Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1995 Linus Torvalds
4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 */
7#include <linux/sched.h> /* test_thread_flag(), ... */
8#include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9#include <linux/kdebug.h> /* oops_begin/end, ... */
10#include <linux/extable.h> /* search_exception_tables */
11#include <linux/memblock.h> /* max_low_pfn */
12#include <linux/kfence.h> /* kfence_handle_page_fault */
13#include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
14#include <linux/mmiotrace.h> /* kmmio_handler, ... */
15#include <linux/perf_event.h> /* perf_sw_event */
16#include <linux/hugetlb.h> /* hstate_index_to_shift */
17#include <linux/prefetch.h> /* prefetchw */
18#include <linux/context_tracking.h> /* exception_enter(), ... */
19#include <linux/uaccess.h> /* faulthandler_disabled() */
20#include <linux/efi.h> /* efi_crash_gracefully_on_page_fault()*/
21#include <linux/mm_types.h>
22
23#include <asm/cpufeature.h> /* boot_cpu_has, ... */
24#include <asm/traps.h> /* dotraplinkage, ... */
25#include <asm/fixmap.h> /* VSYSCALL_ADDR */
26#include <asm/vsyscall.h> /* emulate_vsyscall */
27#include <asm/vm86.h> /* struct vm86 */
28#include <asm/mmu_context.h> /* vma_pkey() */
29#include <asm/efi.h> /* efi_crash_gracefully_on_page_fault()*/
30#include <asm/desc.h> /* store_idt(), ... */
31#include <asm/cpu_entry_area.h> /* exception stack */
32#include <asm/pgtable_areas.h> /* VMALLOC_START, ... */
33#include <asm/kvm_para.h> /* kvm_handle_async_pf */
34#include <asm/vdso.h> /* fixup_vdso_exception() */
35#include <asm/irq_stack.h>
36
37#define CREATE_TRACE_POINTS
38#include <asm/trace/exceptions.h>
39
40/*
41 * Returns 0 if mmiotrace is disabled, or if the fault is not
42 * handled by mmiotrace:
43 */
44static nokprobe_inline int
45kmmio_fault(struct pt_regs *regs, unsigned long addr)
46{
47 if (unlikely(is_kmmio_active()))
48 if (kmmio_handler(regs, addr) == 1)
49 return -1;
50 return 0;
51}
52
53/*
54 * Prefetch quirks:
55 *
56 * 32-bit mode:
57 *
58 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
59 * Check that here and ignore it. This is AMD erratum #91.
60 *
61 * 64-bit mode:
62 *
63 * Sometimes the CPU reports invalid exceptions on prefetch.
64 * Check that here and ignore it.
65 *
66 * Opcode checker based on code by Richard Brunner.
67 */
68static inline int
69check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
70 unsigned char opcode, int *prefetch)
71{
72 unsigned char instr_hi = opcode & 0xf0;
73 unsigned char instr_lo = opcode & 0x0f;
74
75 switch (instr_hi) {
76 case 0x20:
77 case 0x30:
78 /*
79 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
80 * In X86_64 long mode, the CPU will signal invalid
81 * opcode if some of these prefixes are present so
82 * X86_64 will never get here anyway
83 */
84 return ((instr_lo & 7) == 0x6);
85#ifdef CONFIG_X86_64
86 case 0x40:
87 /*
88 * In 64-bit mode 0x40..0x4F are valid REX prefixes
89 */
90 return (!user_mode(regs) || user_64bit_mode(regs));
91#endif
92 case 0x60:
93 /* 0x64 thru 0x67 are valid prefixes in all modes. */
94 return (instr_lo & 0xC) == 0x4;
95 case 0xF0:
96 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
97 return !instr_lo || (instr_lo>>1) == 1;
98 case 0x00:
99 /* Prefetch instruction is 0x0F0D or 0x0F18 */
100 if (get_kernel_nofault(opcode, instr))
101 return 0;
102
103 *prefetch = (instr_lo == 0xF) &&
104 (opcode == 0x0D || opcode == 0x18);
105 return 0;
106 default:
107 return 0;
108 }
109}
110
111static bool is_amd_k8_pre_npt(void)
112{
113 struct cpuinfo_x86 *c = &boot_cpu_data;
114
115 return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
116 c->x86_vendor == X86_VENDOR_AMD &&
117 c->x86 == 0xf && c->x86_model < 0x40);
118}
119
120static int
121is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
122{
123 unsigned char *max_instr;
124 unsigned char *instr;
125 int prefetch = 0;
126
127 /* Erratum #91 affects AMD K8, pre-NPT CPUs */
128 if (!is_amd_k8_pre_npt())
129 return 0;
130
131 /*
132 * If it was a exec (instruction fetch) fault on NX page, then
133 * do not ignore the fault:
134 */
135 if (error_code & X86_PF_INSTR)
136 return 0;
137
138 instr = (void *)convert_ip_to_linear(current, regs);
139 max_instr = instr + 15;
140
141 /*
142 * This code has historically always bailed out if IP points to a
143 * not-present page (e.g. due to a race). No one has ever
144 * complained about this.
145 */
146 pagefault_disable();
147
148 while (instr < max_instr) {
149 unsigned char opcode;
150
151 if (user_mode(regs)) {
152 if (get_user(opcode, (unsigned char __user *) instr))
153 break;
154 } else {
155 if (get_kernel_nofault(opcode, instr))
156 break;
157 }
158
159 instr++;
160
161 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
162 break;
163 }
164
165 pagefault_enable();
166 return prefetch;
167}
168
169DEFINE_SPINLOCK(pgd_lock);
170LIST_HEAD(pgd_list);
171
172#ifdef CONFIG_X86_32
173static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
174{
175 unsigned index = pgd_index(address);
176 pgd_t *pgd_k;
177 p4d_t *p4d, *p4d_k;
178 pud_t *pud, *pud_k;
179 pmd_t *pmd, *pmd_k;
180
181 pgd += index;
182 pgd_k = init_mm.pgd + index;
183
184 if (!pgd_present(*pgd_k))
185 return NULL;
186
187 /*
188 * set_pgd(pgd, *pgd_k); here would be useless on PAE
189 * and redundant with the set_pmd() on non-PAE. As would
190 * set_p4d/set_pud.
191 */
192 p4d = p4d_offset(pgd, address);
193 p4d_k = p4d_offset(pgd_k, address);
194 if (!p4d_present(*p4d_k))
195 return NULL;
196
197 pud = pud_offset(p4d, address);
198 pud_k = pud_offset(p4d_k, address);
199 if (!pud_present(*pud_k))
200 return NULL;
201
202 pmd = pmd_offset(pud, address);
203 pmd_k = pmd_offset(pud_k, address);
204
205 if (pmd_present(*pmd) != pmd_present(*pmd_k))
206 set_pmd(pmd, *pmd_k);
207
208 if (!pmd_present(*pmd_k))
209 return NULL;
210 else
211 BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
212
213 return pmd_k;
214}
215
216/*
217 * Handle a fault on the vmalloc or module mapping area
218 *
219 * This is needed because there is a race condition between the time
220 * when the vmalloc mapping code updates the PMD to the point in time
221 * where it synchronizes this update with the other page-tables in the
222 * system.
223 *
224 * In this race window another thread/CPU can map an area on the same
225 * PMD, finds it already present and does not synchronize it with the
226 * rest of the system yet. As a result v[mz]alloc might return areas
227 * which are not mapped in every page-table in the system, causing an
228 * unhandled page-fault when they are accessed.
229 */
230static noinline int vmalloc_fault(unsigned long address)
231{
232 unsigned long pgd_paddr;
233 pmd_t *pmd_k;
234 pte_t *pte_k;
235
236 /* Make sure we are in vmalloc area: */
237 if (!(address >= VMALLOC_START && address < VMALLOC_END))
238 return -1;
239
240 /*
241 * Synchronize this task's top level page-table
242 * with the 'reference' page table.
243 *
244 * Do _not_ use "current" here. We might be inside
245 * an interrupt in the middle of a task switch..
246 */
247 pgd_paddr = read_cr3_pa();
248 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
249 if (!pmd_k)
250 return -1;
251
252 if (pmd_large(*pmd_k))
253 return 0;
254
255 pte_k = pte_offset_kernel(pmd_k, address);
256 if (!pte_present(*pte_k))
257 return -1;
258
259 return 0;
260}
261NOKPROBE_SYMBOL(vmalloc_fault);
262
263static void __arch_sync_kernel_mappings(unsigned long start, unsigned long end)
264{
265 unsigned long addr;
266
267 for (addr = start & PMD_MASK;
268 addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
269 addr += PMD_SIZE) {
270 struct page *page;
271
272 spin_lock(&pgd_lock);
273 list_for_each_entry(page, &pgd_list, lru) {
274 spinlock_t *pgt_lock;
275
276 /* the pgt_lock only for Xen */
277 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
278
279 spin_lock(pgt_lock);
280 vmalloc_sync_one(page_address(page), addr);
281 spin_unlock(pgt_lock);
282 }
283 spin_unlock(&pgd_lock);
284 }
285}
286
287void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
288{
289 __arch_sync_kernel_mappings(start, end);
290#ifdef CONFIG_KMSAN
291 /*
292 * KMSAN maintains two additional metadata page mappings for the
293 * [VMALLOC_START, VMALLOC_END) range. These mappings start at
294 * KMSAN_VMALLOC_SHADOW_START and KMSAN_VMALLOC_ORIGIN_START and
295 * have to be synced together with the vmalloc memory mapping.
296 */
297 if (start >= VMALLOC_START && end < VMALLOC_END) {
298 __arch_sync_kernel_mappings(
299 start - VMALLOC_START + KMSAN_VMALLOC_SHADOW_START,
300 end - VMALLOC_START + KMSAN_VMALLOC_SHADOW_START);
301 __arch_sync_kernel_mappings(
302 start - VMALLOC_START + KMSAN_VMALLOC_ORIGIN_START,
303 end - VMALLOC_START + KMSAN_VMALLOC_ORIGIN_START);
304 }
305#endif
306}
307
308static bool low_pfn(unsigned long pfn)
309{
310 return pfn < max_low_pfn;
311}
312
313static void dump_pagetable(unsigned long address)
314{
315 pgd_t *base = __va(read_cr3_pa());
316 pgd_t *pgd = &base[pgd_index(address)];
317 p4d_t *p4d;
318 pud_t *pud;
319 pmd_t *pmd;
320 pte_t *pte;
321
322#ifdef CONFIG_X86_PAE
323 pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
324 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
325 goto out;
326#define pr_pde pr_cont
327#else
328#define pr_pde pr_info
329#endif
330 p4d = p4d_offset(pgd, address);
331 pud = pud_offset(p4d, address);
332 pmd = pmd_offset(pud, address);
333 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
334#undef pr_pde
335
336 /*
337 * We must not directly access the pte in the highpte
338 * case if the page table is located in highmem.
339 * And let's rather not kmap-atomic the pte, just in case
340 * it's allocated already:
341 */
342 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
343 goto out;
344
345 pte = pte_offset_kernel(pmd, address);
346 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
347out:
348 pr_cont("\n");
349}
350
351#else /* CONFIG_X86_64: */
352
353#ifdef CONFIG_CPU_SUP_AMD
354static const char errata93_warning[] =
355KERN_ERR
356"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
357"******* Working around it, but it may cause SEGVs or burn power.\n"
358"******* Please consider a BIOS update.\n"
359"******* Disabling USB legacy in the BIOS may also help.\n";
360#endif
361
362static int bad_address(void *p)
363{
364 unsigned long dummy;
365
366 return get_kernel_nofault(dummy, (unsigned long *)p);
367}
368
369static void dump_pagetable(unsigned long address)
370{
371 pgd_t *base = __va(read_cr3_pa());
372 pgd_t *pgd = base + pgd_index(address);
373 p4d_t *p4d;
374 pud_t *pud;
375 pmd_t *pmd;
376 pte_t *pte;
377
378 if (bad_address(pgd))
379 goto bad;
380
381 pr_info("PGD %lx ", pgd_val(*pgd));
382
383 if (!pgd_present(*pgd))
384 goto out;
385
386 p4d = p4d_offset(pgd, address);
387 if (bad_address(p4d))
388 goto bad;
389
390 pr_cont("P4D %lx ", p4d_val(*p4d));
391 if (!p4d_present(*p4d) || p4d_large(*p4d))
392 goto out;
393
394 pud = pud_offset(p4d, address);
395 if (bad_address(pud))
396 goto bad;
397
398 pr_cont("PUD %lx ", pud_val(*pud));
399 if (!pud_present(*pud) || pud_large(*pud))
400 goto out;
401
402 pmd = pmd_offset(pud, address);
403 if (bad_address(pmd))
404 goto bad;
405
406 pr_cont("PMD %lx ", pmd_val(*pmd));
407 if (!pmd_present(*pmd) || pmd_large(*pmd))
408 goto out;
409
410 pte = pte_offset_kernel(pmd, address);
411 if (bad_address(pte))
412 goto bad;
413
414 pr_cont("PTE %lx", pte_val(*pte));
415out:
416 pr_cont("\n");
417 return;
418bad:
419 pr_info("BAD\n");
420}
421
422#endif /* CONFIG_X86_64 */
423
424/*
425 * Workaround for K8 erratum #93 & buggy BIOS.
426 *
427 * BIOS SMM functions are required to use a specific workaround
428 * to avoid corruption of the 64bit RIP register on C stepping K8.
429 *
430 * A lot of BIOS that didn't get tested properly miss this.
431 *
432 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
433 * Try to work around it here.
434 *
435 * Note we only handle faults in kernel here.
436 * Does nothing on 32-bit.
437 */
438static int is_errata93(struct pt_regs *regs, unsigned long address)
439{
440#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
441 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
442 || boot_cpu_data.x86 != 0xf)
443 return 0;
444
445 if (user_mode(regs))
446 return 0;
447
448 if (address != regs->ip)
449 return 0;
450
451 if ((address >> 32) != 0)
452 return 0;
453
454 address |= 0xffffffffUL << 32;
455 if ((address >= (u64)_stext && address <= (u64)_etext) ||
456 (address >= MODULES_VADDR && address <= MODULES_END)) {
457 printk_once(errata93_warning);
458 regs->ip = address;
459 return 1;
460 }
461#endif
462 return 0;
463}
464
465/*
466 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
467 * to illegal addresses >4GB.
468 *
469 * We catch this in the page fault handler because these addresses
470 * are not reachable. Just detect this case and return. Any code
471 * segment in LDT is compatibility mode.
472 */
473static int is_errata100(struct pt_regs *regs, unsigned long address)
474{
475#ifdef CONFIG_X86_64
476 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
477 return 1;
478#endif
479 return 0;
480}
481
482/* Pentium F0 0F C7 C8 bug workaround: */
483static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
484 unsigned long address)
485{
486#ifdef CONFIG_X86_F00F_BUG
487 if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
488 idt_is_f00f_address(address)) {
489 handle_invalid_op(regs);
490 return 1;
491 }
492#endif
493 return 0;
494}
495
496static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
497{
498 u32 offset = (index >> 3) * sizeof(struct desc_struct);
499 unsigned long addr;
500 struct ldttss_desc desc;
501
502 if (index == 0) {
503 pr_alert("%s: NULL\n", name);
504 return;
505 }
506
507 if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
508 pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
509 return;
510 }
511
512 if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
513 sizeof(struct ldttss_desc))) {
514 pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
515 name, index);
516 return;
517 }
518
519 addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
520#ifdef CONFIG_X86_64
521 addr |= ((u64)desc.base3 << 32);
522#endif
523 pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
524 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
525}
526
527static void
528show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
529{
530 if (!oops_may_print())
531 return;
532
533 if (error_code & X86_PF_INSTR) {
534 unsigned int level;
535 pgd_t *pgd;
536 pte_t *pte;
537
538 pgd = __va(read_cr3_pa());
539 pgd += pgd_index(address);
540
541 pte = lookup_address_in_pgd(pgd, address, &level);
542
543 if (pte && pte_present(*pte) && !pte_exec(*pte))
544 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
545 from_kuid(&init_user_ns, current_uid()));
546 if (pte && pte_present(*pte) && pte_exec(*pte) &&
547 (pgd_flags(*pgd) & _PAGE_USER) &&
548 (__read_cr4() & X86_CR4_SMEP))
549 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
550 from_kuid(&init_user_ns, current_uid()));
551 }
552
553 if (address < PAGE_SIZE && !user_mode(regs))
554 pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
555 (void *)address);
556 else
557 pr_alert("BUG: unable to handle page fault for address: %px\n",
558 (void *)address);
559
560 pr_alert("#PF: %s %s in %s mode\n",
561 (error_code & X86_PF_USER) ? "user" : "supervisor",
562 (error_code & X86_PF_INSTR) ? "instruction fetch" :
563 (error_code & X86_PF_WRITE) ? "write access" :
564 "read access",
565 user_mode(regs) ? "user" : "kernel");
566 pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
567 !(error_code & X86_PF_PROT) ? "not-present page" :
568 (error_code & X86_PF_RSVD) ? "reserved bit violation" :
569 (error_code & X86_PF_PK) ? "protection keys violation" :
570 "permissions violation");
571
572 if (!(error_code & X86_PF_USER) && user_mode(regs)) {
573 struct desc_ptr idt, gdt;
574 u16 ldtr, tr;
575
576 /*
577 * This can happen for quite a few reasons. The more obvious
578 * ones are faults accessing the GDT, or LDT. Perhaps
579 * surprisingly, if the CPU tries to deliver a benign or
580 * contributory exception from user code and gets a page fault
581 * during delivery, the page fault can be delivered as though
582 * it originated directly from user code. This could happen
583 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
584 * kernel or IST stack.
585 */
586 store_idt(&idt);
587
588 /* Usable even on Xen PV -- it's just slow. */
589 native_store_gdt(&gdt);
590
591 pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
592 idt.address, idt.size, gdt.address, gdt.size);
593
594 store_ldt(ldtr);
595 show_ldttss(&gdt, "LDTR", ldtr);
596
597 store_tr(tr);
598 show_ldttss(&gdt, "TR", tr);
599 }
600
601 dump_pagetable(address);
602}
603
604static noinline void
605pgtable_bad(struct pt_regs *regs, unsigned long error_code,
606 unsigned long address)
607{
608 struct task_struct *tsk;
609 unsigned long flags;
610 int sig;
611
612 flags = oops_begin();
613 tsk = current;
614 sig = SIGKILL;
615
616 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
617 tsk->comm, address);
618 dump_pagetable(address);
619
620 if (__die("Bad pagetable", regs, error_code))
621 sig = 0;
622
623 oops_end(flags, regs, sig);
624}
625
626static void sanitize_error_code(unsigned long address,
627 unsigned long *error_code)
628{
629 /*
630 * To avoid leaking information about the kernel page
631 * table layout, pretend that user-mode accesses to
632 * kernel addresses are always protection faults.
633 *
634 * NB: This means that failed vsyscalls with vsyscall=none
635 * will have the PROT bit. This doesn't leak any
636 * information and does not appear to cause any problems.
637 */
638 if (address >= TASK_SIZE_MAX)
639 *error_code |= X86_PF_PROT;
640}
641
642static void set_signal_archinfo(unsigned long address,
643 unsigned long error_code)
644{
645 struct task_struct *tsk = current;
646
647 tsk->thread.trap_nr = X86_TRAP_PF;
648 tsk->thread.error_code = error_code | X86_PF_USER;
649 tsk->thread.cr2 = address;
650}
651
652static noinline void
653page_fault_oops(struct pt_regs *regs, unsigned long error_code,
654 unsigned long address)
655{
656#ifdef CONFIG_VMAP_STACK
657 struct stack_info info;
658#endif
659 unsigned long flags;
660 int sig;
661
662 if (user_mode(regs)) {
663 /*
664 * Implicit kernel access from user mode? Skip the stack
665 * overflow and EFI special cases.
666 */
667 goto oops;
668 }
669
670#ifdef CONFIG_VMAP_STACK
671 /*
672 * Stack overflow? During boot, we can fault near the initial
673 * stack in the direct map, but that's not an overflow -- check
674 * that we're in vmalloc space to avoid this.
675 */
676 if (is_vmalloc_addr((void *)address) &&
677 get_stack_guard_info((void *)address, &info)) {
678 /*
679 * We're likely to be running with very little stack space
680 * left. It's plausible that we'd hit this condition but
681 * double-fault even before we get this far, in which case
682 * we're fine: the double-fault handler will deal with it.
683 *
684 * We don't want to make it all the way into the oops code
685 * and then double-fault, though, because we're likely to
686 * break the console driver and lose most of the stack dump.
687 */
688 call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*),
689 handle_stack_overflow,
690 ASM_CALL_ARG3,
691 , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info));
692
693 unreachable();
694 }
695#endif
696
697 /*
698 * Buggy firmware could access regions which might page fault. If
699 * this happens, EFI has a special OOPS path that will try to
700 * avoid hanging the system.
701 */
702 if (IS_ENABLED(CONFIG_EFI))
703 efi_crash_gracefully_on_page_fault(address);
704
705 /* Only not-present faults should be handled by KFENCE. */
706 if (!(error_code & X86_PF_PROT) &&
707 kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
708 return;
709
710oops:
711 /*
712 * Oops. The kernel tried to access some bad page. We'll have to
713 * terminate things with extreme prejudice:
714 */
715 flags = oops_begin();
716
717 show_fault_oops(regs, error_code, address);
718
719 if (task_stack_end_corrupted(current))
720 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
721
722 sig = SIGKILL;
723 if (__die("Oops", regs, error_code))
724 sig = 0;
725
726 /* Executive summary in case the body of the oops scrolled away */
727 printk(KERN_DEFAULT "CR2: %016lx\n", address);
728
729 oops_end(flags, regs, sig);
730}
731
732static noinline void
733kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
734 unsigned long address, int signal, int si_code,
735 u32 pkey)
736{
737 WARN_ON_ONCE(user_mode(regs));
738
739 /* Are we prepared to handle this kernel fault? */
740 if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
741 /*
742 * Any interrupt that takes a fault gets the fixup. This makes
743 * the below recursive fault logic only apply to a faults from
744 * task context.
745 */
746 if (in_interrupt())
747 return;
748
749 /*
750 * Per the above we're !in_interrupt(), aka. task context.
751 *
752 * In this case we need to make sure we're not recursively
753 * faulting through the emulate_vsyscall() logic.
754 */
755 if (current->thread.sig_on_uaccess_err && signal) {
756 sanitize_error_code(address, &error_code);
757
758 set_signal_archinfo(address, error_code);
759
760 if (si_code == SEGV_PKUERR) {
761 force_sig_pkuerr((void __user *)address, pkey);
762 } else {
763 /* XXX: hwpoison faults will set the wrong code. */
764 force_sig_fault(signal, si_code, (void __user *)address);
765 }
766 }
767
768 /*
769 * Barring that, we can do the fixup and be happy.
770 */
771 return;
772 }
773
774 /*
775 * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
776 * instruction.
777 */
778 if (is_prefetch(regs, error_code, address))
779 return;
780
781 page_fault_oops(regs, error_code, address);
782}
783
784/*
785 * Print out info about fatal segfaults, if the show_unhandled_signals
786 * sysctl is set:
787 */
788static inline void
789show_signal_msg(struct pt_regs *regs, unsigned long error_code,
790 unsigned long address, struct task_struct *tsk)
791{
792 const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
793 /* This is a racy snapshot, but it's better than nothing. */
794 int cpu = raw_smp_processor_id();
795
796 if (!unhandled_signal(tsk, SIGSEGV))
797 return;
798
799 if (!printk_ratelimit())
800 return;
801
802 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
803 loglvl, tsk->comm, task_pid_nr(tsk), address,
804 (void *)regs->ip, (void *)regs->sp, error_code);
805
806 print_vma_addr(KERN_CONT " in ", regs->ip);
807
808 /*
809 * Dump the likely CPU where the fatal segfault happened.
810 * This can help identify faulty hardware.
811 */
812 printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu,
813 topology_core_id(cpu), topology_physical_package_id(cpu));
814
815
816 printk(KERN_CONT "\n");
817
818 show_opcodes(regs, loglvl);
819}
820
821/*
822 * The (legacy) vsyscall page is the long page in the kernel portion
823 * of the address space that has user-accessible permissions.
824 */
825static bool is_vsyscall_vaddr(unsigned long vaddr)
826{
827 return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
828}
829
830static void
831__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
832 unsigned long address, u32 pkey, int si_code)
833{
834 struct task_struct *tsk = current;
835
836 if (!user_mode(regs)) {
837 kernelmode_fixup_or_oops(regs, error_code, address,
838 SIGSEGV, si_code, pkey);
839 return;
840 }
841
842 if (!(error_code & X86_PF_USER)) {
843 /* Implicit user access to kernel memory -- just oops */
844 page_fault_oops(regs, error_code, address);
845 return;
846 }
847
848 /*
849 * User mode accesses just cause a SIGSEGV.
850 * It's possible to have interrupts off here:
851 */
852 local_irq_enable();
853
854 /*
855 * Valid to do another page fault here because this one came
856 * from user space:
857 */
858 if (is_prefetch(regs, error_code, address))
859 return;
860
861 if (is_errata100(regs, address))
862 return;
863
864 sanitize_error_code(address, &error_code);
865
866 if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
867 return;
868
869 if (likely(show_unhandled_signals))
870 show_signal_msg(regs, error_code, address, tsk);
871
872 set_signal_archinfo(address, error_code);
873
874 if (si_code == SEGV_PKUERR)
875 force_sig_pkuerr((void __user *)address, pkey);
876 else
877 force_sig_fault(SIGSEGV, si_code, (void __user *)address);
878
879 local_irq_disable();
880}
881
882static noinline void
883bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
884 unsigned long address)
885{
886 __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
887}
888
889static void
890__bad_area(struct pt_regs *regs, unsigned long error_code,
891 unsigned long address, u32 pkey, int si_code)
892{
893 struct mm_struct *mm = current->mm;
894 /*
895 * Something tried to access memory that isn't in our memory map..
896 * Fix it, but check if it's kernel or user first..
897 */
898 mmap_read_unlock(mm);
899
900 __bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
901}
902
903static noinline void
904bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
905{
906 __bad_area(regs, error_code, address, 0, SEGV_MAPERR);
907}
908
909static inline bool bad_area_access_from_pkeys(unsigned long error_code,
910 struct vm_area_struct *vma)
911{
912 /* This code is always called on the current mm */
913 bool foreign = false;
914
915 if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
916 return false;
917 if (error_code & X86_PF_PK)
918 return true;
919 /* this checks permission keys on the VMA: */
920 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
921 (error_code & X86_PF_INSTR), foreign))
922 return true;
923 return false;
924}
925
926static noinline void
927bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
928 unsigned long address, struct vm_area_struct *vma)
929{
930 /*
931 * This OSPKE check is not strictly necessary at runtime.
932 * But, doing it this way allows compiler optimizations
933 * if pkeys are compiled out.
934 */
935 if (bad_area_access_from_pkeys(error_code, vma)) {
936 /*
937 * A protection key fault means that the PKRU value did not allow
938 * access to some PTE. Userspace can figure out what PKRU was
939 * from the XSAVE state. This function captures the pkey from
940 * the vma and passes it to userspace so userspace can discover
941 * which protection key was set on the PTE.
942 *
943 * If we get here, we know that the hardware signaled a X86_PF_PK
944 * fault and that there was a VMA once we got in the fault
945 * handler. It does *not* guarantee that the VMA we find here
946 * was the one that we faulted on.
947 *
948 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
949 * 2. T1 : set PKRU to deny access to pkey=4, touches page
950 * 3. T1 : faults...
951 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
952 * 5. T1 : enters fault handler, takes mmap_lock, etc...
953 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
954 * faulted on a pte with its pkey=4.
955 */
956 u32 pkey = vma_pkey(vma);
957
958 __bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
959 } else {
960 __bad_area(regs, error_code, address, 0, SEGV_ACCERR);
961 }
962}
963
964static void
965do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
966 vm_fault_t fault)
967{
968 /* Kernel mode? Handle exceptions or die: */
969 if (!user_mode(regs)) {
970 kernelmode_fixup_or_oops(regs, error_code, address,
971 SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY);
972 return;
973 }
974
975 /* User-space => ok to do another page fault: */
976 if (is_prefetch(regs, error_code, address))
977 return;
978
979 sanitize_error_code(address, &error_code);
980
981 if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
982 return;
983
984 set_signal_archinfo(address, error_code);
985
986#ifdef CONFIG_MEMORY_FAILURE
987 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
988 struct task_struct *tsk = current;
989 unsigned lsb = 0;
990
991 pr_err(
992 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
993 tsk->comm, tsk->pid, address);
994 if (fault & VM_FAULT_HWPOISON_LARGE)
995 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
996 if (fault & VM_FAULT_HWPOISON)
997 lsb = PAGE_SHIFT;
998 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
999 return;
1000 }
1001#endif
1002 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
1003}
1004
1005static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
1006{
1007 if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
1008 return 0;
1009
1010 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1011 return 0;
1012
1013 return 1;
1014}
1015
1016/*
1017 * Handle a spurious fault caused by a stale TLB entry.
1018 *
1019 * This allows us to lazily refresh the TLB when increasing the
1020 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1021 * eagerly is very expensive since that implies doing a full
1022 * cross-processor TLB flush, even if no stale TLB entries exist
1023 * on other processors.
1024 *
1025 * Spurious faults may only occur if the TLB contains an entry with
1026 * fewer permission than the page table entry. Non-present (P = 0)
1027 * and reserved bit (R = 1) faults are never spurious.
1028 *
1029 * There are no security implications to leaving a stale TLB when
1030 * increasing the permissions on a page.
1031 *
1032 * Returns non-zero if a spurious fault was handled, zero otherwise.
1033 *
1034 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1035 * (Optional Invalidation).
1036 */
1037static noinline int
1038spurious_kernel_fault(unsigned long error_code, unsigned long address)
1039{
1040 pgd_t *pgd;
1041 p4d_t *p4d;
1042 pud_t *pud;
1043 pmd_t *pmd;
1044 pte_t *pte;
1045 int ret;
1046
1047 /*
1048 * Only writes to RO or instruction fetches from NX may cause
1049 * spurious faults.
1050 *
1051 * These could be from user or supervisor accesses but the TLB
1052 * is only lazily flushed after a kernel mapping protection
1053 * change, so user accesses are not expected to cause spurious
1054 * faults.
1055 */
1056 if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1057 error_code != (X86_PF_INSTR | X86_PF_PROT))
1058 return 0;
1059
1060 pgd = init_mm.pgd + pgd_index(address);
1061 if (!pgd_present(*pgd))
1062 return 0;
1063
1064 p4d = p4d_offset(pgd, address);
1065 if (!p4d_present(*p4d))
1066 return 0;
1067
1068 if (p4d_large(*p4d))
1069 return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1070
1071 pud = pud_offset(p4d, address);
1072 if (!pud_present(*pud))
1073 return 0;
1074
1075 if (pud_large(*pud))
1076 return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1077
1078 pmd = pmd_offset(pud, address);
1079 if (!pmd_present(*pmd))
1080 return 0;
1081
1082 if (pmd_large(*pmd))
1083 return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1084
1085 pte = pte_offset_kernel(pmd, address);
1086 if (!pte_present(*pte))
1087 return 0;
1088
1089 ret = spurious_kernel_fault_check(error_code, pte);
1090 if (!ret)
1091 return 0;
1092
1093 /*
1094 * Make sure we have permissions in PMD.
1095 * If not, then there's a bug in the page tables:
1096 */
1097 ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1098 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1099
1100 return ret;
1101}
1102NOKPROBE_SYMBOL(spurious_kernel_fault);
1103
1104int show_unhandled_signals = 1;
1105
1106static inline int
1107access_error(unsigned long error_code, struct vm_area_struct *vma)
1108{
1109 /* This is only called for the current mm, so: */
1110 bool foreign = false;
1111
1112 /*
1113 * Read or write was blocked by protection keys. This is
1114 * always an unconditional error and can never result in
1115 * a follow-up action to resolve the fault, like a COW.
1116 */
1117 if (error_code & X86_PF_PK)
1118 return 1;
1119
1120 /*
1121 * SGX hardware blocked the access. This usually happens
1122 * when the enclave memory contents have been destroyed, like
1123 * after a suspend/resume cycle. In any case, the kernel can't
1124 * fix the cause of the fault. Handle the fault as an access
1125 * error even in cases where no actual access violation
1126 * occurred. This allows userspace to rebuild the enclave in
1127 * response to the signal.
1128 */
1129 if (unlikely(error_code & X86_PF_SGX))
1130 return 1;
1131
1132 /*
1133 * Make sure to check the VMA so that we do not perform
1134 * faults just to hit a X86_PF_PK as soon as we fill in a
1135 * page.
1136 */
1137 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1138 (error_code & X86_PF_INSTR), foreign))
1139 return 1;
1140
1141 if (error_code & X86_PF_WRITE) {
1142 /* write, present and write, not present: */
1143 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1144 return 1;
1145 return 0;
1146 }
1147
1148 /* read, present: */
1149 if (unlikely(error_code & X86_PF_PROT))
1150 return 1;
1151
1152 /* read, not present: */
1153 if (unlikely(!vma_is_accessible(vma)))
1154 return 1;
1155
1156 return 0;
1157}
1158
1159bool fault_in_kernel_space(unsigned long address)
1160{
1161 /*
1162 * On 64-bit systems, the vsyscall page is at an address above
1163 * TASK_SIZE_MAX, but is not considered part of the kernel
1164 * address space.
1165 */
1166 if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1167 return false;
1168
1169 return address >= TASK_SIZE_MAX;
1170}
1171
1172/*
1173 * Called for all faults where 'address' is part of the kernel address
1174 * space. Might get called for faults that originate from *code* that
1175 * ran in userspace or the kernel.
1176 */
1177static void
1178do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1179 unsigned long address)
1180{
1181 /*
1182 * Protection keys exceptions only happen on user pages. We
1183 * have no user pages in the kernel portion of the address
1184 * space, so do not expect them here.
1185 */
1186 WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1187
1188#ifdef CONFIG_X86_32
1189 /*
1190 * We can fault-in kernel-space virtual memory on-demand. The
1191 * 'reference' page table is init_mm.pgd.
1192 *
1193 * NOTE! We MUST NOT take any locks for this case. We may
1194 * be in an interrupt or a critical region, and should
1195 * only copy the information from the master page table,
1196 * nothing more.
1197 *
1198 * Before doing this on-demand faulting, ensure that the
1199 * fault is not any of the following:
1200 * 1. A fault on a PTE with a reserved bit set.
1201 * 2. A fault caused by a user-mode access. (Do not demand-
1202 * fault kernel memory due to user-mode accesses).
1203 * 3. A fault caused by a page-level protection violation.
1204 * (A demand fault would be on a non-present page which
1205 * would have X86_PF_PROT==0).
1206 *
1207 * This is only needed to close a race condition on x86-32 in
1208 * the vmalloc mapping/unmapping code. See the comment above
1209 * vmalloc_fault() for details. On x86-64 the race does not
1210 * exist as the vmalloc mappings don't need to be synchronized
1211 * there.
1212 */
1213 if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1214 if (vmalloc_fault(address) >= 0)
1215 return;
1216 }
1217#endif
1218
1219 if (is_f00f_bug(regs, hw_error_code, address))
1220 return;
1221
1222 /* Was the fault spurious, caused by lazy TLB invalidation? */
1223 if (spurious_kernel_fault(hw_error_code, address))
1224 return;
1225
1226 /* kprobes don't want to hook the spurious faults: */
1227 if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1228 return;
1229
1230 /*
1231 * Note, despite being a "bad area", there are quite a few
1232 * acceptable reasons to get here, such as erratum fixups
1233 * and handling kernel code that can fault, like get_user().
1234 *
1235 * Don't take the mm semaphore here. If we fixup a prefetch
1236 * fault we could otherwise deadlock:
1237 */
1238 bad_area_nosemaphore(regs, hw_error_code, address);
1239}
1240NOKPROBE_SYMBOL(do_kern_addr_fault);
1241
1242/*
1243 * Handle faults in the user portion of the address space. Nothing in here
1244 * should check X86_PF_USER without a specific justification: for almost
1245 * all purposes, we should treat a normal kernel access to user memory
1246 * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
1247 * The one exception is AC flag handling, which is, per the x86
1248 * architecture, special for WRUSS.
1249 */
1250static inline
1251void do_user_addr_fault(struct pt_regs *regs,
1252 unsigned long error_code,
1253 unsigned long address)
1254{
1255 struct vm_area_struct *vma;
1256 struct task_struct *tsk;
1257 struct mm_struct *mm;
1258 vm_fault_t fault;
1259 unsigned int flags = FAULT_FLAG_DEFAULT;
1260
1261 tsk = current;
1262 mm = tsk->mm;
1263
1264 if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
1265 /*
1266 * Whoops, this is kernel mode code trying to execute from
1267 * user memory. Unless this is AMD erratum #93, which
1268 * corrupts RIP such that it looks like a user address,
1269 * this is unrecoverable. Don't even try to look up the
1270 * VMA or look for extable entries.
1271 */
1272 if (is_errata93(regs, address))
1273 return;
1274
1275 page_fault_oops(regs, error_code, address);
1276 return;
1277 }
1278
1279 /* kprobes don't want to hook the spurious faults: */
1280 if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1281 return;
1282
1283 /*
1284 * Reserved bits are never expected to be set on
1285 * entries in the user portion of the page tables.
1286 */
1287 if (unlikely(error_code & X86_PF_RSVD))
1288 pgtable_bad(regs, error_code, address);
1289
1290 /*
1291 * If SMAP is on, check for invalid kernel (supervisor) access to user
1292 * pages in the user address space. The odd case here is WRUSS,
1293 * which, according to the preliminary documentation, does not respect
1294 * SMAP and will have the USER bit set so, in all cases, SMAP
1295 * enforcement appears to be consistent with the USER bit.
1296 */
1297 if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1298 !(error_code & X86_PF_USER) &&
1299 !(regs->flags & X86_EFLAGS_AC))) {
1300 /*
1301 * No extable entry here. This was a kernel access to an
1302 * invalid pointer. get_kernel_nofault() will not get here.
1303 */
1304 page_fault_oops(regs, error_code, address);
1305 return;
1306 }
1307
1308 /*
1309 * If we're in an interrupt, have no user context or are running
1310 * in a region with pagefaults disabled then we must not take the fault
1311 */
1312 if (unlikely(faulthandler_disabled() || !mm)) {
1313 bad_area_nosemaphore(regs, error_code, address);
1314 return;
1315 }
1316
1317 /*
1318 * It's safe to allow irq's after cr2 has been saved and the
1319 * vmalloc fault has been handled.
1320 *
1321 * User-mode registers count as a user access even for any
1322 * potential system fault or CPU buglet:
1323 */
1324 if (user_mode(regs)) {
1325 local_irq_enable();
1326 flags |= FAULT_FLAG_USER;
1327 } else {
1328 if (regs->flags & X86_EFLAGS_IF)
1329 local_irq_enable();
1330 }
1331
1332 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1333
1334 if (error_code & X86_PF_WRITE)
1335 flags |= FAULT_FLAG_WRITE;
1336 if (error_code & X86_PF_INSTR)
1337 flags |= FAULT_FLAG_INSTRUCTION;
1338
1339#ifdef CONFIG_X86_64
1340 /*
1341 * Faults in the vsyscall page might need emulation. The
1342 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1343 * considered to be part of the user address space.
1344 *
1345 * The vsyscall page does not have a "real" VMA, so do this
1346 * emulation before we go searching for VMAs.
1347 *
1348 * PKRU never rejects instruction fetches, so we don't need
1349 * to consider the PF_PK bit.
1350 */
1351 if (is_vsyscall_vaddr(address)) {
1352 if (emulate_vsyscall(error_code, regs, address))
1353 return;
1354 }
1355#endif
1356
1357 /*
1358 * Kernel-mode access to the user address space should only occur
1359 * on well-defined single instructions listed in the exception
1360 * tables. But, an erroneous kernel fault occurring outside one of
1361 * those areas which also holds mmap_lock might deadlock attempting
1362 * to validate the fault against the address space.
1363 *
1364 * Only do the expensive exception table search when we might be at
1365 * risk of a deadlock. This happens if we
1366 * 1. Failed to acquire mmap_lock, and
1367 * 2. The access did not originate in userspace.
1368 */
1369 if (unlikely(!mmap_read_trylock(mm))) {
1370 if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
1371 /*
1372 * Fault from code in kernel from
1373 * which we do not expect faults.
1374 */
1375 bad_area_nosemaphore(regs, error_code, address);
1376 return;
1377 }
1378retry:
1379 mmap_read_lock(mm);
1380 } else {
1381 /*
1382 * The above down_read_trylock() might have succeeded in
1383 * which case we'll have missed the might_sleep() from
1384 * down_read():
1385 */
1386 might_sleep();
1387 }
1388
1389 vma = find_vma(mm, address);
1390 if (unlikely(!vma)) {
1391 bad_area(regs, error_code, address);
1392 return;
1393 }
1394 if (likely(vma->vm_start <= address))
1395 goto good_area;
1396 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1397 bad_area(regs, error_code, address);
1398 return;
1399 }
1400 if (unlikely(expand_stack(vma, address))) {
1401 bad_area(regs, error_code, address);
1402 return;
1403 }
1404
1405 /*
1406 * Ok, we have a good vm_area for this memory access, so
1407 * we can handle it..
1408 */
1409good_area:
1410 if (unlikely(access_error(error_code, vma))) {
1411 bad_area_access_error(regs, error_code, address, vma);
1412 return;
1413 }
1414
1415 /*
1416 * If for any reason at all we couldn't handle the fault,
1417 * make sure we exit gracefully rather than endlessly redo
1418 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1419 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1420 *
1421 * Note that handle_userfault() may also release and reacquire mmap_lock
1422 * (and not return with VM_FAULT_RETRY), when returning to userland to
1423 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1424 * (potentially after handling any pending signal during the return to
1425 * userland). The return to userland is identified whenever
1426 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1427 */
1428 fault = handle_mm_fault(vma, address, flags, regs);
1429
1430 if (fault_signal_pending(fault, regs)) {
1431 /*
1432 * Quick path to respond to signals. The core mm code
1433 * has unlocked the mm for us if we get here.
1434 */
1435 if (!user_mode(regs))
1436 kernelmode_fixup_or_oops(regs, error_code, address,
1437 SIGBUS, BUS_ADRERR,
1438 ARCH_DEFAULT_PKEY);
1439 return;
1440 }
1441
1442 /* The fault is fully completed (including releasing mmap lock) */
1443 if (fault & VM_FAULT_COMPLETED)
1444 return;
1445
1446 /*
1447 * If we need to retry the mmap_lock has already been released,
1448 * and if there is a fatal signal pending there is no guarantee
1449 * that we made any progress. Handle this case first.
1450 */
1451 if (unlikely(fault & VM_FAULT_RETRY)) {
1452 flags |= FAULT_FLAG_TRIED;
1453 goto retry;
1454 }
1455
1456 mmap_read_unlock(mm);
1457 if (likely(!(fault & VM_FAULT_ERROR)))
1458 return;
1459
1460 if (fatal_signal_pending(current) && !user_mode(regs)) {
1461 kernelmode_fixup_or_oops(regs, error_code, address,
1462 0, 0, ARCH_DEFAULT_PKEY);
1463 return;
1464 }
1465
1466 if (fault & VM_FAULT_OOM) {
1467 /* Kernel mode? Handle exceptions or die: */
1468 if (!user_mode(regs)) {
1469 kernelmode_fixup_or_oops(regs, error_code, address,
1470 SIGSEGV, SEGV_MAPERR,
1471 ARCH_DEFAULT_PKEY);
1472 return;
1473 }
1474
1475 /*
1476 * We ran out of memory, call the OOM killer, and return the
1477 * userspace (which will retry the fault, or kill us if we got
1478 * oom-killed):
1479 */
1480 pagefault_out_of_memory();
1481 } else {
1482 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1483 VM_FAULT_HWPOISON_LARGE))
1484 do_sigbus(regs, error_code, address, fault);
1485 else if (fault & VM_FAULT_SIGSEGV)
1486 bad_area_nosemaphore(regs, error_code, address);
1487 else
1488 BUG();
1489 }
1490}
1491NOKPROBE_SYMBOL(do_user_addr_fault);
1492
1493static __always_inline void
1494trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1495 unsigned long address)
1496{
1497 if (!trace_pagefault_enabled())
1498 return;
1499
1500 if (user_mode(regs))
1501 trace_page_fault_user(address, regs, error_code);
1502 else
1503 trace_page_fault_kernel(address, regs, error_code);
1504}
1505
1506static __always_inline void
1507handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1508 unsigned long address)
1509{
1510 trace_page_fault_entries(regs, error_code, address);
1511
1512 if (unlikely(kmmio_fault(regs, address)))
1513 return;
1514
1515 /* Was the fault on kernel-controlled part of the address space? */
1516 if (unlikely(fault_in_kernel_space(address))) {
1517 do_kern_addr_fault(regs, error_code, address);
1518 } else {
1519 do_user_addr_fault(regs, error_code, address);
1520 /*
1521 * User address page fault handling might have reenabled
1522 * interrupts. Fixing up all potential exit points of
1523 * do_user_addr_fault() and its leaf functions is just not
1524 * doable w/o creating an unholy mess or turning the code
1525 * upside down.
1526 */
1527 local_irq_disable();
1528 }
1529}
1530
1531DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1532{
1533 unsigned long address = read_cr2();
1534 irqentry_state_t state;
1535
1536 prefetchw(¤t->mm->mmap_lock);
1537
1538 /*
1539 * KVM uses #PF vector to deliver 'page not present' events to guests
1540 * (asynchronous page fault mechanism). The event happens when a
1541 * userspace task is trying to access some valid (from guest's point of
1542 * view) memory which is not currently mapped by the host (e.g. the
1543 * memory is swapped out). Note, the corresponding "page ready" event
1544 * which is injected when the memory becomes available, is delivered via
1545 * an interrupt mechanism and not a #PF exception
1546 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1547 *
1548 * We are relying on the interrupted context being sane (valid RSP,
1549 * relevant locks not held, etc.), which is fine as long as the
1550 * interrupted context had IF=1. We are also relying on the KVM
1551 * async pf type field and CR2 being read consistently instead of
1552 * getting values from real and async page faults mixed up.
1553 *
1554 * Fingers crossed.
1555 *
1556 * The async #PF handling code takes care of idtentry handling
1557 * itself.
1558 */
1559 if (kvm_handle_async_pf(regs, (u32)address))
1560 return;
1561
1562 /*
1563 * Entry handling for valid #PF from kernel mode is slightly
1564 * different: RCU is already watching and ct_irq_enter() must not
1565 * be invoked because a kernel fault on a user space address might
1566 * sleep.
1567 *
1568 * In case the fault hit a RCU idle region the conditional entry
1569 * code reenabled RCU to avoid subsequent wreckage which helps
1570 * debuggability.
1571 */
1572 state = irqentry_enter(regs);
1573
1574 instrumentation_begin();
1575 handle_page_fault(regs, error_code, address);
1576 instrumentation_end();
1577
1578 irqentry_exit(regs, state);
1579}
1/*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5 */
6#include <linux/magic.h> /* STACK_END_MAGIC */
7#include <linux/sched.h> /* test_thread_flag(), ... */
8#include <linux/kdebug.h> /* oops_begin/end, ... */
9#include <linux/module.h> /* search_exception_table */
10#include <linux/bootmem.h> /* max_low_pfn */
11#include <linux/kprobes.h> /* __kprobes, ... */
12#include <linux/mmiotrace.h> /* kmmio_handler, ... */
13#include <linux/perf_event.h> /* perf_sw_event */
14#include <linux/hugetlb.h> /* hstate_index_to_shift */
15#include <linux/prefetch.h> /* prefetchw */
16
17#include <asm/traps.h> /* dotraplinkage, ... */
18#include <asm/pgalloc.h> /* pgd_*(), ... */
19#include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
20#include <asm/vsyscall.h>
21
22/*
23 * Page fault error code bits:
24 *
25 * bit 0 == 0: no page found 1: protection fault
26 * bit 1 == 0: read access 1: write access
27 * bit 2 == 0: kernel-mode access 1: user-mode access
28 * bit 3 == 1: use of reserved bit detected
29 * bit 4 == 1: fault was an instruction fetch
30 */
31enum x86_pf_error_code {
32
33 PF_PROT = 1 << 0,
34 PF_WRITE = 1 << 1,
35 PF_USER = 1 << 2,
36 PF_RSVD = 1 << 3,
37 PF_INSTR = 1 << 4,
38};
39
40/*
41 * Returns 0 if mmiotrace is disabled, or if the fault is not
42 * handled by mmiotrace:
43 */
44static inline int __kprobes
45kmmio_fault(struct pt_regs *regs, unsigned long addr)
46{
47 if (unlikely(is_kmmio_active()))
48 if (kmmio_handler(regs, addr) == 1)
49 return -1;
50 return 0;
51}
52
53static inline int __kprobes notify_page_fault(struct pt_regs *regs)
54{
55 int ret = 0;
56
57 /* kprobe_running() needs smp_processor_id() */
58 if (kprobes_built_in() && !user_mode_vm(regs)) {
59 preempt_disable();
60 if (kprobe_running() && kprobe_fault_handler(regs, 14))
61 ret = 1;
62 preempt_enable();
63 }
64
65 return ret;
66}
67
68/*
69 * Prefetch quirks:
70 *
71 * 32-bit mode:
72 *
73 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
74 * Check that here and ignore it.
75 *
76 * 64-bit mode:
77 *
78 * Sometimes the CPU reports invalid exceptions on prefetch.
79 * Check that here and ignore it.
80 *
81 * Opcode checker based on code by Richard Brunner.
82 */
83static inline int
84check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
85 unsigned char opcode, int *prefetch)
86{
87 unsigned char instr_hi = opcode & 0xf0;
88 unsigned char instr_lo = opcode & 0x0f;
89
90 switch (instr_hi) {
91 case 0x20:
92 case 0x30:
93 /*
94 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
95 * In X86_64 long mode, the CPU will signal invalid
96 * opcode if some of these prefixes are present so
97 * X86_64 will never get here anyway
98 */
99 return ((instr_lo & 7) == 0x6);
100#ifdef CONFIG_X86_64
101 case 0x40:
102 /*
103 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
104 * Need to figure out under what instruction mode the
105 * instruction was issued. Could check the LDT for lm,
106 * but for now it's good enough to assume that long
107 * mode only uses well known segments or kernel.
108 */
109 return (!user_mode(regs) || user_64bit_mode(regs));
110#endif
111 case 0x60:
112 /* 0x64 thru 0x67 are valid prefixes in all modes. */
113 return (instr_lo & 0xC) == 0x4;
114 case 0xF0:
115 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
116 return !instr_lo || (instr_lo>>1) == 1;
117 case 0x00:
118 /* Prefetch instruction is 0x0F0D or 0x0F18 */
119 if (probe_kernel_address(instr, opcode))
120 return 0;
121
122 *prefetch = (instr_lo == 0xF) &&
123 (opcode == 0x0D || opcode == 0x18);
124 return 0;
125 default:
126 return 0;
127 }
128}
129
130static int
131is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
132{
133 unsigned char *max_instr;
134 unsigned char *instr;
135 int prefetch = 0;
136
137 /*
138 * If it was a exec (instruction fetch) fault on NX page, then
139 * do not ignore the fault:
140 */
141 if (error_code & PF_INSTR)
142 return 0;
143
144 instr = (void *)convert_ip_to_linear(current, regs);
145 max_instr = instr + 15;
146
147 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
148 return 0;
149
150 while (instr < max_instr) {
151 unsigned char opcode;
152
153 if (probe_kernel_address(instr, opcode))
154 break;
155
156 instr++;
157
158 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
159 break;
160 }
161 return prefetch;
162}
163
164static void
165force_sig_info_fault(int si_signo, int si_code, unsigned long address,
166 struct task_struct *tsk, int fault)
167{
168 unsigned lsb = 0;
169 siginfo_t info;
170
171 info.si_signo = si_signo;
172 info.si_errno = 0;
173 info.si_code = si_code;
174 info.si_addr = (void __user *)address;
175 if (fault & VM_FAULT_HWPOISON_LARGE)
176 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
177 if (fault & VM_FAULT_HWPOISON)
178 lsb = PAGE_SHIFT;
179 info.si_addr_lsb = lsb;
180
181 force_sig_info(si_signo, &info, tsk);
182}
183
184DEFINE_SPINLOCK(pgd_lock);
185LIST_HEAD(pgd_list);
186
187#ifdef CONFIG_X86_32
188static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
189{
190 unsigned index = pgd_index(address);
191 pgd_t *pgd_k;
192 pud_t *pud, *pud_k;
193 pmd_t *pmd, *pmd_k;
194
195 pgd += index;
196 pgd_k = init_mm.pgd + index;
197
198 if (!pgd_present(*pgd_k))
199 return NULL;
200
201 /*
202 * set_pgd(pgd, *pgd_k); here would be useless on PAE
203 * and redundant with the set_pmd() on non-PAE. As would
204 * set_pud.
205 */
206 pud = pud_offset(pgd, address);
207 pud_k = pud_offset(pgd_k, address);
208 if (!pud_present(*pud_k))
209 return NULL;
210
211 pmd = pmd_offset(pud, address);
212 pmd_k = pmd_offset(pud_k, address);
213 if (!pmd_present(*pmd_k))
214 return NULL;
215
216 if (!pmd_present(*pmd))
217 set_pmd(pmd, *pmd_k);
218 else
219 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
220
221 return pmd_k;
222}
223
224void vmalloc_sync_all(void)
225{
226 unsigned long address;
227
228 if (SHARED_KERNEL_PMD)
229 return;
230
231 for (address = VMALLOC_START & PMD_MASK;
232 address >= TASK_SIZE && address < FIXADDR_TOP;
233 address += PMD_SIZE) {
234 struct page *page;
235
236 spin_lock(&pgd_lock);
237 list_for_each_entry(page, &pgd_list, lru) {
238 spinlock_t *pgt_lock;
239 pmd_t *ret;
240
241 /* the pgt_lock only for Xen */
242 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
243
244 spin_lock(pgt_lock);
245 ret = vmalloc_sync_one(page_address(page), address);
246 spin_unlock(pgt_lock);
247
248 if (!ret)
249 break;
250 }
251 spin_unlock(&pgd_lock);
252 }
253}
254
255/*
256 * 32-bit:
257 *
258 * Handle a fault on the vmalloc or module mapping area
259 */
260static noinline __kprobes int vmalloc_fault(unsigned long address)
261{
262 unsigned long pgd_paddr;
263 pmd_t *pmd_k;
264 pte_t *pte_k;
265
266 /* Make sure we are in vmalloc area: */
267 if (!(address >= VMALLOC_START && address < VMALLOC_END))
268 return -1;
269
270 WARN_ON_ONCE(in_nmi());
271
272 /*
273 * Synchronize this task's top level page-table
274 * with the 'reference' page table.
275 *
276 * Do _not_ use "current" here. We might be inside
277 * an interrupt in the middle of a task switch..
278 */
279 pgd_paddr = read_cr3();
280 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
281 if (!pmd_k)
282 return -1;
283
284 pte_k = pte_offset_kernel(pmd_k, address);
285 if (!pte_present(*pte_k))
286 return -1;
287
288 return 0;
289}
290
291/*
292 * Did it hit the DOS screen memory VA from vm86 mode?
293 */
294static inline void
295check_v8086_mode(struct pt_regs *regs, unsigned long address,
296 struct task_struct *tsk)
297{
298 unsigned long bit;
299
300 if (!v8086_mode(regs))
301 return;
302
303 bit = (address - 0xA0000) >> PAGE_SHIFT;
304 if (bit < 32)
305 tsk->thread.screen_bitmap |= 1 << bit;
306}
307
308static bool low_pfn(unsigned long pfn)
309{
310 return pfn < max_low_pfn;
311}
312
313static void dump_pagetable(unsigned long address)
314{
315 pgd_t *base = __va(read_cr3());
316 pgd_t *pgd = &base[pgd_index(address)];
317 pmd_t *pmd;
318 pte_t *pte;
319
320#ifdef CONFIG_X86_PAE
321 printk("*pdpt = %016Lx ", pgd_val(*pgd));
322 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
323 goto out;
324#endif
325 pmd = pmd_offset(pud_offset(pgd, address), address);
326 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
327
328 /*
329 * We must not directly access the pte in the highpte
330 * case if the page table is located in highmem.
331 * And let's rather not kmap-atomic the pte, just in case
332 * it's allocated already:
333 */
334 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
335 goto out;
336
337 pte = pte_offset_kernel(pmd, address);
338 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
339out:
340 printk("\n");
341}
342
343#else /* CONFIG_X86_64: */
344
345void vmalloc_sync_all(void)
346{
347 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
348}
349
350/*
351 * 64-bit:
352 *
353 * Handle a fault on the vmalloc area
354 *
355 * This assumes no large pages in there.
356 */
357static noinline __kprobes int vmalloc_fault(unsigned long address)
358{
359 pgd_t *pgd, *pgd_ref;
360 pud_t *pud, *pud_ref;
361 pmd_t *pmd, *pmd_ref;
362 pte_t *pte, *pte_ref;
363
364 /* Make sure we are in vmalloc area: */
365 if (!(address >= VMALLOC_START && address < VMALLOC_END))
366 return -1;
367
368 WARN_ON_ONCE(in_nmi());
369
370 /*
371 * Copy kernel mappings over when needed. This can also
372 * happen within a race in page table update. In the later
373 * case just flush:
374 */
375 pgd = pgd_offset(current->active_mm, address);
376 pgd_ref = pgd_offset_k(address);
377 if (pgd_none(*pgd_ref))
378 return -1;
379
380 if (pgd_none(*pgd))
381 set_pgd(pgd, *pgd_ref);
382 else
383 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
384
385 /*
386 * Below here mismatches are bugs because these lower tables
387 * are shared:
388 */
389
390 pud = pud_offset(pgd, address);
391 pud_ref = pud_offset(pgd_ref, address);
392 if (pud_none(*pud_ref))
393 return -1;
394
395 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
396 BUG();
397
398 pmd = pmd_offset(pud, address);
399 pmd_ref = pmd_offset(pud_ref, address);
400 if (pmd_none(*pmd_ref))
401 return -1;
402
403 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
404 BUG();
405
406 pte_ref = pte_offset_kernel(pmd_ref, address);
407 if (!pte_present(*pte_ref))
408 return -1;
409
410 pte = pte_offset_kernel(pmd, address);
411
412 /*
413 * Don't use pte_page here, because the mappings can point
414 * outside mem_map, and the NUMA hash lookup cannot handle
415 * that:
416 */
417 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
418 BUG();
419
420 return 0;
421}
422
423static const char errata93_warning[] =
424KERN_ERR
425"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
426"******* Working around it, but it may cause SEGVs or burn power.\n"
427"******* Please consider a BIOS update.\n"
428"******* Disabling USB legacy in the BIOS may also help.\n";
429
430/*
431 * No vm86 mode in 64-bit mode:
432 */
433static inline void
434check_v8086_mode(struct pt_regs *regs, unsigned long address,
435 struct task_struct *tsk)
436{
437}
438
439static int bad_address(void *p)
440{
441 unsigned long dummy;
442
443 return probe_kernel_address((unsigned long *)p, dummy);
444}
445
446static void dump_pagetable(unsigned long address)
447{
448 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
449 pgd_t *pgd = base + pgd_index(address);
450 pud_t *pud;
451 pmd_t *pmd;
452 pte_t *pte;
453
454 if (bad_address(pgd))
455 goto bad;
456
457 printk("PGD %lx ", pgd_val(*pgd));
458
459 if (!pgd_present(*pgd))
460 goto out;
461
462 pud = pud_offset(pgd, address);
463 if (bad_address(pud))
464 goto bad;
465
466 printk("PUD %lx ", pud_val(*pud));
467 if (!pud_present(*pud) || pud_large(*pud))
468 goto out;
469
470 pmd = pmd_offset(pud, address);
471 if (bad_address(pmd))
472 goto bad;
473
474 printk("PMD %lx ", pmd_val(*pmd));
475 if (!pmd_present(*pmd) || pmd_large(*pmd))
476 goto out;
477
478 pte = pte_offset_kernel(pmd, address);
479 if (bad_address(pte))
480 goto bad;
481
482 printk("PTE %lx", pte_val(*pte));
483out:
484 printk("\n");
485 return;
486bad:
487 printk("BAD\n");
488}
489
490#endif /* CONFIG_X86_64 */
491
492/*
493 * Workaround for K8 erratum #93 & buggy BIOS.
494 *
495 * BIOS SMM functions are required to use a specific workaround
496 * to avoid corruption of the 64bit RIP register on C stepping K8.
497 *
498 * A lot of BIOS that didn't get tested properly miss this.
499 *
500 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
501 * Try to work around it here.
502 *
503 * Note we only handle faults in kernel here.
504 * Does nothing on 32-bit.
505 */
506static int is_errata93(struct pt_regs *regs, unsigned long address)
507{
508#ifdef CONFIG_X86_64
509 if (address != regs->ip)
510 return 0;
511
512 if ((address >> 32) != 0)
513 return 0;
514
515 address |= 0xffffffffUL << 32;
516 if ((address >= (u64)_stext && address <= (u64)_etext) ||
517 (address >= MODULES_VADDR && address <= MODULES_END)) {
518 printk_once(errata93_warning);
519 regs->ip = address;
520 return 1;
521 }
522#endif
523 return 0;
524}
525
526/*
527 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
528 * to illegal addresses >4GB.
529 *
530 * We catch this in the page fault handler because these addresses
531 * are not reachable. Just detect this case and return. Any code
532 * segment in LDT is compatibility mode.
533 */
534static int is_errata100(struct pt_regs *regs, unsigned long address)
535{
536#ifdef CONFIG_X86_64
537 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
538 return 1;
539#endif
540 return 0;
541}
542
543static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
544{
545#ifdef CONFIG_X86_F00F_BUG
546 unsigned long nr;
547
548 /*
549 * Pentium F0 0F C7 C8 bug workaround:
550 */
551 if (boot_cpu_data.f00f_bug) {
552 nr = (address - idt_descr.address) >> 3;
553
554 if (nr == 6) {
555 do_invalid_op(regs, 0);
556 return 1;
557 }
558 }
559#endif
560 return 0;
561}
562
563static const char nx_warning[] = KERN_CRIT
564"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
565
566static void
567show_fault_oops(struct pt_regs *regs, unsigned long error_code,
568 unsigned long address)
569{
570 if (!oops_may_print())
571 return;
572
573 if (error_code & PF_INSTR) {
574 unsigned int level;
575
576 pte_t *pte = lookup_address(address, &level);
577
578 if (pte && pte_present(*pte) && !pte_exec(*pte))
579 printk(nx_warning, current_uid());
580 }
581
582 printk(KERN_ALERT "BUG: unable to handle kernel ");
583 if (address < PAGE_SIZE)
584 printk(KERN_CONT "NULL pointer dereference");
585 else
586 printk(KERN_CONT "paging request");
587
588 printk(KERN_CONT " at %p\n", (void *) address);
589 printk(KERN_ALERT "IP:");
590 printk_address(regs->ip, 1);
591
592 dump_pagetable(address);
593}
594
595static noinline void
596pgtable_bad(struct pt_regs *regs, unsigned long error_code,
597 unsigned long address)
598{
599 struct task_struct *tsk;
600 unsigned long flags;
601 int sig;
602
603 flags = oops_begin();
604 tsk = current;
605 sig = SIGKILL;
606
607 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
608 tsk->comm, address);
609 dump_pagetable(address);
610
611 tsk->thread.cr2 = address;
612 tsk->thread.trap_no = 14;
613 tsk->thread.error_code = error_code;
614
615 if (__die("Bad pagetable", regs, error_code))
616 sig = 0;
617
618 oops_end(flags, regs, sig);
619}
620
621static noinline void
622no_context(struct pt_regs *regs, unsigned long error_code,
623 unsigned long address)
624{
625 struct task_struct *tsk = current;
626 unsigned long *stackend;
627 unsigned long flags;
628 int sig;
629
630 /* Are we prepared to handle this kernel fault? */
631 if (fixup_exception(regs))
632 return;
633
634 /*
635 * 32-bit:
636 *
637 * Valid to do another page fault here, because if this fault
638 * had been triggered by is_prefetch fixup_exception would have
639 * handled it.
640 *
641 * 64-bit:
642 *
643 * Hall of shame of CPU/BIOS bugs.
644 */
645 if (is_prefetch(regs, error_code, address))
646 return;
647
648 if (is_errata93(regs, address))
649 return;
650
651 /*
652 * Oops. The kernel tried to access some bad page. We'll have to
653 * terminate things with extreme prejudice:
654 */
655 flags = oops_begin();
656
657 show_fault_oops(regs, error_code, address);
658
659 stackend = end_of_stack(tsk);
660 if (tsk != &init_task && *stackend != STACK_END_MAGIC)
661 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
662
663 tsk->thread.cr2 = address;
664 tsk->thread.trap_no = 14;
665 tsk->thread.error_code = error_code;
666
667 sig = SIGKILL;
668 if (__die("Oops", regs, error_code))
669 sig = 0;
670
671 /* Executive summary in case the body of the oops scrolled away */
672 printk(KERN_EMERG "CR2: %016lx\n", address);
673
674 oops_end(flags, regs, sig);
675}
676
677/*
678 * Print out info about fatal segfaults, if the show_unhandled_signals
679 * sysctl is set:
680 */
681static inline void
682show_signal_msg(struct pt_regs *regs, unsigned long error_code,
683 unsigned long address, struct task_struct *tsk)
684{
685 if (!unhandled_signal(tsk, SIGSEGV))
686 return;
687
688 if (!printk_ratelimit())
689 return;
690
691 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
692 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
693 tsk->comm, task_pid_nr(tsk), address,
694 (void *)regs->ip, (void *)regs->sp, error_code);
695
696 print_vma_addr(KERN_CONT " in ", regs->ip);
697
698 printk(KERN_CONT "\n");
699}
700
701static void
702__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
703 unsigned long address, int si_code)
704{
705 struct task_struct *tsk = current;
706
707 /* User mode accesses just cause a SIGSEGV */
708 if (error_code & PF_USER) {
709 /*
710 * It's possible to have interrupts off here:
711 */
712 local_irq_enable();
713
714 /*
715 * Valid to do another page fault here because this one came
716 * from user space:
717 */
718 if (is_prefetch(regs, error_code, address))
719 return;
720
721 if (is_errata100(regs, address))
722 return;
723
724#ifdef CONFIG_X86_64
725 /*
726 * Instruction fetch faults in the vsyscall page might need
727 * emulation.
728 */
729 if (unlikely((error_code & PF_INSTR) &&
730 ((address & ~0xfff) == VSYSCALL_START))) {
731 if (emulate_vsyscall(regs, address))
732 return;
733 }
734#endif
735
736 if (unlikely(show_unhandled_signals))
737 show_signal_msg(regs, error_code, address, tsk);
738
739 /* Kernel addresses are always protection faults: */
740 tsk->thread.cr2 = address;
741 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
742 tsk->thread.trap_no = 14;
743
744 force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
745
746 return;
747 }
748
749 if (is_f00f_bug(regs, address))
750 return;
751
752 no_context(regs, error_code, address);
753}
754
755static noinline void
756bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
757 unsigned long address)
758{
759 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
760}
761
762static void
763__bad_area(struct pt_regs *regs, unsigned long error_code,
764 unsigned long address, int si_code)
765{
766 struct mm_struct *mm = current->mm;
767
768 /*
769 * Something tried to access memory that isn't in our memory map..
770 * Fix it, but check if it's kernel or user first..
771 */
772 up_read(&mm->mmap_sem);
773
774 __bad_area_nosemaphore(regs, error_code, address, si_code);
775}
776
777static noinline void
778bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
779{
780 __bad_area(regs, error_code, address, SEGV_MAPERR);
781}
782
783static noinline void
784bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
785 unsigned long address)
786{
787 __bad_area(regs, error_code, address, SEGV_ACCERR);
788}
789
790/* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
791static void
792out_of_memory(struct pt_regs *regs, unsigned long error_code,
793 unsigned long address)
794{
795 /*
796 * We ran out of memory, call the OOM killer, and return the userspace
797 * (which will retry the fault, or kill us if we got oom-killed):
798 */
799 up_read(¤t->mm->mmap_sem);
800
801 pagefault_out_of_memory();
802}
803
804static void
805do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
806 unsigned int fault)
807{
808 struct task_struct *tsk = current;
809 struct mm_struct *mm = tsk->mm;
810 int code = BUS_ADRERR;
811
812 up_read(&mm->mmap_sem);
813
814 /* Kernel mode? Handle exceptions or die: */
815 if (!(error_code & PF_USER)) {
816 no_context(regs, error_code, address);
817 return;
818 }
819
820 /* User-space => ok to do another page fault: */
821 if (is_prefetch(regs, error_code, address))
822 return;
823
824 tsk->thread.cr2 = address;
825 tsk->thread.error_code = error_code;
826 tsk->thread.trap_no = 14;
827
828#ifdef CONFIG_MEMORY_FAILURE
829 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
830 printk(KERN_ERR
831 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
832 tsk->comm, tsk->pid, address);
833 code = BUS_MCEERR_AR;
834 }
835#endif
836 force_sig_info_fault(SIGBUS, code, address, tsk, fault);
837}
838
839static noinline int
840mm_fault_error(struct pt_regs *regs, unsigned long error_code,
841 unsigned long address, unsigned int fault)
842{
843 /*
844 * Pagefault was interrupted by SIGKILL. We have no reason to
845 * continue pagefault.
846 */
847 if (fatal_signal_pending(current)) {
848 if (!(fault & VM_FAULT_RETRY))
849 up_read(¤t->mm->mmap_sem);
850 if (!(error_code & PF_USER))
851 no_context(regs, error_code, address);
852 return 1;
853 }
854 if (!(fault & VM_FAULT_ERROR))
855 return 0;
856
857 if (fault & VM_FAULT_OOM) {
858 /* Kernel mode? Handle exceptions or die: */
859 if (!(error_code & PF_USER)) {
860 up_read(¤t->mm->mmap_sem);
861 no_context(regs, error_code, address);
862 return 1;
863 }
864
865 out_of_memory(regs, error_code, address);
866 } else {
867 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
868 VM_FAULT_HWPOISON_LARGE))
869 do_sigbus(regs, error_code, address, fault);
870 else
871 BUG();
872 }
873 return 1;
874}
875
876static int spurious_fault_check(unsigned long error_code, pte_t *pte)
877{
878 if ((error_code & PF_WRITE) && !pte_write(*pte))
879 return 0;
880
881 if ((error_code & PF_INSTR) && !pte_exec(*pte))
882 return 0;
883
884 return 1;
885}
886
887/*
888 * Handle a spurious fault caused by a stale TLB entry.
889 *
890 * This allows us to lazily refresh the TLB when increasing the
891 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
892 * eagerly is very expensive since that implies doing a full
893 * cross-processor TLB flush, even if no stale TLB entries exist
894 * on other processors.
895 *
896 * There are no security implications to leaving a stale TLB when
897 * increasing the permissions on a page.
898 */
899static noinline __kprobes int
900spurious_fault(unsigned long error_code, unsigned long address)
901{
902 pgd_t *pgd;
903 pud_t *pud;
904 pmd_t *pmd;
905 pte_t *pte;
906 int ret;
907
908 /* Reserved-bit violation or user access to kernel space? */
909 if (error_code & (PF_USER | PF_RSVD))
910 return 0;
911
912 pgd = init_mm.pgd + pgd_index(address);
913 if (!pgd_present(*pgd))
914 return 0;
915
916 pud = pud_offset(pgd, address);
917 if (!pud_present(*pud))
918 return 0;
919
920 if (pud_large(*pud))
921 return spurious_fault_check(error_code, (pte_t *) pud);
922
923 pmd = pmd_offset(pud, address);
924 if (!pmd_present(*pmd))
925 return 0;
926
927 if (pmd_large(*pmd))
928 return spurious_fault_check(error_code, (pte_t *) pmd);
929
930 /*
931 * Note: don't use pte_present() here, since it returns true
932 * if the _PAGE_PROTNONE bit is set. However, this aliases the
933 * _PAGE_GLOBAL bit, which for kernel pages give false positives
934 * when CONFIG_DEBUG_PAGEALLOC is used.
935 */
936 pte = pte_offset_kernel(pmd, address);
937 if (!(pte_flags(*pte) & _PAGE_PRESENT))
938 return 0;
939
940 ret = spurious_fault_check(error_code, pte);
941 if (!ret)
942 return 0;
943
944 /*
945 * Make sure we have permissions in PMD.
946 * If not, then there's a bug in the page tables:
947 */
948 ret = spurious_fault_check(error_code, (pte_t *) pmd);
949 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
950
951 return ret;
952}
953
954int show_unhandled_signals = 1;
955
956static inline int
957access_error(unsigned long error_code, struct vm_area_struct *vma)
958{
959 if (error_code & PF_WRITE) {
960 /* write, present and write, not present: */
961 if (unlikely(!(vma->vm_flags & VM_WRITE)))
962 return 1;
963 return 0;
964 }
965
966 /* read, present: */
967 if (unlikely(error_code & PF_PROT))
968 return 1;
969
970 /* read, not present: */
971 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
972 return 1;
973
974 return 0;
975}
976
977static int fault_in_kernel_space(unsigned long address)
978{
979 return address >= TASK_SIZE_MAX;
980}
981
982/*
983 * This routine handles page faults. It determines the address,
984 * and the problem, and then passes it off to one of the appropriate
985 * routines.
986 */
987dotraplinkage void __kprobes
988do_page_fault(struct pt_regs *regs, unsigned long error_code)
989{
990 struct vm_area_struct *vma;
991 struct task_struct *tsk;
992 unsigned long address;
993 struct mm_struct *mm;
994 int fault;
995 int write = error_code & PF_WRITE;
996 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
997 (write ? FAULT_FLAG_WRITE : 0);
998
999 tsk = current;
1000 mm = tsk->mm;
1001
1002 /* Get the faulting address: */
1003 address = read_cr2();
1004
1005 /*
1006 * Detect and handle instructions that would cause a page fault for
1007 * both a tracked kernel page and a userspace page.
1008 */
1009 if (kmemcheck_active(regs))
1010 kmemcheck_hide(regs);
1011 prefetchw(&mm->mmap_sem);
1012
1013 if (unlikely(kmmio_fault(regs, address)))
1014 return;
1015
1016 /*
1017 * We fault-in kernel-space virtual memory on-demand. The
1018 * 'reference' page table is init_mm.pgd.
1019 *
1020 * NOTE! We MUST NOT take any locks for this case. We may
1021 * be in an interrupt or a critical region, and should
1022 * only copy the information from the master page table,
1023 * nothing more.
1024 *
1025 * This verifies that the fault happens in kernel space
1026 * (error_code & 4) == 0, and that the fault was not a
1027 * protection error (error_code & 9) == 0.
1028 */
1029 if (unlikely(fault_in_kernel_space(address))) {
1030 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1031 if (vmalloc_fault(address) >= 0)
1032 return;
1033
1034 if (kmemcheck_fault(regs, address, error_code))
1035 return;
1036 }
1037
1038 /* Can handle a stale RO->RW TLB: */
1039 if (spurious_fault(error_code, address))
1040 return;
1041
1042 /* kprobes don't want to hook the spurious faults: */
1043 if (notify_page_fault(regs))
1044 return;
1045 /*
1046 * Don't take the mm semaphore here. If we fixup a prefetch
1047 * fault we could otherwise deadlock:
1048 */
1049 bad_area_nosemaphore(regs, error_code, address);
1050
1051 return;
1052 }
1053
1054 /* kprobes don't want to hook the spurious faults: */
1055 if (unlikely(notify_page_fault(regs)))
1056 return;
1057 /*
1058 * It's safe to allow irq's after cr2 has been saved and the
1059 * vmalloc fault has been handled.
1060 *
1061 * User-mode registers count as a user access even for any
1062 * potential system fault or CPU buglet:
1063 */
1064 if (user_mode_vm(regs)) {
1065 local_irq_enable();
1066 error_code |= PF_USER;
1067 } else {
1068 if (regs->flags & X86_EFLAGS_IF)
1069 local_irq_enable();
1070 }
1071
1072 if (unlikely(error_code & PF_RSVD))
1073 pgtable_bad(regs, error_code, address);
1074
1075 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1076
1077 /*
1078 * If we're in an interrupt, have no user context or are running
1079 * in an atomic region then we must not take the fault:
1080 */
1081 if (unlikely(in_atomic() || !mm)) {
1082 bad_area_nosemaphore(regs, error_code, address);
1083 return;
1084 }
1085
1086 /*
1087 * When running in the kernel we expect faults to occur only to
1088 * addresses in user space. All other faults represent errors in
1089 * the kernel and should generate an OOPS. Unfortunately, in the
1090 * case of an erroneous fault occurring in a code path which already
1091 * holds mmap_sem we will deadlock attempting to validate the fault
1092 * against the address space. Luckily the kernel only validly
1093 * references user space from well defined areas of code, which are
1094 * listed in the exceptions table.
1095 *
1096 * As the vast majority of faults will be valid we will only perform
1097 * the source reference check when there is a possibility of a
1098 * deadlock. Attempt to lock the address space, if we cannot we then
1099 * validate the source. If this is invalid we can skip the address
1100 * space check, thus avoiding the deadlock:
1101 */
1102 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1103 if ((error_code & PF_USER) == 0 &&
1104 !search_exception_tables(regs->ip)) {
1105 bad_area_nosemaphore(regs, error_code, address);
1106 return;
1107 }
1108retry:
1109 down_read(&mm->mmap_sem);
1110 } else {
1111 /*
1112 * The above down_read_trylock() might have succeeded in
1113 * which case we'll have missed the might_sleep() from
1114 * down_read():
1115 */
1116 might_sleep();
1117 }
1118
1119 vma = find_vma(mm, address);
1120 if (unlikely(!vma)) {
1121 bad_area(regs, error_code, address);
1122 return;
1123 }
1124 if (likely(vma->vm_start <= address))
1125 goto good_area;
1126 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1127 bad_area(regs, error_code, address);
1128 return;
1129 }
1130 if (error_code & PF_USER) {
1131 /*
1132 * Accessing the stack below %sp is always a bug.
1133 * The large cushion allows instructions like enter
1134 * and pusha to work. ("enter $65535, $31" pushes
1135 * 32 pointers and then decrements %sp by 65535.)
1136 */
1137 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1138 bad_area(regs, error_code, address);
1139 return;
1140 }
1141 }
1142 if (unlikely(expand_stack(vma, address))) {
1143 bad_area(regs, error_code, address);
1144 return;
1145 }
1146
1147 /*
1148 * Ok, we have a good vm_area for this memory access, so
1149 * we can handle it..
1150 */
1151good_area:
1152 if (unlikely(access_error(error_code, vma))) {
1153 bad_area_access_error(regs, error_code, address);
1154 return;
1155 }
1156
1157 /*
1158 * If for any reason at all we couldn't handle the fault,
1159 * make sure we exit gracefully rather than endlessly redo
1160 * the fault:
1161 */
1162 fault = handle_mm_fault(mm, vma, address, flags);
1163
1164 if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
1165 if (mm_fault_error(regs, error_code, address, fault))
1166 return;
1167 }
1168
1169 /*
1170 * Major/minor page fault accounting is only done on the
1171 * initial attempt. If we go through a retry, it is extremely
1172 * likely that the page will be found in page cache at that point.
1173 */
1174 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1175 if (fault & VM_FAULT_MAJOR) {
1176 tsk->maj_flt++;
1177 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
1178 regs, address);
1179 } else {
1180 tsk->min_flt++;
1181 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
1182 regs, address);
1183 }
1184 if (fault & VM_FAULT_RETRY) {
1185 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
1186 * of starvation. */
1187 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1188 goto retry;
1189 }
1190 }
1191
1192 check_v8086_mode(regs, address, tsk);
1193
1194 up_read(&mm->mmap_sem);
1195}