Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Driver for Cirrus Logic EP93xx SPI controller.
  4 *
  5 * Copyright (C) 2010-2011 Mika Westerberg
  6 *
  7 * Explicit FIFO handling code was inspired by amba-pl022 driver.
  8 *
  9 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
 10 *
 11 * For more information about the SPI controller see documentation on Cirrus
 12 * Logic web site:
 13 *     https://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
 
 
 
 
 14 */
 15
 16#include <linux/io.h>
 17#include <linux/clk.h>
 18#include <linux/err.h>
 19#include <linux/delay.h>
 20#include <linux/device.h>
 21#include <linux/dmaengine.h>
 22#include <linux/bitops.h>
 23#include <linux/interrupt.h>
 24#include <linux/module.h>
 25#include <linux/platform_device.h>
 
 26#include <linux/sched.h>
 27#include <linux/scatterlist.h>
 28#include <linux/spi/spi.h>
 29
 30#include <linux/platform_data/dma-ep93xx.h>
 31#include <linux/platform_data/spi-ep93xx.h>
 32
 33#define SSPCR0			0x0000
 34#define SSPCR0_SPO		BIT(6)
 35#define SSPCR0_SPH		BIT(7)
 36#define SSPCR0_SCR_SHIFT	8
 37
 38#define SSPCR1			0x0004
 39#define SSPCR1_RIE		BIT(0)
 40#define SSPCR1_TIE		BIT(1)
 41#define SSPCR1_RORIE		BIT(2)
 42#define SSPCR1_LBM		BIT(3)
 43#define SSPCR1_SSE		BIT(4)
 44#define SSPCR1_MS		BIT(5)
 45#define SSPCR1_SOD		BIT(6)
 46
 47#define SSPDR			0x0008
 48
 49#define SSPSR			0x000c
 50#define SSPSR_TFE		BIT(0)
 51#define SSPSR_TNF		BIT(1)
 52#define SSPSR_RNE		BIT(2)
 53#define SSPSR_RFF		BIT(3)
 54#define SSPSR_BSY		BIT(4)
 55#define SSPCPSR			0x0010
 56
 57#define SSPIIR			0x0014
 58#define SSPIIR_RIS		BIT(0)
 59#define SSPIIR_TIS		BIT(1)
 60#define SSPIIR_RORIS		BIT(2)
 61#define SSPICR			SSPIIR
 62
 63/* timeout in milliseconds */
 64#define SPI_TIMEOUT		5
 65/* maximum depth of RX/TX FIFO */
 66#define SPI_FIFO_SIZE		8
 67
 68/**
 69 * struct ep93xx_spi - EP93xx SPI controller structure
 
 
 
 70 * @clk: clock for the controller
 71 * @mmio: pointer to ioremap()'d registers
 72 * @sspdr_phys: physical address of the SSPDR register
 
 
 
 
 
 
 
 
 
 73 * @tx: current byte in transfer to transmit
 74 * @rx: current byte in transfer to receive
 75 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
 76 *              frame decreases this level and sending one frame increases it.
 77 * @dma_rx: RX DMA channel
 78 * @dma_tx: TX DMA channel
 79 * @dma_rx_data: RX parameters passed to the DMA engine
 80 * @dma_tx_data: TX parameters passed to the DMA engine
 81 * @rx_sgt: sg table for RX transfers
 82 * @tx_sgt: sg table for TX transfers
 83 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
 84 *            the client
 
 
 
 
 
 
 
 
 
 
 85 */
 86struct ep93xx_spi {
 
 
 87	struct clk			*clk;
 88	void __iomem			*mmio;
 89	unsigned long			sspdr_phys;
 
 
 
 
 
 
 
 
 
 90	size_t				tx;
 91	size_t				rx;
 92	size_t				fifo_level;
 93	struct dma_chan			*dma_rx;
 94	struct dma_chan			*dma_tx;
 95	struct ep93xx_dma_data		dma_rx_data;
 96	struct ep93xx_dma_data		dma_tx_data;
 97	struct sg_table			rx_sgt;
 98	struct sg_table			tx_sgt;
 99	void				*zeropage;
100};
101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102/* converts bits per word to CR0.DSS value */
103#define bits_per_word_to_dss(bpw)	((bpw) - 1)
104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105/**
106 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
107 * @master: SPI master
 
108 * @rate: desired SPI output clock rate
109 * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
110 * @div_scr: pointer to return the scr divider
 
 
 
111 */
112static int ep93xx_spi_calc_divisors(struct spi_master *master,
113				    u32 rate, u8 *div_cpsr, u8 *div_scr)
 
114{
115	struct ep93xx_spi *espi = spi_master_get_devdata(master);
116	unsigned long spi_clk_rate = clk_get_rate(espi->clk);
117	int cpsr, scr;
118
119	/*
120	 * Make sure that max value is between values supported by the
121	 * controller.
 
122	 */
123	rate = clamp(rate, master->min_speed_hz, master->max_speed_hz);
124
125	/*
126	 * Calculate divisors so that we can get speed according the
127	 * following formula:
128	 *	rate = spi_clock_rate / (cpsr * (1 + scr))
129	 *
130	 * cpsr must be even number and starts from 2, scr can be any number
131	 * between 0 and 255.
132	 */
133	for (cpsr = 2; cpsr <= 254; cpsr += 2) {
134		for (scr = 0; scr <= 255; scr++) {
135			if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
136				*div_scr = (u8)scr;
137				*div_cpsr = (u8)cpsr;
138				return 0;
139			}
140		}
141	}
142
143	return -EINVAL;
144}
145
146static int ep93xx_spi_chip_setup(struct spi_master *master,
147				 struct spi_device *spi,
148				 struct spi_transfer *xfer)
149{
150	struct ep93xx_spi *espi = spi_master_get_devdata(master);
151	u8 dss = bits_per_word_to_dss(xfer->bits_per_word);
152	u8 div_cpsr = 0;
153	u8 div_scr = 0;
154	u16 cr0;
155	int err;
156
157	err = ep93xx_spi_calc_divisors(master, xfer->speed_hz,
158				       &div_cpsr, &div_scr);
159	if (err)
160		return err;
161
162	cr0 = div_scr << SSPCR0_SCR_SHIFT;
163	if (spi->mode & SPI_CPOL)
164		cr0 |= SSPCR0_SPO;
165	if (spi->mode & SPI_CPHA)
166		cr0 |= SSPCR0_SPH;
167	cr0 |= dss;
168
169	dev_dbg(&master->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
170		spi->mode, div_cpsr, div_scr, dss);
171	dev_dbg(&master->dev, "setup: cr0 %#x\n", cr0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172
173	writel(div_cpsr, espi->mmio + SSPCPSR);
174	writel(cr0, espi->mmio + SSPCR0);
175
 
176	return 0;
177}
178
179static void ep93xx_do_write(struct spi_master *master)
 
 
 
 
 
 
 
 
 
 
 
180{
181	struct ep93xx_spi *espi = spi_master_get_devdata(master);
182	struct spi_transfer *xfer = master->cur_msg->state;
183	u32 val = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184
185	if (xfer->bits_per_word > 8) {
186		if (xfer->tx_buf)
187			val = ((u16 *)xfer->tx_buf)[espi->tx];
188		espi->tx += 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
189	} else {
190		if (xfer->tx_buf)
191			val = ((u8 *)xfer->tx_buf)[espi->tx];
192		espi->tx += 1;
 
 
 
193	}
194	writel(val, espi->mmio + SSPDR);
195}
196
197static void ep93xx_do_read(struct spi_master *master)
198{
199	struct ep93xx_spi *espi = spi_master_get_devdata(master);
200	struct spi_transfer *xfer = master->cur_msg->state;
201	u32 val;
202
203	val = readl(espi->mmio + SSPDR);
204	if (xfer->bits_per_word > 8) {
205		if (xfer->rx_buf)
206			((u16 *)xfer->rx_buf)[espi->rx] = val;
207		espi->rx += 2;
208	} else {
209		if (xfer->rx_buf)
210			((u8 *)xfer->rx_buf)[espi->rx] = val;
211		espi->rx += 1;
 
 
 
212	}
213}
214
215/**
216 * ep93xx_spi_read_write() - perform next RX/TX transfer
217 * @master: SPI master
218 *
219 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
220 * called several times, the whole transfer will be completed. Returns
221 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
222 *
223 * When this function is finished, RX FIFO should be empty and TX FIFO should be
224 * full.
225 */
226static int ep93xx_spi_read_write(struct spi_master *master)
227{
228	struct ep93xx_spi *espi = spi_master_get_devdata(master);
229	struct spi_transfer *xfer = master->cur_msg->state;
230
231	/* read as long as RX FIFO has frames in it */
232	while ((readl(espi->mmio + SSPSR) & SSPSR_RNE)) {
233		ep93xx_do_read(master);
234		espi->fifo_level--;
235	}
236
237	/* write as long as TX FIFO has room */
238	while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < xfer->len) {
239		ep93xx_do_write(master);
240		espi->fifo_level++;
241	}
242
243	if (espi->rx == xfer->len)
244		return 0;
245
246	return -EINPROGRESS;
247}
248
249static enum dma_transfer_direction
250ep93xx_dma_data_to_trans_dir(enum dma_data_direction dir)
251{
252	switch (dir) {
253	case DMA_TO_DEVICE:
254		return DMA_MEM_TO_DEV;
255	case DMA_FROM_DEVICE:
256		return DMA_DEV_TO_MEM;
257	default:
258		return DMA_TRANS_NONE;
259	}
260}
261
262/**
263 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
264 * @master: SPI master
265 * @dir: DMA transfer direction
266 *
267 * Function configures the DMA, maps the buffer and prepares the DMA
268 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
269 * in case of failure.
270 */
271static struct dma_async_tx_descriptor *
272ep93xx_spi_dma_prepare(struct spi_master *master,
273		       enum dma_data_direction dir)
274{
275	struct ep93xx_spi *espi = spi_master_get_devdata(master);
276	struct spi_transfer *xfer = master->cur_msg->state;
277	struct dma_async_tx_descriptor *txd;
278	enum dma_slave_buswidth buswidth;
279	struct dma_slave_config conf;
280	struct scatterlist *sg;
281	struct sg_table *sgt;
282	struct dma_chan *chan;
283	const void *buf, *pbuf;
284	size_t len = xfer->len;
285	int i, ret, nents;
286
287	if (xfer->bits_per_word > 8)
288		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
289	else
290		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
291
292	memset(&conf, 0, sizeof(conf));
293	conf.direction = ep93xx_dma_data_to_trans_dir(dir);
294
295	if (dir == DMA_FROM_DEVICE) {
296		chan = espi->dma_rx;
297		buf = xfer->rx_buf;
298		sgt = &espi->rx_sgt;
299
300		conf.src_addr = espi->sspdr_phys;
301		conf.src_addr_width = buswidth;
302	} else {
303		chan = espi->dma_tx;
304		buf = xfer->tx_buf;
305		sgt = &espi->tx_sgt;
306
307		conf.dst_addr = espi->sspdr_phys;
308		conf.dst_addr_width = buswidth;
309	}
310
311	ret = dmaengine_slave_config(chan, &conf);
312	if (ret)
313		return ERR_PTR(ret);
314
315	/*
316	 * We need to split the transfer into PAGE_SIZE'd chunks. This is
317	 * because we are using @espi->zeropage to provide a zero RX buffer
318	 * for the TX transfers and we have only allocated one page for that.
319	 *
320	 * For performance reasons we allocate a new sg_table only when
321	 * needed. Otherwise we will re-use the current one. Eventually the
322	 * last sg_table is released in ep93xx_spi_release_dma().
323	 */
324
325	nents = DIV_ROUND_UP(len, PAGE_SIZE);
326	if (nents != sgt->nents) {
327		sg_free_table(sgt);
328
329		ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
330		if (ret)
331			return ERR_PTR(ret);
332	}
333
334	pbuf = buf;
335	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
336		size_t bytes = min_t(size_t, len, PAGE_SIZE);
337
338		if (buf) {
339			sg_set_page(sg, virt_to_page(pbuf), bytes,
340				    offset_in_page(pbuf));
341		} else {
342			sg_set_page(sg, virt_to_page(espi->zeropage),
343				    bytes, 0);
344		}
345
346		pbuf += bytes;
347		len -= bytes;
348	}
349
350	if (WARN_ON(len)) {
351		dev_warn(&master->dev, "len = %zu expected 0!\n", len);
352		return ERR_PTR(-EINVAL);
353	}
354
355	nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
356	if (!nents)
357		return ERR_PTR(-ENOMEM);
358
359	txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, conf.direction,
360				      DMA_CTRL_ACK);
361	if (!txd) {
362		dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
363		return ERR_PTR(-ENOMEM);
364	}
365	return txd;
366}
367
368/**
369 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
370 * @master: SPI master
371 * @dir: DMA transfer direction
372 *
373 * Function finishes with the DMA transfer. After this, the DMA buffer is
374 * unmapped.
375 */
376static void ep93xx_spi_dma_finish(struct spi_master *master,
377				  enum dma_data_direction dir)
378{
379	struct ep93xx_spi *espi = spi_master_get_devdata(master);
380	struct dma_chan *chan;
381	struct sg_table *sgt;
382
383	if (dir == DMA_FROM_DEVICE) {
384		chan = espi->dma_rx;
385		sgt = &espi->rx_sgt;
386	} else {
387		chan = espi->dma_tx;
388		sgt = &espi->tx_sgt;
389	}
390
391	dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
392}
393
394static void ep93xx_spi_dma_callback(void *callback_param)
395{
396	struct spi_master *master = callback_param;
397
398	ep93xx_spi_dma_finish(master, DMA_TO_DEVICE);
399	ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE);
400
401	spi_finalize_current_transfer(master);
402}
403
404static int ep93xx_spi_dma_transfer(struct spi_master *master)
405{
406	struct ep93xx_spi *espi = spi_master_get_devdata(master);
407	struct dma_async_tx_descriptor *rxd, *txd;
408
409	rxd = ep93xx_spi_dma_prepare(master, DMA_FROM_DEVICE);
410	if (IS_ERR(rxd)) {
411		dev_err(&master->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
412		return PTR_ERR(rxd);
 
413	}
414
415	txd = ep93xx_spi_dma_prepare(master, DMA_TO_DEVICE);
416	if (IS_ERR(txd)) {
417		ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE);
418		dev_err(&master->dev, "DMA TX failed: %ld\n", PTR_ERR(txd));
419		return PTR_ERR(txd);
 
420	}
421
422	/* We are ready when RX is done */
423	rxd->callback = ep93xx_spi_dma_callback;
424	rxd->callback_param = master;
425
426	/* Now submit both descriptors and start DMA */
427	dmaengine_submit(rxd);
428	dmaengine_submit(txd);
429
430	dma_async_issue_pending(espi->dma_rx);
431	dma_async_issue_pending(espi->dma_tx);
432
433	/* signal that we need to wait for completion */
434	return 1;
 
 
435}
436
437static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
 
 
 
 
 
 
 
 
 
 
 
 
438{
439	struct spi_master *master = dev_id;
440	struct ep93xx_spi *espi = spi_master_get_devdata(master);
441	u32 val;
442
443	/*
444	 * If we got ROR (receive overrun) interrupt we know that something is
445	 * wrong. Just abort the message.
446	 */
447	if (readl(espi->mmio + SSPIIR) & SSPIIR_RORIS) {
448		/* clear the overrun interrupt */
449		writel(0, espi->mmio + SSPICR);
450		dev_warn(&master->dev,
451			 "receive overrun, aborting the message\n");
452		master->cur_msg->status = -EIO;
453	} else {
454		/*
455		 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
456		 * simply execute next data transfer.
457		 */
458		if (ep93xx_spi_read_write(master)) {
459			/*
460			 * In normal case, there still is some processing left
461			 * for current transfer. Let's wait for the next
462			 * interrupt then.
463			 */
464			return IRQ_HANDLED;
465		}
466	}
467
468	/*
469	 * Current transfer is finished, either with error or with success. In
470	 * any case we disable interrupts and notify the worker to handle
471	 * any post-processing of the message.
472	 */
473	val = readl(espi->mmio + SSPCR1);
474	val &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
475	writel(val, espi->mmio + SSPCR1);
476
477	spi_finalize_current_transfer(master);
 
478
479	return IRQ_HANDLED;
480}
 
 
 
 
 
 
 
481
482static int ep93xx_spi_transfer_one(struct spi_master *master,
483				   struct spi_device *spi,
484				   struct spi_transfer *xfer)
485{
486	struct ep93xx_spi *espi = spi_master_get_devdata(master);
487	u32 val;
488	int ret;
489
490	ret = ep93xx_spi_chip_setup(master, spi, xfer);
491	if (ret) {
492		dev_err(&master->dev, "failed to setup chip for transfer\n");
493		return ret;
494	}
495
496	master->cur_msg->state = xfer;
497	espi->rx = 0;
498	espi->tx = 0;
499
500	/*
501	 * There is no point of setting up DMA for the transfers which will
502	 * fit into the FIFO and can be transferred with a single interrupt.
503	 * So in these cases we will be using PIO and don't bother for DMA.
504	 */
505	if (espi->dma_rx && xfer->len > SPI_FIFO_SIZE)
506		return ep93xx_spi_dma_transfer(master);
 
 
507
508	/* Using PIO so prime the TX FIFO and enable interrupts */
509	ep93xx_spi_read_write(master);
 
 
 
 
510
511	val = readl(espi->mmio + SSPCR1);
512	val |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
513	writel(val, espi->mmio + SSPCR1);
514
515	/* signal that we need to wait for completion */
516	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
517}
518
519static int ep93xx_spi_prepare_message(struct spi_master *master,
520				      struct spi_message *msg)
 
 
 
 
 
 
 
 
 
 
 
 
521{
522	struct ep93xx_spi *espi = spi_master_get_devdata(master);
523	unsigned long timeout;
 
 
 
 
 
 
 
 
 
 
 
 
524
525	/*
526	 * Just to be sure: flush any data from RX FIFO.
527	 */
528	timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
529	while (readl(espi->mmio + SSPSR) & SSPSR_RNE) {
530		if (time_after(jiffies, timeout)) {
531			dev_warn(&master->dev,
532				 "timeout while flushing RX FIFO\n");
533			return -ETIMEDOUT;
 
534		}
535		readl(espi->mmio + SSPDR);
536	}
537
538	/*
539	 * We explicitly handle FIFO level. This way we don't have to check TX
540	 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
541	 */
542	espi->fifo_level = 0;
543
544	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
545}
546
547static int ep93xx_spi_prepare_hardware(struct spi_master *master)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
548{
549	struct ep93xx_spi *espi = spi_master_get_devdata(master);
550	u32 val;
551	int ret;
552
553	ret = clk_prepare_enable(espi->clk);
554	if (ret)
555		return ret;
 
 
 
 
 
 
 
556
557	val = readl(espi->mmio + SSPCR1);
558	val |= SSPCR1_SSE;
559	writel(val, espi->mmio + SSPCR1);
560
561	return 0;
 
 
 
 
 
 
 
 
 
 
 
562}
563
564static int ep93xx_spi_unprepare_hardware(struct spi_master *master)
565{
566	struct ep93xx_spi *espi = spi_master_get_devdata(master);
567	u32 val;
568
569	val = readl(espi->mmio + SSPCR1);
570	val &= ~SSPCR1_SSE;
571	writel(val, espi->mmio + SSPCR1);
572
573	clk_disable_unprepare(espi->clk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
574
575	return 0;
 
 
 
 
 
 
 
576}
577
578static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
579{
580	if (ep93xx_dma_chan_is_m2p(chan))
581		return false;
582
583	chan->private = filter_param;
584	return true;
585}
586
587static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
588{
589	dma_cap_mask_t mask;
590	int ret;
591
592	espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
593	if (!espi->zeropage)
594		return -ENOMEM;
595
596	dma_cap_zero(mask);
597	dma_cap_set(DMA_SLAVE, mask);
598
599	espi->dma_rx_data.port = EP93XX_DMA_SSP;
600	espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
601	espi->dma_rx_data.name = "ep93xx-spi-rx";
602
603	espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
604					   &espi->dma_rx_data);
605	if (!espi->dma_rx) {
606		ret = -ENODEV;
607		goto fail_free_page;
608	}
609
610	espi->dma_tx_data.port = EP93XX_DMA_SSP;
611	espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
612	espi->dma_tx_data.name = "ep93xx-spi-tx";
613
614	espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
615					   &espi->dma_tx_data);
616	if (!espi->dma_tx) {
617		ret = -ENODEV;
618		goto fail_release_rx;
619	}
620
621	return 0;
622
623fail_release_rx:
624	dma_release_channel(espi->dma_rx);
625	espi->dma_rx = NULL;
626fail_free_page:
627	free_page((unsigned long)espi->zeropage);
628
629	return ret;
630}
631
632static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
633{
634	if (espi->dma_rx) {
635		dma_release_channel(espi->dma_rx);
636		sg_free_table(&espi->rx_sgt);
637	}
638	if (espi->dma_tx) {
639		dma_release_channel(espi->dma_tx);
640		sg_free_table(&espi->tx_sgt);
641	}
642
643	if (espi->zeropage)
644		free_page((unsigned long)espi->zeropage);
645}
646
647static int ep93xx_spi_probe(struct platform_device *pdev)
648{
649	struct spi_master *master;
650	struct ep93xx_spi_info *info;
651	struct ep93xx_spi *espi;
652	struct resource *res;
653	int irq;
654	int error;
655
656	info = dev_get_platdata(&pdev->dev);
657	if (!info) {
658		dev_err(&pdev->dev, "missing platform data\n");
659		return -EINVAL;
660	}
661
662	irq = platform_get_irq(pdev, 0);
663	if (irq < 0)
664		return -EBUSY;
665
666	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
667	if (!res) {
668		dev_err(&pdev->dev, "unable to get iomem resource\n");
669		return -ENODEV;
670	}
671
672	master = spi_alloc_master(&pdev->dev, sizeof(*espi));
673	if (!master)
 
674		return -ENOMEM;
 
675
676	master->use_gpio_descriptors = true;
677	master->prepare_transfer_hardware = ep93xx_spi_prepare_hardware;
678	master->unprepare_transfer_hardware = ep93xx_spi_unprepare_hardware;
679	master->prepare_message = ep93xx_spi_prepare_message;
680	master->transfer_one = ep93xx_spi_transfer_one;
681	master->bus_num = pdev->id;
 
682	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
683	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
684	/*
685	 * The SPI core will count the number of GPIO descriptors to figure
686	 * out the number of chip selects available on the platform.
687	 */
688	master->num_chipselect = 0;
689
690	platform_set_drvdata(pdev, master);
691
692	espi = spi_master_get_devdata(master);
693
694	espi->clk = devm_clk_get(&pdev->dev, NULL);
695	if (IS_ERR(espi->clk)) {
696		dev_err(&pdev->dev, "unable to get spi clock\n");
697		error = PTR_ERR(espi->clk);
698		goto fail_release_master;
699	}
700
 
 
 
701	/*
702	 * Calculate maximum and minimum supported clock rates
703	 * for the controller.
704	 */
705	master->max_speed_hz = clk_get_rate(espi->clk) / 2;
706	master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256);
 
 
 
 
 
 
 
 
707
708	espi->sspdr_phys = res->start + SSPDR;
 
 
 
 
 
709
710	espi->mmio = devm_ioremap_resource(&pdev->dev, res);
711	if (IS_ERR(espi->mmio)) {
712		error = PTR_ERR(espi->mmio);
713		goto fail_release_master;
 
 
 
 
 
 
 
 
 
714	}
715
716	error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
717				0, "ep93xx-spi", master);
718	if (error) {
719		dev_err(&pdev->dev, "failed to request irq\n");
720		goto fail_release_master;
721	}
722
723	if (info->use_dma && ep93xx_spi_setup_dma(espi))
724		dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
725
 
 
 
 
 
 
 
 
 
726	/* make sure that the hardware is disabled */
727	writel(0, espi->mmio + SSPCR1);
728
729	error = devm_spi_register_master(&pdev->dev, master);
730	if (error) {
731		dev_err(&pdev->dev, "failed to register SPI master\n");
732		goto fail_free_dma;
733	}
734
735	dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
736		 (unsigned long)res->start, irq);
737
738	return 0;
739
 
 
740fail_free_dma:
741	ep93xx_spi_release_dma(espi);
 
 
 
 
 
 
 
742fail_release_master:
743	spi_master_put(master);
 
744
745	return error;
746}
747
748static int ep93xx_spi_remove(struct platform_device *pdev)
749{
750	struct spi_master *master = platform_get_drvdata(pdev);
751	struct ep93xx_spi *espi = spi_master_get_devdata(master);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
752
753	ep93xx_spi_release_dma(espi);
 
 
 
 
 
 
754
 
755	return 0;
756}
757
758static struct platform_driver ep93xx_spi_driver = {
759	.driver		= {
760		.name	= "ep93xx-spi",
 
761	},
762	.probe		= ep93xx_spi_probe,
763	.remove		= ep93xx_spi_remove,
764};
765module_platform_driver(ep93xx_spi_driver);
 
 
 
 
 
 
 
 
 
 
 
766
767MODULE_DESCRIPTION("EP93xx SPI Controller driver");
768MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
769MODULE_LICENSE("GPL");
770MODULE_ALIAS("platform:ep93xx-spi");
v3.1
 
   1/*
   2 * Driver for Cirrus Logic EP93xx SPI controller.
   3 *
   4 * Copyright (C) 2010-2011 Mika Westerberg
   5 *
   6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
   7 *
   8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
   9 *
  10 * For more information about the SPI controller see documentation on Cirrus
  11 * Logic web site:
  12 *     http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
  13 *
  14 * This program is free software; you can redistribute it and/or modify
  15 * it under the terms of the GNU General Public License version 2 as
  16 * published by the Free Software Foundation.
  17 */
  18
  19#include <linux/io.h>
  20#include <linux/clk.h>
  21#include <linux/err.h>
  22#include <linux/delay.h>
  23#include <linux/device.h>
  24#include <linux/dmaengine.h>
  25#include <linux/bitops.h>
  26#include <linux/interrupt.h>
 
  27#include <linux/platform_device.h>
  28#include <linux/workqueue.h>
  29#include <linux/sched.h>
  30#include <linux/scatterlist.h>
  31#include <linux/spi/spi.h>
  32
  33#include <mach/dma.h>
  34#include <mach/ep93xx_spi.h>
  35
  36#define SSPCR0			0x0000
  37#define SSPCR0_MODE_SHIFT	6
 
  38#define SSPCR0_SCR_SHIFT	8
  39
  40#define SSPCR1			0x0004
  41#define SSPCR1_RIE		BIT(0)
  42#define SSPCR1_TIE		BIT(1)
  43#define SSPCR1_RORIE		BIT(2)
  44#define SSPCR1_LBM		BIT(3)
  45#define SSPCR1_SSE		BIT(4)
  46#define SSPCR1_MS		BIT(5)
  47#define SSPCR1_SOD		BIT(6)
  48
  49#define SSPDR			0x0008
  50
  51#define SSPSR			0x000c
  52#define SSPSR_TFE		BIT(0)
  53#define SSPSR_TNF		BIT(1)
  54#define SSPSR_RNE		BIT(2)
  55#define SSPSR_RFF		BIT(3)
  56#define SSPSR_BSY		BIT(4)
  57#define SSPCPSR			0x0010
  58
  59#define SSPIIR			0x0014
  60#define SSPIIR_RIS		BIT(0)
  61#define SSPIIR_TIS		BIT(1)
  62#define SSPIIR_RORIS		BIT(2)
  63#define SSPICR			SSPIIR
  64
  65/* timeout in milliseconds */
  66#define SPI_TIMEOUT		5
  67/* maximum depth of RX/TX FIFO */
  68#define SPI_FIFO_SIZE		8
  69
  70/**
  71 * struct ep93xx_spi - EP93xx SPI controller structure
  72 * @lock: spinlock that protects concurrent accesses to fields @running,
  73 *        @current_msg and @msg_queue
  74 * @pdev: pointer to platform device
  75 * @clk: clock for the controller
  76 * @regs_base: pointer to ioremap()'d registers
  77 * @sspdr_phys: physical address of the SSPDR register
  78 * @irq: IRQ number used by the driver
  79 * @min_rate: minimum clock rate (in Hz) supported by the controller
  80 * @max_rate: maximum clock rate (in Hz) supported by the controller
  81 * @running: is the queue running
  82 * @wq: workqueue used by the driver
  83 * @msg_work: work that is queued for the driver
  84 * @wait: wait here until given transfer is completed
  85 * @msg_queue: queue for the messages
  86 * @current_msg: message that is currently processed (or %NULL if none)
  87 * @tx: current byte in transfer to transmit
  88 * @rx: current byte in transfer to receive
  89 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
  90 *              frame decreases this level and sending one frame increases it.
  91 * @dma_rx: RX DMA channel
  92 * @dma_tx: TX DMA channel
  93 * @dma_rx_data: RX parameters passed to the DMA engine
  94 * @dma_tx_data: TX parameters passed to the DMA engine
  95 * @rx_sgt: sg table for RX transfers
  96 * @tx_sgt: sg table for TX transfers
  97 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
  98 *            the client
  99 *
 100 * This structure holds EP93xx SPI controller specific information. When
 101 * @running is %true, driver accepts transfer requests from protocol drivers.
 102 * @current_msg is used to hold pointer to the message that is currently
 103 * processed. If @current_msg is %NULL, it means that no processing is going
 104 * on.
 105 *
 106 * Most of the fields are only written once and they can be accessed without
 107 * taking the @lock. Fields that are accessed concurrently are: @current_msg,
 108 * @running, and @msg_queue.
 109 */
 110struct ep93xx_spi {
 111	spinlock_t			lock;
 112	const struct platform_device	*pdev;
 113	struct clk			*clk;
 114	void __iomem			*regs_base;
 115	unsigned long			sspdr_phys;
 116	int				irq;
 117	unsigned long			min_rate;
 118	unsigned long			max_rate;
 119	bool				running;
 120	struct workqueue_struct		*wq;
 121	struct work_struct		msg_work;
 122	struct completion		wait;
 123	struct list_head		msg_queue;
 124	struct spi_message		*current_msg;
 125	size_t				tx;
 126	size_t				rx;
 127	size_t				fifo_level;
 128	struct dma_chan			*dma_rx;
 129	struct dma_chan			*dma_tx;
 130	struct ep93xx_dma_data		dma_rx_data;
 131	struct ep93xx_dma_data		dma_tx_data;
 132	struct sg_table			rx_sgt;
 133	struct sg_table			tx_sgt;
 134	void				*zeropage;
 135};
 136
 137/**
 138 * struct ep93xx_spi_chip - SPI device hardware settings
 139 * @spi: back pointer to the SPI device
 140 * @rate: max rate in hz this chip supports
 141 * @div_cpsr: cpsr (pre-scaler) divider
 142 * @div_scr: scr divider
 143 * @dss: bits per word (4 - 16 bits)
 144 * @ops: private chip operations
 145 *
 146 * This structure is used to store hardware register specific settings for each
 147 * SPI device. Settings are written to hardware by function
 148 * ep93xx_spi_chip_setup().
 149 */
 150struct ep93xx_spi_chip {
 151	const struct spi_device		*spi;
 152	unsigned long			rate;
 153	u8				div_cpsr;
 154	u8				div_scr;
 155	u8				dss;
 156	struct ep93xx_spi_chip_ops	*ops;
 157};
 158
 159/* converts bits per word to CR0.DSS value */
 160#define bits_per_word_to_dss(bpw)	((bpw) - 1)
 161
 162static inline void
 163ep93xx_spi_write_u8(const struct ep93xx_spi *espi, u16 reg, u8 value)
 164{
 165	__raw_writeb(value, espi->regs_base + reg);
 166}
 167
 168static inline u8
 169ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
 170{
 171	return __raw_readb(spi->regs_base + reg);
 172}
 173
 174static inline void
 175ep93xx_spi_write_u16(const struct ep93xx_spi *espi, u16 reg, u16 value)
 176{
 177	__raw_writew(value, espi->regs_base + reg);
 178}
 179
 180static inline u16
 181ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
 182{
 183	return __raw_readw(spi->regs_base + reg);
 184}
 185
 186static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
 187{
 188	u8 regval;
 189	int err;
 190
 191	err = clk_enable(espi->clk);
 192	if (err)
 193		return err;
 194
 195	regval = ep93xx_spi_read_u8(espi, SSPCR1);
 196	regval |= SSPCR1_SSE;
 197	ep93xx_spi_write_u8(espi, SSPCR1, regval);
 198
 199	return 0;
 200}
 201
 202static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
 203{
 204	u8 regval;
 205
 206	regval = ep93xx_spi_read_u8(espi, SSPCR1);
 207	regval &= ~SSPCR1_SSE;
 208	ep93xx_spi_write_u8(espi, SSPCR1, regval);
 209
 210	clk_disable(espi->clk);
 211}
 212
 213static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
 214{
 215	u8 regval;
 216
 217	regval = ep93xx_spi_read_u8(espi, SSPCR1);
 218	regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
 219	ep93xx_spi_write_u8(espi, SSPCR1, regval);
 220}
 221
 222static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
 223{
 224	u8 regval;
 225
 226	regval = ep93xx_spi_read_u8(espi, SSPCR1);
 227	regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
 228	ep93xx_spi_write_u8(espi, SSPCR1, regval);
 229}
 230
 231/**
 232 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
 233 * @espi: ep93xx SPI controller struct
 234 * @chip: divisors are calculated for this chip
 235 * @rate: desired SPI output clock rate
 236 *
 237 * Function calculates cpsr (clock pre-scaler) and scr divisors based on
 238 * given @rate and places them to @chip->div_cpsr and @chip->div_scr. If,
 239 * for some reason, divisors cannot be calculated nothing is stored and
 240 * %-EINVAL is returned.
 241 */
 242static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
 243				    struct ep93xx_spi_chip *chip,
 244				    unsigned long rate)
 245{
 
 246	unsigned long spi_clk_rate = clk_get_rate(espi->clk);
 247	int cpsr, scr;
 248
 249	/*
 250	 * Make sure that max value is between values supported by the
 251	 * controller. Note that minimum value is already checked in
 252	 * ep93xx_spi_transfer().
 253	 */
 254	rate = clamp(rate, espi->min_rate, espi->max_rate);
 255
 256	/*
 257	 * Calculate divisors so that we can get speed according the
 258	 * following formula:
 259	 *	rate = spi_clock_rate / (cpsr * (1 + scr))
 260	 *
 261	 * cpsr must be even number and starts from 2, scr can be any number
 262	 * between 0 and 255.
 263	 */
 264	for (cpsr = 2; cpsr <= 254; cpsr += 2) {
 265		for (scr = 0; scr <= 255; scr++) {
 266			if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
 267				chip->div_scr = (u8)scr;
 268				chip->div_cpsr = (u8)cpsr;
 269				return 0;
 270			}
 271		}
 272	}
 273
 274	return -EINVAL;
 275}
 276
 277static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
 
 
 278{
 279	struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
 280	int value = (spi->mode & SPI_CS_HIGH) ? control : !control;
 
 
 
 
 281
 282	if (chip->ops && chip->ops->cs_control)
 283		chip->ops->cs_control(spi, value);
 284}
 
 285
 286/**
 287 * ep93xx_spi_setup() - setup an SPI device
 288 * @spi: SPI device to setup
 289 *
 290 * This function sets up SPI device mode, speed etc. Can be called multiple
 291 * times for a single device. Returns %0 in case of success, negative error in
 292 * case of failure. When this function returns success, the device is
 293 * deselected.
 294 */
 295static int ep93xx_spi_setup(struct spi_device *spi)
 296{
 297	struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
 298	struct ep93xx_spi_chip *chip;
 299
 300	if (spi->bits_per_word < 4 || spi->bits_per_word > 16) {
 301		dev_err(&espi->pdev->dev, "invalid bits per word %d\n",
 302			spi->bits_per_word);
 303		return -EINVAL;
 304	}
 305
 306	chip = spi_get_ctldata(spi);
 307	if (!chip) {
 308		dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
 309			spi->modalias);
 310
 311		chip = kzalloc(sizeof(*chip), GFP_KERNEL);
 312		if (!chip)
 313			return -ENOMEM;
 314
 315		chip->spi = spi;
 316		chip->ops = spi->controller_data;
 317
 318		if (chip->ops && chip->ops->setup) {
 319			int ret = chip->ops->setup(spi);
 320			if (ret) {
 321				kfree(chip);
 322				return ret;
 323			}
 324		}
 325
 326		spi_set_ctldata(spi, chip);
 327	}
 328
 329	if (spi->max_speed_hz != chip->rate) {
 330		int err;
 331
 332		err = ep93xx_spi_calc_divisors(espi, chip, spi->max_speed_hz);
 333		if (err != 0) {
 334			spi_set_ctldata(spi, NULL);
 335			kfree(chip);
 336			return err;
 337		}
 338		chip->rate = spi->max_speed_hz;
 339	}
 340
 341	chip->dss = bits_per_word_to_dss(spi->bits_per_word);
 
 342
 343	ep93xx_spi_cs_control(spi, false);
 344	return 0;
 345}
 346
 347/**
 348 * ep93xx_spi_transfer() - queue message to be transferred
 349 * @spi: target SPI device
 350 * @msg: message to be transferred
 351 *
 352 * This function is called by SPI device drivers when they are going to transfer
 353 * a new message. It simply puts the message in the queue and schedules
 354 * workqueue to perform the actual transfer later on.
 355 *
 356 * Returns %0 on success and negative error in case of failure.
 357 */
 358static int ep93xx_spi_transfer(struct spi_device *spi, struct spi_message *msg)
 359{
 360	struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
 361	struct spi_transfer *t;
 362	unsigned long flags;
 363
 364	if (!msg || !msg->complete)
 365		return -EINVAL;
 366
 367	/* first validate each transfer */
 368	list_for_each_entry(t, &msg->transfers, transfer_list) {
 369		if (t->bits_per_word) {
 370			if (t->bits_per_word < 4 || t->bits_per_word > 16)
 371				return -EINVAL;
 372		}
 373		if (t->speed_hz && t->speed_hz < espi->min_rate)
 374				return -EINVAL;
 375	}
 376
 377	/*
 378	 * Now that we own the message, let's initialize it so that it is
 379	 * suitable for us. We use @msg->status to signal whether there was
 380	 * error in transfer and @msg->state is used to hold pointer to the
 381	 * current transfer (or %NULL if no active current transfer).
 382	 */
 383	msg->state = NULL;
 384	msg->status = 0;
 385	msg->actual_length = 0;
 386
 387	spin_lock_irqsave(&espi->lock, flags);
 388	if (!espi->running) {
 389		spin_unlock_irqrestore(&espi->lock, flags);
 390		return -ESHUTDOWN;
 391	}
 392	list_add_tail(&msg->queue, &espi->msg_queue);
 393	queue_work(espi->wq, &espi->msg_work);
 394	spin_unlock_irqrestore(&espi->lock, flags);
 395
 396	return 0;
 397}
 398
 399/**
 400 * ep93xx_spi_cleanup() - cleans up master controller specific state
 401 * @spi: SPI device to cleanup
 402 *
 403 * This function releases master controller specific state for given @spi
 404 * device.
 405 */
 406static void ep93xx_spi_cleanup(struct spi_device *spi)
 407{
 408	struct ep93xx_spi_chip *chip;
 409
 410	chip = spi_get_ctldata(spi);
 411	if (chip) {
 412		if (chip->ops && chip->ops->cleanup)
 413			chip->ops->cleanup(spi);
 414		spi_set_ctldata(spi, NULL);
 415		kfree(chip);
 416	}
 417}
 418
 419/**
 420 * ep93xx_spi_chip_setup() - configures hardware according to given @chip
 421 * @espi: ep93xx SPI controller struct
 422 * @chip: chip specific settings
 423 *
 424 * This function sets up the actual hardware registers with settings given in
 425 * @chip. Note that no validation is done so make sure that callers validate
 426 * settings before calling this.
 427 */
 428static void ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
 429				  const struct ep93xx_spi_chip *chip)
 430{
 431	u16 cr0;
 432
 433	cr0 = chip->div_scr << SSPCR0_SCR_SHIFT;
 434	cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
 435	cr0 |= chip->dss;
 436
 437	dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
 438		chip->spi->mode, chip->div_cpsr, chip->div_scr, chip->dss);
 439	dev_dbg(&espi->pdev->dev, "setup: cr0 %#x", cr0);
 440
 441	ep93xx_spi_write_u8(espi, SSPCPSR, chip->div_cpsr);
 442	ep93xx_spi_write_u16(espi, SSPCR0, cr0);
 443}
 444
 445static inline int bits_per_word(const struct ep93xx_spi *espi)
 446{
 447	struct spi_message *msg = espi->current_msg;
 448	struct spi_transfer *t = msg->state;
 449
 450	return t->bits_per_word ? t->bits_per_word : msg->spi->bits_per_word;
 451}
 452
 453static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
 454{
 455	if (bits_per_word(espi) > 8) {
 456		u16 tx_val = 0;
 457
 458		if (t->tx_buf)
 459			tx_val = ((u16 *)t->tx_buf)[espi->tx];
 460		ep93xx_spi_write_u16(espi, SSPDR, tx_val);
 461		espi->tx += sizeof(tx_val);
 462	} else {
 463		u8 tx_val = 0;
 464
 465		if (t->tx_buf)
 466			tx_val = ((u8 *)t->tx_buf)[espi->tx];
 467		ep93xx_spi_write_u8(espi, SSPDR, tx_val);
 468		espi->tx += sizeof(tx_val);
 469	}
 
 470}
 471
 472static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
 473{
 474	if (bits_per_word(espi) > 8) {
 475		u16 rx_val;
 
 476
 477		rx_val = ep93xx_spi_read_u16(espi, SSPDR);
 478		if (t->rx_buf)
 479			((u16 *)t->rx_buf)[espi->rx] = rx_val;
 480		espi->rx += sizeof(rx_val);
 
 481	} else {
 482		u8 rx_val;
 483
 484		rx_val = ep93xx_spi_read_u8(espi, SSPDR);
 485		if (t->rx_buf)
 486			((u8 *)t->rx_buf)[espi->rx] = rx_val;
 487		espi->rx += sizeof(rx_val);
 488	}
 489}
 490
 491/**
 492 * ep93xx_spi_read_write() - perform next RX/TX transfer
 493 * @espi: ep93xx SPI controller struct
 494 *
 495 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
 496 * called several times, the whole transfer will be completed. Returns
 497 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
 498 *
 499 * When this function is finished, RX FIFO should be empty and TX FIFO should be
 500 * full.
 501 */
 502static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
 503{
 504	struct spi_message *msg = espi->current_msg;
 505	struct spi_transfer *t = msg->state;
 506
 507	/* read as long as RX FIFO has frames in it */
 508	while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
 509		ep93xx_do_read(espi, t);
 510		espi->fifo_level--;
 511	}
 512
 513	/* write as long as TX FIFO has room */
 514	while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
 515		ep93xx_do_write(espi, t);
 516		espi->fifo_level++;
 517	}
 518
 519	if (espi->rx == t->len)
 520		return 0;
 521
 522	return -EINPROGRESS;
 523}
 524
 525static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
 
 526{
 527	/*
 528	 * Now everything is set up for the current transfer. We prime the TX
 529	 * FIFO, enable interrupts, and wait for the transfer to complete.
 530	 */
 531	if (ep93xx_spi_read_write(espi)) {
 532		ep93xx_spi_enable_interrupts(espi);
 533		wait_for_completion(&espi->wait);
 534	}
 535}
 536
 537/**
 538 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
 539 * @espi: ep93xx SPI controller struct
 540 * @dir: DMA transfer direction
 541 *
 542 * Function configures the DMA, maps the buffer and prepares the DMA
 543 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
 544 * in case of failure.
 545 */
 546static struct dma_async_tx_descriptor *
 547ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_data_direction dir)
 
 548{
 549	struct spi_transfer *t = espi->current_msg->state;
 
 550	struct dma_async_tx_descriptor *txd;
 551	enum dma_slave_buswidth buswidth;
 552	struct dma_slave_config conf;
 553	struct scatterlist *sg;
 554	struct sg_table *sgt;
 555	struct dma_chan *chan;
 556	const void *buf, *pbuf;
 557	size_t len = t->len;
 558	int i, ret, nents;
 559
 560	if (bits_per_word(espi) > 8)
 561		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
 562	else
 563		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
 564
 565	memset(&conf, 0, sizeof(conf));
 566	conf.direction = dir;
 567
 568	if (dir == DMA_FROM_DEVICE) {
 569		chan = espi->dma_rx;
 570		buf = t->rx_buf;
 571		sgt = &espi->rx_sgt;
 572
 573		conf.src_addr = espi->sspdr_phys;
 574		conf.src_addr_width = buswidth;
 575	} else {
 576		chan = espi->dma_tx;
 577		buf = t->tx_buf;
 578		sgt = &espi->tx_sgt;
 579
 580		conf.dst_addr = espi->sspdr_phys;
 581		conf.dst_addr_width = buswidth;
 582	}
 583
 584	ret = dmaengine_slave_config(chan, &conf);
 585	if (ret)
 586		return ERR_PTR(ret);
 587
 588	/*
 589	 * We need to split the transfer into PAGE_SIZE'd chunks. This is
 590	 * because we are using @espi->zeropage to provide a zero RX buffer
 591	 * for the TX transfers and we have only allocated one page for that.
 592	 *
 593	 * For performance reasons we allocate a new sg_table only when
 594	 * needed. Otherwise we will re-use the current one. Eventually the
 595	 * last sg_table is released in ep93xx_spi_release_dma().
 596	 */
 597
 598	nents = DIV_ROUND_UP(len, PAGE_SIZE);
 599	if (nents != sgt->nents) {
 600		sg_free_table(sgt);
 601
 602		ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
 603		if (ret)
 604			return ERR_PTR(ret);
 605	}
 606
 607	pbuf = buf;
 608	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
 609		size_t bytes = min_t(size_t, len, PAGE_SIZE);
 610
 611		if (buf) {
 612			sg_set_page(sg, virt_to_page(pbuf), bytes,
 613				    offset_in_page(pbuf));
 614		} else {
 615			sg_set_page(sg, virt_to_page(espi->zeropage),
 616				    bytes, 0);
 617		}
 618
 619		pbuf += bytes;
 620		len -= bytes;
 621	}
 622
 623	if (WARN_ON(len)) {
 624		dev_warn(&espi->pdev->dev, "len = %d expected 0!", len);
 625		return ERR_PTR(-EINVAL);
 626	}
 627
 628	nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
 629	if (!nents)
 630		return ERR_PTR(-ENOMEM);
 631
 632	txd = chan->device->device_prep_slave_sg(chan, sgt->sgl, nents,
 633						 dir, DMA_CTRL_ACK);
 634	if (!txd) {
 635		dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
 636		return ERR_PTR(-ENOMEM);
 637	}
 638	return txd;
 639}
 640
 641/**
 642 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
 643 * @espi: ep93xx SPI controller struct
 644 * @dir: DMA transfer direction
 645 *
 646 * Function finishes with the DMA transfer. After this, the DMA buffer is
 647 * unmapped.
 648 */
 649static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
 650				  enum dma_data_direction dir)
 651{
 
 652	struct dma_chan *chan;
 653	struct sg_table *sgt;
 654
 655	if (dir == DMA_FROM_DEVICE) {
 656		chan = espi->dma_rx;
 657		sgt = &espi->rx_sgt;
 658	} else {
 659		chan = espi->dma_tx;
 660		sgt = &espi->tx_sgt;
 661	}
 662
 663	dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
 664}
 665
 666static void ep93xx_spi_dma_callback(void *callback_param)
 667{
 668	complete(callback_param);
 
 
 
 
 
 669}
 670
 671static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
 672{
 673	struct spi_message *msg = espi->current_msg;
 674	struct dma_async_tx_descriptor *rxd, *txd;
 675
 676	rxd = ep93xx_spi_dma_prepare(espi, DMA_FROM_DEVICE);
 677	if (IS_ERR(rxd)) {
 678		dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
 679		msg->status = PTR_ERR(rxd);
 680		return;
 681	}
 682
 683	txd = ep93xx_spi_dma_prepare(espi, DMA_TO_DEVICE);
 684	if (IS_ERR(txd)) {
 685		ep93xx_spi_dma_finish(espi, DMA_FROM_DEVICE);
 686		dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd));
 687		msg->status = PTR_ERR(txd);
 688		return;
 689	}
 690
 691	/* We are ready when RX is done */
 692	rxd->callback = ep93xx_spi_dma_callback;
 693	rxd->callback_param = &espi->wait;
 694
 695	/* Now submit both descriptors and wait while they finish */
 696	dmaengine_submit(rxd);
 697	dmaengine_submit(txd);
 698
 699	dma_async_issue_pending(espi->dma_rx);
 700	dma_async_issue_pending(espi->dma_tx);
 701
 702	wait_for_completion(&espi->wait);
 703
 704	ep93xx_spi_dma_finish(espi, DMA_TO_DEVICE);
 705	ep93xx_spi_dma_finish(espi, DMA_FROM_DEVICE);
 706}
 707
 708/**
 709 * ep93xx_spi_process_transfer() - processes one SPI transfer
 710 * @espi: ep93xx SPI controller struct
 711 * @msg: current message
 712 * @t: transfer to process
 713 *
 714 * This function processes one SPI transfer given in @t. Function waits until
 715 * transfer is complete (may sleep) and updates @msg->status based on whether
 716 * transfer was successfully processed or not.
 717 */
 718static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
 719					struct spi_message *msg,
 720					struct spi_transfer *t)
 721{
 722	struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);
 
 
 723
 724	msg->state = t;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 725
 726	/*
 727	 * Handle any transfer specific settings if needed. We use
 728	 * temporary chip settings here and restore original later when
 729	 * the transfer is finished.
 730	 */
 731	if (t->speed_hz || t->bits_per_word) {
 732		struct ep93xx_spi_chip tmp_chip = *chip;
 
 733
 734		if (t->speed_hz) {
 735			int err;
 736
 737			err = ep93xx_spi_calc_divisors(espi, &tmp_chip,
 738						       t->speed_hz);
 739			if (err) {
 740				dev_err(&espi->pdev->dev,
 741					"failed to adjust speed\n");
 742				msg->status = err;
 743				return;
 744			}
 745		}
 746
 747		if (t->bits_per_word)
 748			tmp_chip.dss = bits_per_word_to_dss(t->bits_per_word);
 
 
 
 
 
 749
 750		/*
 751		 * Set up temporary new hw settings for this transfer.
 752		 */
 753		ep93xx_spi_chip_setup(espi, &tmp_chip);
 754	}
 755
 
 756	espi->rx = 0;
 757	espi->tx = 0;
 758
 759	/*
 760	 * There is no point of setting up DMA for the transfers which will
 761	 * fit into the FIFO and can be transferred with a single interrupt.
 762	 * So in these cases we will be using PIO and don't bother for DMA.
 763	 */
 764	if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
 765		ep93xx_spi_dma_transfer(espi);
 766	else
 767		ep93xx_spi_pio_transfer(espi);
 768
 769	/*
 770	 * In case of error during transmit, we bail out from processing
 771	 * the message.
 772	 */
 773	if (msg->status)
 774		return;
 775
 776	msg->actual_length += t->len;
 
 
 777
 778	/*
 779	 * After this transfer is finished, perform any possible
 780	 * post-transfer actions requested by the protocol driver.
 781	 */
 782	if (t->delay_usecs) {
 783		set_current_state(TASK_UNINTERRUPTIBLE);
 784		schedule_timeout(usecs_to_jiffies(t->delay_usecs));
 785	}
 786	if (t->cs_change) {
 787		if (!list_is_last(&t->transfer_list, &msg->transfers)) {
 788			/*
 789			 * In case protocol driver is asking us to drop the
 790			 * chipselect briefly, we let the scheduler to handle
 791			 * any "delay" here.
 792			 */
 793			ep93xx_spi_cs_control(msg->spi, false);
 794			cond_resched();
 795			ep93xx_spi_cs_control(msg->spi, true);
 796		}
 797	}
 798
 799	if (t->speed_hz || t->bits_per_word)
 800		ep93xx_spi_chip_setup(espi, chip);
 801}
 802
 803/*
 804 * ep93xx_spi_process_message() - process one SPI message
 805 * @espi: ep93xx SPI controller struct
 806 * @msg: message to process
 807 *
 808 * This function processes a single SPI message. We go through all transfers in
 809 * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
 810 * asserted during the whole message (unless per transfer cs_change is set).
 811 *
 812 * @msg->status contains %0 in case of success or negative error code in case of
 813 * failure.
 814 */
 815static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
 816				       struct spi_message *msg)
 817{
 
 818	unsigned long timeout;
 819	struct spi_transfer *t;
 820	int err;
 821
 822	/*
 823	 * Enable the SPI controller and its clock.
 824	 */
 825	err = ep93xx_spi_enable(espi);
 826	if (err) {
 827		dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
 828		msg->status = err;
 829		return;
 830	}
 831
 832	/*
 833	 * Just to be sure: flush any data from RX FIFO.
 834	 */
 835	timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
 836	while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
 837		if (time_after(jiffies, timeout)) {
 838			dev_warn(&espi->pdev->dev,
 839				 "timeout while flushing RX FIFO\n");
 840			msg->status = -ETIMEDOUT;
 841			return;
 842		}
 843		ep93xx_spi_read_u16(espi, SSPDR);
 844	}
 845
 846	/*
 847	 * We explicitly handle FIFO level. This way we don't have to check TX
 848	 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
 849	 */
 850	espi->fifo_level = 0;
 851
 852	/*
 853	 * Update SPI controller registers according to spi device and assert
 854	 * the chipselect.
 855	 */
 856	ep93xx_spi_chip_setup(espi, spi_get_ctldata(msg->spi));
 857	ep93xx_spi_cs_control(msg->spi, true);
 858
 859	list_for_each_entry(t, &msg->transfers, transfer_list) {
 860		ep93xx_spi_process_transfer(espi, msg, t);
 861		if (msg->status)
 862			break;
 863	}
 864
 865	/*
 866	 * Now the whole message is transferred (or failed for some reason). We
 867	 * deselect the device and disable the SPI controller.
 868	 */
 869	ep93xx_spi_cs_control(msg->spi, false);
 870	ep93xx_spi_disable(espi);
 871}
 872
 873#define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work))
 874
 875/**
 876 * ep93xx_spi_work() - EP93xx SPI workqueue worker function
 877 * @work: work struct
 878 *
 879 * Workqueue worker function. This function is called when there are new
 880 * SPI messages to be processed. Message is taken out from the queue and then
 881 * passed to ep93xx_spi_process_message().
 882 *
 883 * After message is transferred, protocol driver is notified by calling
 884 * @msg->complete(). In case of error, @msg->status is set to negative error
 885 * number, otherwise it contains zero (and @msg->actual_length is updated).
 886 */
 887static void ep93xx_spi_work(struct work_struct *work)
 888{
 889	struct ep93xx_spi *espi = work_to_espi(work);
 890	struct spi_message *msg;
 
 891
 892	spin_lock_irq(&espi->lock);
 893	if (!espi->running || espi->current_msg ||
 894		list_empty(&espi->msg_queue)) {
 895		spin_unlock_irq(&espi->lock);
 896		return;
 897	}
 898	msg = list_first_entry(&espi->msg_queue, struct spi_message, queue);
 899	list_del_init(&msg->queue);
 900	espi->current_msg = msg;
 901	spin_unlock_irq(&espi->lock);
 902
 903	ep93xx_spi_process_message(espi, msg);
 
 
 904
 905	/*
 906	 * Update the current message and re-schedule ourselves if there are
 907	 * more messages in the queue.
 908	 */
 909	spin_lock_irq(&espi->lock);
 910	espi->current_msg = NULL;
 911	if (espi->running && !list_empty(&espi->msg_queue))
 912		queue_work(espi->wq, &espi->msg_work);
 913	spin_unlock_irq(&espi->lock);
 914
 915	/* notify the protocol driver that we are done with this message */
 916	msg->complete(msg->context);
 917}
 918
 919static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
 920{
 921	struct ep93xx_spi *espi = dev_id;
 922	u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
 
 
 
 
 923
 924	/*
 925	 * If we got ROR (receive overrun) interrupt we know that something is
 926	 * wrong. Just abort the message.
 927	 */
 928	if (unlikely(irq_status & SSPIIR_RORIS)) {
 929		/* clear the overrun interrupt */
 930		ep93xx_spi_write_u8(espi, SSPICR, 0);
 931		dev_warn(&espi->pdev->dev,
 932			 "receive overrun, aborting the message\n");
 933		espi->current_msg->status = -EIO;
 934	} else {
 935		/*
 936		 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
 937		 * simply execute next data transfer.
 938		 */
 939		if (ep93xx_spi_read_write(espi)) {
 940			/*
 941			 * In normal case, there still is some processing left
 942			 * for current transfer. Let's wait for the next
 943			 * interrupt then.
 944			 */
 945			return IRQ_HANDLED;
 946		}
 947	}
 948
 949	/*
 950	 * Current transfer is finished, either with error or with success. In
 951	 * any case we disable interrupts and notify the worker to handle
 952	 * any post-processing of the message.
 953	 */
 954	ep93xx_spi_disable_interrupts(espi);
 955	complete(&espi->wait);
 956	return IRQ_HANDLED;
 957}
 958
 959static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
 960{
 961	if (ep93xx_dma_chan_is_m2p(chan))
 962		return false;
 963
 964	chan->private = filter_param;
 965	return true;
 966}
 967
 968static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
 969{
 970	dma_cap_mask_t mask;
 971	int ret;
 972
 973	espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
 974	if (!espi->zeropage)
 975		return -ENOMEM;
 976
 977	dma_cap_zero(mask);
 978	dma_cap_set(DMA_SLAVE, mask);
 979
 980	espi->dma_rx_data.port = EP93XX_DMA_SSP;
 981	espi->dma_rx_data.direction = DMA_FROM_DEVICE;
 982	espi->dma_rx_data.name = "ep93xx-spi-rx";
 983
 984	espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
 985					   &espi->dma_rx_data);
 986	if (!espi->dma_rx) {
 987		ret = -ENODEV;
 988		goto fail_free_page;
 989	}
 990
 991	espi->dma_tx_data.port = EP93XX_DMA_SSP;
 992	espi->dma_tx_data.direction = DMA_TO_DEVICE;
 993	espi->dma_tx_data.name = "ep93xx-spi-tx";
 994
 995	espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
 996					   &espi->dma_tx_data);
 997	if (!espi->dma_tx) {
 998		ret = -ENODEV;
 999		goto fail_release_rx;
1000	}
1001
1002	return 0;
1003
1004fail_release_rx:
1005	dma_release_channel(espi->dma_rx);
1006	espi->dma_rx = NULL;
1007fail_free_page:
1008	free_page((unsigned long)espi->zeropage);
1009
1010	return ret;
1011}
1012
1013static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
1014{
1015	if (espi->dma_rx) {
1016		dma_release_channel(espi->dma_rx);
1017		sg_free_table(&espi->rx_sgt);
1018	}
1019	if (espi->dma_tx) {
1020		dma_release_channel(espi->dma_tx);
1021		sg_free_table(&espi->tx_sgt);
1022	}
1023
1024	if (espi->zeropage)
1025		free_page((unsigned long)espi->zeropage);
1026}
1027
1028static int __init ep93xx_spi_probe(struct platform_device *pdev)
1029{
1030	struct spi_master *master;
1031	struct ep93xx_spi_info *info;
1032	struct ep93xx_spi *espi;
1033	struct resource *res;
 
1034	int error;
1035
1036	info = pdev->dev.platform_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1037
1038	master = spi_alloc_master(&pdev->dev, sizeof(*espi));
1039	if (!master) {
1040		dev_err(&pdev->dev, "failed to allocate spi master\n");
1041		return -ENOMEM;
1042	}
1043
1044	master->setup = ep93xx_spi_setup;
1045	master->transfer = ep93xx_spi_transfer;
1046	master->cleanup = ep93xx_spi_cleanup;
 
 
1047	master->bus_num = pdev->id;
1048	master->num_chipselect = info->num_chipselect;
1049	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
 
 
 
 
 
 
1050
1051	platform_set_drvdata(pdev, master);
1052
1053	espi = spi_master_get_devdata(master);
1054
1055	espi->clk = clk_get(&pdev->dev, NULL);
1056	if (IS_ERR(espi->clk)) {
1057		dev_err(&pdev->dev, "unable to get spi clock\n");
1058		error = PTR_ERR(espi->clk);
1059		goto fail_release_master;
1060	}
1061
1062	spin_lock_init(&espi->lock);
1063	init_completion(&espi->wait);
1064
1065	/*
1066	 * Calculate maximum and minimum supported clock rates
1067	 * for the controller.
1068	 */
1069	espi->max_rate = clk_get_rate(espi->clk) / 2;
1070	espi->min_rate = clk_get_rate(espi->clk) / (254 * 256);
1071	espi->pdev = pdev;
1072
1073	espi->irq = platform_get_irq(pdev, 0);
1074	if (espi->irq < 0) {
1075		error = -EBUSY;
1076		dev_err(&pdev->dev, "failed to get irq resources\n");
1077		goto fail_put_clock;
1078	}
1079
1080	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1081	if (!res) {
1082		dev_err(&pdev->dev, "unable to get iomem resource\n");
1083		error = -ENODEV;
1084		goto fail_put_clock;
1085	}
1086
1087	res = request_mem_region(res->start, resource_size(res), pdev->name);
1088	if (!res) {
1089		dev_err(&pdev->dev, "unable to request iomem resources\n");
1090		error = -EBUSY;
1091		goto fail_put_clock;
1092	}
1093
1094	espi->sspdr_phys = res->start + SSPDR;
1095	espi->regs_base = ioremap(res->start, resource_size(res));
1096	if (!espi->regs_base) {
1097		dev_err(&pdev->dev, "failed to map resources\n");
1098		error = -ENODEV;
1099		goto fail_free_mem;
1100	}
1101
1102	error = request_irq(espi->irq, ep93xx_spi_interrupt, 0,
1103			    "ep93xx-spi", espi);
1104	if (error) {
1105		dev_err(&pdev->dev, "failed to request irq\n");
1106		goto fail_unmap_regs;
1107	}
1108
1109	if (info->use_dma && ep93xx_spi_setup_dma(espi))
1110		dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
1111
1112	espi->wq = create_singlethread_workqueue("ep93xx_spid");
1113	if (!espi->wq) {
1114		dev_err(&pdev->dev, "unable to create workqueue\n");
1115		goto fail_free_dma;
1116	}
1117	INIT_WORK(&espi->msg_work, ep93xx_spi_work);
1118	INIT_LIST_HEAD(&espi->msg_queue);
1119	espi->running = true;
1120
1121	/* make sure that the hardware is disabled */
1122	ep93xx_spi_write_u8(espi, SSPCR1, 0);
1123
1124	error = spi_register_master(master);
1125	if (error) {
1126		dev_err(&pdev->dev, "failed to register SPI master\n");
1127		goto fail_free_queue;
1128	}
1129
1130	dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
1131		 (unsigned long)res->start, espi->irq);
1132
1133	return 0;
1134
1135fail_free_queue:
1136	destroy_workqueue(espi->wq);
1137fail_free_dma:
1138	ep93xx_spi_release_dma(espi);
1139	free_irq(espi->irq, espi);
1140fail_unmap_regs:
1141	iounmap(espi->regs_base);
1142fail_free_mem:
1143	release_mem_region(res->start, resource_size(res));
1144fail_put_clock:
1145	clk_put(espi->clk);
1146fail_release_master:
1147	spi_master_put(master);
1148	platform_set_drvdata(pdev, NULL);
1149
1150	return error;
1151}
1152
1153static int __exit ep93xx_spi_remove(struct platform_device *pdev)
1154{
1155	struct spi_master *master = platform_get_drvdata(pdev);
1156	struct ep93xx_spi *espi = spi_master_get_devdata(master);
1157	struct resource *res;
1158
1159	spin_lock_irq(&espi->lock);
1160	espi->running = false;
1161	spin_unlock_irq(&espi->lock);
1162
1163	destroy_workqueue(espi->wq);
1164
1165	/*
1166	 * Complete remaining messages with %-ESHUTDOWN status.
1167	 */
1168	spin_lock_irq(&espi->lock);
1169	while (!list_empty(&espi->msg_queue)) {
1170		struct spi_message *msg;
1171
1172		msg = list_first_entry(&espi->msg_queue,
1173				       struct spi_message, queue);
1174		list_del_init(&msg->queue);
1175		msg->status = -ESHUTDOWN;
1176		spin_unlock_irq(&espi->lock);
1177		msg->complete(msg->context);
1178		spin_lock_irq(&espi->lock);
1179	}
1180	spin_unlock_irq(&espi->lock);
1181
1182	ep93xx_spi_release_dma(espi);
1183	free_irq(espi->irq, espi);
1184	iounmap(espi->regs_base);
1185	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1186	release_mem_region(res->start, resource_size(res));
1187	clk_put(espi->clk);
1188	platform_set_drvdata(pdev, NULL);
1189
1190	spi_unregister_master(master);
1191	return 0;
1192}
1193
1194static struct platform_driver ep93xx_spi_driver = {
1195	.driver		= {
1196		.name	= "ep93xx-spi",
1197		.owner	= THIS_MODULE,
1198	},
1199	.remove		= __exit_p(ep93xx_spi_remove),
 
1200};
1201
1202static int __init ep93xx_spi_init(void)
1203{
1204	return platform_driver_probe(&ep93xx_spi_driver, ep93xx_spi_probe);
1205}
1206module_init(ep93xx_spi_init);
1207
1208static void __exit ep93xx_spi_exit(void)
1209{
1210	platform_driver_unregister(&ep93xx_spi_driver);
1211}
1212module_exit(ep93xx_spi_exit);
1213
1214MODULE_DESCRIPTION("EP93xx SPI Controller driver");
1215MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1216MODULE_LICENSE("GPL");
1217MODULE_ALIAS("platform:ep93xx-spi");