Linux Audio

Check our new training course

Loading...
  1/*
  2 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public License
  6 * as published by the Free Software Foundation; either version
  7 * 2 of the License, or (at your option) any later version.
  8 *
  9 * Communication to userspace based on kernel/printk.c
 10 */
 11
 12#include <linux/types.h>
 13#include <linux/errno.h>
 14#include <linux/sched.h>
 15#include <linux/kernel.h>
 16#include <linux/poll.h>
 17#include <linux/proc_fs.h>
 18#include <linux/init.h>
 19#include <linux/vmalloc.h>
 20#include <linux/spinlock.h>
 21#include <linux/cpu.h>
 22#include <linux/workqueue.h>
 23#include <linux/slab.h>
 24
 25#include <asm/uaccess.h>
 26#include <asm/io.h>
 27#include <asm/rtas.h>
 28#include <asm/prom.h>
 29#include <asm/nvram.h>
 30#include <linux/atomic.h>
 31#include <asm/machdep.h>
 32
 33
 34static DEFINE_SPINLOCK(rtasd_log_lock);
 35
 36static DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait);
 37
 38static char *rtas_log_buf;
 39static unsigned long rtas_log_start;
 40static unsigned long rtas_log_size;
 41
 42static int surveillance_timeout = -1;
 43
 44static unsigned int rtas_error_log_max;
 45static unsigned int rtas_error_log_buffer_max;
 46
 47/* RTAS service tokens */
 48static unsigned int event_scan;
 49static unsigned int rtas_event_scan_rate;
 50
 51static int full_rtas_msgs = 0;
 52
 53/* Stop logging to nvram after first fatal error */
 54static int logging_enabled; /* Until we initialize everything,
 55                             * make sure we don't try logging
 56                             * anything */
 57static int error_log_cnt;
 58
 59/*
 60 * Since we use 32 bit RTAS, the physical address of this must be below
 61 * 4G or else bad things happen. Allocate this in the kernel data and
 62 * make it big enough.
 63 */
 64static unsigned char logdata[RTAS_ERROR_LOG_MAX];
 65
 66static char *rtas_type[] = {
 67	"Unknown", "Retry", "TCE Error", "Internal Device Failure",
 68	"Timeout", "Data Parity", "Address Parity", "Cache Parity",
 69	"Address Invalid", "ECC Uncorrected", "ECC Corrupted",
 70};
 71
 72static char *rtas_event_type(int type)
 73{
 74	if ((type > 0) && (type < 11))
 75		return rtas_type[type];
 76
 77	switch (type) {
 78		case RTAS_TYPE_EPOW:
 79			return "EPOW";
 80		case RTAS_TYPE_PLATFORM:
 81			return "Platform Error";
 82		case RTAS_TYPE_IO:
 83			return "I/O Event";
 84		case RTAS_TYPE_INFO:
 85			return "Platform Information Event";
 86		case RTAS_TYPE_DEALLOC:
 87			return "Resource Deallocation Event";
 88		case RTAS_TYPE_DUMP:
 89			return "Dump Notification Event";
 90	}
 91
 92	return rtas_type[0];
 93}
 94
 95/* To see this info, grep RTAS /var/log/messages and each entry
 96 * will be collected together with obvious begin/end.
 97 * There will be a unique identifier on the begin and end lines.
 98 * This will persist across reboots.
 99 *
100 * format of error logs returned from RTAS:
101 * bytes	(size)	: contents
102 * --------------------------------------------------------
103 * 0-7		(8)	: rtas_error_log
104 * 8-47		(40)	: extended info
105 * 48-51	(4)	: vendor id
106 * 52-1023 (vendor specific) : location code and debug data
107 */
108static void printk_log_rtas(char *buf, int len)
109{
110
111	int i,j,n = 0;
112	int perline = 16;
113	char buffer[64];
114	char * str = "RTAS event";
115
116	if (full_rtas_msgs) {
117		printk(RTAS_DEBUG "%d -------- %s begin --------\n",
118		       error_log_cnt, str);
119
120		/*
121		 * Print perline bytes on each line, each line will start
122		 * with RTAS and a changing number, so syslogd will
123		 * print lines that are otherwise the same.  Separate every
124		 * 4 bytes with a space.
125		 */
126		for (i = 0; i < len; i++) {
127			j = i % perline;
128			if (j == 0) {
129				memset(buffer, 0, sizeof(buffer));
130				n = sprintf(buffer, "RTAS %d:", i/perline);
131			}
132
133			if ((i % 4) == 0)
134				n += sprintf(buffer+n, " ");
135
136			n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]);
137
138			if (j == (perline-1))
139				printk(KERN_DEBUG "%s\n", buffer);
140		}
141		if ((i % perline) != 0)
142			printk(KERN_DEBUG "%s\n", buffer);
143
144		printk(RTAS_DEBUG "%d -------- %s end ----------\n",
145		       error_log_cnt, str);
146	} else {
147		struct rtas_error_log *errlog = (struct rtas_error_log *)buf;
148
149		printk(RTAS_DEBUG "event: %d, Type: %s, Severity: %d\n",
150		       error_log_cnt, rtas_event_type(errlog->type),
151		       errlog->severity);
152	}
153}
154
155static int log_rtas_len(char * buf)
156{
157	int len;
158	struct rtas_error_log *err;
159
160	/* rtas fixed header */
161	len = 8;
162	err = (struct rtas_error_log *)buf;
163	if (err->extended && err->extended_log_length) {
164
165		/* extended header */
166		len += err->extended_log_length;
167	}
168
169	if (rtas_error_log_max == 0)
170		rtas_error_log_max = rtas_get_error_log_max();
171
172	if (len > rtas_error_log_max)
173		len = rtas_error_log_max;
174
175	return len;
176}
177
178/*
179 * First write to nvram, if fatal error, that is the only
180 * place we log the info.  The error will be picked up
181 * on the next reboot by rtasd.  If not fatal, run the
182 * method for the type of error.  Currently, only RTAS
183 * errors have methods implemented, but in the future
184 * there might be a need to store data in nvram before a
185 * call to panic().
186 *
187 * XXX We write to nvram periodically, to indicate error has
188 * been written and sync'd, but there is a possibility
189 * that if we don't shutdown correctly, a duplicate error
190 * record will be created on next reboot.
191 */
192void pSeries_log_error(char *buf, unsigned int err_type, int fatal)
193{
194	unsigned long offset;
195	unsigned long s;
196	int len = 0;
197
198	pr_debug("rtasd: logging event\n");
199	if (buf == NULL)
200		return;
201
202	spin_lock_irqsave(&rtasd_log_lock, s);
203
204	/* get length and increase count */
205	switch (err_type & ERR_TYPE_MASK) {
206	case ERR_TYPE_RTAS_LOG:
207		len = log_rtas_len(buf);
208		if (!(err_type & ERR_FLAG_BOOT))
209			error_log_cnt++;
210		break;
211	case ERR_TYPE_KERNEL_PANIC:
212	default:
213		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
214		spin_unlock_irqrestore(&rtasd_log_lock, s);
215		return;
216	}
217
218#ifdef CONFIG_PPC64
219	/* Write error to NVRAM */
220	if (logging_enabled && !(err_type & ERR_FLAG_BOOT))
221		nvram_write_error_log(buf, len, err_type, error_log_cnt);
222#endif /* CONFIG_PPC64 */
223
224	/*
225	 * rtas errors can occur during boot, and we do want to capture
226	 * those somewhere, even if nvram isn't ready (why not?), and even
227	 * if rtasd isn't ready. Put them into the boot log, at least.
228	 */
229	if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG)
230		printk_log_rtas(buf, len);
231
232	/* Check to see if we need to or have stopped logging */
233	if (fatal || !logging_enabled) {
234		logging_enabled = 0;
235		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
236		spin_unlock_irqrestore(&rtasd_log_lock, s);
237		return;
238	}
239
240	/* call type specific method for error */
241	switch (err_type & ERR_TYPE_MASK) {
242	case ERR_TYPE_RTAS_LOG:
243		offset = rtas_error_log_buffer_max *
244			((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK);
245
246		/* First copy over sequence number */
247		memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int));
248
249		/* Second copy over error log data */
250		offset += sizeof(int);
251		memcpy(&rtas_log_buf[offset], buf, len);
252
253		if (rtas_log_size < LOG_NUMBER)
254			rtas_log_size += 1;
255		else
256			rtas_log_start += 1;
257
258		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
259		spin_unlock_irqrestore(&rtasd_log_lock, s);
260		wake_up_interruptible(&rtas_log_wait);
261		break;
262	case ERR_TYPE_KERNEL_PANIC:
263	default:
264		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
265		spin_unlock_irqrestore(&rtasd_log_lock, s);
266		return;
267	}
268
269}
270
271static int rtas_log_open(struct inode * inode, struct file * file)
272{
273	return 0;
274}
275
276static int rtas_log_release(struct inode * inode, struct file * file)
277{
278	return 0;
279}
280
281/* This will check if all events are logged, if they are then, we
282 * know that we can safely clear the events in NVRAM.
283 * Next we'll sit and wait for something else to log.
284 */
285static ssize_t rtas_log_read(struct file * file, char __user * buf,
286			 size_t count, loff_t *ppos)
287{
288	int error;
289	char *tmp;
290	unsigned long s;
291	unsigned long offset;
292
293	if (!buf || count < rtas_error_log_buffer_max)
294		return -EINVAL;
295
296	count = rtas_error_log_buffer_max;
297
298	if (!access_ok(VERIFY_WRITE, buf, count))
299		return -EFAULT;
300
301	tmp = kmalloc(count, GFP_KERNEL);
302	if (!tmp)
303		return -ENOMEM;
304
305	spin_lock_irqsave(&rtasd_log_lock, s);
306
307	/* if it's 0, then we know we got the last one (the one in NVRAM) */
308	while (rtas_log_size == 0) {
309		if (file->f_flags & O_NONBLOCK) {
310			spin_unlock_irqrestore(&rtasd_log_lock, s);
311			error = -EAGAIN;
312			goto out;
313		}
314
315		if (!logging_enabled) {
316			spin_unlock_irqrestore(&rtasd_log_lock, s);
317			error = -ENODATA;
318			goto out;
319		}
320#ifdef CONFIG_PPC64
321		nvram_clear_error_log();
322#endif /* CONFIG_PPC64 */
323
324		spin_unlock_irqrestore(&rtasd_log_lock, s);
325		error = wait_event_interruptible(rtas_log_wait, rtas_log_size);
326		if (error)
327			goto out;
328		spin_lock_irqsave(&rtasd_log_lock, s);
329	}
330
331	offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK);
332	memcpy(tmp, &rtas_log_buf[offset], count);
333
334	rtas_log_start += 1;
335	rtas_log_size -= 1;
336	spin_unlock_irqrestore(&rtasd_log_lock, s);
337
338	error = copy_to_user(buf, tmp, count) ? -EFAULT : count;
339out:
340	kfree(tmp);
341	return error;
342}
343
344static unsigned int rtas_log_poll(struct file *file, poll_table * wait)
345{
346	poll_wait(file, &rtas_log_wait, wait);
347	if (rtas_log_size)
348		return POLLIN | POLLRDNORM;
349	return 0;
350}
351
352static const struct file_operations proc_rtas_log_operations = {
353	.read =		rtas_log_read,
354	.poll =		rtas_log_poll,
355	.open =		rtas_log_open,
356	.release =	rtas_log_release,
357	.llseek =	noop_llseek,
358};
359
360static int enable_surveillance(int timeout)
361{
362	int error;
363
364	error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout);
365
366	if (error == 0)
367		return 0;
368
369	if (error == -EINVAL) {
370		printk(KERN_DEBUG "rtasd: surveillance not supported\n");
371		return 0;
372	}
373
374	printk(KERN_ERR "rtasd: could not update surveillance\n");
375	return -1;
376}
377
378static void do_event_scan(void)
379{
380	int error;
381	do {
382		memset(logdata, 0, rtas_error_log_max);
383		error = rtas_call(event_scan, 4, 1, NULL,
384				  RTAS_EVENT_SCAN_ALL_EVENTS, 0,
385				  __pa(logdata), rtas_error_log_max);
386		if (error == -1) {
387			printk(KERN_ERR "event-scan failed\n");
388			break;
389		}
390
391		if (error == 0)
392			pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG, 0);
393
394	} while(error == 0);
395}
396
397static void rtas_event_scan(struct work_struct *w);
398DECLARE_DELAYED_WORK(event_scan_work, rtas_event_scan);
399
400/*
401 * Delay should be at least one second since some machines have problems if
402 * we call event-scan too quickly.
403 */
404static unsigned long event_scan_delay = 1*HZ;
405static int first_pass = 1;
406
407static void rtas_event_scan(struct work_struct *w)
408{
409	unsigned int cpu;
410
411	do_event_scan();
412
413	get_online_cpus();
414
415	/* raw_ OK because just using CPU as starting point. */
416	cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
417        if (cpu >= nr_cpu_ids) {
418		cpu = cpumask_first(cpu_online_mask);
419
420		if (first_pass) {
421			first_pass = 0;
422			event_scan_delay = 30*HZ/rtas_event_scan_rate;
423
424			if (surveillance_timeout != -1) {
425				pr_debug("rtasd: enabling surveillance\n");
426				enable_surveillance(surveillance_timeout);
427				pr_debug("rtasd: surveillance enabled\n");
428			}
429		}
430	}
431
432	schedule_delayed_work_on(cpu, &event_scan_work,
433		__round_jiffies_relative(event_scan_delay, cpu));
434
435	put_online_cpus();
436}
437
438#ifdef CONFIG_PPC64
439static void retreive_nvram_error_log(void)
440{
441	unsigned int err_type ;
442	int rc ;
443
444	/* See if we have any error stored in NVRAM */
445	memset(logdata, 0, rtas_error_log_max);
446	rc = nvram_read_error_log(logdata, rtas_error_log_max,
447	                          &err_type, &error_log_cnt);
448	/* We can use rtas_log_buf now */
449	logging_enabled = 1;
450	if (!rc) {
451		if (err_type != ERR_FLAG_ALREADY_LOGGED) {
452			pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0);
453		}
454	}
455}
456#else /* CONFIG_PPC64 */
457static void retreive_nvram_error_log(void)
458{
459}
460#endif /* CONFIG_PPC64 */
461
462static void start_event_scan(void)
463{
464	printk(KERN_DEBUG "RTAS daemon started\n");
465	pr_debug("rtasd: will sleep for %d milliseconds\n",
466		 (30000 / rtas_event_scan_rate));
467
468	/* Retrieve errors from nvram if any */
469	retreive_nvram_error_log();
470
471	schedule_delayed_work_on(cpumask_first(cpu_online_mask),
472				 &event_scan_work, event_scan_delay);
473}
474
475/* Cancel the rtas event scan work */
476void rtas_cancel_event_scan(void)
477{
478	cancel_delayed_work_sync(&event_scan_work);
479}
480EXPORT_SYMBOL_GPL(rtas_cancel_event_scan);
481
482static int __init rtas_init(void)
483{
484	struct proc_dir_entry *entry;
485
486	if (!machine_is(pseries) && !machine_is(chrp))
487		return 0;
488
489	/* No RTAS */
490	event_scan = rtas_token("event-scan");
491	if (event_scan == RTAS_UNKNOWN_SERVICE) {
492		printk(KERN_INFO "rtasd: No event-scan on system\n");
493		return -ENODEV;
494	}
495
496	rtas_event_scan_rate = rtas_token("rtas-event-scan-rate");
497	if (rtas_event_scan_rate == RTAS_UNKNOWN_SERVICE) {
498		printk(KERN_ERR "rtasd: no rtas-event-scan-rate on system\n");
499		return -ENODEV;
500	}
501
502	if (!rtas_event_scan_rate) {
503		/* Broken firmware: take a rate of zero to mean don't scan */
504		printk(KERN_DEBUG "rtasd: scan rate is 0, not scanning\n");
505		return 0;
506	}
507
508	/* Make room for the sequence number */
509	rtas_error_log_max = rtas_get_error_log_max();
510	rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int);
511
512	rtas_log_buf = vmalloc(rtas_error_log_buffer_max*LOG_NUMBER);
513	if (!rtas_log_buf) {
514		printk(KERN_ERR "rtasd: no memory\n");
515		return -ENOMEM;
516	}
517
518	entry = proc_create("powerpc/rtas/error_log", S_IRUSR, NULL,
519			    &proc_rtas_log_operations);
520	if (!entry)
521		printk(KERN_ERR "Failed to create error_log proc entry\n");
522
523	start_event_scan();
524
525	return 0;
526}
527__initcall(rtas_init);
528
529static int __init surveillance_setup(char *str)
530{
531	int i;
532
533	/* We only do surveillance on pseries */
534	if (!machine_is(pseries))
535		return 0;
536
537	if (get_option(&str,&i)) {
538		if (i >= 0 && i <= 255)
539			surveillance_timeout = i;
540	}
541
542	return 1;
543}
544__setup("surveillance=", surveillance_setup);
545
546static int __init rtasmsgs_setup(char *str)
547{
548	if (strcmp(str, "on") == 0)
549		full_rtas_msgs = 1;
550	else if (strcmp(str, "off") == 0)
551		full_rtas_msgs = 0;
552
553	return 1;
554}
555__setup("rtasmsgs=", rtasmsgs_setup);