Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * This file contains the setup_arch() code, which handles the architecture-dependent
6 * parts of early kernel initialization.
7 */
8#include <linux/acpi.h>
9#include <linux/console.h>
10#include <linux/crash_dump.h>
11#include <linux/dma-map-ops.h>
12#include <linux/dmi.h>
13#include <linux/efi.h>
14#include <linux/ima.h>
15#include <linux/init_ohci1394_dma.h>
16#include <linux/initrd.h>
17#include <linux/iscsi_ibft.h>
18#include <linux/memblock.h>
19#include <linux/panic_notifier.h>
20#include <linux/pci.h>
21#include <linux/root_dev.h>
22#include <linux/hugetlb.h>
23#include <linux/tboot.h>
24#include <linux/usb/xhci-dbgp.h>
25#include <linux/static_call.h>
26#include <linux/swiotlb.h>
27#include <linux/random.h>
28
29#include <uapi/linux/mount.h>
30
31#include <xen/xen.h>
32
33#include <asm/apic.h>
34#include <asm/efi.h>
35#include <asm/numa.h>
36#include <asm/bios_ebda.h>
37#include <asm/bugs.h>
38#include <asm/cacheinfo.h>
39#include <asm/cpu.h>
40#include <asm/efi.h>
41#include <asm/gart.h>
42#include <asm/hypervisor.h>
43#include <asm/io_apic.h>
44#include <asm/kasan.h>
45#include <asm/kaslr.h>
46#include <asm/mce.h>
47#include <asm/memtype.h>
48#include <asm/mtrr.h>
49#include <asm/realmode.h>
50#include <asm/olpc_ofw.h>
51#include <asm/pci-direct.h>
52#include <asm/prom.h>
53#include <asm/proto.h>
54#include <asm/thermal.h>
55#include <asm/unwind.h>
56#include <asm/vsyscall.h>
57#include <linux/vmalloc.h>
58
59/*
60 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
61 * max_pfn_mapped: highest directly mapped pfn > 4 GB
62 *
63 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
64 * represented by pfn_mapped[].
65 */
66unsigned long max_low_pfn_mapped;
67unsigned long max_pfn_mapped;
68
69#ifdef CONFIG_DMI
70RESERVE_BRK(dmi_alloc, 65536);
71#endif
72
73
74unsigned long _brk_start = (unsigned long)__brk_base;
75unsigned long _brk_end = (unsigned long)__brk_base;
76
77struct boot_params boot_params;
78
79/*
80 * These are the four main kernel memory regions, we put them into
81 * the resource tree so that kdump tools and other debugging tools
82 * recover it:
83 */
84
85static struct resource rodata_resource = {
86 .name = "Kernel rodata",
87 .start = 0,
88 .end = 0,
89 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
90};
91
92static struct resource data_resource = {
93 .name = "Kernel data",
94 .start = 0,
95 .end = 0,
96 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
97};
98
99static struct resource code_resource = {
100 .name = "Kernel code",
101 .start = 0,
102 .end = 0,
103 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
104};
105
106static struct resource bss_resource = {
107 .name = "Kernel bss",
108 .start = 0,
109 .end = 0,
110 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
111};
112
113
114#ifdef CONFIG_X86_32
115/* CPU data as detected by the assembly code in head_32.S */
116struct cpuinfo_x86 new_cpu_data;
117
118/* Common CPU data for all CPUs */
119struct cpuinfo_x86 boot_cpu_data __read_mostly;
120EXPORT_SYMBOL(boot_cpu_data);
121
122unsigned int def_to_bigsmp;
123
124struct apm_info apm_info;
125EXPORT_SYMBOL(apm_info);
126
127#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
128 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
129struct ist_info ist_info;
130EXPORT_SYMBOL(ist_info);
131#else
132struct ist_info ist_info;
133#endif
134
135#else
136struct cpuinfo_x86 boot_cpu_data __read_mostly;
137EXPORT_SYMBOL(boot_cpu_data);
138#endif
139
140
141#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
142__visible unsigned long mmu_cr4_features __ro_after_init;
143#else
144__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
145#endif
146
147#ifdef CONFIG_IMA
148static phys_addr_t ima_kexec_buffer_phys;
149static size_t ima_kexec_buffer_size;
150#endif
151
152/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
153int bootloader_type, bootloader_version;
154
155/*
156 * Setup options
157 */
158struct screen_info screen_info;
159EXPORT_SYMBOL(screen_info);
160struct edid_info edid_info;
161EXPORT_SYMBOL_GPL(edid_info);
162
163extern int root_mountflags;
164
165unsigned long saved_video_mode;
166
167#define RAMDISK_IMAGE_START_MASK 0x07FF
168#define RAMDISK_PROMPT_FLAG 0x8000
169#define RAMDISK_LOAD_FLAG 0x4000
170
171static char __initdata command_line[COMMAND_LINE_SIZE];
172#ifdef CONFIG_CMDLINE_BOOL
173static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
174#endif
175
176#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
177struct edd edd;
178#ifdef CONFIG_EDD_MODULE
179EXPORT_SYMBOL(edd);
180#endif
181/**
182 * copy_edd() - Copy the BIOS EDD information
183 * from boot_params into a safe place.
184 *
185 */
186static inline void __init copy_edd(void)
187{
188 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
189 sizeof(edd.mbr_signature));
190 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
191 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
192 edd.edd_info_nr = boot_params.eddbuf_entries;
193}
194#else
195static inline void __init copy_edd(void)
196{
197}
198#endif
199
200void * __init extend_brk(size_t size, size_t align)
201{
202 size_t mask = align - 1;
203 void *ret;
204
205 BUG_ON(_brk_start == 0);
206 BUG_ON(align & mask);
207
208 _brk_end = (_brk_end + mask) & ~mask;
209 BUG_ON((char *)(_brk_end + size) > __brk_limit);
210
211 ret = (void *)_brk_end;
212 _brk_end += size;
213
214 memset(ret, 0, size);
215
216 return ret;
217}
218
219#ifdef CONFIG_X86_32
220static void __init cleanup_highmap(void)
221{
222}
223#endif
224
225static void __init reserve_brk(void)
226{
227 if (_brk_end > _brk_start)
228 memblock_reserve(__pa_symbol(_brk_start),
229 _brk_end - _brk_start);
230
231 /* Mark brk area as locked down and no longer taking any
232 new allocations */
233 _brk_start = 0;
234}
235
236u64 relocated_ramdisk;
237
238#ifdef CONFIG_BLK_DEV_INITRD
239
240static u64 __init get_ramdisk_image(void)
241{
242 u64 ramdisk_image = boot_params.hdr.ramdisk_image;
243
244 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
245
246 if (ramdisk_image == 0)
247 ramdisk_image = phys_initrd_start;
248
249 return ramdisk_image;
250}
251static u64 __init get_ramdisk_size(void)
252{
253 u64 ramdisk_size = boot_params.hdr.ramdisk_size;
254
255 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
256
257 if (ramdisk_size == 0)
258 ramdisk_size = phys_initrd_size;
259
260 return ramdisk_size;
261}
262
263static void __init relocate_initrd(void)
264{
265 /* Assume only end is not page aligned */
266 u64 ramdisk_image = get_ramdisk_image();
267 u64 ramdisk_size = get_ramdisk_size();
268 u64 area_size = PAGE_ALIGN(ramdisk_size);
269
270 /* We need to move the initrd down into directly mapped mem */
271 relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
272 PFN_PHYS(max_pfn_mapped));
273 if (!relocated_ramdisk)
274 panic("Cannot find place for new RAMDISK of size %lld\n",
275 ramdisk_size);
276
277 initrd_start = relocated_ramdisk + PAGE_OFFSET;
278 initrd_end = initrd_start + ramdisk_size;
279 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
280 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
281
282 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
283
284 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
285 " [mem %#010llx-%#010llx]\n",
286 ramdisk_image, ramdisk_image + ramdisk_size - 1,
287 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
288}
289
290static void __init early_reserve_initrd(void)
291{
292 /* Assume only end is not page aligned */
293 u64 ramdisk_image = get_ramdisk_image();
294 u64 ramdisk_size = get_ramdisk_size();
295 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
296
297 if (!boot_params.hdr.type_of_loader ||
298 !ramdisk_image || !ramdisk_size)
299 return; /* No initrd provided by bootloader */
300
301 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
302}
303
304static void __init reserve_initrd(void)
305{
306 /* Assume only end is not page aligned */
307 u64 ramdisk_image = get_ramdisk_image();
308 u64 ramdisk_size = get_ramdisk_size();
309 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
310
311 if (!boot_params.hdr.type_of_loader ||
312 !ramdisk_image || !ramdisk_size)
313 return; /* No initrd provided by bootloader */
314
315 initrd_start = 0;
316
317 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
318 ramdisk_end - 1);
319
320 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
321 PFN_DOWN(ramdisk_end))) {
322 /* All are mapped, easy case */
323 initrd_start = ramdisk_image + PAGE_OFFSET;
324 initrd_end = initrd_start + ramdisk_size;
325 return;
326 }
327
328 relocate_initrd();
329
330 memblock_phys_free(ramdisk_image, ramdisk_end - ramdisk_image);
331}
332
333#else
334static void __init early_reserve_initrd(void)
335{
336}
337static void __init reserve_initrd(void)
338{
339}
340#endif /* CONFIG_BLK_DEV_INITRD */
341
342static void __init add_early_ima_buffer(u64 phys_addr)
343{
344#ifdef CONFIG_IMA
345 struct ima_setup_data *data;
346
347 data = early_memremap(phys_addr + sizeof(struct setup_data), sizeof(*data));
348 if (!data) {
349 pr_warn("setup: failed to memremap ima_setup_data entry\n");
350 return;
351 }
352
353 if (data->size) {
354 memblock_reserve(data->addr, data->size);
355 ima_kexec_buffer_phys = data->addr;
356 ima_kexec_buffer_size = data->size;
357 }
358
359 early_memunmap(data, sizeof(*data));
360#else
361 pr_warn("Passed IMA kexec data, but CONFIG_IMA not set. Ignoring.\n");
362#endif
363}
364
365#if defined(CONFIG_HAVE_IMA_KEXEC) && !defined(CONFIG_OF_FLATTREE)
366int __init ima_free_kexec_buffer(void)
367{
368 int rc;
369
370 if (!ima_kexec_buffer_size)
371 return -ENOENT;
372
373 rc = memblock_phys_free(ima_kexec_buffer_phys,
374 ima_kexec_buffer_size);
375 if (rc)
376 return rc;
377
378 ima_kexec_buffer_phys = 0;
379 ima_kexec_buffer_size = 0;
380
381 return 0;
382}
383
384int __init ima_get_kexec_buffer(void **addr, size_t *size)
385{
386 if (!ima_kexec_buffer_size)
387 return -ENOENT;
388
389 *addr = __va(ima_kexec_buffer_phys);
390 *size = ima_kexec_buffer_size;
391
392 return 0;
393}
394#endif
395
396static void __init parse_setup_data(void)
397{
398 struct setup_data *data;
399 u64 pa_data, pa_next;
400
401 pa_data = boot_params.hdr.setup_data;
402 while (pa_data) {
403 u32 data_len, data_type;
404
405 data = early_memremap(pa_data, sizeof(*data));
406 data_len = data->len + sizeof(struct setup_data);
407 data_type = data->type;
408 pa_next = data->next;
409 early_memunmap(data, sizeof(*data));
410
411 switch (data_type) {
412 case SETUP_E820_EXT:
413 e820__memory_setup_extended(pa_data, data_len);
414 break;
415 case SETUP_DTB:
416 add_dtb(pa_data);
417 break;
418 case SETUP_EFI:
419 parse_efi_setup(pa_data, data_len);
420 break;
421 case SETUP_IMA:
422 add_early_ima_buffer(pa_data);
423 break;
424 case SETUP_RNG_SEED:
425 data = early_memremap(pa_data, data_len);
426 add_bootloader_randomness(data->data, data->len);
427 /* Zero seed for forward secrecy. */
428 memzero_explicit(data->data, data->len);
429 /* Zero length in case we find ourselves back here by accident. */
430 memzero_explicit(&data->len, sizeof(data->len));
431 early_memunmap(data, data_len);
432 break;
433 default:
434 break;
435 }
436 pa_data = pa_next;
437 }
438}
439
440static void __init memblock_x86_reserve_range_setup_data(void)
441{
442 struct setup_indirect *indirect;
443 struct setup_data *data;
444 u64 pa_data, pa_next;
445 u32 len;
446
447 pa_data = boot_params.hdr.setup_data;
448 while (pa_data) {
449 data = early_memremap(pa_data, sizeof(*data));
450 if (!data) {
451 pr_warn("setup: failed to memremap setup_data entry\n");
452 return;
453 }
454
455 len = sizeof(*data);
456 pa_next = data->next;
457
458 memblock_reserve(pa_data, sizeof(*data) + data->len);
459
460 if (data->type == SETUP_INDIRECT) {
461 len += data->len;
462 early_memunmap(data, sizeof(*data));
463 data = early_memremap(pa_data, len);
464 if (!data) {
465 pr_warn("setup: failed to memremap indirect setup_data\n");
466 return;
467 }
468
469 indirect = (struct setup_indirect *)data->data;
470
471 if (indirect->type != SETUP_INDIRECT)
472 memblock_reserve(indirect->addr, indirect->len);
473 }
474
475 pa_data = pa_next;
476 early_memunmap(data, len);
477 }
478}
479
480/*
481 * --------- Crashkernel reservation ------------------------------
482 */
483
484/* 16M alignment for crash kernel regions */
485#define CRASH_ALIGN SZ_16M
486
487/*
488 * Keep the crash kernel below this limit.
489 *
490 * Earlier 32-bits kernels would limit the kernel to the low 512 MB range
491 * due to mapping restrictions.
492 *
493 * 64-bit kdump kernels need to be restricted to be under 64 TB, which is
494 * the upper limit of system RAM in 4-level paging mode. Since the kdump
495 * jump could be from 5-level paging to 4-level paging, the jump will fail if
496 * the kernel is put above 64 TB, and during the 1st kernel bootup there's
497 * no good way to detect the paging mode of the target kernel which will be
498 * loaded for dumping.
499 */
500#ifdef CONFIG_X86_32
501# define CRASH_ADDR_LOW_MAX SZ_512M
502# define CRASH_ADDR_HIGH_MAX SZ_512M
503#else
504# define CRASH_ADDR_LOW_MAX SZ_4G
505# define CRASH_ADDR_HIGH_MAX SZ_64T
506#endif
507
508static int __init reserve_crashkernel_low(void)
509{
510#ifdef CONFIG_X86_64
511 unsigned long long base, low_base = 0, low_size = 0;
512 unsigned long low_mem_limit;
513 int ret;
514
515 low_mem_limit = min(memblock_phys_mem_size(), CRASH_ADDR_LOW_MAX);
516
517 /* crashkernel=Y,low */
518 ret = parse_crashkernel_low(boot_command_line, low_mem_limit, &low_size, &base);
519 if (ret) {
520 /*
521 * two parts from kernel/dma/swiotlb.c:
522 * -swiotlb size: user-specified with swiotlb= or default.
523 *
524 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
525 * to 8M for other buffers that may need to stay low too. Also
526 * make sure we allocate enough extra low memory so that we
527 * don't run out of DMA buffers for 32-bit devices.
528 */
529 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
530 } else {
531 /* passed with crashkernel=0,low ? */
532 if (!low_size)
533 return 0;
534 }
535
536 low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX);
537 if (!low_base) {
538 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
539 (unsigned long)(low_size >> 20));
540 return -ENOMEM;
541 }
542
543 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (low RAM limit: %ldMB)\n",
544 (unsigned long)(low_size >> 20),
545 (unsigned long)(low_base >> 20),
546 (unsigned long)(low_mem_limit >> 20));
547
548 crashk_low_res.start = low_base;
549 crashk_low_res.end = low_base + low_size - 1;
550 insert_resource(&iomem_resource, &crashk_low_res);
551#endif
552 return 0;
553}
554
555static void __init reserve_crashkernel(void)
556{
557 unsigned long long crash_size, crash_base, total_mem;
558 bool high = false;
559 int ret;
560
561 if (!IS_ENABLED(CONFIG_KEXEC_CORE))
562 return;
563
564 total_mem = memblock_phys_mem_size();
565
566 /* crashkernel=XM */
567 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
568 if (ret != 0 || crash_size <= 0) {
569 /* crashkernel=X,high */
570 ret = parse_crashkernel_high(boot_command_line, total_mem,
571 &crash_size, &crash_base);
572 if (ret != 0 || crash_size <= 0)
573 return;
574 high = true;
575 }
576
577 if (xen_pv_domain()) {
578 pr_info("Ignoring crashkernel for a Xen PV domain\n");
579 return;
580 }
581
582 /* 0 means: find the address automatically */
583 if (!crash_base) {
584 /*
585 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
586 * crashkernel=x,high reserves memory over 4G, also allocates
587 * 256M extra low memory for DMA buffers and swiotlb.
588 * But the extra memory is not required for all machines.
589 * So try low memory first and fall back to high memory
590 * unless "crashkernel=size[KMG],high" is specified.
591 */
592 if (!high)
593 crash_base = memblock_phys_alloc_range(crash_size,
594 CRASH_ALIGN, CRASH_ALIGN,
595 CRASH_ADDR_LOW_MAX);
596 if (!crash_base)
597 crash_base = memblock_phys_alloc_range(crash_size,
598 CRASH_ALIGN, CRASH_ALIGN,
599 CRASH_ADDR_HIGH_MAX);
600 if (!crash_base) {
601 pr_info("crashkernel reservation failed - No suitable area found.\n");
602 return;
603 }
604 } else {
605 unsigned long long start;
606
607 start = memblock_phys_alloc_range(crash_size, SZ_1M, crash_base,
608 crash_base + crash_size);
609 if (start != crash_base) {
610 pr_info("crashkernel reservation failed - memory is in use.\n");
611 return;
612 }
613 }
614
615 if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
616 memblock_phys_free(crash_base, crash_size);
617 return;
618 }
619
620 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
621 (unsigned long)(crash_size >> 20),
622 (unsigned long)(crash_base >> 20),
623 (unsigned long)(total_mem >> 20));
624
625 crashk_res.start = crash_base;
626 crashk_res.end = crash_base + crash_size - 1;
627 insert_resource(&iomem_resource, &crashk_res);
628}
629
630static struct resource standard_io_resources[] = {
631 { .name = "dma1", .start = 0x00, .end = 0x1f,
632 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
633 { .name = "pic1", .start = 0x20, .end = 0x21,
634 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
635 { .name = "timer0", .start = 0x40, .end = 0x43,
636 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
637 { .name = "timer1", .start = 0x50, .end = 0x53,
638 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
639 { .name = "keyboard", .start = 0x60, .end = 0x60,
640 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
641 { .name = "keyboard", .start = 0x64, .end = 0x64,
642 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
643 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
644 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
645 { .name = "pic2", .start = 0xa0, .end = 0xa1,
646 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
647 { .name = "dma2", .start = 0xc0, .end = 0xdf,
648 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
649 { .name = "fpu", .start = 0xf0, .end = 0xff,
650 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
651};
652
653void __init reserve_standard_io_resources(void)
654{
655 int i;
656
657 /* request I/O space for devices used on all i[345]86 PCs */
658 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
659 request_resource(&ioport_resource, &standard_io_resources[i]);
660
661}
662
663static bool __init snb_gfx_workaround_needed(void)
664{
665#ifdef CONFIG_PCI
666 int i;
667 u16 vendor, devid;
668 static const __initconst u16 snb_ids[] = {
669 0x0102,
670 0x0112,
671 0x0122,
672 0x0106,
673 0x0116,
674 0x0126,
675 0x010a,
676 };
677
678 /* Assume no if something weird is going on with PCI */
679 if (!early_pci_allowed())
680 return false;
681
682 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
683 if (vendor != 0x8086)
684 return false;
685
686 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
687 for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
688 if (devid == snb_ids[i])
689 return true;
690#endif
691
692 return false;
693}
694
695/*
696 * Sandy Bridge graphics has trouble with certain ranges, exclude
697 * them from allocation.
698 */
699static void __init trim_snb_memory(void)
700{
701 static const __initconst unsigned long bad_pages[] = {
702 0x20050000,
703 0x20110000,
704 0x20130000,
705 0x20138000,
706 0x40004000,
707 };
708 int i;
709
710 if (!snb_gfx_workaround_needed())
711 return;
712
713 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
714
715 /*
716 * SandyBridge integrated graphics devices have a bug that prevents
717 * them from accessing certain memory ranges, namely anything below
718 * 1M and in the pages listed in bad_pages[] above.
719 *
720 * To avoid these pages being ever accessed by SNB gfx devices reserve
721 * bad_pages that have not already been reserved at boot time.
722 * All memory below the 1 MB mark is anyway reserved later during
723 * setup_arch(), so there is no need to reserve it here.
724 */
725
726 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
727 if (memblock_reserve(bad_pages[i], PAGE_SIZE))
728 printk(KERN_WARNING "failed to reserve 0x%08lx\n",
729 bad_pages[i]);
730 }
731}
732
733static void __init trim_bios_range(void)
734{
735 /*
736 * A special case is the first 4Kb of memory;
737 * This is a BIOS owned area, not kernel ram, but generally
738 * not listed as such in the E820 table.
739 *
740 * This typically reserves additional memory (64KiB by default)
741 * since some BIOSes are known to corrupt low memory. See the
742 * Kconfig help text for X86_RESERVE_LOW.
743 */
744 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
745
746 /*
747 * special case: Some BIOSes report the PC BIOS
748 * area (640Kb -> 1Mb) as RAM even though it is not.
749 * take them out.
750 */
751 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
752
753 e820__update_table(e820_table);
754}
755
756/* called before trim_bios_range() to spare extra sanitize */
757static void __init e820_add_kernel_range(void)
758{
759 u64 start = __pa_symbol(_text);
760 u64 size = __pa_symbol(_end) - start;
761
762 /*
763 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
764 * attempt to fix it by adding the range. We may have a confused BIOS,
765 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
766 * exclude kernel range. If we really are running on top non-RAM,
767 * we will crash later anyways.
768 */
769 if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
770 return;
771
772 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
773 e820__range_remove(start, size, E820_TYPE_RAM, 0);
774 e820__range_add(start, size, E820_TYPE_RAM);
775}
776
777static void __init early_reserve_memory(void)
778{
779 /*
780 * Reserve the memory occupied by the kernel between _text and
781 * __end_of_kernel_reserve symbols. Any kernel sections after the
782 * __end_of_kernel_reserve symbol must be explicitly reserved with a
783 * separate memblock_reserve() or they will be discarded.
784 */
785 memblock_reserve(__pa_symbol(_text),
786 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
787
788 /*
789 * The first 4Kb of memory is a BIOS owned area, but generally it is
790 * not listed as such in the E820 table.
791 *
792 * Reserve the first 64K of memory since some BIOSes are known to
793 * corrupt low memory. After the real mode trampoline is allocated the
794 * rest of the memory below 640k is reserved.
795 *
796 * In addition, make sure page 0 is always reserved because on
797 * systems with L1TF its contents can be leaked to user processes.
798 */
799 memblock_reserve(0, SZ_64K);
800
801 early_reserve_initrd();
802
803 memblock_x86_reserve_range_setup_data();
804
805 reserve_ibft_region();
806 reserve_bios_regions();
807 trim_snb_memory();
808}
809
810/*
811 * Dump out kernel offset information on panic.
812 */
813static int
814dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
815{
816 if (kaslr_enabled()) {
817 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
818 kaslr_offset(),
819 __START_KERNEL,
820 __START_KERNEL_map,
821 MODULES_VADDR-1);
822 } else {
823 pr_emerg("Kernel Offset: disabled\n");
824 }
825
826 return 0;
827}
828
829void x86_configure_nx(void)
830{
831 if (boot_cpu_has(X86_FEATURE_NX))
832 __supported_pte_mask |= _PAGE_NX;
833 else
834 __supported_pte_mask &= ~_PAGE_NX;
835}
836
837static void __init x86_report_nx(void)
838{
839 if (!boot_cpu_has(X86_FEATURE_NX)) {
840 printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
841 "missing in CPU!\n");
842 } else {
843#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
844 printk(KERN_INFO "NX (Execute Disable) protection: active\n");
845#else
846 /* 32bit non-PAE kernel, NX cannot be used */
847 printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
848 "cannot be enabled: non-PAE kernel!\n");
849#endif
850 }
851}
852
853/*
854 * Determine if we were loaded by an EFI loader. If so, then we have also been
855 * passed the efi memmap, systab, etc., so we should use these data structures
856 * for initialization. Note, the efi init code path is determined by the
857 * global efi_enabled. This allows the same kernel image to be used on existing
858 * systems (with a traditional BIOS) as well as on EFI systems.
859 */
860/*
861 * setup_arch - architecture-specific boot-time initializations
862 *
863 * Note: On x86_64, fixmaps are ready for use even before this is called.
864 */
865
866void __init setup_arch(char **cmdline_p)
867{
868#ifdef CONFIG_X86_32
869 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
870
871 /*
872 * copy kernel address range established so far and switch
873 * to the proper swapper page table
874 */
875 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY,
876 initial_page_table + KERNEL_PGD_BOUNDARY,
877 KERNEL_PGD_PTRS);
878
879 load_cr3(swapper_pg_dir);
880 /*
881 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
882 * a cr3 based tlb flush, so the following __flush_tlb_all()
883 * will not flush anything because the CPU quirk which clears
884 * X86_FEATURE_PGE has not been invoked yet. Though due to the
885 * load_cr3() above the TLB has been flushed already. The
886 * quirk is invoked before subsequent calls to __flush_tlb_all()
887 * so proper operation is guaranteed.
888 */
889 __flush_tlb_all();
890#else
891 printk(KERN_INFO "Command line: %s\n", boot_command_line);
892 boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
893#endif
894
895 /*
896 * If we have OLPC OFW, we might end up relocating the fixmap due to
897 * reserve_top(), so do this before touching the ioremap area.
898 */
899 olpc_ofw_detect();
900
901 idt_setup_early_traps();
902 early_cpu_init();
903 jump_label_init();
904 static_call_init();
905 early_ioremap_init();
906
907 setup_olpc_ofw_pgd();
908
909 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
910 screen_info = boot_params.screen_info;
911 edid_info = boot_params.edid_info;
912#ifdef CONFIG_X86_32
913 apm_info.bios = boot_params.apm_bios_info;
914 ist_info = boot_params.ist_info;
915#endif
916 saved_video_mode = boot_params.hdr.vid_mode;
917 bootloader_type = boot_params.hdr.type_of_loader;
918 if ((bootloader_type >> 4) == 0xe) {
919 bootloader_type &= 0xf;
920 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
921 }
922 bootloader_version = bootloader_type & 0xf;
923 bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
924
925#ifdef CONFIG_BLK_DEV_RAM
926 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
927#endif
928#ifdef CONFIG_EFI
929 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
930 EFI32_LOADER_SIGNATURE, 4)) {
931 set_bit(EFI_BOOT, &efi.flags);
932 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
933 EFI64_LOADER_SIGNATURE, 4)) {
934 set_bit(EFI_BOOT, &efi.flags);
935 set_bit(EFI_64BIT, &efi.flags);
936 }
937#endif
938
939 x86_init.oem.arch_setup();
940
941 /*
942 * Do some memory reservations *before* memory is added to memblock, so
943 * memblock allocations won't overwrite it.
944 *
945 * After this point, everything still needed from the boot loader or
946 * firmware or kernel text should be early reserved or marked not RAM in
947 * e820. All other memory is free game.
948 *
949 * This call needs to happen before e820__memory_setup() which calls the
950 * xen_memory_setup() on Xen dom0 which relies on the fact that those
951 * early reservations have happened already.
952 */
953 early_reserve_memory();
954
955 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
956 e820__memory_setup();
957 parse_setup_data();
958
959 copy_edd();
960
961 if (!boot_params.hdr.root_flags)
962 root_mountflags &= ~MS_RDONLY;
963 setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end);
964
965 code_resource.start = __pa_symbol(_text);
966 code_resource.end = __pa_symbol(_etext)-1;
967 rodata_resource.start = __pa_symbol(__start_rodata);
968 rodata_resource.end = __pa_symbol(__end_rodata)-1;
969 data_resource.start = __pa_symbol(_sdata);
970 data_resource.end = __pa_symbol(_edata)-1;
971 bss_resource.start = __pa_symbol(__bss_start);
972 bss_resource.end = __pa_symbol(__bss_stop)-1;
973
974#ifdef CONFIG_CMDLINE_BOOL
975#ifdef CONFIG_CMDLINE_OVERRIDE
976 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
977#else
978 if (builtin_cmdline[0]) {
979 /* append boot loader cmdline to builtin */
980 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
981 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
982 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
983 }
984#endif
985#endif
986
987 strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
988 *cmdline_p = command_line;
989
990 /*
991 * x86_configure_nx() is called before parse_early_param() to detect
992 * whether hardware doesn't support NX (so that the early EHCI debug
993 * console setup can safely call set_fixmap()).
994 */
995 x86_configure_nx();
996
997 parse_early_param();
998
999 if (efi_enabled(EFI_BOOT))
1000 efi_memblock_x86_reserve_range();
1001
1002#ifdef CONFIG_MEMORY_HOTPLUG
1003 /*
1004 * Memory used by the kernel cannot be hot-removed because Linux
1005 * cannot migrate the kernel pages. When memory hotplug is
1006 * enabled, we should prevent memblock from allocating memory
1007 * for the kernel.
1008 *
1009 * ACPI SRAT records all hotpluggable memory ranges. But before
1010 * SRAT is parsed, we don't know about it.
1011 *
1012 * The kernel image is loaded into memory at very early time. We
1013 * cannot prevent this anyway. So on NUMA system, we set any
1014 * node the kernel resides in as un-hotpluggable.
1015 *
1016 * Since on modern servers, one node could have double-digit
1017 * gigabytes memory, we can assume the memory around the kernel
1018 * image is also un-hotpluggable. So before SRAT is parsed, just
1019 * allocate memory near the kernel image to try the best to keep
1020 * the kernel away from hotpluggable memory.
1021 */
1022 if (movable_node_is_enabled())
1023 memblock_set_bottom_up(true);
1024#endif
1025
1026 x86_report_nx();
1027
1028 if (acpi_mps_check()) {
1029#ifdef CONFIG_X86_LOCAL_APIC
1030 disable_apic = 1;
1031#endif
1032 setup_clear_cpu_cap(X86_FEATURE_APIC);
1033 }
1034
1035 e820__reserve_setup_data();
1036 e820__finish_early_params();
1037
1038 if (efi_enabled(EFI_BOOT))
1039 efi_init();
1040
1041 dmi_setup();
1042
1043 /*
1044 * VMware detection requires dmi to be available, so this
1045 * needs to be done after dmi_setup(), for the boot CPU.
1046 */
1047 init_hypervisor_platform();
1048
1049 tsc_early_init();
1050 x86_init.resources.probe_roms();
1051
1052 /* after parse_early_param, so could debug it */
1053 insert_resource(&iomem_resource, &code_resource);
1054 insert_resource(&iomem_resource, &rodata_resource);
1055 insert_resource(&iomem_resource, &data_resource);
1056 insert_resource(&iomem_resource, &bss_resource);
1057
1058 e820_add_kernel_range();
1059 trim_bios_range();
1060#ifdef CONFIG_X86_32
1061 if (ppro_with_ram_bug()) {
1062 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1063 E820_TYPE_RESERVED);
1064 e820__update_table(e820_table);
1065 printk(KERN_INFO "fixed physical RAM map:\n");
1066 e820__print_table("bad_ppro");
1067 }
1068#else
1069 early_gart_iommu_check();
1070#endif
1071
1072 /*
1073 * partially used pages are not usable - thus
1074 * we are rounding upwards:
1075 */
1076 max_pfn = e820__end_of_ram_pfn();
1077
1078 /* update e820 for memory not covered by WB MTRRs */
1079 cache_bp_init();
1080 if (mtrr_trim_uncached_memory(max_pfn))
1081 max_pfn = e820__end_of_ram_pfn();
1082
1083 max_possible_pfn = max_pfn;
1084
1085 /*
1086 * Define random base addresses for memory sections after max_pfn is
1087 * defined and before each memory section base is used.
1088 */
1089 kernel_randomize_memory();
1090
1091#ifdef CONFIG_X86_32
1092 /* max_low_pfn get updated here */
1093 find_low_pfn_range();
1094#else
1095 check_x2apic();
1096
1097 /* How many end-of-memory variables you have, grandma! */
1098 /* need this before calling reserve_initrd */
1099 if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1100 max_low_pfn = e820__end_of_low_ram_pfn();
1101 else
1102 max_low_pfn = max_pfn;
1103
1104 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1105#endif
1106
1107 /*
1108 * Find and reserve possible boot-time SMP configuration:
1109 */
1110 find_smp_config();
1111
1112 early_alloc_pgt_buf();
1113
1114 /*
1115 * Need to conclude brk, before e820__memblock_setup()
1116 * it could use memblock_find_in_range, could overlap with
1117 * brk area.
1118 */
1119 reserve_brk();
1120
1121 cleanup_highmap();
1122
1123 memblock_set_current_limit(ISA_END_ADDRESS);
1124 e820__memblock_setup();
1125
1126 /*
1127 * Needs to run after memblock setup because it needs the physical
1128 * memory size.
1129 */
1130 sev_setup_arch();
1131
1132 efi_fake_memmap();
1133 efi_find_mirror();
1134 efi_esrt_init();
1135 efi_mokvar_table_init();
1136
1137 /*
1138 * The EFI specification says that boot service code won't be
1139 * called after ExitBootServices(). This is, in fact, a lie.
1140 */
1141 efi_reserve_boot_services();
1142
1143 /* preallocate 4k for mptable mpc */
1144 e820__memblock_alloc_reserved_mpc_new();
1145
1146#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1147 setup_bios_corruption_check();
1148#endif
1149
1150#ifdef CONFIG_X86_32
1151 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1152 (max_pfn_mapped<<PAGE_SHIFT) - 1);
1153#endif
1154
1155 /*
1156 * Find free memory for the real mode trampoline and place it there. If
1157 * there is not enough free memory under 1M, on EFI-enabled systems
1158 * there will be additional attempt to reclaim the memory for the real
1159 * mode trampoline at efi_free_boot_services().
1160 *
1161 * Unconditionally reserve the entire first 1M of RAM because BIOSes
1162 * are known to corrupt low memory and several hundred kilobytes are not
1163 * worth complex detection what memory gets clobbered. Windows does the
1164 * same thing for very similar reasons.
1165 *
1166 * Moreover, on machines with SandyBridge graphics or in setups that use
1167 * crashkernel the entire 1M is reserved anyway.
1168 */
1169 x86_platform.realmode_reserve();
1170
1171 init_mem_mapping();
1172
1173 idt_setup_early_pf();
1174
1175 /*
1176 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1177 * with the current CR4 value. This may not be necessary, but
1178 * auditing all the early-boot CR4 manipulation would be needed to
1179 * rule it out.
1180 *
1181 * Mask off features that don't work outside long mode (just
1182 * PCIDE for now).
1183 */
1184 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1185
1186 memblock_set_current_limit(get_max_mapped());
1187
1188 /*
1189 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1190 */
1191
1192#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1193 if (init_ohci1394_dma_early)
1194 init_ohci1394_dma_on_all_controllers();
1195#endif
1196 /* Allocate bigger log buffer */
1197 setup_log_buf(1);
1198
1199 if (efi_enabled(EFI_BOOT)) {
1200 switch (boot_params.secure_boot) {
1201 case efi_secureboot_mode_disabled:
1202 pr_info("Secure boot disabled\n");
1203 break;
1204 case efi_secureboot_mode_enabled:
1205 pr_info("Secure boot enabled\n");
1206 break;
1207 default:
1208 pr_info("Secure boot could not be determined\n");
1209 break;
1210 }
1211 }
1212
1213 reserve_initrd();
1214
1215 acpi_table_upgrade();
1216 /* Look for ACPI tables and reserve memory occupied by them. */
1217 acpi_boot_table_init();
1218
1219 vsmp_init();
1220
1221 io_delay_init();
1222
1223 early_platform_quirks();
1224
1225 early_acpi_boot_init();
1226
1227 initmem_init();
1228 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1229
1230 if (boot_cpu_has(X86_FEATURE_GBPAGES))
1231 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1232
1233 /*
1234 * Reserve memory for crash kernel after SRAT is parsed so that it
1235 * won't consume hotpluggable memory.
1236 */
1237 reserve_crashkernel();
1238
1239 memblock_find_dma_reserve();
1240
1241 if (!early_xdbc_setup_hardware())
1242 early_xdbc_register_console();
1243
1244 x86_init.paging.pagetable_init();
1245
1246 kasan_init();
1247
1248 /*
1249 * Sync back kernel address range.
1250 *
1251 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1252 * this call?
1253 */
1254 sync_initial_page_table();
1255
1256 tboot_probe();
1257
1258 map_vsyscall();
1259
1260 generic_apic_probe();
1261
1262 early_quirks();
1263
1264 /*
1265 * Read APIC and some other early information from ACPI tables.
1266 */
1267 acpi_boot_init();
1268 x86_dtb_init();
1269
1270 /*
1271 * get boot-time SMP configuration:
1272 */
1273 get_smp_config();
1274
1275 /*
1276 * Systems w/o ACPI and mptables might not have it mapped the local
1277 * APIC yet, but prefill_possible_map() might need to access it.
1278 */
1279 init_apic_mappings();
1280
1281 prefill_possible_map();
1282
1283 init_cpu_to_node();
1284 init_gi_nodes();
1285
1286 io_apic_init_mappings();
1287
1288 x86_init.hyper.guest_late_init();
1289
1290 e820__reserve_resources();
1291 e820__register_nosave_regions(max_pfn);
1292
1293 x86_init.resources.reserve_resources();
1294
1295 e820__setup_pci_gap();
1296
1297#ifdef CONFIG_VT
1298#if defined(CONFIG_VGA_CONSOLE)
1299 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1300 conswitchp = &vga_con;
1301#endif
1302#endif
1303 x86_init.oem.banner();
1304
1305 x86_init.timers.wallclock_init();
1306
1307 /*
1308 * This needs to run before setup_local_APIC() which soft-disables the
1309 * local APIC temporarily and that masks the thermal LVT interrupt,
1310 * leading to softlockups on machines which have configured SMI
1311 * interrupt delivery.
1312 */
1313 therm_lvt_init();
1314
1315 mcheck_init();
1316
1317 register_refined_jiffies(CLOCK_TICK_RATE);
1318
1319#ifdef CONFIG_EFI
1320 if (efi_enabled(EFI_BOOT))
1321 efi_apply_memmap_quirks();
1322#endif
1323
1324 unwind_init();
1325}
1326
1327#ifdef CONFIG_X86_32
1328
1329static struct resource video_ram_resource = {
1330 .name = "Video RAM area",
1331 .start = 0xa0000,
1332 .end = 0xbffff,
1333 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1334};
1335
1336void __init i386_reserve_resources(void)
1337{
1338 request_resource(&iomem_resource, &video_ram_resource);
1339 reserve_standard_io_resources();
1340}
1341
1342#endif /* CONFIG_X86_32 */
1343
1344static struct notifier_block kernel_offset_notifier = {
1345 .notifier_call = dump_kernel_offset
1346};
1347
1348static int __init register_kernel_offset_dumper(void)
1349{
1350 atomic_notifier_chain_register(&panic_notifier_list,
1351 &kernel_offset_notifier);
1352 return 0;
1353}
1354__initcall(register_kernel_offset_dumper);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * This file contains the setup_arch() code, which handles the architecture-dependent
6 * parts of early kernel initialization.
7 */
8#include <linux/console.h>
9#include <linux/crash_dump.h>
10#include <linux/dmi.h>
11#include <linux/efi.h>
12#include <linux/init_ohci1394_dma.h>
13#include <linux/initrd.h>
14#include <linux/iscsi_ibft.h>
15#include <linux/memblock.h>
16#include <linux/pci.h>
17#include <linux/root_dev.h>
18#include <linux/sfi.h>
19#include <linux/hugetlb.h>
20#include <linux/tboot.h>
21#include <linux/usb/xhci-dbgp.h>
22
23#include <uapi/linux/mount.h>
24
25#include <xen/xen.h>
26
27#include <asm/apic.h>
28#include <asm/numa.h>
29#include <asm/bios_ebda.h>
30#include <asm/bugs.h>
31#include <asm/cpu.h>
32#include <asm/efi.h>
33#include <asm/gart.h>
34#include <asm/hypervisor.h>
35#include <asm/io_apic.h>
36#include <asm/kasan.h>
37#include <asm/kaslr.h>
38#include <asm/mce.h>
39#include <asm/mtrr.h>
40#include <asm/realmode.h>
41#include <asm/olpc_ofw.h>
42#include <asm/pci-direct.h>
43#include <asm/prom.h>
44#include <asm/proto.h>
45#include <asm/unwind.h>
46#include <asm/vsyscall.h>
47#include <linux/vmalloc.h>
48
49/*
50 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
51 * max_pfn_mapped: highest directly mapped pfn > 4 GB
52 *
53 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
54 * represented by pfn_mapped[].
55 */
56unsigned long max_low_pfn_mapped;
57unsigned long max_pfn_mapped;
58
59#ifdef CONFIG_DMI
60RESERVE_BRK(dmi_alloc, 65536);
61#endif
62
63
64/*
65 * Range of the BSS area. The size of the BSS area is determined
66 * at link time, with RESERVE_BRK*() facility reserving additional
67 * chunks.
68 */
69unsigned long _brk_start = (unsigned long)__brk_base;
70unsigned long _brk_end = (unsigned long)__brk_base;
71
72struct boot_params boot_params;
73
74/*
75 * These are the four main kernel memory regions, we put them into
76 * the resource tree so that kdump tools and other debugging tools
77 * recover it:
78 */
79
80static struct resource rodata_resource = {
81 .name = "Kernel rodata",
82 .start = 0,
83 .end = 0,
84 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
85};
86
87static struct resource data_resource = {
88 .name = "Kernel data",
89 .start = 0,
90 .end = 0,
91 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
92};
93
94static struct resource code_resource = {
95 .name = "Kernel code",
96 .start = 0,
97 .end = 0,
98 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
99};
100
101static struct resource bss_resource = {
102 .name = "Kernel bss",
103 .start = 0,
104 .end = 0,
105 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
106};
107
108
109#ifdef CONFIG_X86_32
110/* CPU data as detected by the assembly code in head_32.S */
111struct cpuinfo_x86 new_cpu_data;
112
113/* Common CPU data for all CPUs */
114struct cpuinfo_x86 boot_cpu_data __read_mostly;
115EXPORT_SYMBOL(boot_cpu_data);
116
117unsigned int def_to_bigsmp;
118
119/* For MCA, but anyone else can use it if they want */
120unsigned int machine_id;
121unsigned int machine_submodel_id;
122unsigned int BIOS_revision;
123
124struct apm_info apm_info;
125EXPORT_SYMBOL(apm_info);
126
127#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
128 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
129struct ist_info ist_info;
130EXPORT_SYMBOL(ist_info);
131#else
132struct ist_info ist_info;
133#endif
134
135#else
136struct cpuinfo_x86 boot_cpu_data __read_mostly;
137EXPORT_SYMBOL(boot_cpu_data);
138#endif
139
140
141#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
142__visible unsigned long mmu_cr4_features __ro_after_init;
143#else
144__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
145#endif
146
147/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
148int bootloader_type, bootloader_version;
149
150/*
151 * Setup options
152 */
153struct screen_info screen_info;
154EXPORT_SYMBOL(screen_info);
155struct edid_info edid_info;
156EXPORT_SYMBOL_GPL(edid_info);
157
158extern int root_mountflags;
159
160unsigned long saved_video_mode;
161
162#define RAMDISK_IMAGE_START_MASK 0x07FF
163#define RAMDISK_PROMPT_FLAG 0x8000
164#define RAMDISK_LOAD_FLAG 0x4000
165
166static char __initdata command_line[COMMAND_LINE_SIZE];
167#ifdef CONFIG_CMDLINE_BOOL
168static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
169#endif
170
171#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
172struct edd edd;
173#ifdef CONFIG_EDD_MODULE
174EXPORT_SYMBOL(edd);
175#endif
176/**
177 * copy_edd() - Copy the BIOS EDD information
178 * from boot_params into a safe place.
179 *
180 */
181static inline void __init copy_edd(void)
182{
183 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
184 sizeof(edd.mbr_signature));
185 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
186 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
187 edd.edd_info_nr = boot_params.eddbuf_entries;
188}
189#else
190static inline void __init copy_edd(void)
191{
192}
193#endif
194
195void * __init extend_brk(size_t size, size_t align)
196{
197 size_t mask = align - 1;
198 void *ret;
199
200 BUG_ON(_brk_start == 0);
201 BUG_ON(align & mask);
202
203 _brk_end = (_brk_end + mask) & ~mask;
204 BUG_ON((char *)(_brk_end + size) > __brk_limit);
205
206 ret = (void *)_brk_end;
207 _brk_end += size;
208
209 memset(ret, 0, size);
210
211 return ret;
212}
213
214#ifdef CONFIG_X86_32
215static void __init cleanup_highmap(void)
216{
217}
218#endif
219
220static void __init reserve_brk(void)
221{
222 if (_brk_end > _brk_start)
223 memblock_reserve(__pa_symbol(_brk_start),
224 _brk_end - _brk_start);
225
226 /* Mark brk area as locked down and no longer taking any
227 new allocations */
228 _brk_start = 0;
229}
230
231u64 relocated_ramdisk;
232
233#ifdef CONFIG_BLK_DEV_INITRD
234
235static u64 __init get_ramdisk_image(void)
236{
237 u64 ramdisk_image = boot_params.hdr.ramdisk_image;
238
239 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
240
241 if (ramdisk_image == 0)
242 ramdisk_image = phys_initrd_start;
243
244 return ramdisk_image;
245}
246static u64 __init get_ramdisk_size(void)
247{
248 u64 ramdisk_size = boot_params.hdr.ramdisk_size;
249
250 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
251
252 if (ramdisk_size == 0)
253 ramdisk_size = phys_initrd_size;
254
255 return ramdisk_size;
256}
257
258static void __init relocate_initrd(void)
259{
260 /* Assume only end is not page aligned */
261 u64 ramdisk_image = get_ramdisk_image();
262 u64 ramdisk_size = get_ramdisk_size();
263 u64 area_size = PAGE_ALIGN(ramdisk_size);
264
265 /* We need to move the initrd down into directly mapped mem */
266 relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
267 area_size, PAGE_SIZE);
268
269 if (!relocated_ramdisk)
270 panic("Cannot find place for new RAMDISK of size %lld\n",
271 ramdisk_size);
272
273 /* Note: this includes all the mem currently occupied by
274 the initrd, we rely on that fact to keep the data intact. */
275 memblock_reserve(relocated_ramdisk, area_size);
276 initrd_start = relocated_ramdisk + PAGE_OFFSET;
277 initrd_end = initrd_start + ramdisk_size;
278 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
279 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
280
281 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
282
283 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
284 " [mem %#010llx-%#010llx]\n",
285 ramdisk_image, ramdisk_image + ramdisk_size - 1,
286 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
287}
288
289static void __init early_reserve_initrd(void)
290{
291 /* Assume only end is not page aligned */
292 u64 ramdisk_image = get_ramdisk_image();
293 u64 ramdisk_size = get_ramdisk_size();
294 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
295
296 if (!boot_params.hdr.type_of_loader ||
297 !ramdisk_image || !ramdisk_size)
298 return; /* No initrd provided by bootloader */
299
300 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
301}
302static void __init reserve_initrd(void)
303{
304 /* Assume only end is not page aligned */
305 u64 ramdisk_image = get_ramdisk_image();
306 u64 ramdisk_size = get_ramdisk_size();
307 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
308 u64 mapped_size;
309
310 if (!boot_params.hdr.type_of_loader ||
311 !ramdisk_image || !ramdisk_size)
312 return; /* No initrd provided by bootloader */
313
314 initrd_start = 0;
315
316 mapped_size = memblock_mem_size(max_pfn_mapped);
317 if (ramdisk_size >= (mapped_size>>1))
318 panic("initrd too large to handle, "
319 "disabling initrd (%lld needed, %lld available)\n",
320 ramdisk_size, mapped_size>>1);
321
322 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
323 ramdisk_end - 1);
324
325 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
326 PFN_DOWN(ramdisk_end))) {
327 /* All are mapped, easy case */
328 initrd_start = ramdisk_image + PAGE_OFFSET;
329 initrd_end = initrd_start + ramdisk_size;
330 return;
331 }
332
333 relocate_initrd();
334
335 memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
336}
337
338#else
339static void __init early_reserve_initrd(void)
340{
341}
342static void __init reserve_initrd(void)
343{
344}
345#endif /* CONFIG_BLK_DEV_INITRD */
346
347static void __init parse_setup_data(void)
348{
349 struct setup_data *data;
350 u64 pa_data, pa_next;
351
352 pa_data = boot_params.hdr.setup_data;
353 while (pa_data) {
354 u32 data_len, data_type;
355
356 data = early_memremap(pa_data, sizeof(*data));
357 data_len = data->len + sizeof(struct setup_data);
358 data_type = data->type;
359 pa_next = data->next;
360 early_memunmap(data, sizeof(*data));
361
362 switch (data_type) {
363 case SETUP_E820_EXT:
364 e820__memory_setup_extended(pa_data, data_len);
365 break;
366 case SETUP_DTB:
367 add_dtb(pa_data);
368 break;
369 case SETUP_EFI:
370 parse_efi_setup(pa_data, data_len);
371 break;
372 default:
373 break;
374 }
375 pa_data = pa_next;
376 }
377}
378
379static void __init memblock_x86_reserve_range_setup_data(void)
380{
381 struct setup_data *data;
382 u64 pa_data;
383
384 pa_data = boot_params.hdr.setup_data;
385 while (pa_data) {
386 data = early_memremap(pa_data, sizeof(*data));
387 memblock_reserve(pa_data, sizeof(*data) + data->len);
388
389 if (data->type == SETUP_INDIRECT &&
390 ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT)
391 memblock_reserve(((struct setup_indirect *)data->data)->addr,
392 ((struct setup_indirect *)data->data)->len);
393
394 pa_data = data->next;
395 early_memunmap(data, sizeof(*data));
396 }
397}
398
399/*
400 * --------- Crashkernel reservation ------------------------------
401 */
402
403#ifdef CONFIG_KEXEC_CORE
404
405/* 16M alignment for crash kernel regions */
406#define CRASH_ALIGN SZ_16M
407
408/*
409 * Keep the crash kernel below this limit.
410 *
411 * Earlier 32-bits kernels would limit the kernel to the low 512 MB range
412 * due to mapping restrictions.
413 *
414 * 64-bit kdump kernels need to be restricted to be under 64 TB, which is
415 * the upper limit of system RAM in 4-level paging mode. Since the kdump
416 * jump could be from 5-level paging to 4-level paging, the jump will fail if
417 * the kernel is put above 64 TB, and during the 1st kernel bootup there's
418 * no good way to detect the paging mode of the target kernel which will be
419 * loaded for dumping.
420 */
421#ifdef CONFIG_X86_32
422# define CRASH_ADDR_LOW_MAX SZ_512M
423# define CRASH_ADDR_HIGH_MAX SZ_512M
424#else
425# define CRASH_ADDR_LOW_MAX SZ_4G
426# define CRASH_ADDR_HIGH_MAX SZ_64T
427#endif
428
429static int __init reserve_crashkernel_low(void)
430{
431#ifdef CONFIG_X86_64
432 unsigned long long base, low_base = 0, low_size = 0;
433 unsigned long total_low_mem;
434 int ret;
435
436 total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
437
438 /* crashkernel=Y,low */
439 ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
440 if (ret) {
441 /*
442 * two parts from kernel/dma/swiotlb.c:
443 * -swiotlb size: user-specified with swiotlb= or default.
444 *
445 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
446 * to 8M for other buffers that may need to stay low too. Also
447 * make sure we allocate enough extra low memory so that we
448 * don't run out of DMA buffers for 32-bit devices.
449 */
450 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
451 } else {
452 /* passed with crashkernel=0,low ? */
453 if (!low_size)
454 return 0;
455 }
456
457 low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
458 if (!low_base) {
459 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
460 (unsigned long)(low_size >> 20));
461 return -ENOMEM;
462 }
463
464 ret = memblock_reserve(low_base, low_size);
465 if (ret) {
466 pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
467 return ret;
468 }
469
470 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
471 (unsigned long)(low_size >> 20),
472 (unsigned long)(low_base >> 20),
473 (unsigned long)(total_low_mem >> 20));
474
475 crashk_low_res.start = low_base;
476 crashk_low_res.end = low_base + low_size - 1;
477 insert_resource(&iomem_resource, &crashk_low_res);
478#endif
479 return 0;
480}
481
482static void __init reserve_crashkernel(void)
483{
484 unsigned long long crash_size, crash_base, total_mem;
485 bool high = false;
486 int ret;
487
488 total_mem = memblock_phys_mem_size();
489
490 /* crashkernel=XM */
491 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
492 if (ret != 0 || crash_size <= 0) {
493 /* crashkernel=X,high */
494 ret = parse_crashkernel_high(boot_command_line, total_mem,
495 &crash_size, &crash_base);
496 if (ret != 0 || crash_size <= 0)
497 return;
498 high = true;
499 }
500
501 if (xen_pv_domain()) {
502 pr_info("Ignoring crashkernel for a Xen PV domain\n");
503 return;
504 }
505
506 /* 0 means: find the address automatically */
507 if (!crash_base) {
508 /*
509 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
510 * crashkernel=x,high reserves memory over 4G, also allocates
511 * 256M extra low memory for DMA buffers and swiotlb.
512 * But the extra memory is not required for all machines.
513 * So try low memory first and fall back to high memory
514 * unless "crashkernel=size[KMG],high" is specified.
515 */
516 if (!high)
517 crash_base = memblock_find_in_range(CRASH_ALIGN,
518 CRASH_ADDR_LOW_MAX,
519 crash_size, CRASH_ALIGN);
520 if (!crash_base)
521 crash_base = memblock_find_in_range(CRASH_ALIGN,
522 CRASH_ADDR_HIGH_MAX,
523 crash_size, CRASH_ALIGN);
524 if (!crash_base) {
525 pr_info("crashkernel reservation failed - No suitable area found.\n");
526 return;
527 }
528 } else {
529 unsigned long long start;
530
531 start = memblock_find_in_range(crash_base,
532 crash_base + crash_size,
533 crash_size, 1 << 20);
534 if (start != crash_base) {
535 pr_info("crashkernel reservation failed - memory is in use.\n");
536 return;
537 }
538 }
539 ret = memblock_reserve(crash_base, crash_size);
540 if (ret) {
541 pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
542 return;
543 }
544
545 if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
546 memblock_free(crash_base, crash_size);
547 return;
548 }
549
550 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
551 (unsigned long)(crash_size >> 20),
552 (unsigned long)(crash_base >> 20),
553 (unsigned long)(total_mem >> 20));
554
555 crashk_res.start = crash_base;
556 crashk_res.end = crash_base + crash_size - 1;
557 insert_resource(&iomem_resource, &crashk_res);
558}
559#else
560static void __init reserve_crashkernel(void)
561{
562}
563#endif
564
565static struct resource standard_io_resources[] = {
566 { .name = "dma1", .start = 0x00, .end = 0x1f,
567 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
568 { .name = "pic1", .start = 0x20, .end = 0x21,
569 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
570 { .name = "timer0", .start = 0x40, .end = 0x43,
571 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
572 { .name = "timer1", .start = 0x50, .end = 0x53,
573 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
574 { .name = "keyboard", .start = 0x60, .end = 0x60,
575 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
576 { .name = "keyboard", .start = 0x64, .end = 0x64,
577 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
578 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
579 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
580 { .name = "pic2", .start = 0xa0, .end = 0xa1,
581 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
582 { .name = "dma2", .start = 0xc0, .end = 0xdf,
583 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
584 { .name = "fpu", .start = 0xf0, .end = 0xff,
585 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
586};
587
588void __init reserve_standard_io_resources(void)
589{
590 int i;
591
592 /* request I/O space for devices used on all i[345]86 PCs */
593 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
594 request_resource(&ioport_resource, &standard_io_resources[i]);
595
596}
597
598static __init void reserve_ibft_region(void)
599{
600 unsigned long addr, size = 0;
601
602 addr = find_ibft_region(&size);
603
604 if (size)
605 memblock_reserve(addr, size);
606}
607
608static bool __init snb_gfx_workaround_needed(void)
609{
610#ifdef CONFIG_PCI
611 int i;
612 u16 vendor, devid;
613 static const __initconst u16 snb_ids[] = {
614 0x0102,
615 0x0112,
616 0x0122,
617 0x0106,
618 0x0116,
619 0x0126,
620 0x010a,
621 };
622
623 /* Assume no if something weird is going on with PCI */
624 if (!early_pci_allowed())
625 return false;
626
627 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
628 if (vendor != 0x8086)
629 return false;
630
631 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
632 for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
633 if (devid == snb_ids[i])
634 return true;
635#endif
636
637 return false;
638}
639
640/*
641 * Sandy Bridge graphics has trouble with certain ranges, exclude
642 * them from allocation.
643 */
644static void __init trim_snb_memory(void)
645{
646 static const __initconst unsigned long bad_pages[] = {
647 0x20050000,
648 0x20110000,
649 0x20130000,
650 0x20138000,
651 0x40004000,
652 };
653 int i;
654
655 if (!snb_gfx_workaround_needed())
656 return;
657
658 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
659
660 /*
661 * Reserve all memory below the 1 MB mark that has not
662 * already been reserved.
663 */
664 memblock_reserve(0, 1<<20);
665
666 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
667 if (memblock_reserve(bad_pages[i], PAGE_SIZE))
668 printk(KERN_WARNING "failed to reserve 0x%08lx\n",
669 bad_pages[i]);
670 }
671}
672
673/*
674 * Here we put platform-specific memory range workarounds, i.e.
675 * memory known to be corrupt or otherwise in need to be reserved on
676 * specific platforms.
677 *
678 * If this gets used more widely it could use a real dispatch mechanism.
679 */
680static void __init trim_platform_memory_ranges(void)
681{
682 trim_snb_memory();
683}
684
685static void __init trim_bios_range(void)
686{
687 /*
688 * A special case is the first 4Kb of memory;
689 * This is a BIOS owned area, not kernel ram, but generally
690 * not listed as such in the E820 table.
691 *
692 * This typically reserves additional memory (64KiB by default)
693 * since some BIOSes are known to corrupt low memory. See the
694 * Kconfig help text for X86_RESERVE_LOW.
695 */
696 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
697
698 /*
699 * special case: Some BIOSes report the PC BIOS
700 * area (640Kb -> 1Mb) as RAM even though it is not.
701 * take them out.
702 */
703 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
704
705 e820__update_table(e820_table);
706}
707
708/* called before trim_bios_range() to spare extra sanitize */
709static void __init e820_add_kernel_range(void)
710{
711 u64 start = __pa_symbol(_text);
712 u64 size = __pa_symbol(_end) - start;
713
714 /*
715 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
716 * attempt to fix it by adding the range. We may have a confused BIOS,
717 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
718 * exclude kernel range. If we really are running on top non-RAM,
719 * we will crash later anyways.
720 */
721 if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
722 return;
723
724 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
725 e820__range_remove(start, size, E820_TYPE_RAM, 0);
726 e820__range_add(start, size, E820_TYPE_RAM);
727}
728
729static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
730
731static int __init parse_reservelow(char *p)
732{
733 unsigned long long size;
734
735 if (!p)
736 return -EINVAL;
737
738 size = memparse(p, &p);
739
740 if (size < 4096)
741 size = 4096;
742
743 if (size > 640*1024)
744 size = 640*1024;
745
746 reserve_low = size;
747
748 return 0;
749}
750
751early_param("reservelow", parse_reservelow);
752
753static void __init trim_low_memory_range(void)
754{
755 memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
756}
757
758/*
759 * Dump out kernel offset information on panic.
760 */
761static int
762dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
763{
764 if (kaslr_enabled()) {
765 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
766 kaslr_offset(),
767 __START_KERNEL,
768 __START_KERNEL_map,
769 MODULES_VADDR-1);
770 } else {
771 pr_emerg("Kernel Offset: disabled\n");
772 }
773
774 return 0;
775}
776
777/*
778 * Determine if we were loaded by an EFI loader. If so, then we have also been
779 * passed the efi memmap, systab, etc., so we should use these data structures
780 * for initialization. Note, the efi init code path is determined by the
781 * global efi_enabled. This allows the same kernel image to be used on existing
782 * systems (with a traditional BIOS) as well as on EFI systems.
783 */
784/*
785 * setup_arch - architecture-specific boot-time initializations
786 *
787 * Note: On x86_64, fixmaps are ready for use even before this is called.
788 */
789
790void __init setup_arch(char **cmdline_p)
791{
792 /*
793 * Reserve the memory occupied by the kernel between _text and
794 * __end_of_kernel_reserve symbols. Any kernel sections after the
795 * __end_of_kernel_reserve symbol must be explicitly reserved with a
796 * separate memblock_reserve() or they will be discarded.
797 */
798 memblock_reserve(__pa_symbol(_text),
799 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
800
801 /*
802 * Make sure page 0 is always reserved because on systems with
803 * L1TF its contents can be leaked to user processes.
804 */
805 memblock_reserve(0, PAGE_SIZE);
806
807 early_reserve_initrd();
808
809 /*
810 * At this point everything still needed from the boot loader
811 * or BIOS or kernel text should be early reserved or marked not
812 * RAM in e820. All other memory is free game.
813 */
814
815#ifdef CONFIG_X86_32
816 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
817
818 /*
819 * copy kernel address range established so far and switch
820 * to the proper swapper page table
821 */
822 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY,
823 initial_page_table + KERNEL_PGD_BOUNDARY,
824 KERNEL_PGD_PTRS);
825
826 load_cr3(swapper_pg_dir);
827 /*
828 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
829 * a cr3 based tlb flush, so the following __flush_tlb_all()
830 * will not flush anything because the CPU quirk which clears
831 * X86_FEATURE_PGE has not been invoked yet. Though due to the
832 * load_cr3() above the TLB has been flushed already. The
833 * quirk is invoked before subsequent calls to __flush_tlb_all()
834 * so proper operation is guaranteed.
835 */
836 __flush_tlb_all();
837#else
838 printk(KERN_INFO "Command line: %s\n", boot_command_line);
839 boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
840#endif
841
842 /*
843 * If we have OLPC OFW, we might end up relocating the fixmap due to
844 * reserve_top(), so do this before touching the ioremap area.
845 */
846 olpc_ofw_detect();
847
848 idt_setup_early_traps();
849 early_cpu_init();
850 arch_init_ideal_nops();
851 jump_label_init();
852 early_ioremap_init();
853
854 setup_olpc_ofw_pgd();
855
856 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
857 screen_info = boot_params.screen_info;
858 edid_info = boot_params.edid_info;
859#ifdef CONFIG_X86_32
860 apm_info.bios = boot_params.apm_bios_info;
861 ist_info = boot_params.ist_info;
862#endif
863 saved_video_mode = boot_params.hdr.vid_mode;
864 bootloader_type = boot_params.hdr.type_of_loader;
865 if ((bootloader_type >> 4) == 0xe) {
866 bootloader_type &= 0xf;
867 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
868 }
869 bootloader_version = bootloader_type & 0xf;
870 bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
871
872#ifdef CONFIG_BLK_DEV_RAM
873 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
874#endif
875#ifdef CONFIG_EFI
876 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
877 EFI32_LOADER_SIGNATURE, 4)) {
878 set_bit(EFI_BOOT, &efi.flags);
879 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
880 EFI64_LOADER_SIGNATURE, 4)) {
881 set_bit(EFI_BOOT, &efi.flags);
882 set_bit(EFI_64BIT, &efi.flags);
883 }
884#endif
885
886 x86_init.oem.arch_setup();
887
888 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
889 e820__memory_setup();
890 parse_setup_data();
891
892 copy_edd();
893
894 if (!boot_params.hdr.root_flags)
895 root_mountflags &= ~MS_RDONLY;
896 init_mm.start_code = (unsigned long) _text;
897 init_mm.end_code = (unsigned long) _etext;
898 init_mm.end_data = (unsigned long) _edata;
899 init_mm.brk = _brk_end;
900
901 code_resource.start = __pa_symbol(_text);
902 code_resource.end = __pa_symbol(_etext)-1;
903 rodata_resource.start = __pa_symbol(__start_rodata);
904 rodata_resource.end = __pa_symbol(__end_rodata)-1;
905 data_resource.start = __pa_symbol(_sdata);
906 data_resource.end = __pa_symbol(_edata)-1;
907 bss_resource.start = __pa_symbol(__bss_start);
908 bss_resource.end = __pa_symbol(__bss_stop)-1;
909
910#ifdef CONFIG_CMDLINE_BOOL
911#ifdef CONFIG_CMDLINE_OVERRIDE
912 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
913#else
914 if (builtin_cmdline[0]) {
915 /* append boot loader cmdline to builtin */
916 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
917 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
918 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
919 }
920#endif
921#endif
922
923 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
924 *cmdline_p = command_line;
925
926 /*
927 * x86_configure_nx() is called before parse_early_param() to detect
928 * whether hardware doesn't support NX (so that the early EHCI debug
929 * console setup can safely call set_fixmap()). It may then be called
930 * again from within noexec_setup() during parsing early parameters
931 * to honor the respective command line option.
932 */
933 x86_configure_nx();
934
935 parse_early_param();
936
937 if (efi_enabled(EFI_BOOT))
938 efi_memblock_x86_reserve_range();
939#ifdef CONFIG_MEMORY_HOTPLUG
940 /*
941 * Memory used by the kernel cannot be hot-removed because Linux
942 * cannot migrate the kernel pages. When memory hotplug is
943 * enabled, we should prevent memblock from allocating memory
944 * for the kernel.
945 *
946 * ACPI SRAT records all hotpluggable memory ranges. But before
947 * SRAT is parsed, we don't know about it.
948 *
949 * The kernel image is loaded into memory at very early time. We
950 * cannot prevent this anyway. So on NUMA system, we set any
951 * node the kernel resides in as un-hotpluggable.
952 *
953 * Since on modern servers, one node could have double-digit
954 * gigabytes memory, we can assume the memory around the kernel
955 * image is also un-hotpluggable. So before SRAT is parsed, just
956 * allocate memory near the kernel image to try the best to keep
957 * the kernel away from hotpluggable memory.
958 */
959 if (movable_node_is_enabled())
960 memblock_set_bottom_up(true);
961#endif
962
963 x86_report_nx();
964
965 /* after early param, so could get panic from serial */
966 memblock_x86_reserve_range_setup_data();
967
968 if (acpi_mps_check()) {
969#ifdef CONFIG_X86_LOCAL_APIC
970 disable_apic = 1;
971#endif
972 setup_clear_cpu_cap(X86_FEATURE_APIC);
973 }
974
975 e820__reserve_setup_data();
976 e820__finish_early_params();
977
978 if (efi_enabled(EFI_BOOT))
979 efi_init();
980
981 dmi_setup();
982
983 /*
984 * VMware detection requires dmi to be available, so this
985 * needs to be done after dmi_setup(), for the boot CPU.
986 */
987 init_hypervisor_platform();
988
989 tsc_early_init();
990 x86_init.resources.probe_roms();
991
992 /* after parse_early_param, so could debug it */
993 insert_resource(&iomem_resource, &code_resource);
994 insert_resource(&iomem_resource, &rodata_resource);
995 insert_resource(&iomem_resource, &data_resource);
996 insert_resource(&iomem_resource, &bss_resource);
997
998 e820_add_kernel_range();
999 trim_bios_range();
1000#ifdef CONFIG_X86_32
1001 if (ppro_with_ram_bug()) {
1002 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1003 E820_TYPE_RESERVED);
1004 e820__update_table(e820_table);
1005 printk(KERN_INFO "fixed physical RAM map:\n");
1006 e820__print_table("bad_ppro");
1007 }
1008#else
1009 early_gart_iommu_check();
1010#endif
1011
1012 /*
1013 * partially used pages are not usable - thus
1014 * we are rounding upwards:
1015 */
1016 max_pfn = e820__end_of_ram_pfn();
1017
1018 /* update e820 for memory not covered by WB MTRRs */
1019 mtrr_bp_init();
1020 if (mtrr_trim_uncached_memory(max_pfn))
1021 max_pfn = e820__end_of_ram_pfn();
1022
1023 max_possible_pfn = max_pfn;
1024
1025 /*
1026 * This call is required when the CPU does not support PAT. If
1027 * mtrr_bp_init() invoked it already via pat_init() the call has no
1028 * effect.
1029 */
1030 init_cache_modes();
1031
1032 /*
1033 * Define random base addresses for memory sections after max_pfn is
1034 * defined and before each memory section base is used.
1035 */
1036 kernel_randomize_memory();
1037
1038#ifdef CONFIG_X86_32
1039 /* max_low_pfn get updated here */
1040 find_low_pfn_range();
1041#else
1042 check_x2apic();
1043
1044 /* How many end-of-memory variables you have, grandma! */
1045 /* need this before calling reserve_initrd */
1046 if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1047 max_low_pfn = e820__end_of_low_ram_pfn();
1048 else
1049 max_low_pfn = max_pfn;
1050
1051 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1052#endif
1053
1054 /*
1055 * Find and reserve possible boot-time SMP configuration:
1056 */
1057 find_smp_config();
1058
1059 reserve_ibft_region();
1060
1061 early_alloc_pgt_buf();
1062
1063 /*
1064 * Need to conclude brk, before e820__memblock_setup()
1065 * it could use memblock_find_in_range, could overlap with
1066 * brk area.
1067 */
1068 reserve_brk();
1069
1070 cleanup_highmap();
1071
1072 memblock_set_current_limit(ISA_END_ADDRESS);
1073 e820__memblock_setup();
1074
1075 reserve_bios_regions();
1076
1077 efi_fake_memmap();
1078 efi_find_mirror();
1079 efi_esrt_init();
1080
1081 /*
1082 * The EFI specification says that boot service code won't be
1083 * called after ExitBootServices(). This is, in fact, a lie.
1084 */
1085 efi_reserve_boot_services();
1086
1087 /* preallocate 4k for mptable mpc */
1088 e820__memblock_alloc_reserved_mpc_new();
1089
1090#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1091 setup_bios_corruption_check();
1092#endif
1093
1094#ifdef CONFIG_X86_32
1095 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1096 (max_pfn_mapped<<PAGE_SHIFT) - 1);
1097#endif
1098
1099 reserve_real_mode();
1100
1101 trim_platform_memory_ranges();
1102 trim_low_memory_range();
1103
1104 init_mem_mapping();
1105
1106 idt_setup_early_pf();
1107
1108 /*
1109 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1110 * with the current CR4 value. This may not be necessary, but
1111 * auditing all the early-boot CR4 manipulation would be needed to
1112 * rule it out.
1113 *
1114 * Mask off features that don't work outside long mode (just
1115 * PCIDE for now).
1116 */
1117 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1118
1119 memblock_set_current_limit(get_max_mapped());
1120
1121 /*
1122 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1123 */
1124
1125#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1126 if (init_ohci1394_dma_early)
1127 init_ohci1394_dma_on_all_controllers();
1128#endif
1129 /* Allocate bigger log buffer */
1130 setup_log_buf(1);
1131
1132 if (efi_enabled(EFI_BOOT)) {
1133 switch (boot_params.secure_boot) {
1134 case efi_secureboot_mode_disabled:
1135 pr_info("Secure boot disabled\n");
1136 break;
1137 case efi_secureboot_mode_enabled:
1138 pr_info("Secure boot enabled\n");
1139 break;
1140 default:
1141 pr_info("Secure boot could not be determined\n");
1142 break;
1143 }
1144 }
1145
1146 reserve_initrd();
1147
1148 acpi_table_upgrade();
1149
1150 vsmp_init();
1151
1152 io_delay_init();
1153
1154 early_platform_quirks();
1155
1156 /*
1157 * Parse the ACPI tables for possible boot-time SMP configuration.
1158 */
1159 acpi_boot_table_init();
1160
1161 early_acpi_boot_init();
1162
1163 initmem_init();
1164 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1165
1166 if (boot_cpu_has(X86_FEATURE_GBPAGES))
1167 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1168
1169 /*
1170 * Reserve memory for crash kernel after SRAT is parsed so that it
1171 * won't consume hotpluggable memory.
1172 */
1173 reserve_crashkernel();
1174
1175 memblock_find_dma_reserve();
1176
1177 if (!early_xdbc_setup_hardware())
1178 early_xdbc_register_console();
1179
1180 x86_init.paging.pagetable_init();
1181
1182 kasan_init();
1183
1184 /*
1185 * Sync back kernel address range.
1186 *
1187 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1188 * this call?
1189 */
1190 sync_initial_page_table();
1191
1192 tboot_probe();
1193
1194 map_vsyscall();
1195
1196 generic_apic_probe();
1197
1198 early_quirks();
1199
1200 /*
1201 * Read APIC and some other early information from ACPI tables.
1202 */
1203 acpi_boot_init();
1204 sfi_init();
1205 x86_dtb_init();
1206
1207 /*
1208 * get boot-time SMP configuration:
1209 */
1210 get_smp_config();
1211
1212 /*
1213 * Systems w/o ACPI and mptables might not have it mapped the local
1214 * APIC yet, but prefill_possible_map() might need to access it.
1215 */
1216 init_apic_mappings();
1217
1218 prefill_possible_map();
1219
1220 init_cpu_to_node();
1221
1222 io_apic_init_mappings();
1223
1224 x86_init.hyper.guest_late_init();
1225
1226 e820__reserve_resources();
1227 e820__register_nosave_regions(max_pfn);
1228
1229 x86_init.resources.reserve_resources();
1230
1231 e820__setup_pci_gap();
1232
1233#ifdef CONFIG_VT
1234#if defined(CONFIG_VGA_CONSOLE)
1235 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1236 conswitchp = &vga_con;
1237#endif
1238#endif
1239 x86_init.oem.banner();
1240
1241 x86_init.timers.wallclock_init();
1242
1243 mcheck_init();
1244
1245 register_refined_jiffies(CLOCK_TICK_RATE);
1246
1247#ifdef CONFIG_EFI
1248 if (efi_enabled(EFI_BOOT))
1249 efi_apply_memmap_quirks();
1250#endif
1251
1252 unwind_init();
1253}
1254
1255#ifdef CONFIG_X86_32
1256
1257static struct resource video_ram_resource = {
1258 .name = "Video RAM area",
1259 .start = 0xa0000,
1260 .end = 0xbffff,
1261 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1262};
1263
1264void __init i386_reserve_resources(void)
1265{
1266 request_resource(&iomem_resource, &video_ram_resource);
1267 reserve_standard_io_resources();
1268}
1269
1270#endif /* CONFIG_X86_32 */
1271
1272static struct notifier_block kernel_offset_notifier = {
1273 .notifier_call = dump_kernel_offset
1274};
1275
1276static int __init register_kernel_offset_dumper(void)
1277{
1278 atomic_notifier_chain_register(&panic_notifier_list,
1279 &kernel_offset_notifier);
1280 return 0;
1281}
1282__initcall(register_kernel_offset_dumper);