Linux Audio

Check our new training course

Loading...
v6.2
  1/*
  2 *  Originally written by Glenn Engel, Lake Stevens Instrument Division
  3 *
  4 *  Contributed by HP Systems
  5 *
  6 *  Modified for Linux/MIPS (and MIPS in general) by Andreas Busse
  7 *  Send complaints, suggestions etc. to <andy@waldorf-gmbh.de>
  8 *
  9 *  Copyright (C) 1995 Andreas Busse
 10 *
 11 *  Copyright (C) 2003 MontaVista Software Inc.
 12 *  Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
 13 *
 14 *  Copyright (C) 2004-2005 MontaVista Software Inc.
 15 *  Author: Manish Lachwani, mlachwani@mvista.com or manish@koffee-break.com
 16 *
 17 *  Copyright (C) 2007-2008 Wind River Systems, Inc.
 18 *  Author/Maintainer: Jason Wessel, jason.wessel@windriver.com
 19 *
 20 *  This file is licensed under the terms of the GNU General Public License
 21 *  version 2. This program is licensed "as is" without any warranty of any
 22 *  kind, whether express or implied.
 23 */
 24
 25#include <linux/ptrace.h>		/* for linux pt_regs struct */
 26#include <linux/kgdb.h>
 27#include <linux/kdebug.h>
 28#include <linux/sched.h>
 29#include <linux/smp.h>
 30#include <asm/inst.h>
 31#include <asm/fpu.h>
 32#include <asm/cacheflush.h>
 33#include <asm/processor.h>
 34#include <asm/sigcontext.h>
 35#include <asm/irq_regs.h>
 36
 37static struct hard_trap_info {
 38	unsigned char tt;	/* Trap type code for MIPS R3xxx and R4xxx */
 39	unsigned char signo;	/* Signal that we map this trap into */
 40} hard_trap_info[] = {
 41	{ 6, SIGBUS },		/* instruction bus error */
 42	{ 7, SIGBUS },		/* data bus error */
 43	{ 9, SIGTRAP },		/* break */
 44/*	{ 11, SIGILL }, */	/* CPU unusable */
 45	{ 12, SIGFPE },		/* overflow */
 46	{ 13, SIGTRAP },	/* trap */
 47	{ 14, SIGSEGV },	/* virtual instruction cache coherency */
 48	{ 15, SIGFPE },		/* floating point exception */
 49	{ 23, SIGSEGV },	/* watch */
 50	{ 31, SIGSEGV },	/* virtual data cache coherency */
 51	{ 0, 0}			/* Must be last */
 52};
 53
 54struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] =
 55{
 56	{ "zero", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[0]) },
 57	{ "at", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[1]) },
 58	{ "v0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[2]) },
 59	{ "v1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[3]) },
 60	{ "a0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[4]) },
 61	{ "a1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[5]) },
 62	{ "a2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[6]) },
 63	{ "a3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[7]) },
 64	{ "t0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[8]) },
 65	{ "t1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[9]) },
 66	{ "t2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[10]) },
 67	{ "t3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[11]) },
 68	{ "t4", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[12]) },
 69	{ "t5", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[13]) },
 70	{ "t6", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[14]) },
 71	{ "t7", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[15]) },
 72	{ "s0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[16]) },
 73	{ "s1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[17]) },
 74	{ "s2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[18]) },
 75	{ "s3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[19]) },
 76	{ "s4", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[20]) },
 77	{ "s5", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[21]) },
 78	{ "s6", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[22]) },
 79	{ "s7", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[23]) },
 80	{ "t8", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[24]) },
 81	{ "t9", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[25]) },
 82	{ "k0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[26]) },
 83	{ "k1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[27]) },
 84	{ "gp", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[28]) },
 85	{ "sp", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[29]) },
 86	{ "s8", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[30]) },
 87	{ "ra", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[31]) },
 88	{ "sr", GDB_SIZEOF_REG, offsetof(struct pt_regs, cp0_status) },
 89	{ "lo", GDB_SIZEOF_REG, offsetof(struct pt_regs, lo) },
 90	{ "hi", GDB_SIZEOF_REG, offsetof(struct pt_regs, hi) },
 91	{ "bad", GDB_SIZEOF_REG, offsetof(struct pt_regs, cp0_badvaddr) },
 92	{ "cause", GDB_SIZEOF_REG, offsetof(struct pt_regs, cp0_cause) },
 93	{ "pc", GDB_SIZEOF_REG, offsetof(struct pt_regs, cp0_epc) },
 94	{ "f0", GDB_SIZEOF_REG, 0 },
 95	{ "f1", GDB_SIZEOF_REG, 1 },
 96	{ "f2", GDB_SIZEOF_REG, 2 },
 97	{ "f3", GDB_SIZEOF_REG, 3 },
 98	{ "f4", GDB_SIZEOF_REG, 4 },
 99	{ "f5", GDB_SIZEOF_REG, 5 },
100	{ "f6", GDB_SIZEOF_REG, 6 },
101	{ "f7", GDB_SIZEOF_REG, 7 },
102	{ "f8", GDB_SIZEOF_REG, 8 },
103	{ "f9", GDB_SIZEOF_REG, 9 },
104	{ "f10", GDB_SIZEOF_REG, 10 },
105	{ "f11", GDB_SIZEOF_REG, 11 },
106	{ "f12", GDB_SIZEOF_REG, 12 },
107	{ "f13", GDB_SIZEOF_REG, 13 },
108	{ "f14", GDB_SIZEOF_REG, 14 },
109	{ "f15", GDB_SIZEOF_REG, 15 },
110	{ "f16", GDB_SIZEOF_REG, 16 },
111	{ "f17", GDB_SIZEOF_REG, 17 },
112	{ "f18", GDB_SIZEOF_REG, 18 },
113	{ "f19", GDB_SIZEOF_REG, 19 },
114	{ "f20", GDB_SIZEOF_REG, 20 },
115	{ "f21", GDB_SIZEOF_REG, 21 },
116	{ "f22", GDB_SIZEOF_REG, 22 },
117	{ "f23", GDB_SIZEOF_REG, 23 },
118	{ "f24", GDB_SIZEOF_REG, 24 },
119	{ "f25", GDB_SIZEOF_REG, 25 },
120	{ "f26", GDB_SIZEOF_REG, 26 },
121	{ "f27", GDB_SIZEOF_REG, 27 },
122	{ "f28", GDB_SIZEOF_REG, 28 },
123	{ "f29", GDB_SIZEOF_REG, 29 },
124	{ "f30", GDB_SIZEOF_REG, 30 },
125	{ "f31", GDB_SIZEOF_REG, 31 },
126	{ "fsr", GDB_SIZEOF_REG, 0 },
127	{ "fir", GDB_SIZEOF_REG, 0 },
128};
129
130int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
131{
132	int fp_reg;
133
134	if (regno < 0 || regno >= DBG_MAX_REG_NUM)
135		return -EINVAL;
136
137	if (dbg_reg_def[regno].offset != -1 && regno < 38) {
138		memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
139		       dbg_reg_def[regno].size);
140	} else if (current && dbg_reg_def[regno].offset != -1 && regno < 72) {
141		/* FP registers 38 -> 69 */
142		if (!(regs->cp0_status & ST0_CU1))
143			return 0;
144		if (regno == 70) {
145			/* Process the fcr31/fsr (register 70) */
146			memcpy((void *)&current->thread.fpu.fcr31, mem,
147			       dbg_reg_def[regno].size);
148			goto out_save;
149		} else if (regno == 71) {
150			/* Ignore the fir (register 71) */
151			goto out_save;
152		}
153		fp_reg = dbg_reg_def[regno].offset;
154		memcpy((void *)&current->thread.fpu.fpr[fp_reg], mem,
155		       dbg_reg_def[regno].size);
156out_save:
157		restore_fp(current);
158	}
159
160	return 0;
161}
162
163char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
164{
165	int fp_reg;
166
167	if (regno >= DBG_MAX_REG_NUM || regno < 0)
168		return NULL;
169
170	if (dbg_reg_def[regno].offset != -1 && regno < 38) {
171		/* First 38 registers */
172		memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
173		       dbg_reg_def[regno].size);
174	} else if (current && dbg_reg_def[regno].offset != -1 && regno < 72) {
175		/* FP registers 38 -> 69 */
176		if (!(regs->cp0_status & ST0_CU1))
177			goto out;
178		save_fp(current);
179		if (regno == 70) {
180			/* Process the fcr31/fsr (register 70) */
181			memcpy(mem, (void *)&current->thread.fpu.fcr31,
182			       dbg_reg_def[regno].size);
183			goto out;
184		} else if (regno == 71) {
185			/* Ignore the fir (register 71) */
186			memset(mem, 0, dbg_reg_def[regno].size);
187			goto out;
188		}
189		fp_reg = dbg_reg_def[regno].offset;
190		memcpy(mem, (void *)&current->thread.fpu.fpr[fp_reg],
191		       dbg_reg_def[regno].size);
192	}
193
194out:
195	return dbg_reg_def[regno].name;
196
197}
198
199void arch_kgdb_breakpoint(void)
200{
201	__asm__ __volatile__(
202		".globl breakinst\n\t"
203		".set\tnoreorder\n\t"
204		"nop\n"
205		"breakinst:\tbreak\n\t"
206		"nop\n\t"
207		".set\treorder");
208}
209
 
 
 
 
 
 
 
 
 
 
 
 
210static int compute_signal(int tt)
211{
212	struct hard_trap_info *ht;
213
214	for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
215		if (ht->tt == tt)
216			return ht->signo;
217
218	return SIGHUP;		/* default for things we don't know about */
219}
220
221/*
222 * Similar to regs_to_gdb_regs() except that process is sleeping and so
223 * we may not be able to get all the info.
224 */
225void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
226{
227	int reg;
 
 
 
228#if (KGDB_GDB_REG_SIZE == 32)
229	u32 *ptr = (u32 *)gdb_regs;
230#else
231	u64 *ptr = (u64 *)gdb_regs;
232#endif
233
234	for (reg = 0; reg < 16; reg++)
235		*(ptr++) = 0;
236
237	/* S0 - S7 */
238	*(ptr++) = p->thread.reg16;
239	*(ptr++) = p->thread.reg17;
240	*(ptr++) = p->thread.reg18;
241	*(ptr++) = p->thread.reg19;
242	*(ptr++) = p->thread.reg20;
243	*(ptr++) = p->thread.reg21;
244	*(ptr++) = p->thread.reg22;
245	*(ptr++) = p->thread.reg23;
246
247	for (reg = 24; reg < 28; reg++)
248		*(ptr++) = 0;
249
250	/* GP, SP, FP, RA */
251	*(ptr++) = (long)p;
252	*(ptr++) = p->thread.reg29;
253	*(ptr++) = p->thread.reg30;
254	*(ptr++) = p->thread.reg31;
255
256	*(ptr++) = p->thread.cp0_status;
257
258	/* lo, hi */
259	*(ptr++) = 0;
260	*(ptr++) = 0;
261
262	/*
263	 * BadVAddr, Cause
264	 * Ideally these would come from the last exception frame up the stack
265	 * but that requires unwinding, otherwise we can't know much for sure.
266	 */
267	*(ptr++) = 0;
268	*(ptr++) = 0;
269
270	/*
271	 * PC
272	 * use return address (RA), i.e. the moment after return from resume()
273	 */
274	*(ptr++) = p->thread.reg31;
275}
276
277void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long pc)
278{
279	regs->cp0_epc = pc;
280}
281
282/*
283 * Calls linux_debug_hook before the kernel dies. If KGDB is enabled,
284 * then try to fall into the debugger
285 */
286static int kgdb_mips_notify(struct notifier_block *self, unsigned long cmd,
287			    void *ptr)
288{
289	struct die_args *args = (struct die_args *)ptr;
290	struct pt_regs *regs = args->regs;
291	int trap = (regs->cp0_cause & 0x7c) >> 2;
292
293#ifdef CONFIG_KPROBES
294	/*
295	 * Return immediately if the kprobes fault notifier has set
296	 * DIE_PAGE_FAULT.
297	 */
298	if (cmd == DIE_PAGE_FAULT)
299		return NOTIFY_DONE;
300#endif /* CONFIG_KPROBES */
301
302	/* Userspace events, ignore. */
303	if (user_mode(regs))
304		return NOTIFY_DONE;
305
306	if (atomic_read(&kgdb_active) != -1)
307		kgdb_nmicallback(smp_processor_id(), regs);
308
309	if (kgdb_handle_exception(trap, compute_signal(trap), cmd, regs))
310		return NOTIFY_DONE;
311
312	if (atomic_read(&kgdb_setting_breakpoint))
313		if ((trap == 9) && (regs->cp0_epc == (unsigned long)breakinst))
314			regs->cp0_epc += 4;
315
316	/* In SMP mode, __flush_cache_all does IPI */
317	local_irq_enable();
318	__flush_cache_all();
319
320	return NOTIFY_STOP;
321}
322
323#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
324int kgdb_ll_trap(int cmd, const char *str,
325		 struct pt_regs *regs, long err, int trap, int sig)
326{
327	struct die_args args = {
328		.regs	= regs,
329		.str	= str,
330		.err	= err,
331		.trapnr = trap,
332		.signr	= sig,
333
334	};
335
336	if (!kgdb_io_module_registered)
337		return NOTIFY_DONE;
338
339	return kgdb_mips_notify(NULL, cmd, &args);
340}
341#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
342
343static struct notifier_block kgdb_notifier = {
344	.notifier_call = kgdb_mips_notify,
345};
346
347/*
348 * Handle the 'c' command
349 */
350int kgdb_arch_handle_exception(int vector, int signo, int err_code,
351			       char *remcom_in_buffer, char *remcom_out_buffer,
352			       struct pt_regs *regs)
353{
354	char *ptr;
355	unsigned long address;
356
357	switch (remcom_in_buffer[0]) {
358	case 'c':
359		/* handle the optional parameter */
360		ptr = &remcom_in_buffer[1];
361		if (kgdb_hex2long(&ptr, &address))
362			regs->cp0_epc = address;
363
364		return 0;
365	}
366
367	return -1;
368}
369
370const struct kgdb_arch arch_kgdb_ops = {
371#ifdef CONFIG_CPU_BIG_ENDIAN
372	.gdb_bpt_instr = { spec_op << 2, 0x00, 0x00, break_op },
373#else
374	.gdb_bpt_instr = { break_op, 0x00, 0x00, spec_op << 2 },
375#endif
376};
377
 
 
 
 
378int kgdb_arch_init(void)
379{
 
 
 
 
 
 
 
 
380	register_die_notifier(&kgdb_notifier);
381
382	return 0;
383}
384
385/*
386 *	kgdb_arch_exit - Perform any architecture specific uninitalization.
387 *
388 *	This function will handle the uninitalization of any architecture
389 *	specific callbacks, for dynamic registration and unregistration.
390 */
391void kgdb_arch_exit(void)
392{
393	unregister_die_notifier(&kgdb_notifier);
394}
v3.1
  1/*
  2 *  Originally written by Glenn Engel, Lake Stevens Instrument Division
  3 *
  4 *  Contributed by HP Systems
  5 *
  6 *  Modified for Linux/MIPS (and MIPS in general) by Andreas Busse
  7 *  Send complaints, suggestions etc. to <andy@waldorf-gmbh.de>
  8 *
  9 *  Copyright (C) 1995 Andreas Busse
 10 *
 11 *  Copyright (C) 2003 MontaVista Software Inc.
 12 *  Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
 13 *
 14 *  Copyright (C) 2004-2005 MontaVista Software Inc.
 15 *  Author: Manish Lachwani, mlachwani@mvista.com or manish@koffee-break.com
 16 *
 17 *  Copyright (C) 2007-2008 Wind River Systems, Inc.
 18 *  Author/Maintainer: Jason Wessel, jason.wessel@windriver.com
 19 *
 20 *  This file is licensed under the terms of the GNU General Public License
 21 *  version 2. This program is licensed "as is" without any warranty of any
 22 *  kind, whether express or implied.
 23 */
 24
 25#include <linux/ptrace.h>		/* for linux pt_regs struct */
 26#include <linux/kgdb.h>
 27#include <linux/kdebug.h>
 28#include <linux/sched.h>
 29#include <linux/smp.h>
 30#include <asm/inst.h>
 31#include <asm/fpu.h>
 32#include <asm/cacheflush.h>
 33#include <asm/processor.h>
 34#include <asm/sigcontext.h>
 
 35
 36static struct hard_trap_info {
 37	unsigned char tt;	/* Trap type code for MIPS R3xxx and R4xxx */
 38	unsigned char signo;	/* Signal that we map this trap into */
 39} hard_trap_info[] = {
 40	{ 6, SIGBUS },		/* instruction bus error */
 41	{ 7, SIGBUS },		/* data bus error */
 42	{ 9, SIGTRAP },		/* break */
 43/*	{ 11, SIGILL },	*/	/* CPU unusable */
 44	{ 12, SIGFPE },		/* overflow */
 45	{ 13, SIGTRAP },	/* trap */
 46	{ 14, SIGSEGV },	/* virtual instruction cache coherency */
 47	{ 15, SIGFPE },		/* floating point exception */
 48	{ 23, SIGSEGV },	/* watch */
 49	{ 31, SIGSEGV },	/* virtual data cache coherency */
 50	{ 0, 0}			/* Must be last */
 51};
 52
 53struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] =
 54{
 55	{ "zero", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[0]) },
 56	{ "at", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[1]) },
 57	{ "v0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[2]) },
 58	{ "v1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[3]) },
 59	{ "a0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[4]) },
 60	{ "a1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[5]) },
 61	{ "a2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[6]) },
 62	{ "a3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[7]) },
 63	{ "t0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[8]) },
 64	{ "t1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[9]) },
 65	{ "t2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[10]) },
 66	{ "t3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[11]) },
 67	{ "t4", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[12]) },
 68	{ "t5", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[13]) },
 69	{ "t6", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[14]) },
 70	{ "t7", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[15]) },
 71	{ "s0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[16]) },
 72	{ "s1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[17]) },
 73	{ "s2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[18]) },
 74	{ "s3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[19]) },
 75	{ "s4", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[20]) },
 76	{ "s5", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[21]) },
 77	{ "s6", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[22]) },
 78	{ "s7", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[23]) },
 79	{ "t8", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[24]) },
 80	{ "t9", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[25]) },
 81	{ "k0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[26]) },
 82	{ "k1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[27]) },
 83	{ "gp", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[28]) },
 84	{ "sp", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[29]) },
 85	{ "s8", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[30]) },
 86	{ "ra", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[31]) },
 87	{ "sr", GDB_SIZEOF_REG, offsetof(struct pt_regs, cp0_status) },
 88	{ "lo", GDB_SIZEOF_REG, offsetof(struct pt_regs, lo) },
 89	{ "hi", GDB_SIZEOF_REG, offsetof(struct pt_regs, hi) },
 90	{ "bad", GDB_SIZEOF_REG, offsetof(struct pt_regs, cp0_badvaddr) },
 91	{ "cause", GDB_SIZEOF_REG, offsetof(struct pt_regs, cp0_cause) },
 92	{ "pc", GDB_SIZEOF_REG, offsetof(struct pt_regs, cp0_epc) },
 93	{ "f0", GDB_SIZEOF_REG, 0 },
 94	{ "f1", GDB_SIZEOF_REG, 1 },
 95	{ "f2", GDB_SIZEOF_REG, 2 },
 96	{ "f3", GDB_SIZEOF_REG, 3 },
 97	{ "f4", GDB_SIZEOF_REG, 4 },
 98	{ "f5", GDB_SIZEOF_REG, 5 },
 99	{ "f6", GDB_SIZEOF_REG, 6 },
100	{ "f7", GDB_SIZEOF_REG, 7 },
101	{ "f8", GDB_SIZEOF_REG, 8 },
102	{ "f9", GDB_SIZEOF_REG, 9 },
103	{ "f10", GDB_SIZEOF_REG, 10 },
104	{ "f11", GDB_SIZEOF_REG, 11 },
105	{ "f12", GDB_SIZEOF_REG, 12 },
106	{ "f13", GDB_SIZEOF_REG, 13 },
107	{ "f14", GDB_SIZEOF_REG, 14 },
108	{ "f15", GDB_SIZEOF_REG, 15 },
109	{ "f16", GDB_SIZEOF_REG, 16 },
110	{ "f17", GDB_SIZEOF_REG, 17 },
111	{ "f18", GDB_SIZEOF_REG, 18 },
112	{ "f19", GDB_SIZEOF_REG, 19 },
113	{ "f20", GDB_SIZEOF_REG, 20 },
114	{ "f21", GDB_SIZEOF_REG, 21 },
115	{ "f22", GDB_SIZEOF_REG, 22 },
116	{ "f23", GDB_SIZEOF_REG, 23 },
117	{ "f24", GDB_SIZEOF_REG, 24 },
118	{ "f25", GDB_SIZEOF_REG, 25 },
119	{ "f26", GDB_SIZEOF_REG, 26 },
120	{ "f27", GDB_SIZEOF_REG, 27 },
121	{ "f28", GDB_SIZEOF_REG, 28 },
122	{ "f29", GDB_SIZEOF_REG, 29 },
123	{ "f30", GDB_SIZEOF_REG, 30 },
124	{ "f31", GDB_SIZEOF_REG, 31 },
125	{ "fsr", GDB_SIZEOF_REG, 0 },
126	{ "fir", GDB_SIZEOF_REG, 0 },
127};
128
129int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
130{
131	int fp_reg;
132
133	if (regno < 0 || regno >= DBG_MAX_REG_NUM)
134		return -EINVAL;
135
136	if (dbg_reg_def[regno].offset != -1 && regno < 38) {
137		memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
138		       dbg_reg_def[regno].size);
139	} else if (current && dbg_reg_def[regno].offset != -1 && regno < 72) {
140		/* FP registers 38 -> 69 */
141		if (!(regs->cp0_status & ST0_CU1))
142			return 0;
143		if (regno == 70) {
144			/* Process the fcr31/fsr (register 70) */
145			memcpy((void *)&current->thread.fpu.fcr31, mem,
146			       dbg_reg_def[regno].size);
147			goto out_save;
148		} else if (regno == 71) {
149			/* Ignore the fir (register 71) */
150			goto out_save;
151		}
152		fp_reg = dbg_reg_def[regno].offset;
153		memcpy((void *)&current->thread.fpu.fpr[fp_reg], mem,
154		       dbg_reg_def[regno].size);
155out_save:
156		restore_fp(current);
157	}
158
159	return 0;
160}
161
162char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
163{
164	int fp_reg;
165
166	if (regno >= DBG_MAX_REG_NUM || regno < 0)
167		return NULL;
168
169	if (dbg_reg_def[regno].offset != -1 && regno < 38) {
170		/* First 38 registers */
171		memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
172		       dbg_reg_def[regno].size);
173	} else if (current && dbg_reg_def[regno].offset != -1 && regno < 72) {
174		/* FP registers 38 -> 69 */
175		if (!(regs->cp0_status & ST0_CU1))
176			goto out;
177		save_fp(current);
178		if (regno == 70) {
179			/* Process the fcr31/fsr (register 70) */
180			memcpy(mem, (void *)&current->thread.fpu.fcr31,
181			       dbg_reg_def[regno].size);
182			goto out;
183		} else if (regno == 71) {
184			/* Ignore the fir (register 71) */
185			memset(mem, 0, dbg_reg_def[regno].size);
186			goto out;
187		}
188		fp_reg = dbg_reg_def[regno].offset;
189		memcpy(mem, (void *)&current->thread.fpu.fpr[fp_reg],
190		       dbg_reg_def[regno].size);
191	}
192
193out:
194	return dbg_reg_def[regno].name;
195
196}
197
198void arch_kgdb_breakpoint(void)
199{
200	__asm__ __volatile__(
201		".globl breakinst\n\t"
202		".set\tnoreorder\n\t"
203		"nop\n"
204		"breakinst:\tbreak\n\t"
205		"nop\n\t"
206		".set\treorder");
207}
208
209static void kgdb_call_nmi_hook(void *ignored)
210{
211	kgdb_nmicallback(raw_smp_processor_id(), NULL);
212}
213
214void kgdb_roundup_cpus(unsigned long flags)
215{
216	local_irq_enable();
217	smp_call_function(kgdb_call_nmi_hook, NULL, 0);
218	local_irq_disable();
219}
220
221static int compute_signal(int tt)
222{
223	struct hard_trap_info *ht;
224
225	for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
226		if (ht->tt == tt)
227			return ht->signo;
228
229	return SIGHUP;		/* default for things we don't know about */
230}
231
232/*
233 * Similar to regs_to_gdb_regs() except that process is sleeping and so
234 * we may not be able to get all the info.
235 */
236void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
237{
238	int reg;
239	struct thread_info *ti = task_thread_info(p);
240	unsigned long ksp = (unsigned long)ti + THREAD_SIZE - 32;
241	struct pt_regs *regs = (struct pt_regs *)ksp - 1;
242#if (KGDB_GDB_REG_SIZE == 32)
243	u32 *ptr = (u32 *)gdb_regs;
244#else
245	u64 *ptr = (u64 *)gdb_regs;
246#endif
247
248	for (reg = 0; reg < 16; reg++)
249		*(ptr++) = regs->regs[reg];
250
251	/* S0 - S7 */
252	for (reg = 16; reg < 24; reg++)
253		*(ptr++) = regs->regs[reg];
 
 
 
 
 
 
254
255	for (reg = 24; reg < 28; reg++)
256		*(ptr++) = 0;
257
258	/* GP, SP, FP, RA */
259	for (reg = 28; reg < 32; reg++)
260		*(ptr++) = regs->regs[reg];
261
262	*(ptr++) = regs->cp0_status;
263	*(ptr++) = regs->lo;
264	*(ptr++) = regs->hi;
265	*(ptr++) = regs->cp0_badvaddr;
266	*(ptr++) = regs->cp0_cause;
267	*(ptr++) = regs->cp0_epc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268}
269
270void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long pc)
271{
272	regs->cp0_epc = pc;
273}
274
275/*
276 * Calls linux_debug_hook before the kernel dies. If KGDB is enabled,
277 * then try to fall into the debugger
278 */
279static int kgdb_mips_notify(struct notifier_block *self, unsigned long cmd,
280			    void *ptr)
281{
282	struct die_args *args = (struct die_args *)ptr;
283	struct pt_regs *regs = args->regs;
284	int trap = (regs->cp0_cause & 0x7c) >> 2;
285
 
 
 
 
 
 
 
 
 
286	/* Userspace events, ignore. */
287	if (user_mode(regs))
288		return NOTIFY_DONE;
289
290	if (atomic_read(&kgdb_active) != -1)
291		kgdb_nmicallback(smp_processor_id(), regs);
292
293	if (kgdb_handle_exception(trap, compute_signal(trap), cmd, regs))
294		return NOTIFY_DONE;
295
296	if (atomic_read(&kgdb_setting_breakpoint))
297		if ((trap == 9) && (regs->cp0_epc == (unsigned long)breakinst))
298			regs->cp0_epc += 4;
299
300	/* In SMP mode, __flush_cache_all does IPI */
301	local_irq_enable();
302	__flush_cache_all();
303
304	return NOTIFY_STOP;
305}
306
307#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
308int kgdb_ll_trap(int cmd, const char *str,
309		 struct pt_regs *regs, long err, int trap, int sig)
310{
311	struct die_args args = {
312		.regs	= regs,
313		.str	= str,
314		.err	= err,
315		.trapnr	= trap,
316		.signr	= sig,
317
318	};
319
320	if (!kgdb_io_module_registered)
321		return NOTIFY_DONE;
322
323	return kgdb_mips_notify(NULL, cmd, &args);
324}
325#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
326
327static struct notifier_block kgdb_notifier = {
328	.notifier_call = kgdb_mips_notify,
329};
330
331/*
332 * Handle the 'c' command
333 */
334int kgdb_arch_handle_exception(int vector, int signo, int err_code,
335			       char *remcom_in_buffer, char *remcom_out_buffer,
336			       struct pt_regs *regs)
337{
338	char *ptr;
339	unsigned long address;
340
341	switch (remcom_in_buffer[0]) {
342	case 'c':
343		/* handle the optional parameter */
344		ptr = &remcom_in_buffer[1];
345		if (kgdb_hex2long(&ptr, &address))
346			regs->cp0_epc = address;
347
348		return 0;
349	}
350
351	return -1;
352}
353
354struct kgdb_arch arch_kgdb_ops;
 
 
 
 
 
 
355
356/*
357 * We use kgdb_early_setup so that functions we need to call now don't
358 * cause trouble when called again later.
359 */
360int kgdb_arch_init(void)
361{
362	union mips_instruction insn = {
363		.r_format = {
364			.opcode = spec_op,
365			.func   = break_op,
366		}
367	};
368	memcpy(arch_kgdb_ops.gdb_bpt_instr, insn.byte, BREAK_INSTR_SIZE);
369
370	register_die_notifier(&kgdb_notifier);
371
372	return 0;
373}
374
375/*
376 *	kgdb_arch_exit - Perform any architecture specific uninitalization.
377 *
378 *	This function will handle the uninitalization of any architecture
379 *	specific callbacks, for dynamic registration and unregistration.
380 */
381void kgdb_arch_exit(void)
382{
383	unregister_die_notifier(&kgdb_notifier);
384}