Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
  4 *
 
 
 
 
 
  5 * Communication to userspace based on kernel/printk.c
  6 */
  7
  8#include <linux/types.h>
  9#include <linux/errno.h>
 10#include <linux/sched.h>
 11#include <linux/kernel.h>
 12#include <linux/of.h>
 13#include <linux/poll.h>
 14#include <linux/proc_fs.h>
 15#include <linux/init.h>
 16#include <linux/vmalloc.h>
 17#include <linux/spinlock.h>
 18#include <linux/cpu.h>
 19#include <linux/workqueue.h>
 20#include <linux/slab.h>
 21#include <linux/topology.h>
 22
 23#include <linux/uaccess.h>
 24#include <asm/io.h>
 25#include <asm/rtas.h>
 
 26#include <asm/nvram.h>
 27#include <linux/atomic.h>
 28#include <asm/machdep.h>
 29#include <asm/topology.h>
 30
 31
 32static DEFINE_SPINLOCK(rtasd_log_lock);
 33
 34static DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait);
 35
 36static char *rtas_log_buf;
 37static unsigned long rtas_log_start;
 38static unsigned long rtas_log_size;
 39
 40static int surveillance_timeout = -1;
 41
 42static unsigned int rtas_error_log_max;
 43static unsigned int rtas_error_log_buffer_max;
 44
 45/* RTAS service tokens */
 46static unsigned int event_scan;
 47static unsigned int rtas_event_scan_rate;
 48
 49static bool full_rtas_msgs;
 50
 51/* Stop logging to nvram after first fatal error */
 52static int logging_enabled; /* Until we initialize everything,
 53                             * make sure we don't try logging
 54                             * anything */
 55static int error_log_cnt;
 56
 57/*
 58 * Since we use 32 bit RTAS, the physical address of this must be below
 59 * 4G or else bad things happen. Allocate this in the kernel data and
 60 * make it big enough.
 61 */
 62static unsigned char logdata[RTAS_ERROR_LOG_MAX];
 63
 64static char *rtas_type[] = {
 65	"Unknown", "Retry", "TCE Error", "Internal Device Failure",
 66	"Timeout", "Data Parity", "Address Parity", "Cache Parity",
 67	"Address Invalid", "ECC Uncorrected", "ECC Corrupted",
 68};
 69
 70static char *rtas_event_type(int type)
 71{
 72	if ((type > 0) && (type < 11))
 73		return rtas_type[type];
 74
 75	switch (type) {
 76		case RTAS_TYPE_EPOW:
 77			return "EPOW";
 78		case RTAS_TYPE_PLATFORM:
 79			return "Platform Error";
 80		case RTAS_TYPE_IO:
 81			return "I/O Event";
 82		case RTAS_TYPE_INFO:
 83			return "Platform Information Event";
 84		case RTAS_TYPE_DEALLOC:
 85			return "Resource Deallocation Event";
 86		case RTAS_TYPE_DUMP:
 87			return "Dump Notification Event";
 88		case RTAS_TYPE_PRRN:
 89			return "Platform Resource Reassignment Event";
 90		case RTAS_TYPE_HOTPLUG:
 91			return "Hotplug Event";
 92	}
 93
 94	return rtas_type[0];
 95}
 96
 97/* To see this info, grep RTAS /var/log/messages and each entry
 98 * will be collected together with obvious begin/end.
 99 * There will be a unique identifier on the begin and end lines.
100 * This will persist across reboots.
101 *
102 * format of error logs returned from RTAS:
103 * bytes	(size)	: contents
104 * --------------------------------------------------------
105 * 0-7		(8)	: rtas_error_log
106 * 8-47		(40)	: extended info
107 * 48-51	(4)	: vendor id
108 * 52-1023 (vendor specific) : location code and debug data
109 */
110static void printk_log_rtas(char *buf, int len)
111{
112
113	int i,j,n = 0;
114	int perline = 16;
115	char buffer[64];
116	char * str = "RTAS event";
117
118	if (full_rtas_msgs) {
119		printk(RTAS_DEBUG "%d -------- %s begin --------\n",
120		       error_log_cnt, str);
121
122		/*
123		 * Print perline bytes on each line, each line will start
124		 * with RTAS and a changing number, so syslogd will
125		 * print lines that are otherwise the same.  Separate every
126		 * 4 bytes with a space.
127		 */
128		for (i = 0; i < len; i++) {
129			j = i % perline;
130			if (j == 0) {
131				memset(buffer, 0, sizeof(buffer));
132				n = sprintf(buffer, "RTAS %d:", i/perline);
133			}
134
135			if ((i % 4) == 0)
136				n += sprintf(buffer+n, " ");
137
138			n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]);
139
140			if (j == (perline-1))
141				printk(KERN_DEBUG "%s\n", buffer);
142		}
143		if ((i % perline) != 0)
144			printk(KERN_DEBUG "%s\n", buffer);
145
146		printk(RTAS_DEBUG "%d -------- %s end ----------\n",
147		       error_log_cnt, str);
148	} else {
149		struct rtas_error_log *errlog = (struct rtas_error_log *)buf;
150
151		printk(RTAS_DEBUG "event: %d, Type: %s (%d), Severity: %d\n",
152		       error_log_cnt,
153		       rtas_event_type(rtas_error_type(errlog)),
154		       rtas_error_type(errlog),
155		       rtas_error_severity(errlog));
156	}
157}
158
159static int log_rtas_len(char * buf)
160{
161	int len;
162	struct rtas_error_log *err;
163	uint32_t extended_log_length;
164
165	/* rtas fixed header */
166	len = 8;
167	err = (struct rtas_error_log *)buf;
168	extended_log_length = rtas_error_extended_log_length(err);
169	if (rtas_error_extended(err) && extended_log_length) {
170
171		/* extended header */
172		len += extended_log_length;
173	}
174
175	if (rtas_error_log_max == 0)
176		rtas_error_log_max = rtas_get_error_log_max();
177
178	if (len > rtas_error_log_max)
179		len = rtas_error_log_max;
180
181	return len;
182}
183
184/*
185 * First write to nvram, if fatal error, that is the only
186 * place we log the info.  The error will be picked up
187 * on the next reboot by rtasd.  If not fatal, run the
188 * method for the type of error.  Currently, only RTAS
189 * errors have methods implemented, but in the future
190 * there might be a need to store data in nvram before a
191 * call to panic().
192 *
193 * XXX We write to nvram periodically, to indicate error has
194 * been written and sync'd, but there is a possibility
195 * that if we don't shutdown correctly, a duplicate error
196 * record will be created on next reboot.
197 */
198void pSeries_log_error(char *buf, unsigned int err_type, int fatal)
199{
200	unsigned long offset;
201	unsigned long s;
202	int len = 0;
203
204	pr_debug("rtasd: logging event\n");
205	if (buf == NULL)
206		return;
207
208	spin_lock_irqsave(&rtasd_log_lock, s);
209
210	/* get length and increase count */
211	switch (err_type & ERR_TYPE_MASK) {
212	case ERR_TYPE_RTAS_LOG:
213		len = log_rtas_len(buf);
214		if (!(err_type & ERR_FLAG_BOOT))
215			error_log_cnt++;
216		break;
217	case ERR_TYPE_KERNEL_PANIC:
218	default:
219		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
220		spin_unlock_irqrestore(&rtasd_log_lock, s);
221		return;
222	}
223
224#ifdef CONFIG_PPC64
225	/* Write error to NVRAM */
226	if (logging_enabled && !(err_type & ERR_FLAG_BOOT))
227		nvram_write_error_log(buf, len, err_type, error_log_cnt);
228#endif /* CONFIG_PPC64 */
229
230	/*
231	 * rtas errors can occur during boot, and we do want to capture
232	 * those somewhere, even if nvram isn't ready (why not?), and even
233	 * if rtasd isn't ready. Put them into the boot log, at least.
234	 */
235	if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG)
236		printk_log_rtas(buf, len);
237
238	/* Check to see if we need to or have stopped logging */
239	if (fatal || !logging_enabled) {
240		logging_enabled = 0;
241		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
242		spin_unlock_irqrestore(&rtasd_log_lock, s);
243		return;
244	}
245
246	/* call type specific method for error */
247	switch (err_type & ERR_TYPE_MASK) {
248	case ERR_TYPE_RTAS_LOG:
249		offset = rtas_error_log_buffer_max *
250			((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK);
251
252		/* First copy over sequence number */
253		memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int));
254
255		/* Second copy over error log data */
256		offset += sizeof(int);
257		memcpy(&rtas_log_buf[offset], buf, len);
258
259		if (rtas_log_size < LOG_NUMBER)
260			rtas_log_size += 1;
261		else
262			rtas_log_start += 1;
263
264		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
265		spin_unlock_irqrestore(&rtasd_log_lock, s);
266		wake_up_interruptible(&rtas_log_wait);
267		break;
268	case ERR_TYPE_KERNEL_PANIC:
269	default:
270		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
271		spin_unlock_irqrestore(&rtasd_log_lock, s);
272		return;
273	}
274}
275
276static void handle_rtas_event(const struct rtas_error_log *log)
277{
278	if (!machine_is(pseries))
279		return;
280
281	if (rtas_error_type(log) == RTAS_TYPE_PRRN)
282		pr_info_ratelimited("Platform resource reassignment ignored.\n");
283}
284
285static int rtas_log_open(struct inode * inode, struct file * file)
286{
287	return 0;
288}
289
290static int rtas_log_release(struct inode * inode, struct file * file)
291{
292	return 0;
293}
294
295/* This will check if all events are logged, if they are then, we
296 * know that we can safely clear the events in NVRAM.
297 * Next we'll sit and wait for something else to log.
298 */
299static ssize_t rtas_log_read(struct file * file, char __user * buf,
300			 size_t count, loff_t *ppos)
301{
302	int error;
303	char *tmp;
304	unsigned long s;
305	unsigned long offset;
306
307	if (!buf || count < rtas_error_log_buffer_max)
308		return -EINVAL;
309
310	count = rtas_error_log_buffer_max;
311
312	if (!access_ok(buf, count))
313		return -EFAULT;
314
315	tmp = kmalloc(count, GFP_KERNEL);
316	if (!tmp)
317		return -ENOMEM;
318
319	spin_lock_irqsave(&rtasd_log_lock, s);
320
321	/* if it's 0, then we know we got the last one (the one in NVRAM) */
322	while (rtas_log_size == 0) {
323		if (file->f_flags & O_NONBLOCK) {
324			spin_unlock_irqrestore(&rtasd_log_lock, s);
325			error = -EAGAIN;
326			goto out;
327		}
328
329		if (!logging_enabled) {
330			spin_unlock_irqrestore(&rtasd_log_lock, s);
331			error = -ENODATA;
332			goto out;
333		}
334#ifdef CONFIG_PPC64
335		nvram_clear_error_log();
336#endif /* CONFIG_PPC64 */
337
338		spin_unlock_irqrestore(&rtasd_log_lock, s);
339		error = wait_event_interruptible(rtas_log_wait, rtas_log_size);
340		if (error)
341			goto out;
342		spin_lock_irqsave(&rtasd_log_lock, s);
343	}
344
345	offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK);
346	memcpy(tmp, &rtas_log_buf[offset], count);
347
348	rtas_log_start += 1;
349	rtas_log_size -= 1;
350	spin_unlock_irqrestore(&rtasd_log_lock, s);
351
352	error = copy_to_user(buf, tmp, count) ? -EFAULT : count;
353out:
354	kfree(tmp);
355	return error;
356}
357
358static __poll_t rtas_log_poll(struct file *file, poll_table * wait)
359{
360	poll_wait(file, &rtas_log_wait, wait);
361	if (rtas_log_size)
362		return EPOLLIN | EPOLLRDNORM;
363	return 0;
364}
365
366static const struct proc_ops rtas_log_proc_ops = {
367	.proc_read	= rtas_log_read,
368	.proc_poll	= rtas_log_poll,
369	.proc_open	= rtas_log_open,
370	.proc_release	= rtas_log_release,
371	.proc_lseek	= noop_llseek,
372};
373
374static int enable_surveillance(int timeout)
375{
376	int error;
377
378	error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout);
379
380	if (error == 0)
381		return 0;
382
383	if (error == -EINVAL) {
384		printk(KERN_DEBUG "rtasd: surveillance not supported\n");
385		return 0;
386	}
387
388	printk(KERN_ERR "rtasd: could not update surveillance\n");
389	return -1;
390}
391
392static void do_event_scan(void)
393{
394	int error;
395	do {
396		memset(logdata, 0, rtas_error_log_max);
397		error = rtas_call(event_scan, 4, 1, NULL,
398				  RTAS_EVENT_SCAN_ALL_EVENTS, 0,
399				  __pa(logdata), rtas_error_log_max);
400		if (error == -1) {
401			printk(KERN_ERR "event-scan failed\n");
402			break;
403		}
404
405		if (error == 0) {
406			if (rtas_error_type((struct rtas_error_log *)logdata) !=
407			    RTAS_TYPE_PRRN)
408				pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG,
409						  0);
410			handle_rtas_event((struct rtas_error_log *)logdata);
411		}
412
413	} while(error == 0);
414}
415
416static void rtas_event_scan(struct work_struct *w);
417static DECLARE_DELAYED_WORK(event_scan_work, rtas_event_scan);
418
419/*
420 * Delay should be at least one second since some machines have problems if
421 * we call event-scan too quickly.
422 */
423static unsigned long event_scan_delay = 1*HZ;
424static int first_pass = 1;
425
426static void rtas_event_scan(struct work_struct *w)
427{
428	unsigned int cpu;
429
430	do_event_scan();
431
432	cpus_read_lock();
433
434	/* raw_ OK because just using CPU as starting point. */
435	cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
436        if (cpu >= nr_cpu_ids) {
437		cpu = cpumask_first(cpu_online_mask);
438
439		if (first_pass) {
440			first_pass = 0;
441			event_scan_delay = 30*HZ/rtas_event_scan_rate;
442
443			if (surveillance_timeout != -1) {
444				pr_debug("rtasd: enabling surveillance\n");
445				enable_surveillance(surveillance_timeout);
446				pr_debug("rtasd: surveillance enabled\n");
447			}
448		}
449	}
450
451	schedule_delayed_work_on(cpu, &event_scan_work,
452		__round_jiffies_relative(event_scan_delay, cpu));
453
454	cpus_read_unlock();
455}
456
457#ifdef CONFIG_PPC64
458static void __init retrieve_nvram_error_log(void)
459{
460	unsigned int err_type ;
461	int rc ;
462
463	/* See if we have any error stored in NVRAM */
464	memset(logdata, 0, rtas_error_log_max);
465	rc = nvram_read_error_log(logdata, rtas_error_log_max,
466	                          &err_type, &error_log_cnt);
467	/* We can use rtas_log_buf now */
468	logging_enabled = 1;
469	if (!rc) {
470		if (err_type != ERR_FLAG_ALREADY_LOGGED) {
471			pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0);
472		}
473	}
474}
475#else /* CONFIG_PPC64 */
476static void __init retrieve_nvram_error_log(void)
477{
478}
479#endif /* CONFIG_PPC64 */
480
481static void __init start_event_scan(void)
482{
483	printk(KERN_DEBUG "RTAS daemon started\n");
484	pr_debug("rtasd: will sleep for %d milliseconds\n",
485		 (30000 / rtas_event_scan_rate));
486
487	/* Retrieve errors from nvram if any */
488	retrieve_nvram_error_log();
489
490	schedule_delayed_work_on(cpumask_first(cpu_online_mask),
491				 &event_scan_work, event_scan_delay);
492}
493
494/* Cancel the rtas event scan work */
495void rtas_cancel_event_scan(void)
496{
497	cancel_delayed_work_sync(&event_scan_work);
498}
499EXPORT_SYMBOL_GPL(rtas_cancel_event_scan);
500
501static int __init rtas_event_scan_init(void)
502{
503	int err;
504
505	if (!machine_is(pseries) && !machine_is(chrp))
506		return 0;
507
508	/* No RTAS */
509	event_scan = rtas_token("event-scan");
510	if (event_scan == RTAS_UNKNOWN_SERVICE) {
511		printk(KERN_INFO "rtasd: No event-scan on system\n");
512		return -ENODEV;
513	}
514
515	err = of_property_read_u32(rtas.dev, "rtas-event-scan-rate", &rtas_event_scan_rate);
516	if (err) {
517		printk(KERN_ERR "rtasd: no rtas-event-scan-rate on system\n");
518		return -ENODEV;
519	}
520
521	if (!rtas_event_scan_rate) {
522		/* Broken firmware: take a rate of zero to mean don't scan */
523		printk(KERN_DEBUG "rtasd: scan rate is 0, not scanning\n");
524		return 0;
525	}
526
527	/* Make room for the sequence number */
528	rtas_error_log_max = rtas_get_error_log_max();
529	rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int);
530
531	rtas_log_buf = vmalloc(array_size(LOG_NUMBER,
532					  rtas_error_log_buffer_max));
533	if (!rtas_log_buf) {
534		printk(KERN_ERR "rtasd: no memory\n");
535		return -ENOMEM;
536	}
537
538	start_event_scan();
539
540	return 0;
541}
542arch_initcall(rtas_event_scan_init);
543
544static int __init rtas_init(void)
545{
546	struct proc_dir_entry *entry;
547
548	if (!machine_is(pseries) && !machine_is(chrp))
549		return 0;
550
551	if (!rtas_log_buf)
552		return -ENODEV;
553
554	entry = proc_create("powerpc/rtas/error_log", 0400, NULL,
555			    &rtas_log_proc_ops);
556	if (!entry)
557		printk(KERN_ERR "Failed to create error_log proc entry\n");
558
 
 
559	return 0;
560}
561__initcall(rtas_init);
562
563static int __init surveillance_setup(char *str)
564{
565	int i;
566
567	/* We only do surveillance on pseries */
568	if (!machine_is(pseries))
569		return 0;
570
571	if (get_option(&str,&i)) {
572		if (i >= 0 && i <= 255)
573			surveillance_timeout = i;
574	}
575
576	return 1;
577}
578__setup("surveillance=", surveillance_setup);
579
580static int __init rtasmsgs_setup(char *str)
581{
582	return (kstrtobool(str, &full_rtas_msgs) == 0);
 
 
 
 
 
583}
584__setup("rtasmsgs=", rtasmsgs_setup);
v3.1
 
  1/*
  2 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public License
  6 * as published by the Free Software Foundation; either version
  7 * 2 of the License, or (at your option) any later version.
  8 *
  9 * Communication to userspace based on kernel/printk.c
 10 */
 11
 12#include <linux/types.h>
 13#include <linux/errno.h>
 14#include <linux/sched.h>
 15#include <linux/kernel.h>
 
 16#include <linux/poll.h>
 17#include <linux/proc_fs.h>
 18#include <linux/init.h>
 19#include <linux/vmalloc.h>
 20#include <linux/spinlock.h>
 21#include <linux/cpu.h>
 22#include <linux/workqueue.h>
 23#include <linux/slab.h>
 
 24
 25#include <asm/uaccess.h>
 26#include <asm/io.h>
 27#include <asm/rtas.h>
 28#include <asm/prom.h>
 29#include <asm/nvram.h>
 30#include <linux/atomic.h>
 31#include <asm/machdep.h>
 
 32
 33
 34static DEFINE_SPINLOCK(rtasd_log_lock);
 35
 36static DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait);
 37
 38static char *rtas_log_buf;
 39static unsigned long rtas_log_start;
 40static unsigned long rtas_log_size;
 41
 42static int surveillance_timeout = -1;
 43
 44static unsigned int rtas_error_log_max;
 45static unsigned int rtas_error_log_buffer_max;
 46
 47/* RTAS service tokens */
 48static unsigned int event_scan;
 49static unsigned int rtas_event_scan_rate;
 50
 51static int full_rtas_msgs = 0;
 52
 53/* Stop logging to nvram after first fatal error */
 54static int logging_enabled; /* Until we initialize everything,
 55                             * make sure we don't try logging
 56                             * anything */
 57static int error_log_cnt;
 58
 59/*
 60 * Since we use 32 bit RTAS, the physical address of this must be below
 61 * 4G or else bad things happen. Allocate this in the kernel data and
 62 * make it big enough.
 63 */
 64static unsigned char logdata[RTAS_ERROR_LOG_MAX];
 65
 66static char *rtas_type[] = {
 67	"Unknown", "Retry", "TCE Error", "Internal Device Failure",
 68	"Timeout", "Data Parity", "Address Parity", "Cache Parity",
 69	"Address Invalid", "ECC Uncorrected", "ECC Corrupted",
 70};
 71
 72static char *rtas_event_type(int type)
 73{
 74	if ((type > 0) && (type < 11))
 75		return rtas_type[type];
 76
 77	switch (type) {
 78		case RTAS_TYPE_EPOW:
 79			return "EPOW";
 80		case RTAS_TYPE_PLATFORM:
 81			return "Platform Error";
 82		case RTAS_TYPE_IO:
 83			return "I/O Event";
 84		case RTAS_TYPE_INFO:
 85			return "Platform Information Event";
 86		case RTAS_TYPE_DEALLOC:
 87			return "Resource Deallocation Event";
 88		case RTAS_TYPE_DUMP:
 89			return "Dump Notification Event";
 
 
 
 
 90	}
 91
 92	return rtas_type[0];
 93}
 94
 95/* To see this info, grep RTAS /var/log/messages and each entry
 96 * will be collected together with obvious begin/end.
 97 * There will be a unique identifier on the begin and end lines.
 98 * This will persist across reboots.
 99 *
100 * format of error logs returned from RTAS:
101 * bytes	(size)	: contents
102 * --------------------------------------------------------
103 * 0-7		(8)	: rtas_error_log
104 * 8-47		(40)	: extended info
105 * 48-51	(4)	: vendor id
106 * 52-1023 (vendor specific) : location code and debug data
107 */
108static void printk_log_rtas(char *buf, int len)
109{
110
111	int i,j,n = 0;
112	int perline = 16;
113	char buffer[64];
114	char * str = "RTAS event";
115
116	if (full_rtas_msgs) {
117		printk(RTAS_DEBUG "%d -------- %s begin --------\n",
118		       error_log_cnt, str);
119
120		/*
121		 * Print perline bytes on each line, each line will start
122		 * with RTAS and a changing number, so syslogd will
123		 * print lines that are otherwise the same.  Separate every
124		 * 4 bytes with a space.
125		 */
126		for (i = 0; i < len; i++) {
127			j = i % perline;
128			if (j == 0) {
129				memset(buffer, 0, sizeof(buffer));
130				n = sprintf(buffer, "RTAS %d:", i/perline);
131			}
132
133			if ((i % 4) == 0)
134				n += sprintf(buffer+n, " ");
135
136			n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]);
137
138			if (j == (perline-1))
139				printk(KERN_DEBUG "%s\n", buffer);
140		}
141		if ((i % perline) != 0)
142			printk(KERN_DEBUG "%s\n", buffer);
143
144		printk(RTAS_DEBUG "%d -------- %s end ----------\n",
145		       error_log_cnt, str);
146	} else {
147		struct rtas_error_log *errlog = (struct rtas_error_log *)buf;
148
149		printk(RTAS_DEBUG "event: %d, Type: %s, Severity: %d\n",
150		       error_log_cnt, rtas_event_type(errlog->type),
151		       errlog->severity);
 
 
152	}
153}
154
155static int log_rtas_len(char * buf)
156{
157	int len;
158	struct rtas_error_log *err;
 
159
160	/* rtas fixed header */
161	len = 8;
162	err = (struct rtas_error_log *)buf;
163	if (err->extended && err->extended_log_length) {
 
164
165		/* extended header */
166		len += err->extended_log_length;
167	}
168
169	if (rtas_error_log_max == 0)
170		rtas_error_log_max = rtas_get_error_log_max();
171
172	if (len > rtas_error_log_max)
173		len = rtas_error_log_max;
174
175	return len;
176}
177
178/*
179 * First write to nvram, if fatal error, that is the only
180 * place we log the info.  The error will be picked up
181 * on the next reboot by rtasd.  If not fatal, run the
182 * method for the type of error.  Currently, only RTAS
183 * errors have methods implemented, but in the future
184 * there might be a need to store data in nvram before a
185 * call to panic().
186 *
187 * XXX We write to nvram periodically, to indicate error has
188 * been written and sync'd, but there is a possibility
189 * that if we don't shutdown correctly, a duplicate error
190 * record will be created on next reboot.
191 */
192void pSeries_log_error(char *buf, unsigned int err_type, int fatal)
193{
194	unsigned long offset;
195	unsigned long s;
196	int len = 0;
197
198	pr_debug("rtasd: logging event\n");
199	if (buf == NULL)
200		return;
201
202	spin_lock_irqsave(&rtasd_log_lock, s);
203
204	/* get length and increase count */
205	switch (err_type & ERR_TYPE_MASK) {
206	case ERR_TYPE_RTAS_LOG:
207		len = log_rtas_len(buf);
208		if (!(err_type & ERR_FLAG_BOOT))
209			error_log_cnt++;
210		break;
211	case ERR_TYPE_KERNEL_PANIC:
212	default:
213		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
214		spin_unlock_irqrestore(&rtasd_log_lock, s);
215		return;
216	}
217
218#ifdef CONFIG_PPC64
219	/* Write error to NVRAM */
220	if (logging_enabled && !(err_type & ERR_FLAG_BOOT))
221		nvram_write_error_log(buf, len, err_type, error_log_cnt);
222#endif /* CONFIG_PPC64 */
223
224	/*
225	 * rtas errors can occur during boot, and we do want to capture
226	 * those somewhere, even if nvram isn't ready (why not?), and even
227	 * if rtasd isn't ready. Put them into the boot log, at least.
228	 */
229	if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG)
230		printk_log_rtas(buf, len);
231
232	/* Check to see if we need to or have stopped logging */
233	if (fatal || !logging_enabled) {
234		logging_enabled = 0;
235		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
236		spin_unlock_irqrestore(&rtasd_log_lock, s);
237		return;
238	}
239
240	/* call type specific method for error */
241	switch (err_type & ERR_TYPE_MASK) {
242	case ERR_TYPE_RTAS_LOG:
243		offset = rtas_error_log_buffer_max *
244			((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK);
245
246		/* First copy over sequence number */
247		memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int));
248
249		/* Second copy over error log data */
250		offset += sizeof(int);
251		memcpy(&rtas_log_buf[offset], buf, len);
252
253		if (rtas_log_size < LOG_NUMBER)
254			rtas_log_size += 1;
255		else
256			rtas_log_start += 1;
257
258		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
259		spin_unlock_irqrestore(&rtasd_log_lock, s);
260		wake_up_interruptible(&rtas_log_wait);
261		break;
262	case ERR_TYPE_KERNEL_PANIC:
263	default:
264		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
265		spin_unlock_irqrestore(&rtasd_log_lock, s);
266		return;
267	}
 
 
 
 
 
 
268
 
 
269}
270
271static int rtas_log_open(struct inode * inode, struct file * file)
272{
273	return 0;
274}
275
276static int rtas_log_release(struct inode * inode, struct file * file)
277{
278	return 0;
279}
280
281/* This will check if all events are logged, if they are then, we
282 * know that we can safely clear the events in NVRAM.
283 * Next we'll sit and wait for something else to log.
284 */
285static ssize_t rtas_log_read(struct file * file, char __user * buf,
286			 size_t count, loff_t *ppos)
287{
288	int error;
289	char *tmp;
290	unsigned long s;
291	unsigned long offset;
292
293	if (!buf || count < rtas_error_log_buffer_max)
294		return -EINVAL;
295
296	count = rtas_error_log_buffer_max;
297
298	if (!access_ok(VERIFY_WRITE, buf, count))
299		return -EFAULT;
300
301	tmp = kmalloc(count, GFP_KERNEL);
302	if (!tmp)
303		return -ENOMEM;
304
305	spin_lock_irqsave(&rtasd_log_lock, s);
306
307	/* if it's 0, then we know we got the last one (the one in NVRAM) */
308	while (rtas_log_size == 0) {
309		if (file->f_flags & O_NONBLOCK) {
310			spin_unlock_irqrestore(&rtasd_log_lock, s);
311			error = -EAGAIN;
312			goto out;
313		}
314
315		if (!logging_enabled) {
316			spin_unlock_irqrestore(&rtasd_log_lock, s);
317			error = -ENODATA;
318			goto out;
319		}
320#ifdef CONFIG_PPC64
321		nvram_clear_error_log();
322#endif /* CONFIG_PPC64 */
323
324		spin_unlock_irqrestore(&rtasd_log_lock, s);
325		error = wait_event_interruptible(rtas_log_wait, rtas_log_size);
326		if (error)
327			goto out;
328		spin_lock_irqsave(&rtasd_log_lock, s);
329	}
330
331	offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK);
332	memcpy(tmp, &rtas_log_buf[offset], count);
333
334	rtas_log_start += 1;
335	rtas_log_size -= 1;
336	spin_unlock_irqrestore(&rtasd_log_lock, s);
337
338	error = copy_to_user(buf, tmp, count) ? -EFAULT : count;
339out:
340	kfree(tmp);
341	return error;
342}
343
344static unsigned int rtas_log_poll(struct file *file, poll_table * wait)
345{
346	poll_wait(file, &rtas_log_wait, wait);
347	if (rtas_log_size)
348		return POLLIN | POLLRDNORM;
349	return 0;
350}
351
352static const struct file_operations proc_rtas_log_operations = {
353	.read =		rtas_log_read,
354	.poll =		rtas_log_poll,
355	.open =		rtas_log_open,
356	.release =	rtas_log_release,
357	.llseek =	noop_llseek,
358};
359
360static int enable_surveillance(int timeout)
361{
362	int error;
363
364	error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout);
365
366	if (error == 0)
367		return 0;
368
369	if (error == -EINVAL) {
370		printk(KERN_DEBUG "rtasd: surveillance not supported\n");
371		return 0;
372	}
373
374	printk(KERN_ERR "rtasd: could not update surveillance\n");
375	return -1;
376}
377
378static void do_event_scan(void)
379{
380	int error;
381	do {
382		memset(logdata, 0, rtas_error_log_max);
383		error = rtas_call(event_scan, 4, 1, NULL,
384				  RTAS_EVENT_SCAN_ALL_EVENTS, 0,
385				  __pa(logdata), rtas_error_log_max);
386		if (error == -1) {
387			printk(KERN_ERR "event-scan failed\n");
388			break;
389		}
390
391		if (error == 0)
392			pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG, 0);
 
 
 
 
 
393
394	} while(error == 0);
395}
396
397static void rtas_event_scan(struct work_struct *w);
398DECLARE_DELAYED_WORK(event_scan_work, rtas_event_scan);
399
400/*
401 * Delay should be at least one second since some machines have problems if
402 * we call event-scan too quickly.
403 */
404static unsigned long event_scan_delay = 1*HZ;
405static int first_pass = 1;
406
407static void rtas_event_scan(struct work_struct *w)
408{
409	unsigned int cpu;
410
411	do_event_scan();
412
413	get_online_cpus();
414
415	/* raw_ OK because just using CPU as starting point. */
416	cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
417        if (cpu >= nr_cpu_ids) {
418		cpu = cpumask_first(cpu_online_mask);
419
420		if (first_pass) {
421			first_pass = 0;
422			event_scan_delay = 30*HZ/rtas_event_scan_rate;
423
424			if (surveillance_timeout != -1) {
425				pr_debug("rtasd: enabling surveillance\n");
426				enable_surveillance(surveillance_timeout);
427				pr_debug("rtasd: surveillance enabled\n");
428			}
429		}
430	}
431
432	schedule_delayed_work_on(cpu, &event_scan_work,
433		__round_jiffies_relative(event_scan_delay, cpu));
434
435	put_online_cpus();
436}
437
438#ifdef CONFIG_PPC64
439static void retreive_nvram_error_log(void)
440{
441	unsigned int err_type ;
442	int rc ;
443
444	/* See if we have any error stored in NVRAM */
445	memset(logdata, 0, rtas_error_log_max);
446	rc = nvram_read_error_log(logdata, rtas_error_log_max,
447	                          &err_type, &error_log_cnt);
448	/* We can use rtas_log_buf now */
449	logging_enabled = 1;
450	if (!rc) {
451		if (err_type != ERR_FLAG_ALREADY_LOGGED) {
452			pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0);
453		}
454	}
455}
456#else /* CONFIG_PPC64 */
457static void retreive_nvram_error_log(void)
458{
459}
460#endif /* CONFIG_PPC64 */
461
462static void start_event_scan(void)
463{
464	printk(KERN_DEBUG "RTAS daemon started\n");
465	pr_debug("rtasd: will sleep for %d milliseconds\n",
466		 (30000 / rtas_event_scan_rate));
467
468	/* Retrieve errors from nvram if any */
469	retreive_nvram_error_log();
470
471	schedule_delayed_work_on(cpumask_first(cpu_online_mask),
472				 &event_scan_work, event_scan_delay);
473}
474
475static int __init rtas_init(void)
 
 
 
 
 
 
 
476{
477	struct proc_dir_entry *entry;
478
479	if (!machine_is(pseries) && !machine_is(chrp))
480		return 0;
481
482	/* No RTAS */
483	event_scan = rtas_token("event-scan");
484	if (event_scan == RTAS_UNKNOWN_SERVICE) {
485		printk(KERN_INFO "rtasd: No event-scan on system\n");
486		return -ENODEV;
487	}
488
489	rtas_event_scan_rate = rtas_token("rtas-event-scan-rate");
490	if (rtas_event_scan_rate == RTAS_UNKNOWN_SERVICE) {
491		printk(KERN_ERR "rtasd: no rtas-event-scan-rate on system\n");
492		return -ENODEV;
493	}
494
495	if (!rtas_event_scan_rate) {
496		/* Broken firmware: take a rate of zero to mean don't scan */
497		printk(KERN_DEBUG "rtasd: scan rate is 0, not scanning\n");
498		return 0;
499	}
500
501	/* Make room for the sequence number */
502	rtas_error_log_max = rtas_get_error_log_max();
503	rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int);
504
505	rtas_log_buf = vmalloc(rtas_error_log_buffer_max*LOG_NUMBER);
 
506	if (!rtas_log_buf) {
507		printk(KERN_ERR "rtasd: no memory\n");
508		return -ENOMEM;
509	}
510
511	entry = proc_create("powerpc/rtas/error_log", S_IRUSR, NULL,
512			    &proc_rtas_log_operations);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
513	if (!entry)
514		printk(KERN_ERR "Failed to create error_log proc entry\n");
515
516	start_event_scan();
517
518	return 0;
519}
520__initcall(rtas_init);
521
522static int __init surveillance_setup(char *str)
523{
524	int i;
525
526	/* We only do surveillance on pseries */
527	if (!machine_is(pseries))
528		return 0;
529
530	if (get_option(&str,&i)) {
531		if (i >= 0 && i <= 255)
532			surveillance_timeout = i;
533	}
534
535	return 1;
536}
537__setup("surveillance=", surveillance_setup);
538
539static int __init rtasmsgs_setup(char *str)
540{
541	if (strcmp(str, "on") == 0)
542		full_rtas_msgs = 1;
543	else if (strcmp(str, "off") == 0)
544		full_rtas_msgs = 0;
545
546	return 1;
547}
548__setup("rtasmsgs=", rtasmsgs_setup);