Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Driver for Cirrus Logic EP93xx SPI controller.
  4 *
  5 * Copyright (C) 2010-2011 Mika Westerberg
  6 *
  7 * Explicit FIFO handling code was inspired by amba-pl022 driver.
  8 *
  9 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
 10 *
 11 * For more information about the SPI controller see documentation on Cirrus
 12 * Logic web site:
 13 *     https://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
 
 
 
 
 14 */
 15
 16#include <linux/io.h>
 17#include <linux/clk.h>
 18#include <linux/err.h>
 19#include <linux/delay.h>
 20#include <linux/device.h>
 21#include <linux/dmaengine.h>
 22#include <linux/bitops.h>
 23#include <linux/interrupt.h>
 24#include <linux/module.h>
 25#include <linux/platform_device.h>
 
 26#include <linux/sched.h>
 27#include <linux/scatterlist.h>
 28#include <linux/spi/spi.h>
 29
 30#include <linux/platform_data/dma-ep93xx.h>
 31#include <linux/platform_data/spi-ep93xx.h>
 32
 33#define SSPCR0			0x0000
 34#define SSPCR0_SPO		BIT(6)
 35#define SSPCR0_SPH		BIT(7)
 36#define SSPCR0_SCR_SHIFT	8
 37
 38#define SSPCR1			0x0004
 39#define SSPCR1_RIE		BIT(0)
 40#define SSPCR1_TIE		BIT(1)
 41#define SSPCR1_RORIE		BIT(2)
 42#define SSPCR1_LBM		BIT(3)
 43#define SSPCR1_SSE		BIT(4)
 44#define SSPCR1_MS		BIT(5)
 45#define SSPCR1_SOD		BIT(6)
 46
 47#define SSPDR			0x0008
 48
 49#define SSPSR			0x000c
 50#define SSPSR_TFE		BIT(0)
 51#define SSPSR_TNF		BIT(1)
 52#define SSPSR_RNE		BIT(2)
 53#define SSPSR_RFF		BIT(3)
 54#define SSPSR_BSY		BIT(4)
 55#define SSPCPSR			0x0010
 56
 57#define SSPIIR			0x0014
 58#define SSPIIR_RIS		BIT(0)
 59#define SSPIIR_TIS		BIT(1)
 60#define SSPIIR_RORIS		BIT(2)
 61#define SSPICR			SSPIIR
 62
 63/* timeout in milliseconds */
 64#define SPI_TIMEOUT		5
 65/* maximum depth of RX/TX FIFO */
 66#define SPI_FIFO_SIZE		8
 67
 68/**
 69 * struct ep93xx_spi - EP93xx SPI controller structure
 
 
 
 70 * @clk: clock for the controller
 71 * @mmio: pointer to ioremap()'d registers
 72 * @sspdr_phys: physical address of the SSPDR register
 
 
 
 
 
 
 
 
 73 * @tx: current byte in transfer to transmit
 74 * @rx: current byte in transfer to receive
 75 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
 76 *              frame decreases this level and sending one frame increases it.
 77 * @dma_rx: RX DMA channel
 78 * @dma_tx: TX DMA channel
 79 * @dma_rx_data: RX parameters passed to the DMA engine
 80 * @dma_tx_data: TX parameters passed to the DMA engine
 81 * @rx_sgt: sg table for RX transfers
 82 * @tx_sgt: sg table for TX transfers
 83 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
 84 *            the client
 
 
 
 
 
 
 
 
 
 
 85 */
 86struct ep93xx_spi {
 
 
 87	struct clk			*clk;
 88	void __iomem			*mmio;
 89	unsigned long			sspdr_phys;
 
 
 
 
 
 
 
 
 90	size_t				tx;
 91	size_t				rx;
 92	size_t				fifo_level;
 93	struct dma_chan			*dma_rx;
 94	struct dma_chan			*dma_tx;
 95	struct ep93xx_dma_data		dma_rx_data;
 96	struct ep93xx_dma_data		dma_tx_data;
 97	struct sg_table			rx_sgt;
 98	struct sg_table			tx_sgt;
 99	void				*zeropage;
100};
101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102/* converts bits per word to CR0.DSS value */
103#define bits_per_word_to_dss(bpw)	((bpw) - 1)
104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105/**
106 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
107 * @master: SPI master
 
108 * @rate: desired SPI output clock rate
109 * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
110 * @div_scr: pointer to return the scr divider
 
 
 
111 */
112static int ep93xx_spi_calc_divisors(struct spi_master *master,
113				    u32 rate, u8 *div_cpsr, u8 *div_scr)
 
114{
115	struct ep93xx_spi *espi = spi_master_get_devdata(master);
116	unsigned long spi_clk_rate = clk_get_rate(espi->clk);
117	int cpsr, scr;
118
119	/*
120	 * Make sure that max value is between values supported by the
121	 * controller.
 
122	 */
123	rate = clamp(rate, master->min_speed_hz, master->max_speed_hz);
124
125	/*
126	 * Calculate divisors so that we can get speed according the
127	 * following formula:
128	 *	rate = spi_clock_rate / (cpsr * (1 + scr))
129	 *
130	 * cpsr must be even number and starts from 2, scr can be any number
131	 * between 0 and 255.
132	 */
133	for (cpsr = 2; cpsr <= 254; cpsr += 2) {
134		for (scr = 0; scr <= 255; scr++) {
135			if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
136				*div_scr = (u8)scr;
137				*div_cpsr = (u8)cpsr;
138				return 0;
139			}
140		}
141	}
142
143	return -EINVAL;
144}
145
146static int ep93xx_spi_chip_setup(struct spi_master *master,
147				 struct spi_device *spi,
148				 struct spi_transfer *xfer)
149{
150	struct ep93xx_spi *espi = spi_master_get_devdata(master);
151	u8 dss = bits_per_word_to_dss(xfer->bits_per_word);
152	u8 div_cpsr = 0;
153	u8 div_scr = 0;
154	u16 cr0;
155	int err;
156
157	err = ep93xx_spi_calc_divisors(master, xfer->speed_hz,
158				       &div_cpsr, &div_scr);
159	if (err)
160		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161
162	cr0 = div_scr << SSPCR0_SCR_SHIFT;
163	if (spi->mode & SPI_CPOL)
164		cr0 |= SSPCR0_SPO;
165	if (spi->mode & SPI_CPHA)
166		cr0 |= SSPCR0_SPH;
167	cr0 |= dss;
168
169	dev_dbg(&master->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
170		spi->mode, div_cpsr, div_scr, dss);
171	dev_dbg(&master->dev, "setup: cr0 %#x\n", cr0);
172
173	writel(div_cpsr, espi->mmio + SSPCPSR);
174	writel(cr0, espi->mmio + SSPCR0);
175
 
 
 
 
 
 
 
 
 
 
 
 
176	return 0;
177}
178
179static void ep93xx_do_write(struct spi_master *master)
 
 
 
 
 
 
 
 
 
 
 
180{
181	struct ep93xx_spi *espi = spi_master_get_devdata(master);
182	struct spi_transfer *xfer = master->cur_msg->state;
183	u32 val = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184
185	if (xfer->bits_per_word > 8) {
186		if (xfer->tx_buf)
187			val = ((u16 *)xfer->tx_buf)[espi->tx];
188		espi->tx += 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189	} else {
190		if (xfer->tx_buf)
191			val = ((u8 *)xfer->tx_buf)[espi->tx];
192		espi->tx += 1;
 
 
 
193	}
194	writel(val, espi->mmio + SSPDR);
195}
196
197static void ep93xx_do_read(struct spi_master *master)
198{
199	struct ep93xx_spi *espi = spi_master_get_devdata(master);
200	struct spi_transfer *xfer = master->cur_msg->state;
201	u32 val;
202
203	val = readl(espi->mmio + SSPDR);
204	if (xfer->bits_per_word > 8) {
205		if (xfer->rx_buf)
206			((u16 *)xfer->rx_buf)[espi->rx] = val;
207		espi->rx += 2;
208	} else {
209		if (xfer->rx_buf)
210			((u8 *)xfer->rx_buf)[espi->rx] = val;
211		espi->rx += 1;
 
 
 
212	}
213}
214
215/**
216 * ep93xx_spi_read_write() - perform next RX/TX transfer
217 * @master: SPI master
218 *
219 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
220 * called several times, the whole transfer will be completed. Returns
221 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
222 *
223 * When this function is finished, RX FIFO should be empty and TX FIFO should be
224 * full.
225 */
226static int ep93xx_spi_read_write(struct spi_master *master)
227{
228	struct ep93xx_spi *espi = spi_master_get_devdata(master);
229	struct spi_transfer *xfer = master->cur_msg->state;
230
231	/* read as long as RX FIFO has frames in it */
232	while ((readl(espi->mmio + SSPSR) & SSPSR_RNE)) {
233		ep93xx_do_read(master);
234		espi->fifo_level--;
235	}
236
237	/* write as long as TX FIFO has room */
238	while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < xfer->len) {
239		ep93xx_do_write(master);
240		espi->fifo_level++;
241	}
242
243	if (espi->rx == xfer->len)
244		return 0;
245
246	return -EINPROGRESS;
247}
248
249static enum dma_transfer_direction
250ep93xx_dma_data_to_trans_dir(enum dma_data_direction dir)
251{
252	switch (dir) {
253	case DMA_TO_DEVICE:
254		return DMA_MEM_TO_DEV;
255	case DMA_FROM_DEVICE:
256		return DMA_DEV_TO_MEM;
257	default:
258		return DMA_TRANS_NONE;
259	}
260}
261
262/**
263 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
264 * @master: SPI master
265 * @dir: DMA transfer direction
266 *
267 * Function configures the DMA, maps the buffer and prepares the DMA
268 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
269 * in case of failure.
270 */
271static struct dma_async_tx_descriptor *
272ep93xx_spi_dma_prepare(struct spi_master *master,
273		       enum dma_data_direction dir)
274{
275	struct ep93xx_spi *espi = spi_master_get_devdata(master);
276	struct spi_transfer *xfer = master->cur_msg->state;
277	struct dma_async_tx_descriptor *txd;
278	enum dma_slave_buswidth buswidth;
279	struct dma_slave_config conf;
280	struct scatterlist *sg;
281	struct sg_table *sgt;
282	struct dma_chan *chan;
283	const void *buf, *pbuf;
284	size_t len = xfer->len;
285	int i, ret, nents;
286
287	if (xfer->bits_per_word > 8)
288		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
289	else
290		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
291
292	memset(&conf, 0, sizeof(conf));
293	conf.direction = ep93xx_dma_data_to_trans_dir(dir);
294
295	if (dir == DMA_FROM_DEVICE) {
296		chan = espi->dma_rx;
297		buf = xfer->rx_buf;
298		sgt = &espi->rx_sgt;
299
300		conf.src_addr = espi->sspdr_phys;
301		conf.src_addr_width = buswidth;
302	} else {
303		chan = espi->dma_tx;
304		buf = xfer->tx_buf;
305		sgt = &espi->tx_sgt;
306
307		conf.dst_addr = espi->sspdr_phys;
308		conf.dst_addr_width = buswidth;
309	}
310
311	ret = dmaengine_slave_config(chan, &conf);
312	if (ret)
313		return ERR_PTR(ret);
314
315	/*
316	 * We need to split the transfer into PAGE_SIZE'd chunks. This is
317	 * because we are using @espi->zeropage to provide a zero RX buffer
318	 * for the TX transfers and we have only allocated one page for that.
319	 *
320	 * For performance reasons we allocate a new sg_table only when
321	 * needed. Otherwise we will re-use the current one. Eventually the
322	 * last sg_table is released in ep93xx_spi_release_dma().
323	 */
324
325	nents = DIV_ROUND_UP(len, PAGE_SIZE);
326	if (nents != sgt->nents) {
327		sg_free_table(sgt);
328
329		ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
330		if (ret)
331			return ERR_PTR(ret);
332	}
333
334	pbuf = buf;
335	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
336		size_t bytes = min_t(size_t, len, PAGE_SIZE);
337
338		if (buf) {
339			sg_set_page(sg, virt_to_page(pbuf), bytes,
340				    offset_in_page(pbuf));
341		} else {
342			sg_set_page(sg, virt_to_page(espi->zeropage),
343				    bytes, 0);
344		}
345
346		pbuf += bytes;
347		len -= bytes;
348	}
349
350	if (WARN_ON(len)) {
351		dev_warn(&master->dev, "len = %zu expected 0!\n", len);
352		return ERR_PTR(-EINVAL);
353	}
354
355	nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
356	if (!nents)
357		return ERR_PTR(-ENOMEM);
358
359	txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, conf.direction,
360				      DMA_CTRL_ACK);
361	if (!txd) {
362		dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
363		return ERR_PTR(-ENOMEM);
364	}
365	return txd;
366}
367
368/**
369 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
370 * @master: SPI master
371 * @dir: DMA transfer direction
372 *
373 * Function finishes with the DMA transfer. After this, the DMA buffer is
374 * unmapped.
375 */
376static void ep93xx_spi_dma_finish(struct spi_master *master,
377				  enum dma_data_direction dir)
378{
379	struct ep93xx_spi *espi = spi_master_get_devdata(master);
380	struct dma_chan *chan;
381	struct sg_table *sgt;
382
383	if (dir == DMA_FROM_DEVICE) {
384		chan = espi->dma_rx;
385		sgt = &espi->rx_sgt;
386	} else {
387		chan = espi->dma_tx;
388		sgt = &espi->tx_sgt;
389	}
390
391	dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
392}
393
394static void ep93xx_spi_dma_callback(void *callback_param)
395{
396	struct spi_master *master = callback_param;
397
398	ep93xx_spi_dma_finish(master, DMA_TO_DEVICE);
399	ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE);
400
401	spi_finalize_current_transfer(master);
402}
403
404static int ep93xx_spi_dma_transfer(struct spi_master *master)
405{
406	struct ep93xx_spi *espi = spi_master_get_devdata(master);
407	struct dma_async_tx_descriptor *rxd, *txd;
408
409	rxd = ep93xx_spi_dma_prepare(master, DMA_FROM_DEVICE);
410	if (IS_ERR(rxd)) {
411		dev_err(&master->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
412		return PTR_ERR(rxd);
 
413	}
414
415	txd = ep93xx_spi_dma_prepare(master, DMA_TO_DEVICE);
416	if (IS_ERR(txd)) {
417		ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE);
418		dev_err(&master->dev, "DMA TX failed: %ld\n", PTR_ERR(txd));
419		return PTR_ERR(txd);
 
420	}
421
422	/* We are ready when RX is done */
423	rxd->callback = ep93xx_spi_dma_callback;
424	rxd->callback_param = master;
425
426	/* Now submit both descriptors and start DMA */
427	dmaengine_submit(rxd);
428	dmaengine_submit(txd);
429
430	dma_async_issue_pending(espi->dma_rx);
431	dma_async_issue_pending(espi->dma_tx);
432
433	/* signal that we need to wait for completion */
434	return 1;
 
 
435}
436
437static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
 
 
 
 
 
 
 
 
 
 
 
 
438{
439	struct spi_master *master = dev_id;
440	struct ep93xx_spi *espi = spi_master_get_devdata(master);
441	u32 val;
442
443	/*
444	 * If we got ROR (receive overrun) interrupt we know that something is
445	 * wrong. Just abort the message.
446	 */
447	if (readl(espi->mmio + SSPIIR) & SSPIIR_RORIS) {
448		/* clear the overrun interrupt */
449		writel(0, espi->mmio + SSPICR);
450		dev_warn(&master->dev,
451			 "receive overrun, aborting the message\n");
452		master->cur_msg->status = -EIO;
453	} else {
454		/*
455		 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
456		 * simply execute next data transfer.
457		 */
458		if (ep93xx_spi_read_write(master)) {
459			/*
460			 * In normal case, there still is some processing left
461			 * for current transfer. Let's wait for the next
462			 * interrupt then.
463			 */
464			return IRQ_HANDLED;
465		}
466	}
467
468	/*
469	 * Current transfer is finished, either with error or with success. In
470	 * any case we disable interrupts and notify the worker to handle
471	 * any post-processing of the message.
472	 */
473	val = readl(espi->mmio + SSPCR1);
474	val &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
475	writel(val, espi->mmio + SSPCR1);
476
477	spi_finalize_current_transfer(master);
 
478
479	return IRQ_HANDLED;
480}
 
 
 
 
 
 
 
481
482static int ep93xx_spi_transfer_one(struct spi_master *master,
483				   struct spi_device *spi,
484				   struct spi_transfer *xfer)
485{
486	struct ep93xx_spi *espi = spi_master_get_devdata(master);
487	u32 val;
488	int ret;
489
490	ret = ep93xx_spi_chip_setup(master, spi, xfer);
491	if (ret) {
492		dev_err(&master->dev, "failed to setup chip for transfer\n");
493		return ret;
494	}
495
496	master->cur_msg->state = xfer;
497	espi->rx = 0;
498	espi->tx = 0;
499
500	/*
501	 * There is no point of setting up DMA for the transfers which will
502	 * fit into the FIFO and can be transferred with a single interrupt.
503	 * So in these cases we will be using PIO and don't bother for DMA.
504	 */
505	if (espi->dma_rx && xfer->len > SPI_FIFO_SIZE)
506		return ep93xx_spi_dma_transfer(master);
 
 
 
 
 
 
 
 
 
507
508	/* Using PIO so prime the TX FIFO and enable interrupts */
509	ep93xx_spi_read_write(master);
510
511	val = readl(espi->mmio + SSPCR1);
512	val |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
513	writel(val, espi->mmio + SSPCR1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
514
515	/* signal that we need to wait for completion */
516	return 1;
517}
518
519static int ep93xx_spi_prepare_message(struct spi_master *master,
520				      struct spi_message *msg)
 
 
 
 
 
 
 
 
 
 
 
 
521{
522	struct ep93xx_spi *espi = spi_master_get_devdata(master);
523	unsigned long timeout;
 
 
 
 
 
 
 
 
 
 
 
 
524
525	/*
526	 * Just to be sure: flush any data from RX FIFO.
527	 */
528	timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
529	while (readl(espi->mmio + SSPSR) & SSPSR_RNE) {
530		if (time_after(jiffies, timeout)) {
531			dev_warn(&master->dev,
532				 "timeout while flushing RX FIFO\n");
533			return -ETIMEDOUT;
 
534		}
535		readl(espi->mmio + SSPDR);
536	}
537
538	/*
539	 * We explicitly handle FIFO level. This way we don't have to check TX
540	 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
541	 */
542	espi->fifo_level = 0;
543
544	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
545}
546
547static int ep93xx_spi_prepare_hardware(struct spi_master *master)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
548{
549	struct ep93xx_spi *espi = spi_master_get_devdata(master);
550	u32 val;
551	int ret;
552
553	ret = clk_prepare_enable(espi->clk);
554	if (ret)
555		return ret;
 
 
 
 
 
 
 
556
557	val = readl(espi->mmio + SSPCR1);
558	val |= SSPCR1_SSE;
559	writel(val, espi->mmio + SSPCR1);
560
561	return 0;
 
 
 
 
 
 
 
 
 
 
 
562}
563
564static int ep93xx_spi_unprepare_hardware(struct spi_master *master)
565{
566	struct ep93xx_spi *espi = spi_master_get_devdata(master);
567	u32 val;
568
569	val = readl(espi->mmio + SSPCR1);
570	val &= ~SSPCR1_SSE;
571	writel(val, espi->mmio + SSPCR1);
572
573	clk_disable_unprepare(espi->clk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
574
575	return 0;
 
 
 
 
 
 
 
576}
577
578static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
579{
580	if (ep93xx_dma_chan_is_m2p(chan))
581		return false;
582
583	chan->private = filter_param;
584	return true;
585}
586
587static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
588{
589	dma_cap_mask_t mask;
590	int ret;
591
592	espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
593	if (!espi->zeropage)
594		return -ENOMEM;
595
596	dma_cap_zero(mask);
597	dma_cap_set(DMA_SLAVE, mask);
598
599	espi->dma_rx_data.port = EP93XX_DMA_SSP;
600	espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
601	espi->dma_rx_data.name = "ep93xx-spi-rx";
602
603	espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
604					   &espi->dma_rx_data);
605	if (!espi->dma_rx) {
606		ret = -ENODEV;
607		goto fail_free_page;
608	}
609
610	espi->dma_tx_data.port = EP93XX_DMA_SSP;
611	espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
612	espi->dma_tx_data.name = "ep93xx-spi-tx";
613
614	espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
615					   &espi->dma_tx_data);
616	if (!espi->dma_tx) {
617		ret = -ENODEV;
618		goto fail_release_rx;
619	}
620
621	return 0;
622
623fail_release_rx:
624	dma_release_channel(espi->dma_rx);
625	espi->dma_rx = NULL;
626fail_free_page:
627	free_page((unsigned long)espi->zeropage);
628
629	return ret;
630}
631
632static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
633{
634	if (espi->dma_rx) {
635		dma_release_channel(espi->dma_rx);
636		sg_free_table(&espi->rx_sgt);
637	}
638	if (espi->dma_tx) {
639		dma_release_channel(espi->dma_tx);
640		sg_free_table(&espi->tx_sgt);
641	}
642
643	if (espi->zeropage)
644		free_page((unsigned long)espi->zeropage);
645}
646
647static int ep93xx_spi_probe(struct platform_device *pdev)
648{
649	struct spi_master *master;
650	struct ep93xx_spi_info *info;
651	struct ep93xx_spi *espi;
652	struct resource *res;
653	int irq;
654	int error;
655
656	info = dev_get_platdata(&pdev->dev);
657	if (!info) {
658		dev_err(&pdev->dev, "missing platform data\n");
659		return -EINVAL;
660	}
661
662	irq = platform_get_irq(pdev, 0);
663	if (irq < 0)
664		return -EBUSY;
665
666	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
667	if (!res) {
668		dev_err(&pdev->dev, "unable to get iomem resource\n");
669		return -ENODEV;
670	}
671
672	master = spi_alloc_master(&pdev->dev, sizeof(*espi));
673	if (!master)
 
674		return -ENOMEM;
 
675
676	master->use_gpio_descriptors = true;
677	master->prepare_transfer_hardware = ep93xx_spi_prepare_hardware;
678	master->unprepare_transfer_hardware = ep93xx_spi_unprepare_hardware;
679	master->prepare_message = ep93xx_spi_prepare_message;
680	master->transfer_one = ep93xx_spi_transfer_one;
681	master->bus_num = pdev->id;
 
682	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
683	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
684	/*
685	 * The SPI core will count the number of GPIO descriptors to figure
686	 * out the number of chip selects available on the platform.
687	 */
688	master->num_chipselect = 0;
689
690	platform_set_drvdata(pdev, master);
691
692	espi = spi_master_get_devdata(master);
693
694	espi->clk = devm_clk_get(&pdev->dev, NULL);
695	if (IS_ERR(espi->clk)) {
696		dev_err(&pdev->dev, "unable to get spi clock\n");
697		error = PTR_ERR(espi->clk);
698		goto fail_release_master;
699	}
700
 
 
 
701	/*
702	 * Calculate maximum and minimum supported clock rates
703	 * for the controller.
704	 */
705	master->max_speed_hz = clk_get_rate(espi->clk) / 2;
706	master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
707
708	espi->sspdr_phys = res->start + SSPDR;
709
710	espi->mmio = devm_ioremap_resource(&pdev->dev, res);
711	if (IS_ERR(espi->mmio)) {
712		error = PTR_ERR(espi->mmio);
713		goto fail_release_master;
 
714	}
715
716	error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
717				0, "ep93xx-spi", master);
718	if (error) {
719		dev_err(&pdev->dev, "failed to request irq\n");
720		goto fail_release_master;
721	}
722
723	if (info->use_dma && ep93xx_spi_setup_dma(espi))
724		dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
725
 
 
 
 
 
 
 
 
 
726	/* make sure that the hardware is disabled */
727	writel(0, espi->mmio + SSPCR1);
728
729	error = devm_spi_register_master(&pdev->dev, master);
730	if (error) {
731		dev_err(&pdev->dev, "failed to register SPI master\n");
732		goto fail_free_dma;
733	}
734
735	dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
736		 (unsigned long)res->start, irq);
737
738	return 0;
739
 
 
740fail_free_dma:
741	ep93xx_spi_release_dma(espi);
 
 
742fail_release_master:
743	spi_master_put(master);
 
744
745	return error;
746}
747
748static int ep93xx_spi_remove(struct platform_device *pdev)
749{
750	struct spi_master *master = platform_get_drvdata(pdev);
751	struct ep93xx_spi *espi = spi_master_get_devdata(master);
752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
753	ep93xx_spi_release_dma(espi);
 
 
754
 
755	return 0;
756}
757
758static struct platform_driver ep93xx_spi_driver = {
759	.driver		= {
760		.name	= "ep93xx-spi",
 
761	},
762	.probe		= ep93xx_spi_probe,
763	.remove		= ep93xx_spi_remove,
764};
765module_platform_driver(ep93xx_spi_driver);
766
767MODULE_DESCRIPTION("EP93xx SPI Controller driver");
768MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
769MODULE_LICENSE("GPL");
770MODULE_ALIAS("platform:ep93xx-spi");
v3.5.6
 
   1/*
   2 * Driver for Cirrus Logic EP93xx SPI controller.
   3 *
   4 * Copyright (C) 2010-2011 Mika Westerberg
   5 *
   6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
   7 *
   8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
   9 *
  10 * For more information about the SPI controller see documentation on Cirrus
  11 * Logic web site:
  12 *     http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
  13 *
  14 * This program is free software; you can redistribute it and/or modify
  15 * it under the terms of the GNU General Public License version 2 as
  16 * published by the Free Software Foundation.
  17 */
  18
  19#include <linux/io.h>
  20#include <linux/clk.h>
  21#include <linux/err.h>
  22#include <linux/delay.h>
  23#include <linux/device.h>
  24#include <linux/dmaengine.h>
  25#include <linux/bitops.h>
  26#include <linux/interrupt.h>
  27#include <linux/module.h>
  28#include <linux/platform_device.h>
  29#include <linux/workqueue.h>
  30#include <linux/sched.h>
  31#include <linux/scatterlist.h>
  32#include <linux/spi/spi.h>
  33
  34#include <mach/dma.h>
  35#include <mach/ep93xx_spi.h>
  36
  37#define SSPCR0			0x0000
  38#define SSPCR0_MODE_SHIFT	6
 
  39#define SSPCR0_SCR_SHIFT	8
  40
  41#define SSPCR1			0x0004
  42#define SSPCR1_RIE		BIT(0)
  43#define SSPCR1_TIE		BIT(1)
  44#define SSPCR1_RORIE		BIT(2)
  45#define SSPCR1_LBM		BIT(3)
  46#define SSPCR1_SSE		BIT(4)
  47#define SSPCR1_MS		BIT(5)
  48#define SSPCR1_SOD		BIT(6)
  49
  50#define SSPDR			0x0008
  51
  52#define SSPSR			0x000c
  53#define SSPSR_TFE		BIT(0)
  54#define SSPSR_TNF		BIT(1)
  55#define SSPSR_RNE		BIT(2)
  56#define SSPSR_RFF		BIT(3)
  57#define SSPSR_BSY		BIT(4)
  58#define SSPCPSR			0x0010
  59
  60#define SSPIIR			0x0014
  61#define SSPIIR_RIS		BIT(0)
  62#define SSPIIR_TIS		BIT(1)
  63#define SSPIIR_RORIS		BIT(2)
  64#define SSPICR			SSPIIR
  65
  66/* timeout in milliseconds */
  67#define SPI_TIMEOUT		5
  68/* maximum depth of RX/TX FIFO */
  69#define SPI_FIFO_SIZE		8
  70
  71/**
  72 * struct ep93xx_spi - EP93xx SPI controller structure
  73 * @lock: spinlock that protects concurrent accesses to fields @running,
  74 *        @current_msg and @msg_queue
  75 * @pdev: pointer to platform device
  76 * @clk: clock for the controller
  77 * @regs_base: pointer to ioremap()'d registers
  78 * @sspdr_phys: physical address of the SSPDR register
  79 * @min_rate: minimum clock rate (in Hz) supported by the controller
  80 * @max_rate: maximum clock rate (in Hz) supported by the controller
  81 * @running: is the queue running
  82 * @wq: workqueue used by the driver
  83 * @msg_work: work that is queued for the driver
  84 * @wait: wait here until given transfer is completed
  85 * @msg_queue: queue for the messages
  86 * @current_msg: message that is currently processed (or %NULL if none)
  87 * @tx: current byte in transfer to transmit
  88 * @rx: current byte in transfer to receive
  89 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
  90 *              frame decreases this level and sending one frame increases it.
  91 * @dma_rx: RX DMA channel
  92 * @dma_tx: TX DMA channel
  93 * @dma_rx_data: RX parameters passed to the DMA engine
  94 * @dma_tx_data: TX parameters passed to the DMA engine
  95 * @rx_sgt: sg table for RX transfers
  96 * @tx_sgt: sg table for TX transfers
  97 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
  98 *            the client
  99 *
 100 * This structure holds EP93xx SPI controller specific information. When
 101 * @running is %true, driver accepts transfer requests from protocol drivers.
 102 * @current_msg is used to hold pointer to the message that is currently
 103 * processed. If @current_msg is %NULL, it means that no processing is going
 104 * on.
 105 *
 106 * Most of the fields are only written once and they can be accessed without
 107 * taking the @lock. Fields that are accessed concurrently are: @current_msg,
 108 * @running, and @msg_queue.
 109 */
 110struct ep93xx_spi {
 111	spinlock_t			lock;
 112	const struct platform_device	*pdev;
 113	struct clk			*clk;
 114	void __iomem			*regs_base;
 115	unsigned long			sspdr_phys;
 116	unsigned long			min_rate;
 117	unsigned long			max_rate;
 118	bool				running;
 119	struct workqueue_struct		*wq;
 120	struct work_struct		msg_work;
 121	struct completion		wait;
 122	struct list_head		msg_queue;
 123	struct spi_message		*current_msg;
 124	size_t				tx;
 125	size_t				rx;
 126	size_t				fifo_level;
 127	struct dma_chan			*dma_rx;
 128	struct dma_chan			*dma_tx;
 129	struct ep93xx_dma_data		dma_rx_data;
 130	struct ep93xx_dma_data		dma_tx_data;
 131	struct sg_table			rx_sgt;
 132	struct sg_table			tx_sgt;
 133	void				*zeropage;
 134};
 135
 136/**
 137 * struct ep93xx_spi_chip - SPI device hardware settings
 138 * @spi: back pointer to the SPI device
 139 * @rate: max rate in hz this chip supports
 140 * @div_cpsr: cpsr (pre-scaler) divider
 141 * @div_scr: scr divider
 142 * @dss: bits per word (4 - 16 bits)
 143 * @ops: private chip operations
 144 *
 145 * This structure is used to store hardware register specific settings for each
 146 * SPI device. Settings are written to hardware by function
 147 * ep93xx_spi_chip_setup().
 148 */
 149struct ep93xx_spi_chip {
 150	const struct spi_device		*spi;
 151	unsigned long			rate;
 152	u8				div_cpsr;
 153	u8				div_scr;
 154	u8				dss;
 155	struct ep93xx_spi_chip_ops	*ops;
 156};
 157
 158/* converts bits per word to CR0.DSS value */
 159#define bits_per_word_to_dss(bpw)	((bpw) - 1)
 160
 161static inline void
 162ep93xx_spi_write_u8(const struct ep93xx_spi *espi, u16 reg, u8 value)
 163{
 164	__raw_writeb(value, espi->regs_base + reg);
 165}
 166
 167static inline u8
 168ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
 169{
 170	return __raw_readb(spi->regs_base + reg);
 171}
 172
 173static inline void
 174ep93xx_spi_write_u16(const struct ep93xx_spi *espi, u16 reg, u16 value)
 175{
 176	__raw_writew(value, espi->regs_base + reg);
 177}
 178
 179static inline u16
 180ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
 181{
 182	return __raw_readw(spi->regs_base + reg);
 183}
 184
 185static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
 186{
 187	u8 regval;
 188	int err;
 189
 190	err = clk_enable(espi->clk);
 191	if (err)
 192		return err;
 193
 194	regval = ep93xx_spi_read_u8(espi, SSPCR1);
 195	regval |= SSPCR1_SSE;
 196	ep93xx_spi_write_u8(espi, SSPCR1, regval);
 197
 198	return 0;
 199}
 200
 201static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
 202{
 203	u8 regval;
 204
 205	regval = ep93xx_spi_read_u8(espi, SSPCR1);
 206	regval &= ~SSPCR1_SSE;
 207	ep93xx_spi_write_u8(espi, SSPCR1, regval);
 208
 209	clk_disable(espi->clk);
 210}
 211
 212static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
 213{
 214	u8 regval;
 215
 216	regval = ep93xx_spi_read_u8(espi, SSPCR1);
 217	regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
 218	ep93xx_spi_write_u8(espi, SSPCR1, regval);
 219}
 220
 221static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
 222{
 223	u8 regval;
 224
 225	regval = ep93xx_spi_read_u8(espi, SSPCR1);
 226	regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
 227	ep93xx_spi_write_u8(espi, SSPCR1, regval);
 228}
 229
 230/**
 231 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
 232 * @espi: ep93xx SPI controller struct
 233 * @chip: divisors are calculated for this chip
 234 * @rate: desired SPI output clock rate
 235 *
 236 * Function calculates cpsr (clock pre-scaler) and scr divisors based on
 237 * given @rate and places them to @chip->div_cpsr and @chip->div_scr. If,
 238 * for some reason, divisors cannot be calculated nothing is stored and
 239 * %-EINVAL is returned.
 240 */
 241static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
 242				    struct ep93xx_spi_chip *chip,
 243				    unsigned long rate)
 244{
 
 245	unsigned long spi_clk_rate = clk_get_rate(espi->clk);
 246	int cpsr, scr;
 247
 248	/*
 249	 * Make sure that max value is between values supported by the
 250	 * controller. Note that minimum value is already checked in
 251	 * ep93xx_spi_transfer().
 252	 */
 253	rate = clamp(rate, espi->min_rate, espi->max_rate);
 254
 255	/*
 256	 * Calculate divisors so that we can get speed according the
 257	 * following formula:
 258	 *	rate = spi_clock_rate / (cpsr * (1 + scr))
 259	 *
 260	 * cpsr must be even number and starts from 2, scr can be any number
 261	 * between 0 and 255.
 262	 */
 263	for (cpsr = 2; cpsr <= 254; cpsr += 2) {
 264		for (scr = 0; scr <= 255; scr++) {
 265			if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
 266				chip->div_scr = (u8)scr;
 267				chip->div_cpsr = (u8)cpsr;
 268				return 0;
 269			}
 270		}
 271	}
 272
 273	return -EINVAL;
 274}
 275
 276static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
 
 
 277{
 278	struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
 279	int value = (spi->mode & SPI_CS_HIGH) ? control : !control;
 
 
 
 
 280
 281	if (chip->ops && chip->ops->cs_control)
 282		chip->ops->cs_control(spi, value);
 283}
 284
 285/**
 286 * ep93xx_spi_setup() - setup an SPI device
 287 * @spi: SPI device to setup
 288 *
 289 * This function sets up SPI device mode, speed etc. Can be called multiple
 290 * times for a single device. Returns %0 in case of success, negative error in
 291 * case of failure. When this function returns success, the device is
 292 * deselected.
 293 */
 294static int ep93xx_spi_setup(struct spi_device *spi)
 295{
 296	struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
 297	struct ep93xx_spi_chip *chip;
 298
 299	if (spi->bits_per_word < 4 || spi->bits_per_word > 16) {
 300		dev_err(&espi->pdev->dev, "invalid bits per word %d\n",
 301			spi->bits_per_word);
 302		return -EINVAL;
 303	}
 304
 305	chip = spi_get_ctldata(spi);
 306	if (!chip) {
 307		dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
 308			spi->modalias);
 309
 310		chip = kzalloc(sizeof(*chip), GFP_KERNEL);
 311		if (!chip)
 312			return -ENOMEM;
 313
 314		chip->spi = spi;
 315		chip->ops = spi->controller_data;
 316
 317		if (chip->ops && chip->ops->setup) {
 318			int ret = chip->ops->setup(spi);
 319			if (ret) {
 320				kfree(chip);
 321				return ret;
 322			}
 323		}
 324
 325		spi_set_ctldata(spi, chip);
 326	}
 
 
 
 
 
 
 
 
 327
 328	if (spi->max_speed_hz != chip->rate) {
 329		int err;
 330
 331		err = ep93xx_spi_calc_divisors(espi, chip, spi->max_speed_hz);
 332		if (err != 0) {
 333			spi_set_ctldata(spi, NULL);
 334			kfree(chip);
 335			return err;
 336		}
 337		chip->rate = spi->max_speed_hz;
 338	}
 339
 340	chip->dss = bits_per_word_to_dss(spi->bits_per_word);
 341
 342	ep93xx_spi_cs_control(spi, false);
 343	return 0;
 344}
 345
 346/**
 347 * ep93xx_spi_transfer() - queue message to be transferred
 348 * @spi: target SPI device
 349 * @msg: message to be transferred
 350 *
 351 * This function is called by SPI device drivers when they are going to transfer
 352 * a new message. It simply puts the message in the queue and schedules
 353 * workqueue to perform the actual transfer later on.
 354 *
 355 * Returns %0 on success and negative error in case of failure.
 356 */
 357static int ep93xx_spi_transfer(struct spi_device *spi, struct spi_message *msg)
 358{
 359	struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
 360	struct spi_transfer *t;
 361	unsigned long flags;
 362
 363	if (!msg || !msg->complete)
 364		return -EINVAL;
 365
 366	/* first validate each transfer */
 367	list_for_each_entry(t, &msg->transfers, transfer_list) {
 368		if (t->bits_per_word) {
 369			if (t->bits_per_word < 4 || t->bits_per_word > 16)
 370				return -EINVAL;
 371		}
 372		if (t->speed_hz && t->speed_hz < espi->min_rate)
 373				return -EINVAL;
 374	}
 375
 376	/*
 377	 * Now that we own the message, let's initialize it so that it is
 378	 * suitable for us. We use @msg->status to signal whether there was
 379	 * error in transfer and @msg->state is used to hold pointer to the
 380	 * current transfer (or %NULL if no active current transfer).
 381	 */
 382	msg->state = NULL;
 383	msg->status = 0;
 384	msg->actual_length = 0;
 385
 386	spin_lock_irqsave(&espi->lock, flags);
 387	if (!espi->running) {
 388		spin_unlock_irqrestore(&espi->lock, flags);
 389		return -ESHUTDOWN;
 390	}
 391	list_add_tail(&msg->queue, &espi->msg_queue);
 392	queue_work(espi->wq, &espi->msg_work);
 393	spin_unlock_irqrestore(&espi->lock, flags);
 394
 395	return 0;
 396}
 397
 398/**
 399 * ep93xx_spi_cleanup() - cleans up master controller specific state
 400 * @spi: SPI device to cleanup
 401 *
 402 * This function releases master controller specific state for given @spi
 403 * device.
 404 */
 405static void ep93xx_spi_cleanup(struct spi_device *spi)
 406{
 407	struct ep93xx_spi_chip *chip;
 408
 409	chip = spi_get_ctldata(spi);
 410	if (chip) {
 411		if (chip->ops && chip->ops->cleanup)
 412			chip->ops->cleanup(spi);
 413		spi_set_ctldata(spi, NULL);
 414		kfree(chip);
 415	}
 416}
 417
 418/**
 419 * ep93xx_spi_chip_setup() - configures hardware according to given @chip
 420 * @espi: ep93xx SPI controller struct
 421 * @chip: chip specific settings
 422 *
 423 * This function sets up the actual hardware registers with settings given in
 424 * @chip. Note that no validation is done so make sure that callers validate
 425 * settings before calling this.
 426 */
 427static void ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
 428				  const struct ep93xx_spi_chip *chip)
 429{
 430	u16 cr0;
 431
 432	cr0 = chip->div_scr << SSPCR0_SCR_SHIFT;
 433	cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
 434	cr0 |= chip->dss;
 435
 436	dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
 437		chip->spi->mode, chip->div_cpsr, chip->div_scr, chip->dss);
 438	dev_dbg(&espi->pdev->dev, "setup: cr0 %#x", cr0);
 439
 440	ep93xx_spi_write_u8(espi, SSPCPSR, chip->div_cpsr);
 441	ep93xx_spi_write_u16(espi, SSPCR0, cr0);
 442}
 443
 444static inline int bits_per_word(const struct ep93xx_spi *espi)
 445{
 446	struct spi_message *msg = espi->current_msg;
 447	struct spi_transfer *t = msg->state;
 448
 449	return t->bits_per_word ? t->bits_per_word : msg->spi->bits_per_word;
 450}
 451
 452static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
 453{
 454	if (bits_per_word(espi) > 8) {
 455		u16 tx_val = 0;
 456
 457		if (t->tx_buf)
 458			tx_val = ((u16 *)t->tx_buf)[espi->tx];
 459		ep93xx_spi_write_u16(espi, SSPDR, tx_val);
 460		espi->tx += sizeof(tx_val);
 461	} else {
 462		u8 tx_val = 0;
 463
 464		if (t->tx_buf)
 465			tx_val = ((u8 *)t->tx_buf)[espi->tx];
 466		ep93xx_spi_write_u8(espi, SSPDR, tx_val);
 467		espi->tx += sizeof(tx_val);
 468	}
 
 469}
 470
 471static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
 472{
 473	if (bits_per_word(espi) > 8) {
 474		u16 rx_val;
 
 475
 476		rx_val = ep93xx_spi_read_u16(espi, SSPDR);
 477		if (t->rx_buf)
 478			((u16 *)t->rx_buf)[espi->rx] = rx_val;
 479		espi->rx += sizeof(rx_val);
 
 480	} else {
 481		u8 rx_val;
 482
 483		rx_val = ep93xx_spi_read_u8(espi, SSPDR);
 484		if (t->rx_buf)
 485			((u8 *)t->rx_buf)[espi->rx] = rx_val;
 486		espi->rx += sizeof(rx_val);
 487	}
 488}
 489
 490/**
 491 * ep93xx_spi_read_write() - perform next RX/TX transfer
 492 * @espi: ep93xx SPI controller struct
 493 *
 494 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
 495 * called several times, the whole transfer will be completed. Returns
 496 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
 497 *
 498 * When this function is finished, RX FIFO should be empty and TX FIFO should be
 499 * full.
 500 */
 501static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
 502{
 503	struct spi_message *msg = espi->current_msg;
 504	struct spi_transfer *t = msg->state;
 505
 506	/* read as long as RX FIFO has frames in it */
 507	while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
 508		ep93xx_do_read(espi, t);
 509		espi->fifo_level--;
 510	}
 511
 512	/* write as long as TX FIFO has room */
 513	while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
 514		ep93xx_do_write(espi, t);
 515		espi->fifo_level++;
 516	}
 517
 518	if (espi->rx == t->len)
 519		return 0;
 520
 521	return -EINPROGRESS;
 522}
 523
 524static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
 
 525{
 526	/*
 527	 * Now everything is set up for the current transfer. We prime the TX
 528	 * FIFO, enable interrupts, and wait for the transfer to complete.
 529	 */
 530	if (ep93xx_spi_read_write(espi)) {
 531		ep93xx_spi_enable_interrupts(espi);
 532		wait_for_completion(&espi->wait);
 533	}
 534}
 535
 536/**
 537 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
 538 * @espi: ep93xx SPI controller struct
 539 * @dir: DMA transfer direction
 540 *
 541 * Function configures the DMA, maps the buffer and prepares the DMA
 542 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
 543 * in case of failure.
 544 */
 545static struct dma_async_tx_descriptor *
 546ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_transfer_direction dir)
 
 547{
 548	struct spi_transfer *t = espi->current_msg->state;
 
 549	struct dma_async_tx_descriptor *txd;
 550	enum dma_slave_buswidth buswidth;
 551	struct dma_slave_config conf;
 552	struct scatterlist *sg;
 553	struct sg_table *sgt;
 554	struct dma_chan *chan;
 555	const void *buf, *pbuf;
 556	size_t len = t->len;
 557	int i, ret, nents;
 558
 559	if (bits_per_word(espi) > 8)
 560		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
 561	else
 562		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
 563
 564	memset(&conf, 0, sizeof(conf));
 565	conf.direction = dir;
 566
 567	if (dir == DMA_DEV_TO_MEM) {
 568		chan = espi->dma_rx;
 569		buf = t->rx_buf;
 570		sgt = &espi->rx_sgt;
 571
 572		conf.src_addr = espi->sspdr_phys;
 573		conf.src_addr_width = buswidth;
 574	} else {
 575		chan = espi->dma_tx;
 576		buf = t->tx_buf;
 577		sgt = &espi->tx_sgt;
 578
 579		conf.dst_addr = espi->sspdr_phys;
 580		conf.dst_addr_width = buswidth;
 581	}
 582
 583	ret = dmaengine_slave_config(chan, &conf);
 584	if (ret)
 585		return ERR_PTR(ret);
 586
 587	/*
 588	 * We need to split the transfer into PAGE_SIZE'd chunks. This is
 589	 * because we are using @espi->zeropage to provide a zero RX buffer
 590	 * for the TX transfers and we have only allocated one page for that.
 591	 *
 592	 * For performance reasons we allocate a new sg_table only when
 593	 * needed. Otherwise we will re-use the current one. Eventually the
 594	 * last sg_table is released in ep93xx_spi_release_dma().
 595	 */
 596
 597	nents = DIV_ROUND_UP(len, PAGE_SIZE);
 598	if (nents != sgt->nents) {
 599		sg_free_table(sgt);
 600
 601		ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
 602		if (ret)
 603			return ERR_PTR(ret);
 604	}
 605
 606	pbuf = buf;
 607	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
 608		size_t bytes = min_t(size_t, len, PAGE_SIZE);
 609
 610		if (buf) {
 611			sg_set_page(sg, virt_to_page(pbuf), bytes,
 612				    offset_in_page(pbuf));
 613		} else {
 614			sg_set_page(sg, virt_to_page(espi->zeropage),
 615				    bytes, 0);
 616		}
 617
 618		pbuf += bytes;
 619		len -= bytes;
 620	}
 621
 622	if (WARN_ON(len)) {
 623		dev_warn(&espi->pdev->dev, "len = %d expected 0!", len);
 624		return ERR_PTR(-EINVAL);
 625	}
 626
 627	nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
 628	if (!nents)
 629		return ERR_PTR(-ENOMEM);
 630
 631	txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK);
 
 632	if (!txd) {
 633		dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
 634		return ERR_PTR(-ENOMEM);
 635	}
 636	return txd;
 637}
 638
 639/**
 640 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
 641 * @espi: ep93xx SPI controller struct
 642 * @dir: DMA transfer direction
 643 *
 644 * Function finishes with the DMA transfer. After this, the DMA buffer is
 645 * unmapped.
 646 */
 647static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
 648				  enum dma_transfer_direction dir)
 649{
 
 650	struct dma_chan *chan;
 651	struct sg_table *sgt;
 652
 653	if (dir == DMA_DEV_TO_MEM) {
 654		chan = espi->dma_rx;
 655		sgt = &espi->rx_sgt;
 656	} else {
 657		chan = espi->dma_tx;
 658		sgt = &espi->tx_sgt;
 659	}
 660
 661	dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
 662}
 663
 664static void ep93xx_spi_dma_callback(void *callback_param)
 665{
 666	complete(callback_param);
 
 
 
 
 
 667}
 668
 669static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
 670{
 671	struct spi_message *msg = espi->current_msg;
 672	struct dma_async_tx_descriptor *rxd, *txd;
 673
 674	rxd = ep93xx_spi_dma_prepare(espi, DMA_DEV_TO_MEM);
 675	if (IS_ERR(rxd)) {
 676		dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
 677		msg->status = PTR_ERR(rxd);
 678		return;
 679	}
 680
 681	txd = ep93xx_spi_dma_prepare(espi, DMA_MEM_TO_DEV);
 682	if (IS_ERR(txd)) {
 683		ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
 684		dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd));
 685		msg->status = PTR_ERR(txd);
 686		return;
 687	}
 688
 689	/* We are ready when RX is done */
 690	rxd->callback = ep93xx_spi_dma_callback;
 691	rxd->callback_param = &espi->wait;
 692
 693	/* Now submit both descriptors and wait while they finish */
 694	dmaengine_submit(rxd);
 695	dmaengine_submit(txd);
 696
 697	dma_async_issue_pending(espi->dma_rx);
 698	dma_async_issue_pending(espi->dma_tx);
 699
 700	wait_for_completion(&espi->wait);
 701
 702	ep93xx_spi_dma_finish(espi, DMA_MEM_TO_DEV);
 703	ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
 704}
 705
 706/**
 707 * ep93xx_spi_process_transfer() - processes one SPI transfer
 708 * @espi: ep93xx SPI controller struct
 709 * @msg: current message
 710 * @t: transfer to process
 711 *
 712 * This function processes one SPI transfer given in @t. Function waits until
 713 * transfer is complete (may sleep) and updates @msg->status based on whether
 714 * transfer was successfully processed or not.
 715 */
 716static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
 717					struct spi_message *msg,
 718					struct spi_transfer *t)
 719{
 720	struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);
 
 
 721
 722	msg->state = t;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 723
 724	/*
 725	 * Handle any transfer specific settings if needed. We use
 726	 * temporary chip settings here and restore original later when
 727	 * the transfer is finished.
 728	 */
 729	if (t->speed_hz || t->bits_per_word) {
 730		struct ep93xx_spi_chip tmp_chip = *chip;
 
 731
 732		if (t->speed_hz) {
 733			int err;
 734
 735			err = ep93xx_spi_calc_divisors(espi, &tmp_chip,
 736						       t->speed_hz);
 737			if (err) {
 738				dev_err(&espi->pdev->dev,
 739					"failed to adjust speed\n");
 740				msg->status = err;
 741				return;
 742			}
 743		}
 744
 745		if (t->bits_per_word)
 746			tmp_chip.dss = bits_per_word_to_dss(t->bits_per_word);
 
 
 
 
 
 747
 748		/*
 749		 * Set up temporary new hw settings for this transfer.
 750		 */
 751		ep93xx_spi_chip_setup(espi, &tmp_chip);
 752	}
 753
 
 754	espi->rx = 0;
 755	espi->tx = 0;
 756
 757	/*
 758	 * There is no point of setting up DMA for the transfers which will
 759	 * fit into the FIFO and can be transferred with a single interrupt.
 760	 * So in these cases we will be using PIO and don't bother for DMA.
 761	 */
 762	if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
 763		ep93xx_spi_dma_transfer(espi);
 764	else
 765		ep93xx_spi_pio_transfer(espi);
 766
 767	/*
 768	 * In case of error during transmit, we bail out from processing
 769	 * the message.
 770	 */
 771	if (msg->status)
 772		return;
 773
 774	msg->actual_length += t->len;
 
 775
 776	/*
 777	 * After this transfer is finished, perform any possible
 778	 * post-transfer actions requested by the protocol driver.
 779	 */
 780	if (t->delay_usecs) {
 781		set_current_state(TASK_UNINTERRUPTIBLE);
 782		schedule_timeout(usecs_to_jiffies(t->delay_usecs));
 783	}
 784	if (t->cs_change) {
 785		if (!list_is_last(&t->transfer_list, &msg->transfers)) {
 786			/*
 787			 * In case protocol driver is asking us to drop the
 788			 * chipselect briefly, we let the scheduler to handle
 789			 * any "delay" here.
 790			 */
 791			ep93xx_spi_cs_control(msg->spi, false);
 792			cond_resched();
 793			ep93xx_spi_cs_control(msg->spi, true);
 794		}
 795	}
 796
 797	if (t->speed_hz || t->bits_per_word)
 798		ep93xx_spi_chip_setup(espi, chip);
 799}
 800
 801/*
 802 * ep93xx_spi_process_message() - process one SPI message
 803 * @espi: ep93xx SPI controller struct
 804 * @msg: message to process
 805 *
 806 * This function processes a single SPI message. We go through all transfers in
 807 * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
 808 * asserted during the whole message (unless per transfer cs_change is set).
 809 *
 810 * @msg->status contains %0 in case of success or negative error code in case of
 811 * failure.
 812 */
 813static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
 814				       struct spi_message *msg)
 815{
 
 816	unsigned long timeout;
 817	struct spi_transfer *t;
 818	int err;
 819
 820	/*
 821	 * Enable the SPI controller and its clock.
 822	 */
 823	err = ep93xx_spi_enable(espi);
 824	if (err) {
 825		dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
 826		msg->status = err;
 827		return;
 828	}
 829
 830	/*
 831	 * Just to be sure: flush any data from RX FIFO.
 832	 */
 833	timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
 834	while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
 835		if (time_after(jiffies, timeout)) {
 836			dev_warn(&espi->pdev->dev,
 837				 "timeout while flushing RX FIFO\n");
 838			msg->status = -ETIMEDOUT;
 839			return;
 840		}
 841		ep93xx_spi_read_u16(espi, SSPDR);
 842	}
 843
 844	/*
 845	 * We explicitly handle FIFO level. This way we don't have to check TX
 846	 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
 847	 */
 848	espi->fifo_level = 0;
 849
 850	/*
 851	 * Update SPI controller registers according to spi device and assert
 852	 * the chipselect.
 853	 */
 854	ep93xx_spi_chip_setup(espi, spi_get_ctldata(msg->spi));
 855	ep93xx_spi_cs_control(msg->spi, true);
 856
 857	list_for_each_entry(t, &msg->transfers, transfer_list) {
 858		ep93xx_spi_process_transfer(espi, msg, t);
 859		if (msg->status)
 860			break;
 861	}
 862
 863	/*
 864	 * Now the whole message is transferred (or failed for some reason). We
 865	 * deselect the device and disable the SPI controller.
 866	 */
 867	ep93xx_spi_cs_control(msg->spi, false);
 868	ep93xx_spi_disable(espi);
 869}
 870
 871#define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work))
 872
 873/**
 874 * ep93xx_spi_work() - EP93xx SPI workqueue worker function
 875 * @work: work struct
 876 *
 877 * Workqueue worker function. This function is called when there are new
 878 * SPI messages to be processed. Message is taken out from the queue and then
 879 * passed to ep93xx_spi_process_message().
 880 *
 881 * After message is transferred, protocol driver is notified by calling
 882 * @msg->complete(). In case of error, @msg->status is set to negative error
 883 * number, otherwise it contains zero (and @msg->actual_length is updated).
 884 */
 885static void ep93xx_spi_work(struct work_struct *work)
 886{
 887	struct ep93xx_spi *espi = work_to_espi(work);
 888	struct spi_message *msg;
 
 889
 890	spin_lock_irq(&espi->lock);
 891	if (!espi->running || espi->current_msg ||
 892		list_empty(&espi->msg_queue)) {
 893		spin_unlock_irq(&espi->lock);
 894		return;
 895	}
 896	msg = list_first_entry(&espi->msg_queue, struct spi_message, queue);
 897	list_del_init(&msg->queue);
 898	espi->current_msg = msg;
 899	spin_unlock_irq(&espi->lock);
 900
 901	ep93xx_spi_process_message(espi, msg);
 
 
 902
 903	/*
 904	 * Update the current message and re-schedule ourselves if there are
 905	 * more messages in the queue.
 906	 */
 907	spin_lock_irq(&espi->lock);
 908	espi->current_msg = NULL;
 909	if (espi->running && !list_empty(&espi->msg_queue))
 910		queue_work(espi->wq, &espi->msg_work);
 911	spin_unlock_irq(&espi->lock);
 912
 913	/* notify the protocol driver that we are done with this message */
 914	msg->complete(msg->context);
 915}
 916
 917static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
 918{
 919	struct ep93xx_spi *espi = dev_id;
 920	u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
 921
 922	/*
 923	 * If we got ROR (receive overrun) interrupt we know that something is
 924	 * wrong. Just abort the message.
 925	 */
 926	if (unlikely(irq_status & SSPIIR_RORIS)) {
 927		/* clear the overrun interrupt */
 928		ep93xx_spi_write_u8(espi, SSPICR, 0);
 929		dev_warn(&espi->pdev->dev,
 930			 "receive overrun, aborting the message\n");
 931		espi->current_msg->status = -EIO;
 932	} else {
 933		/*
 934		 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
 935		 * simply execute next data transfer.
 936		 */
 937		if (ep93xx_spi_read_write(espi)) {
 938			/*
 939			 * In normal case, there still is some processing left
 940			 * for current transfer. Let's wait for the next
 941			 * interrupt then.
 942			 */
 943			return IRQ_HANDLED;
 944		}
 945	}
 946
 947	/*
 948	 * Current transfer is finished, either with error or with success. In
 949	 * any case we disable interrupts and notify the worker to handle
 950	 * any post-processing of the message.
 951	 */
 952	ep93xx_spi_disable_interrupts(espi);
 953	complete(&espi->wait);
 954	return IRQ_HANDLED;
 955}
 956
 957static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
 958{
 959	if (ep93xx_dma_chan_is_m2p(chan))
 960		return false;
 961
 962	chan->private = filter_param;
 963	return true;
 964}
 965
 966static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
 967{
 968	dma_cap_mask_t mask;
 969	int ret;
 970
 971	espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
 972	if (!espi->zeropage)
 973		return -ENOMEM;
 974
 975	dma_cap_zero(mask);
 976	dma_cap_set(DMA_SLAVE, mask);
 977
 978	espi->dma_rx_data.port = EP93XX_DMA_SSP;
 979	espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
 980	espi->dma_rx_data.name = "ep93xx-spi-rx";
 981
 982	espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
 983					   &espi->dma_rx_data);
 984	if (!espi->dma_rx) {
 985		ret = -ENODEV;
 986		goto fail_free_page;
 987	}
 988
 989	espi->dma_tx_data.port = EP93XX_DMA_SSP;
 990	espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
 991	espi->dma_tx_data.name = "ep93xx-spi-tx";
 992
 993	espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
 994					   &espi->dma_tx_data);
 995	if (!espi->dma_tx) {
 996		ret = -ENODEV;
 997		goto fail_release_rx;
 998	}
 999
1000	return 0;
1001
1002fail_release_rx:
1003	dma_release_channel(espi->dma_rx);
1004	espi->dma_rx = NULL;
1005fail_free_page:
1006	free_page((unsigned long)espi->zeropage);
1007
1008	return ret;
1009}
1010
1011static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
1012{
1013	if (espi->dma_rx) {
1014		dma_release_channel(espi->dma_rx);
1015		sg_free_table(&espi->rx_sgt);
1016	}
1017	if (espi->dma_tx) {
1018		dma_release_channel(espi->dma_tx);
1019		sg_free_table(&espi->tx_sgt);
1020	}
1021
1022	if (espi->zeropage)
1023		free_page((unsigned long)espi->zeropage);
1024}
1025
1026static int __devinit ep93xx_spi_probe(struct platform_device *pdev)
1027{
1028	struct spi_master *master;
1029	struct ep93xx_spi_info *info;
1030	struct ep93xx_spi *espi;
1031	struct resource *res;
1032	int irq;
1033	int error;
1034
1035	info = pdev->dev.platform_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1036
1037	master = spi_alloc_master(&pdev->dev, sizeof(*espi));
1038	if (!master) {
1039		dev_err(&pdev->dev, "failed to allocate spi master\n");
1040		return -ENOMEM;
1041	}
1042
1043	master->setup = ep93xx_spi_setup;
1044	master->transfer = ep93xx_spi_transfer;
1045	master->cleanup = ep93xx_spi_cleanup;
 
 
1046	master->bus_num = pdev->id;
1047	master->num_chipselect = info->num_chipselect;
1048	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
 
 
 
 
 
 
1049
1050	platform_set_drvdata(pdev, master);
1051
1052	espi = spi_master_get_devdata(master);
1053
1054	espi->clk = clk_get(&pdev->dev, NULL);
1055	if (IS_ERR(espi->clk)) {
1056		dev_err(&pdev->dev, "unable to get spi clock\n");
1057		error = PTR_ERR(espi->clk);
1058		goto fail_release_master;
1059	}
1060
1061	spin_lock_init(&espi->lock);
1062	init_completion(&espi->wait);
1063
1064	/*
1065	 * Calculate maximum and minimum supported clock rates
1066	 * for the controller.
1067	 */
1068	espi->max_rate = clk_get_rate(espi->clk) / 2;
1069	espi->min_rate = clk_get_rate(espi->clk) / (254 * 256);
1070	espi->pdev = pdev;
1071
1072	irq = platform_get_irq(pdev, 0);
1073	if (irq < 0) {
1074		error = -EBUSY;
1075		dev_err(&pdev->dev, "failed to get irq resources\n");
1076		goto fail_put_clock;
1077	}
1078
1079	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1080	if (!res) {
1081		dev_err(&pdev->dev, "unable to get iomem resource\n");
1082		error = -ENODEV;
1083		goto fail_put_clock;
1084	}
1085
1086	espi->sspdr_phys = res->start + SSPDR;
1087
1088	espi->regs_base = devm_request_and_ioremap(&pdev->dev, res);
1089	if (!espi->regs_base) {
1090		dev_err(&pdev->dev, "failed to map resources\n");
1091		error = -ENODEV;
1092		goto fail_put_clock;
1093	}
1094
1095	error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
1096				0, "ep93xx-spi", espi);
1097	if (error) {
1098		dev_err(&pdev->dev, "failed to request irq\n");
1099		goto fail_put_clock;
1100	}
1101
1102	if (info->use_dma && ep93xx_spi_setup_dma(espi))
1103		dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
1104
1105	espi->wq = create_singlethread_workqueue("ep93xx_spid");
1106	if (!espi->wq) {
1107		dev_err(&pdev->dev, "unable to create workqueue\n");
1108		goto fail_free_dma;
1109	}
1110	INIT_WORK(&espi->msg_work, ep93xx_spi_work);
1111	INIT_LIST_HEAD(&espi->msg_queue);
1112	espi->running = true;
1113
1114	/* make sure that the hardware is disabled */
1115	ep93xx_spi_write_u8(espi, SSPCR1, 0);
1116
1117	error = spi_register_master(master);
1118	if (error) {
1119		dev_err(&pdev->dev, "failed to register SPI master\n");
1120		goto fail_free_queue;
1121	}
1122
1123	dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
1124		 (unsigned long)res->start, irq);
1125
1126	return 0;
1127
1128fail_free_queue:
1129	destroy_workqueue(espi->wq);
1130fail_free_dma:
1131	ep93xx_spi_release_dma(espi);
1132fail_put_clock:
1133	clk_put(espi->clk);
1134fail_release_master:
1135	spi_master_put(master);
1136	platform_set_drvdata(pdev, NULL);
1137
1138	return error;
1139}
1140
1141static int __devexit ep93xx_spi_remove(struct platform_device *pdev)
1142{
1143	struct spi_master *master = platform_get_drvdata(pdev);
1144	struct ep93xx_spi *espi = spi_master_get_devdata(master);
1145
1146	spin_lock_irq(&espi->lock);
1147	espi->running = false;
1148	spin_unlock_irq(&espi->lock);
1149
1150	destroy_workqueue(espi->wq);
1151
1152	/*
1153	 * Complete remaining messages with %-ESHUTDOWN status.
1154	 */
1155	spin_lock_irq(&espi->lock);
1156	while (!list_empty(&espi->msg_queue)) {
1157		struct spi_message *msg;
1158
1159		msg = list_first_entry(&espi->msg_queue,
1160				       struct spi_message, queue);
1161		list_del_init(&msg->queue);
1162		msg->status = -ESHUTDOWN;
1163		spin_unlock_irq(&espi->lock);
1164		msg->complete(msg->context);
1165		spin_lock_irq(&espi->lock);
1166	}
1167	spin_unlock_irq(&espi->lock);
1168
1169	ep93xx_spi_release_dma(espi);
1170	clk_put(espi->clk);
1171	platform_set_drvdata(pdev, NULL);
1172
1173	spi_unregister_master(master);
1174	return 0;
1175}
1176
1177static struct platform_driver ep93xx_spi_driver = {
1178	.driver		= {
1179		.name	= "ep93xx-spi",
1180		.owner	= THIS_MODULE,
1181	},
1182	.probe		= ep93xx_spi_probe,
1183	.remove		= __devexit_p(ep93xx_spi_remove),
1184};
1185module_platform_driver(ep93xx_spi_driver);
1186
1187MODULE_DESCRIPTION("EP93xx SPI Controller driver");
1188MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1189MODULE_LICENSE("GPL");
1190MODULE_ALIAS("platform:ep93xx-spi");