Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Deadline Scheduling Class (SCHED_DEADLINE)
4 *
5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 *
7 * Tasks that periodically executes their instances for less than their
8 * runtime won't miss any of their deadlines.
9 * Tasks that are not periodic or sporadic or that tries to execute more
10 * than their reserved bandwidth will be slowed down (and may potentially
11 * miss some of their deadlines), and won't affect any other task.
12 *
13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14 * Juri Lelli <juri.lelli@gmail.com>,
15 * Michael Trimarchi <michael@amarulasolutions.com>,
16 * Fabio Checconi <fchecconi@gmail.com>
17 */
18
19/*
20 * Default limits for DL period; on the top end we guard against small util
21 * tasks still getting ridiculously long effective runtimes, on the bottom end we
22 * guard against timer DoS.
23 */
24static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
25static unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */
26#ifdef CONFIG_SYSCTL
27static struct ctl_table sched_dl_sysctls[] = {
28 {
29 .procname = "sched_deadline_period_max_us",
30 .data = &sysctl_sched_dl_period_max,
31 .maxlen = sizeof(unsigned int),
32 .mode = 0644,
33 .proc_handler = proc_douintvec_minmax,
34 .extra1 = (void *)&sysctl_sched_dl_period_min,
35 },
36 {
37 .procname = "sched_deadline_period_min_us",
38 .data = &sysctl_sched_dl_period_min,
39 .maxlen = sizeof(unsigned int),
40 .mode = 0644,
41 .proc_handler = proc_douintvec_minmax,
42 .extra2 = (void *)&sysctl_sched_dl_period_max,
43 },
44 {}
45};
46
47static int __init sched_dl_sysctl_init(void)
48{
49 register_sysctl_init("kernel", sched_dl_sysctls);
50 return 0;
51}
52late_initcall(sched_dl_sysctl_init);
53#endif
54
55static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
56{
57 return container_of(dl_se, struct task_struct, dl);
58}
59
60static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
61{
62 return container_of(dl_rq, struct rq, dl);
63}
64
65static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
66{
67 struct task_struct *p = dl_task_of(dl_se);
68 struct rq *rq = task_rq(p);
69
70 return &rq->dl;
71}
72
73static inline int on_dl_rq(struct sched_dl_entity *dl_se)
74{
75 return !RB_EMPTY_NODE(&dl_se->rb_node);
76}
77
78#ifdef CONFIG_RT_MUTEXES
79static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
80{
81 return dl_se->pi_se;
82}
83
84static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
85{
86 return pi_of(dl_se) != dl_se;
87}
88#else
89static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
90{
91 return dl_se;
92}
93
94static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
95{
96 return false;
97}
98#endif
99
100#ifdef CONFIG_SMP
101static inline struct dl_bw *dl_bw_of(int i)
102{
103 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
104 "sched RCU must be held");
105 return &cpu_rq(i)->rd->dl_bw;
106}
107
108static inline int dl_bw_cpus(int i)
109{
110 struct root_domain *rd = cpu_rq(i)->rd;
111 int cpus;
112
113 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
114 "sched RCU must be held");
115
116 if (cpumask_subset(rd->span, cpu_active_mask))
117 return cpumask_weight(rd->span);
118
119 cpus = 0;
120
121 for_each_cpu_and(i, rd->span, cpu_active_mask)
122 cpus++;
123
124 return cpus;
125}
126
127static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
128{
129 unsigned long cap = 0;
130 int i;
131
132 for_each_cpu_and(i, mask, cpu_active_mask)
133 cap += capacity_orig_of(i);
134
135 return cap;
136}
137
138/*
139 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
140 * of the CPU the task is running on rather rd's \Sum CPU capacity.
141 */
142static inline unsigned long dl_bw_capacity(int i)
143{
144 if (!sched_asym_cpucap_active() &&
145 capacity_orig_of(i) == SCHED_CAPACITY_SCALE) {
146 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
147 } else {
148 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
149 "sched RCU must be held");
150
151 return __dl_bw_capacity(cpu_rq(i)->rd->span);
152 }
153}
154
155static inline bool dl_bw_visited(int cpu, u64 gen)
156{
157 struct root_domain *rd = cpu_rq(cpu)->rd;
158
159 if (rd->visit_gen == gen)
160 return true;
161
162 rd->visit_gen = gen;
163 return false;
164}
165
166static inline
167void __dl_update(struct dl_bw *dl_b, s64 bw)
168{
169 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
170 int i;
171
172 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
173 "sched RCU must be held");
174 for_each_cpu_and(i, rd->span, cpu_active_mask) {
175 struct rq *rq = cpu_rq(i);
176
177 rq->dl.extra_bw += bw;
178 }
179}
180#else
181static inline struct dl_bw *dl_bw_of(int i)
182{
183 return &cpu_rq(i)->dl.dl_bw;
184}
185
186static inline int dl_bw_cpus(int i)
187{
188 return 1;
189}
190
191static inline unsigned long dl_bw_capacity(int i)
192{
193 return SCHED_CAPACITY_SCALE;
194}
195
196static inline bool dl_bw_visited(int cpu, u64 gen)
197{
198 return false;
199}
200
201static inline
202void __dl_update(struct dl_bw *dl_b, s64 bw)
203{
204 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
205
206 dl->extra_bw += bw;
207}
208#endif
209
210static inline
211void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
212{
213 dl_b->total_bw -= tsk_bw;
214 __dl_update(dl_b, (s32)tsk_bw / cpus);
215}
216
217static inline
218void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
219{
220 dl_b->total_bw += tsk_bw;
221 __dl_update(dl_b, -((s32)tsk_bw / cpus));
222}
223
224static inline bool
225__dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
226{
227 return dl_b->bw != -1 &&
228 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
229}
230
231static inline
232void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
233{
234 u64 old = dl_rq->running_bw;
235
236 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
237 dl_rq->running_bw += dl_bw;
238 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
239 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
240 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
241 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
242}
243
244static inline
245void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
246{
247 u64 old = dl_rq->running_bw;
248
249 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
250 dl_rq->running_bw -= dl_bw;
251 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
252 if (dl_rq->running_bw > old)
253 dl_rq->running_bw = 0;
254 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
255 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
256}
257
258static inline
259void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
260{
261 u64 old = dl_rq->this_bw;
262
263 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
264 dl_rq->this_bw += dl_bw;
265 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
266}
267
268static inline
269void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
270{
271 u64 old = dl_rq->this_bw;
272
273 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
274 dl_rq->this_bw -= dl_bw;
275 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
276 if (dl_rq->this_bw > old)
277 dl_rq->this_bw = 0;
278 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
279}
280
281static inline
282void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
283{
284 if (!dl_entity_is_special(dl_se))
285 __add_rq_bw(dl_se->dl_bw, dl_rq);
286}
287
288static inline
289void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
290{
291 if (!dl_entity_is_special(dl_se))
292 __sub_rq_bw(dl_se->dl_bw, dl_rq);
293}
294
295static inline
296void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
297{
298 if (!dl_entity_is_special(dl_se))
299 __add_running_bw(dl_se->dl_bw, dl_rq);
300}
301
302static inline
303void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
304{
305 if (!dl_entity_is_special(dl_se))
306 __sub_running_bw(dl_se->dl_bw, dl_rq);
307}
308
309static void dl_change_utilization(struct task_struct *p, u64 new_bw)
310{
311 struct rq *rq;
312
313 WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
314
315 if (task_on_rq_queued(p))
316 return;
317
318 rq = task_rq(p);
319 if (p->dl.dl_non_contending) {
320 sub_running_bw(&p->dl, &rq->dl);
321 p->dl.dl_non_contending = 0;
322 /*
323 * If the timer handler is currently running and the
324 * timer cannot be canceled, inactive_task_timer()
325 * will see that dl_not_contending is not set, and
326 * will not touch the rq's active utilization,
327 * so we are still safe.
328 */
329 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
330 put_task_struct(p);
331 }
332 __sub_rq_bw(p->dl.dl_bw, &rq->dl);
333 __add_rq_bw(new_bw, &rq->dl);
334}
335
336/*
337 * The utilization of a task cannot be immediately removed from
338 * the rq active utilization (running_bw) when the task blocks.
339 * Instead, we have to wait for the so called "0-lag time".
340 *
341 * If a task blocks before the "0-lag time", a timer (the inactive
342 * timer) is armed, and running_bw is decreased when the timer
343 * fires.
344 *
345 * If the task wakes up again before the inactive timer fires,
346 * the timer is canceled, whereas if the task wakes up after the
347 * inactive timer fired (and running_bw has been decreased) the
348 * task's utilization has to be added to running_bw again.
349 * A flag in the deadline scheduling entity (dl_non_contending)
350 * is used to avoid race conditions between the inactive timer handler
351 * and task wakeups.
352 *
353 * The following diagram shows how running_bw is updated. A task is
354 * "ACTIVE" when its utilization contributes to running_bw; an
355 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
356 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
357 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
358 * time already passed, which does not contribute to running_bw anymore.
359 * +------------------+
360 * wakeup | ACTIVE |
361 * +------------------>+ contending |
362 * | add_running_bw | |
363 * | +----+------+------+
364 * | | ^
365 * | dequeue | |
366 * +--------+-------+ | |
367 * | | t >= 0-lag | | wakeup
368 * | INACTIVE |<---------------+ |
369 * | | sub_running_bw | |
370 * +--------+-------+ | |
371 * ^ | |
372 * | t < 0-lag | |
373 * | | |
374 * | V |
375 * | +----+------+------+
376 * | sub_running_bw | ACTIVE |
377 * +-------------------+ |
378 * inactive timer | non contending |
379 * fired +------------------+
380 *
381 * The task_non_contending() function is invoked when a task
382 * blocks, and checks if the 0-lag time already passed or
383 * not (in the first case, it directly updates running_bw;
384 * in the second case, it arms the inactive timer).
385 *
386 * The task_contending() function is invoked when a task wakes
387 * up, and checks if the task is still in the "ACTIVE non contending"
388 * state or not (in the second case, it updates running_bw).
389 */
390static void task_non_contending(struct task_struct *p)
391{
392 struct sched_dl_entity *dl_se = &p->dl;
393 struct hrtimer *timer = &dl_se->inactive_timer;
394 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
395 struct rq *rq = rq_of_dl_rq(dl_rq);
396 s64 zerolag_time;
397
398 /*
399 * If this is a non-deadline task that has been boosted,
400 * do nothing
401 */
402 if (dl_se->dl_runtime == 0)
403 return;
404
405 if (dl_entity_is_special(dl_se))
406 return;
407
408 WARN_ON(dl_se->dl_non_contending);
409
410 zerolag_time = dl_se->deadline -
411 div64_long((dl_se->runtime * dl_se->dl_period),
412 dl_se->dl_runtime);
413
414 /*
415 * Using relative times instead of the absolute "0-lag time"
416 * allows to simplify the code
417 */
418 zerolag_time -= rq_clock(rq);
419
420 /*
421 * If the "0-lag time" already passed, decrease the active
422 * utilization now, instead of starting a timer
423 */
424 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
425 if (dl_task(p))
426 sub_running_bw(dl_se, dl_rq);
427 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
428 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
429
430 if (READ_ONCE(p->__state) == TASK_DEAD)
431 sub_rq_bw(&p->dl, &rq->dl);
432 raw_spin_lock(&dl_b->lock);
433 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
434 raw_spin_unlock(&dl_b->lock);
435 __dl_clear_params(p);
436 }
437
438 return;
439 }
440
441 dl_se->dl_non_contending = 1;
442 get_task_struct(p);
443 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
444}
445
446static void task_contending(struct sched_dl_entity *dl_se, int flags)
447{
448 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
449
450 /*
451 * If this is a non-deadline task that has been boosted,
452 * do nothing
453 */
454 if (dl_se->dl_runtime == 0)
455 return;
456
457 if (flags & ENQUEUE_MIGRATED)
458 add_rq_bw(dl_se, dl_rq);
459
460 if (dl_se->dl_non_contending) {
461 dl_se->dl_non_contending = 0;
462 /*
463 * If the timer handler is currently running and the
464 * timer cannot be canceled, inactive_task_timer()
465 * will see that dl_not_contending is not set, and
466 * will not touch the rq's active utilization,
467 * so we are still safe.
468 */
469 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
470 put_task_struct(dl_task_of(dl_se));
471 } else {
472 /*
473 * Since "dl_non_contending" is not set, the
474 * task's utilization has already been removed from
475 * active utilization (either when the task blocked,
476 * when the "inactive timer" fired).
477 * So, add it back.
478 */
479 add_running_bw(dl_se, dl_rq);
480 }
481}
482
483static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
484{
485 struct sched_dl_entity *dl_se = &p->dl;
486
487 return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
488}
489
490static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
491
492void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
493{
494 raw_spin_lock_init(&dl_b->dl_runtime_lock);
495 dl_b->dl_period = period;
496 dl_b->dl_runtime = runtime;
497}
498
499void init_dl_bw(struct dl_bw *dl_b)
500{
501 raw_spin_lock_init(&dl_b->lock);
502 if (global_rt_runtime() == RUNTIME_INF)
503 dl_b->bw = -1;
504 else
505 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
506 dl_b->total_bw = 0;
507}
508
509void init_dl_rq(struct dl_rq *dl_rq)
510{
511 dl_rq->root = RB_ROOT_CACHED;
512
513#ifdef CONFIG_SMP
514 /* zero means no -deadline tasks */
515 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
516
517 dl_rq->dl_nr_migratory = 0;
518 dl_rq->overloaded = 0;
519 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
520#else
521 init_dl_bw(&dl_rq->dl_bw);
522#endif
523
524 dl_rq->running_bw = 0;
525 dl_rq->this_bw = 0;
526 init_dl_rq_bw_ratio(dl_rq);
527}
528
529#ifdef CONFIG_SMP
530
531static inline int dl_overloaded(struct rq *rq)
532{
533 return atomic_read(&rq->rd->dlo_count);
534}
535
536static inline void dl_set_overload(struct rq *rq)
537{
538 if (!rq->online)
539 return;
540
541 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
542 /*
543 * Must be visible before the overload count is
544 * set (as in sched_rt.c).
545 *
546 * Matched by the barrier in pull_dl_task().
547 */
548 smp_wmb();
549 atomic_inc(&rq->rd->dlo_count);
550}
551
552static inline void dl_clear_overload(struct rq *rq)
553{
554 if (!rq->online)
555 return;
556
557 atomic_dec(&rq->rd->dlo_count);
558 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
559}
560
561static void update_dl_migration(struct dl_rq *dl_rq)
562{
563 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
564 if (!dl_rq->overloaded) {
565 dl_set_overload(rq_of_dl_rq(dl_rq));
566 dl_rq->overloaded = 1;
567 }
568 } else if (dl_rq->overloaded) {
569 dl_clear_overload(rq_of_dl_rq(dl_rq));
570 dl_rq->overloaded = 0;
571 }
572}
573
574static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
575{
576 struct task_struct *p = dl_task_of(dl_se);
577
578 if (p->nr_cpus_allowed > 1)
579 dl_rq->dl_nr_migratory++;
580
581 update_dl_migration(dl_rq);
582}
583
584static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
585{
586 struct task_struct *p = dl_task_of(dl_se);
587
588 if (p->nr_cpus_allowed > 1)
589 dl_rq->dl_nr_migratory--;
590
591 update_dl_migration(dl_rq);
592}
593
594#define __node_2_pdl(node) \
595 rb_entry((node), struct task_struct, pushable_dl_tasks)
596
597static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
598{
599 return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
600}
601
602/*
603 * The list of pushable -deadline task is not a plist, like in
604 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
605 */
606static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
607{
608 struct rb_node *leftmost;
609
610 WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
611
612 leftmost = rb_add_cached(&p->pushable_dl_tasks,
613 &rq->dl.pushable_dl_tasks_root,
614 __pushable_less);
615 if (leftmost)
616 rq->dl.earliest_dl.next = p->dl.deadline;
617}
618
619static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
620{
621 struct dl_rq *dl_rq = &rq->dl;
622 struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
623 struct rb_node *leftmost;
624
625 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
626 return;
627
628 leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
629 if (leftmost)
630 dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
631
632 RB_CLEAR_NODE(&p->pushable_dl_tasks);
633}
634
635static inline int has_pushable_dl_tasks(struct rq *rq)
636{
637 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
638}
639
640static int push_dl_task(struct rq *rq);
641
642static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
643{
644 return rq->online && dl_task(prev);
645}
646
647static DEFINE_PER_CPU(struct balance_callback, dl_push_head);
648static DEFINE_PER_CPU(struct balance_callback, dl_pull_head);
649
650static void push_dl_tasks(struct rq *);
651static void pull_dl_task(struct rq *);
652
653static inline void deadline_queue_push_tasks(struct rq *rq)
654{
655 if (!has_pushable_dl_tasks(rq))
656 return;
657
658 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
659}
660
661static inline void deadline_queue_pull_task(struct rq *rq)
662{
663 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
664}
665
666static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
667
668static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
669{
670 struct rq *later_rq = NULL;
671 struct dl_bw *dl_b;
672
673 later_rq = find_lock_later_rq(p, rq);
674 if (!later_rq) {
675 int cpu;
676
677 /*
678 * If we cannot preempt any rq, fall back to pick any
679 * online CPU:
680 */
681 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
682 if (cpu >= nr_cpu_ids) {
683 /*
684 * Failed to find any suitable CPU.
685 * The task will never come back!
686 */
687 WARN_ON_ONCE(dl_bandwidth_enabled());
688
689 /*
690 * If admission control is disabled we
691 * try a little harder to let the task
692 * run.
693 */
694 cpu = cpumask_any(cpu_active_mask);
695 }
696 later_rq = cpu_rq(cpu);
697 double_lock_balance(rq, later_rq);
698 }
699
700 if (p->dl.dl_non_contending || p->dl.dl_throttled) {
701 /*
702 * Inactive timer is armed (or callback is running, but
703 * waiting for us to release rq locks). In any case, when it
704 * will fire (or continue), it will see running_bw of this
705 * task migrated to later_rq (and correctly handle it).
706 */
707 sub_running_bw(&p->dl, &rq->dl);
708 sub_rq_bw(&p->dl, &rq->dl);
709
710 add_rq_bw(&p->dl, &later_rq->dl);
711 add_running_bw(&p->dl, &later_rq->dl);
712 } else {
713 sub_rq_bw(&p->dl, &rq->dl);
714 add_rq_bw(&p->dl, &later_rq->dl);
715 }
716
717 /*
718 * And we finally need to fixup root_domain(s) bandwidth accounting,
719 * since p is still hanging out in the old (now moved to default) root
720 * domain.
721 */
722 dl_b = &rq->rd->dl_bw;
723 raw_spin_lock(&dl_b->lock);
724 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
725 raw_spin_unlock(&dl_b->lock);
726
727 dl_b = &later_rq->rd->dl_bw;
728 raw_spin_lock(&dl_b->lock);
729 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
730 raw_spin_unlock(&dl_b->lock);
731
732 set_task_cpu(p, later_rq->cpu);
733 double_unlock_balance(later_rq, rq);
734
735 return later_rq;
736}
737
738#else
739
740static inline
741void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
742{
743}
744
745static inline
746void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
747{
748}
749
750static inline
751void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
752{
753}
754
755static inline
756void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
757{
758}
759
760static inline void deadline_queue_push_tasks(struct rq *rq)
761{
762}
763
764static inline void deadline_queue_pull_task(struct rq *rq)
765{
766}
767#endif /* CONFIG_SMP */
768
769static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
770static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
771static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
772
773static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
774 struct rq *rq)
775{
776 /* for non-boosted task, pi_of(dl_se) == dl_se */
777 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
778 dl_se->runtime = pi_of(dl_se)->dl_runtime;
779}
780
781/*
782 * We are being explicitly informed that a new instance is starting,
783 * and this means that:
784 * - the absolute deadline of the entity has to be placed at
785 * current time + relative deadline;
786 * - the runtime of the entity has to be set to the maximum value.
787 *
788 * The capability of specifying such event is useful whenever a -deadline
789 * entity wants to (try to!) synchronize its behaviour with the scheduler's
790 * one, and to (try to!) reconcile itself with its own scheduling
791 * parameters.
792 */
793static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
794{
795 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
796 struct rq *rq = rq_of_dl_rq(dl_rq);
797
798 WARN_ON(is_dl_boosted(dl_se));
799 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
800
801 /*
802 * We are racing with the deadline timer. So, do nothing because
803 * the deadline timer handler will take care of properly recharging
804 * the runtime and postponing the deadline
805 */
806 if (dl_se->dl_throttled)
807 return;
808
809 /*
810 * We use the regular wall clock time to set deadlines in the
811 * future; in fact, we must consider execution overheads (time
812 * spent on hardirq context, etc.).
813 */
814 replenish_dl_new_period(dl_se, rq);
815}
816
817/*
818 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
819 * possibility of a entity lasting more than what it declared, and thus
820 * exhausting its runtime.
821 *
822 * Here we are interested in making runtime overrun possible, but we do
823 * not want a entity which is misbehaving to affect the scheduling of all
824 * other entities.
825 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
826 * is used, in order to confine each entity within its own bandwidth.
827 *
828 * This function deals exactly with that, and ensures that when the runtime
829 * of a entity is replenished, its deadline is also postponed. That ensures
830 * the overrunning entity can't interfere with other entity in the system and
831 * can't make them miss their deadlines. Reasons why this kind of overruns
832 * could happen are, typically, a entity voluntarily trying to overcome its
833 * runtime, or it just underestimated it during sched_setattr().
834 */
835static void replenish_dl_entity(struct sched_dl_entity *dl_se)
836{
837 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
838 struct rq *rq = rq_of_dl_rq(dl_rq);
839
840 WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
841
842 /*
843 * This could be the case for a !-dl task that is boosted.
844 * Just go with full inherited parameters.
845 */
846 if (dl_se->dl_deadline == 0)
847 replenish_dl_new_period(dl_se, rq);
848
849 if (dl_se->dl_yielded && dl_se->runtime > 0)
850 dl_se->runtime = 0;
851
852 /*
853 * We keep moving the deadline away until we get some
854 * available runtime for the entity. This ensures correct
855 * handling of situations where the runtime overrun is
856 * arbitrary large.
857 */
858 while (dl_se->runtime <= 0) {
859 dl_se->deadline += pi_of(dl_se)->dl_period;
860 dl_se->runtime += pi_of(dl_se)->dl_runtime;
861 }
862
863 /*
864 * At this point, the deadline really should be "in
865 * the future" with respect to rq->clock. If it's
866 * not, we are, for some reason, lagging too much!
867 * Anyway, after having warn userspace abut that,
868 * we still try to keep the things running by
869 * resetting the deadline and the budget of the
870 * entity.
871 */
872 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
873 printk_deferred_once("sched: DL replenish lagged too much\n");
874 replenish_dl_new_period(dl_se, rq);
875 }
876
877 if (dl_se->dl_yielded)
878 dl_se->dl_yielded = 0;
879 if (dl_se->dl_throttled)
880 dl_se->dl_throttled = 0;
881}
882
883/*
884 * Here we check if --at time t-- an entity (which is probably being
885 * [re]activated or, in general, enqueued) can use its remaining runtime
886 * and its current deadline _without_ exceeding the bandwidth it is
887 * assigned (function returns true if it can't). We are in fact applying
888 * one of the CBS rules: when a task wakes up, if the residual runtime
889 * over residual deadline fits within the allocated bandwidth, then we
890 * can keep the current (absolute) deadline and residual budget without
891 * disrupting the schedulability of the system. Otherwise, we should
892 * refill the runtime and set the deadline a period in the future,
893 * because keeping the current (absolute) deadline of the task would
894 * result in breaking guarantees promised to other tasks (refer to
895 * Documentation/scheduler/sched-deadline.rst for more information).
896 *
897 * This function returns true if:
898 *
899 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
900 *
901 * IOW we can't recycle current parameters.
902 *
903 * Notice that the bandwidth check is done against the deadline. For
904 * task with deadline equal to period this is the same of using
905 * dl_period instead of dl_deadline in the equation above.
906 */
907static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
908{
909 u64 left, right;
910
911 /*
912 * left and right are the two sides of the equation above,
913 * after a bit of shuffling to use multiplications instead
914 * of divisions.
915 *
916 * Note that none of the time values involved in the two
917 * multiplications are absolute: dl_deadline and dl_runtime
918 * are the relative deadline and the maximum runtime of each
919 * instance, runtime is the runtime left for the last instance
920 * and (deadline - t), since t is rq->clock, is the time left
921 * to the (absolute) deadline. Even if overflowing the u64 type
922 * is very unlikely to occur in both cases, here we scale down
923 * as we want to avoid that risk at all. Scaling down by 10
924 * means that we reduce granularity to 1us. We are fine with it,
925 * since this is only a true/false check and, anyway, thinking
926 * of anything below microseconds resolution is actually fiction
927 * (but still we want to give the user that illusion >;).
928 */
929 left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
930 right = ((dl_se->deadline - t) >> DL_SCALE) *
931 (pi_of(dl_se)->dl_runtime >> DL_SCALE);
932
933 return dl_time_before(right, left);
934}
935
936/*
937 * Revised wakeup rule [1]: For self-suspending tasks, rather then
938 * re-initializing task's runtime and deadline, the revised wakeup
939 * rule adjusts the task's runtime to avoid the task to overrun its
940 * density.
941 *
942 * Reasoning: a task may overrun the density if:
943 * runtime / (deadline - t) > dl_runtime / dl_deadline
944 *
945 * Therefore, runtime can be adjusted to:
946 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
947 *
948 * In such way that runtime will be equal to the maximum density
949 * the task can use without breaking any rule.
950 *
951 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
952 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
953 */
954static void
955update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
956{
957 u64 laxity = dl_se->deadline - rq_clock(rq);
958
959 /*
960 * If the task has deadline < period, and the deadline is in the past,
961 * it should already be throttled before this check.
962 *
963 * See update_dl_entity() comments for further details.
964 */
965 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
966
967 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
968}
969
970/*
971 * Regarding the deadline, a task with implicit deadline has a relative
972 * deadline == relative period. A task with constrained deadline has a
973 * relative deadline <= relative period.
974 *
975 * We support constrained deadline tasks. However, there are some restrictions
976 * applied only for tasks which do not have an implicit deadline. See
977 * update_dl_entity() to know more about such restrictions.
978 *
979 * The dl_is_implicit() returns true if the task has an implicit deadline.
980 */
981static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
982{
983 return dl_se->dl_deadline == dl_se->dl_period;
984}
985
986/*
987 * When a deadline entity is placed in the runqueue, its runtime and deadline
988 * might need to be updated. This is done by a CBS wake up rule. There are two
989 * different rules: 1) the original CBS; and 2) the Revisited CBS.
990 *
991 * When the task is starting a new period, the Original CBS is used. In this
992 * case, the runtime is replenished and a new absolute deadline is set.
993 *
994 * When a task is queued before the begin of the next period, using the
995 * remaining runtime and deadline could make the entity to overflow, see
996 * dl_entity_overflow() to find more about runtime overflow. When such case
997 * is detected, the runtime and deadline need to be updated.
998 *
999 * If the task has an implicit deadline, i.e., deadline == period, the Original
1000 * CBS is applied. the runtime is replenished and a new absolute deadline is
1001 * set, as in the previous cases.
1002 *
1003 * However, the Original CBS does not work properly for tasks with
1004 * deadline < period, which are said to have a constrained deadline. By
1005 * applying the Original CBS, a constrained deadline task would be able to run
1006 * runtime/deadline in a period. With deadline < period, the task would
1007 * overrun the runtime/period allowed bandwidth, breaking the admission test.
1008 *
1009 * In order to prevent this misbehave, the Revisited CBS is used for
1010 * constrained deadline tasks when a runtime overflow is detected. In the
1011 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
1012 * the remaining runtime of the task is reduced to avoid runtime overflow.
1013 * Please refer to the comments update_dl_revised_wakeup() function to find
1014 * more about the Revised CBS rule.
1015 */
1016static void update_dl_entity(struct sched_dl_entity *dl_se)
1017{
1018 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1019 struct rq *rq = rq_of_dl_rq(dl_rq);
1020
1021 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
1022 dl_entity_overflow(dl_se, rq_clock(rq))) {
1023
1024 if (unlikely(!dl_is_implicit(dl_se) &&
1025 !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1026 !is_dl_boosted(dl_se))) {
1027 update_dl_revised_wakeup(dl_se, rq);
1028 return;
1029 }
1030
1031 replenish_dl_new_period(dl_se, rq);
1032 }
1033}
1034
1035static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
1036{
1037 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
1038}
1039
1040/*
1041 * If the entity depleted all its runtime, and if we want it to sleep
1042 * while waiting for some new execution time to become available, we
1043 * set the bandwidth replenishment timer to the replenishment instant
1044 * and try to activate it.
1045 *
1046 * Notice that it is important for the caller to know if the timer
1047 * actually started or not (i.e., the replenishment instant is in
1048 * the future or in the past).
1049 */
1050static int start_dl_timer(struct task_struct *p)
1051{
1052 struct sched_dl_entity *dl_se = &p->dl;
1053 struct hrtimer *timer = &dl_se->dl_timer;
1054 struct rq *rq = task_rq(p);
1055 ktime_t now, act;
1056 s64 delta;
1057
1058 lockdep_assert_rq_held(rq);
1059
1060 /*
1061 * We want the timer to fire at the deadline, but considering
1062 * that it is actually coming from rq->clock and not from
1063 * hrtimer's time base reading.
1064 */
1065 act = ns_to_ktime(dl_next_period(dl_se));
1066 now = hrtimer_cb_get_time(timer);
1067 delta = ktime_to_ns(now) - rq_clock(rq);
1068 act = ktime_add_ns(act, delta);
1069
1070 /*
1071 * If the expiry time already passed, e.g., because the value
1072 * chosen as the deadline is too small, don't even try to
1073 * start the timer in the past!
1074 */
1075 if (ktime_us_delta(act, now) < 0)
1076 return 0;
1077
1078 /*
1079 * !enqueued will guarantee another callback; even if one is already in
1080 * progress. This ensures a balanced {get,put}_task_struct().
1081 *
1082 * The race against __run_timer() clearing the enqueued state is
1083 * harmless because we're holding task_rq()->lock, therefore the timer
1084 * expiring after we've done the check will wait on its task_rq_lock()
1085 * and observe our state.
1086 */
1087 if (!hrtimer_is_queued(timer)) {
1088 get_task_struct(p);
1089 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1090 }
1091
1092 return 1;
1093}
1094
1095/*
1096 * This is the bandwidth enforcement timer callback. If here, we know
1097 * a task is not on its dl_rq, since the fact that the timer was running
1098 * means the task is throttled and needs a runtime replenishment.
1099 *
1100 * However, what we actually do depends on the fact the task is active,
1101 * (it is on its rq) or has been removed from there by a call to
1102 * dequeue_task_dl(). In the former case we must issue the runtime
1103 * replenishment and add the task back to the dl_rq; in the latter, we just
1104 * do nothing but clearing dl_throttled, so that runtime and deadline
1105 * updating (and the queueing back to dl_rq) will be done by the
1106 * next call to enqueue_task_dl().
1107 */
1108static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1109{
1110 struct sched_dl_entity *dl_se = container_of(timer,
1111 struct sched_dl_entity,
1112 dl_timer);
1113 struct task_struct *p = dl_task_of(dl_se);
1114 struct rq_flags rf;
1115 struct rq *rq;
1116
1117 rq = task_rq_lock(p, &rf);
1118
1119 /*
1120 * The task might have changed its scheduling policy to something
1121 * different than SCHED_DEADLINE (through switched_from_dl()).
1122 */
1123 if (!dl_task(p))
1124 goto unlock;
1125
1126 /*
1127 * The task might have been boosted by someone else and might be in the
1128 * boosting/deboosting path, its not throttled.
1129 */
1130 if (is_dl_boosted(dl_se))
1131 goto unlock;
1132
1133 /*
1134 * Spurious timer due to start_dl_timer() race; or we already received
1135 * a replenishment from rt_mutex_setprio().
1136 */
1137 if (!dl_se->dl_throttled)
1138 goto unlock;
1139
1140 sched_clock_tick();
1141 update_rq_clock(rq);
1142
1143 /*
1144 * If the throttle happened during sched-out; like:
1145 *
1146 * schedule()
1147 * deactivate_task()
1148 * dequeue_task_dl()
1149 * update_curr_dl()
1150 * start_dl_timer()
1151 * __dequeue_task_dl()
1152 * prev->on_rq = 0;
1153 *
1154 * We can be both throttled and !queued. Replenish the counter
1155 * but do not enqueue -- wait for our wakeup to do that.
1156 */
1157 if (!task_on_rq_queued(p)) {
1158 replenish_dl_entity(dl_se);
1159 goto unlock;
1160 }
1161
1162#ifdef CONFIG_SMP
1163 if (unlikely(!rq->online)) {
1164 /*
1165 * If the runqueue is no longer available, migrate the
1166 * task elsewhere. This necessarily changes rq.
1167 */
1168 lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1169 rq = dl_task_offline_migration(rq, p);
1170 rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1171 update_rq_clock(rq);
1172
1173 /*
1174 * Now that the task has been migrated to the new RQ and we
1175 * have that locked, proceed as normal and enqueue the task
1176 * there.
1177 */
1178 }
1179#endif
1180
1181 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1182 if (dl_task(rq->curr))
1183 check_preempt_curr_dl(rq, p, 0);
1184 else
1185 resched_curr(rq);
1186
1187#ifdef CONFIG_SMP
1188 /*
1189 * Queueing this task back might have overloaded rq, check if we need
1190 * to kick someone away.
1191 */
1192 if (has_pushable_dl_tasks(rq)) {
1193 /*
1194 * Nothing relies on rq->lock after this, so its safe to drop
1195 * rq->lock.
1196 */
1197 rq_unpin_lock(rq, &rf);
1198 push_dl_task(rq);
1199 rq_repin_lock(rq, &rf);
1200 }
1201#endif
1202
1203unlock:
1204 task_rq_unlock(rq, p, &rf);
1205
1206 /*
1207 * This can free the task_struct, including this hrtimer, do not touch
1208 * anything related to that after this.
1209 */
1210 put_task_struct(p);
1211
1212 return HRTIMER_NORESTART;
1213}
1214
1215void init_dl_task_timer(struct sched_dl_entity *dl_se)
1216{
1217 struct hrtimer *timer = &dl_se->dl_timer;
1218
1219 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1220 timer->function = dl_task_timer;
1221}
1222
1223/*
1224 * During the activation, CBS checks if it can reuse the current task's
1225 * runtime and period. If the deadline of the task is in the past, CBS
1226 * cannot use the runtime, and so it replenishes the task. This rule
1227 * works fine for implicit deadline tasks (deadline == period), and the
1228 * CBS was designed for implicit deadline tasks. However, a task with
1229 * constrained deadline (deadline < period) might be awakened after the
1230 * deadline, but before the next period. In this case, replenishing the
1231 * task would allow it to run for runtime / deadline. As in this case
1232 * deadline < period, CBS enables a task to run for more than the
1233 * runtime / period. In a very loaded system, this can cause a domino
1234 * effect, making other tasks miss their deadlines.
1235 *
1236 * To avoid this problem, in the activation of a constrained deadline
1237 * task after the deadline but before the next period, throttle the
1238 * task and set the replenishing timer to the begin of the next period,
1239 * unless it is boosted.
1240 */
1241static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1242{
1243 struct task_struct *p = dl_task_of(dl_se);
1244 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1245
1246 if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1247 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1248 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(p)))
1249 return;
1250 dl_se->dl_throttled = 1;
1251 if (dl_se->runtime > 0)
1252 dl_se->runtime = 0;
1253 }
1254}
1255
1256static
1257int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1258{
1259 return (dl_se->runtime <= 0);
1260}
1261
1262/*
1263 * This function implements the GRUB accounting rule:
1264 * according to the GRUB reclaiming algorithm, the runtime is
1265 * not decreased as "dq = -dt", but as
1266 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1267 * where u is the utilization of the task, Umax is the maximum reclaimable
1268 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1269 * as the difference between the "total runqueue utilization" and the
1270 * runqueue active utilization, and Uextra is the (per runqueue) extra
1271 * reclaimable utilization.
1272 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1273 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1274 * BW_SHIFT.
1275 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT,
1276 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1277 * Since delta is a 64 bit variable, to have an overflow its value
1278 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1279 * So, overflow is not an issue here.
1280 */
1281static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1282{
1283 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1284 u64 u_act;
1285 u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1286
1287 /*
1288 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1289 * we compare u_inact + rq->dl.extra_bw with
1290 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1291 * u_inact + rq->dl.extra_bw can be larger than
1292 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1293 * leading to wrong results)
1294 */
1295 if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1296 u_act = u_act_min;
1297 else
1298 u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1299
1300 return (delta * u_act) >> BW_SHIFT;
1301}
1302
1303/*
1304 * Update the current task's runtime statistics (provided it is still
1305 * a -deadline task and has not been removed from the dl_rq).
1306 */
1307static void update_curr_dl(struct rq *rq)
1308{
1309 struct task_struct *curr = rq->curr;
1310 struct sched_dl_entity *dl_se = &curr->dl;
1311 u64 delta_exec, scaled_delta_exec;
1312 int cpu = cpu_of(rq);
1313 u64 now;
1314
1315 if (!dl_task(curr) || !on_dl_rq(dl_se))
1316 return;
1317
1318 /*
1319 * Consumed budget is computed considering the time as
1320 * observed by schedulable tasks (excluding time spent
1321 * in hardirq context, etc.). Deadlines are instead
1322 * computed using hard walltime. This seems to be the more
1323 * natural solution, but the full ramifications of this
1324 * approach need further study.
1325 */
1326 now = rq_clock_task(rq);
1327 delta_exec = now - curr->se.exec_start;
1328 if (unlikely((s64)delta_exec <= 0)) {
1329 if (unlikely(dl_se->dl_yielded))
1330 goto throttle;
1331 return;
1332 }
1333
1334 schedstat_set(curr->stats.exec_max,
1335 max(curr->stats.exec_max, delta_exec));
1336
1337 trace_sched_stat_runtime(curr, delta_exec, 0);
1338
1339 update_current_exec_runtime(curr, now, delta_exec);
1340
1341 if (dl_entity_is_special(dl_se))
1342 return;
1343
1344 /*
1345 * For tasks that participate in GRUB, we implement GRUB-PA: the
1346 * spare reclaimed bandwidth is used to clock down frequency.
1347 *
1348 * For the others, we still need to scale reservation parameters
1349 * according to current frequency and CPU maximum capacity.
1350 */
1351 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1352 scaled_delta_exec = grub_reclaim(delta_exec,
1353 rq,
1354 &curr->dl);
1355 } else {
1356 unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1357 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1358
1359 scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1360 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1361 }
1362
1363 dl_se->runtime -= scaled_delta_exec;
1364
1365throttle:
1366 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1367 dl_se->dl_throttled = 1;
1368
1369 /* If requested, inform the user about runtime overruns. */
1370 if (dl_runtime_exceeded(dl_se) &&
1371 (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1372 dl_se->dl_overrun = 1;
1373
1374 __dequeue_task_dl(rq, curr, 0);
1375 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(curr)))
1376 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1377
1378 if (!is_leftmost(curr, &rq->dl))
1379 resched_curr(rq);
1380 }
1381
1382 /*
1383 * Because -- for now -- we share the rt bandwidth, we need to
1384 * account our runtime there too, otherwise actual rt tasks
1385 * would be able to exceed the shared quota.
1386 *
1387 * Account to the root rt group for now.
1388 *
1389 * The solution we're working towards is having the RT groups scheduled
1390 * using deadline servers -- however there's a few nasties to figure
1391 * out before that can happen.
1392 */
1393 if (rt_bandwidth_enabled()) {
1394 struct rt_rq *rt_rq = &rq->rt;
1395
1396 raw_spin_lock(&rt_rq->rt_runtime_lock);
1397 /*
1398 * We'll let actual RT tasks worry about the overflow here, we
1399 * have our own CBS to keep us inline; only account when RT
1400 * bandwidth is relevant.
1401 */
1402 if (sched_rt_bandwidth_account(rt_rq))
1403 rt_rq->rt_time += delta_exec;
1404 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1405 }
1406}
1407
1408static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1409{
1410 struct sched_dl_entity *dl_se = container_of(timer,
1411 struct sched_dl_entity,
1412 inactive_timer);
1413 struct task_struct *p = dl_task_of(dl_se);
1414 struct rq_flags rf;
1415 struct rq *rq;
1416
1417 rq = task_rq_lock(p, &rf);
1418
1419 sched_clock_tick();
1420 update_rq_clock(rq);
1421
1422 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1423 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1424
1425 if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1426 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1427 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1428 dl_se->dl_non_contending = 0;
1429 }
1430
1431 raw_spin_lock(&dl_b->lock);
1432 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1433 raw_spin_unlock(&dl_b->lock);
1434 __dl_clear_params(p);
1435
1436 goto unlock;
1437 }
1438 if (dl_se->dl_non_contending == 0)
1439 goto unlock;
1440
1441 sub_running_bw(dl_se, &rq->dl);
1442 dl_se->dl_non_contending = 0;
1443unlock:
1444 task_rq_unlock(rq, p, &rf);
1445 put_task_struct(p);
1446
1447 return HRTIMER_NORESTART;
1448}
1449
1450void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1451{
1452 struct hrtimer *timer = &dl_se->inactive_timer;
1453
1454 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1455 timer->function = inactive_task_timer;
1456}
1457
1458#define __node_2_dle(node) \
1459 rb_entry((node), struct sched_dl_entity, rb_node)
1460
1461#ifdef CONFIG_SMP
1462
1463static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1464{
1465 struct rq *rq = rq_of_dl_rq(dl_rq);
1466
1467 if (dl_rq->earliest_dl.curr == 0 ||
1468 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1469 if (dl_rq->earliest_dl.curr == 0)
1470 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1471 dl_rq->earliest_dl.curr = deadline;
1472 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1473 }
1474}
1475
1476static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1477{
1478 struct rq *rq = rq_of_dl_rq(dl_rq);
1479
1480 /*
1481 * Since we may have removed our earliest (and/or next earliest)
1482 * task we must recompute them.
1483 */
1484 if (!dl_rq->dl_nr_running) {
1485 dl_rq->earliest_dl.curr = 0;
1486 dl_rq->earliest_dl.next = 0;
1487 cpudl_clear(&rq->rd->cpudl, rq->cpu);
1488 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1489 } else {
1490 struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
1491 struct sched_dl_entity *entry = __node_2_dle(leftmost);
1492
1493 dl_rq->earliest_dl.curr = entry->deadline;
1494 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1495 }
1496}
1497
1498#else
1499
1500static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1501static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1502
1503#endif /* CONFIG_SMP */
1504
1505static inline
1506void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1507{
1508 int prio = dl_task_of(dl_se)->prio;
1509 u64 deadline = dl_se->deadline;
1510
1511 WARN_ON(!dl_prio(prio));
1512 dl_rq->dl_nr_running++;
1513 add_nr_running(rq_of_dl_rq(dl_rq), 1);
1514
1515 inc_dl_deadline(dl_rq, deadline);
1516 inc_dl_migration(dl_se, dl_rq);
1517}
1518
1519static inline
1520void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1521{
1522 int prio = dl_task_of(dl_se)->prio;
1523
1524 WARN_ON(!dl_prio(prio));
1525 WARN_ON(!dl_rq->dl_nr_running);
1526 dl_rq->dl_nr_running--;
1527 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1528
1529 dec_dl_deadline(dl_rq, dl_se->deadline);
1530 dec_dl_migration(dl_se, dl_rq);
1531}
1532
1533static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1534{
1535 return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1536}
1537
1538static inline struct sched_statistics *
1539__schedstats_from_dl_se(struct sched_dl_entity *dl_se)
1540{
1541 return &dl_task_of(dl_se)->stats;
1542}
1543
1544static inline void
1545update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1546{
1547 struct sched_statistics *stats;
1548
1549 if (!schedstat_enabled())
1550 return;
1551
1552 stats = __schedstats_from_dl_se(dl_se);
1553 __update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1554}
1555
1556static inline void
1557update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1558{
1559 struct sched_statistics *stats;
1560
1561 if (!schedstat_enabled())
1562 return;
1563
1564 stats = __schedstats_from_dl_se(dl_se);
1565 __update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1566}
1567
1568static inline void
1569update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1570{
1571 struct sched_statistics *stats;
1572
1573 if (!schedstat_enabled())
1574 return;
1575
1576 stats = __schedstats_from_dl_se(dl_se);
1577 __update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1578}
1579
1580static inline void
1581update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1582 int flags)
1583{
1584 if (!schedstat_enabled())
1585 return;
1586
1587 if (flags & ENQUEUE_WAKEUP)
1588 update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
1589}
1590
1591static inline void
1592update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1593 int flags)
1594{
1595 struct task_struct *p = dl_task_of(dl_se);
1596
1597 if (!schedstat_enabled())
1598 return;
1599
1600 if ((flags & DEQUEUE_SLEEP)) {
1601 unsigned int state;
1602
1603 state = READ_ONCE(p->__state);
1604 if (state & TASK_INTERRUPTIBLE)
1605 __schedstat_set(p->stats.sleep_start,
1606 rq_clock(rq_of_dl_rq(dl_rq)));
1607
1608 if (state & TASK_UNINTERRUPTIBLE)
1609 __schedstat_set(p->stats.block_start,
1610 rq_clock(rq_of_dl_rq(dl_rq)));
1611 }
1612}
1613
1614static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1615{
1616 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1617
1618 WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
1619
1620 rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1621
1622 inc_dl_tasks(dl_se, dl_rq);
1623}
1624
1625static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1626{
1627 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1628
1629 if (RB_EMPTY_NODE(&dl_se->rb_node))
1630 return;
1631
1632 rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1633
1634 RB_CLEAR_NODE(&dl_se->rb_node);
1635
1636 dec_dl_tasks(dl_se, dl_rq);
1637}
1638
1639static void
1640enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1641{
1642 WARN_ON_ONCE(on_dl_rq(dl_se));
1643
1644 update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
1645
1646 /*
1647 * If this is a wakeup or a new instance, the scheduling
1648 * parameters of the task might need updating. Otherwise,
1649 * we want a replenishment of its runtime.
1650 */
1651 if (flags & ENQUEUE_WAKEUP) {
1652 task_contending(dl_se, flags);
1653 update_dl_entity(dl_se);
1654 } else if (flags & ENQUEUE_REPLENISH) {
1655 replenish_dl_entity(dl_se);
1656 } else if ((flags & ENQUEUE_RESTORE) &&
1657 dl_time_before(dl_se->deadline,
1658 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1659 setup_new_dl_entity(dl_se);
1660 }
1661
1662 __enqueue_dl_entity(dl_se);
1663}
1664
1665static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1666{
1667 __dequeue_dl_entity(dl_se);
1668}
1669
1670static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1671{
1672 if (is_dl_boosted(&p->dl)) {
1673 /*
1674 * Because of delays in the detection of the overrun of a
1675 * thread's runtime, it might be the case that a thread
1676 * goes to sleep in a rt mutex with negative runtime. As
1677 * a consequence, the thread will be throttled.
1678 *
1679 * While waiting for the mutex, this thread can also be
1680 * boosted via PI, resulting in a thread that is throttled
1681 * and boosted at the same time.
1682 *
1683 * In this case, the boost overrides the throttle.
1684 */
1685 if (p->dl.dl_throttled) {
1686 /*
1687 * The replenish timer needs to be canceled. No
1688 * problem if it fires concurrently: boosted threads
1689 * are ignored in dl_task_timer().
1690 */
1691 hrtimer_try_to_cancel(&p->dl.dl_timer);
1692 p->dl.dl_throttled = 0;
1693 }
1694 } else if (!dl_prio(p->normal_prio)) {
1695 /*
1696 * Special case in which we have a !SCHED_DEADLINE task that is going
1697 * to be deboosted, but exceeds its runtime while doing so. No point in
1698 * replenishing it, as it's going to return back to its original
1699 * scheduling class after this. If it has been throttled, we need to
1700 * clear the flag, otherwise the task may wake up as throttled after
1701 * being boosted again with no means to replenish the runtime and clear
1702 * the throttle.
1703 */
1704 p->dl.dl_throttled = 0;
1705 if (!(flags & ENQUEUE_REPLENISH))
1706 printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
1707 task_pid_nr(p));
1708
1709 return;
1710 }
1711
1712 /*
1713 * Check if a constrained deadline task was activated
1714 * after the deadline but before the next period.
1715 * If that is the case, the task will be throttled and
1716 * the replenishment timer will be set to the next period.
1717 */
1718 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1719 dl_check_constrained_dl(&p->dl);
1720
1721 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1722 add_rq_bw(&p->dl, &rq->dl);
1723 add_running_bw(&p->dl, &rq->dl);
1724 }
1725
1726 /*
1727 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1728 * its budget it needs a replenishment and, since it now is on
1729 * its rq, the bandwidth timer callback (which clearly has not
1730 * run yet) will take care of this.
1731 * However, the active utilization does not depend on the fact
1732 * that the task is on the runqueue or not (but depends on the
1733 * task's state - in GRUB parlance, "inactive" vs "active contending").
1734 * In other words, even if a task is throttled its utilization must
1735 * be counted in the active utilization; hence, we need to call
1736 * add_running_bw().
1737 */
1738 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1739 if (flags & ENQUEUE_WAKEUP)
1740 task_contending(&p->dl, flags);
1741
1742 return;
1743 }
1744
1745 check_schedstat_required();
1746 update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
1747
1748 enqueue_dl_entity(&p->dl, flags);
1749
1750 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1751 enqueue_pushable_dl_task(rq, p);
1752}
1753
1754static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1755{
1756 update_stats_dequeue_dl(&rq->dl, &p->dl, flags);
1757 dequeue_dl_entity(&p->dl);
1758 dequeue_pushable_dl_task(rq, p);
1759}
1760
1761static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1762{
1763 update_curr_dl(rq);
1764 __dequeue_task_dl(rq, p, flags);
1765
1766 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1767 sub_running_bw(&p->dl, &rq->dl);
1768 sub_rq_bw(&p->dl, &rq->dl);
1769 }
1770
1771 /*
1772 * This check allows to start the inactive timer (or to immediately
1773 * decrease the active utilization, if needed) in two cases:
1774 * when the task blocks and when it is terminating
1775 * (p->state == TASK_DEAD). We can handle the two cases in the same
1776 * way, because from GRUB's point of view the same thing is happening
1777 * (the task moves from "active contending" to "active non contending"
1778 * or "inactive")
1779 */
1780 if (flags & DEQUEUE_SLEEP)
1781 task_non_contending(p);
1782}
1783
1784/*
1785 * Yield task semantic for -deadline tasks is:
1786 *
1787 * get off from the CPU until our next instance, with
1788 * a new runtime. This is of little use now, since we
1789 * don't have a bandwidth reclaiming mechanism. Anyway,
1790 * bandwidth reclaiming is planned for the future, and
1791 * yield_task_dl will indicate that some spare budget
1792 * is available for other task instances to use it.
1793 */
1794static void yield_task_dl(struct rq *rq)
1795{
1796 /*
1797 * We make the task go to sleep until its current deadline by
1798 * forcing its runtime to zero. This way, update_curr_dl() stops
1799 * it and the bandwidth timer will wake it up and will give it
1800 * new scheduling parameters (thanks to dl_yielded=1).
1801 */
1802 rq->curr->dl.dl_yielded = 1;
1803
1804 update_rq_clock(rq);
1805 update_curr_dl(rq);
1806 /*
1807 * Tell update_rq_clock() that we've just updated,
1808 * so we don't do microscopic update in schedule()
1809 * and double the fastpath cost.
1810 */
1811 rq_clock_skip_update(rq);
1812}
1813
1814#ifdef CONFIG_SMP
1815
1816static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
1817 struct rq *rq)
1818{
1819 return (!rq->dl.dl_nr_running ||
1820 dl_time_before(p->dl.deadline,
1821 rq->dl.earliest_dl.curr));
1822}
1823
1824static int find_later_rq(struct task_struct *task);
1825
1826static int
1827select_task_rq_dl(struct task_struct *p, int cpu, int flags)
1828{
1829 struct task_struct *curr;
1830 bool select_rq;
1831 struct rq *rq;
1832
1833 if (!(flags & WF_TTWU))
1834 goto out;
1835
1836 rq = cpu_rq(cpu);
1837
1838 rcu_read_lock();
1839 curr = READ_ONCE(rq->curr); /* unlocked access */
1840
1841 /*
1842 * If we are dealing with a -deadline task, we must
1843 * decide where to wake it up.
1844 * If it has a later deadline and the current task
1845 * on this rq can't move (provided the waking task
1846 * can!) we prefer to send it somewhere else. On the
1847 * other hand, if it has a shorter deadline, we
1848 * try to make it stay here, it might be important.
1849 */
1850 select_rq = unlikely(dl_task(curr)) &&
1851 (curr->nr_cpus_allowed < 2 ||
1852 !dl_entity_preempt(&p->dl, &curr->dl)) &&
1853 p->nr_cpus_allowed > 1;
1854
1855 /*
1856 * Take the capacity of the CPU into account to
1857 * ensure it fits the requirement of the task.
1858 */
1859 if (sched_asym_cpucap_active())
1860 select_rq |= !dl_task_fits_capacity(p, cpu);
1861
1862 if (select_rq) {
1863 int target = find_later_rq(p);
1864
1865 if (target != -1 &&
1866 dl_task_is_earliest_deadline(p, cpu_rq(target)))
1867 cpu = target;
1868 }
1869 rcu_read_unlock();
1870
1871out:
1872 return cpu;
1873}
1874
1875static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1876{
1877 struct rq_flags rf;
1878 struct rq *rq;
1879
1880 if (READ_ONCE(p->__state) != TASK_WAKING)
1881 return;
1882
1883 rq = task_rq(p);
1884 /*
1885 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1886 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1887 * rq->lock is not... So, lock it
1888 */
1889 rq_lock(rq, &rf);
1890 if (p->dl.dl_non_contending) {
1891 update_rq_clock(rq);
1892 sub_running_bw(&p->dl, &rq->dl);
1893 p->dl.dl_non_contending = 0;
1894 /*
1895 * If the timer handler is currently running and the
1896 * timer cannot be canceled, inactive_task_timer()
1897 * will see that dl_not_contending is not set, and
1898 * will not touch the rq's active utilization,
1899 * so we are still safe.
1900 */
1901 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1902 put_task_struct(p);
1903 }
1904 sub_rq_bw(&p->dl, &rq->dl);
1905 rq_unlock(rq, &rf);
1906}
1907
1908static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1909{
1910 /*
1911 * Current can't be migrated, useless to reschedule,
1912 * let's hope p can move out.
1913 */
1914 if (rq->curr->nr_cpus_allowed == 1 ||
1915 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1916 return;
1917
1918 /*
1919 * p is migratable, so let's not schedule it and
1920 * see if it is pushed or pulled somewhere else.
1921 */
1922 if (p->nr_cpus_allowed != 1 &&
1923 cpudl_find(&rq->rd->cpudl, p, NULL))
1924 return;
1925
1926 resched_curr(rq);
1927}
1928
1929static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1930{
1931 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
1932 /*
1933 * This is OK, because current is on_cpu, which avoids it being
1934 * picked for load-balance and preemption/IRQs are still
1935 * disabled avoiding further scheduler activity on it and we've
1936 * not yet started the picking loop.
1937 */
1938 rq_unpin_lock(rq, rf);
1939 pull_dl_task(rq);
1940 rq_repin_lock(rq, rf);
1941 }
1942
1943 return sched_stop_runnable(rq) || sched_dl_runnable(rq);
1944}
1945#endif /* CONFIG_SMP */
1946
1947/*
1948 * Only called when both the current and waking task are -deadline
1949 * tasks.
1950 */
1951static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1952 int flags)
1953{
1954 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1955 resched_curr(rq);
1956 return;
1957 }
1958
1959#ifdef CONFIG_SMP
1960 /*
1961 * In the unlikely case current and p have the same deadline
1962 * let us try to decide what's the best thing to do...
1963 */
1964 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1965 !test_tsk_need_resched(rq->curr))
1966 check_preempt_equal_dl(rq, p);
1967#endif /* CONFIG_SMP */
1968}
1969
1970#ifdef CONFIG_SCHED_HRTICK
1971static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1972{
1973 hrtick_start(rq, p->dl.runtime);
1974}
1975#else /* !CONFIG_SCHED_HRTICK */
1976static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1977{
1978}
1979#endif
1980
1981static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
1982{
1983 struct sched_dl_entity *dl_se = &p->dl;
1984 struct dl_rq *dl_rq = &rq->dl;
1985
1986 p->se.exec_start = rq_clock_task(rq);
1987 if (on_dl_rq(&p->dl))
1988 update_stats_wait_end_dl(dl_rq, dl_se);
1989
1990 /* You can't push away the running task */
1991 dequeue_pushable_dl_task(rq, p);
1992
1993 if (!first)
1994 return;
1995
1996 if (hrtick_enabled_dl(rq))
1997 start_hrtick_dl(rq, p);
1998
1999 if (rq->curr->sched_class != &dl_sched_class)
2000 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2001
2002 deadline_queue_push_tasks(rq);
2003}
2004
2005static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
2006{
2007 struct rb_node *left = rb_first_cached(&dl_rq->root);
2008
2009 if (!left)
2010 return NULL;
2011
2012 return __node_2_dle(left);
2013}
2014
2015static struct task_struct *pick_task_dl(struct rq *rq)
2016{
2017 struct sched_dl_entity *dl_se;
2018 struct dl_rq *dl_rq = &rq->dl;
2019 struct task_struct *p;
2020
2021 if (!sched_dl_runnable(rq))
2022 return NULL;
2023
2024 dl_se = pick_next_dl_entity(dl_rq);
2025 WARN_ON_ONCE(!dl_se);
2026 p = dl_task_of(dl_se);
2027
2028 return p;
2029}
2030
2031static struct task_struct *pick_next_task_dl(struct rq *rq)
2032{
2033 struct task_struct *p;
2034
2035 p = pick_task_dl(rq);
2036 if (p)
2037 set_next_task_dl(rq, p, true);
2038
2039 return p;
2040}
2041
2042static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
2043{
2044 struct sched_dl_entity *dl_se = &p->dl;
2045 struct dl_rq *dl_rq = &rq->dl;
2046
2047 if (on_dl_rq(&p->dl))
2048 update_stats_wait_start_dl(dl_rq, dl_se);
2049
2050 update_curr_dl(rq);
2051
2052 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2053 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2054 enqueue_pushable_dl_task(rq, p);
2055}
2056
2057/*
2058 * scheduler tick hitting a task of our scheduling class.
2059 *
2060 * NOTE: This function can be called remotely by the tick offload that
2061 * goes along full dynticks. Therefore no local assumption can be made
2062 * and everything must be accessed through the @rq and @curr passed in
2063 * parameters.
2064 */
2065static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2066{
2067 update_curr_dl(rq);
2068
2069 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2070 /*
2071 * Even when we have runtime, update_curr_dl() might have resulted in us
2072 * not being the leftmost task anymore. In that case NEED_RESCHED will
2073 * be set and schedule() will start a new hrtick for the next task.
2074 */
2075 if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2076 is_leftmost(p, &rq->dl))
2077 start_hrtick_dl(rq, p);
2078}
2079
2080static void task_fork_dl(struct task_struct *p)
2081{
2082 /*
2083 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2084 * sched_fork()
2085 */
2086}
2087
2088#ifdef CONFIG_SMP
2089
2090/* Only try algorithms three times */
2091#define DL_MAX_TRIES 3
2092
2093static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
2094{
2095 if (!task_on_cpu(rq, p) &&
2096 cpumask_test_cpu(cpu, &p->cpus_mask))
2097 return 1;
2098 return 0;
2099}
2100
2101/*
2102 * Return the earliest pushable rq's task, which is suitable to be executed
2103 * on the CPU, NULL otherwise:
2104 */
2105static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2106{
2107 struct task_struct *p = NULL;
2108 struct rb_node *next_node;
2109
2110 if (!has_pushable_dl_tasks(rq))
2111 return NULL;
2112
2113 next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2114
2115next_node:
2116 if (next_node) {
2117 p = __node_2_pdl(next_node);
2118
2119 if (pick_dl_task(rq, p, cpu))
2120 return p;
2121
2122 next_node = rb_next(next_node);
2123 goto next_node;
2124 }
2125
2126 return NULL;
2127}
2128
2129static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2130
2131static int find_later_rq(struct task_struct *task)
2132{
2133 struct sched_domain *sd;
2134 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2135 int this_cpu = smp_processor_id();
2136 int cpu = task_cpu(task);
2137
2138 /* Make sure the mask is initialized first */
2139 if (unlikely(!later_mask))
2140 return -1;
2141
2142 if (task->nr_cpus_allowed == 1)
2143 return -1;
2144
2145 /*
2146 * We have to consider system topology and task affinity
2147 * first, then we can look for a suitable CPU.
2148 */
2149 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2150 return -1;
2151
2152 /*
2153 * If we are here, some targets have been found, including
2154 * the most suitable which is, among the runqueues where the
2155 * current tasks have later deadlines than the task's one, the
2156 * rq with the latest possible one.
2157 *
2158 * Now we check how well this matches with task's
2159 * affinity and system topology.
2160 *
2161 * The last CPU where the task run is our first
2162 * guess, since it is most likely cache-hot there.
2163 */
2164 if (cpumask_test_cpu(cpu, later_mask))
2165 return cpu;
2166 /*
2167 * Check if this_cpu is to be skipped (i.e., it is
2168 * not in the mask) or not.
2169 */
2170 if (!cpumask_test_cpu(this_cpu, later_mask))
2171 this_cpu = -1;
2172
2173 rcu_read_lock();
2174 for_each_domain(cpu, sd) {
2175 if (sd->flags & SD_WAKE_AFFINE) {
2176 int best_cpu;
2177
2178 /*
2179 * If possible, preempting this_cpu is
2180 * cheaper than migrating.
2181 */
2182 if (this_cpu != -1 &&
2183 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2184 rcu_read_unlock();
2185 return this_cpu;
2186 }
2187
2188 best_cpu = cpumask_any_and_distribute(later_mask,
2189 sched_domain_span(sd));
2190 /*
2191 * Last chance: if a CPU being in both later_mask
2192 * and current sd span is valid, that becomes our
2193 * choice. Of course, the latest possible CPU is
2194 * already under consideration through later_mask.
2195 */
2196 if (best_cpu < nr_cpu_ids) {
2197 rcu_read_unlock();
2198 return best_cpu;
2199 }
2200 }
2201 }
2202 rcu_read_unlock();
2203
2204 /*
2205 * At this point, all our guesses failed, we just return
2206 * 'something', and let the caller sort the things out.
2207 */
2208 if (this_cpu != -1)
2209 return this_cpu;
2210
2211 cpu = cpumask_any_distribute(later_mask);
2212 if (cpu < nr_cpu_ids)
2213 return cpu;
2214
2215 return -1;
2216}
2217
2218/* Locks the rq it finds */
2219static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2220{
2221 struct rq *later_rq = NULL;
2222 int tries;
2223 int cpu;
2224
2225 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2226 cpu = find_later_rq(task);
2227
2228 if ((cpu == -1) || (cpu == rq->cpu))
2229 break;
2230
2231 later_rq = cpu_rq(cpu);
2232
2233 if (!dl_task_is_earliest_deadline(task, later_rq)) {
2234 /*
2235 * Target rq has tasks of equal or earlier deadline,
2236 * retrying does not release any lock and is unlikely
2237 * to yield a different result.
2238 */
2239 later_rq = NULL;
2240 break;
2241 }
2242
2243 /* Retry if something changed. */
2244 if (double_lock_balance(rq, later_rq)) {
2245 if (unlikely(task_rq(task) != rq ||
2246 !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2247 task_on_cpu(rq, task) ||
2248 !dl_task(task) ||
2249 !task_on_rq_queued(task))) {
2250 double_unlock_balance(rq, later_rq);
2251 later_rq = NULL;
2252 break;
2253 }
2254 }
2255
2256 /*
2257 * If the rq we found has no -deadline task, or
2258 * its earliest one has a later deadline than our
2259 * task, the rq is a good one.
2260 */
2261 if (dl_task_is_earliest_deadline(task, later_rq))
2262 break;
2263
2264 /* Otherwise we try again. */
2265 double_unlock_balance(rq, later_rq);
2266 later_rq = NULL;
2267 }
2268
2269 return later_rq;
2270}
2271
2272static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2273{
2274 struct task_struct *p;
2275
2276 if (!has_pushable_dl_tasks(rq))
2277 return NULL;
2278
2279 p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
2280
2281 WARN_ON_ONCE(rq->cpu != task_cpu(p));
2282 WARN_ON_ONCE(task_current(rq, p));
2283 WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
2284
2285 WARN_ON_ONCE(!task_on_rq_queued(p));
2286 WARN_ON_ONCE(!dl_task(p));
2287
2288 return p;
2289}
2290
2291/*
2292 * See if the non running -deadline tasks on this rq
2293 * can be sent to some other CPU where they can preempt
2294 * and start executing.
2295 */
2296static int push_dl_task(struct rq *rq)
2297{
2298 struct task_struct *next_task;
2299 struct rq *later_rq;
2300 int ret = 0;
2301
2302 if (!rq->dl.overloaded)
2303 return 0;
2304
2305 next_task = pick_next_pushable_dl_task(rq);
2306 if (!next_task)
2307 return 0;
2308
2309retry:
2310 /*
2311 * If next_task preempts rq->curr, and rq->curr
2312 * can move away, it makes sense to just reschedule
2313 * without going further in pushing next_task.
2314 */
2315 if (dl_task(rq->curr) &&
2316 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2317 rq->curr->nr_cpus_allowed > 1) {
2318 resched_curr(rq);
2319 return 0;
2320 }
2321
2322 if (is_migration_disabled(next_task))
2323 return 0;
2324
2325 if (WARN_ON(next_task == rq->curr))
2326 return 0;
2327
2328 /* We might release rq lock */
2329 get_task_struct(next_task);
2330
2331 /* Will lock the rq it'll find */
2332 later_rq = find_lock_later_rq(next_task, rq);
2333 if (!later_rq) {
2334 struct task_struct *task;
2335
2336 /*
2337 * We must check all this again, since
2338 * find_lock_later_rq releases rq->lock and it is
2339 * then possible that next_task has migrated.
2340 */
2341 task = pick_next_pushable_dl_task(rq);
2342 if (task == next_task) {
2343 /*
2344 * The task is still there. We don't try
2345 * again, some other CPU will pull it when ready.
2346 */
2347 goto out;
2348 }
2349
2350 if (!task)
2351 /* No more tasks */
2352 goto out;
2353
2354 put_task_struct(next_task);
2355 next_task = task;
2356 goto retry;
2357 }
2358
2359 deactivate_task(rq, next_task, 0);
2360 set_task_cpu(next_task, later_rq->cpu);
2361 activate_task(later_rq, next_task, 0);
2362 ret = 1;
2363
2364 resched_curr(later_rq);
2365
2366 double_unlock_balance(rq, later_rq);
2367
2368out:
2369 put_task_struct(next_task);
2370
2371 return ret;
2372}
2373
2374static void push_dl_tasks(struct rq *rq)
2375{
2376 /* push_dl_task() will return true if it moved a -deadline task */
2377 while (push_dl_task(rq))
2378 ;
2379}
2380
2381static void pull_dl_task(struct rq *this_rq)
2382{
2383 int this_cpu = this_rq->cpu, cpu;
2384 struct task_struct *p, *push_task;
2385 bool resched = false;
2386 struct rq *src_rq;
2387 u64 dmin = LONG_MAX;
2388
2389 if (likely(!dl_overloaded(this_rq)))
2390 return;
2391
2392 /*
2393 * Match the barrier from dl_set_overloaded; this guarantees that if we
2394 * see overloaded we must also see the dlo_mask bit.
2395 */
2396 smp_rmb();
2397
2398 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2399 if (this_cpu == cpu)
2400 continue;
2401
2402 src_rq = cpu_rq(cpu);
2403
2404 /*
2405 * It looks racy, abd it is! However, as in sched_rt.c,
2406 * we are fine with this.
2407 */
2408 if (this_rq->dl.dl_nr_running &&
2409 dl_time_before(this_rq->dl.earliest_dl.curr,
2410 src_rq->dl.earliest_dl.next))
2411 continue;
2412
2413 /* Might drop this_rq->lock */
2414 push_task = NULL;
2415 double_lock_balance(this_rq, src_rq);
2416
2417 /*
2418 * If there are no more pullable tasks on the
2419 * rq, we're done with it.
2420 */
2421 if (src_rq->dl.dl_nr_running <= 1)
2422 goto skip;
2423
2424 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2425
2426 /*
2427 * We found a task to be pulled if:
2428 * - it preempts our current (if there's one),
2429 * - it will preempt the last one we pulled (if any).
2430 */
2431 if (p && dl_time_before(p->dl.deadline, dmin) &&
2432 dl_task_is_earliest_deadline(p, this_rq)) {
2433 WARN_ON(p == src_rq->curr);
2434 WARN_ON(!task_on_rq_queued(p));
2435
2436 /*
2437 * Then we pull iff p has actually an earlier
2438 * deadline than the current task of its runqueue.
2439 */
2440 if (dl_time_before(p->dl.deadline,
2441 src_rq->curr->dl.deadline))
2442 goto skip;
2443
2444 if (is_migration_disabled(p)) {
2445 push_task = get_push_task(src_rq);
2446 } else {
2447 deactivate_task(src_rq, p, 0);
2448 set_task_cpu(p, this_cpu);
2449 activate_task(this_rq, p, 0);
2450 dmin = p->dl.deadline;
2451 resched = true;
2452 }
2453
2454 /* Is there any other task even earlier? */
2455 }
2456skip:
2457 double_unlock_balance(this_rq, src_rq);
2458
2459 if (push_task) {
2460 raw_spin_rq_unlock(this_rq);
2461 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2462 push_task, &src_rq->push_work);
2463 raw_spin_rq_lock(this_rq);
2464 }
2465 }
2466
2467 if (resched)
2468 resched_curr(this_rq);
2469}
2470
2471/*
2472 * Since the task is not running and a reschedule is not going to happen
2473 * anytime soon on its runqueue, we try pushing it away now.
2474 */
2475static void task_woken_dl(struct rq *rq, struct task_struct *p)
2476{
2477 if (!task_on_cpu(rq, p) &&
2478 !test_tsk_need_resched(rq->curr) &&
2479 p->nr_cpus_allowed > 1 &&
2480 dl_task(rq->curr) &&
2481 (rq->curr->nr_cpus_allowed < 2 ||
2482 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2483 push_dl_tasks(rq);
2484 }
2485}
2486
2487static void set_cpus_allowed_dl(struct task_struct *p,
2488 struct affinity_context *ctx)
2489{
2490 struct root_domain *src_rd;
2491 struct rq *rq;
2492
2493 WARN_ON_ONCE(!dl_task(p));
2494
2495 rq = task_rq(p);
2496 src_rd = rq->rd;
2497 /*
2498 * Migrating a SCHED_DEADLINE task between exclusive
2499 * cpusets (different root_domains) entails a bandwidth
2500 * update. We already made space for us in the destination
2501 * domain (see cpuset_can_attach()).
2502 */
2503 if (!cpumask_intersects(src_rd->span, ctx->new_mask)) {
2504 struct dl_bw *src_dl_b;
2505
2506 src_dl_b = dl_bw_of(cpu_of(rq));
2507 /*
2508 * We now free resources of the root_domain we are migrating
2509 * off. In the worst case, sched_setattr() may temporary fail
2510 * until we complete the update.
2511 */
2512 raw_spin_lock(&src_dl_b->lock);
2513 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2514 raw_spin_unlock(&src_dl_b->lock);
2515 }
2516
2517 set_cpus_allowed_common(p, ctx);
2518}
2519
2520/* Assumes rq->lock is held */
2521static void rq_online_dl(struct rq *rq)
2522{
2523 if (rq->dl.overloaded)
2524 dl_set_overload(rq);
2525
2526 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2527 if (rq->dl.dl_nr_running > 0)
2528 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2529}
2530
2531/* Assumes rq->lock is held */
2532static void rq_offline_dl(struct rq *rq)
2533{
2534 if (rq->dl.overloaded)
2535 dl_clear_overload(rq);
2536
2537 cpudl_clear(&rq->rd->cpudl, rq->cpu);
2538 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2539}
2540
2541void __init init_sched_dl_class(void)
2542{
2543 unsigned int i;
2544
2545 for_each_possible_cpu(i)
2546 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2547 GFP_KERNEL, cpu_to_node(i));
2548}
2549
2550void dl_add_task_root_domain(struct task_struct *p)
2551{
2552 struct rq_flags rf;
2553 struct rq *rq;
2554 struct dl_bw *dl_b;
2555
2556 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2557 if (!dl_task(p)) {
2558 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2559 return;
2560 }
2561
2562 rq = __task_rq_lock(p, &rf);
2563
2564 dl_b = &rq->rd->dl_bw;
2565 raw_spin_lock(&dl_b->lock);
2566
2567 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2568
2569 raw_spin_unlock(&dl_b->lock);
2570
2571 task_rq_unlock(rq, p, &rf);
2572}
2573
2574void dl_clear_root_domain(struct root_domain *rd)
2575{
2576 unsigned long flags;
2577
2578 raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2579 rd->dl_bw.total_bw = 0;
2580 raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2581}
2582
2583#endif /* CONFIG_SMP */
2584
2585static void switched_from_dl(struct rq *rq, struct task_struct *p)
2586{
2587 /*
2588 * task_non_contending() can start the "inactive timer" (if the 0-lag
2589 * time is in the future). If the task switches back to dl before
2590 * the "inactive timer" fires, it can continue to consume its current
2591 * runtime using its current deadline. If it stays outside of
2592 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2593 * will reset the task parameters.
2594 */
2595 if (task_on_rq_queued(p) && p->dl.dl_runtime)
2596 task_non_contending(p);
2597
2598 if (!task_on_rq_queued(p)) {
2599 /*
2600 * Inactive timer is armed. However, p is leaving DEADLINE and
2601 * might migrate away from this rq while continuing to run on
2602 * some other class. We need to remove its contribution from
2603 * this rq running_bw now, or sub_rq_bw (below) will complain.
2604 */
2605 if (p->dl.dl_non_contending)
2606 sub_running_bw(&p->dl, &rq->dl);
2607 sub_rq_bw(&p->dl, &rq->dl);
2608 }
2609
2610 /*
2611 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2612 * at the 0-lag time, because the task could have been migrated
2613 * while SCHED_OTHER in the meanwhile.
2614 */
2615 if (p->dl.dl_non_contending)
2616 p->dl.dl_non_contending = 0;
2617
2618 /*
2619 * Since this might be the only -deadline task on the rq,
2620 * this is the right place to try to pull some other one
2621 * from an overloaded CPU, if any.
2622 */
2623 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2624 return;
2625
2626 deadline_queue_pull_task(rq);
2627}
2628
2629/*
2630 * When switching to -deadline, we may overload the rq, then
2631 * we try to push someone off, if possible.
2632 */
2633static void switched_to_dl(struct rq *rq, struct task_struct *p)
2634{
2635 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2636 put_task_struct(p);
2637
2638 /* If p is not queued we will update its parameters at next wakeup. */
2639 if (!task_on_rq_queued(p)) {
2640 add_rq_bw(&p->dl, &rq->dl);
2641
2642 return;
2643 }
2644
2645 if (rq->curr != p) {
2646#ifdef CONFIG_SMP
2647 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2648 deadline_queue_push_tasks(rq);
2649#endif
2650 if (dl_task(rq->curr))
2651 check_preempt_curr_dl(rq, p, 0);
2652 else
2653 resched_curr(rq);
2654 } else {
2655 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2656 }
2657}
2658
2659/*
2660 * If the scheduling parameters of a -deadline task changed,
2661 * a push or pull operation might be needed.
2662 */
2663static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2664 int oldprio)
2665{
2666 if (task_on_rq_queued(p) || task_current(rq, p)) {
2667#ifdef CONFIG_SMP
2668 /*
2669 * This might be too much, but unfortunately
2670 * we don't have the old deadline value, and
2671 * we can't argue if the task is increasing
2672 * or lowering its prio, so...
2673 */
2674 if (!rq->dl.overloaded)
2675 deadline_queue_pull_task(rq);
2676
2677 /*
2678 * If we now have a earlier deadline task than p,
2679 * then reschedule, provided p is still on this
2680 * runqueue.
2681 */
2682 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2683 resched_curr(rq);
2684#else
2685 /*
2686 * Again, we don't know if p has a earlier
2687 * or later deadline, so let's blindly set a
2688 * (maybe not needed) rescheduling point.
2689 */
2690 resched_curr(rq);
2691#endif /* CONFIG_SMP */
2692 }
2693}
2694
2695DEFINE_SCHED_CLASS(dl) = {
2696
2697 .enqueue_task = enqueue_task_dl,
2698 .dequeue_task = dequeue_task_dl,
2699 .yield_task = yield_task_dl,
2700
2701 .check_preempt_curr = check_preempt_curr_dl,
2702
2703 .pick_next_task = pick_next_task_dl,
2704 .put_prev_task = put_prev_task_dl,
2705 .set_next_task = set_next_task_dl,
2706
2707#ifdef CONFIG_SMP
2708 .balance = balance_dl,
2709 .pick_task = pick_task_dl,
2710 .select_task_rq = select_task_rq_dl,
2711 .migrate_task_rq = migrate_task_rq_dl,
2712 .set_cpus_allowed = set_cpus_allowed_dl,
2713 .rq_online = rq_online_dl,
2714 .rq_offline = rq_offline_dl,
2715 .task_woken = task_woken_dl,
2716 .find_lock_rq = find_lock_later_rq,
2717#endif
2718
2719 .task_tick = task_tick_dl,
2720 .task_fork = task_fork_dl,
2721
2722 .prio_changed = prio_changed_dl,
2723 .switched_from = switched_from_dl,
2724 .switched_to = switched_to_dl,
2725
2726 .update_curr = update_curr_dl,
2727};
2728
2729/* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
2730static u64 dl_generation;
2731
2732int sched_dl_global_validate(void)
2733{
2734 u64 runtime = global_rt_runtime();
2735 u64 period = global_rt_period();
2736 u64 new_bw = to_ratio(period, runtime);
2737 u64 gen = ++dl_generation;
2738 struct dl_bw *dl_b;
2739 int cpu, cpus, ret = 0;
2740 unsigned long flags;
2741
2742 /*
2743 * Here we want to check the bandwidth not being set to some
2744 * value smaller than the currently allocated bandwidth in
2745 * any of the root_domains.
2746 */
2747 for_each_possible_cpu(cpu) {
2748 rcu_read_lock_sched();
2749
2750 if (dl_bw_visited(cpu, gen))
2751 goto next;
2752
2753 dl_b = dl_bw_of(cpu);
2754 cpus = dl_bw_cpus(cpu);
2755
2756 raw_spin_lock_irqsave(&dl_b->lock, flags);
2757 if (new_bw * cpus < dl_b->total_bw)
2758 ret = -EBUSY;
2759 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2760
2761next:
2762 rcu_read_unlock_sched();
2763
2764 if (ret)
2765 break;
2766 }
2767
2768 return ret;
2769}
2770
2771static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2772{
2773 if (global_rt_runtime() == RUNTIME_INF) {
2774 dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2775 dl_rq->extra_bw = 1 << BW_SHIFT;
2776 } else {
2777 dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2778 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2779 dl_rq->extra_bw = to_ratio(global_rt_period(),
2780 global_rt_runtime());
2781 }
2782}
2783
2784void sched_dl_do_global(void)
2785{
2786 u64 new_bw = -1;
2787 u64 gen = ++dl_generation;
2788 struct dl_bw *dl_b;
2789 int cpu;
2790 unsigned long flags;
2791
2792 if (global_rt_runtime() != RUNTIME_INF)
2793 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2794
2795 for_each_possible_cpu(cpu) {
2796 rcu_read_lock_sched();
2797
2798 if (dl_bw_visited(cpu, gen)) {
2799 rcu_read_unlock_sched();
2800 continue;
2801 }
2802
2803 dl_b = dl_bw_of(cpu);
2804
2805 raw_spin_lock_irqsave(&dl_b->lock, flags);
2806 dl_b->bw = new_bw;
2807 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2808
2809 rcu_read_unlock_sched();
2810 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2811 }
2812}
2813
2814/*
2815 * We must be sure that accepting a new task (or allowing changing the
2816 * parameters of an existing one) is consistent with the bandwidth
2817 * constraints. If yes, this function also accordingly updates the currently
2818 * allocated bandwidth to reflect the new situation.
2819 *
2820 * This function is called while holding p's rq->lock.
2821 */
2822int sched_dl_overflow(struct task_struct *p, int policy,
2823 const struct sched_attr *attr)
2824{
2825 u64 period = attr->sched_period ?: attr->sched_deadline;
2826 u64 runtime = attr->sched_runtime;
2827 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2828 int cpus, err = -1, cpu = task_cpu(p);
2829 struct dl_bw *dl_b = dl_bw_of(cpu);
2830 unsigned long cap;
2831
2832 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2833 return 0;
2834
2835 /* !deadline task may carry old deadline bandwidth */
2836 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2837 return 0;
2838
2839 /*
2840 * Either if a task, enters, leave, or stays -deadline but changes
2841 * its parameters, we may need to update accordingly the total
2842 * allocated bandwidth of the container.
2843 */
2844 raw_spin_lock(&dl_b->lock);
2845 cpus = dl_bw_cpus(cpu);
2846 cap = dl_bw_capacity(cpu);
2847
2848 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2849 !__dl_overflow(dl_b, cap, 0, new_bw)) {
2850 if (hrtimer_active(&p->dl.inactive_timer))
2851 __dl_sub(dl_b, p->dl.dl_bw, cpus);
2852 __dl_add(dl_b, new_bw, cpus);
2853 err = 0;
2854 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2855 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
2856 /*
2857 * XXX this is slightly incorrect: when the task
2858 * utilization decreases, we should delay the total
2859 * utilization change until the task's 0-lag point.
2860 * But this would require to set the task's "inactive
2861 * timer" when the task is not inactive.
2862 */
2863 __dl_sub(dl_b, p->dl.dl_bw, cpus);
2864 __dl_add(dl_b, new_bw, cpus);
2865 dl_change_utilization(p, new_bw);
2866 err = 0;
2867 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2868 /*
2869 * Do not decrease the total deadline utilization here,
2870 * switched_from_dl() will take care to do it at the correct
2871 * (0-lag) time.
2872 */
2873 err = 0;
2874 }
2875 raw_spin_unlock(&dl_b->lock);
2876
2877 return err;
2878}
2879
2880/*
2881 * This function initializes the sched_dl_entity of a newly becoming
2882 * SCHED_DEADLINE task.
2883 *
2884 * Only the static values are considered here, the actual runtime and the
2885 * absolute deadline will be properly calculated when the task is enqueued
2886 * for the first time with its new policy.
2887 */
2888void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2889{
2890 struct sched_dl_entity *dl_se = &p->dl;
2891
2892 dl_se->dl_runtime = attr->sched_runtime;
2893 dl_se->dl_deadline = attr->sched_deadline;
2894 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2895 dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
2896 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2897 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2898}
2899
2900void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2901{
2902 struct sched_dl_entity *dl_se = &p->dl;
2903
2904 attr->sched_priority = p->rt_priority;
2905 attr->sched_runtime = dl_se->dl_runtime;
2906 attr->sched_deadline = dl_se->dl_deadline;
2907 attr->sched_period = dl_se->dl_period;
2908 attr->sched_flags &= ~SCHED_DL_FLAGS;
2909 attr->sched_flags |= dl_se->flags;
2910}
2911
2912/*
2913 * This function validates the new parameters of a -deadline task.
2914 * We ask for the deadline not being zero, and greater or equal
2915 * than the runtime, as well as the period of being zero or
2916 * greater than deadline. Furthermore, we have to be sure that
2917 * user parameters are above the internal resolution of 1us (we
2918 * check sched_runtime only since it is always the smaller one) and
2919 * below 2^63 ns (we have to check both sched_deadline and
2920 * sched_period, as the latter can be zero).
2921 */
2922bool __checkparam_dl(const struct sched_attr *attr)
2923{
2924 u64 period, max, min;
2925
2926 /* special dl tasks don't actually use any parameter */
2927 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2928 return true;
2929
2930 /* deadline != 0 */
2931 if (attr->sched_deadline == 0)
2932 return false;
2933
2934 /*
2935 * Since we truncate DL_SCALE bits, make sure we're at least
2936 * that big.
2937 */
2938 if (attr->sched_runtime < (1ULL << DL_SCALE))
2939 return false;
2940
2941 /*
2942 * Since we use the MSB for wrap-around and sign issues, make
2943 * sure it's not set (mind that period can be equal to zero).
2944 */
2945 if (attr->sched_deadline & (1ULL << 63) ||
2946 attr->sched_period & (1ULL << 63))
2947 return false;
2948
2949 period = attr->sched_period;
2950 if (!period)
2951 period = attr->sched_deadline;
2952
2953 /* runtime <= deadline <= period (if period != 0) */
2954 if (period < attr->sched_deadline ||
2955 attr->sched_deadline < attr->sched_runtime)
2956 return false;
2957
2958 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
2959 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
2960
2961 if (period < min || period > max)
2962 return false;
2963
2964 return true;
2965}
2966
2967/*
2968 * This function clears the sched_dl_entity static params.
2969 */
2970void __dl_clear_params(struct task_struct *p)
2971{
2972 struct sched_dl_entity *dl_se = &p->dl;
2973
2974 dl_se->dl_runtime = 0;
2975 dl_se->dl_deadline = 0;
2976 dl_se->dl_period = 0;
2977 dl_se->flags = 0;
2978 dl_se->dl_bw = 0;
2979 dl_se->dl_density = 0;
2980
2981 dl_se->dl_throttled = 0;
2982 dl_se->dl_yielded = 0;
2983 dl_se->dl_non_contending = 0;
2984 dl_se->dl_overrun = 0;
2985
2986#ifdef CONFIG_RT_MUTEXES
2987 dl_se->pi_se = dl_se;
2988#endif
2989}
2990
2991bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2992{
2993 struct sched_dl_entity *dl_se = &p->dl;
2994
2995 if (dl_se->dl_runtime != attr->sched_runtime ||
2996 dl_se->dl_deadline != attr->sched_deadline ||
2997 dl_se->dl_period != attr->sched_period ||
2998 dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
2999 return true;
3000
3001 return false;
3002}
3003
3004#ifdef CONFIG_SMP
3005int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
3006 const struct cpumask *trial)
3007{
3008 unsigned long flags, cap;
3009 struct dl_bw *cur_dl_b;
3010 int ret = 1;
3011
3012 rcu_read_lock_sched();
3013 cur_dl_b = dl_bw_of(cpumask_any(cur));
3014 cap = __dl_bw_capacity(trial);
3015 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3016 if (__dl_overflow(cur_dl_b, cap, 0, 0))
3017 ret = 0;
3018 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3019 rcu_read_unlock_sched();
3020
3021 return ret;
3022}
3023
3024int dl_cpu_busy(int cpu, struct task_struct *p)
3025{
3026 unsigned long flags, cap;
3027 struct dl_bw *dl_b;
3028 bool overflow;
3029
3030 rcu_read_lock_sched();
3031 dl_b = dl_bw_of(cpu);
3032 raw_spin_lock_irqsave(&dl_b->lock, flags);
3033 cap = dl_bw_capacity(cpu);
3034 overflow = __dl_overflow(dl_b, cap, 0, p ? p->dl.dl_bw : 0);
3035
3036 if (!overflow && p) {
3037 /*
3038 * We reserve space for this task in the destination
3039 * root_domain, as we can't fail after this point.
3040 * We will free resources in the source root_domain
3041 * later on (see set_cpus_allowed_dl()).
3042 */
3043 __dl_add(dl_b, p->dl.dl_bw, dl_bw_cpus(cpu));
3044 }
3045
3046 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3047 rcu_read_unlock_sched();
3048
3049 return overflow ? -EBUSY : 0;
3050}
3051#endif
3052
3053#ifdef CONFIG_SCHED_DEBUG
3054void print_dl_stats(struct seq_file *m, int cpu)
3055{
3056 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3057}
3058#endif /* CONFIG_SCHED_DEBUG */
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Deadline Scheduling Class (SCHED_DEADLINE)
4 *
5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 *
7 * Tasks that periodically executes their instances for less than their
8 * runtime won't miss any of their deadlines.
9 * Tasks that are not periodic or sporadic or that tries to execute more
10 * than their reserved bandwidth will be slowed down (and may potentially
11 * miss some of their deadlines), and won't affect any other task.
12 *
13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14 * Juri Lelli <juri.lelli@gmail.com>,
15 * Michael Trimarchi <michael@amarulasolutions.com>,
16 * Fabio Checconi <fchecconi@gmail.com>
17 */
18#include "sched.h"
19
20struct dl_bandwidth def_dl_bandwidth;
21
22static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
23{
24 return container_of(dl_se, struct task_struct, dl);
25}
26
27static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
28{
29 return container_of(dl_rq, struct rq, dl);
30}
31
32static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
33{
34 struct task_struct *p = dl_task_of(dl_se);
35 struct rq *rq = task_rq(p);
36
37 return &rq->dl;
38}
39
40static inline int on_dl_rq(struct sched_dl_entity *dl_se)
41{
42 return !RB_EMPTY_NODE(&dl_se->rb_node);
43}
44
45#ifdef CONFIG_SMP
46static inline struct dl_bw *dl_bw_of(int i)
47{
48 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
49 "sched RCU must be held");
50 return &cpu_rq(i)->rd->dl_bw;
51}
52
53static inline int dl_bw_cpus(int i)
54{
55 struct root_domain *rd = cpu_rq(i)->rd;
56 int cpus = 0;
57
58 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
59 "sched RCU must be held");
60 for_each_cpu_and(i, rd->span, cpu_active_mask)
61 cpus++;
62
63 return cpus;
64}
65#else
66static inline struct dl_bw *dl_bw_of(int i)
67{
68 return &cpu_rq(i)->dl.dl_bw;
69}
70
71static inline int dl_bw_cpus(int i)
72{
73 return 1;
74}
75#endif
76
77static inline
78void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
79{
80 u64 old = dl_rq->running_bw;
81
82 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
83 dl_rq->running_bw += dl_bw;
84 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
85 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
86 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
87 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
88}
89
90static inline
91void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
92{
93 u64 old = dl_rq->running_bw;
94
95 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
96 dl_rq->running_bw -= dl_bw;
97 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
98 if (dl_rq->running_bw > old)
99 dl_rq->running_bw = 0;
100 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
101 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
102}
103
104static inline
105void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
106{
107 u64 old = dl_rq->this_bw;
108
109 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
110 dl_rq->this_bw += dl_bw;
111 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
112}
113
114static inline
115void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
116{
117 u64 old = dl_rq->this_bw;
118
119 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
120 dl_rq->this_bw -= dl_bw;
121 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
122 if (dl_rq->this_bw > old)
123 dl_rq->this_bw = 0;
124 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
125}
126
127static inline
128void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
129{
130 if (!dl_entity_is_special(dl_se))
131 __add_rq_bw(dl_se->dl_bw, dl_rq);
132}
133
134static inline
135void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
136{
137 if (!dl_entity_is_special(dl_se))
138 __sub_rq_bw(dl_se->dl_bw, dl_rq);
139}
140
141static inline
142void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
143{
144 if (!dl_entity_is_special(dl_se))
145 __add_running_bw(dl_se->dl_bw, dl_rq);
146}
147
148static inline
149void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
150{
151 if (!dl_entity_is_special(dl_se))
152 __sub_running_bw(dl_se->dl_bw, dl_rq);
153}
154
155void dl_change_utilization(struct task_struct *p, u64 new_bw)
156{
157 struct rq *rq;
158
159 BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
160
161 if (task_on_rq_queued(p))
162 return;
163
164 rq = task_rq(p);
165 if (p->dl.dl_non_contending) {
166 sub_running_bw(&p->dl, &rq->dl);
167 p->dl.dl_non_contending = 0;
168 /*
169 * If the timer handler is currently running and the
170 * timer cannot be cancelled, inactive_task_timer()
171 * will see that dl_not_contending is not set, and
172 * will not touch the rq's active utilization,
173 * so we are still safe.
174 */
175 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
176 put_task_struct(p);
177 }
178 __sub_rq_bw(p->dl.dl_bw, &rq->dl);
179 __add_rq_bw(new_bw, &rq->dl);
180}
181
182/*
183 * The utilization of a task cannot be immediately removed from
184 * the rq active utilization (running_bw) when the task blocks.
185 * Instead, we have to wait for the so called "0-lag time".
186 *
187 * If a task blocks before the "0-lag time", a timer (the inactive
188 * timer) is armed, and running_bw is decreased when the timer
189 * fires.
190 *
191 * If the task wakes up again before the inactive timer fires,
192 * the timer is cancelled, whereas if the task wakes up after the
193 * inactive timer fired (and running_bw has been decreased) the
194 * task's utilization has to be added to running_bw again.
195 * A flag in the deadline scheduling entity (dl_non_contending)
196 * is used to avoid race conditions between the inactive timer handler
197 * and task wakeups.
198 *
199 * The following diagram shows how running_bw is updated. A task is
200 * "ACTIVE" when its utilization contributes to running_bw; an
201 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
202 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
203 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
204 * time already passed, which does not contribute to running_bw anymore.
205 * +------------------+
206 * wakeup | ACTIVE |
207 * +------------------>+ contending |
208 * | add_running_bw | |
209 * | +----+------+------+
210 * | | ^
211 * | dequeue | |
212 * +--------+-------+ | |
213 * | | t >= 0-lag | | wakeup
214 * | INACTIVE |<---------------+ |
215 * | | sub_running_bw | |
216 * +--------+-------+ | |
217 * ^ | |
218 * | t < 0-lag | |
219 * | | |
220 * | V |
221 * | +----+------+------+
222 * | sub_running_bw | ACTIVE |
223 * +-------------------+ |
224 * inactive timer | non contending |
225 * fired +------------------+
226 *
227 * The task_non_contending() function is invoked when a task
228 * blocks, and checks if the 0-lag time already passed or
229 * not (in the first case, it directly updates running_bw;
230 * in the second case, it arms the inactive timer).
231 *
232 * The task_contending() function is invoked when a task wakes
233 * up, and checks if the task is still in the "ACTIVE non contending"
234 * state or not (in the second case, it updates running_bw).
235 */
236static void task_non_contending(struct task_struct *p)
237{
238 struct sched_dl_entity *dl_se = &p->dl;
239 struct hrtimer *timer = &dl_se->inactive_timer;
240 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
241 struct rq *rq = rq_of_dl_rq(dl_rq);
242 s64 zerolag_time;
243
244 /*
245 * If this is a non-deadline task that has been boosted,
246 * do nothing
247 */
248 if (dl_se->dl_runtime == 0)
249 return;
250
251 if (dl_entity_is_special(dl_se))
252 return;
253
254 WARN_ON(hrtimer_active(&dl_se->inactive_timer));
255 WARN_ON(dl_se->dl_non_contending);
256
257 zerolag_time = dl_se->deadline -
258 div64_long((dl_se->runtime * dl_se->dl_period),
259 dl_se->dl_runtime);
260
261 /*
262 * Using relative times instead of the absolute "0-lag time"
263 * allows to simplify the code
264 */
265 zerolag_time -= rq_clock(rq);
266
267 /*
268 * If the "0-lag time" already passed, decrease the active
269 * utilization now, instead of starting a timer
270 */
271 if (zerolag_time < 0) {
272 if (dl_task(p))
273 sub_running_bw(dl_se, dl_rq);
274 if (!dl_task(p) || p->state == TASK_DEAD) {
275 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
276
277 if (p->state == TASK_DEAD)
278 sub_rq_bw(&p->dl, &rq->dl);
279 raw_spin_lock(&dl_b->lock);
280 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
281 __dl_clear_params(p);
282 raw_spin_unlock(&dl_b->lock);
283 }
284
285 return;
286 }
287
288 dl_se->dl_non_contending = 1;
289 get_task_struct(p);
290 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL);
291}
292
293static void task_contending(struct sched_dl_entity *dl_se, int flags)
294{
295 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
296
297 /*
298 * If this is a non-deadline task that has been boosted,
299 * do nothing
300 */
301 if (dl_se->dl_runtime == 0)
302 return;
303
304 if (flags & ENQUEUE_MIGRATED)
305 add_rq_bw(dl_se, dl_rq);
306
307 if (dl_se->dl_non_contending) {
308 dl_se->dl_non_contending = 0;
309 /*
310 * If the timer handler is currently running and the
311 * timer cannot be cancelled, inactive_task_timer()
312 * will see that dl_not_contending is not set, and
313 * will not touch the rq's active utilization,
314 * so we are still safe.
315 */
316 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
317 put_task_struct(dl_task_of(dl_se));
318 } else {
319 /*
320 * Since "dl_non_contending" is not set, the
321 * task's utilization has already been removed from
322 * active utilization (either when the task blocked,
323 * when the "inactive timer" fired).
324 * So, add it back.
325 */
326 add_running_bw(dl_se, dl_rq);
327 }
328}
329
330static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
331{
332 struct sched_dl_entity *dl_se = &p->dl;
333
334 return dl_rq->root.rb_leftmost == &dl_se->rb_node;
335}
336
337void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
338{
339 raw_spin_lock_init(&dl_b->dl_runtime_lock);
340 dl_b->dl_period = period;
341 dl_b->dl_runtime = runtime;
342}
343
344void init_dl_bw(struct dl_bw *dl_b)
345{
346 raw_spin_lock_init(&dl_b->lock);
347 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
348 if (global_rt_runtime() == RUNTIME_INF)
349 dl_b->bw = -1;
350 else
351 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
352 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
353 dl_b->total_bw = 0;
354}
355
356void init_dl_rq(struct dl_rq *dl_rq)
357{
358 dl_rq->root = RB_ROOT_CACHED;
359
360#ifdef CONFIG_SMP
361 /* zero means no -deadline tasks */
362 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
363
364 dl_rq->dl_nr_migratory = 0;
365 dl_rq->overloaded = 0;
366 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
367#else
368 init_dl_bw(&dl_rq->dl_bw);
369#endif
370
371 dl_rq->running_bw = 0;
372 dl_rq->this_bw = 0;
373 init_dl_rq_bw_ratio(dl_rq);
374}
375
376#ifdef CONFIG_SMP
377
378static inline int dl_overloaded(struct rq *rq)
379{
380 return atomic_read(&rq->rd->dlo_count);
381}
382
383static inline void dl_set_overload(struct rq *rq)
384{
385 if (!rq->online)
386 return;
387
388 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
389 /*
390 * Must be visible before the overload count is
391 * set (as in sched_rt.c).
392 *
393 * Matched by the barrier in pull_dl_task().
394 */
395 smp_wmb();
396 atomic_inc(&rq->rd->dlo_count);
397}
398
399static inline void dl_clear_overload(struct rq *rq)
400{
401 if (!rq->online)
402 return;
403
404 atomic_dec(&rq->rd->dlo_count);
405 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
406}
407
408static void update_dl_migration(struct dl_rq *dl_rq)
409{
410 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
411 if (!dl_rq->overloaded) {
412 dl_set_overload(rq_of_dl_rq(dl_rq));
413 dl_rq->overloaded = 1;
414 }
415 } else if (dl_rq->overloaded) {
416 dl_clear_overload(rq_of_dl_rq(dl_rq));
417 dl_rq->overloaded = 0;
418 }
419}
420
421static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
422{
423 struct task_struct *p = dl_task_of(dl_se);
424
425 if (p->nr_cpus_allowed > 1)
426 dl_rq->dl_nr_migratory++;
427
428 update_dl_migration(dl_rq);
429}
430
431static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
432{
433 struct task_struct *p = dl_task_of(dl_se);
434
435 if (p->nr_cpus_allowed > 1)
436 dl_rq->dl_nr_migratory--;
437
438 update_dl_migration(dl_rq);
439}
440
441/*
442 * The list of pushable -deadline task is not a plist, like in
443 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
444 */
445static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
446{
447 struct dl_rq *dl_rq = &rq->dl;
448 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node;
449 struct rb_node *parent = NULL;
450 struct task_struct *entry;
451 bool leftmost = true;
452
453 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
454
455 while (*link) {
456 parent = *link;
457 entry = rb_entry(parent, struct task_struct,
458 pushable_dl_tasks);
459 if (dl_entity_preempt(&p->dl, &entry->dl))
460 link = &parent->rb_left;
461 else {
462 link = &parent->rb_right;
463 leftmost = false;
464 }
465 }
466
467 if (leftmost)
468 dl_rq->earliest_dl.next = p->dl.deadline;
469
470 rb_link_node(&p->pushable_dl_tasks, parent, link);
471 rb_insert_color_cached(&p->pushable_dl_tasks,
472 &dl_rq->pushable_dl_tasks_root, leftmost);
473}
474
475static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
476{
477 struct dl_rq *dl_rq = &rq->dl;
478
479 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
480 return;
481
482 if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) {
483 struct rb_node *next_node;
484
485 next_node = rb_next(&p->pushable_dl_tasks);
486 if (next_node) {
487 dl_rq->earliest_dl.next = rb_entry(next_node,
488 struct task_struct, pushable_dl_tasks)->dl.deadline;
489 }
490 }
491
492 rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
493 RB_CLEAR_NODE(&p->pushable_dl_tasks);
494}
495
496static inline int has_pushable_dl_tasks(struct rq *rq)
497{
498 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
499}
500
501static int push_dl_task(struct rq *rq);
502
503static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
504{
505 return dl_task(prev);
506}
507
508static DEFINE_PER_CPU(struct callback_head, dl_push_head);
509static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
510
511static void push_dl_tasks(struct rq *);
512static void pull_dl_task(struct rq *);
513
514static inline void deadline_queue_push_tasks(struct rq *rq)
515{
516 if (!has_pushable_dl_tasks(rq))
517 return;
518
519 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
520}
521
522static inline void deadline_queue_pull_task(struct rq *rq)
523{
524 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
525}
526
527static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
528
529static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
530{
531 struct rq *later_rq = NULL;
532
533 later_rq = find_lock_later_rq(p, rq);
534 if (!later_rq) {
535 int cpu;
536
537 /*
538 * If we cannot preempt any rq, fall back to pick any
539 * online CPU:
540 */
541 cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
542 if (cpu >= nr_cpu_ids) {
543 /*
544 * Failed to find any suitable CPU.
545 * The task will never come back!
546 */
547 BUG_ON(dl_bandwidth_enabled());
548
549 /*
550 * If admission control is disabled we
551 * try a little harder to let the task
552 * run.
553 */
554 cpu = cpumask_any(cpu_active_mask);
555 }
556 later_rq = cpu_rq(cpu);
557 double_lock_balance(rq, later_rq);
558 }
559
560 set_task_cpu(p, later_rq->cpu);
561 double_unlock_balance(later_rq, rq);
562
563 return later_rq;
564}
565
566#else
567
568static inline
569void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
570{
571}
572
573static inline
574void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
575{
576}
577
578static inline
579void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
580{
581}
582
583static inline
584void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
585{
586}
587
588static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
589{
590 return false;
591}
592
593static inline void pull_dl_task(struct rq *rq)
594{
595}
596
597static inline void deadline_queue_push_tasks(struct rq *rq)
598{
599}
600
601static inline void deadline_queue_pull_task(struct rq *rq)
602{
603}
604#endif /* CONFIG_SMP */
605
606static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
607static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
608static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
609
610/*
611 * We are being explicitly informed that a new instance is starting,
612 * and this means that:
613 * - the absolute deadline of the entity has to be placed at
614 * current time + relative deadline;
615 * - the runtime of the entity has to be set to the maximum value.
616 *
617 * The capability of specifying such event is useful whenever a -deadline
618 * entity wants to (try to!) synchronize its behaviour with the scheduler's
619 * one, and to (try to!) reconcile itself with its own scheduling
620 * parameters.
621 */
622static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
623{
624 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
625 struct rq *rq = rq_of_dl_rq(dl_rq);
626
627 WARN_ON(dl_se->dl_boosted);
628 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
629
630 /*
631 * We are racing with the deadline timer. So, do nothing because
632 * the deadline timer handler will take care of properly recharging
633 * the runtime and postponing the deadline
634 */
635 if (dl_se->dl_throttled)
636 return;
637
638 /*
639 * We use the regular wall clock time to set deadlines in the
640 * future; in fact, we must consider execution overheads (time
641 * spent on hardirq context, etc.).
642 */
643 dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
644 dl_se->runtime = dl_se->dl_runtime;
645}
646
647/*
648 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
649 * possibility of a entity lasting more than what it declared, and thus
650 * exhausting its runtime.
651 *
652 * Here we are interested in making runtime overrun possible, but we do
653 * not want a entity which is misbehaving to affect the scheduling of all
654 * other entities.
655 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
656 * is used, in order to confine each entity within its own bandwidth.
657 *
658 * This function deals exactly with that, and ensures that when the runtime
659 * of a entity is replenished, its deadline is also postponed. That ensures
660 * the overrunning entity can't interfere with other entity in the system and
661 * can't make them miss their deadlines. Reasons why this kind of overruns
662 * could happen are, typically, a entity voluntarily trying to overcome its
663 * runtime, or it just underestimated it during sched_setattr().
664 */
665static void replenish_dl_entity(struct sched_dl_entity *dl_se,
666 struct sched_dl_entity *pi_se)
667{
668 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
669 struct rq *rq = rq_of_dl_rq(dl_rq);
670
671 BUG_ON(pi_se->dl_runtime <= 0);
672
673 /*
674 * This could be the case for a !-dl task that is boosted.
675 * Just go with full inherited parameters.
676 */
677 if (dl_se->dl_deadline == 0) {
678 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
679 dl_se->runtime = pi_se->dl_runtime;
680 }
681
682 if (dl_se->dl_yielded && dl_se->runtime > 0)
683 dl_se->runtime = 0;
684
685 /*
686 * We keep moving the deadline away until we get some
687 * available runtime for the entity. This ensures correct
688 * handling of situations where the runtime overrun is
689 * arbitrary large.
690 */
691 while (dl_se->runtime <= 0) {
692 dl_se->deadline += pi_se->dl_period;
693 dl_se->runtime += pi_se->dl_runtime;
694 }
695
696 /*
697 * At this point, the deadline really should be "in
698 * the future" with respect to rq->clock. If it's
699 * not, we are, for some reason, lagging too much!
700 * Anyway, after having warn userspace abut that,
701 * we still try to keep the things running by
702 * resetting the deadline and the budget of the
703 * entity.
704 */
705 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
706 printk_deferred_once("sched: DL replenish lagged too much\n");
707 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
708 dl_se->runtime = pi_se->dl_runtime;
709 }
710
711 if (dl_se->dl_yielded)
712 dl_se->dl_yielded = 0;
713 if (dl_se->dl_throttled)
714 dl_se->dl_throttled = 0;
715}
716
717/*
718 * Here we check if --at time t-- an entity (which is probably being
719 * [re]activated or, in general, enqueued) can use its remaining runtime
720 * and its current deadline _without_ exceeding the bandwidth it is
721 * assigned (function returns true if it can't). We are in fact applying
722 * one of the CBS rules: when a task wakes up, if the residual runtime
723 * over residual deadline fits within the allocated bandwidth, then we
724 * can keep the current (absolute) deadline and residual budget without
725 * disrupting the schedulability of the system. Otherwise, we should
726 * refill the runtime and set the deadline a period in the future,
727 * because keeping the current (absolute) deadline of the task would
728 * result in breaking guarantees promised to other tasks (refer to
729 * Documentation/scheduler/sched-deadline.txt for more informations).
730 *
731 * This function returns true if:
732 *
733 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
734 *
735 * IOW we can't recycle current parameters.
736 *
737 * Notice that the bandwidth check is done against the deadline. For
738 * task with deadline equal to period this is the same of using
739 * dl_period instead of dl_deadline in the equation above.
740 */
741static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
742 struct sched_dl_entity *pi_se, u64 t)
743{
744 u64 left, right;
745
746 /*
747 * left and right are the two sides of the equation above,
748 * after a bit of shuffling to use multiplications instead
749 * of divisions.
750 *
751 * Note that none of the time values involved in the two
752 * multiplications are absolute: dl_deadline and dl_runtime
753 * are the relative deadline and the maximum runtime of each
754 * instance, runtime is the runtime left for the last instance
755 * and (deadline - t), since t is rq->clock, is the time left
756 * to the (absolute) deadline. Even if overflowing the u64 type
757 * is very unlikely to occur in both cases, here we scale down
758 * as we want to avoid that risk at all. Scaling down by 10
759 * means that we reduce granularity to 1us. We are fine with it,
760 * since this is only a true/false check and, anyway, thinking
761 * of anything below microseconds resolution is actually fiction
762 * (but still we want to give the user that illusion >;).
763 */
764 left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
765 right = ((dl_se->deadline - t) >> DL_SCALE) *
766 (pi_se->dl_runtime >> DL_SCALE);
767
768 return dl_time_before(right, left);
769}
770
771/*
772 * Revised wakeup rule [1]: For self-suspending tasks, rather then
773 * re-initializing task's runtime and deadline, the revised wakeup
774 * rule adjusts the task's runtime to avoid the task to overrun its
775 * density.
776 *
777 * Reasoning: a task may overrun the density if:
778 * runtime / (deadline - t) > dl_runtime / dl_deadline
779 *
780 * Therefore, runtime can be adjusted to:
781 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
782 *
783 * In such way that runtime will be equal to the maximum density
784 * the task can use without breaking any rule.
785 *
786 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
787 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
788 */
789static void
790update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
791{
792 u64 laxity = dl_se->deadline - rq_clock(rq);
793
794 /*
795 * If the task has deadline < period, and the deadline is in the past,
796 * it should already be throttled before this check.
797 *
798 * See update_dl_entity() comments for further details.
799 */
800 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
801
802 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
803}
804
805/*
806 * Regarding the deadline, a task with implicit deadline has a relative
807 * deadline == relative period. A task with constrained deadline has a
808 * relative deadline <= relative period.
809 *
810 * We support constrained deadline tasks. However, there are some restrictions
811 * applied only for tasks which do not have an implicit deadline. See
812 * update_dl_entity() to know more about such restrictions.
813 *
814 * The dl_is_implicit() returns true if the task has an implicit deadline.
815 */
816static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
817{
818 return dl_se->dl_deadline == dl_se->dl_period;
819}
820
821/*
822 * When a deadline entity is placed in the runqueue, its runtime and deadline
823 * might need to be updated. This is done by a CBS wake up rule. There are two
824 * different rules: 1) the original CBS; and 2) the Revisited CBS.
825 *
826 * When the task is starting a new period, the Original CBS is used. In this
827 * case, the runtime is replenished and a new absolute deadline is set.
828 *
829 * When a task is queued before the begin of the next period, using the
830 * remaining runtime and deadline could make the entity to overflow, see
831 * dl_entity_overflow() to find more about runtime overflow. When such case
832 * is detected, the runtime and deadline need to be updated.
833 *
834 * If the task has an implicit deadline, i.e., deadline == period, the Original
835 * CBS is applied. the runtime is replenished and a new absolute deadline is
836 * set, as in the previous cases.
837 *
838 * However, the Original CBS does not work properly for tasks with
839 * deadline < period, which are said to have a constrained deadline. By
840 * applying the Original CBS, a constrained deadline task would be able to run
841 * runtime/deadline in a period. With deadline < period, the task would
842 * overrun the runtime/period allowed bandwidth, breaking the admission test.
843 *
844 * In order to prevent this misbehave, the Revisited CBS is used for
845 * constrained deadline tasks when a runtime overflow is detected. In the
846 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
847 * the remaining runtime of the task is reduced to avoid runtime overflow.
848 * Please refer to the comments update_dl_revised_wakeup() function to find
849 * more about the Revised CBS rule.
850 */
851static void update_dl_entity(struct sched_dl_entity *dl_se,
852 struct sched_dl_entity *pi_se)
853{
854 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
855 struct rq *rq = rq_of_dl_rq(dl_rq);
856
857 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
858 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
859
860 if (unlikely(!dl_is_implicit(dl_se) &&
861 !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
862 !dl_se->dl_boosted)){
863 update_dl_revised_wakeup(dl_se, rq);
864 return;
865 }
866
867 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
868 dl_se->runtime = pi_se->dl_runtime;
869 }
870}
871
872static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
873{
874 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
875}
876
877/*
878 * If the entity depleted all its runtime, and if we want it to sleep
879 * while waiting for some new execution time to become available, we
880 * set the bandwidth replenishment timer to the replenishment instant
881 * and try to activate it.
882 *
883 * Notice that it is important for the caller to know if the timer
884 * actually started or not (i.e., the replenishment instant is in
885 * the future or in the past).
886 */
887static int start_dl_timer(struct task_struct *p)
888{
889 struct sched_dl_entity *dl_se = &p->dl;
890 struct hrtimer *timer = &dl_se->dl_timer;
891 struct rq *rq = task_rq(p);
892 ktime_t now, act;
893 s64 delta;
894
895 lockdep_assert_held(&rq->lock);
896
897 /*
898 * We want the timer to fire at the deadline, but considering
899 * that it is actually coming from rq->clock and not from
900 * hrtimer's time base reading.
901 */
902 act = ns_to_ktime(dl_next_period(dl_se));
903 now = hrtimer_cb_get_time(timer);
904 delta = ktime_to_ns(now) - rq_clock(rq);
905 act = ktime_add_ns(act, delta);
906
907 /*
908 * If the expiry time already passed, e.g., because the value
909 * chosen as the deadline is too small, don't even try to
910 * start the timer in the past!
911 */
912 if (ktime_us_delta(act, now) < 0)
913 return 0;
914
915 /*
916 * !enqueued will guarantee another callback; even if one is already in
917 * progress. This ensures a balanced {get,put}_task_struct().
918 *
919 * The race against __run_timer() clearing the enqueued state is
920 * harmless because we're holding task_rq()->lock, therefore the timer
921 * expiring after we've done the check will wait on its task_rq_lock()
922 * and observe our state.
923 */
924 if (!hrtimer_is_queued(timer)) {
925 get_task_struct(p);
926 hrtimer_start(timer, act, HRTIMER_MODE_ABS);
927 }
928
929 return 1;
930}
931
932/*
933 * This is the bandwidth enforcement timer callback. If here, we know
934 * a task is not on its dl_rq, since the fact that the timer was running
935 * means the task is throttled and needs a runtime replenishment.
936 *
937 * However, what we actually do depends on the fact the task is active,
938 * (it is on its rq) or has been removed from there by a call to
939 * dequeue_task_dl(). In the former case we must issue the runtime
940 * replenishment and add the task back to the dl_rq; in the latter, we just
941 * do nothing but clearing dl_throttled, so that runtime and deadline
942 * updating (and the queueing back to dl_rq) will be done by the
943 * next call to enqueue_task_dl().
944 */
945static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
946{
947 struct sched_dl_entity *dl_se = container_of(timer,
948 struct sched_dl_entity,
949 dl_timer);
950 struct task_struct *p = dl_task_of(dl_se);
951 struct rq_flags rf;
952 struct rq *rq;
953
954 rq = task_rq_lock(p, &rf);
955
956 /*
957 * The task might have changed its scheduling policy to something
958 * different than SCHED_DEADLINE (through switched_from_dl()).
959 */
960 if (!dl_task(p))
961 goto unlock;
962
963 /*
964 * The task might have been boosted by someone else and might be in the
965 * boosting/deboosting path, its not throttled.
966 */
967 if (dl_se->dl_boosted)
968 goto unlock;
969
970 /*
971 * Spurious timer due to start_dl_timer() race; or we already received
972 * a replenishment from rt_mutex_setprio().
973 */
974 if (!dl_se->dl_throttled)
975 goto unlock;
976
977 sched_clock_tick();
978 update_rq_clock(rq);
979
980 /*
981 * If the throttle happened during sched-out; like:
982 *
983 * schedule()
984 * deactivate_task()
985 * dequeue_task_dl()
986 * update_curr_dl()
987 * start_dl_timer()
988 * __dequeue_task_dl()
989 * prev->on_rq = 0;
990 *
991 * We can be both throttled and !queued. Replenish the counter
992 * but do not enqueue -- wait for our wakeup to do that.
993 */
994 if (!task_on_rq_queued(p)) {
995 replenish_dl_entity(dl_se, dl_se);
996 goto unlock;
997 }
998
999#ifdef CONFIG_SMP
1000 if (unlikely(!rq->online)) {
1001 /*
1002 * If the runqueue is no longer available, migrate the
1003 * task elsewhere. This necessarily changes rq.
1004 */
1005 lockdep_unpin_lock(&rq->lock, rf.cookie);
1006 rq = dl_task_offline_migration(rq, p);
1007 rf.cookie = lockdep_pin_lock(&rq->lock);
1008 update_rq_clock(rq);
1009
1010 /*
1011 * Now that the task has been migrated to the new RQ and we
1012 * have that locked, proceed as normal and enqueue the task
1013 * there.
1014 */
1015 }
1016#endif
1017
1018 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1019 if (dl_task(rq->curr))
1020 check_preempt_curr_dl(rq, p, 0);
1021 else
1022 resched_curr(rq);
1023
1024#ifdef CONFIG_SMP
1025 /*
1026 * Queueing this task back might have overloaded rq, check if we need
1027 * to kick someone away.
1028 */
1029 if (has_pushable_dl_tasks(rq)) {
1030 /*
1031 * Nothing relies on rq->lock after this, so its safe to drop
1032 * rq->lock.
1033 */
1034 rq_unpin_lock(rq, &rf);
1035 push_dl_task(rq);
1036 rq_repin_lock(rq, &rf);
1037 }
1038#endif
1039
1040unlock:
1041 task_rq_unlock(rq, p, &rf);
1042
1043 /*
1044 * This can free the task_struct, including this hrtimer, do not touch
1045 * anything related to that after this.
1046 */
1047 put_task_struct(p);
1048
1049 return HRTIMER_NORESTART;
1050}
1051
1052void init_dl_task_timer(struct sched_dl_entity *dl_se)
1053{
1054 struct hrtimer *timer = &dl_se->dl_timer;
1055
1056 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1057 timer->function = dl_task_timer;
1058}
1059
1060/*
1061 * During the activation, CBS checks if it can reuse the current task's
1062 * runtime and period. If the deadline of the task is in the past, CBS
1063 * cannot use the runtime, and so it replenishes the task. This rule
1064 * works fine for implicit deadline tasks (deadline == period), and the
1065 * CBS was designed for implicit deadline tasks. However, a task with
1066 * constrained deadline (deadine < period) might be awakened after the
1067 * deadline, but before the next period. In this case, replenishing the
1068 * task would allow it to run for runtime / deadline. As in this case
1069 * deadline < period, CBS enables a task to run for more than the
1070 * runtime / period. In a very loaded system, this can cause a domino
1071 * effect, making other tasks miss their deadlines.
1072 *
1073 * To avoid this problem, in the activation of a constrained deadline
1074 * task after the deadline but before the next period, throttle the
1075 * task and set the replenishing timer to the begin of the next period,
1076 * unless it is boosted.
1077 */
1078static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1079{
1080 struct task_struct *p = dl_task_of(dl_se);
1081 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1082
1083 if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1084 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1085 if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
1086 return;
1087 dl_se->dl_throttled = 1;
1088 if (dl_se->runtime > 0)
1089 dl_se->runtime = 0;
1090 }
1091}
1092
1093static
1094int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1095{
1096 return (dl_se->runtime <= 0);
1097}
1098
1099extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1100
1101/*
1102 * This function implements the GRUB accounting rule:
1103 * according to the GRUB reclaiming algorithm, the runtime is
1104 * not decreased as "dq = -dt", but as
1105 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1106 * where u is the utilization of the task, Umax is the maximum reclaimable
1107 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1108 * as the difference between the "total runqueue utilization" and the
1109 * runqueue active utilization, and Uextra is the (per runqueue) extra
1110 * reclaimable utilization.
1111 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1112 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1113 * BW_SHIFT.
1114 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1115 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1116 * Since delta is a 64 bit variable, to have an overflow its value
1117 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1118 * So, overflow is not an issue here.
1119 */
1120static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1121{
1122 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1123 u64 u_act;
1124 u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1125
1126 /*
1127 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1128 * we compare u_inact + rq->dl.extra_bw with
1129 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1130 * u_inact + rq->dl.extra_bw can be larger than
1131 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1132 * leading to wrong results)
1133 */
1134 if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1135 u_act = u_act_min;
1136 else
1137 u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1138
1139 return (delta * u_act) >> BW_SHIFT;
1140}
1141
1142/*
1143 * Update the current task's runtime statistics (provided it is still
1144 * a -deadline task and has not been removed from the dl_rq).
1145 */
1146static void update_curr_dl(struct rq *rq)
1147{
1148 struct task_struct *curr = rq->curr;
1149 struct sched_dl_entity *dl_se = &curr->dl;
1150 u64 delta_exec, scaled_delta_exec;
1151 int cpu = cpu_of(rq);
1152 u64 now;
1153
1154 if (!dl_task(curr) || !on_dl_rq(dl_se))
1155 return;
1156
1157 /*
1158 * Consumed budget is computed considering the time as
1159 * observed by schedulable tasks (excluding time spent
1160 * in hardirq context, etc.). Deadlines are instead
1161 * computed using hard walltime. This seems to be the more
1162 * natural solution, but the full ramifications of this
1163 * approach need further study.
1164 */
1165 now = rq_clock_task(rq);
1166 delta_exec = now - curr->se.exec_start;
1167 if (unlikely((s64)delta_exec <= 0)) {
1168 if (unlikely(dl_se->dl_yielded))
1169 goto throttle;
1170 return;
1171 }
1172
1173 schedstat_set(curr->se.statistics.exec_max,
1174 max(curr->se.statistics.exec_max, delta_exec));
1175
1176 curr->se.sum_exec_runtime += delta_exec;
1177 account_group_exec_runtime(curr, delta_exec);
1178
1179 curr->se.exec_start = now;
1180 cgroup_account_cputime(curr, delta_exec);
1181
1182 sched_rt_avg_update(rq, delta_exec);
1183
1184 if (dl_entity_is_special(dl_se))
1185 return;
1186
1187 /*
1188 * For tasks that participate in GRUB, we implement GRUB-PA: the
1189 * spare reclaimed bandwidth is used to clock down frequency.
1190 *
1191 * For the others, we still need to scale reservation parameters
1192 * according to current frequency and CPU maximum capacity.
1193 */
1194 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1195 scaled_delta_exec = grub_reclaim(delta_exec,
1196 rq,
1197 &curr->dl);
1198 } else {
1199 unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1200 unsigned long scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
1201
1202 scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1203 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1204 }
1205
1206 dl_se->runtime -= scaled_delta_exec;
1207
1208throttle:
1209 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1210 dl_se->dl_throttled = 1;
1211
1212 /* If requested, inform the user about runtime overruns. */
1213 if (dl_runtime_exceeded(dl_se) &&
1214 (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1215 dl_se->dl_overrun = 1;
1216
1217 __dequeue_task_dl(rq, curr, 0);
1218 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
1219 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1220
1221 if (!is_leftmost(curr, &rq->dl))
1222 resched_curr(rq);
1223 }
1224
1225 /*
1226 * Because -- for now -- we share the rt bandwidth, we need to
1227 * account our runtime there too, otherwise actual rt tasks
1228 * would be able to exceed the shared quota.
1229 *
1230 * Account to the root rt group for now.
1231 *
1232 * The solution we're working towards is having the RT groups scheduled
1233 * using deadline servers -- however there's a few nasties to figure
1234 * out before that can happen.
1235 */
1236 if (rt_bandwidth_enabled()) {
1237 struct rt_rq *rt_rq = &rq->rt;
1238
1239 raw_spin_lock(&rt_rq->rt_runtime_lock);
1240 /*
1241 * We'll let actual RT tasks worry about the overflow here, we
1242 * have our own CBS to keep us inline; only account when RT
1243 * bandwidth is relevant.
1244 */
1245 if (sched_rt_bandwidth_account(rt_rq))
1246 rt_rq->rt_time += delta_exec;
1247 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1248 }
1249}
1250
1251static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1252{
1253 struct sched_dl_entity *dl_se = container_of(timer,
1254 struct sched_dl_entity,
1255 inactive_timer);
1256 struct task_struct *p = dl_task_of(dl_se);
1257 struct rq_flags rf;
1258 struct rq *rq;
1259
1260 rq = task_rq_lock(p, &rf);
1261
1262 sched_clock_tick();
1263 update_rq_clock(rq);
1264
1265 if (!dl_task(p) || p->state == TASK_DEAD) {
1266 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1267
1268 if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
1269 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1270 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1271 dl_se->dl_non_contending = 0;
1272 }
1273
1274 raw_spin_lock(&dl_b->lock);
1275 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1276 raw_spin_unlock(&dl_b->lock);
1277 __dl_clear_params(p);
1278
1279 goto unlock;
1280 }
1281 if (dl_se->dl_non_contending == 0)
1282 goto unlock;
1283
1284 sub_running_bw(dl_se, &rq->dl);
1285 dl_se->dl_non_contending = 0;
1286unlock:
1287 task_rq_unlock(rq, p, &rf);
1288 put_task_struct(p);
1289
1290 return HRTIMER_NORESTART;
1291}
1292
1293void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1294{
1295 struct hrtimer *timer = &dl_se->inactive_timer;
1296
1297 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1298 timer->function = inactive_task_timer;
1299}
1300
1301#ifdef CONFIG_SMP
1302
1303static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1304{
1305 struct rq *rq = rq_of_dl_rq(dl_rq);
1306
1307 if (dl_rq->earliest_dl.curr == 0 ||
1308 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1309 dl_rq->earliest_dl.curr = deadline;
1310 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1311 }
1312}
1313
1314static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1315{
1316 struct rq *rq = rq_of_dl_rq(dl_rq);
1317
1318 /*
1319 * Since we may have removed our earliest (and/or next earliest)
1320 * task we must recompute them.
1321 */
1322 if (!dl_rq->dl_nr_running) {
1323 dl_rq->earliest_dl.curr = 0;
1324 dl_rq->earliest_dl.next = 0;
1325 cpudl_clear(&rq->rd->cpudl, rq->cpu);
1326 } else {
1327 struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1328 struct sched_dl_entity *entry;
1329
1330 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1331 dl_rq->earliest_dl.curr = entry->deadline;
1332 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1333 }
1334}
1335
1336#else
1337
1338static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1339static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1340
1341#endif /* CONFIG_SMP */
1342
1343static inline
1344void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1345{
1346 int prio = dl_task_of(dl_se)->prio;
1347 u64 deadline = dl_se->deadline;
1348
1349 WARN_ON(!dl_prio(prio));
1350 dl_rq->dl_nr_running++;
1351 add_nr_running(rq_of_dl_rq(dl_rq), 1);
1352
1353 inc_dl_deadline(dl_rq, deadline);
1354 inc_dl_migration(dl_se, dl_rq);
1355}
1356
1357static inline
1358void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1359{
1360 int prio = dl_task_of(dl_se)->prio;
1361
1362 WARN_ON(!dl_prio(prio));
1363 WARN_ON(!dl_rq->dl_nr_running);
1364 dl_rq->dl_nr_running--;
1365 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1366
1367 dec_dl_deadline(dl_rq, dl_se->deadline);
1368 dec_dl_migration(dl_se, dl_rq);
1369}
1370
1371static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1372{
1373 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1374 struct rb_node **link = &dl_rq->root.rb_root.rb_node;
1375 struct rb_node *parent = NULL;
1376 struct sched_dl_entity *entry;
1377 int leftmost = 1;
1378
1379 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1380
1381 while (*link) {
1382 parent = *link;
1383 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1384 if (dl_time_before(dl_se->deadline, entry->deadline))
1385 link = &parent->rb_left;
1386 else {
1387 link = &parent->rb_right;
1388 leftmost = 0;
1389 }
1390 }
1391
1392 rb_link_node(&dl_se->rb_node, parent, link);
1393 rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost);
1394
1395 inc_dl_tasks(dl_se, dl_rq);
1396}
1397
1398static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1399{
1400 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1401
1402 if (RB_EMPTY_NODE(&dl_se->rb_node))
1403 return;
1404
1405 rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1406 RB_CLEAR_NODE(&dl_se->rb_node);
1407
1408 dec_dl_tasks(dl_se, dl_rq);
1409}
1410
1411static void
1412enqueue_dl_entity(struct sched_dl_entity *dl_se,
1413 struct sched_dl_entity *pi_se, int flags)
1414{
1415 BUG_ON(on_dl_rq(dl_se));
1416
1417 /*
1418 * If this is a wakeup or a new instance, the scheduling
1419 * parameters of the task might need updating. Otherwise,
1420 * we want a replenishment of its runtime.
1421 */
1422 if (flags & ENQUEUE_WAKEUP) {
1423 task_contending(dl_se, flags);
1424 update_dl_entity(dl_se, pi_se);
1425 } else if (flags & ENQUEUE_REPLENISH) {
1426 replenish_dl_entity(dl_se, pi_se);
1427 } else if ((flags & ENQUEUE_RESTORE) &&
1428 dl_time_before(dl_se->deadline,
1429 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1430 setup_new_dl_entity(dl_se);
1431 }
1432
1433 __enqueue_dl_entity(dl_se);
1434}
1435
1436static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1437{
1438 __dequeue_dl_entity(dl_se);
1439}
1440
1441static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1442{
1443 struct task_struct *pi_task = rt_mutex_get_top_task(p);
1444 struct sched_dl_entity *pi_se = &p->dl;
1445
1446 /*
1447 * Use the scheduling parameters of the top pi-waiter task if:
1448 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND
1449 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is
1450 * smaller than our deadline OR we are a !SCHED_DEADLINE task getting
1451 * boosted due to a SCHED_DEADLINE pi-waiter).
1452 * Otherwise we keep our runtime and deadline.
1453 */
1454 if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) {
1455 pi_se = &pi_task->dl;
1456 } else if (!dl_prio(p->normal_prio)) {
1457 /*
1458 * Special case in which we have a !SCHED_DEADLINE task
1459 * that is going to be deboosted, but exceeds its
1460 * runtime while doing so. No point in replenishing
1461 * it, as it's going to return back to its original
1462 * scheduling class after this.
1463 */
1464 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
1465 return;
1466 }
1467
1468 /*
1469 * Check if a constrained deadline task was activated
1470 * after the deadline but before the next period.
1471 * If that is the case, the task will be throttled and
1472 * the replenishment timer will be set to the next period.
1473 */
1474 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1475 dl_check_constrained_dl(&p->dl);
1476
1477 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1478 add_rq_bw(&p->dl, &rq->dl);
1479 add_running_bw(&p->dl, &rq->dl);
1480 }
1481
1482 /*
1483 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1484 * its budget it needs a replenishment and, since it now is on
1485 * its rq, the bandwidth timer callback (which clearly has not
1486 * run yet) will take care of this.
1487 * However, the active utilization does not depend on the fact
1488 * that the task is on the runqueue or not (but depends on the
1489 * task's state - in GRUB parlance, "inactive" vs "active contending").
1490 * In other words, even if a task is throttled its utilization must
1491 * be counted in the active utilization; hence, we need to call
1492 * add_running_bw().
1493 */
1494 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1495 if (flags & ENQUEUE_WAKEUP)
1496 task_contending(&p->dl, flags);
1497
1498 return;
1499 }
1500
1501 enqueue_dl_entity(&p->dl, pi_se, flags);
1502
1503 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1504 enqueue_pushable_dl_task(rq, p);
1505}
1506
1507static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1508{
1509 dequeue_dl_entity(&p->dl);
1510 dequeue_pushable_dl_task(rq, p);
1511}
1512
1513static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1514{
1515 update_curr_dl(rq);
1516 __dequeue_task_dl(rq, p, flags);
1517
1518 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1519 sub_running_bw(&p->dl, &rq->dl);
1520 sub_rq_bw(&p->dl, &rq->dl);
1521 }
1522
1523 /*
1524 * This check allows to start the inactive timer (or to immediately
1525 * decrease the active utilization, if needed) in two cases:
1526 * when the task blocks and when it is terminating
1527 * (p->state == TASK_DEAD). We can handle the two cases in the same
1528 * way, because from GRUB's point of view the same thing is happening
1529 * (the task moves from "active contending" to "active non contending"
1530 * or "inactive")
1531 */
1532 if (flags & DEQUEUE_SLEEP)
1533 task_non_contending(p);
1534}
1535
1536/*
1537 * Yield task semantic for -deadline tasks is:
1538 *
1539 * get off from the CPU until our next instance, with
1540 * a new runtime. This is of little use now, since we
1541 * don't have a bandwidth reclaiming mechanism. Anyway,
1542 * bandwidth reclaiming is planned for the future, and
1543 * yield_task_dl will indicate that some spare budget
1544 * is available for other task instances to use it.
1545 */
1546static void yield_task_dl(struct rq *rq)
1547{
1548 /*
1549 * We make the task go to sleep until its current deadline by
1550 * forcing its runtime to zero. This way, update_curr_dl() stops
1551 * it and the bandwidth timer will wake it up and will give it
1552 * new scheduling parameters (thanks to dl_yielded=1).
1553 */
1554 rq->curr->dl.dl_yielded = 1;
1555
1556 update_rq_clock(rq);
1557 update_curr_dl(rq);
1558 /*
1559 * Tell update_rq_clock() that we've just updated,
1560 * so we don't do microscopic update in schedule()
1561 * and double the fastpath cost.
1562 */
1563 rq_clock_skip_update(rq);
1564}
1565
1566#ifdef CONFIG_SMP
1567
1568static int find_later_rq(struct task_struct *task);
1569
1570static int
1571select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1572{
1573 struct task_struct *curr;
1574 struct rq *rq;
1575
1576 if (sd_flag != SD_BALANCE_WAKE)
1577 goto out;
1578
1579 rq = cpu_rq(cpu);
1580
1581 rcu_read_lock();
1582 curr = READ_ONCE(rq->curr); /* unlocked access */
1583
1584 /*
1585 * If we are dealing with a -deadline task, we must
1586 * decide where to wake it up.
1587 * If it has a later deadline and the current task
1588 * on this rq can't move (provided the waking task
1589 * can!) we prefer to send it somewhere else. On the
1590 * other hand, if it has a shorter deadline, we
1591 * try to make it stay here, it might be important.
1592 */
1593 if (unlikely(dl_task(curr)) &&
1594 (curr->nr_cpus_allowed < 2 ||
1595 !dl_entity_preempt(&p->dl, &curr->dl)) &&
1596 (p->nr_cpus_allowed > 1)) {
1597 int target = find_later_rq(p);
1598
1599 if (target != -1 &&
1600 (dl_time_before(p->dl.deadline,
1601 cpu_rq(target)->dl.earliest_dl.curr) ||
1602 (cpu_rq(target)->dl.dl_nr_running == 0)))
1603 cpu = target;
1604 }
1605 rcu_read_unlock();
1606
1607out:
1608 return cpu;
1609}
1610
1611static void migrate_task_rq_dl(struct task_struct *p)
1612{
1613 struct rq *rq;
1614
1615 if (p->state != TASK_WAKING)
1616 return;
1617
1618 rq = task_rq(p);
1619 /*
1620 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1621 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1622 * rq->lock is not... So, lock it
1623 */
1624 raw_spin_lock(&rq->lock);
1625 if (p->dl.dl_non_contending) {
1626 sub_running_bw(&p->dl, &rq->dl);
1627 p->dl.dl_non_contending = 0;
1628 /*
1629 * If the timer handler is currently running and the
1630 * timer cannot be cancelled, inactive_task_timer()
1631 * will see that dl_not_contending is not set, and
1632 * will not touch the rq's active utilization,
1633 * so we are still safe.
1634 */
1635 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1636 put_task_struct(p);
1637 }
1638 sub_rq_bw(&p->dl, &rq->dl);
1639 raw_spin_unlock(&rq->lock);
1640}
1641
1642static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1643{
1644 /*
1645 * Current can't be migrated, useless to reschedule,
1646 * let's hope p can move out.
1647 */
1648 if (rq->curr->nr_cpus_allowed == 1 ||
1649 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1650 return;
1651
1652 /*
1653 * p is migratable, so let's not schedule it and
1654 * see if it is pushed or pulled somewhere else.
1655 */
1656 if (p->nr_cpus_allowed != 1 &&
1657 cpudl_find(&rq->rd->cpudl, p, NULL))
1658 return;
1659
1660 resched_curr(rq);
1661}
1662
1663#endif /* CONFIG_SMP */
1664
1665/*
1666 * Only called when both the current and waking task are -deadline
1667 * tasks.
1668 */
1669static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1670 int flags)
1671{
1672 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1673 resched_curr(rq);
1674 return;
1675 }
1676
1677#ifdef CONFIG_SMP
1678 /*
1679 * In the unlikely case current and p have the same deadline
1680 * let us try to decide what's the best thing to do...
1681 */
1682 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1683 !test_tsk_need_resched(rq->curr))
1684 check_preempt_equal_dl(rq, p);
1685#endif /* CONFIG_SMP */
1686}
1687
1688#ifdef CONFIG_SCHED_HRTICK
1689static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1690{
1691 hrtick_start(rq, p->dl.runtime);
1692}
1693#else /* !CONFIG_SCHED_HRTICK */
1694static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1695{
1696}
1697#endif
1698
1699static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1700 struct dl_rq *dl_rq)
1701{
1702 struct rb_node *left = rb_first_cached(&dl_rq->root);
1703
1704 if (!left)
1705 return NULL;
1706
1707 return rb_entry(left, struct sched_dl_entity, rb_node);
1708}
1709
1710static struct task_struct *
1711pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1712{
1713 struct sched_dl_entity *dl_se;
1714 struct task_struct *p;
1715 struct dl_rq *dl_rq;
1716
1717 dl_rq = &rq->dl;
1718
1719 if (need_pull_dl_task(rq, prev)) {
1720 /*
1721 * This is OK, because current is on_cpu, which avoids it being
1722 * picked for load-balance and preemption/IRQs are still
1723 * disabled avoiding further scheduler activity on it and we're
1724 * being very careful to re-start the picking loop.
1725 */
1726 rq_unpin_lock(rq, rf);
1727 pull_dl_task(rq);
1728 rq_repin_lock(rq, rf);
1729 /*
1730 * pull_dl_task() can drop (and re-acquire) rq->lock; this
1731 * means a stop task can slip in, in which case we need to
1732 * re-start task selection.
1733 */
1734 if (rq->stop && task_on_rq_queued(rq->stop))
1735 return RETRY_TASK;
1736 }
1737
1738 /*
1739 * When prev is DL, we may throttle it in put_prev_task().
1740 * So, we update time before we check for dl_nr_running.
1741 */
1742 if (prev->sched_class == &dl_sched_class)
1743 update_curr_dl(rq);
1744
1745 if (unlikely(!dl_rq->dl_nr_running))
1746 return NULL;
1747
1748 put_prev_task(rq, prev);
1749
1750 dl_se = pick_next_dl_entity(rq, dl_rq);
1751 BUG_ON(!dl_se);
1752
1753 p = dl_task_of(dl_se);
1754 p->se.exec_start = rq_clock_task(rq);
1755
1756 /* Running task will never be pushed. */
1757 dequeue_pushable_dl_task(rq, p);
1758
1759 if (hrtick_enabled(rq))
1760 start_hrtick_dl(rq, p);
1761
1762 deadline_queue_push_tasks(rq);
1763
1764 return p;
1765}
1766
1767static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1768{
1769 update_curr_dl(rq);
1770
1771 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1772 enqueue_pushable_dl_task(rq, p);
1773}
1774
1775/*
1776 * scheduler tick hitting a task of our scheduling class.
1777 *
1778 * NOTE: This function can be called remotely by the tick offload that
1779 * goes along full dynticks. Therefore no local assumption can be made
1780 * and everything must be accessed through the @rq and @curr passed in
1781 * parameters.
1782 */
1783static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1784{
1785 update_curr_dl(rq);
1786
1787 /*
1788 * Even when we have runtime, update_curr_dl() might have resulted in us
1789 * not being the leftmost task anymore. In that case NEED_RESCHED will
1790 * be set and schedule() will start a new hrtick for the next task.
1791 */
1792 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1793 is_leftmost(p, &rq->dl))
1794 start_hrtick_dl(rq, p);
1795}
1796
1797static void task_fork_dl(struct task_struct *p)
1798{
1799 /*
1800 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1801 * sched_fork()
1802 */
1803}
1804
1805static void set_curr_task_dl(struct rq *rq)
1806{
1807 struct task_struct *p = rq->curr;
1808
1809 p->se.exec_start = rq_clock_task(rq);
1810
1811 /* You can't push away the running task */
1812 dequeue_pushable_dl_task(rq, p);
1813}
1814
1815#ifdef CONFIG_SMP
1816
1817/* Only try algorithms three times */
1818#define DL_MAX_TRIES 3
1819
1820static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1821{
1822 if (!task_running(rq, p) &&
1823 cpumask_test_cpu(cpu, &p->cpus_allowed))
1824 return 1;
1825 return 0;
1826}
1827
1828/*
1829 * Return the earliest pushable rq's task, which is suitable to be executed
1830 * on the CPU, NULL otherwise:
1831 */
1832static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1833{
1834 struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
1835 struct task_struct *p = NULL;
1836
1837 if (!has_pushable_dl_tasks(rq))
1838 return NULL;
1839
1840next_node:
1841 if (next_node) {
1842 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1843
1844 if (pick_dl_task(rq, p, cpu))
1845 return p;
1846
1847 next_node = rb_next(next_node);
1848 goto next_node;
1849 }
1850
1851 return NULL;
1852}
1853
1854static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1855
1856static int find_later_rq(struct task_struct *task)
1857{
1858 struct sched_domain *sd;
1859 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1860 int this_cpu = smp_processor_id();
1861 int cpu = task_cpu(task);
1862
1863 /* Make sure the mask is initialized first */
1864 if (unlikely(!later_mask))
1865 return -1;
1866
1867 if (task->nr_cpus_allowed == 1)
1868 return -1;
1869
1870 /*
1871 * We have to consider system topology and task affinity
1872 * first, then we can look for a suitable CPU.
1873 */
1874 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1875 return -1;
1876
1877 /*
1878 * If we are here, some targets have been found, including
1879 * the most suitable which is, among the runqueues where the
1880 * current tasks have later deadlines than the task's one, the
1881 * rq with the latest possible one.
1882 *
1883 * Now we check how well this matches with task's
1884 * affinity and system topology.
1885 *
1886 * The last CPU where the task run is our first
1887 * guess, since it is most likely cache-hot there.
1888 */
1889 if (cpumask_test_cpu(cpu, later_mask))
1890 return cpu;
1891 /*
1892 * Check if this_cpu is to be skipped (i.e., it is
1893 * not in the mask) or not.
1894 */
1895 if (!cpumask_test_cpu(this_cpu, later_mask))
1896 this_cpu = -1;
1897
1898 rcu_read_lock();
1899 for_each_domain(cpu, sd) {
1900 if (sd->flags & SD_WAKE_AFFINE) {
1901 int best_cpu;
1902
1903 /*
1904 * If possible, preempting this_cpu is
1905 * cheaper than migrating.
1906 */
1907 if (this_cpu != -1 &&
1908 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1909 rcu_read_unlock();
1910 return this_cpu;
1911 }
1912
1913 best_cpu = cpumask_first_and(later_mask,
1914 sched_domain_span(sd));
1915 /*
1916 * Last chance: if a CPU being in both later_mask
1917 * and current sd span is valid, that becomes our
1918 * choice. Of course, the latest possible CPU is
1919 * already under consideration through later_mask.
1920 */
1921 if (best_cpu < nr_cpu_ids) {
1922 rcu_read_unlock();
1923 return best_cpu;
1924 }
1925 }
1926 }
1927 rcu_read_unlock();
1928
1929 /*
1930 * At this point, all our guesses failed, we just return
1931 * 'something', and let the caller sort the things out.
1932 */
1933 if (this_cpu != -1)
1934 return this_cpu;
1935
1936 cpu = cpumask_any(later_mask);
1937 if (cpu < nr_cpu_ids)
1938 return cpu;
1939
1940 return -1;
1941}
1942
1943/* Locks the rq it finds */
1944static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1945{
1946 struct rq *later_rq = NULL;
1947 int tries;
1948 int cpu;
1949
1950 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1951 cpu = find_later_rq(task);
1952
1953 if ((cpu == -1) || (cpu == rq->cpu))
1954 break;
1955
1956 later_rq = cpu_rq(cpu);
1957
1958 if (later_rq->dl.dl_nr_running &&
1959 !dl_time_before(task->dl.deadline,
1960 later_rq->dl.earliest_dl.curr)) {
1961 /*
1962 * Target rq has tasks of equal or earlier deadline,
1963 * retrying does not release any lock and is unlikely
1964 * to yield a different result.
1965 */
1966 later_rq = NULL;
1967 break;
1968 }
1969
1970 /* Retry if something changed. */
1971 if (double_lock_balance(rq, later_rq)) {
1972 if (unlikely(task_rq(task) != rq ||
1973 !cpumask_test_cpu(later_rq->cpu, &task->cpus_allowed) ||
1974 task_running(rq, task) ||
1975 !dl_task(task) ||
1976 !task_on_rq_queued(task))) {
1977 double_unlock_balance(rq, later_rq);
1978 later_rq = NULL;
1979 break;
1980 }
1981 }
1982
1983 /*
1984 * If the rq we found has no -deadline task, or
1985 * its earliest one has a later deadline than our
1986 * task, the rq is a good one.
1987 */
1988 if (!later_rq->dl.dl_nr_running ||
1989 dl_time_before(task->dl.deadline,
1990 later_rq->dl.earliest_dl.curr))
1991 break;
1992
1993 /* Otherwise we try again. */
1994 double_unlock_balance(rq, later_rq);
1995 later_rq = NULL;
1996 }
1997
1998 return later_rq;
1999}
2000
2001static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2002{
2003 struct task_struct *p;
2004
2005 if (!has_pushable_dl_tasks(rq))
2006 return NULL;
2007
2008 p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
2009 struct task_struct, pushable_dl_tasks);
2010
2011 BUG_ON(rq->cpu != task_cpu(p));
2012 BUG_ON(task_current(rq, p));
2013 BUG_ON(p->nr_cpus_allowed <= 1);
2014
2015 BUG_ON(!task_on_rq_queued(p));
2016 BUG_ON(!dl_task(p));
2017
2018 return p;
2019}
2020
2021/*
2022 * See if the non running -deadline tasks on this rq
2023 * can be sent to some other CPU where they can preempt
2024 * and start executing.
2025 */
2026static int push_dl_task(struct rq *rq)
2027{
2028 struct task_struct *next_task;
2029 struct rq *later_rq;
2030 int ret = 0;
2031
2032 if (!rq->dl.overloaded)
2033 return 0;
2034
2035 next_task = pick_next_pushable_dl_task(rq);
2036 if (!next_task)
2037 return 0;
2038
2039retry:
2040 if (unlikely(next_task == rq->curr)) {
2041 WARN_ON(1);
2042 return 0;
2043 }
2044
2045 /*
2046 * If next_task preempts rq->curr, and rq->curr
2047 * can move away, it makes sense to just reschedule
2048 * without going further in pushing next_task.
2049 */
2050 if (dl_task(rq->curr) &&
2051 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2052 rq->curr->nr_cpus_allowed > 1) {
2053 resched_curr(rq);
2054 return 0;
2055 }
2056
2057 /* We might release rq lock */
2058 get_task_struct(next_task);
2059
2060 /* Will lock the rq it'll find */
2061 later_rq = find_lock_later_rq(next_task, rq);
2062 if (!later_rq) {
2063 struct task_struct *task;
2064
2065 /*
2066 * We must check all this again, since
2067 * find_lock_later_rq releases rq->lock and it is
2068 * then possible that next_task has migrated.
2069 */
2070 task = pick_next_pushable_dl_task(rq);
2071 if (task == next_task) {
2072 /*
2073 * The task is still there. We don't try
2074 * again, some other CPU will pull it when ready.
2075 */
2076 goto out;
2077 }
2078
2079 if (!task)
2080 /* No more tasks */
2081 goto out;
2082
2083 put_task_struct(next_task);
2084 next_task = task;
2085 goto retry;
2086 }
2087
2088 deactivate_task(rq, next_task, 0);
2089 sub_running_bw(&next_task->dl, &rq->dl);
2090 sub_rq_bw(&next_task->dl, &rq->dl);
2091 set_task_cpu(next_task, later_rq->cpu);
2092 add_rq_bw(&next_task->dl, &later_rq->dl);
2093 add_running_bw(&next_task->dl, &later_rq->dl);
2094 activate_task(later_rq, next_task, 0);
2095 ret = 1;
2096
2097 resched_curr(later_rq);
2098
2099 double_unlock_balance(rq, later_rq);
2100
2101out:
2102 put_task_struct(next_task);
2103
2104 return ret;
2105}
2106
2107static void push_dl_tasks(struct rq *rq)
2108{
2109 /* push_dl_task() will return true if it moved a -deadline task */
2110 while (push_dl_task(rq))
2111 ;
2112}
2113
2114static void pull_dl_task(struct rq *this_rq)
2115{
2116 int this_cpu = this_rq->cpu, cpu;
2117 struct task_struct *p;
2118 bool resched = false;
2119 struct rq *src_rq;
2120 u64 dmin = LONG_MAX;
2121
2122 if (likely(!dl_overloaded(this_rq)))
2123 return;
2124
2125 /*
2126 * Match the barrier from dl_set_overloaded; this guarantees that if we
2127 * see overloaded we must also see the dlo_mask bit.
2128 */
2129 smp_rmb();
2130
2131 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2132 if (this_cpu == cpu)
2133 continue;
2134
2135 src_rq = cpu_rq(cpu);
2136
2137 /*
2138 * It looks racy, abd it is! However, as in sched_rt.c,
2139 * we are fine with this.
2140 */
2141 if (this_rq->dl.dl_nr_running &&
2142 dl_time_before(this_rq->dl.earliest_dl.curr,
2143 src_rq->dl.earliest_dl.next))
2144 continue;
2145
2146 /* Might drop this_rq->lock */
2147 double_lock_balance(this_rq, src_rq);
2148
2149 /*
2150 * If there are no more pullable tasks on the
2151 * rq, we're done with it.
2152 */
2153 if (src_rq->dl.dl_nr_running <= 1)
2154 goto skip;
2155
2156 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2157
2158 /*
2159 * We found a task to be pulled if:
2160 * - it preempts our current (if there's one),
2161 * - it will preempt the last one we pulled (if any).
2162 */
2163 if (p && dl_time_before(p->dl.deadline, dmin) &&
2164 (!this_rq->dl.dl_nr_running ||
2165 dl_time_before(p->dl.deadline,
2166 this_rq->dl.earliest_dl.curr))) {
2167 WARN_ON(p == src_rq->curr);
2168 WARN_ON(!task_on_rq_queued(p));
2169
2170 /*
2171 * Then we pull iff p has actually an earlier
2172 * deadline than the current task of its runqueue.
2173 */
2174 if (dl_time_before(p->dl.deadline,
2175 src_rq->curr->dl.deadline))
2176 goto skip;
2177
2178 resched = true;
2179
2180 deactivate_task(src_rq, p, 0);
2181 sub_running_bw(&p->dl, &src_rq->dl);
2182 sub_rq_bw(&p->dl, &src_rq->dl);
2183 set_task_cpu(p, this_cpu);
2184 add_rq_bw(&p->dl, &this_rq->dl);
2185 add_running_bw(&p->dl, &this_rq->dl);
2186 activate_task(this_rq, p, 0);
2187 dmin = p->dl.deadline;
2188
2189 /* Is there any other task even earlier? */
2190 }
2191skip:
2192 double_unlock_balance(this_rq, src_rq);
2193 }
2194
2195 if (resched)
2196 resched_curr(this_rq);
2197}
2198
2199/*
2200 * Since the task is not running and a reschedule is not going to happen
2201 * anytime soon on its runqueue, we try pushing it away now.
2202 */
2203static void task_woken_dl(struct rq *rq, struct task_struct *p)
2204{
2205 if (!task_running(rq, p) &&
2206 !test_tsk_need_resched(rq->curr) &&
2207 p->nr_cpus_allowed > 1 &&
2208 dl_task(rq->curr) &&
2209 (rq->curr->nr_cpus_allowed < 2 ||
2210 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2211 push_dl_tasks(rq);
2212 }
2213}
2214
2215static void set_cpus_allowed_dl(struct task_struct *p,
2216 const struct cpumask *new_mask)
2217{
2218 struct root_domain *src_rd;
2219 struct rq *rq;
2220
2221 BUG_ON(!dl_task(p));
2222
2223 rq = task_rq(p);
2224 src_rd = rq->rd;
2225 /*
2226 * Migrating a SCHED_DEADLINE task between exclusive
2227 * cpusets (different root_domains) entails a bandwidth
2228 * update. We already made space for us in the destination
2229 * domain (see cpuset_can_attach()).
2230 */
2231 if (!cpumask_intersects(src_rd->span, new_mask)) {
2232 struct dl_bw *src_dl_b;
2233
2234 src_dl_b = dl_bw_of(cpu_of(rq));
2235 /*
2236 * We now free resources of the root_domain we are migrating
2237 * off. In the worst case, sched_setattr() may temporary fail
2238 * until we complete the update.
2239 */
2240 raw_spin_lock(&src_dl_b->lock);
2241 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2242 raw_spin_unlock(&src_dl_b->lock);
2243 }
2244
2245 set_cpus_allowed_common(p, new_mask);
2246}
2247
2248/* Assumes rq->lock is held */
2249static void rq_online_dl(struct rq *rq)
2250{
2251 if (rq->dl.overloaded)
2252 dl_set_overload(rq);
2253
2254 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2255 if (rq->dl.dl_nr_running > 0)
2256 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2257}
2258
2259/* Assumes rq->lock is held */
2260static void rq_offline_dl(struct rq *rq)
2261{
2262 if (rq->dl.overloaded)
2263 dl_clear_overload(rq);
2264
2265 cpudl_clear(&rq->rd->cpudl, rq->cpu);
2266 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2267}
2268
2269void __init init_sched_dl_class(void)
2270{
2271 unsigned int i;
2272
2273 for_each_possible_cpu(i)
2274 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2275 GFP_KERNEL, cpu_to_node(i));
2276}
2277
2278#endif /* CONFIG_SMP */
2279
2280static void switched_from_dl(struct rq *rq, struct task_struct *p)
2281{
2282 /*
2283 * task_non_contending() can start the "inactive timer" (if the 0-lag
2284 * time is in the future). If the task switches back to dl before
2285 * the "inactive timer" fires, it can continue to consume its current
2286 * runtime using its current deadline. If it stays outside of
2287 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2288 * will reset the task parameters.
2289 */
2290 if (task_on_rq_queued(p) && p->dl.dl_runtime)
2291 task_non_contending(p);
2292
2293 if (!task_on_rq_queued(p))
2294 sub_rq_bw(&p->dl, &rq->dl);
2295
2296 /*
2297 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2298 * at the 0-lag time, because the task could have been migrated
2299 * while SCHED_OTHER in the meanwhile.
2300 */
2301 if (p->dl.dl_non_contending)
2302 p->dl.dl_non_contending = 0;
2303
2304 /*
2305 * Since this might be the only -deadline task on the rq,
2306 * this is the right place to try to pull some other one
2307 * from an overloaded CPU, if any.
2308 */
2309 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2310 return;
2311
2312 deadline_queue_pull_task(rq);
2313}
2314
2315/*
2316 * When switching to -deadline, we may overload the rq, then
2317 * we try to push someone off, if possible.
2318 */
2319static void switched_to_dl(struct rq *rq, struct task_struct *p)
2320{
2321 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2322 put_task_struct(p);
2323
2324 /* If p is not queued we will update its parameters at next wakeup. */
2325 if (!task_on_rq_queued(p)) {
2326 add_rq_bw(&p->dl, &rq->dl);
2327
2328 return;
2329 }
2330
2331 if (rq->curr != p) {
2332#ifdef CONFIG_SMP
2333 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2334 deadline_queue_push_tasks(rq);
2335#endif
2336 if (dl_task(rq->curr))
2337 check_preempt_curr_dl(rq, p, 0);
2338 else
2339 resched_curr(rq);
2340 }
2341}
2342
2343/*
2344 * If the scheduling parameters of a -deadline task changed,
2345 * a push or pull operation might be needed.
2346 */
2347static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2348 int oldprio)
2349{
2350 if (task_on_rq_queued(p) || rq->curr == p) {
2351#ifdef CONFIG_SMP
2352 /*
2353 * This might be too much, but unfortunately
2354 * we don't have the old deadline value, and
2355 * we can't argue if the task is increasing
2356 * or lowering its prio, so...
2357 */
2358 if (!rq->dl.overloaded)
2359 deadline_queue_pull_task(rq);
2360
2361 /*
2362 * If we now have a earlier deadline task than p,
2363 * then reschedule, provided p is still on this
2364 * runqueue.
2365 */
2366 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2367 resched_curr(rq);
2368#else
2369 /*
2370 * Again, we don't know if p has a earlier
2371 * or later deadline, so let's blindly set a
2372 * (maybe not needed) rescheduling point.
2373 */
2374 resched_curr(rq);
2375#endif /* CONFIG_SMP */
2376 }
2377}
2378
2379const struct sched_class dl_sched_class = {
2380 .next = &rt_sched_class,
2381 .enqueue_task = enqueue_task_dl,
2382 .dequeue_task = dequeue_task_dl,
2383 .yield_task = yield_task_dl,
2384
2385 .check_preempt_curr = check_preempt_curr_dl,
2386
2387 .pick_next_task = pick_next_task_dl,
2388 .put_prev_task = put_prev_task_dl,
2389
2390#ifdef CONFIG_SMP
2391 .select_task_rq = select_task_rq_dl,
2392 .migrate_task_rq = migrate_task_rq_dl,
2393 .set_cpus_allowed = set_cpus_allowed_dl,
2394 .rq_online = rq_online_dl,
2395 .rq_offline = rq_offline_dl,
2396 .task_woken = task_woken_dl,
2397#endif
2398
2399 .set_curr_task = set_curr_task_dl,
2400 .task_tick = task_tick_dl,
2401 .task_fork = task_fork_dl,
2402
2403 .prio_changed = prio_changed_dl,
2404 .switched_from = switched_from_dl,
2405 .switched_to = switched_to_dl,
2406
2407 .update_curr = update_curr_dl,
2408};
2409
2410int sched_dl_global_validate(void)
2411{
2412 u64 runtime = global_rt_runtime();
2413 u64 period = global_rt_period();
2414 u64 new_bw = to_ratio(period, runtime);
2415 struct dl_bw *dl_b;
2416 int cpu, ret = 0;
2417 unsigned long flags;
2418
2419 /*
2420 * Here we want to check the bandwidth not being set to some
2421 * value smaller than the currently allocated bandwidth in
2422 * any of the root_domains.
2423 *
2424 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2425 * cycling on root_domains... Discussion on different/better
2426 * solutions is welcome!
2427 */
2428 for_each_possible_cpu(cpu) {
2429 rcu_read_lock_sched();
2430 dl_b = dl_bw_of(cpu);
2431
2432 raw_spin_lock_irqsave(&dl_b->lock, flags);
2433 if (new_bw < dl_b->total_bw)
2434 ret = -EBUSY;
2435 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2436
2437 rcu_read_unlock_sched();
2438
2439 if (ret)
2440 break;
2441 }
2442
2443 return ret;
2444}
2445
2446void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2447{
2448 if (global_rt_runtime() == RUNTIME_INF) {
2449 dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2450 dl_rq->extra_bw = 1 << BW_SHIFT;
2451 } else {
2452 dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2453 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2454 dl_rq->extra_bw = to_ratio(global_rt_period(),
2455 global_rt_runtime());
2456 }
2457}
2458
2459void sched_dl_do_global(void)
2460{
2461 u64 new_bw = -1;
2462 struct dl_bw *dl_b;
2463 int cpu;
2464 unsigned long flags;
2465
2466 def_dl_bandwidth.dl_period = global_rt_period();
2467 def_dl_bandwidth.dl_runtime = global_rt_runtime();
2468
2469 if (global_rt_runtime() != RUNTIME_INF)
2470 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2471
2472 /*
2473 * FIXME: As above...
2474 */
2475 for_each_possible_cpu(cpu) {
2476 rcu_read_lock_sched();
2477 dl_b = dl_bw_of(cpu);
2478
2479 raw_spin_lock_irqsave(&dl_b->lock, flags);
2480 dl_b->bw = new_bw;
2481 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2482
2483 rcu_read_unlock_sched();
2484 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2485 }
2486}
2487
2488/*
2489 * We must be sure that accepting a new task (or allowing changing the
2490 * parameters of an existing one) is consistent with the bandwidth
2491 * constraints. If yes, this function also accordingly updates the currently
2492 * allocated bandwidth to reflect the new situation.
2493 *
2494 * This function is called while holding p's rq->lock.
2495 */
2496int sched_dl_overflow(struct task_struct *p, int policy,
2497 const struct sched_attr *attr)
2498{
2499 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2500 u64 period = attr->sched_period ?: attr->sched_deadline;
2501 u64 runtime = attr->sched_runtime;
2502 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2503 int cpus, err = -1;
2504
2505 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2506 return 0;
2507
2508 /* !deadline task may carry old deadline bandwidth */
2509 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2510 return 0;
2511
2512 /*
2513 * Either if a task, enters, leave, or stays -deadline but changes
2514 * its parameters, we may need to update accordingly the total
2515 * allocated bandwidth of the container.
2516 */
2517 raw_spin_lock(&dl_b->lock);
2518 cpus = dl_bw_cpus(task_cpu(p));
2519 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2520 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2521 if (hrtimer_active(&p->dl.inactive_timer))
2522 __dl_sub(dl_b, p->dl.dl_bw, cpus);
2523 __dl_add(dl_b, new_bw, cpus);
2524 err = 0;
2525 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2526 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2527 /*
2528 * XXX this is slightly incorrect: when the task
2529 * utilization decreases, we should delay the total
2530 * utilization change until the task's 0-lag point.
2531 * But this would require to set the task's "inactive
2532 * timer" when the task is not inactive.
2533 */
2534 __dl_sub(dl_b, p->dl.dl_bw, cpus);
2535 __dl_add(dl_b, new_bw, cpus);
2536 dl_change_utilization(p, new_bw);
2537 err = 0;
2538 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2539 /*
2540 * Do not decrease the total deadline utilization here,
2541 * switched_from_dl() will take care to do it at the correct
2542 * (0-lag) time.
2543 */
2544 err = 0;
2545 }
2546 raw_spin_unlock(&dl_b->lock);
2547
2548 return err;
2549}
2550
2551/*
2552 * This function initializes the sched_dl_entity of a newly becoming
2553 * SCHED_DEADLINE task.
2554 *
2555 * Only the static values are considered here, the actual runtime and the
2556 * absolute deadline will be properly calculated when the task is enqueued
2557 * for the first time with its new policy.
2558 */
2559void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2560{
2561 struct sched_dl_entity *dl_se = &p->dl;
2562
2563 dl_se->dl_runtime = attr->sched_runtime;
2564 dl_se->dl_deadline = attr->sched_deadline;
2565 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2566 dl_se->flags = attr->sched_flags;
2567 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2568 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2569}
2570
2571void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2572{
2573 struct sched_dl_entity *dl_se = &p->dl;
2574
2575 attr->sched_priority = p->rt_priority;
2576 attr->sched_runtime = dl_se->dl_runtime;
2577 attr->sched_deadline = dl_se->dl_deadline;
2578 attr->sched_period = dl_se->dl_period;
2579 attr->sched_flags = dl_se->flags;
2580}
2581
2582/*
2583 * This function validates the new parameters of a -deadline task.
2584 * We ask for the deadline not being zero, and greater or equal
2585 * than the runtime, as well as the period of being zero or
2586 * greater than deadline. Furthermore, we have to be sure that
2587 * user parameters are above the internal resolution of 1us (we
2588 * check sched_runtime only since it is always the smaller one) and
2589 * below 2^63 ns (we have to check both sched_deadline and
2590 * sched_period, as the latter can be zero).
2591 */
2592bool __checkparam_dl(const struct sched_attr *attr)
2593{
2594 /* special dl tasks don't actually use any parameter */
2595 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2596 return true;
2597
2598 /* deadline != 0 */
2599 if (attr->sched_deadline == 0)
2600 return false;
2601
2602 /*
2603 * Since we truncate DL_SCALE bits, make sure we're at least
2604 * that big.
2605 */
2606 if (attr->sched_runtime < (1ULL << DL_SCALE))
2607 return false;
2608
2609 /*
2610 * Since we use the MSB for wrap-around and sign issues, make
2611 * sure it's not set (mind that period can be equal to zero).
2612 */
2613 if (attr->sched_deadline & (1ULL << 63) ||
2614 attr->sched_period & (1ULL << 63))
2615 return false;
2616
2617 /* runtime <= deadline <= period (if period != 0) */
2618 if ((attr->sched_period != 0 &&
2619 attr->sched_period < attr->sched_deadline) ||
2620 attr->sched_deadline < attr->sched_runtime)
2621 return false;
2622
2623 return true;
2624}
2625
2626/*
2627 * This function clears the sched_dl_entity static params.
2628 */
2629void __dl_clear_params(struct task_struct *p)
2630{
2631 struct sched_dl_entity *dl_se = &p->dl;
2632
2633 dl_se->dl_runtime = 0;
2634 dl_se->dl_deadline = 0;
2635 dl_se->dl_period = 0;
2636 dl_se->flags = 0;
2637 dl_se->dl_bw = 0;
2638 dl_se->dl_density = 0;
2639
2640 dl_se->dl_throttled = 0;
2641 dl_se->dl_yielded = 0;
2642 dl_se->dl_non_contending = 0;
2643 dl_se->dl_overrun = 0;
2644}
2645
2646bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2647{
2648 struct sched_dl_entity *dl_se = &p->dl;
2649
2650 if (dl_se->dl_runtime != attr->sched_runtime ||
2651 dl_se->dl_deadline != attr->sched_deadline ||
2652 dl_se->dl_period != attr->sched_period ||
2653 dl_se->flags != attr->sched_flags)
2654 return true;
2655
2656 return false;
2657}
2658
2659#ifdef CONFIG_SMP
2660int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
2661{
2662 unsigned int dest_cpu;
2663 struct dl_bw *dl_b;
2664 bool overflow;
2665 int cpus, ret;
2666 unsigned long flags;
2667
2668 dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed);
2669
2670 rcu_read_lock_sched();
2671 dl_b = dl_bw_of(dest_cpu);
2672 raw_spin_lock_irqsave(&dl_b->lock, flags);
2673 cpus = dl_bw_cpus(dest_cpu);
2674 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
2675 if (overflow) {
2676 ret = -EBUSY;
2677 } else {
2678 /*
2679 * We reserve space for this task in the destination
2680 * root_domain, as we can't fail after this point.
2681 * We will free resources in the source root_domain
2682 * later on (see set_cpus_allowed_dl()).
2683 */
2684 __dl_add(dl_b, p->dl.dl_bw, cpus);
2685 ret = 0;
2686 }
2687 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2688 rcu_read_unlock_sched();
2689
2690 return ret;
2691}
2692
2693int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2694 const struct cpumask *trial)
2695{
2696 int ret = 1, trial_cpus;
2697 struct dl_bw *cur_dl_b;
2698 unsigned long flags;
2699
2700 rcu_read_lock_sched();
2701 cur_dl_b = dl_bw_of(cpumask_any(cur));
2702 trial_cpus = cpumask_weight(trial);
2703
2704 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2705 if (cur_dl_b->bw != -1 &&
2706 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2707 ret = 0;
2708 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2709 rcu_read_unlock_sched();
2710
2711 return ret;
2712}
2713
2714bool dl_cpu_busy(unsigned int cpu)
2715{
2716 unsigned long flags;
2717 struct dl_bw *dl_b;
2718 bool overflow;
2719 int cpus;
2720
2721 rcu_read_lock_sched();
2722 dl_b = dl_bw_of(cpu);
2723 raw_spin_lock_irqsave(&dl_b->lock, flags);
2724 cpus = dl_bw_cpus(cpu);
2725 overflow = __dl_overflow(dl_b, cpus, 0, 0);
2726 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2727 rcu_read_unlock_sched();
2728
2729 return overflow;
2730}
2731#endif
2732
2733#ifdef CONFIG_SCHED_DEBUG
2734void print_dl_stats(struct seq_file *m, int cpu)
2735{
2736 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2737}
2738#endif /* CONFIG_SCHED_DEBUG */