, &info, pid);
2742}
2743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2744static int
2745do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2746{
2747	struct task_struct *p;
2748	int error = -ESRCH;
2749
2750	rcu_read_lock();
2751	p = find_task_by_vpid(pid);
2752	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2753		error = check_kill_permission(sig, info, p);
2754		/*
2755		 * The null signal is a permissions and process existence
2756		 * probe.  No signal is actually delivered.
2757		 */
2758		if (!error && sig) {
2759			error = do_send_sig_info(sig, info, p, false);
2760			/*
2761			 * If lock_task_sighand() failed we pretend the task
2762			 * dies after receiving the signal. The window is tiny,
2763			 * and the signal is private anyway.
2764			 */
2765			if (unlikely(error == -ESRCH))
2766				error = 0;
2767		}
2768	}
2769	rcu_read_unlock();
2770
2771	return error;
2772}
2773
2774static int do_tkill(pid_t tgid, pid_t pid, int sig)
2775{
2776	struct siginfo info;
2777
 
2778	info.si_signo = sig;
2779	info.si_errno = 0;
2780	info.si_code = SI_TKILL;
2781	info.si_pid = task_tgid_vnr(current);
2782	info.si_uid = current_uid();
2783
2784	return do_send_specific(tgid, pid, sig, &info);
2785}
2786
2787/**
2788 *  sys_tgkill - send signal to one specific thread
2789 *  @tgid: the thread group ID of the thread
2790 *  @pid: the PID of the thread
2791 *  @sig: signal to be sent
2792 *
2793 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2794 *  exists but it's not belonging to the target process anymore. This
2795 *  method solves the problem of threads exiting and PIDs getting reused.
2796 */
2797SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2798{
2799	/* This is only valid for single tasks */
2800	if (pid <= 0 || tgid <= 0)
2801		return -EINVAL;
2802
2803	return do_tkill(tgid, pid, sig);
2804}
2805
2806/**
2807 *  sys_tkill - send signal to one specific task
2808 *  @pid: the PID of the task
2809 *  @sig: signal to be sent
2810 *
2811 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2812 */
2813SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2814{
2815	/* This is only valid for single tasks */
2816	if (pid <= 0)
2817		return -EINVAL;
2818
2819	return do_tkill(0, pid, sig);
2820}
2821
 
 
 
 
 
 
 
 
 
 
 
 
 
2822/**
2823 *  sys_rt_sigqueueinfo - send signal information to a signal
2824 *  @pid: the PID of the thread
2825 *  @sig: signal to be sent
2826 *  @uinfo: signal info to be sent
2827 */
2828SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2829		siginfo_t __user *, uinfo)
2830{
2831	siginfo_t info;
 
 
 
 
 
2832
2833	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2834		return -EFAULT;
2835
2836	/* Not even root can pretend to send signals from the kernel.
2837	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2838	 */
2839	if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2840		/* We used to allow any < 0 si_code */
2841		WARN_ON_ONCE(info.si_code < 0);
2842		return -EPERM;
2843	}
2844	info.si_signo = sig;
2845
2846	/* POSIX.1b doesn't mention process groups.  */
2847	return kill_proc_info(sig, &info, pid);
2848}
 
2849
2850long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2851{
2852	/* This is only valid for single tasks */
2853	if (pid <= 0 || tgid <= 0)
2854		return -EINVAL;
2855
2856	/* Not even root can pretend to send signals from the kernel.
2857	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2858	 */
2859	if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2860		/* We used to allow any < 0 si_code */
2861		WARN_ON_ONCE(info->si_code < 0);
2862		return -EPERM;
2863	}
2864	info->si_signo = sig;
2865
2866	return do_send_specific(tgid, pid, sig, info);
2867}
2868
2869SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2870		siginfo_t __user *, uinfo)
2871{
2872	siginfo_t info;
 
 
 
 
 
2873
2874	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2875		return -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2876
2877	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
 
 
2878}
2879
2880int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2881{
2882	struct task_struct *t = current;
2883	struct k_sigaction *k;
2884	sigset_t mask;
2885
2886	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2887		return -EINVAL;
2888
2889	k = &t->sighand->action[sig-1];
2890
2891	spin_lock_irq(&current->sighand->siglock);
 
 
 
 
2892	if (oact)
2893		*oact = *k;
2894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2895	if (act) {
2896		sigdelsetmask(&act->sa.sa_mask,
2897			      sigmask(SIGKILL) | sigmask(SIGSTOP));
2898		*k = *act;
2899		/*
2900		 * POSIX 3.3.1.3:
2901		 *  "Setting a signal action to SIG_IGN for a signal that is
2902		 *   pending shall cause the pending signal to be discarded,
2903		 *   whether or not it is blocked."
2904		 *
2905		 *  "Setting a signal action to SIG_DFL for a signal that is
2906		 *   pending and whose default action is to ignore the signal
2907		 *   (for example, SIGCHLD), shall cause the pending signal to
2908		 *   be discarded, whether or not it is blocked"
2909		 */
2910		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2911			sigemptyset(&mask);
2912			sigaddset(&mask, sig);
2913			rm_from_queue_full(&mask, &t->signal->shared_pending);
2914			do {
2915				rm_from_queue_full(&mask, &t->pending);
2916				t = next_thread(t);
2917			} while (t != current);
2918		}
2919	}
2920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2921	spin_unlock_irq(&current->sighand->siglock);
2922	return 0;
2923}
 
 
 
 
2924
2925int 
2926do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
 
2927{
2928	stack_t oss;
2929	int error;
2930
2931	oss.ss_sp = (void __user *) current->sas_ss_sp;
2932	oss.ss_size = current->sas_ss_size;
2933	oss.ss_flags = sas_ss_flags(sp);
2934
2935	if (uss) {
2936		void __user *ss_sp;
2937		size_t ss_size;
2938		int ss_flags;
 
 
 
 
 
2939
2940		error = -EFAULT;
2941		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
2942			goto out;
2943		error = __get_user(ss_sp, &uss->ss_sp) |
2944			__get_user(ss_flags, &uss->ss_flags) |
2945			__get_user(ss_size, &uss->ss_size);
2946		if (error)
2947			goto out;
2948
2949		error = -EPERM;
2950		if (on_sig_stack(sp))
2951			goto out;
 
2952
2953		error = -EINVAL;
2954		/*
2955		 * Note - this code used to test ss_flags incorrectly:
2956		 *  	  old code may have been written using ss_flags==0
2957		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
2958		 *	  way that worked) - this fix preserves that older
2959		 *	  mechanism.
2960		 */
2961		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2962			goto out;
 
 
2963
2964		if (ss_flags == SS_DISABLE) {
 
2965			ss_size = 0;
2966			ss_sp = NULL;
2967		} else {
2968			error = -ENOMEM;
2969			if (ss_size < MINSIGSTKSZ)
2970				goto out;
 
2971		}
 
 
 
 
 
 
 
 
 
2972
2973		current->sas_ss_sp = (unsigned long) ss_sp;
2974		current->sas_ss_size = ss_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2975	}
 
 
2976
2977	error = 0;
2978	if (uoss) {
2979		error = -EFAULT;
2980		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
2981			goto out;
2982		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
2983			__put_user(oss.ss_size, &uoss->ss_size) |
2984			__put_user(oss.ss_flags, &uoss->ss_flags);
2985	}
 
 
 
 
2986
2987out:
2988	return error;
 
 
 
 
 
 
 
2989}
 
2990
2991#ifdef __ARCH_WANT_SYS_SIGPENDING
2992
2993/**
2994 *  sys_sigpending - examine pending signals
2995 *  @set: where mask of pending signal is returned
2996 */
2997SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
2998{
2999	return do_sigpending(set, sizeof(*set));
 
 
 
 
 
 
 
 
 
 
3000}
3001
 
 
 
 
 
 
 
 
 
 
 
3002#endif
3003
3004#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3005/**
3006 *  sys_sigprocmask - examine and change blocked signals
3007 *  @how: whether to add, remove, or set signals
3008 *  @nset: signals to add or remove (if non-null)
3009 *  @oset: previous value of signal mask if non-null
3010 *
3011 * Some platforms have their own version with special arguments;
3012 * others support only sys_rt_sigprocmask.
3013 */
3014
3015SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3016		old_sigset_t __user *, oset)
3017{
3018	old_sigset_t old_set, new_set;
3019	sigset_t new_blocked;
3020
3021	old_set = current->blocked.sig[0];
3022
3023	if (nset) {
3024		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3025			return -EFAULT;
3026		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
3027
3028		new_blocked = current->blocked;
3029
3030		switch (how) {
3031		case SIG_BLOCK:
3032			sigaddsetmask(&new_blocked, new_set);
3033			break;
3034		case SIG_UNBLOCK:
3035			sigdelsetmask(&new_blocked, new_set);
3036			break;
3037		case SIG_SETMASK:
3038			new_blocked.sig[0] = new_set;
3039			break;
3040		default:
3041			return -EINVAL;
3042		}
3043
3044		set_current_blocked(&new_blocked);
3045	}
3046
3047	if (oset) {
3048		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3049			return -EFAULT;
3050	}
3051
3052	return 0;
3053}
3054#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3055
3056#ifdef __ARCH_WANT_SYS_RT_SIGACTION
3057/**
3058 *  sys_rt_sigaction - alter an action taken by a process
3059 *  @sig: signal to be sent
3060 *  @act: new sigaction
3061 *  @oact: used to save the previous sigaction
3062 *  @sigsetsize: size of sigset_t type
3063 */
3064SYSCALL_DEFINE4(rt_sigaction, int, sig,
3065		const struct sigaction __user *, act,
3066		struct sigaction __user *, oact,
3067		size_t, sigsetsize)
3068{
3069	struct k_sigaction new_sa, old_sa;
3070	int ret = -EINVAL;
3071
3072	/* XXX: Don't preclude handling different sized sigset_t's.  */
3073	if (sigsetsize != sizeof(sigset_t))
3074		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3075
3076	if (act) {
3077		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
 
 
 
 
3078			return -EFAULT;
 
 
 
 
 
 
 
3079	}
3080
3081	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3082
3083	if (!ret && oact) {
3084		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
 
 
 
 
 
 
3085			return -EFAULT;
3086	}
3087out:
3088	return ret;
3089}
3090#endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3091
3092#ifdef __ARCH_WANT_SYS_SGETMASK
3093
3094/*
3095 * For backwards compatibility.  Functionality superseded by sigprocmask.
3096 */
3097SYSCALL_DEFINE0(sgetmask)
3098{
3099	/* SMP safe */
3100	return current->blocked.sig[0];
3101}
3102
3103SYSCALL_DEFINE1(ssetmask, int, newmask)
3104{
3105	int old = current->blocked.sig[0];
3106	sigset_t newset;
3107
3108	siginitset(&newset, newmask & ~(sigmask(SIGKILL) | sigmask(SIGSTOP)));
3109	set_current_blocked(&newset);
3110
3111	return old;
3112}
3113#endif /* __ARCH_WANT_SGETMASK */
3114
3115#ifdef __ARCH_WANT_SYS_SIGNAL
3116/*
3117 * For backwards compatibility.  Functionality superseded by sigaction.
3118 */
3119SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3120{
3121	struct k_sigaction new_sa, old_sa;
3122	int ret;
3123
3124	new_sa.sa.sa_handler = handler;
3125	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3126	sigemptyset(&new_sa.sa.sa_mask);
3127
3128	ret = do_sigaction(sig, &new_sa, &old_sa);
3129
3130	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3131}
3132#endif /* __ARCH_WANT_SYS_SIGNAL */
3133
3134#ifdef __ARCH_WANT_SYS_PAUSE
3135
3136SYSCALL_DEFINE0(pause)
3137{
3138	while (!signal_pending(current)) {
3139		current->state = TASK_INTERRUPTIBLE;
3140		schedule();
3141	}
3142	return -ERESTARTNOHAND;
3143}
3144
3145#endif
3146
3147#ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
 
 
 
 
 
 
 
 
 
 
 
 
3148/**
3149 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3150 *	@unewset value until a signal is received
3151 *  @unewset: new signal mask value
3152 *  @sigsetsize: size of sigset_t type
3153 */
3154SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3155{
3156	sigset_t newset;
3157
3158	/* XXX: Don't preclude handling different sized sigset_t's.  */
3159	if (sigsetsize != sizeof(sigset_t))
3160		return -EINVAL;
3161
3162	if (copy_from_user(&newset, unewset, sizeof(newset)))
3163		return -EFAULT;
3164	sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
 
 
 
 
 
 
 
 
 
 
3165
3166	current->saved_sigmask = current->blocked;
3167	set_current_blocked(&newset);
 
 
 
3168
3169	current->state = TASK_INTERRUPTIBLE;
3170	schedule();
3171	set_restore_sigmask();
3172	return -ERESTARTNOHAND;
 
 
 
 
 
 
 
 
 
 
3173}
3174#endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3175
3176__attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3177{
3178	return NULL;
3179}
3180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3181void __init signals_init(void)
3182{
3183	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
 
 
3184}
3185
3186#ifdef CONFIG_KGDB_KDB
3187#include <linux/kdb.h>
3188/*
3189 * kdb_send_sig_info - Allows kdb to send signals without exposing
3190 * signal internals.  This function checks if the required locks are
3191 * available before calling the main signal code, to avoid kdb
3192 * deadlocks.
3193 */
3194void
3195kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3196{
3197	static struct task_struct *kdb_prev_t;
3198	int sig, new_t;
3199	if (!spin_trylock(&t->sighand->siglock)) {
3200		kdb_printf("Can't do kill command now.\n"
3201			   "The sigmask lock is held somewhere else in "
3202			   "kernel, try again later\n");
3203		return;
3204	}
3205	spin_unlock(&t->sighand->siglock);
3206	new_t = kdb_prev_t != t;
3207	kdb_prev_t = t;
3208	if (t->state != TASK_RUNNING && new_t) {
 
3209		kdb_printf("Process is not RUNNING, sending a signal from "
3210			   "kdb risks deadlock\n"
3211			   "on the run queue locks. "
3212			   "The signal has _not_ been sent.\n"
3213			   "Reissue the kill command if you want to risk "
3214			   "the deadlock.\n");
3215		return;
3216	}
3217	sig = info->si_signo;
3218	if (send_sig_info(sig, info, t))
 
3219		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3220			   sig, t->pid);
3221	else
3222		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3223}
3224#endif	/* CONFIG_KGDB_KDB */