Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Deadline Scheduling Class (SCHED_DEADLINE)
   4 *
   5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
   6 *
   7 * Tasks that periodically executes their instances for less than their
   8 * runtime won't miss any of their deadlines.
   9 * Tasks that are not periodic or sporadic or that tries to execute more
  10 * than their reserved bandwidth will be slowed down (and may potentially
  11 * miss some of their deadlines), and won't affect any other task.
  12 *
  13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
  14 *                    Juri Lelli <juri.lelli@gmail.com>,
  15 *                    Michael Trimarchi <michael@amarulasolutions.com>,
  16 *                    Fabio Checconi <fchecconi@gmail.com>
  17 */
  18
  19/*
  20 * Default limits for DL period; on the top end we guard against small util
  21 * tasks still getting ridiculously long effective runtimes, on the bottom end we
  22 * guard against timer DoS.
  23 */
  24static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
  25static unsigned int sysctl_sched_dl_period_min = 100;     /* 100 us */
  26#ifdef CONFIG_SYSCTL
  27static struct ctl_table sched_dl_sysctls[] = {
  28	{
  29		.procname       = "sched_deadline_period_max_us",
  30		.data           = &sysctl_sched_dl_period_max,
  31		.maxlen         = sizeof(unsigned int),
  32		.mode           = 0644,
  33		.proc_handler   = proc_douintvec_minmax,
  34		.extra1         = (void *)&sysctl_sched_dl_period_min,
  35	},
  36	{
  37		.procname       = "sched_deadline_period_min_us",
  38		.data           = &sysctl_sched_dl_period_min,
  39		.maxlen         = sizeof(unsigned int),
  40		.mode           = 0644,
  41		.proc_handler   = proc_douintvec_minmax,
  42		.extra2         = (void *)&sysctl_sched_dl_period_max,
  43	},
  44	{}
  45};
  46
  47static int __init sched_dl_sysctl_init(void)
  48{
  49	register_sysctl_init("kernel", sched_dl_sysctls);
  50	return 0;
  51}
  52late_initcall(sched_dl_sysctl_init);
  53#endif
  54
  55static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
  56{
  57	return container_of(dl_se, struct task_struct, dl);
  58}
  59
  60static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
  61{
  62	return container_of(dl_rq, struct rq, dl);
  63}
  64
  65static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
  66{
  67	struct task_struct *p = dl_task_of(dl_se);
  68	struct rq *rq = task_rq(p);
  69
  70	return &rq->dl;
  71}
  72
  73static inline int on_dl_rq(struct sched_dl_entity *dl_se)
  74{
  75	return !RB_EMPTY_NODE(&dl_se->rb_node);
  76}
  77
  78#ifdef CONFIG_RT_MUTEXES
  79static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
  80{
  81	return dl_se->pi_se;
  82}
  83
  84static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
  85{
  86	return pi_of(dl_se) != dl_se;
  87}
  88#else
  89static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
  90{
  91	return dl_se;
  92}
  93
  94static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
  95{
  96	return false;
  97}
  98#endif
  99
 100#ifdef CONFIG_SMP
 101static inline struct dl_bw *dl_bw_of(int i)
 102{
 103	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
 104			 "sched RCU must be held");
 105	return &cpu_rq(i)->rd->dl_bw;
 106}
 107
 108static inline int dl_bw_cpus(int i)
 109{
 110	struct root_domain *rd = cpu_rq(i)->rd;
 111	int cpus;
 112
 113	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
 114			 "sched RCU must be held");
 115
 116	if (cpumask_subset(rd->span, cpu_active_mask))
 117		return cpumask_weight(rd->span);
 118
 119	cpus = 0;
 120
 121	for_each_cpu_and(i, rd->span, cpu_active_mask)
 122		cpus++;
 123
 124	return cpus;
 125}
 126
 127static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
 128{
 129	unsigned long cap = 0;
 130	int i;
 131
 132	for_each_cpu_and(i, mask, cpu_active_mask)
 133		cap += capacity_orig_of(i);
 134
 135	return cap;
 136}
 137
 138/*
 139 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
 140 * of the CPU the task is running on rather rd's \Sum CPU capacity.
 141 */
 142static inline unsigned long dl_bw_capacity(int i)
 143{
 144	if (!sched_asym_cpucap_active() &&
 145	    capacity_orig_of(i) == SCHED_CAPACITY_SCALE) {
 146		return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
 147	} else {
 148		RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
 149				 "sched RCU must be held");
 150
 151		return __dl_bw_capacity(cpu_rq(i)->rd->span);
 152	}
 153}
 154
 155static inline bool dl_bw_visited(int cpu, u64 gen)
 156{
 157	struct root_domain *rd = cpu_rq(cpu)->rd;
 158
 159	if (rd->visit_gen == gen)
 160		return true;
 161
 162	rd->visit_gen = gen;
 163	return false;
 164}
 165
 166static inline
 167void __dl_update(struct dl_bw *dl_b, s64 bw)
 168{
 169	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
 170	int i;
 171
 172	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
 173			 "sched RCU must be held");
 174	for_each_cpu_and(i, rd->span, cpu_active_mask) {
 175		struct rq *rq = cpu_rq(i);
 176
 177		rq->dl.extra_bw += bw;
 178	}
 179}
 180#else
 181static inline struct dl_bw *dl_bw_of(int i)
 182{
 183	return &cpu_rq(i)->dl.dl_bw;
 184}
 185
 186static inline int dl_bw_cpus(int i)
 187{
 188	return 1;
 189}
 190
 191static inline unsigned long dl_bw_capacity(int i)
 192{
 193	return SCHED_CAPACITY_SCALE;
 194}
 195
 196static inline bool dl_bw_visited(int cpu, u64 gen)
 197{
 198	return false;
 199}
 200
 201static inline
 202void __dl_update(struct dl_bw *dl_b, s64 bw)
 203{
 204	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
 205
 206	dl->extra_bw += bw;
 207}
 208#endif
 209
 210static inline
 211void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
 212{
 213	dl_b->total_bw -= tsk_bw;
 214	__dl_update(dl_b, (s32)tsk_bw / cpus);
 215}
 216
 217static inline
 218void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
 219{
 220	dl_b->total_bw += tsk_bw;
 221	__dl_update(dl_b, -((s32)tsk_bw / cpus));
 222}
 223
 224static inline bool
 225__dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
 226{
 227	return dl_b->bw != -1 &&
 228	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
 229}
 230
 231static inline
 232void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
 233{
 234	u64 old = dl_rq->running_bw;
 235
 236	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
 237	dl_rq->running_bw += dl_bw;
 238	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
 239	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
 240	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
 241	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
 242}
 243
 244static inline
 245void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
 246{
 247	u64 old = dl_rq->running_bw;
 248
 249	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
 250	dl_rq->running_bw -= dl_bw;
 251	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
 252	if (dl_rq->running_bw > old)
 253		dl_rq->running_bw = 0;
 254	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
 255	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
 256}
 257
 258static inline
 259void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
 260{
 261	u64 old = dl_rq->this_bw;
 262
 263	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
 264	dl_rq->this_bw += dl_bw;
 265	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
 266}
 267
 268static inline
 269void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
 270{
 271	u64 old = dl_rq->this_bw;
 272
 273	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
 274	dl_rq->this_bw -= dl_bw;
 275	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
 276	if (dl_rq->this_bw > old)
 277		dl_rq->this_bw = 0;
 278	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
 279}
 280
 281static inline
 282void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 283{
 284	if (!dl_entity_is_special(dl_se))
 285		__add_rq_bw(dl_se->dl_bw, dl_rq);
 286}
 287
 288static inline
 289void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 290{
 291	if (!dl_entity_is_special(dl_se))
 292		__sub_rq_bw(dl_se->dl_bw, dl_rq);
 293}
 294
 295static inline
 296void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 297{
 298	if (!dl_entity_is_special(dl_se))
 299		__add_running_bw(dl_se->dl_bw, dl_rq);
 300}
 301
 302static inline
 303void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 304{
 305	if (!dl_entity_is_special(dl_se))
 306		__sub_running_bw(dl_se->dl_bw, dl_rq);
 307}
 308
 309static void dl_change_utilization(struct task_struct *p, u64 new_bw)
 310{
 311	struct rq *rq;
 312
 313	WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
 314
 315	if (task_on_rq_queued(p))
 316		return;
 317
 318	rq = task_rq(p);
 319	if (p->dl.dl_non_contending) {
 320		sub_running_bw(&p->dl, &rq->dl);
 321		p->dl.dl_non_contending = 0;
 322		/*
 323		 * If the timer handler is currently running and the
 324		 * timer cannot be canceled, inactive_task_timer()
 325		 * will see that dl_not_contending is not set, and
 326		 * will not touch the rq's active utilization,
 327		 * so we are still safe.
 328		 */
 329		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
 330			put_task_struct(p);
 331	}
 332	__sub_rq_bw(p->dl.dl_bw, &rq->dl);
 333	__add_rq_bw(new_bw, &rq->dl);
 334}
 335
 336/*
 337 * The utilization of a task cannot be immediately removed from
 338 * the rq active utilization (running_bw) when the task blocks.
 339 * Instead, we have to wait for the so called "0-lag time".
 340 *
 341 * If a task blocks before the "0-lag time", a timer (the inactive
 342 * timer) is armed, and running_bw is decreased when the timer
 343 * fires.
 344 *
 345 * If the task wakes up again before the inactive timer fires,
 346 * the timer is canceled, whereas if the task wakes up after the
 347 * inactive timer fired (and running_bw has been decreased) the
 348 * task's utilization has to be added to running_bw again.
 349 * A flag in the deadline scheduling entity (dl_non_contending)
 350 * is used to avoid race conditions between the inactive timer handler
 351 * and task wakeups.
 352 *
 353 * The following diagram shows how running_bw is updated. A task is
 354 * "ACTIVE" when its utilization contributes to running_bw; an
 355 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
 356 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
 357 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
 358 * time already passed, which does not contribute to running_bw anymore.
 359 *                              +------------------+
 360 *             wakeup           |    ACTIVE        |
 361 *          +------------------>+   contending     |
 362 *          | add_running_bw    |                  |
 363 *          |                   +----+------+------+
 364 *          |                        |      ^
 365 *          |                dequeue |      |
 366 * +--------+-------+                |      |
 367 * |                |   t >= 0-lag   |      | wakeup
 368 * |    INACTIVE    |<---------------+      |
 369 * |                | sub_running_bw |      |
 370 * +--------+-------+                |      |
 371 *          ^                        |      |
 372 *          |              t < 0-lag |      |
 373 *          |                        |      |
 374 *          |                        V      |
 375 *          |                   +----+------+------+
 376 *          | sub_running_bw    |    ACTIVE        |
 377 *          +-------------------+                  |
 378 *            inactive timer    |  non contending  |
 379 *            fired             +------------------+
 380 *
 381 * The task_non_contending() function is invoked when a task
 382 * blocks, and checks if the 0-lag time already passed or
 383 * not (in the first case, it directly updates running_bw;
 384 * in the second case, it arms the inactive timer).
 385 *
 386 * The task_contending() function is invoked when a task wakes
 387 * up, and checks if the task is still in the "ACTIVE non contending"
 388 * state or not (in the second case, it updates running_bw).
 389 */
 390static void task_non_contending(struct task_struct *p)
 391{
 392	struct sched_dl_entity *dl_se = &p->dl;
 393	struct hrtimer *timer = &dl_se->inactive_timer;
 394	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 395	struct rq *rq = rq_of_dl_rq(dl_rq);
 396	s64 zerolag_time;
 397
 398	/*
 399	 * If this is a non-deadline task that has been boosted,
 400	 * do nothing
 401	 */
 402	if (dl_se->dl_runtime == 0)
 403		return;
 404
 405	if (dl_entity_is_special(dl_se))
 406		return;
 407
 408	WARN_ON(dl_se->dl_non_contending);
 409
 410	zerolag_time = dl_se->deadline -
 411		 div64_long((dl_se->runtime * dl_se->dl_period),
 412			dl_se->dl_runtime);
 413
 414	/*
 415	 * Using relative times instead of the absolute "0-lag time"
 416	 * allows to simplify the code
 417	 */
 418	zerolag_time -= rq_clock(rq);
 419
 420	/*
 421	 * If the "0-lag time" already passed, decrease the active
 422	 * utilization now, instead of starting a timer
 423	 */
 424	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
 425		if (dl_task(p))
 426			sub_running_bw(dl_se, dl_rq);
 427		if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
 428			struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
 429
 430			if (READ_ONCE(p->__state) == TASK_DEAD)
 431				sub_rq_bw(&p->dl, &rq->dl);
 432			raw_spin_lock(&dl_b->lock);
 433			__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
 434			raw_spin_unlock(&dl_b->lock);
 435			__dl_clear_params(p);
 436		}
 437
 438		return;
 439	}
 440
 441	dl_se->dl_non_contending = 1;
 442	get_task_struct(p);
 443	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
 444}
 445
 446static void task_contending(struct sched_dl_entity *dl_se, int flags)
 447{
 448	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 449
 450	/*
 451	 * If this is a non-deadline task that has been boosted,
 452	 * do nothing
 453	 */
 454	if (dl_se->dl_runtime == 0)
 455		return;
 456
 457	if (flags & ENQUEUE_MIGRATED)
 458		add_rq_bw(dl_se, dl_rq);
 459
 460	if (dl_se->dl_non_contending) {
 461		dl_se->dl_non_contending = 0;
 462		/*
 463		 * If the timer handler is currently running and the
 464		 * timer cannot be canceled, inactive_task_timer()
 465		 * will see that dl_not_contending is not set, and
 466		 * will not touch the rq's active utilization,
 467		 * so we are still safe.
 468		 */
 469		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
 470			put_task_struct(dl_task_of(dl_se));
 471	} else {
 472		/*
 473		 * Since "dl_non_contending" is not set, the
 474		 * task's utilization has already been removed from
 475		 * active utilization (either when the task blocked,
 476		 * when the "inactive timer" fired).
 477		 * So, add it back.
 478		 */
 479		add_running_bw(dl_se, dl_rq);
 480	}
 481}
 482
 483static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
 484{
 485	struct sched_dl_entity *dl_se = &p->dl;
 486
 487	return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
 488}
 489
 490static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
 491
 492void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
 493{
 494	raw_spin_lock_init(&dl_b->dl_runtime_lock);
 495	dl_b->dl_period = period;
 496	dl_b->dl_runtime = runtime;
 497}
 498
 499void init_dl_bw(struct dl_bw *dl_b)
 500{
 501	raw_spin_lock_init(&dl_b->lock);
 502	if (global_rt_runtime() == RUNTIME_INF)
 503		dl_b->bw = -1;
 504	else
 505		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
 506	dl_b->total_bw = 0;
 507}
 508
 509void init_dl_rq(struct dl_rq *dl_rq)
 510{
 511	dl_rq->root = RB_ROOT_CACHED;
 512
 513#ifdef CONFIG_SMP
 514	/* zero means no -deadline tasks */
 515	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
 516
 517	dl_rq->dl_nr_migratory = 0;
 518	dl_rq->overloaded = 0;
 519	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
 520#else
 521	init_dl_bw(&dl_rq->dl_bw);
 522#endif
 523
 524	dl_rq->running_bw = 0;
 525	dl_rq->this_bw = 0;
 526	init_dl_rq_bw_ratio(dl_rq);
 527}
 528
 529#ifdef CONFIG_SMP
 530
 531static inline int dl_overloaded(struct rq *rq)
 532{
 533	return atomic_read(&rq->rd->dlo_count);
 534}
 535
 536static inline void dl_set_overload(struct rq *rq)
 537{
 538	if (!rq->online)
 539		return;
 540
 541	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
 542	/*
 543	 * Must be visible before the overload count is
 544	 * set (as in sched_rt.c).
 545	 *
 546	 * Matched by the barrier in pull_dl_task().
 547	 */
 548	smp_wmb();
 549	atomic_inc(&rq->rd->dlo_count);
 550}
 551
 552static inline void dl_clear_overload(struct rq *rq)
 553{
 554	if (!rq->online)
 555		return;
 556
 557	atomic_dec(&rq->rd->dlo_count);
 558	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
 559}
 560
 561static void update_dl_migration(struct dl_rq *dl_rq)
 562{
 563	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
 564		if (!dl_rq->overloaded) {
 565			dl_set_overload(rq_of_dl_rq(dl_rq));
 566			dl_rq->overloaded = 1;
 567		}
 568	} else if (dl_rq->overloaded) {
 569		dl_clear_overload(rq_of_dl_rq(dl_rq));
 570		dl_rq->overloaded = 0;
 571	}
 572}
 573
 574static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 575{
 576	struct task_struct *p = dl_task_of(dl_se);
 577
 578	if (p->nr_cpus_allowed > 1)
 579		dl_rq->dl_nr_migratory++;
 580
 581	update_dl_migration(dl_rq);
 582}
 583
 584static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 585{
 586	struct task_struct *p = dl_task_of(dl_se);
 587
 588	if (p->nr_cpus_allowed > 1)
 589		dl_rq->dl_nr_migratory--;
 590
 591	update_dl_migration(dl_rq);
 592}
 593
 594#define __node_2_pdl(node) \
 595	rb_entry((node), struct task_struct, pushable_dl_tasks)
 596
 597static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
 598{
 599	return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
 600}
 601
 602/*
 603 * The list of pushable -deadline task is not a plist, like in
 604 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
 605 */
 606static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 607{
 608	struct rb_node *leftmost;
 609
 610	WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
 611
 612	leftmost = rb_add_cached(&p->pushable_dl_tasks,
 613				 &rq->dl.pushable_dl_tasks_root,
 614				 __pushable_less);
 615	if (leftmost)
 616		rq->dl.earliest_dl.next = p->dl.deadline;
 617}
 618
 619static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 620{
 621	struct dl_rq *dl_rq = &rq->dl;
 622	struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
 623	struct rb_node *leftmost;
 624
 625	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
 626		return;
 627
 628	leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
 629	if (leftmost)
 630		dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
 631
 632	RB_CLEAR_NODE(&p->pushable_dl_tasks);
 633}
 634
 635static inline int has_pushable_dl_tasks(struct rq *rq)
 636{
 637	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
 638}
 639
 640static int push_dl_task(struct rq *rq);
 641
 642static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 643{
 644	return rq->online && dl_task(prev);
 645}
 646
 647static DEFINE_PER_CPU(struct balance_callback, dl_push_head);
 648static DEFINE_PER_CPU(struct balance_callback, dl_pull_head);
 649
 650static void push_dl_tasks(struct rq *);
 651static void pull_dl_task(struct rq *);
 652
 653static inline void deadline_queue_push_tasks(struct rq *rq)
 654{
 655	if (!has_pushable_dl_tasks(rq))
 656		return;
 657
 658	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
 659}
 660
 661static inline void deadline_queue_pull_task(struct rq *rq)
 662{
 663	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
 664}
 665
 666static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
 667
 668static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
 669{
 670	struct rq *later_rq = NULL;
 671	struct dl_bw *dl_b;
 672
 673	later_rq = find_lock_later_rq(p, rq);
 674	if (!later_rq) {
 675		int cpu;
 676
 677		/*
 678		 * If we cannot preempt any rq, fall back to pick any
 679		 * online CPU:
 680		 */
 681		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
 682		if (cpu >= nr_cpu_ids) {
 683			/*
 684			 * Failed to find any suitable CPU.
 685			 * The task will never come back!
 686			 */
 687			WARN_ON_ONCE(dl_bandwidth_enabled());
 688
 689			/*
 690			 * If admission control is disabled we
 691			 * try a little harder to let the task
 692			 * run.
 693			 */
 694			cpu = cpumask_any(cpu_active_mask);
 695		}
 696		later_rq = cpu_rq(cpu);
 697		double_lock_balance(rq, later_rq);
 698	}
 699
 700	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
 701		/*
 702		 * Inactive timer is armed (or callback is running, but
 703		 * waiting for us to release rq locks). In any case, when it
 704		 * will fire (or continue), it will see running_bw of this
 705		 * task migrated to later_rq (and correctly handle it).
 706		 */
 707		sub_running_bw(&p->dl, &rq->dl);
 708		sub_rq_bw(&p->dl, &rq->dl);
 709
 710		add_rq_bw(&p->dl, &later_rq->dl);
 711		add_running_bw(&p->dl, &later_rq->dl);
 712	} else {
 713		sub_rq_bw(&p->dl, &rq->dl);
 714		add_rq_bw(&p->dl, &later_rq->dl);
 715	}
 716
 717	/*
 718	 * And we finally need to fixup root_domain(s) bandwidth accounting,
 719	 * since p is still hanging out in the old (now moved to default) root
 720	 * domain.
 721	 */
 722	dl_b = &rq->rd->dl_bw;
 723	raw_spin_lock(&dl_b->lock);
 724	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
 725	raw_spin_unlock(&dl_b->lock);
 726
 727	dl_b = &later_rq->rd->dl_bw;
 728	raw_spin_lock(&dl_b->lock);
 729	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
 730	raw_spin_unlock(&dl_b->lock);
 731
 732	set_task_cpu(p, later_rq->cpu);
 733	double_unlock_balance(later_rq, rq);
 734
 735	return later_rq;
 736}
 737
 738#else
 739
 740static inline
 741void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 742{
 743}
 744
 745static inline
 746void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 747{
 748}
 749
 750static inline
 751void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 752{
 753}
 754
 755static inline
 756void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 757{
 758}
 759
 760static inline void deadline_queue_push_tasks(struct rq *rq)
 761{
 762}
 763
 764static inline void deadline_queue_pull_task(struct rq *rq)
 765{
 766}
 767#endif /* CONFIG_SMP */
 768
 769static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 770static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 771static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
 772
 773static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
 774					    struct rq *rq)
 775{
 776	/* for non-boosted task, pi_of(dl_se) == dl_se */
 777	dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
 778	dl_se->runtime = pi_of(dl_se)->dl_runtime;
 779}
 780
 781/*
 782 * We are being explicitly informed that a new instance is starting,
 783 * and this means that:
 784 *  - the absolute deadline of the entity has to be placed at
 785 *    current time + relative deadline;
 786 *  - the runtime of the entity has to be set to the maximum value.
 787 *
 788 * The capability of specifying such event is useful whenever a -deadline
 789 * entity wants to (try to!) synchronize its behaviour with the scheduler's
 790 * one, and to (try to!) reconcile itself with its own scheduling
 791 * parameters.
 792 */
 793static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
 794{
 795	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 796	struct rq *rq = rq_of_dl_rq(dl_rq);
 797
 798	WARN_ON(is_dl_boosted(dl_se));
 799	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
 800
 801	/*
 802	 * We are racing with the deadline timer. So, do nothing because
 803	 * the deadline timer handler will take care of properly recharging
 804	 * the runtime and postponing the deadline
 805	 */
 806	if (dl_se->dl_throttled)
 807		return;
 808
 809	/*
 810	 * We use the regular wall clock time to set deadlines in the
 811	 * future; in fact, we must consider execution overheads (time
 812	 * spent on hardirq context, etc.).
 813	 */
 814	replenish_dl_new_period(dl_se, rq);
 815}
 816
 817/*
 818 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
 819 * possibility of a entity lasting more than what it declared, and thus
 820 * exhausting its runtime.
 821 *
 822 * Here we are interested in making runtime overrun possible, but we do
 823 * not want a entity which is misbehaving to affect the scheduling of all
 824 * other entities.
 825 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
 826 * is used, in order to confine each entity within its own bandwidth.
 827 *
 828 * This function deals exactly with that, and ensures that when the runtime
 829 * of a entity is replenished, its deadline is also postponed. That ensures
 830 * the overrunning entity can't interfere with other entity in the system and
 831 * can't make them miss their deadlines. Reasons why this kind of overruns
 832 * could happen are, typically, a entity voluntarily trying to overcome its
 833 * runtime, or it just underestimated it during sched_setattr().
 834 */
 835static void replenish_dl_entity(struct sched_dl_entity *dl_se)
 836{
 837	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 838	struct rq *rq = rq_of_dl_rq(dl_rq);
 839
 840	WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
 841
 842	/*
 843	 * This could be the case for a !-dl task that is boosted.
 844	 * Just go with full inherited parameters.
 845	 */
 846	if (dl_se->dl_deadline == 0)
 847		replenish_dl_new_period(dl_se, rq);
 848
 849	if (dl_se->dl_yielded && dl_se->runtime > 0)
 850		dl_se->runtime = 0;
 851
 852	/*
 853	 * We keep moving the deadline away until we get some
 854	 * available runtime for the entity. This ensures correct
 855	 * handling of situations where the runtime overrun is
 856	 * arbitrary large.
 857	 */
 858	while (dl_se->runtime <= 0) {
 859		dl_se->deadline += pi_of(dl_se)->dl_period;
 860		dl_se->runtime += pi_of(dl_se)->dl_runtime;
 861	}
 862
 863	/*
 864	 * At this point, the deadline really should be "in
 865	 * the future" with respect to rq->clock. If it's
 866	 * not, we are, for some reason, lagging too much!
 867	 * Anyway, after having warn userspace abut that,
 868	 * we still try to keep the things running by
 869	 * resetting the deadline and the budget of the
 870	 * entity.
 871	 */
 872	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
 873		printk_deferred_once("sched: DL replenish lagged too much\n");
 874		replenish_dl_new_period(dl_se, rq);
 875	}
 876
 877	if (dl_se->dl_yielded)
 878		dl_se->dl_yielded = 0;
 879	if (dl_se->dl_throttled)
 880		dl_se->dl_throttled = 0;
 881}
 882
 883/*
 884 * Here we check if --at time t-- an entity (which is probably being
 885 * [re]activated or, in general, enqueued) can use its remaining runtime
 886 * and its current deadline _without_ exceeding the bandwidth it is
 887 * assigned (function returns true if it can't). We are in fact applying
 888 * one of the CBS rules: when a task wakes up, if the residual runtime
 889 * over residual deadline fits within the allocated bandwidth, then we
 890 * can keep the current (absolute) deadline and residual budget without
 891 * disrupting the schedulability of the system. Otherwise, we should
 892 * refill the runtime and set the deadline a period in the future,
 893 * because keeping the current (absolute) deadline of the task would
 894 * result in breaking guarantees promised to other tasks (refer to
 895 * Documentation/scheduler/sched-deadline.rst for more information).
 896 *
 897 * This function returns true if:
 898 *
 899 *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
 900 *
 901 * IOW we can't recycle current parameters.
 902 *
 903 * Notice that the bandwidth check is done against the deadline. For
 904 * task with deadline equal to period this is the same of using
 905 * dl_period instead of dl_deadline in the equation above.
 906 */
 907static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
 908{
 909	u64 left, right;
 910
 911	/*
 912	 * left and right are the two sides of the equation above,
 913	 * after a bit of shuffling to use multiplications instead
 914	 * of divisions.
 915	 *
 916	 * Note that none of the time values involved in the two
 917	 * multiplications are absolute: dl_deadline and dl_runtime
 918	 * are the relative deadline and the maximum runtime of each
 919	 * instance, runtime is the runtime left for the last instance
 920	 * and (deadline - t), since t is rq->clock, is the time left
 921	 * to the (absolute) deadline. Even if overflowing the u64 type
 922	 * is very unlikely to occur in both cases, here we scale down
 923	 * as we want to avoid that risk at all. Scaling down by 10
 924	 * means that we reduce granularity to 1us. We are fine with it,
 925	 * since this is only a true/false check and, anyway, thinking
 926	 * of anything below microseconds resolution is actually fiction
 927	 * (but still we want to give the user that illusion >;).
 928	 */
 929	left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
 930	right = ((dl_se->deadline - t) >> DL_SCALE) *
 931		(pi_of(dl_se)->dl_runtime >> DL_SCALE);
 932
 933	return dl_time_before(right, left);
 934}
 935
 936/*
 937 * Revised wakeup rule [1]: For self-suspending tasks, rather then
 938 * re-initializing task's runtime and deadline, the revised wakeup
 939 * rule adjusts the task's runtime to avoid the task to overrun its
 940 * density.
 941 *
 942 * Reasoning: a task may overrun the density if:
 943 *    runtime / (deadline - t) > dl_runtime / dl_deadline
 944 *
 945 * Therefore, runtime can be adjusted to:
 946 *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
 947 *
 948 * In such way that runtime will be equal to the maximum density
 949 * the task can use without breaking any rule.
 950 *
 951 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
 952 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
 953 */
 954static void
 955update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
 956{
 957	u64 laxity = dl_se->deadline - rq_clock(rq);
 958
 959	/*
 960	 * If the task has deadline < period, and the deadline is in the past,
 961	 * it should already be throttled before this check.
 962	 *
 963	 * See update_dl_entity() comments for further details.
 964	 */
 965	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
 966
 967	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
 968}
 969
 970/*
 971 * Regarding the deadline, a task with implicit deadline has a relative
 972 * deadline == relative period. A task with constrained deadline has a
 973 * relative deadline <= relative period.
 974 *
 975 * We support constrained deadline tasks. However, there are some restrictions
 976 * applied only for tasks which do not have an implicit deadline. See
 977 * update_dl_entity() to know more about such restrictions.
 978 *
 979 * The dl_is_implicit() returns true if the task has an implicit deadline.
 980 */
 981static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
 982{
 983	return dl_se->dl_deadline == dl_se->dl_period;
 984}
 985
 986/*
 987 * When a deadline entity is placed in the runqueue, its runtime and deadline
 988 * might need to be updated. This is done by a CBS wake up rule. There are two
 989 * different rules: 1) the original CBS; and 2) the Revisited CBS.
 990 *
 991 * When the task is starting a new period, the Original CBS is used. In this
 992 * case, the runtime is replenished and a new absolute deadline is set.
 993 *
 994 * When a task is queued before the begin of the next period, using the
 995 * remaining runtime and deadline could make the entity to overflow, see
 996 * dl_entity_overflow() to find more about runtime overflow. When such case
 997 * is detected, the runtime and deadline need to be updated.
 998 *
 999 * If the task has an implicit deadline, i.e., deadline == period, the Original
1000 * CBS is applied. the runtime is replenished and a new absolute deadline is
1001 * set, as in the previous cases.
1002 *
1003 * However, the Original CBS does not work properly for tasks with
1004 * deadline < period, which are said to have a constrained deadline. By
1005 * applying the Original CBS, a constrained deadline task would be able to run
1006 * runtime/deadline in a period. With deadline < period, the task would
1007 * overrun the runtime/period allowed bandwidth, breaking the admission test.
1008 *
1009 * In order to prevent this misbehave, the Revisited CBS is used for
1010 * constrained deadline tasks when a runtime overflow is detected. In the
1011 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
1012 * the remaining runtime of the task is reduced to avoid runtime overflow.
1013 * Please refer to the comments update_dl_revised_wakeup() function to find
1014 * more about the Revised CBS rule.
1015 */
1016static void update_dl_entity(struct sched_dl_entity *dl_se)
1017{
1018	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1019	struct rq *rq = rq_of_dl_rq(dl_rq);
1020
1021	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
1022	    dl_entity_overflow(dl_se, rq_clock(rq))) {
1023
1024		if (unlikely(!dl_is_implicit(dl_se) &&
1025			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1026			     !is_dl_boosted(dl_se))) {
1027			update_dl_revised_wakeup(dl_se, rq);
1028			return;
1029		}
1030
1031		replenish_dl_new_period(dl_se, rq);
1032	}
1033}
1034
1035static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
1036{
1037	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
1038}
1039
1040/*
1041 * If the entity depleted all its runtime, and if we want it to sleep
1042 * while waiting for some new execution time to become available, we
1043 * set the bandwidth replenishment timer to the replenishment instant
1044 * and try to activate it.
1045 *
1046 * Notice that it is important for the caller to know if the timer
1047 * actually started or not (i.e., the replenishment instant is in
1048 * the future or in the past).
1049 */
1050static int start_dl_timer(struct task_struct *p)
1051{
1052	struct sched_dl_entity *dl_se = &p->dl;
1053	struct hrtimer *timer = &dl_se->dl_timer;
1054	struct rq *rq = task_rq(p);
1055	ktime_t now, act;
1056	s64 delta;
1057
1058	lockdep_assert_rq_held(rq);
1059
1060	/*
1061	 * We want the timer to fire at the deadline, but considering
1062	 * that it is actually coming from rq->clock and not from
1063	 * hrtimer's time base reading.
1064	 */
1065	act = ns_to_ktime(dl_next_period(dl_se));
1066	now = hrtimer_cb_get_time(timer);
1067	delta = ktime_to_ns(now) - rq_clock(rq);
1068	act = ktime_add_ns(act, delta);
1069
1070	/*
1071	 * If the expiry time already passed, e.g., because the value
1072	 * chosen as the deadline is too small, don't even try to
1073	 * start the timer in the past!
1074	 */
1075	if (ktime_us_delta(act, now) < 0)
1076		return 0;
1077
1078	/*
1079	 * !enqueued will guarantee another callback; even if one is already in
1080	 * progress. This ensures a balanced {get,put}_task_struct().
1081	 *
1082	 * The race against __run_timer() clearing the enqueued state is
1083	 * harmless because we're holding task_rq()->lock, therefore the timer
1084	 * expiring after we've done the check will wait on its task_rq_lock()
1085	 * and observe our state.
1086	 */
1087	if (!hrtimer_is_queued(timer)) {
1088		get_task_struct(p);
1089		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1090	}
1091
1092	return 1;
1093}
1094
1095/*
1096 * This is the bandwidth enforcement timer callback. If here, we know
1097 * a task is not on its dl_rq, since the fact that the timer was running
1098 * means the task is throttled and needs a runtime replenishment.
1099 *
1100 * However, what we actually do depends on the fact the task is active,
1101 * (it is on its rq) or has been removed from there by a call to
1102 * dequeue_task_dl(). In the former case we must issue the runtime
1103 * replenishment and add the task back to the dl_rq; in the latter, we just
1104 * do nothing but clearing dl_throttled, so that runtime and deadline
1105 * updating (and the queueing back to dl_rq) will be done by the
1106 * next call to enqueue_task_dl().
1107 */
1108static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1109{
1110	struct sched_dl_entity *dl_se = container_of(timer,
1111						     struct sched_dl_entity,
1112						     dl_timer);
1113	struct task_struct *p = dl_task_of(dl_se);
1114	struct rq_flags rf;
1115	struct rq *rq;
1116
1117	rq = task_rq_lock(p, &rf);
1118
1119	/*
1120	 * The task might have changed its scheduling policy to something
1121	 * different than SCHED_DEADLINE (through switched_from_dl()).
1122	 */
1123	if (!dl_task(p))
1124		goto unlock;
1125
1126	/*
1127	 * The task might have been boosted by someone else and might be in the
1128	 * boosting/deboosting path, its not throttled.
1129	 */
1130	if (is_dl_boosted(dl_se))
1131		goto unlock;
1132
1133	/*
1134	 * Spurious timer due to start_dl_timer() race; or we already received
1135	 * a replenishment from rt_mutex_setprio().
1136	 */
1137	if (!dl_se->dl_throttled)
1138		goto unlock;
1139
1140	sched_clock_tick();
1141	update_rq_clock(rq);
1142
1143	/*
1144	 * If the throttle happened during sched-out; like:
1145	 *
1146	 *   schedule()
1147	 *     deactivate_task()
1148	 *       dequeue_task_dl()
1149	 *         update_curr_dl()
1150	 *           start_dl_timer()
1151	 *         __dequeue_task_dl()
1152	 *     prev->on_rq = 0;
1153	 *
1154	 * We can be both throttled and !queued. Replenish the counter
1155	 * but do not enqueue -- wait for our wakeup to do that.
1156	 */
1157	if (!task_on_rq_queued(p)) {
1158		replenish_dl_entity(dl_se);
1159		goto unlock;
1160	}
1161
1162#ifdef CONFIG_SMP
1163	if (unlikely(!rq->online)) {
1164		/*
1165		 * If the runqueue is no longer available, migrate the
1166		 * task elsewhere. This necessarily changes rq.
1167		 */
1168		lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1169		rq = dl_task_offline_migration(rq, p);
1170		rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1171		update_rq_clock(rq);
1172
1173		/*
1174		 * Now that the task has been migrated to the new RQ and we
1175		 * have that locked, proceed as normal and enqueue the task
1176		 * there.
1177		 */
1178	}
1179#endif
1180
1181	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1182	if (dl_task(rq->curr))
1183		check_preempt_curr_dl(rq, p, 0);
1184	else
1185		resched_curr(rq);
1186
1187#ifdef CONFIG_SMP
1188	/*
1189	 * Queueing this task back might have overloaded rq, check if we need
1190	 * to kick someone away.
1191	 */
1192	if (has_pushable_dl_tasks(rq)) {
1193		/*
1194		 * Nothing relies on rq->lock after this, so its safe to drop
1195		 * rq->lock.
1196		 */
1197		rq_unpin_lock(rq, &rf);
1198		push_dl_task(rq);
1199		rq_repin_lock(rq, &rf);
1200	}
1201#endif
1202
1203unlock:
1204	task_rq_unlock(rq, p, &rf);
1205
1206	/*
1207	 * This can free the task_struct, including this hrtimer, do not touch
1208	 * anything related to that after this.
1209	 */
1210	put_task_struct(p);
1211
1212	return HRTIMER_NORESTART;
1213}
1214
1215void init_dl_task_timer(struct sched_dl_entity *dl_se)
1216{
1217	struct hrtimer *timer = &dl_se->dl_timer;
1218
1219	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1220	timer->function = dl_task_timer;
1221}
1222
1223/*
1224 * During the activation, CBS checks if it can reuse the current task's
1225 * runtime and period. If the deadline of the task is in the past, CBS
1226 * cannot use the runtime, and so it replenishes the task. This rule
1227 * works fine for implicit deadline tasks (deadline == period), and the
1228 * CBS was designed for implicit deadline tasks. However, a task with
1229 * constrained deadline (deadline < period) might be awakened after the
1230 * deadline, but before the next period. In this case, replenishing the
1231 * task would allow it to run for runtime / deadline. As in this case
1232 * deadline < period, CBS enables a task to run for more than the
1233 * runtime / period. In a very loaded system, this can cause a domino
1234 * effect, making other tasks miss their deadlines.
1235 *
1236 * To avoid this problem, in the activation of a constrained deadline
1237 * task after the deadline but before the next period, throttle the
1238 * task and set the replenishing timer to the begin of the next period,
1239 * unless it is boosted.
1240 */
1241static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1242{
1243	struct task_struct *p = dl_task_of(dl_se);
1244	struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1245
1246	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1247	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1248		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(p)))
1249			return;
1250		dl_se->dl_throttled = 1;
1251		if (dl_se->runtime > 0)
1252			dl_se->runtime = 0;
1253	}
1254}
1255
1256static
1257int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1258{
1259	return (dl_se->runtime <= 0);
1260}
1261
1262/*
1263 * This function implements the GRUB accounting rule:
1264 * according to the GRUB reclaiming algorithm, the runtime is
1265 * not decreased as "dq = -dt", but as
1266 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1267 * where u is the utilization of the task, Umax is the maximum reclaimable
1268 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1269 * as the difference between the "total runqueue utilization" and the
1270 * runqueue active utilization, and Uextra is the (per runqueue) extra
1271 * reclaimable utilization.
1272 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1273 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1274 * BW_SHIFT.
1275 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT,
1276 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1277 * Since delta is a 64 bit variable, to have an overflow its value
1278 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1279 * So, overflow is not an issue here.
1280 */
1281static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1282{
1283	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1284	u64 u_act;
1285	u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1286
1287	/*
1288	 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1289	 * we compare u_inact + rq->dl.extra_bw with
1290	 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1291	 * u_inact + rq->dl.extra_bw can be larger than
1292	 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1293	 * leading to wrong results)
1294	 */
1295	if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1296		u_act = u_act_min;
1297	else
1298		u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1299
1300	return (delta * u_act) >> BW_SHIFT;
1301}
1302
1303/*
1304 * Update the current task's runtime statistics (provided it is still
1305 * a -deadline task and has not been removed from the dl_rq).
1306 */
1307static void update_curr_dl(struct rq *rq)
1308{
1309	struct task_struct *curr = rq->curr;
1310	struct sched_dl_entity *dl_se = &curr->dl;
1311	u64 delta_exec, scaled_delta_exec;
1312	int cpu = cpu_of(rq);
1313	u64 now;
1314
1315	if (!dl_task(curr) || !on_dl_rq(dl_se))
1316		return;
1317
1318	/*
1319	 * Consumed budget is computed considering the time as
1320	 * observed by schedulable tasks (excluding time spent
1321	 * in hardirq context, etc.). Deadlines are instead
1322	 * computed using hard walltime. This seems to be the more
1323	 * natural solution, but the full ramifications of this
1324	 * approach need further study.
1325	 */
1326	now = rq_clock_task(rq);
1327	delta_exec = now - curr->se.exec_start;
1328	if (unlikely((s64)delta_exec <= 0)) {
1329		if (unlikely(dl_se->dl_yielded))
1330			goto throttle;
1331		return;
1332	}
1333
1334	schedstat_set(curr->stats.exec_max,
1335		      max(curr->stats.exec_max, delta_exec));
1336
1337	trace_sched_stat_runtime(curr, delta_exec, 0);
1338
1339	update_current_exec_runtime(curr, now, delta_exec);
1340
1341	if (dl_entity_is_special(dl_se))
1342		return;
1343
1344	/*
1345	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1346	 * spare reclaimed bandwidth is used to clock down frequency.
1347	 *
1348	 * For the others, we still need to scale reservation parameters
1349	 * according to current frequency and CPU maximum capacity.
1350	 */
1351	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1352		scaled_delta_exec = grub_reclaim(delta_exec,
1353						 rq,
1354						 &curr->dl);
1355	} else {
1356		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1357		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1358
1359		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1360		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1361	}
1362
1363	dl_se->runtime -= scaled_delta_exec;
1364
1365throttle:
1366	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1367		dl_se->dl_throttled = 1;
1368
1369		/* If requested, inform the user about runtime overruns. */
1370		if (dl_runtime_exceeded(dl_se) &&
1371		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1372			dl_se->dl_overrun = 1;
1373
1374		__dequeue_task_dl(rq, curr, 0);
1375		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(curr)))
1376			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1377
1378		if (!is_leftmost(curr, &rq->dl))
1379			resched_curr(rq);
1380	}
1381
1382	/*
1383	 * Because -- for now -- we share the rt bandwidth, we need to
1384	 * account our runtime there too, otherwise actual rt tasks
1385	 * would be able to exceed the shared quota.
1386	 *
1387	 * Account to the root rt group for now.
1388	 *
1389	 * The solution we're working towards is having the RT groups scheduled
1390	 * using deadline servers -- however there's a few nasties to figure
1391	 * out before that can happen.
1392	 */
1393	if (rt_bandwidth_enabled()) {
1394		struct rt_rq *rt_rq = &rq->rt;
1395
1396		raw_spin_lock(&rt_rq->rt_runtime_lock);
1397		/*
1398		 * We'll let actual RT tasks worry about the overflow here, we
1399		 * have our own CBS to keep us inline; only account when RT
1400		 * bandwidth is relevant.
1401		 */
1402		if (sched_rt_bandwidth_account(rt_rq))
1403			rt_rq->rt_time += delta_exec;
1404		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1405	}
1406}
1407
1408static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1409{
1410	struct sched_dl_entity *dl_se = container_of(timer,
1411						     struct sched_dl_entity,
1412						     inactive_timer);
1413	struct task_struct *p = dl_task_of(dl_se);
1414	struct rq_flags rf;
1415	struct rq *rq;
1416
1417	rq = task_rq_lock(p, &rf);
1418
1419	sched_clock_tick();
1420	update_rq_clock(rq);
1421
1422	if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1423		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1424
1425		if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1426			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1427			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1428			dl_se->dl_non_contending = 0;
1429		}
1430
1431		raw_spin_lock(&dl_b->lock);
1432		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1433		raw_spin_unlock(&dl_b->lock);
1434		__dl_clear_params(p);
1435
1436		goto unlock;
1437	}
1438	if (dl_se->dl_non_contending == 0)
1439		goto unlock;
1440
1441	sub_running_bw(dl_se, &rq->dl);
1442	dl_se->dl_non_contending = 0;
1443unlock:
1444	task_rq_unlock(rq, p, &rf);
1445	put_task_struct(p);
1446
1447	return HRTIMER_NORESTART;
1448}
1449
1450void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1451{
1452	struct hrtimer *timer = &dl_se->inactive_timer;
1453
1454	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1455	timer->function = inactive_task_timer;
1456}
1457
1458#define __node_2_dle(node) \
1459	rb_entry((node), struct sched_dl_entity, rb_node)
1460
1461#ifdef CONFIG_SMP
1462
1463static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1464{
1465	struct rq *rq = rq_of_dl_rq(dl_rq);
1466
1467	if (dl_rq->earliest_dl.curr == 0 ||
1468	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1469		if (dl_rq->earliest_dl.curr == 0)
1470			cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1471		dl_rq->earliest_dl.curr = deadline;
1472		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1473	}
1474}
1475
1476static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1477{
1478	struct rq *rq = rq_of_dl_rq(dl_rq);
1479
1480	/*
1481	 * Since we may have removed our earliest (and/or next earliest)
1482	 * task we must recompute them.
1483	 */
1484	if (!dl_rq->dl_nr_running) {
1485		dl_rq->earliest_dl.curr = 0;
1486		dl_rq->earliest_dl.next = 0;
1487		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1488		cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1489	} else {
1490		struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
1491		struct sched_dl_entity *entry = __node_2_dle(leftmost);
1492
1493		dl_rq->earliest_dl.curr = entry->deadline;
1494		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1495	}
1496}
1497
1498#else
1499
1500static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1501static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1502
1503#endif /* CONFIG_SMP */
1504
1505static inline
1506void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1507{
1508	int prio = dl_task_of(dl_se)->prio;
1509	u64 deadline = dl_se->deadline;
1510
1511	WARN_ON(!dl_prio(prio));
1512	dl_rq->dl_nr_running++;
1513	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1514
1515	inc_dl_deadline(dl_rq, deadline);
1516	inc_dl_migration(dl_se, dl_rq);
1517}
1518
1519static inline
1520void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1521{
1522	int prio = dl_task_of(dl_se)->prio;
1523
1524	WARN_ON(!dl_prio(prio));
1525	WARN_ON(!dl_rq->dl_nr_running);
1526	dl_rq->dl_nr_running--;
1527	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1528
1529	dec_dl_deadline(dl_rq, dl_se->deadline);
1530	dec_dl_migration(dl_se, dl_rq);
1531}
1532
1533static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1534{
1535	return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1536}
1537
1538static inline struct sched_statistics *
1539__schedstats_from_dl_se(struct sched_dl_entity *dl_se)
1540{
1541	return &dl_task_of(dl_se)->stats;
1542}
1543
1544static inline void
1545update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1546{
1547	struct sched_statistics *stats;
1548
1549	if (!schedstat_enabled())
1550		return;
1551
1552	stats = __schedstats_from_dl_se(dl_se);
1553	__update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1554}
1555
1556static inline void
1557update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1558{
1559	struct sched_statistics *stats;
1560
1561	if (!schedstat_enabled())
1562		return;
1563
1564	stats = __schedstats_from_dl_se(dl_se);
1565	__update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1566}
1567
1568static inline void
1569update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1570{
1571	struct sched_statistics *stats;
1572
1573	if (!schedstat_enabled())
1574		return;
1575
1576	stats = __schedstats_from_dl_se(dl_se);
1577	__update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1578}
1579
1580static inline void
1581update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1582			int flags)
1583{
1584	if (!schedstat_enabled())
1585		return;
1586
1587	if (flags & ENQUEUE_WAKEUP)
1588		update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
1589}
1590
1591static inline void
1592update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1593			int flags)
1594{
1595	struct task_struct *p = dl_task_of(dl_se);
1596
1597	if (!schedstat_enabled())
1598		return;
1599
1600	if ((flags & DEQUEUE_SLEEP)) {
1601		unsigned int state;
1602
1603		state = READ_ONCE(p->__state);
1604		if (state & TASK_INTERRUPTIBLE)
1605			__schedstat_set(p->stats.sleep_start,
1606					rq_clock(rq_of_dl_rq(dl_rq)));
1607
1608		if (state & TASK_UNINTERRUPTIBLE)
1609			__schedstat_set(p->stats.block_start,
1610					rq_clock(rq_of_dl_rq(dl_rq)));
1611	}
1612}
1613
1614static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1615{
1616	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1617
1618	WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
1619
1620	rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1621
1622	inc_dl_tasks(dl_se, dl_rq);
1623}
1624
1625static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1626{
1627	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1628
1629	if (RB_EMPTY_NODE(&dl_se->rb_node))
1630		return;
1631
1632	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1633
1634	RB_CLEAR_NODE(&dl_se->rb_node);
1635
1636	dec_dl_tasks(dl_se, dl_rq);
1637}
1638
1639static void
1640enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1641{
1642	WARN_ON_ONCE(on_dl_rq(dl_se));
1643
1644	update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
1645
1646	/*
1647	 * If this is a wakeup or a new instance, the scheduling
1648	 * parameters of the task might need updating. Otherwise,
1649	 * we want a replenishment of its runtime.
1650	 */
1651	if (flags & ENQUEUE_WAKEUP) {
1652		task_contending(dl_se, flags);
1653		update_dl_entity(dl_se);
1654	} else if (flags & ENQUEUE_REPLENISH) {
1655		replenish_dl_entity(dl_se);
1656	} else if ((flags & ENQUEUE_RESTORE) &&
1657		  dl_time_before(dl_se->deadline,
1658				 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1659		setup_new_dl_entity(dl_se);
1660	}
1661
1662	__enqueue_dl_entity(dl_se);
1663}
1664
1665static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1666{
1667	__dequeue_dl_entity(dl_se);
1668}
1669
1670static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1671{
1672	if (is_dl_boosted(&p->dl)) {
1673		/*
1674		 * Because of delays in the detection of the overrun of a
1675		 * thread's runtime, it might be the case that a thread
1676		 * goes to sleep in a rt mutex with negative runtime. As
1677		 * a consequence, the thread will be throttled.
1678		 *
1679		 * While waiting for the mutex, this thread can also be
1680		 * boosted via PI, resulting in a thread that is throttled
1681		 * and boosted at the same time.
1682		 *
1683		 * In this case, the boost overrides the throttle.
1684		 */
1685		if (p->dl.dl_throttled) {
1686			/*
1687			 * The replenish timer needs to be canceled. No
1688			 * problem if it fires concurrently: boosted threads
1689			 * are ignored in dl_task_timer().
1690			 */
1691			hrtimer_try_to_cancel(&p->dl.dl_timer);
1692			p->dl.dl_throttled = 0;
1693		}
1694	} else if (!dl_prio(p->normal_prio)) {
1695		/*
1696		 * Special case in which we have a !SCHED_DEADLINE task that is going
1697		 * to be deboosted, but exceeds its runtime while doing so. No point in
1698		 * replenishing it, as it's going to return back to its original
1699		 * scheduling class after this. If it has been throttled, we need to
1700		 * clear the flag, otherwise the task may wake up as throttled after
1701		 * being boosted again with no means to replenish the runtime and clear
1702		 * the throttle.
1703		 */
1704		p->dl.dl_throttled = 0;
1705		if (!(flags & ENQUEUE_REPLENISH))
1706			printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
1707					     task_pid_nr(p));
1708
1709		return;
1710	}
1711
1712	/*
1713	 * Check if a constrained deadline task was activated
1714	 * after the deadline but before the next period.
1715	 * If that is the case, the task will be throttled and
1716	 * the replenishment timer will be set to the next period.
1717	 */
1718	if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1719		dl_check_constrained_dl(&p->dl);
1720
1721	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1722		add_rq_bw(&p->dl, &rq->dl);
1723		add_running_bw(&p->dl, &rq->dl);
1724	}
1725
1726	/*
1727	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1728	 * its budget it needs a replenishment and, since it now is on
1729	 * its rq, the bandwidth timer callback (which clearly has not
1730	 * run yet) will take care of this.
1731	 * However, the active utilization does not depend on the fact
1732	 * that the task is on the runqueue or not (but depends on the
1733	 * task's state - in GRUB parlance, "inactive" vs "active contending").
1734	 * In other words, even if a task is throttled its utilization must
1735	 * be counted in the active utilization; hence, we need to call
1736	 * add_running_bw().
1737	 */
1738	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1739		if (flags & ENQUEUE_WAKEUP)
1740			task_contending(&p->dl, flags);
1741
1742		return;
1743	}
1744
1745	check_schedstat_required();
1746	update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
1747
1748	enqueue_dl_entity(&p->dl, flags);
1749
1750	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1751		enqueue_pushable_dl_task(rq, p);
1752}
1753
1754static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1755{
1756	update_stats_dequeue_dl(&rq->dl, &p->dl, flags);
1757	dequeue_dl_entity(&p->dl);
1758	dequeue_pushable_dl_task(rq, p);
1759}
1760
1761static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1762{
1763	update_curr_dl(rq);
1764	__dequeue_task_dl(rq, p, flags);
1765
1766	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1767		sub_running_bw(&p->dl, &rq->dl);
1768		sub_rq_bw(&p->dl, &rq->dl);
1769	}
1770
1771	/*
1772	 * This check allows to start the inactive timer (or to immediately
1773	 * decrease the active utilization, if needed) in two cases:
1774	 * when the task blocks and when it is terminating
1775	 * (p->state == TASK_DEAD). We can handle the two cases in the same
1776	 * way, because from GRUB's point of view the same thing is happening
1777	 * (the task moves from "active contending" to "active non contending"
1778	 * or "inactive")
1779	 */
1780	if (flags & DEQUEUE_SLEEP)
1781		task_non_contending(p);
1782}
1783
1784/*
1785 * Yield task semantic for -deadline tasks is:
1786 *
1787 *   get off from the CPU until our next instance, with
1788 *   a new runtime. This is of little use now, since we
1789 *   don't have a bandwidth reclaiming mechanism. Anyway,
1790 *   bandwidth reclaiming is planned for the future, and
1791 *   yield_task_dl will indicate that some spare budget
1792 *   is available for other task instances to use it.
1793 */
1794static void yield_task_dl(struct rq *rq)
1795{
1796	/*
1797	 * We make the task go to sleep until its current deadline by
1798	 * forcing its runtime to zero. This way, update_curr_dl() stops
1799	 * it and the bandwidth timer will wake it up and will give it
1800	 * new scheduling parameters (thanks to dl_yielded=1).
1801	 */
1802	rq->curr->dl.dl_yielded = 1;
1803
1804	update_rq_clock(rq);
1805	update_curr_dl(rq);
1806	/*
1807	 * Tell update_rq_clock() that we've just updated,
1808	 * so we don't do microscopic update in schedule()
1809	 * and double the fastpath cost.
1810	 */
1811	rq_clock_skip_update(rq);
1812}
1813
1814#ifdef CONFIG_SMP
1815
1816static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
1817						 struct rq *rq)
1818{
1819	return (!rq->dl.dl_nr_running ||
1820		dl_time_before(p->dl.deadline,
1821			       rq->dl.earliest_dl.curr));
1822}
1823
1824static int find_later_rq(struct task_struct *task);
1825
1826static int
1827select_task_rq_dl(struct task_struct *p, int cpu, int flags)
1828{
1829	struct task_struct *curr;
1830	bool select_rq;
1831	struct rq *rq;
1832
1833	if (!(flags & WF_TTWU))
1834		goto out;
1835
1836	rq = cpu_rq(cpu);
1837
1838	rcu_read_lock();
1839	curr = READ_ONCE(rq->curr); /* unlocked access */
1840
1841	/*
1842	 * If we are dealing with a -deadline task, we must
1843	 * decide where to wake it up.
1844	 * If it has a later deadline and the current task
1845	 * on this rq can't move (provided the waking task
1846	 * can!) we prefer to send it somewhere else. On the
1847	 * other hand, if it has a shorter deadline, we
1848	 * try to make it stay here, it might be important.
1849	 */
1850	select_rq = unlikely(dl_task(curr)) &&
1851		    (curr->nr_cpus_allowed < 2 ||
1852		     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1853		    p->nr_cpus_allowed > 1;
1854
1855	/*
1856	 * Take the capacity of the CPU into account to
1857	 * ensure it fits the requirement of the task.
1858	 */
1859	if (sched_asym_cpucap_active())
1860		select_rq |= !dl_task_fits_capacity(p, cpu);
1861
1862	if (select_rq) {
1863		int target = find_later_rq(p);
1864
1865		if (target != -1 &&
1866		    dl_task_is_earliest_deadline(p, cpu_rq(target)))
1867			cpu = target;
1868	}
1869	rcu_read_unlock();
1870
1871out:
1872	return cpu;
1873}
1874
1875static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1876{
1877	struct rq_flags rf;
1878	struct rq *rq;
1879
1880	if (READ_ONCE(p->__state) != TASK_WAKING)
1881		return;
1882
1883	rq = task_rq(p);
1884	/*
1885	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1886	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1887	 * rq->lock is not... So, lock it
1888	 */
1889	rq_lock(rq, &rf);
1890	if (p->dl.dl_non_contending) {
1891		update_rq_clock(rq);
1892		sub_running_bw(&p->dl, &rq->dl);
1893		p->dl.dl_non_contending = 0;
1894		/*
1895		 * If the timer handler is currently running and the
1896		 * timer cannot be canceled, inactive_task_timer()
1897		 * will see that dl_not_contending is not set, and
1898		 * will not touch the rq's active utilization,
1899		 * so we are still safe.
1900		 */
1901		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1902			put_task_struct(p);
1903	}
1904	sub_rq_bw(&p->dl, &rq->dl);
1905	rq_unlock(rq, &rf);
1906}
1907
1908static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1909{
1910	/*
1911	 * Current can't be migrated, useless to reschedule,
1912	 * let's hope p can move out.
1913	 */
1914	if (rq->curr->nr_cpus_allowed == 1 ||
1915	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1916		return;
1917
1918	/*
1919	 * p is migratable, so let's not schedule it and
1920	 * see if it is pushed or pulled somewhere else.
1921	 */
1922	if (p->nr_cpus_allowed != 1 &&
1923	    cpudl_find(&rq->rd->cpudl, p, NULL))
1924		return;
1925
1926	resched_curr(rq);
1927}
1928
1929static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1930{
1931	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
1932		/*
1933		 * This is OK, because current is on_cpu, which avoids it being
1934		 * picked for load-balance and preemption/IRQs are still
1935		 * disabled avoiding further scheduler activity on it and we've
1936		 * not yet started the picking loop.
1937		 */
1938		rq_unpin_lock(rq, rf);
1939		pull_dl_task(rq);
1940		rq_repin_lock(rq, rf);
1941	}
1942
1943	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
1944}
1945#endif /* CONFIG_SMP */
1946
1947/*
1948 * Only called when both the current and waking task are -deadline
1949 * tasks.
1950 */
1951static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1952				  int flags)
1953{
1954	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1955		resched_curr(rq);
1956		return;
1957	}
1958
1959#ifdef CONFIG_SMP
1960	/*
1961	 * In the unlikely case current and p have the same deadline
1962	 * let us try to decide what's the best thing to do...
1963	 */
1964	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1965	    !test_tsk_need_resched(rq->curr))
1966		check_preempt_equal_dl(rq, p);
1967#endif /* CONFIG_SMP */
1968}
1969
1970#ifdef CONFIG_SCHED_HRTICK
1971static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1972{
1973	hrtick_start(rq, p->dl.runtime);
1974}
1975#else /* !CONFIG_SCHED_HRTICK */
1976static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1977{
1978}
1979#endif
1980
1981static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
1982{
1983	struct sched_dl_entity *dl_se = &p->dl;
1984	struct dl_rq *dl_rq = &rq->dl;
1985
1986	p->se.exec_start = rq_clock_task(rq);
1987	if (on_dl_rq(&p->dl))
1988		update_stats_wait_end_dl(dl_rq, dl_se);
1989
1990	/* You can't push away the running task */
1991	dequeue_pushable_dl_task(rq, p);
1992
1993	if (!first)
1994		return;
1995
1996	if (hrtick_enabled_dl(rq))
1997		start_hrtick_dl(rq, p);
1998
1999	if (rq->curr->sched_class != &dl_sched_class)
2000		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2001
2002	deadline_queue_push_tasks(rq);
2003}
2004
2005static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
2006{
2007	struct rb_node *left = rb_first_cached(&dl_rq->root);
2008
2009	if (!left)
2010		return NULL;
2011
2012	return __node_2_dle(left);
2013}
2014
2015static struct task_struct *pick_task_dl(struct rq *rq)
2016{
2017	struct sched_dl_entity *dl_se;
2018	struct dl_rq *dl_rq = &rq->dl;
2019	struct task_struct *p;
2020
2021	if (!sched_dl_runnable(rq))
2022		return NULL;
2023
2024	dl_se = pick_next_dl_entity(dl_rq);
2025	WARN_ON_ONCE(!dl_se);
2026	p = dl_task_of(dl_se);
2027
2028	return p;
2029}
2030
2031static struct task_struct *pick_next_task_dl(struct rq *rq)
2032{
2033	struct task_struct *p;
2034
2035	p = pick_task_dl(rq);
2036	if (p)
2037		set_next_task_dl(rq, p, true);
2038
2039	return p;
2040}
2041
2042static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
2043{
2044	struct sched_dl_entity *dl_se = &p->dl;
2045	struct dl_rq *dl_rq = &rq->dl;
2046
2047	if (on_dl_rq(&p->dl))
2048		update_stats_wait_start_dl(dl_rq, dl_se);
2049
2050	update_curr_dl(rq);
2051
2052	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2053	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2054		enqueue_pushable_dl_task(rq, p);
2055}
2056
2057/*
2058 * scheduler tick hitting a task of our scheduling class.
2059 *
2060 * NOTE: This function can be called remotely by the tick offload that
2061 * goes along full dynticks. Therefore no local assumption can be made
2062 * and everything must be accessed through the @rq and @curr passed in
2063 * parameters.
2064 */
2065static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2066{
2067	update_curr_dl(rq);
2068
2069	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2070	/*
2071	 * Even when we have runtime, update_curr_dl() might have resulted in us
2072	 * not being the leftmost task anymore. In that case NEED_RESCHED will
2073	 * be set and schedule() will start a new hrtick for the next task.
2074	 */
2075	if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2076	    is_leftmost(p, &rq->dl))
2077		start_hrtick_dl(rq, p);
2078}
2079
2080static void task_fork_dl(struct task_struct *p)
2081{
2082	/*
2083	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2084	 * sched_fork()
2085	 */
2086}
2087
2088#ifdef CONFIG_SMP
2089
2090/* Only try algorithms three times */
2091#define DL_MAX_TRIES 3
2092
2093static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
2094{
2095	if (!task_on_cpu(rq, p) &&
2096	    cpumask_test_cpu(cpu, &p->cpus_mask))
2097		return 1;
2098	return 0;
2099}
2100
2101/*
2102 * Return the earliest pushable rq's task, which is suitable to be executed
2103 * on the CPU, NULL otherwise:
2104 */
2105static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2106{
2107	struct task_struct *p = NULL;
2108	struct rb_node *next_node;
2109
2110	if (!has_pushable_dl_tasks(rq))
2111		return NULL;
2112
2113	next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2114
2115next_node:
2116	if (next_node) {
2117		p = __node_2_pdl(next_node);
2118
2119		if (pick_dl_task(rq, p, cpu))
2120			return p;
2121
2122		next_node = rb_next(next_node);
2123		goto next_node;
2124	}
2125
2126	return NULL;
2127}
2128
2129static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2130
2131static int find_later_rq(struct task_struct *task)
2132{
2133	struct sched_domain *sd;
2134	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2135	int this_cpu = smp_processor_id();
2136	int cpu = task_cpu(task);
2137
2138	/* Make sure the mask is initialized first */
2139	if (unlikely(!later_mask))
2140		return -1;
2141
2142	if (task->nr_cpus_allowed == 1)
2143		return -1;
2144
2145	/*
2146	 * We have to consider system topology and task affinity
2147	 * first, then we can look for a suitable CPU.
2148	 */
2149	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2150		return -1;
2151
2152	/*
2153	 * If we are here, some targets have been found, including
2154	 * the most suitable which is, among the runqueues where the
2155	 * current tasks have later deadlines than the task's one, the
2156	 * rq with the latest possible one.
2157	 *
2158	 * Now we check how well this matches with task's
2159	 * affinity and system topology.
2160	 *
2161	 * The last CPU where the task run is our first
2162	 * guess, since it is most likely cache-hot there.
2163	 */
2164	if (cpumask_test_cpu(cpu, later_mask))
2165		return cpu;
2166	/*
2167	 * Check if this_cpu is to be skipped (i.e., it is
2168	 * not in the mask) or not.
2169	 */
2170	if (!cpumask_test_cpu(this_cpu, later_mask))
2171		this_cpu = -1;
2172
2173	rcu_read_lock();
2174	for_each_domain(cpu, sd) {
2175		if (sd->flags & SD_WAKE_AFFINE) {
2176			int best_cpu;
2177
2178			/*
2179			 * If possible, preempting this_cpu is
2180			 * cheaper than migrating.
2181			 */
2182			if (this_cpu != -1 &&
2183			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2184				rcu_read_unlock();
2185				return this_cpu;
2186			}
2187
2188			best_cpu = cpumask_any_and_distribute(later_mask,
2189							      sched_domain_span(sd));
2190			/*
2191			 * Last chance: if a CPU being in both later_mask
2192			 * and current sd span is valid, that becomes our
2193			 * choice. Of course, the latest possible CPU is
2194			 * already under consideration through later_mask.
2195			 */
2196			if (best_cpu < nr_cpu_ids) {
2197				rcu_read_unlock();
2198				return best_cpu;
2199			}
2200		}
2201	}
2202	rcu_read_unlock();
2203
2204	/*
2205	 * At this point, all our guesses failed, we just return
2206	 * 'something', and let the caller sort the things out.
2207	 */
2208	if (this_cpu != -1)
2209		return this_cpu;
2210
2211	cpu = cpumask_any_distribute(later_mask);
2212	if (cpu < nr_cpu_ids)
2213		return cpu;
2214
2215	return -1;
2216}
2217
2218/* Locks the rq it finds */
2219static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2220{
2221	struct rq *later_rq = NULL;
2222	int tries;
2223	int cpu;
2224
2225	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2226		cpu = find_later_rq(task);
2227
2228		if ((cpu == -1) || (cpu == rq->cpu))
2229			break;
2230
2231		later_rq = cpu_rq(cpu);
2232
2233		if (!dl_task_is_earliest_deadline(task, later_rq)) {
2234			/*
2235			 * Target rq has tasks of equal or earlier deadline,
2236			 * retrying does not release any lock and is unlikely
2237			 * to yield a different result.
2238			 */
2239			later_rq = NULL;
2240			break;
2241		}
2242
2243		/* Retry if something changed. */
2244		if (double_lock_balance(rq, later_rq)) {
2245			if (unlikely(task_rq(task) != rq ||
2246				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2247				     task_on_cpu(rq, task) ||
2248				     !dl_task(task) ||
2249				     !task_on_rq_queued(task))) {
2250				double_unlock_balance(rq, later_rq);
2251				later_rq = NULL;
2252				break;
2253			}
2254		}
2255
2256		/*
2257		 * If the rq we found has no -deadline task, or
2258		 * its earliest one has a later deadline than our
2259		 * task, the rq is a good one.
2260		 */
2261		if (dl_task_is_earliest_deadline(task, later_rq))
2262			break;
2263
2264		/* Otherwise we try again. */
2265		double_unlock_balance(rq, later_rq);
2266		later_rq = NULL;
2267	}
2268
2269	return later_rq;
2270}
2271
2272static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2273{
2274	struct task_struct *p;
2275
2276	if (!has_pushable_dl_tasks(rq))
2277		return NULL;
2278
2279	p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
2280
2281	WARN_ON_ONCE(rq->cpu != task_cpu(p));
2282	WARN_ON_ONCE(task_current(rq, p));
2283	WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
2284
2285	WARN_ON_ONCE(!task_on_rq_queued(p));
2286	WARN_ON_ONCE(!dl_task(p));
2287
2288	return p;
2289}
2290
2291/*
2292 * See if the non running -deadline tasks on this rq
2293 * can be sent to some other CPU where they can preempt
2294 * and start executing.
2295 */
2296static int push_dl_task(struct rq *rq)
2297{
2298	struct task_struct *next_task;
2299	struct rq *later_rq;
2300	int ret = 0;
2301
2302	if (!rq->dl.overloaded)
2303		return 0;
2304
2305	next_task = pick_next_pushable_dl_task(rq);
2306	if (!next_task)
2307		return 0;
2308
2309retry:
2310	/*
2311	 * If next_task preempts rq->curr, and rq->curr
2312	 * can move away, it makes sense to just reschedule
2313	 * without going further in pushing next_task.
2314	 */
2315	if (dl_task(rq->curr) &&
2316	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2317	    rq->curr->nr_cpus_allowed > 1) {
2318		resched_curr(rq);
2319		return 0;
2320	}
2321
2322	if (is_migration_disabled(next_task))
2323		return 0;
2324
2325	if (WARN_ON(next_task == rq->curr))
2326		return 0;
2327
2328	/* We might release rq lock */
2329	get_task_struct(next_task);
2330
2331	/* Will lock the rq it'll find */
2332	later_rq = find_lock_later_rq(next_task, rq);
2333	if (!later_rq) {
2334		struct task_struct *task;
2335
2336		/*
2337		 * We must check all this again, since
2338		 * find_lock_later_rq releases rq->lock and it is
2339		 * then possible that next_task has migrated.
2340		 */
2341		task = pick_next_pushable_dl_task(rq);
2342		if (task == next_task) {
2343			/*
2344			 * The task is still there. We don't try
2345			 * again, some other CPU will pull it when ready.
2346			 */
2347			goto out;
2348		}
2349
2350		if (!task)
2351			/* No more tasks */
2352			goto out;
2353
2354		put_task_struct(next_task);
2355		next_task = task;
2356		goto retry;
2357	}
2358
2359	deactivate_task(rq, next_task, 0);
2360	set_task_cpu(next_task, later_rq->cpu);
2361	activate_task(later_rq, next_task, 0);
2362	ret = 1;
2363
2364	resched_curr(later_rq);
2365
2366	double_unlock_balance(rq, later_rq);
2367
2368out:
2369	put_task_struct(next_task);
2370
2371	return ret;
2372}
2373
2374static void push_dl_tasks(struct rq *rq)
2375{
2376	/* push_dl_task() will return true if it moved a -deadline task */
2377	while (push_dl_task(rq))
2378		;
2379}
2380
2381static void pull_dl_task(struct rq *this_rq)
2382{
2383	int this_cpu = this_rq->cpu, cpu;
2384	struct task_struct *p, *push_task;
2385	bool resched = false;
2386	struct rq *src_rq;
2387	u64 dmin = LONG_MAX;
2388
2389	if (likely(!dl_overloaded(this_rq)))
2390		return;
2391
2392	/*
2393	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2394	 * see overloaded we must also see the dlo_mask bit.
2395	 */
2396	smp_rmb();
2397
2398	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2399		if (this_cpu == cpu)
2400			continue;
2401
2402		src_rq = cpu_rq(cpu);
2403
2404		/*
2405		 * It looks racy, abd it is! However, as in sched_rt.c,
2406		 * we are fine with this.
2407		 */
2408		if (this_rq->dl.dl_nr_running &&
2409		    dl_time_before(this_rq->dl.earliest_dl.curr,
2410				   src_rq->dl.earliest_dl.next))
2411			continue;
2412
2413		/* Might drop this_rq->lock */
2414		push_task = NULL;
2415		double_lock_balance(this_rq, src_rq);
2416
2417		/*
2418		 * If there are no more pullable tasks on the
2419		 * rq, we're done with it.
2420		 */
2421		if (src_rq->dl.dl_nr_running <= 1)
2422			goto skip;
2423
2424		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2425
2426		/*
2427		 * We found a task to be pulled if:
2428		 *  - it preempts our current (if there's one),
2429		 *  - it will preempt the last one we pulled (if any).
2430		 */
2431		if (p && dl_time_before(p->dl.deadline, dmin) &&
2432		    dl_task_is_earliest_deadline(p, this_rq)) {
2433			WARN_ON(p == src_rq->curr);
2434			WARN_ON(!task_on_rq_queued(p));
2435
2436			/*
2437			 * Then we pull iff p has actually an earlier
2438			 * deadline than the current task of its runqueue.
2439			 */
2440			if (dl_time_before(p->dl.deadline,
2441					   src_rq->curr->dl.deadline))
2442				goto skip;
2443
2444			if (is_migration_disabled(p)) {
2445				push_task = get_push_task(src_rq);
2446			} else {
2447				deactivate_task(src_rq, p, 0);
2448				set_task_cpu(p, this_cpu);
2449				activate_task(this_rq, p, 0);
2450				dmin = p->dl.deadline;
2451				resched = true;
2452			}
2453
2454			/* Is there any other task even earlier? */
2455		}
2456skip:
2457		double_unlock_balance(this_rq, src_rq);
2458
2459		if (push_task) {
2460			raw_spin_rq_unlock(this_rq);
2461			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2462					    push_task, &src_rq->push_work);
2463			raw_spin_rq_lock(this_rq);
2464		}
2465	}
2466
2467	if (resched)
2468		resched_curr(this_rq);
2469}
2470
2471/*
2472 * Since the task is not running and a reschedule is not going to happen
2473 * anytime soon on its runqueue, we try pushing it away now.
2474 */
2475static void task_woken_dl(struct rq *rq, struct task_struct *p)
2476{
2477	if (!task_on_cpu(rq, p) &&
2478	    !test_tsk_need_resched(rq->curr) &&
2479	    p->nr_cpus_allowed > 1 &&
2480	    dl_task(rq->curr) &&
2481	    (rq->curr->nr_cpus_allowed < 2 ||
2482	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2483		push_dl_tasks(rq);
2484	}
2485}
2486
2487static void set_cpus_allowed_dl(struct task_struct *p,
2488				struct affinity_context *ctx)
2489{
2490	struct root_domain *src_rd;
2491	struct rq *rq;
2492
2493	WARN_ON_ONCE(!dl_task(p));
2494
2495	rq = task_rq(p);
2496	src_rd = rq->rd;
2497	/*
2498	 * Migrating a SCHED_DEADLINE task between exclusive
2499	 * cpusets (different root_domains) entails a bandwidth
2500	 * update. We already made space for us in the destination
2501	 * domain (see cpuset_can_attach()).
2502	 */
2503	if (!cpumask_intersects(src_rd->span, ctx->new_mask)) {
2504		struct dl_bw *src_dl_b;
2505
2506		src_dl_b = dl_bw_of(cpu_of(rq));
2507		/*
2508		 * We now free resources of the root_domain we are migrating
2509		 * off. In the worst case, sched_setattr() may temporary fail
2510		 * until we complete the update.
2511		 */
2512		raw_spin_lock(&src_dl_b->lock);
2513		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2514		raw_spin_unlock(&src_dl_b->lock);
2515	}
2516
2517	set_cpus_allowed_common(p, ctx);
2518}
2519
2520/* Assumes rq->lock is held */
2521static void rq_online_dl(struct rq *rq)
2522{
2523	if (rq->dl.overloaded)
2524		dl_set_overload(rq);
2525
2526	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2527	if (rq->dl.dl_nr_running > 0)
2528		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2529}
2530
2531/* Assumes rq->lock is held */
2532static void rq_offline_dl(struct rq *rq)
2533{
2534	if (rq->dl.overloaded)
2535		dl_clear_overload(rq);
2536
2537	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2538	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2539}
2540
2541void __init init_sched_dl_class(void)
2542{
2543	unsigned int i;
2544
2545	for_each_possible_cpu(i)
2546		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2547					GFP_KERNEL, cpu_to_node(i));
2548}
2549
2550void dl_add_task_root_domain(struct task_struct *p)
2551{
2552	struct rq_flags rf;
2553	struct rq *rq;
2554	struct dl_bw *dl_b;
2555
2556	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2557	if (!dl_task(p)) {
2558		raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2559		return;
2560	}
2561
2562	rq = __task_rq_lock(p, &rf);
2563
2564	dl_b = &rq->rd->dl_bw;
2565	raw_spin_lock(&dl_b->lock);
2566
2567	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2568
2569	raw_spin_unlock(&dl_b->lock);
2570
2571	task_rq_unlock(rq, p, &rf);
2572}
2573
2574void dl_clear_root_domain(struct root_domain *rd)
2575{
2576	unsigned long flags;
2577
2578	raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2579	rd->dl_bw.total_bw = 0;
2580	raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2581}
2582
2583#endif /* CONFIG_SMP */
2584
2585static void switched_from_dl(struct rq *rq, struct task_struct *p)
2586{
2587	/*
2588	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2589	 * time is in the future). If the task switches back to dl before
2590	 * the "inactive timer" fires, it can continue to consume its current
2591	 * runtime using its current deadline. If it stays outside of
2592	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2593	 * will reset the task parameters.
2594	 */
2595	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2596		task_non_contending(p);
2597
2598	if (!task_on_rq_queued(p)) {
2599		/*
2600		 * Inactive timer is armed. However, p is leaving DEADLINE and
2601		 * might migrate away from this rq while continuing to run on
2602		 * some other class. We need to remove its contribution from
2603		 * this rq running_bw now, or sub_rq_bw (below) will complain.
2604		 */
2605		if (p->dl.dl_non_contending)
2606			sub_running_bw(&p->dl, &rq->dl);
2607		sub_rq_bw(&p->dl, &rq->dl);
2608	}
2609
2610	/*
2611	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2612	 * at the 0-lag time, because the task could have been migrated
2613	 * while SCHED_OTHER in the meanwhile.
2614	 */
2615	if (p->dl.dl_non_contending)
2616		p->dl.dl_non_contending = 0;
2617
2618	/*
2619	 * Since this might be the only -deadline task on the rq,
2620	 * this is the right place to try to pull some other one
2621	 * from an overloaded CPU, if any.
2622	 */
2623	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2624		return;
2625
2626	deadline_queue_pull_task(rq);
2627}
2628
2629/*
2630 * When switching to -deadline, we may overload the rq, then
2631 * we try to push someone off, if possible.
2632 */
2633static void switched_to_dl(struct rq *rq, struct task_struct *p)
2634{
2635	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2636		put_task_struct(p);
2637
2638	/* If p is not queued we will update its parameters at next wakeup. */
2639	if (!task_on_rq_queued(p)) {
2640		add_rq_bw(&p->dl, &rq->dl);
2641
2642		return;
2643	}
2644
2645	if (rq->curr != p) {
2646#ifdef CONFIG_SMP
2647		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2648			deadline_queue_push_tasks(rq);
2649#endif
2650		if (dl_task(rq->curr))
2651			check_preempt_curr_dl(rq, p, 0);
2652		else
2653			resched_curr(rq);
2654	} else {
2655		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2656	}
2657}
2658
2659/*
2660 * If the scheduling parameters of a -deadline task changed,
2661 * a push or pull operation might be needed.
2662 */
2663static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2664			    int oldprio)
2665{
2666	if (task_on_rq_queued(p) || task_current(rq, p)) {
2667#ifdef CONFIG_SMP
2668		/*
2669		 * This might be too much, but unfortunately
2670		 * we don't have the old deadline value, and
2671		 * we can't argue if the task is increasing
2672		 * or lowering its prio, so...
2673		 */
2674		if (!rq->dl.overloaded)
2675			deadline_queue_pull_task(rq);
2676
2677		/*
2678		 * If we now have a earlier deadline task than p,
2679		 * then reschedule, provided p is still on this
2680		 * runqueue.
2681		 */
2682		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2683			resched_curr(rq);
2684#else
2685		/*
2686		 * Again, we don't know if p has a earlier
2687		 * or later deadline, so let's blindly set a
2688		 * (maybe not needed) rescheduling point.
2689		 */
2690		resched_curr(rq);
2691#endif /* CONFIG_SMP */
2692	}
2693}
2694
2695DEFINE_SCHED_CLASS(dl) = {
2696
2697	.enqueue_task		= enqueue_task_dl,
2698	.dequeue_task		= dequeue_task_dl,
2699	.yield_task		= yield_task_dl,
2700
2701	.check_preempt_curr	= check_preempt_curr_dl,
2702
2703	.pick_next_task		= pick_next_task_dl,
2704	.put_prev_task		= put_prev_task_dl,
2705	.set_next_task		= set_next_task_dl,
2706
2707#ifdef CONFIG_SMP
2708	.balance		= balance_dl,
2709	.pick_task		= pick_task_dl,
2710	.select_task_rq		= select_task_rq_dl,
2711	.migrate_task_rq	= migrate_task_rq_dl,
2712	.set_cpus_allowed       = set_cpus_allowed_dl,
2713	.rq_online              = rq_online_dl,
2714	.rq_offline             = rq_offline_dl,
2715	.task_woken		= task_woken_dl,
2716	.find_lock_rq		= find_lock_later_rq,
2717#endif
2718
2719	.task_tick		= task_tick_dl,
2720	.task_fork              = task_fork_dl,
2721
2722	.prio_changed           = prio_changed_dl,
2723	.switched_from		= switched_from_dl,
2724	.switched_to		= switched_to_dl,
2725
2726	.update_curr		= update_curr_dl,
2727};
2728
2729/* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
2730static u64 dl_generation;
2731
2732int sched_dl_global_validate(void)
2733{
2734	u64 runtime = global_rt_runtime();
2735	u64 period = global_rt_period();
2736	u64 new_bw = to_ratio(period, runtime);
2737	u64 gen = ++dl_generation;
2738	struct dl_bw *dl_b;
2739	int cpu, cpus, ret = 0;
2740	unsigned long flags;
2741
2742	/*
2743	 * Here we want to check the bandwidth not being set to some
2744	 * value smaller than the currently allocated bandwidth in
2745	 * any of the root_domains.
2746	 */
2747	for_each_possible_cpu(cpu) {
2748		rcu_read_lock_sched();
2749
2750		if (dl_bw_visited(cpu, gen))
2751			goto next;
2752
2753		dl_b = dl_bw_of(cpu);
2754		cpus = dl_bw_cpus(cpu);
2755
2756		raw_spin_lock_irqsave(&dl_b->lock, flags);
2757		if (new_bw * cpus < dl_b->total_bw)
2758			ret = -EBUSY;
2759		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2760
2761next:
2762		rcu_read_unlock_sched();
2763
2764		if (ret)
2765			break;
2766	}
2767
2768	return ret;
2769}
2770
2771static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2772{
2773	if (global_rt_runtime() == RUNTIME_INF) {
2774		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2775		dl_rq->extra_bw = 1 << BW_SHIFT;
2776	} else {
2777		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2778			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2779		dl_rq->extra_bw = to_ratio(global_rt_period(),
2780						    global_rt_runtime());
2781	}
2782}
2783
2784void sched_dl_do_global(void)
2785{
2786	u64 new_bw = -1;
2787	u64 gen = ++dl_generation;
2788	struct dl_bw *dl_b;
2789	int cpu;
2790	unsigned long flags;
2791
2792	if (global_rt_runtime() != RUNTIME_INF)
2793		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2794
2795	for_each_possible_cpu(cpu) {
2796		rcu_read_lock_sched();
2797
2798		if (dl_bw_visited(cpu, gen)) {
2799			rcu_read_unlock_sched();
2800			continue;
2801		}
2802
2803		dl_b = dl_bw_of(cpu);
2804
2805		raw_spin_lock_irqsave(&dl_b->lock, flags);
2806		dl_b->bw = new_bw;
2807		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2808
2809		rcu_read_unlock_sched();
2810		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2811	}
2812}
2813
2814/*
2815 * We must be sure that accepting a new task (or allowing changing the
2816 * parameters of an existing one) is consistent with the bandwidth
2817 * constraints. If yes, this function also accordingly updates the currently
2818 * allocated bandwidth to reflect the new situation.
2819 *
2820 * This function is called while holding p's rq->lock.
2821 */
2822int sched_dl_overflow(struct task_struct *p, int policy,
2823		      const struct sched_attr *attr)
2824{
2825	u64 period = attr->sched_period ?: attr->sched_deadline;
2826	u64 runtime = attr->sched_runtime;
2827	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2828	int cpus, err = -1, cpu = task_cpu(p);
2829	struct dl_bw *dl_b = dl_bw_of(cpu);
2830	unsigned long cap;
2831
2832	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2833		return 0;
2834
2835	/* !deadline task may carry old deadline bandwidth */
2836	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2837		return 0;
2838
2839	/*
2840	 * Either if a task, enters, leave, or stays -deadline but changes
2841	 * its parameters, we may need to update accordingly the total
2842	 * allocated bandwidth of the container.
2843	 */
2844	raw_spin_lock(&dl_b->lock);
2845	cpus = dl_bw_cpus(cpu);
2846	cap = dl_bw_capacity(cpu);
2847
2848	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2849	    !__dl_overflow(dl_b, cap, 0, new_bw)) {
2850		if (hrtimer_active(&p->dl.inactive_timer))
2851			__dl_sub(dl_b, p->dl.dl_bw, cpus);
2852		__dl_add(dl_b, new_bw, cpus);
2853		err = 0;
2854	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2855		   !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
2856		/*
2857		 * XXX this is slightly incorrect: when the task
2858		 * utilization decreases, we should delay the total
2859		 * utilization change until the task's 0-lag point.
2860		 * But this would require to set the task's "inactive
2861		 * timer" when the task is not inactive.
2862		 */
2863		__dl_sub(dl_b, p->dl.dl_bw, cpus);
2864		__dl_add(dl_b, new_bw, cpus);
2865		dl_change_utilization(p, new_bw);
2866		err = 0;
2867	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2868		/*
2869		 * Do not decrease the total deadline utilization here,
2870		 * switched_from_dl() will take care to do it at the correct
2871		 * (0-lag) time.
2872		 */
2873		err = 0;
2874	}
2875	raw_spin_unlock(&dl_b->lock);
2876
2877	return err;
2878}
2879
2880/*
2881 * This function initializes the sched_dl_entity of a newly becoming
2882 * SCHED_DEADLINE task.
2883 *
2884 * Only the static values are considered here, the actual runtime and the
2885 * absolute deadline will be properly calculated when the task is enqueued
2886 * for the first time with its new policy.
2887 */
2888void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2889{
2890	struct sched_dl_entity *dl_se = &p->dl;
2891
2892	dl_se->dl_runtime = attr->sched_runtime;
2893	dl_se->dl_deadline = attr->sched_deadline;
2894	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2895	dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
2896	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2897	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2898}
2899
2900void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2901{
2902	struct sched_dl_entity *dl_se = &p->dl;
2903
2904	attr->sched_priority = p->rt_priority;
2905	attr->sched_runtime = dl_se->dl_runtime;
2906	attr->sched_deadline = dl_se->dl_deadline;
2907	attr->sched_period = dl_se->dl_period;
2908	attr->sched_flags &= ~SCHED_DL_FLAGS;
2909	attr->sched_flags |= dl_se->flags;
2910}
2911
2912/*
2913 * This function validates the new parameters of a -deadline task.
2914 * We ask for the deadline not being zero, and greater or equal
2915 * than the runtime, as well as the period of being zero or
2916 * greater than deadline. Furthermore, we have to be sure that
2917 * user parameters are above the internal resolution of 1us (we
2918 * check sched_runtime only since it is always the smaller one) and
2919 * below 2^63 ns (we have to check both sched_deadline and
2920 * sched_period, as the latter can be zero).
2921 */
2922bool __checkparam_dl(const struct sched_attr *attr)
2923{
2924	u64 period, max, min;
2925
2926	/* special dl tasks don't actually use any parameter */
2927	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2928		return true;
2929
2930	/* deadline != 0 */
2931	if (attr->sched_deadline == 0)
2932		return false;
2933
2934	/*
2935	 * Since we truncate DL_SCALE bits, make sure we're at least
2936	 * that big.
2937	 */
2938	if (attr->sched_runtime < (1ULL << DL_SCALE))
2939		return false;
2940
2941	/*
2942	 * Since we use the MSB for wrap-around and sign issues, make
2943	 * sure it's not set (mind that period can be equal to zero).
2944	 */
2945	if (attr->sched_deadline & (1ULL << 63) ||
2946	    attr->sched_period & (1ULL << 63))
2947		return false;
2948
2949	period = attr->sched_period;
2950	if (!period)
2951		period = attr->sched_deadline;
2952
2953	/* runtime <= deadline <= period (if period != 0) */
2954	if (period < attr->sched_deadline ||
2955	    attr->sched_deadline < attr->sched_runtime)
2956		return false;
2957
2958	max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
2959	min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
2960
2961	if (period < min || period > max)
2962		return false;
2963
2964	return true;
2965}
2966
2967/*
2968 * This function clears the sched_dl_entity static params.
2969 */
2970void __dl_clear_params(struct task_struct *p)
2971{
2972	struct sched_dl_entity *dl_se = &p->dl;
2973
2974	dl_se->dl_runtime		= 0;
2975	dl_se->dl_deadline		= 0;
2976	dl_se->dl_period		= 0;
2977	dl_se->flags			= 0;
2978	dl_se->dl_bw			= 0;
2979	dl_se->dl_density		= 0;
2980
2981	dl_se->dl_throttled		= 0;
2982	dl_se->dl_yielded		= 0;
2983	dl_se->dl_non_contending	= 0;
2984	dl_se->dl_overrun		= 0;
2985
2986#ifdef CONFIG_RT_MUTEXES
2987	dl_se->pi_se			= dl_se;
2988#endif
2989}
2990
2991bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2992{
2993	struct sched_dl_entity *dl_se = &p->dl;
2994
2995	if (dl_se->dl_runtime != attr->sched_runtime ||
2996	    dl_se->dl_deadline != attr->sched_deadline ||
2997	    dl_se->dl_period != attr->sched_period ||
2998	    dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
2999		return true;
3000
3001	return false;
3002}
3003
3004#ifdef CONFIG_SMP
3005int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
3006				 const struct cpumask *trial)
3007{
3008	unsigned long flags, cap;
3009	struct dl_bw *cur_dl_b;
3010	int ret = 1;
3011
3012	rcu_read_lock_sched();
3013	cur_dl_b = dl_bw_of(cpumask_any(cur));
3014	cap = __dl_bw_capacity(trial);
3015	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3016	if (__dl_overflow(cur_dl_b, cap, 0, 0))
3017		ret = 0;
3018	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3019	rcu_read_unlock_sched();
3020
3021	return ret;
3022}
3023
3024int dl_cpu_busy(int cpu, struct task_struct *p)
3025{
3026	unsigned long flags, cap;
3027	struct dl_bw *dl_b;
3028	bool overflow;
3029
3030	rcu_read_lock_sched();
3031	dl_b = dl_bw_of(cpu);
3032	raw_spin_lock_irqsave(&dl_b->lock, flags);
3033	cap = dl_bw_capacity(cpu);
3034	overflow = __dl_overflow(dl_b, cap, 0, p ? p->dl.dl_bw : 0);
3035
3036	if (!overflow && p) {
3037		/*
3038		 * We reserve space for this task in the destination
3039		 * root_domain, as we can't fail after this point.
3040		 * We will free resources in the source root_domain
3041		 * later on (see set_cpus_allowed_dl()).
3042		 */
3043		__dl_add(dl_b, p->dl.dl_bw, dl_bw_cpus(cpu));
3044	}
3045
3046	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3047	rcu_read_unlock_sched();
3048
3049	return overflow ? -EBUSY : 0;
3050}
3051#endif
3052
3053#ifdef CONFIG_SCHED_DEBUG
3054void print_dl_stats(struct seq_file *m, int cpu)
3055{
3056	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3057}
3058#endif /* CONFIG_SCHED_DEBUG */