Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 1995  Linus Torvalds
   4 *
   5 * This file contains the setup_arch() code, which handles the architecture-dependent
   6 * parts of early kernel initialization.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   7 */
 
 
 
 
 
 
   8#include <linux/acpi.h>
 
 
 
 
 
 
   9#include <linux/console.h>
  10#include <linux/crash_dump.h>
  11#include <linux/dma-map-ops.h>
  12#include <linux/dmi.h>
 
  13#include <linux/efi.h>
  14#include <linux/ima.h>
  15#include <linux/init_ohci1394_dma.h>
  16#include <linux/initrd.h>
  17#include <linux/iscsi_ibft.h>
  18#include <linux/memblock.h>
  19#include <linux/panic_notifier.h>
 
 
  20#include <linux/pci.h>
  21#include <linux/root_dev.h>
  22#include <linux/hugetlb.h>
  23#include <linux/tboot.h>
  24#include <linux/usb/xhci-dbgp.h>
  25#include <linux/static_call.h>
  26#include <linux/swiotlb.h>
  27#include <linux/random.h>
  28
  29#include <uapi/linux/mount.h>
 
 
 
 
 
 
 
 
 
 
 
 
  30
  31#include <xen/xen.h>
 
 
 
 
  32
 
  33#include <asm/apic.h>
 
 
 
 
  34#include <asm/efi.h>
  35#include <asm/numa.h>
 
 
 
 
 
 
  36#include <asm/bios_ebda.h>
 
 
  37#include <asm/bugs.h>
  38#include <asm/cacheinfo.h>
 
 
  39#include <asm/cpu.h>
  40#include <asm/efi.h>
 
 
  41#include <asm/gart.h>
 
 
 
 
  42#include <asm/hypervisor.h>
  43#include <asm/io_apic.h>
  44#include <asm/kasan.h>
  45#include <asm/kaslr.h>
  46#include <asm/mce.h>
  47#include <asm/memtype.h>
  48#include <asm/mtrr.h>
  49#include <asm/realmode.h>
  50#include <asm/olpc_ofw.h>
  51#include <asm/pci-direct.h>
 
 
 
 
 
 
 
 
 
  52#include <asm/prom.h>
  53#include <asm/proto.h>
  54#include <asm/thermal.h>
  55#include <asm/unwind.h>
  56#include <asm/vsyscall.h>
  57#include <linux/vmalloc.h>
  58
  59/*
  60 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
  61 * max_pfn_mapped:     highest directly mapped pfn > 4 GB
  62 *
  63 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
  64 * represented by pfn_mapped[].
  65 */
  66unsigned long max_low_pfn_mapped;
  67unsigned long max_pfn_mapped;
  68
  69#ifdef CONFIG_DMI
  70RESERVE_BRK(dmi_alloc, 65536);
  71#endif
  72
  73
  74unsigned long _brk_start = (unsigned long)__brk_base;
  75unsigned long _brk_end   = (unsigned long)__brk_base;
  76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  77struct boot_params boot_params;
 
  78
  79/*
  80 * These are the four main kernel memory regions, we put them into
  81 * the resource tree so that kdump tools and other debugging tools
  82 * recover it:
  83 */
  84
  85static struct resource rodata_resource = {
  86	.name	= "Kernel rodata",
  87	.start	= 0,
  88	.end	= 0,
  89	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
  90};
  91
  92static struct resource data_resource = {
  93	.name	= "Kernel data",
  94	.start	= 0,
  95	.end	= 0,
  96	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
  97};
  98
  99static struct resource code_resource = {
 100	.name	= "Kernel code",
 101	.start	= 0,
 102	.end	= 0,
 103	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 104};
 105
 106static struct resource bss_resource = {
 107	.name	= "Kernel bss",
 108	.start	= 0,
 109	.end	= 0,
 110	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 111};
 112
 113
 114#ifdef CONFIG_X86_32
 115/* CPU data as detected by the assembly code in head_32.S */
 116struct cpuinfo_x86 new_cpu_data;
 117
 118/* Common CPU data for all CPUs */
 119struct cpuinfo_x86 boot_cpu_data __read_mostly;
 120EXPORT_SYMBOL(boot_cpu_data);
 
 
 
 
 
 
 121
 122unsigned int def_to_bigsmp;
 123
 
 
 
 
 
 124struct apm_info apm_info;
 125EXPORT_SYMBOL(apm_info);
 126
 127#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
 128	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
 129struct ist_info ist_info;
 130EXPORT_SYMBOL(ist_info);
 131#else
 132struct ist_info ist_info;
 133#endif
 134
 135#else
 136struct cpuinfo_x86 boot_cpu_data __read_mostly;
 
 
 137EXPORT_SYMBOL(boot_cpu_data);
 138#endif
 139
 140
 141#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
 142__visible unsigned long mmu_cr4_features __ro_after_init;
 143#else
 144__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
 145#endif
 146
 147#ifdef CONFIG_IMA
 148static phys_addr_t ima_kexec_buffer_phys;
 149static size_t ima_kexec_buffer_size;
 150#endif
 151
 152/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
 153int bootloader_type, bootloader_version;
 154
 155/*
 156 * Setup options
 157 */
 158struct screen_info screen_info;
 159EXPORT_SYMBOL(screen_info);
 160struct edid_info edid_info;
 161EXPORT_SYMBOL_GPL(edid_info);
 162
 163extern int root_mountflags;
 164
 165unsigned long saved_video_mode;
 166
 167#define RAMDISK_IMAGE_START_MASK	0x07FF
 168#define RAMDISK_PROMPT_FLAG		0x8000
 169#define RAMDISK_LOAD_FLAG		0x4000
 170
 171static char __initdata command_line[COMMAND_LINE_SIZE];
 172#ifdef CONFIG_CMDLINE_BOOL
 173static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 174#endif
 175
 176#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
 177struct edd edd;
 178#ifdef CONFIG_EDD_MODULE
 179EXPORT_SYMBOL(edd);
 180#endif
 181/**
 182 * copy_edd() - Copy the BIOS EDD information
 183 *              from boot_params into a safe place.
 184 *
 185 */
 186static inline void __init copy_edd(void)
 187{
 188     memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
 189	    sizeof(edd.mbr_signature));
 190     memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
 191     edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
 192     edd.edd_info_nr = boot_params.eddbuf_entries;
 193}
 194#else
 195static inline void __init copy_edd(void)
 196{
 197}
 198#endif
 199
 200void * __init extend_brk(size_t size, size_t align)
 201{
 202	size_t mask = align - 1;
 203	void *ret;
 204
 205	BUG_ON(_brk_start == 0);
 206	BUG_ON(align & mask);
 207
 208	_brk_end = (_brk_end + mask) & ~mask;
 209	BUG_ON((char *)(_brk_end + size) > __brk_limit);
 210
 211	ret = (void *)_brk_end;
 212	_brk_end += size;
 213
 214	memset(ret, 0, size);
 215
 216	return ret;
 217}
 218
 219#ifdef CONFIG_X86_32
 
 
 
 
 
 
 
 
 
 
 
 220static void __init cleanup_highmap(void)
 221{
 222}
 223#endif
 224
 225static void __init reserve_brk(void)
 226{
 227	if (_brk_end > _brk_start)
 228		memblock_reserve(__pa_symbol(_brk_start),
 229				 _brk_end - _brk_start);
 230
 231	/* Mark brk area as locked down and no longer taking any
 232	   new allocations */
 233	_brk_start = 0;
 234}
 235
 236u64 relocated_ramdisk;
 237
 238#ifdef CONFIG_BLK_DEV_INITRD
 239
 240static u64 __init get_ramdisk_image(void)
 241{
 242	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
 243
 244	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
 245
 246	if (ramdisk_image == 0)
 247		ramdisk_image = phys_initrd_start;
 248
 249	return ramdisk_image;
 250}
 251static u64 __init get_ramdisk_size(void)
 252{
 253	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
 254
 255	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
 256
 257	if (ramdisk_size == 0)
 258		ramdisk_size = phys_initrd_size;
 259
 260	return ramdisk_size;
 261}
 262
 263static void __init relocate_initrd(void)
 264{
 265	/* Assume only end is not page aligned */
 266	u64 ramdisk_image = get_ramdisk_image();
 267	u64 ramdisk_size  = get_ramdisk_size();
 268	u64 area_size     = PAGE_ALIGN(ramdisk_size);
 
 
 
 
 
 
 
 
 269
 270	/* We need to move the initrd down into directly mapped mem */
 271	relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
 272						      PFN_PHYS(max_pfn_mapped));
 273	if (!relocated_ramdisk)
 274		panic("Cannot find place for new RAMDISK of size %lld\n",
 275		      ramdisk_size);
 276
 277	initrd_start = relocated_ramdisk + PAGE_OFFSET;
 
 
 
 278	initrd_end   = initrd_start + ramdisk_size;
 279	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
 280	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 281
 282	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
 283
 284	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
 285		" [mem %#010llx-%#010llx]\n",
 286		ramdisk_image, ramdisk_image + ramdisk_size - 1,
 287		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 288}
 289
 290static void __init early_reserve_initrd(void)
 291{
 292	/* Assume only end is not page aligned */
 293	u64 ramdisk_image = get_ramdisk_image();
 294	u64 ramdisk_size  = get_ramdisk_size();
 295	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 296
 297	if (!boot_params.hdr.type_of_loader ||
 298	    !ramdisk_image || !ramdisk_size)
 299		return;		/* No initrd provided by bootloader */
 300
 301	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 302}
 303
 304static void __init reserve_initrd(void)
 305{
 306	/* Assume only end is not page aligned */
 307	u64 ramdisk_image = get_ramdisk_image();
 308	u64 ramdisk_size  = get_ramdisk_size();
 309	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 
 310
 311	if (!boot_params.hdr.type_of_loader ||
 312	    !ramdisk_image || !ramdisk_size)
 313		return;		/* No initrd provided by bootloader */
 314
 315	initrd_start = 0;
 316
 317	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
 318			ramdisk_end - 1);
 
 
 
 
 
 
 
 
 319
 320	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
 321				PFN_DOWN(ramdisk_end))) {
 322		/* All are mapped, easy case */
 
 
 
 323		initrd_start = ramdisk_image + PAGE_OFFSET;
 324		initrd_end = initrd_start + ramdisk_size;
 325		return;
 326	}
 327
 328	relocate_initrd();
 329
 330	memblock_phys_free(ramdisk_image, ramdisk_end - ramdisk_image);
 331}
 332
 333#else
 334static void __init early_reserve_initrd(void)
 335{
 336}
 337static void __init reserve_initrd(void)
 338{
 339}
 340#endif /* CONFIG_BLK_DEV_INITRD */
 341
 342static void __init add_early_ima_buffer(u64 phys_addr)
 343{
 344#ifdef CONFIG_IMA
 345	struct ima_setup_data *data;
 346
 347	data = early_memremap(phys_addr + sizeof(struct setup_data), sizeof(*data));
 348	if (!data) {
 349		pr_warn("setup: failed to memremap ima_setup_data entry\n");
 350		return;
 351	}
 352
 353	if (data->size) {
 354		memblock_reserve(data->addr, data->size);
 355		ima_kexec_buffer_phys = data->addr;
 356		ima_kexec_buffer_size = data->size;
 357	}
 358
 359	early_memunmap(data, sizeof(*data));
 360#else
 361	pr_warn("Passed IMA kexec data, but CONFIG_IMA not set. Ignoring.\n");
 362#endif
 363}
 364
 365#if defined(CONFIG_HAVE_IMA_KEXEC) && !defined(CONFIG_OF_FLATTREE)
 366int __init ima_free_kexec_buffer(void)
 367{
 368	int rc;
 369
 370	if (!ima_kexec_buffer_size)
 371		return -ENOENT;
 372
 373	rc = memblock_phys_free(ima_kexec_buffer_phys,
 374				ima_kexec_buffer_size);
 375	if (rc)
 376		return rc;
 377
 378	ima_kexec_buffer_phys = 0;
 379	ima_kexec_buffer_size = 0;
 380
 381	return 0;
 382}
 383
 384int __init ima_get_kexec_buffer(void **addr, size_t *size)
 385{
 386	if (!ima_kexec_buffer_size)
 387		return -ENOENT;
 388
 389	*addr = __va(ima_kexec_buffer_phys);
 390	*size = ima_kexec_buffer_size;
 391
 392	return 0;
 393}
 394#endif
 395
 396static void __init parse_setup_data(void)
 397{
 398	struct setup_data *data;
 399	u64 pa_data, pa_next;
 400
 
 
 401	pa_data = boot_params.hdr.setup_data;
 402	while (pa_data) {
 403		u32 data_len, data_type;
 404
 405		data = early_memremap(pa_data, sizeof(*data));
 
 
 406		data_len = data->len + sizeof(struct setup_data);
 407		data_type = data->type;
 408		pa_next = data->next;
 409		early_memunmap(data, sizeof(*data));
 
 
 410
 411		switch (data_type) {
 412		case SETUP_E820_EXT:
 413			e820__memory_setup_extended(pa_data, data_len);
 414			break;
 415		case SETUP_DTB:
 416			add_dtb(pa_data);
 417			break;
 418		case SETUP_EFI:
 419			parse_efi_setup(pa_data, data_len);
 420			break;
 421		case SETUP_IMA:
 422			add_early_ima_buffer(pa_data);
 423			break;
 424		case SETUP_RNG_SEED:
 425			data = early_memremap(pa_data, data_len);
 426			add_bootloader_randomness(data->data, data->len);
 427			/* Zero seed for forward secrecy. */
 428			memzero_explicit(data->data, data->len);
 429			/* Zero length in case we find ourselves back here by accident. */
 430			memzero_explicit(&data->len, sizeof(data->len));
 431			early_memunmap(data, data_len);
 432			break;
 433		default:
 434			break;
 435		}
 436		pa_data = pa_next;
 
 437	}
 438}
 439
 440static void __init memblock_x86_reserve_range_setup_data(void)
 441{
 442	struct setup_indirect *indirect;
 443	struct setup_data *data;
 444	u64 pa_data, pa_next;
 445	u32 len;
 446
 
 
 447	pa_data = boot_params.hdr.setup_data;
 448	while (pa_data) {
 449		data = early_memremap(pa_data, sizeof(*data));
 450		if (!data) {
 451			pr_warn("setup: failed to memremap setup_data entry\n");
 452			return;
 453		}
 454
 455		len = sizeof(*data);
 456		pa_next = data->next;
 457
 458		memblock_reserve(pa_data, sizeof(*data) + data->len);
 459
 460		if (data->type == SETUP_INDIRECT) {
 461			len += data->len;
 462			early_memunmap(data, sizeof(*data));
 463			data = early_memremap(pa_data, len);
 464			if (!data) {
 465				pr_warn("setup: failed to memremap indirect setup_data\n");
 466				return;
 467			}
 468
 469			indirect = (struct setup_indirect *)data->data;
 
 
 
 
 470
 471			if (indirect->type != SETUP_INDIRECT)
 472				memblock_reserve(indirect->addr, indirect->len);
 473		}
 
 
 474
 475		pa_data = pa_next;
 476		early_memunmap(data, len);
 
 
 
 
 
 
 
 477	}
 478}
 479
 480/*
 481 * --------- Crashkernel reservation ------------------------------
 482 */
 483
 484/* 16M alignment for crash kernel regions */
 485#define CRASH_ALIGN		SZ_16M
 486
 487/*
 488 * Keep the crash kernel below this limit.
 489 *
 490 * Earlier 32-bits kernels would limit the kernel to the low 512 MB range
 491 * due to mapping restrictions.
 492 *
 493 * 64-bit kdump kernels need to be restricted to be under 64 TB, which is
 494 * the upper limit of system RAM in 4-level paging mode. Since the kdump
 495 * jump could be from 5-level paging to 4-level paging, the jump will fail if
 496 * the kernel is put above 64 TB, and during the 1st kernel bootup there's
 497 * no good way to detect the paging mode of the target kernel which will be
 498 * loaded for dumping.
 499 */
 500#ifdef CONFIG_X86_32
 501# define CRASH_ADDR_LOW_MAX	SZ_512M
 502# define CRASH_ADDR_HIGH_MAX	SZ_512M
 503#else
 504# define CRASH_ADDR_LOW_MAX	SZ_4G
 505# define CRASH_ADDR_HIGH_MAX	SZ_64T
 506#endif
 507
 508static int __init reserve_crashkernel_low(void)
 509{
 510#ifdef CONFIG_X86_64
 511	unsigned long long base, low_base = 0, low_size = 0;
 512	unsigned long low_mem_limit;
 513	int ret;
 514
 515	low_mem_limit = min(memblock_phys_mem_size(), CRASH_ADDR_LOW_MAX);
 516
 517	/* crashkernel=Y,low */
 518	ret = parse_crashkernel_low(boot_command_line, low_mem_limit, &low_size, &base);
 519	if (ret) {
 520		/*
 521		 * two parts from kernel/dma/swiotlb.c:
 522		 * -swiotlb size: user-specified with swiotlb= or default.
 523		 *
 524		 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
 525		 * to 8M for other buffers that may need to stay low too. Also
 526		 * make sure we allocate enough extra low memory so that we
 527		 * don't run out of DMA buffers for 32-bit devices.
 528		 */
 529		low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
 530	} else {
 531		/* passed with crashkernel=0,low ? */
 532		if (!low_size)
 533			return 0;
 534	}
 535
 536	low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX);
 537	if (!low_base) {
 538		pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
 539		       (unsigned long)(low_size >> 20));
 540		return -ENOMEM;
 541	}
 542
 543	pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (low RAM limit: %ldMB)\n",
 544		(unsigned long)(low_size >> 20),
 545		(unsigned long)(low_base >> 20),
 546		(unsigned long)(low_mem_limit >> 20));
 547
 548	crashk_low_res.start = low_base;
 549	crashk_low_res.end   = low_base + low_size - 1;
 550	insert_resource(&iomem_resource, &crashk_low_res);
 
 
 551#endif
 552	return 0;
 553}
 554
 555static void __init reserve_crashkernel(void)
 556{
 557	unsigned long long crash_size, crash_base, total_mem;
 558	bool high = false;
 559	int ret;
 560
 561	if (!IS_ENABLED(CONFIG_KEXEC_CORE))
 562		return;
 563
 564	total_mem = memblock_phys_mem_size();
 565
 566	/* crashkernel=XM */
 567	ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
 568	if (ret != 0 || crash_size <= 0) {
 569		/* crashkernel=X,high */
 570		ret = parse_crashkernel_high(boot_command_line, total_mem,
 571					     &crash_size, &crash_base);
 572		if (ret != 0 || crash_size <= 0)
 573			return;
 574		high = true;
 575	}
 576
 577	if (xen_pv_domain()) {
 578		pr_info("Ignoring crashkernel for a Xen PV domain\n");
 
 579		return;
 580	}
 581
 582	/* 0 means: find the address automatically */
 583	if (!crash_base) {
 
 
 584		/*
 585		 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
 586		 * crashkernel=x,high reserves memory over 4G, also allocates
 587		 * 256M extra low memory for DMA buffers and swiotlb.
 588		 * But the extra memory is not required for all machines.
 589		 * So try low memory first and fall back to high memory
 590		 * unless "crashkernel=size[KMG],high" is specified.
 591		 */
 592		if (!high)
 593			crash_base = memblock_phys_alloc_range(crash_size,
 594						CRASH_ALIGN, CRASH_ALIGN,
 595						CRASH_ADDR_LOW_MAX);
 596		if (!crash_base)
 597			crash_base = memblock_phys_alloc_range(crash_size,
 598						CRASH_ALIGN, CRASH_ALIGN,
 599						CRASH_ADDR_HIGH_MAX);
 600		if (!crash_base) {
 601			pr_info("crashkernel reservation failed - No suitable area found.\n");
 602			return;
 603		}
 604	} else {
 605		unsigned long long start;
 606
 607		start = memblock_phys_alloc_range(crash_size, SZ_1M, crash_base,
 608						  crash_base + crash_size);
 609		if (start != crash_base) {
 610			pr_info("crashkernel reservation failed - memory is in use.\n");
 611			return;
 612		}
 613	}
 
 614
 615	if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
 616		memblock_phys_free(crash_base, crash_size);
 617		return;
 618	}
 619
 620	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 621		(unsigned long)(crash_size >> 20),
 622		(unsigned long)(crash_base >> 20),
 623		(unsigned long)(total_mem >> 20));
 624
 625	crashk_res.start = crash_base;
 626	crashk_res.end   = crash_base + crash_size - 1;
 627	insert_resource(&iomem_resource, &crashk_res);
 628}
 
 
 
 
 
 629
 630static struct resource standard_io_resources[] = {
 631	{ .name = "dma1", .start = 0x00, .end = 0x1f,
 632		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 633	{ .name = "pic1", .start = 0x20, .end = 0x21,
 634		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 635	{ .name = "timer0", .start = 0x40, .end = 0x43,
 636		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 637	{ .name = "timer1", .start = 0x50, .end = 0x53,
 638		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 639	{ .name = "keyboard", .start = 0x60, .end = 0x60,
 640		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 641	{ .name = "keyboard", .start = 0x64, .end = 0x64,
 642		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 643	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
 644		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 645	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
 646		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 647	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
 648		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 649	{ .name = "fpu", .start = 0xf0, .end = 0xff,
 650		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
 651};
 652
 653void __init reserve_standard_io_resources(void)
 654{
 655	int i;
 656
 657	/* request I/O space for devices used on all i[345]86 PCs */
 658	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
 659		request_resource(&ioport_resource, &standard_io_resources[i]);
 660
 661}
 662
 663static bool __init snb_gfx_workaround_needed(void)
 664{
 665#ifdef CONFIG_PCI
 666	int i;
 667	u16 vendor, devid;
 668	static const __initconst u16 snb_ids[] = {
 669		0x0102,
 670		0x0112,
 671		0x0122,
 672		0x0106,
 673		0x0116,
 674		0x0126,
 675		0x010a,
 676	};
 677
 678	/* Assume no if something weird is going on with PCI */
 679	if (!early_pci_allowed())
 680		return false;
 681
 682	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
 683	if (vendor != 0x8086)
 684		return false;
 685
 686	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
 687	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
 688		if (devid == snb_ids[i])
 689			return true;
 690#endif
 691
 692	return false;
 693}
 694
 695/*
 696 * Sandy Bridge graphics has trouble with certain ranges, exclude
 697 * them from allocation.
 698 */
 699static void __init trim_snb_memory(void)
 700{
 701	static const __initconst unsigned long bad_pages[] = {
 702		0x20050000,
 703		0x20110000,
 704		0x20130000,
 705		0x20138000,
 706		0x40004000,
 707	};
 708	int i;
 709
 710	if (!snb_gfx_workaround_needed())
 711		return;
 712
 713	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
 714
 715	/*
 716	 * SandyBridge integrated graphics devices have a bug that prevents
 717	 * them from accessing certain memory ranges, namely anything below
 718	 * 1M and in the pages listed in bad_pages[] above.
 719	 *
 720	 * To avoid these pages being ever accessed by SNB gfx devices reserve
 721	 * bad_pages that have not already been reserved at boot time.
 722	 * All memory below the 1 MB mark is anyway reserved later during
 723	 * setup_arch(), so there is no need to reserve it here.
 724	 */
 725
 726	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
 727		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
 728			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
 729			       bad_pages[i]);
 730	}
 731}
 732
 
 
 733static void __init trim_bios_range(void)
 734{
 735	/*
 736	 * A special case is the first 4Kb of memory;
 737	 * This is a BIOS owned area, not kernel ram, but generally
 738	 * not listed as such in the E820 table.
 739	 *
 740	 * This typically reserves additional memory (64KiB by default)
 741	 * since some BIOSes are known to corrupt low memory.  See the
 742	 * Kconfig help text for X86_RESERVE_LOW.
 743	 */
 744	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
 
 745
 746	/*
 747	 * special case: Some BIOSes report the PC BIOS
 748	 * area (640Kb -> 1Mb) as RAM even though it is not.
 749	 * take them out.
 750	 */
 751	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
 752
 753	e820__update_table(e820_table);
 754}
 755
 756/* called before trim_bios_range() to spare extra sanitize */
 757static void __init e820_add_kernel_range(void)
 758{
 759	u64 start = __pa_symbol(_text);
 760	u64 size = __pa_symbol(_end) - start;
 761
 762	/*
 763	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
 764	 * attempt to fix it by adding the range. We may have a confused BIOS,
 765	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
 766	 * exclude kernel range. If we really are running on top non-RAM,
 767	 * we will crash later anyways.
 768	 */
 769	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
 770		return;
 771
 772	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
 773	e820__range_remove(start, size, E820_TYPE_RAM, 0);
 774	e820__range_add(start, size, E820_TYPE_RAM);
 775}
 776
 777static void __init early_reserve_memory(void)
 778{
 779	/*
 780	 * Reserve the memory occupied by the kernel between _text and
 781	 * __end_of_kernel_reserve symbols. Any kernel sections after the
 782	 * __end_of_kernel_reserve symbol must be explicitly reserved with a
 783	 * separate memblock_reserve() or they will be discarded.
 784	 */
 785	memblock_reserve(__pa_symbol(_text),
 786			 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
 787
 788	/*
 789	 * The first 4Kb of memory is a BIOS owned area, but generally it is
 790	 * not listed as such in the E820 table.
 791	 *
 792	 * Reserve the first 64K of memory since some BIOSes are known to
 793	 * corrupt low memory. After the real mode trampoline is allocated the
 794	 * rest of the memory below 640k is reserved.
 795	 *
 796	 * In addition, make sure page 0 is always reserved because on
 797	 * systems with L1TF its contents can be leaked to user processes.
 798	 */
 799	memblock_reserve(0, SZ_64K);
 800
 801	early_reserve_initrd();
 802
 803	memblock_x86_reserve_range_setup_data();
 
 804
 805	reserve_ibft_region();
 806	reserve_bios_regions();
 807	trim_snb_memory();
 808}
 809
 810/*
 811 * Dump out kernel offset information on panic.
 812 */
 813static int
 814dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
 815{
 816	if (kaslr_enabled()) {
 817		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
 818			 kaslr_offset(),
 819			 __START_KERNEL,
 820			 __START_KERNEL_map,
 821			 MODULES_VADDR-1);
 822	} else {
 823		pr_emerg("Kernel Offset: disabled\n");
 824	}
 825
 826	return 0;
 827}
 828
 829void x86_configure_nx(void)
 830{
 831	if (boot_cpu_has(X86_FEATURE_NX))
 832		__supported_pte_mask |= _PAGE_NX;
 833	else
 834		__supported_pte_mask &= ~_PAGE_NX;
 835}
 836
 837static void __init x86_report_nx(void)
 838{
 839	if (!boot_cpu_has(X86_FEATURE_NX)) {
 840		printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
 841		       "missing in CPU!\n");
 842	} else {
 843#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
 844		printk(KERN_INFO "NX (Execute Disable) protection: active\n");
 845#else
 846		/* 32bit non-PAE kernel, NX cannot be used */
 847		printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
 848		       "cannot be enabled: non-PAE kernel!\n");
 849#endif
 850	}
 851}
 852
 853/*
 854 * Determine if we were loaded by an EFI loader.  If so, then we have also been
 855 * passed the efi memmap, systab, etc., so we should use these data structures
 856 * for initialization.  Note, the efi init code path is determined by the
 857 * global efi_enabled. This allows the same kernel image to be used on existing
 858 * systems (with a traditional BIOS) as well as on EFI systems.
 859 */
 860/*
 861 * setup_arch - architecture-specific boot-time initializations
 862 *
 863 * Note: On x86_64, fixmaps are ready for use even before this is called.
 864 */
 865
 866void __init setup_arch(char **cmdline_p)
 867{
 868#ifdef CONFIG_X86_32
 869	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
 
 870
 871	/*
 872	 * copy kernel address range established so far and switch
 873	 * to the proper swapper page table
 874	 */
 875	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
 876			initial_page_table + KERNEL_PGD_BOUNDARY,
 877			KERNEL_PGD_PTRS);
 878
 879	load_cr3(swapper_pg_dir);
 880	/*
 881	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
 882	 * a cr3 based tlb flush, so the following __flush_tlb_all()
 883	 * will not flush anything because the CPU quirk which clears
 884	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
 885	 * load_cr3() above the TLB has been flushed already. The
 886	 * quirk is invoked before subsequent calls to __flush_tlb_all()
 887	 * so proper operation is guaranteed.
 888	 */
 889	__flush_tlb_all();
 890#else
 891	printk(KERN_INFO "Command line: %s\n", boot_command_line);
 892	boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
 893#endif
 894
 895	/*
 896	 * If we have OLPC OFW, we might end up relocating the fixmap due to
 897	 * reserve_top(), so do this before touching the ioremap area.
 898	 */
 899	olpc_ofw_detect();
 900
 901	idt_setup_early_traps();
 902	early_cpu_init();
 903	jump_label_init();
 904	static_call_init();
 905	early_ioremap_init();
 906
 907	setup_olpc_ofw_pgd();
 908
 909	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
 910	screen_info = boot_params.screen_info;
 911	edid_info = boot_params.edid_info;
 912#ifdef CONFIG_X86_32
 913	apm_info.bios = boot_params.apm_bios_info;
 914	ist_info = boot_params.ist_info;
 
 
 
 
 
 
 915#endif
 916	saved_video_mode = boot_params.hdr.vid_mode;
 917	bootloader_type = boot_params.hdr.type_of_loader;
 918	if ((bootloader_type >> 4) == 0xe) {
 919		bootloader_type &= 0xf;
 920		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
 921	}
 922	bootloader_version  = bootloader_type & 0xf;
 923	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
 924
 925#ifdef CONFIG_BLK_DEV_RAM
 926	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
 
 
 927#endif
 928#ifdef CONFIG_EFI
 929	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 930		     EFI32_LOADER_SIGNATURE, 4)) {
 931		set_bit(EFI_BOOT, &efi.flags);
 932	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 933		     EFI64_LOADER_SIGNATURE, 4)) {
 934		set_bit(EFI_BOOT, &efi.flags);
 935		set_bit(EFI_64BIT, &efi.flags);
 
 
 936	}
 937#endif
 938
 939	x86_init.oem.arch_setup();
 940
 941	/*
 942	 * Do some memory reservations *before* memory is added to memblock, so
 943	 * memblock allocations won't overwrite it.
 944	 *
 945	 * After this point, everything still needed from the boot loader or
 946	 * firmware or kernel text should be early reserved or marked not RAM in
 947	 * e820. All other memory is free game.
 948	 *
 949	 * This call needs to happen before e820__memory_setup() which calls the
 950	 * xen_memory_setup() on Xen dom0 which relies on the fact that those
 951	 * early reservations have happened already.
 952	 */
 953	early_reserve_memory();
 954
 955	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
 956	e820__memory_setup();
 957	parse_setup_data();
 
 
 958
 959	copy_edd();
 960
 961	if (!boot_params.hdr.root_flags)
 962		root_mountflags &= ~MS_RDONLY;
 963	setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end);
 964
 965	code_resource.start = __pa_symbol(_text);
 966	code_resource.end = __pa_symbol(_etext)-1;
 967	rodata_resource.start = __pa_symbol(__start_rodata);
 968	rodata_resource.end = __pa_symbol(__end_rodata)-1;
 969	data_resource.start = __pa_symbol(_sdata);
 970	data_resource.end = __pa_symbol(_edata)-1;
 971	bss_resource.start = __pa_symbol(__bss_start);
 972	bss_resource.end = __pa_symbol(__bss_stop)-1;
 
 973
 974#ifdef CONFIG_CMDLINE_BOOL
 975#ifdef CONFIG_CMDLINE_OVERRIDE
 976	strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 977#else
 978	if (builtin_cmdline[0]) {
 979		/* append boot loader cmdline to builtin */
 980		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
 981		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
 982		strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 983	}
 984#endif
 985#endif
 986
 987	strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 988	*cmdline_p = command_line;
 989
 990	/*
 991	 * x86_configure_nx() is called before parse_early_param() to detect
 992	 * whether hardware doesn't support NX (so that the early EHCI debug
 993	 * console setup can safely call set_fixmap()).
 
 
 994	 */
 995	x86_configure_nx();
 996
 997	parse_early_param();
 998
 999	if (efi_enabled(EFI_BOOT))
1000		efi_memblock_x86_reserve_range();
1001
1002#ifdef CONFIG_MEMORY_HOTPLUG
1003	/*
1004	 * Memory used by the kernel cannot be hot-removed because Linux
1005	 * cannot migrate the kernel pages. When memory hotplug is
1006	 * enabled, we should prevent memblock from allocating memory
1007	 * for the kernel.
1008	 *
1009	 * ACPI SRAT records all hotpluggable memory ranges. But before
1010	 * SRAT is parsed, we don't know about it.
1011	 *
1012	 * The kernel image is loaded into memory at very early time. We
1013	 * cannot prevent this anyway. So on NUMA system, we set any
1014	 * node the kernel resides in as un-hotpluggable.
1015	 *
1016	 * Since on modern servers, one node could have double-digit
1017	 * gigabytes memory, we can assume the memory around the kernel
1018	 * image is also un-hotpluggable. So before SRAT is parsed, just
1019	 * allocate memory near the kernel image to try the best to keep
1020	 * the kernel away from hotpluggable memory.
1021	 */
1022	if (movable_node_is_enabled())
1023		memblock_set_bottom_up(true);
1024#endif
1025
1026	x86_report_nx();
1027
 
 
 
1028	if (acpi_mps_check()) {
1029#ifdef CONFIG_X86_LOCAL_APIC
1030		disable_apic = 1;
1031#endif
1032		setup_clear_cpu_cap(X86_FEATURE_APIC);
1033	}
1034
1035	e820__reserve_setup_data();
1036	e820__finish_early_params();
 
 
1037
1038	if (efi_enabled(EFI_BOOT))
 
 
1039		efi_init();
1040
1041	dmi_setup();
1042
1043	/*
1044	 * VMware detection requires dmi to be available, so this
1045	 * needs to be done after dmi_setup(), for the boot CPU.
1046	 */
1047	init_hypervisor_platform();
1048
1049	tsc_early_init();
1050	x86_init.resources.probe_roms();
1051
1052	/* after parse_early_param, so could debug it */
1053	insert_resource(&iomem_resource, &code_resource);
1054	insert_resource(&iomem_resource, &rodata_resource);
1055	insert_resource(&iomem_resource, &data_resource);
1056	insert_resource(&iomem_resource, &bss_resource);
1057
1058	e820_add_kernel_range();
1059	trim_bios_range();
1060#ifdef CONFIG_X86_32
1061	if (ppro_with_ram_bug()) {
1062		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1063				  E820_TYPE_RESERVED);
1064		e820__update_table(e820_table);
1065		printk(KERN_INFO "fixed physical RAM map:\n");
1066		e820__print_table("bad_ppro");
1067	}
1068#else
1069	early_gart_iommu_check();
1070#endif
1071
1072	/*
1073	 * partially used pages are not usable - thus
1074	 * we are rounding upwards:
1075	 */
1076	max_pfn = e820__end_of_ram_pfn();
1077
1078	/* update e820 for memory not covered by WB MTRRs */
1079	cache_bp_init();
1080	if (mtrr_trim_uncached_memory(max_pfn))
1081		max_pfn = e820__end_of_ram_pfn();
1082
1083	max_possible_pfn = max_pfn;
1084
1085	/*
1086	 * Define random base addresses for memory sections after max_pfn is
1087	 * defined and before each memory section base is used.
1088	 */
1089	kernel_randomize_memory();
1090
1091#ifdef CONFIG_X86_32
1092	/* max_low_pfn get updated here */
1093	find_low_pfn_range();
1094#else
 
 
1095	check_x2apic();
1096
1097	/* How many end-of-memory variables you have, grandma! */
1098	/* need this before calling reserve_initrd */
1099	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1100		max_low_pfn = e820__end_of_low_ram_pfn();
1101	else
1102		max_low_pfn = max_pfn;
1103
1104	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1105#endif
1106
1107	/*
1108	 * Find and reserve possible boot-time SMP configuration:
1109	 */
1110	find_smp_config();
1111
1112	early_alloc_pgt_buf();
1113
1114	/*
1115	 * Need to conclude brk, before e820__memblock_setup()
1116	 * it could use memblock_find_in_range, could overlap with
1117	 * brk area.
1118	 */
1119	reserve_brk();
1120
1121	cleanup_highmap();
1122
1123	memblock_set_current_limit(ISA_END_ADDRESS);
1124	e820__memblock_setup();
1125
1126	/*
1127	 * Needs to run after memblock setup because it needs the physical
1128	 * memory size.
1129	 */
1130	sev_setup_arch();
1131
1132	efi_fake_memmap();
1133	efi_find_mirror();
1134	efi_esrt_init();
1135	efi_mokvar_table_init();
1136
1137	/*
1138	 * The EFI specification says that boot service code won't be
1139	 * called after ExitBootServices(). This is, in fact, a lie.
1140	 */
1141	efi_reserve_boot_services();
 
1142
1143	/* preallocate 4k for mptable mpc */
1144	e820__memblock_alloc_reserved_mpc_new();
1145
1146#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1147	setup_bios_corruption_check();
1148#endif
1149
1150#ifdef CONFIG_X86_32
1151	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1152			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1153#endif
1154
1155	/*
1156	 * Find free memory for the real mode trampoline and place it there. If
1157	 * there is not enough free memory under 1M, on EFI-enabled systems
1158	 * there will be additional attempt to reclaim the memory for the real
1159	 * mode trampoline at efi_free_boot_services().
1160	 *
1161	 * Unconditionally reserve the entire first 1M of RAM because BIOSes
1162	 * are known to corrupt low memory and several hundred kilobytes are not
1163	 * worth complex detection what memory gets clobbered. Windows does the
1164	 * same thing for very similar reasons.
1165	 *
1166	 * Moreover, on machines with SandyBridge graphics or in setups that use
1167	 * crashkernel the entire 1M is reserved anyway.
1168	 */
1169	x86_platform.realmode_reserve();
1170
1171	init_mem_mapping();
1172
1173	idt_setup_early_pf();
1174
1175	/*
1176	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1177	 * with the current CR4 value.  This may not be necessary, but
1178	 * auditing all the early-boot CR4 manipulation would be needed to
1179	 * rule it out.
1180	 *
1181	 * Mask off features that don't work outside long mode (just
1182	 * PCIDE for now).
1183	 */
1184	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1185
1186	memblock_set_current_limit(get_max_mapped());
 
 
 
 
 
 
 
 
1187
1188	/*
1189	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1190	 */
1191
1192#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1193	if (init_ohci1394_dma_early)
1194		init_ohci1394_dma_on_all_controllers();
1195#endif
1196	/* Allocate bigger log buffer */
1197	setup_log_buf(1);
1198
1199	if (efi_enabled(EFI_BOOT)) {
1200		switch (boot_params.secure_boot) {
1201		case efi_secureboot_mode_disabled:
1202			pr_info("Secure boot disabled\n");
1203			break;
1204		case efi_secureboot_mode_enabled:
1205			pr_info("Secure boot enabled\n");
1206			break;
1207		default:
1208			pr_info("Secure boot could not be determined\n");
1209			break;
1210		}
1211	}
1212
1213	reserve_initrd();
1214
1215	acpi_table_upgrade();
1216	/* Look for ACPI tables and reserve memory occupied by them. */
1217	acpi_boot_table_init();
1218
1219	vsmp_init();
1220
1221	io_delay_init();
1222
1223	early_platform_quirks();
 
 
 
1224
1225	early_acpi_boot_init();
1226
1227	initmem_init();
1228	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1229
1230	if (boot_cpu_has(X86_FEATURE_GBPAGES))
1231		hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1232
1233	/*
1234	 * Reserve memory for crash kernel after SRAT is parsed so that it
1235	 * won't consume hotpluggable memory.
1236	 */
1237	reserve_crashkernel();
1238
1239	memblock_find_dma_reserve();
1240
1241	if (!early_xdbc_setup_hardware())
1242		early_xdbc_register_console();
 
1243
1244	x86_init.paging.pagetable_init();
 
 
1245
1246	kasan_init();
 
 
 
1247
1248	/*
1249	 * Sync back kernel address range.
1250	 *
1251	 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1252	 * this call?
1253	 */
1254	sync_initial_page_table();
1255
1256	tboot_probe();
1257
 
1258	map_vsyscall();
 
1259
1260	generic_apic_probe();
1261
1262	early_quirks();
1263
1264	/*
1265	 * Read APIC and some other early information from ACPI tables.
1266	 */
1267	acpi_boot_init();
 
1268	x86_dtb_init();
1269
1270	/*
1271	 * get boot-time SMP configuration:
1272	 */
1273	get_smp_config();
1274
1275	/*
1276	 * Systems w/o ACPI and mptables might not have it mapped the local
1277	 * APIC yet, but prefill_possible_map() might need to access it.
1278	 */
1279	init_apic_mappings();
1280
1281	prefill_possible_map();
1282
1283	init_cpu_to_node();
1284	init_gi_nodes();
1285
1286	io_apic_init_mappings();
 
1287
1288	x86_init.hyper.guest_late_init();
1289
1290	e820__reserve_resources();
1291	e820__register_nosave_regions(max_pfn);
1292
1293	x86_init.resources.reserve_resources();
1294
1295	e820__setup_pci_gap();
1296
1297#ifdef CONFIG_VT
1298#if defined(CONFIG_VGA_CONSOLE)
1299	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1300		conswitchp = &vga_con;
 
 
1301#endif
1302#endif
1303	x86_init.oem.banner();
1304
1305	x86_init.timers.wallclock_init();
1306
1307	/*
1308	 * This needs to run before setup_local_APIC() which soft-disables the
1309	 * local APIC temporarily and that masks the thermal LVT interrupt,
1310	 * leading to softlockups on machines which have configured SMI
1311	 * interrupt delivery.
1312	 */
1313	therm_lvt_init();
1314
1315	mcheck_init();
1316
1317	register_refined_jiffies(CLOCK_TICK_RATE);
1318
1319#ifdef CONFIG_EFI
1320	if (efi_enabled(EFI_BOOT))
1321		efi_apply_memmap_quirks();
1322#endif
1323
1324	unwind_init();
1325}
1326
1327#ifdef CONFIG_X86_32
1328
1329static struct resource video_ram_resource = {
1330	.name	= "Video RAM area",
1331	.start	= 0xa0000,
1332	.end	= 0xbffff,
1333	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1334};
1335
1336void __init i386_reserve_resources(void)
1337{
1338	request_resource(&iomem_resource, &video_ram_resource);
1339	reserve_standard_io_resources();
1340}
1341
1342#endif /* CONFIG_X86_32 */
1343
1344static struct notifier_block kernel_offset_notifier = {
1345	.notifier_call = dump_kernel_offset
1346};
1347
1348static int __init register_kernel_offset_dumper(void)
1349{
1350	atomic_notifier_chain_register(&panic_notifier_list,
1351					&kernel_offset_notifier);
1352	return 0;
1353}
1354__initcall(register_kernel_offset_dumper);
v3.1
 
   1/*
   2 *  Copyright (C) 1995  Linus Torvalds
   3 *
   4 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   5 *
   6 *  Memory region support
   7 *	David Parsons <orc@pell.chi.il.us>, July-August 1999
   8 *
   9 *  Added E820 sanitization routine (removes overlapping memory regions);
  10 *  Brian Moyle <bmoyle@mvista.com>, February 2001
  11 *
  12 * Moved CPU detection code to cpu/${cpu}.c
  13 *    Patrick Mochel <mochel@osdl.org>, March 2002
  14 *
  15 *  Provisions for empty E820 memory regions (reported by certain BIOSes).
  16 *  Alex Achenbach <xela@slit.de>, December 2002.
  17 *
  18 */
  19
  20/*
  21 * This file handles the architecture-dependent parts of initialization
  22 */
  23
  24#include <linux/sched.h>
  25#include <linux/mm.h>
  26#include <linux/mmzone.h>
  27#include <linux/screen_info.h>
  28#include <linux/ioport.h>
  29#include <linux/acpi.h>
  30#include <linux/sfi.h>
  31#include <linux/apm_bios.h>
  32#include <linux/initrd.h>
  33#include <linux/bootmem.h>
  34#include <linux/memblock.h>
  35#include <linux/seq_file.h>
  36#include <linux/console.h>
  37#include <linux/mca.h>
  38#include <linux/root_dev.h>
  39#include <linux/highmem.h>
  40#include <linux/module.h>
  41#include <linux/efi.h>
  42#include <linux/init.h>
  43#include <linux/edd.h>
 
  44#include <linux/iscsi_ibft.h>
  45#include <linux/nodemask.h>
  46#include <linux/kexec.h>
  47#include <linux/dmi.h>
  48#include <linux/pfn.h>
  49#include <linux/pci.h>
  50#include <asm/pci-direct.h>
  51#include <linux/init_ohci1394_dma.h>
  52#include <linux/kvm_para.h>
 
 
 
 
  53
  54#include <linux/errno.h>
  55#include <linux/kernel.h>
  56#include <linux/stddef.h>
  57#include <linux/unistd.h>
  58#include <linux/ptrace.h>
  59#include <linux/user.h>
  60#include <linux/delay.h>
  61
  62#include <linux/kallsyms.h>
  63#include <linux/cpufreq.h>
  64#include <linux/dma-mapping.h>
  65#include <linux/ctype.h>
  66#include <linux/uaccess.h>
  67
  68#include <linux/percpu.h>
  69#include <linux/crash_dump.h>
  70#include <linux/tboot.h>
  71
  72#include <video/edid.h>
  73
  74#include <asm/mtrr.h>
  75#include <asm/apic.h>
  76#include <asm/trampoline.h>
  77#include <asm/e820.h>
  78#include <asm/mpspec.h>
  79#include <asm/setup.h>
  80#include <asm/efi.h>
  81#include <asm/timer.h>
  82#include <asm/i8259.h>
  83#include <asm/sections.h>
  84#include <asm/dmi.h>
  85#include <asm/io_apic.h>
  86#include <asm/ist.h>
  87#include <asm/setup_arch.h>
  88#include <asm/bios_ebda.h>
  89#include <asm/cacheflush.h>
  90#include <asm/processor.h>
  91#include <asm/bugs.h>
  92
  93#include <asm/system.h>
  94#include <asm/vsyscall.h>
  95#include <asm/cpu.h>
  96#include <asm/desc.h>
  97#include <asm/dma.h>
  98#include <asm/iommu.h>
  99#include <asm/gart.h>
 100#include <asm/mmu_context.h>
 101#include <asm/proto.h>
 102
 103#include <asm/paravirt.h>
 104#include <asm/hypervisor.h>
 
 
 
 
 
 
 
 105#include <asm/olpc_ofw.h>
 106
 107#include <asm/percpu.h>
 108#include <asm/topology.h>
 109#include <asm/apicdef.h>
 110#include <asm/amd_nb.h>
 111#ifdef CONFIG_X86_64
 112#include <asm/numa_64.h>
 113#endif
 114#include <asm/mce.h>
 115#include <asm/alternative.h>
 116#include <asm/prom.h>
 
 
 
 
 
 117
 118/*
 119 * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
 120 * The direct mapping extends to max_pfn_mapped, so that we can directly access
 121 * apertures, ACPI and other tables without having to play with fixmaps.
 
 
 122 */
 123unsigned long max_low_pfn_mapped;
 124unsigned long max_pfn_mapped;
 125
 126#ifdef CONFIG_DMI
 127RESERVE_BRK(dmi_alloc, 65536);
 128#endif
 129
 130
 131static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
 132unsigned long _brk_end = (unsigned long)__brk_base;
 133
 134#ifdef CONFIG_X86_64
 135int default_cpu_present_to_apicid(int mps_cpu)
 136{
 137	return __default_cpu_present_to_apicid(mps_cpu);
 138}
 139
 140int default_check_phys_apicid_present(int phys_apicid)
 141{
 142	return __default_check_phys_apicid_present(phys_apicid);
 143}
 144#endif
 145
 146#ifndef CONFIG_DEBUG_BOOT_PARAMS
 147struct boot_params __initdata boot_params;
 148#else
 149struct boot_params boot_params;
 150#endif
 151
 152/*
 153 * Machine setup..
 
 
 154 */
 
 
 
 
 
 
 
 
 155static struct resource data_resource = {
 156	.name	= "Kernel data",
 157	.start	= 0,
 158	.end	= 0,
 159	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
 160};
 161
 162static struct resource code_resource = {
 163	.name	= "Kernel code",
 164	.start	= 0,
 165	.end	= 0,
 166	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
 167};
 168
 169static struct resource bss_resource = {
 170	.name	= "Kernel bss",
 171	.start	= 0,
 172	.end	= 0,
 173	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
 174};
 175
 176
 177#ifdef CONFIG_X86_32
 178/* cpu data as detected by the assembly code in head.S */
 179struct cpuinfo_x86 new_cpu_data __cpuinitdata = {0, 0, 0, 0, -1, 1, 0, 0, -1};
 180/* common cpu data for all cpus */
 181struct cpuinfo_x86 boot_cpu_data __read_mostly = {0, 0, 0, 0, -1, 1, 0, 0, -1};
 
 182EXPORT_SYMBOL(boot_cpu_data);
 183static void set_mca_bus(int x)
 184{
 185#ifdef CONFIG_MCA
 186	MCA_bus = x;
 187#endif
 188}
 189
 190unsigned int def_to_bigsmp;
 191
 192/* for MCA, but anyone else can use it if they want */
 193unsigned int machine_id;
 194unsigned int machine_submodel_id;
 195unsigned int BIOS_revision;
 196
 197struct apm_info apm_info;
 198EXPORT_SYMBOL(apm_info);
 199
 200#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
 201	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
 202struct ist_info ist_info;
 203EXPORT_SYMBOL(ist_info);
 204#else
 205struct ist_info ist_info;
 206#endif
 207
 208#else
 209struct cpuinfo_x86 boot_cpu_data __read_mostly = {
 210	.x86_phys_bits = MAX_PHYSMEM_BITS,
 211};
 212EXPORT_SYMBOL(boot_cpu_data);
 213#endif
 214
 215
 216#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
 217unsigned long mmu_cr4_features;
 218#else
 219unsigned long mmu_cr4_features = X86_CR4_PAE;
 
 
 
 
 
 220#endif
 221
 222/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
 223int bootloader_type, bootloader_version;
 224
 225/*
 226 * Setup options
 227 */
 228struct screen_info screen_info;
 229EXPORT_SYMBOL(screen_info);
 230struct edid_info edid_info;
 231EXPORT_SYMBOL_GPL(edid_info);
 232
 233extern int root_mountflags;
 234
 235unsigned long saved_video_mode;
 236
 237#define RAMDISK_IMAGE_START_MASK	0x07FF
 238#define RAMDISK_PROMPT_FLAG		0x8000
 239#define RAMDISK_LOAD_FLAG		0x4000
 240
 241static char __initdata command_line[COMMAND_LINE_SIZE];
 242#ifdef CONFIG_CMDLINE_BOOL
 243static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 244#endif
 245
 246#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
 247struct edd edd;
 248#ifdef CONFIG_EDD_MODULE
 249EXPORT_SYMBOL(edd);
 250#endif
 251/**
 252 * copy_edd() - Copy the BIOS EDD information
 253 *              from boot_params into a safe place.
 254 *
 255 */
 256static inline void __init copy_edd(void)
 257{
 258     memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
 259	    sizeof(edd.mbr_signature));
 260     memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
 261     edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
 262     edd.edd_info_nr = boot_params.eddbuf_entries;
 263}
 264#else
 265static inline void __init copy_edd(void)
 266{
 267}
 268#endif
 269
 270void * __init extend_brk(size_t size, size_t align)
 271{
 272	size_t mask = align - 1;
 273	void *ret;
 274
 275	BUG_ON(_brk_start == 0);
 276	BUG_ON(align & mask);
 277
 278	_brk_end = (_brk_end + mask) & ~mask;
 279	BUG_ON((char *)(_brk_end + size) > __brk_limit);
 280
 281	ret = (void *)_brk_end;
 282	_brk_end += size;
 283
 284	memset(ret, 0, size);
 285
 286	return ret;
 287}
 288
 289#ifdef CONFIG_X86_64
 290static void __init init_gbpages(void)
 291{
 292	if (direct_gbpages && cpu_has_gbpages)
 293		printk(KERN_INFO "Using GB pages for direct mapping\n");
 294	else
 295		direct_gbpages = 0;
 296}
 297#else
 298static inline void init_gbpages(void)
 299{
 300}
 301static void __init cleanup_highmap(void)
 302{
 303}
 304#endif
 305
 306static void __init reserve_brk(void)
 307{
 308	if (_brk_end > _brk_start)
 309		memblock_x86_reserve_range(__pa(_brk_start), __pa(_brk_end), "BRK");
 
 310
 311	/* Mark brk area as locked down and no longer taking any
 312	   new allocations */
 313	_brk_start = 0;
 314}
 315
 
 
 316#ifdef CONFIG_BLK_DEV_INITRD
 317
 318#define MAX_MAP_CHUNK	(NR_FIX_BTMAPS << PAGE_SHIFT)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 319static void __init relocate_initrd(void)
 320{
 321	/* Assume only end is not page aligned */
 322	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
 323	u64 ramdisk_size  = boot_params.hdr.ramdisk_size;
 324	u64 area_size     = PAGE_ALIGN(ramdisk_size);
 325	u64 end_of_lowmem = max_low_pfn_mapped << PAGE_SHIFT;
 326	u64 ramdisk_here;
 327	unsigned long slop, clen, mapaddr;
 328	char *p, *q;
 329
 330	/* We need to move the initrd down into lowmem */
 331	ramdisk_here = memblock_find_in_range(0, end_of_lowmem, area_size,
 332					 PAGE_SIZE);
 333
 334	if (ramdisk_here == MEMBLOCK_ERROR)
 
 
 
 335		panic("Cannot find place for new RAMDISK of size %lld\n",
 336			 ramdisk_size);
 337
 338	/* Note: this includes all the lowmem currently occupied by
 339	   the initrd, we rely on that fact to keep the data intact. */
 340	memblock_x86_reserve_range(ramdisk_here, ramdisk_here + area_size, "NEW RAMDISK");
 341	initrd_start = ramdisk_here + PAGE_OFFSET;
 342	initrd_end   = initrd_start + ramdisk_size;
 343	printk(KERN_INFO "Allocated new RAMDISK: %08llx - %08llx\n",
 344			 ramdisk_here, ramdisk_here + ramdisk_size);
 
 
 345
 346	q = (char *)initrd_start;
 
 
 
 
 347
 348	/* Copy any lowmem portion of the initrd */
 349	if (ramdisk_image < end_of_lowmem) {
 350		clen = end_of_lowmem - ramdisk_image;
 351		p = (char *)__va(ramdisk_image);
 352		memcpy(q, p, clen);
 353		q += clen;
 354		ramdisk_image += clen;
 355		ramdisk_size  -= clen;
 356	}
 
 357
 358	/* Copy the highmem portion of the initrd */
 359	while (ramdisk_size) {
 360		slop = ramdisk_image & ~PAGE_MASK;
 361		clen = ramdisk_size;
 362		if (clen > MAX_MAP_CHUNK-slop)
 363			clen = MAX_MAP_CHUNK-slop;
 364		mapaddr = ramdisk_image & PAGE_MASK;
 365		p = early_memremap(mapaddr, clen+slop);
 366		memcpy(q, p+slop, clen);
 367		early_iounmap(p, clen+slop);
 368		q += clen;
 369		ramdisk_image += clen;
 370		ramdisk_size  -= clen;
 371	}
 372	/* high pages is not converted by early_res_to_bootmem */
 373	ramdisk_image = boot_params.hdr.ramdisk_image;
 374	ramdisk_size  = boot_params.hdr.ramdisk_size;
 375	printk(KERN_INFO "Move RAMDISK from %016llx - %016llx to"
 376		" %08llx - %08llx\n",
 377		ramdisk_image, ramdisk_image + ramdisk_size - 1,
 378		ramdisk_here, ramdisk_here + ramdisk_size - 1);
 379}
 380
 381static void __init reserve_initrd(void)
 382{
 383	/* Assume only end is not page aligned */
 384	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
 385	u64 ramdisk_size  = boot_params.hdr.ramdisk_size;
 386	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 387	u64 end_of_lowmem = max_low_pfn_mapped << PAGE_SHIFT;
 388
 389	if (!boot_params.hdr.type_of_loader ||
 390	    !ramdisk_image || !ramdisk_size)
 391		return;		/* No initrd provided by bootloader */
 392
 393	initrd_start = 0;
 394
 395	if (ramdisk_size >= (end_of_lowmem>>1)) {
 396		memblock_x86_free_range(ramdisk_image, ramdisk_end);
 397		printk(KERN_ERR "initrd too large to handle, "
 398		       "disabling initrd\n");
 399		return;
 400	}
 401
 402	printk(KERN_INFO "RAMDISK: %08llx - %08llx\n", ramdisk_image,
 403			ramdisk_end);
 404
 405
 406	if (ramdisk_end <= end_of_lowmem) {
 407		/* All in lowmem, easy case */
 408		/*
 409		 * don't need to reserve again, already reserved early
 410		 * in i386_start_kernel
 411		 */
 412		initrd_start = ramdisk_image + PAGE_OFFSET;
 413		initrd_end = initrd_start + ramdisk_size;
 414		return;
 415	}
 416
 417	relocate_initrd();
 418
 419	memblock_x86_free_range(ramdisk_image, ramdisk_end);
 420}
 
 421#else
 
 
 
 422static void __init reserve_initrd(void)
 423{
 424}
 425#endif /* CONFIG_BLK_DEV_INITRD */
 426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 427static void __init parse_setup_data(void)
 428{
 429	struct setup_data *data;
 430	u64 pa_data;
 431
 432	if (boot_params.hdr.version < 0x0209)
 433		return;
 434	pa_data = boot_params.hdr.setup_data;
 435	while (pa_data) {
 436		u32 data_len, map_len;
 437
 438		map_len = max(PAGE_SIZE - (pa_data & ~PAGE_MASK),
 439			      (u64)sizeof(struct setup_data));
 440		data = early_memremap(pa_data, map_len);
 441		data_len = data->len + sizeof(struct setup_data);
 442		if (data_len > map_len) {
 443			early_iounmap(data, map_len);
 444			data = early_memremap(pa_data, data_len);
 445			map_len = data_len;
 446		}
 447
 448		switch (data->type) {
 449		case SETUP_E820_EXT:
 450			parse_e820_ext(data);
 451			break;
 452		case SETUP_DTB:
 453			add_dtb(pa_data);
 454			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 455		default:
 456			break;
 457		}
 458		pa_data = data->next;
 459		early_iounmap(data, map_len);
 460	}
 461}
 462
 463static void __init e820_reserve_setup_data(void)
 464{
 
 465	struct setup_data *data;
 466	u64 pa_data;
 467	int found = 0;
 468
 469	if (boot_params.hdr.version < 0x0209)
 470		return;
 471	pa_data = boot_params.hdr.setup_data;
 472	while (pa_data) {
 473		data = early_memremap(pa_data, sizeof(*data));
 474		e820_update_range(pa_data, sizeof(*data)+data->len,
 475			 E820_RAM, E820_RESERVED_KERN);
 476		found = 1;
 477		pa_data = data->next;
 478		early_iounmap(data, sizeof(*data));
 479	}
 480	if (!found)
 481		return;
 
 
 
 
 
 
 
 
 
 
 482
 483	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
 484	memcpy(&e820_saved, &e820, sizeof(struct e820map));
 485	printk(KERN_INFO "extended physical RAM map:\n");
 486	e820_print_map("reserve setup_data");
 487}
 488
 489static void __init memblock_x86_reserve_range_setup_data(void)
 490{
 491	struct setup_data *data;
 492	u64 pa_data;
 493	char buf[32];
 494
 495	if (boot_params.hdr.version < 0x0209)
 496		return;
 497	pa_data = boot_params.hdr.setup_data;
 498	while (pa_data) {
 499		data = early_memremap(pa_data, sizeof(*data));
 500		sprintf(buf, "setup data %x", data->type);
 501		memblock_x86_reserve_range(pa_data, pa_data+sizeof(*data)+data->len, buf);
 502		pa_data = data->next;
 503		early_iounmap(data, sizeof(*data));
 504	}
 505}
 506
 507/*
 508 * --------- Crashkernel reservation ------------------------------
 509 */
 510
 511#ifdef CONFIG_KEXEC
 
 512
 513static inline unsigned long long get_total_mem(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 514{
 515	unsigned long long total;
 
 
 
 
 
 516
 517	total = max_pfn - min_low_pfn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 518
 519	return total << PAGE_SHIFT;
 520}
 
 
 
 
 521
 522/*
 523 * Keep the crash kernel below this limit.  On 32 bits earlier kernels
 524 * would limit the kernel to the low 512 MiB due to mapping restrictions.
 525 * On 64 bits, kexec-tools currently limits us to 896 MiB; increase this
 526 * limit once kexec-tools are fixed.
 527 */
 528#ifdef CONFIG_X86_32
 529# define CRASH_KERNEL_ADDR_MAX	(512 << 20)
 530#else
 531# define CRASH_KERNEL_ADDR_MAX	(896 << 20)
 532#endif
 
 
 533
 534static void __init reserve_crashkernel(void)
 535{
 536	unsigned long long total_mem;
 537	unsigned long long crash_size, crash_base;
 538	int ret;
 539
 540	total_mem = get_total_mem();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 541
 542	ret = parse_crashkernel(boot_command_line, total_mem,
 543			&crash_size, &crash_base);
 544	if (ret != 0 || crash_size <= 0)
 545		return;
 
 546
 547	/* 0 means: find the address automatically */
 548	if (crash_base <= 0) {
 549		const unsigned long long alignment = 16<<20;	/* 16M */
 550
 551		/*
 552		 *  kexec want bzImage is below CRASH_KERNEL_ADDR_MAX
 
 
 
 
 
 553		 */
 554		crash_base = memblock_find_in_range(alignment,
 555			       CRASH_KERNEL_ADDR_MAX, crash_size, alignment);
 556
 557		if (crash_base == MEMBLOCK_ERROR) {
 
 
 
 
 
 558			pr_info("crashkernel reservation failed - No suitable area found.\n");
 559			return;
 560		}
 561	} else {
 562		unsigned long long start;
 563
 564		start = memblock_find_in_range(crash_base,
 565				 crash_base + crash_size, crash_size, 1<<20);
 566		if (start != crash_base) {
 567			pr_info("crashkernel reservation failed - memory is in use.\n");
 568			return;
 569		}
 570	}
 571	memblock_x86_reserve_range(crash_base, crash_base + crash_size, "CRASH KERNEL");
 572
 573	printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
 574			"for crashkernel (System RAM: %ldMB)\n",
 575			(unsigned long)(crash_size >> 20),
 576			(unsigned long)(crash_base >> 20),
 577			(unsigned long)(total_mem >> 20));
 
 
 
 
 578
 579	crashk_res.start = crash_base;
 580	crashk_res.end   = crash_base + crash_size - 1;
 581	insert_resource(&iomem_resource, &crashk_res);
 582}
 583#else
 584static void __init reserve_crashkernel(void)
 585{
 586}
 587#endif
 588
 589static struct resource standard_io_resources[] = {
 590	{ .name = "dma1", .start = 0x00, .end = 0x1f,
 591		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 592	{ .name = "pic1", .start = 0x20, .end = 0x21,
 593		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 594	{ .name = "timer0", .start = 0x40, .end = 0x43,
 595		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 596	{ .name = "timer1", .start = 0x50, .end = 0x53,
 597		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 598	{ .name = "keyboard", .start = 0x60, .end = 0x60,
 599		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 600	{ .name = "keyboard", .start = 0x64, .end = 0x64,
 601		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 602	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
 603		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 604	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
 605		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 606	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
 607		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 608	{ .name = "fpu", .start = 0xf0, .end = 0xff,
 609		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
 610};
 611
 612void __init reserve_standard_io_resources(void)
 613{
 614	int i;
 615
 616	/* request I/O space for devices used on all i[345]86 PCs */
 617	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
 618		request_resource(&ioport_resource, &standard_io_resources[i]);
 619
 620}
 621
 622static __init void reserve_ibft_region(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 623{
 624	unsigned long addr, size = 0;
 
 
 
 
 
 
 
 
 
 
 625
 626	addr = find_ibft_region(&size);
 627
 628	if (size)
 629		memblock_x86_reserve_range(addr, addr + size, "* ibft");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 630}
 631
 632static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
 633
 634static void __init trim_bios_range(void)
 635{
 636	/*
 637	 * A special case is the first 4Kb of memory;
 638	 * This is a BIOS owned area, not kernel ram, but generally
 639	 * not listed as such in the E820 table.
 640	 *
 641	 * This typically reserves additional memory (64KiB by default)
 642	 * since some BIOSes are known to corrupt low memory.  See the
 643	 * Kconfig help text for X86_RESERVE_LOW.
 644	 */
 645	e820_update_range(0, ALIGN(reserve_low, PAGE_SIZE),
 646			  E820_RAM, E820_RESERVED);
 647
 648	/*
 649	 * special case: Some BIOSen report the PC BIOS
 650	 * area (640->1Mb) as ram even though it is not.
 651	 * take them out.
 652	 */
 653	e820_remove_range(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_RAM, 1);
 654	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
 
 655}
 656
 657static int __init parse_reservelow(char *p)
 
 658{
 659	unsigned long long size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 660
 661	if (!p)
 662		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 663
 664	size = memparse(p, &p);
 665
 666	if (size < 4096)
 667		size = 4096;
 668
 669	if (size > 640*1024)
 670		size = 640*1024;
 
 
 671
 672	reserve_low = size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 673
 674	return 0;
 675}
 676
 677early_param("reservelow", parse_reservelow);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 678
 679/*
 680 * Determine if we were loaded by an EFI loader.  If so, then we have also been
 681 * passed the efi memmap, systab, etc., so we should use these data structures
 682 * for initialization.  Note, the efi init code path is determined by the
 683 * global efi_enabled. This allows the same kernel image to be used on existing
 684 * systems (with a traditional BIOS) as well as on EFI systems.
 685 */
 686/*
 687 * setup_arch - architecture-specific boot-time initializations
 688 *
 689 * Note: On x86_64, fixmaps are ready for use even before this is called.
 690 */
 691
 692void __init setup_arch(char **cmdline_p)
 693{
 694#ifdef CONFIG_X86_32
 695	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
 696	visws_early_detect();
 697
 698	/*
 699	 * copy kernel address range established so far and switch
 700	 * to the proper swapper page table
 701	 */
 702	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
 703			initial_page_table + KERNEL_PGD_BOUNDARY,
 704			KERNEL_PGD_PTRS);
 705
 706	load_cr3(swapper_pg_dir);
 
 
 
 
 
 
 
 
 
 707	__flush_tlb_all();
 708#else
 709	printk(KERN_INFO "Command line: %s\n", boot_command_line);
 
 710#endif
 711
 712	/*
 713	 * If we have OLPC OFW, we might end up relocating the fixmap due to
 714	 * reserve_top(), so do this before touching the ioremap area.
 715	 */
 716	olpc_ofw_detect();
 717
 718	early_trap_init();
 719	early_cpu_init();
 
 
 720	early_ioremap_init();
 721
 722	setup_olpc_ofw_pgd();
 723
 724	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
 725	screen_info = boot_params.screen_info;
 726	edid_info = boot_params.edid_info;
 727#ifdef CONFIG_X86_32
 728	apm_info.bios = boot_params.apm_bios_info;
 729	ist_info = boot_params.ist_info;
 730	if (boot_params.sys_desc_table.length != 0) {
 731		set_mca_bus(boot_params.sys_desc_table.table[3] & 0x2);
 732		machine_id = boot_params.sys_desc_table.table[0];
 733		machine_submodel_id = boot_params.sys_desc_table.table[1];
 734		BIOS_revision = boot_params.sys_desc_table.table[2];
 735	}
 736#endif
 737	saved_video_mode = boot_params.hdr.vid_mode;
 738	bootloader_type = boot_params.hdr.type_of_loader;
 739	if ((bootloader_type >> 4) == 0xe) {
 740		bootloader_type &= 0xf;
 741		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
 742	}
 743	bootloader_version  = bootloader_type & 0xf;
 744	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
 745
 746#ifdef CONFIG_BLK_DEV_RAM
 747	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
 748	rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
 749	rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
 750#endif
 751#ifdef CONFIG_EFI
 752	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 753#ifdef CONFIG_X86_32
 754		     "EL32",
 755#else
 756		     "EL64",
 757#endif
 758	 4)) {
 759		efi_enabled = 1;
 760		efi_memblock_x86_reserve_range();
 761	}
 762#endif
 763
 764	x86_init.oem.arch_setup();
 765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 766	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
 767	setup_memory_map();
 768	parse_setup_data();
 769	/* update the e820_saved too */
 770	e820_reserve_setup_data();
 771
 772	copy_edd();
 773
 774	if (!boot_params.hdr.root_flags)
 775		root_mountflags &= ~MS_RDONLY;
 776	init_mm.start_code = (unsigned long) _text;
 777	init_mm.end_code = (unsigned long) _etext;
 778	init_mm.end_data = (unsigned long) _edata;
 779	init_mm.brk = _brk_end;
 780
 781	code_resource.start = virt_to_phys(_text);
 782	code_resource.end = virt_to_phys(_etext)-1;
 783	data_resource.start = virt_to_phys(_etext);
 784	data_resource.end = virt_to_phys(_edata)-1;
 785	bss_resource.start = virt_to_phys(&__bss_start);
 786	bss_resource.end = virt_to_phys(&__bss_stop)-1;
 787
 788#ifdef CONFIG_CMDLINE_BOOL
 789#ifdef CONFIG_CMDLINE_OVERRIDE
 790	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 791#else
 792	if (builtin_cmdline[0]) {
 793		/* append boot loader cmdline to builtin */
 794		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
 795		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
 796		strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 797	}
 798#endif
 799#endif
 800
 801	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 802	*cmdline_p = command_line;
 803
 804	/*
 805	 * x86_configure_nx() is called before parse_early_param() to detect
 806	 * whether hardware doesn't support NX (so that the early EHCI debug
 807	 * console setup can safely call set_fixmap()). It may then be called
 808	 * again from within noexec_setup() during parsing early parameters
 809	 * to honor the respective command line option.
 810	 */
 811	x86_configure_nx();
 812
 813	parse_early_param();
 814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 815	x86_report_nx();
 816
 817	/* after early param, so could get panic from serial */
 818	memblock_x86_reserve_range_setup_data();
 819
 820	if (acpi_mps_check()) {
 821#ifdef CONFIG_X86_LOCAL_APIC
 822		disable_apic = 1;
 823#endif
 824		setup_clear_cpu_cap(X86_FEATURE_APIC);
 825	}
 826
 827#ifdef CONFIG_PCI
 828	if (pci_early_dump_regs)
 829		early_dump_pci_devices();
 830#endif
 831
 832	finish_e820_parsing();
 833
 834	if (efi_enabled)
 835		efi_init();
 836
 837	dmi_scan_machine();
 838
 839	/*
 840	 * VMware detection requires dmi to be available, so this
 841	 * needs to be done after dmi_scan_machine, for the BP.
 842	 */
 843	init_hypervisor_platform();
 844
 
 845	x86_init.resources.probe_roms();
 846
 847	/* after parse_early_param, so could debug it */
 848	insert_resource(&iomem_resource, &code_resource);
 
 849	insert_resource(&iomem_resource, &data_resource);
 850	insert_resource(&iomem_resource, &bss_resource);
 851
 
 852	trim_bios_range();
 853#ifdef CONFIG_X86_32
 854	if (ppro_with_ram_bug()) {
 855		e820_update_range(0x70000000ULL, 0x40000ULL, E820_RAM,
 856				  E820_RESERVED);
 857		sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
 858		printk(KERN_INFO "fixed physical RAM map:\n");
 859		e820_print_map("bad_ppro");
 860	}
 861#else
 862	early_gart_iommu_check();
 863#endif
 864
 865	/*
 866	 * partially used pages are not usable - thus
 867	 * we are rounding upwards:
 868	 */
 869	max_pfn = e820_end_of_ram_pfn();
 870
 871	/* update e820 for memory not covered by WB MTRRs */
 872	mtrr_bp_init();
 873	if (mtrr_trim_uncached_memory(max_pfn))
 874		max_pfn = e820_end_of_ram_pfn();
 
 
 
 
 
 
 
 
 875
 876#ifdef CONFIG_X86_32
 877	/* max_low_pfn get updated here */
 878	find_low_pfn_range();
 879#else
 880	num_physpages = max_pfn;
 881
 882	check_x2apic();
 883
 884	/* How many end-of-memory variables you have, grandma! */
 885	/* need this before calling reserve_initrd */
 886	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
 887		max_low_pfn = e820_end_of_low_ram_pfn();
 888	else
 889		max_low_pfn = max_pfn;
 890
 891	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
 892#endif
 893
 894	/*
 895	 * Find and reserve possible boot-time SMP configuration:
 896	 */
 897	find_smp_config();
 898
 899	reserve_ibft_region();
 900
 901	/*
 902	 * Need to conclude brk, before memblock_x86_fill()
 903	 *  it could use memblock_find_in_range, could overlap with
 904	 *  brk area.
 905	 */
 906	reserve_brk();
 907
 908	cleanup_highmap();
 909
 910	memblock.current_limit = get_max_mapped();
 911	memblock_x86_fill();
 
 
 
 
 
 
 
 
 
 
 
 912
 913	/*
 914	 * The EFI specification says that boot service code won't be called
 915	 * after ExitBootServices(). This is, in fact, a lie.
 916	 */
 917	if (efi_enabled)
 918		efi_reserve_boot_services();
 919
 920	/* preallocate 4k for mptable mpc */
 921	early_reserve_e820_mpc_new();
 922
 923#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
 924	setup_bios_corruption_check();
 925#endif
 926
 927	printk(KERN_DEBUG "initial memory mapped : 0 - %08lx\n",
 928			max_pfn_mapped<<PAGE_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 929
 930	setup_trampolines();
 931
 932	init_gbpages();
 933
 934	/* max_pfn_mapped is updated here */
 935	max_low_pfn_mapped = init_memory_mapping(0, max_low_pfn<<PAGE_SHIFT);
 936	max_pfn_mapped = max_low_pfn_mapped;
 
 
 
 
 
 
 
 937
 938#ifdef CONFIG_X86_64
 939	if (max_pfn > max_low_pfn) {
 940		max_pfn_mapped = init_memory_mapping(1UL<<32,
 941						     max_pfn<<PAGE_SHIFT);
 942		/* can we preseve max_low_pfn ?*/
 943		max_low_pfn = max_pfn;
 944	}
 945#endif
 946	memblock.current_limit = get_max_mapped();
 947
 948	/*
 949	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
 950	 */
 951
 952#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
 953	if (init_ohci1394_dma_early)
 954		init_ohci1394_dma_on_all_controllers();
 955#endif
 956	/* Allocate bigger log buffer */
 957	setup_log_buf(1);
 958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 959	reserve_initrd();
 960
 961	reserve_crashkernel();
 
 
 962
 963	vsmp_init();
 964
 965	io_delay_init();
 966
 967	/*
 968	 * Parse the ACPI tables for possible boot-time SMP configuration.
 969	 */
 970	acpi_boot_table_init();
 971
 972	early_acpi_boot_init();
 973
 974	initmem_init();
 
 
 
 
 
 
 
 
 
 
 
 975	memblock_find_dma_reserve();
 976
 977#ifdef CONFIG_KVM_CLOCK
 978	kvmclock_init();
 979#endif
 980
 981	x86_init.paging.pagetable_setup_start(swapper_pg_dir);
 982	paging_init();
 983	x86_init.paging.pagetable_setup_done(swapper_pg_dir);
 984
 985	if (boot_cpu_data.cpuid_level >= 0) {
 986		/* A CPU has %cr4 if and only if it has CPUID */
 987		mmu_cr4_features = read_cr4();
 988	}
 989
 990#ifdef CONFIG_X86_32
 991	/* sync back kernel address range */
 992	clone_pgd_range(initial_page_table + KERNEL_PGD_BOUNDARY,
 993			swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
 994			KERNEL_PGD_PTRS);
 995#endif
 
 996
 997	tboot_probe();
 998
 999#ifdef CONFIG_X86_64
1000	map_vsyscall();
1001#endif
1002
1003	generic_apic_probe();
1004
1005	early_quirks();
1006
1007	/*
1008	 * Read APIC and some other early information from ACPI tables.
1009	 */
1010	acpi_boot_init();
1011	sfi_init();
1012	x86_dtb_init();
1013
1014	/*
1015	 * get boot-time SMP configuration:
1016	 */
1017	if (smp_found_config)
1018		get_smp_config();
 
 
 
 
 
1019
1020	prefill_possible_map();
1021
1022	init_cpu_to_node();
 
1023
1024	init_apic_mappings();
1025	ioapic_and_gsi_init();
1026
1027	kvm_guest_init();
1028
1029	e820_reserve_resources();
1030	e820_mark_nosave_regions(max_low_pfn);
1031
1032	x86_init.resources.reserve_resources();
1033
1034	e820_setup_gap();
1035
1036#ifdef CONFIG_VT
1037#if defined(CONFIG_VGA_CONSOLE)
1038	if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1039		conswitchp = &vga_con;
1040#elif defined(CONFIG_DUMMY_CONSOLE)
1041	conswitchp = &dummy_con;
1042#endif
1043#endif
1044	x86_init.oem.banner();
1045
1046	x86_init.timers.wallclock_init();
1047
 
 
 
 
 
 
 
 
1048	mcheck_init();
1049
1050	arch_init_ideal_nops();
 
 
 
 
 
 
 
1051}
1052
1053#ifdef CONFIG_X86_32
1054
1055static struct resource video_ram_resource = {
1056	.name	= "Video RAM area",
1057	.start	= 0xa0000,
1058	.end	= 0xbffff,
1059	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1060};
1061
1062void __init i386_reserve_resources(void)
1063{
1064	request_resource(&iomem_resource, &video_ram_resource);
1065	reserve_standard_io_resources();
1066}
1067
1068#endif /* CONFIG_X86_32 */