Linux Audio

Check our new training course

Loading...
v6.2
  1/*
  2 *  Originally written by Glenn Engel, Lake Stevens Instrument Division
  3 *
  4 *  Contributed by HP Systems
  5 *
  6 *  Modified for Linux/MIPS (and MIPS in general) by Andreas Busse
  7 *  Send complaints, suggestions etc. to <andy@waldorf-gmbh.de>
  8 *
  9 *  Copyright (C) 1995 Andreas Busse
 10 *
 11 *  Copyright (C) 2003 MontaVista Software Inc.
 12 *  Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
 13 *
 14 *  Copyright (C) 2004-2005 MontaVista Software Inc.
 15 *  Author: Manish Lachwani, mlachwani@mvista.com or manish@koffee-break.com
 16 *
 17 *  Copyright (C) 2007-2008 Wind River Systems, Inc.
 18 *  Author/Maintainer: Jason Wessel, jason.wessel@windriver.com
 19 *
 20 *  This file is licensed under the terms of the GNU General Public License
 21 *  version 2. This program is licensed "as is" without any warranty of any
 22 *  kind, whether express or implied.
 23 */
 24
 25#include <linux/ptrace.h>		/* for linux pt_regs struct */
 26#include <linux/kgdb.h>
 27#include <linux/kdebug.h>
 28#include <linux/sched.h>
 29#include <linux/smp.h>
 30#include <asm/inst.h>
 31#include <asm/fpu.h>
 32#include <asm/cacheflush.h>
 33#include <asm/processor.h>
 34#include <asm/sigcontext.h>
 
 35#include <asm/irq_regs.h>
 36
 37static struct hard_trap_info {
 38	unsigned char tt;	/* Trap type code for MIPS R3xxx and R4xxx */
 39	unsigned char signo;	/* Signal that we map this trap into */
 40} hard_trap_info[] = {
 41	{ 6, SIGBUS },		/* instruction bus error */
 42	{ 7, SIGBUS },		/* data bus error */
 43	{ 9, SIGTRAP },		/* break */
 44/*	{ 11, SIGILL }, */	/* CPU unusable */
 45	{ 12, SIGFPE },		/* overflow */
 46	{ 13, SIGTRAP },	/* trap */
 47	{ 14, SIGSEGV },	/* virtual instruction cache coherency */
 48	{ 15, SIGFPE },		/* floating point exception */
 49	{ 23, SIGSEGV },	/* watch */
 50	{ 31, SIGSEGV },	/* virtual data cache coherency */
 51	{ 0, 0}			/* Must be last */
 52};
 53
 54struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] =
 55{
 56	{ "zero", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[0]) },
 57	{ "at", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[1]) },
 58	{ "v0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[2]) },
 59	{ "v1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[3]) },
 60	{ "a0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[4]) },
 61	{ "a1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[5]) },
 62	{ "a2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[6]) },
 63	{ "a3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[7]) },
 64	{ "t0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[8]) },
 65	{ "t1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[9]) },
 66	{ "t2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[10]) },
 67	{ "t3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[11]) },
 68	{ "t4", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[12]) },
 69	{ "t5", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[13]) },
 70	{ "t6", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[14]) },
 71	{ "t7", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[15]) },
 72	{ "s0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[16]) },
 73	{ "s1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[17]) },
 74	{ "s2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[18]) },
 75	{ "s3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[19]) },
 76	{ "s4", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[20]) },
 77	{ "s5", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[21]) },
 78	{ "s6", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[22]) },
 79	{ "s7", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[23]) },
 80	{ "t8", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[24]) },
 81	{ "t9", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[25]) },
 82	{ "k0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[26]) },
 83	{ "k1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[27]) },
 84	{ "gp", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[28]) },
 85	{ "sp", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[29]) },
 86	{ "s8", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[30]) },
 87	{ "ra", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[31]) },
 88	{ "sr", GDB_SIZEOF_REG, offsetof(struct pt_regs, cp0_status) },
 89	{ "lo", GDB_SIZEOF_REG, offsetof(struct pt_regs, lo) },
 90	{ "hi", GDB_SIZEOF_REG, offsetof(struct pt_regs, hi) },
 91	{ "bad", GDB_SIZEOF_REG, offsetof(struct pt_regs, cp0_badvaddr) },
 92	{ "cause", GDB_SIZEOF_REG, offsetof(struct pt_regs, cp0_cause) },
 93	{ "pc", GDB_SIZEOF_REG, offsetof(struct pt_regs, cp0_epc) },
 94	{ "f0", GDB_SIZEOF_REG, 0 },
 95	{ "f1", GDB_SIZEOF_REG, 1 },
 96	{ "f2", GDB_SIZEOF_REG, 2 },
 97	{ "f3", GDB_SIZEOF_REG, 3 },
 98	{ "f4", GDB_SIZEOF_REG, 4 },
 99	{ "f5", GDB_SIZEOF_REG, 5 },
100	{ "f6", GDB_SIZEOF_REG, 6 },
101	{ "f7", GDB_SIZEOF_REG, 7 },
102	{ "f8", GDB_SIZEOF_REG, 8 },
103	{ "f9", GDB_SIZEOF_REG, 9 },
104	{ "f10", GDB_SIZEOF_REG, 10 },
105	{ "f11", GDB_SIZEOF_REG, 11 },
106	{ "f12", GDB_SIZEOF_REG, 12 },
107	{ "f13", GDB_SIZEOF_REG, 13 },
108	{ "f14", GDB_SIZEOF_REG, 14 },
109	{ "f15", GDB_SIZEOF_REG, 15 },
110	{ "f16", GDB_SIZEOF_REG, 16 },
111	{ "f17", GDB_SIZEOF_REG, 17 },
112	{ "f18", GDB_SIZEOF_REG, 18 },
113	{ "f19", GDB_SIZEOF_REG, 19 },
114	{ "f20", GDB_SIZEOF_REG, 20 },
115	{ "f21", GDB_SIZEOF_REG, 21 },
116	{ "f22", GDB_SIZEOF_REG, 22 },
117	{ "f23", GDB_SIZEOF_REG, 23 },
118	{ "f24", GDB_SIZEOF_REG, 24 },
119	{ "f25", GDB_SIZEOF_REG, 25 },
120	{ "f26", GDB_SIZEOF_REG, 26 },
121	{ "f27", GDB_SIZEOF_REG, 27 },
122	{ "f28", GDB_SIZEOF_REG, 28 },
123	{ "f29", GDB_SIZEOF_REG, 29 },
124	{ "f30", GDB_SIZEOF_REG, 30 },
125	{ "f31", GDB_SIZEOF_REG, 31 },
126	{ "fsr", GDB_SIZEOF_REG, 0 },
127	{ "fir", GDB_SIZEOF_REG, 0 },
128};
129
130int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
131{
132	int fp_reg;
133
134	if (regno < 0 || regno >= DBG_MAX_REG_NUM)
135		return -EINVAL;
136
137	if (dbg_reg_def[regno].offset != -1 && regno < 38) {
138		memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
139		       dbg_reg_def[regno].size);
140	} else if (current && dbg_reg_def[regno].offset != -1 && regno < 72) {
141		/* FP registers 38 -> 69 */
142		if (!(regs->cp0_status & ST0_CU1))
143			return 0;
144		if (regno == 70) {
145			/* Process the fcr31/fsr (register 70) */
146			memcpy((void *)&current->thread.fpu.fcr31, mem,
147			       dbg_reg_def[regno].size);
148			goto out_save;
149		} else if (regno == 71) {
150			/* Ignore the fir (register 71) */
151			goto out_save;
152		}
153		fp_reg = dbg_reg_def[regno].offset;
154		memcpy((void *)&current->thread.fpu.fpr[fp_reg], mem,
155		       dbg_reg_def[regno].size);
156out_save:
157		restore_fp(current);
158	}
159
160	return 0;
161}
162
163char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
164{
165	int fp_reg;
166
167	if (regno >= DBG_MAX_REG_NUM || regno < 0)
168		return NULL;
169
170	if (dbg_reg_def[regno].offset != -1 && regno < 38) {
171		/* First 38 registers */
172		memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
173		       dbg_reg_def[regno].size);
174	} else if (current && dbg_reg_def[regno].offset != -1 && regno < 72) {
175		/* FP registers 38 -> 69 */
176		if (!(regs->cp0_status & ST0_CU1))
177			goto out;
178		save_fp(current);
179		if (regno == 70) {
180			/* Process the fcr31/fsr (register 70) */
181			memcpy(mem, (void *)&current->thread.fpu.fcr31,
182			       dbg_reg_def[regno].size);
183			goto out;
184		} else if (regno == 71) {
185			/* Ignore the fir (register 71) */
186			memset(mem, 0, dbg_reg_def[regno].size);
187			goto out;
188		}
189		fp_reg = dbg_reg_def[regno].offset;
190		memcpy(mem, (void *)&current->thread.fpu.fpr[fp_reg],
191		       dbg_reg_def[regno].size);
192	}
193
194out:
195	return dbg_reg_def[regno].name;
196
197}
198
199void arch_kgdb_breakpoint(void)
200{
201	__asm__ __volatile__(
202		".globl breakinst\n\t"
203		".set\tnoreorder\n\t"
204		"nop\n"
205		"breakinst:\tbreak\n\t"
206		"nop\n\t"
207		".set\treorder");
208}
209
 
 
 
 
 
 
 
 
 
 
 
 
210static int compute_signal(int tt)
211{
212	struct hard_trap_info *ht;
213
214	for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
215		if (ht->tt == tt)
216			return ht->signo;
217
218	return SIGHUP;		/* default for things we don't know about */
219}
220
221/*
222 * Similar to regs_to_gdb_regs() except that process is sleeping and so
223 * we may not be able to get all the info.
224 */
225void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
226{
227	int reg;
228#if (KGDB_GDB_REG_SIZE == 32)
229	u32 *ptr = (u32 *)gdb_regs;
230#else
231	u64 *ptr = (u64 *)gdb_regs;
232#endif
233
234	for (reg = 0; reg < 16; reg++)
235		*(ptr++) = 0;
236
237	/* S0 - S7 */
238	*(ptr++) = p->thread.reg16;
239	*(ptr++) = p->thread.reg17;
240	*(ptr++) = p->thread.reg18;
241	*(ptr++) = p->thread.reg19;
242	*(ptr++) = p->thread.reg20;
243	*(ptr++) = p->thread.reg21;
244	*(ptr++) = p->thread.reg22;
245	*(ptr++) = p->thread.reg23;
246
247	for (reg = 24; reg < 28; reg++)
248		*(ptr++) = 0;
249
250	/* GP, SP, FP, RA */
251	*(ptr++) = (long)p;
252	*(ptr++) = p->thread.reg29;
253	*(ptr++) = p->thread.reg30;
254	*(ptr++) = p->thread.reg31;
255
256	*(ptr++) = p->thread.cp0_status;
257
258	/* lo, hi */
259	*(ptr++) = 0;
260	*(ptr++) = 0;
261
262	/*
263	 * BadVAddr, Cause
264	 * Ideally these would come from the last exception frame up the stack
265	 * but that requires unwinding, otherwise we can't know much for sure.
266	 */
267	*(ptr++) = 0;
268	*(ptr++) = 0;
269
270	/*
271	 * PC
272	 * use return address (RA), i.e. the moment after return from resume()
273	 */
274	*(ptr++) = p->thread.reg31;
275}
276
277void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long pc)
278{
279	regs->cp0_epc = pc;
280}
281
282/*
283 * Calls linux_debug_hook before the kernel dies. If KGDB is enabled,
284 * then try to fall into the debugger
285 */
286static int kgdb_mips_notify(struct notifier_block *self, unsigned long cmd,
287			    void *ptr)
288{
289	struct die_args *args = (struct die_args *)ptr;
290	struct pt_regs *regs = args->regs;
291	int trap = (regs->cp0_cause & 0x7c) >> 2;
 
292
293#ifdef CONFIG_KPROBES
294	/*
295	 * Return immediately if the kprobes fault notifier has set
296	 * DIE_PAGE_FAULT.
297	 */
298	if (cmd == DIE_PAGE_FAULT)
299		return NOTIFY_DONE;
300#endif /* CONFIG_KPROBES */
301
302	/* Userspace events, ignore. */
303	if (user_mode(regs))
304		return NOTIFY_DONE;
305
 
 
 
 
306	if (atomic_read(&kgdb_active) != -1)
307		kgdb_nmicallback(smp_processor_id(), regs);
308
309	if (kgdb_handle_exception(trap, compute_signal(trap), cmd, regs))
 
310		return NOTIFY_DONE;
 
311
312	if (atomic_read(&kgdb_setting_breakpoint))
313		if ((trap == 9) && (regs->cp0_epc == (unsigned long)breakinst))
314			regs->cp0_epc += 4;
315
316	/* In SMP mode, __flush_cache_all does IPI */
317	local_irq_enable();
318	__flush_cache_all();
319
 
320	return NOTIFY_STOP;
321}
322
323#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
324int kgdb_ll_trap(int cmd, const char *str,
325		 struct pt_regs *regs, long err, int trap, int sig)
326{
327	struct die_args args = {
328		.regs	= regs,
329		.str	= str,
330		.err	= err,
331		.trapnr = trap,
332		.signr	= sig,
333
334	};
335
336	if (!kgdb_io_module_registered)
337		return NOTIFY_DONE;
338
339	return kgdb_mips_notify(NULL, cmd, &args);
340}
341#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
342
343static struct notifier_block kgdb_notifier = {
344	.notifier_call = kgdb_mips_notify,
345};
346
347/*
348 * Handle the 'c' command
349 */
350int kgdb_arch_handle_exception(int vector, int signo, int err_code,
351			       char *remcom_in_buffer, char *remcom_out_buffer,
352			       struct pt_regs *regs)
353{
354	char *ptr;
355	unsigned long address;
356
357	switch (remcom_in_buffer[0]) {
358	case 'c':
359		/* handle the optional parameter */
360		ptr = &remcom_in_buffer[1];
361		if (kgdb_hex2long(&ptr, &address))
362			regs->cp0_epc = address;
363
364		return 0;
365	}
366
367	return -1;
368}
369
370const struct kgdb_arch arch_kgdb_ops = {
371#ifdef CONFIG_CPU_BIG_ENDIAN
372	.gdb_bpt_instr = { spec_op << 2, 0x00, 0x00, break_op },
373#else
374	.gdb_bpt_instr = { break_op, 0x00, 0x00, spec_op << 2 },
375#endif
376};
377
378int kgdb_arch_init(void)
379{
380	register_die_notifier(&kgdb_notifier);
381
382	return 0;
383}
384
385/*
386 *	kgdb_arch_exit - Perform any architecture specific uninitalization.
387 *
388 *	This function will handle the uninitalization of any architecture
389 *	specific callbacks, for dynamic registration and unregistration.
390 */
391void kgdb_arch_exit(void)
392{
393	unregister_die_notifier(&kgdb_notifier);
394}
v5.4
  1/*
  2 *  Originally written by Glenn Engel, Lake Stevens Instrument Division
  3 *
  4 *  Contributed by HP Systems
  5 *
  6 *  Modified for Linux/MIPS (and MIPS in general) by Andreas Busse
  7 *  Send complaints, suggestions etc. to <andy@waldorf-gmbh.de>
  8 *
  9 *  Copyright (C) 1995 Andreas Busse
 10 *
 11 *  Copyright (C) 2003 MontaVista Software Inc.
 12 *  Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
 13 *
 14 *  Copyright (C) 2004-2005 MontaVista Software Inc.
 15 *  Author: Manish Lachwani, mlachwani@mvista.com or manish@koffee-break.com
 16 *
 17 *  Copyright (C) 2007-2008 Wind River Systems, Inc.
 18 *  Author/Maintainer: Jason Wessel, jason.wessel@windriver.com
 19 *
 20 *  This file is licensed under the terms of the GNU General Public License
 21 *  version 2. This program is licensed "as is" without any warranty of any
 22 *  kind, whether express or implied.
 23 */
 24
 25#include <linux/ptrace.h>		/* for linux pt_regs struct */
 26#include <linux/kgdb.h>
 27#include <linux/kdebug.h>
 28#include <linux/sched.h>
 29#include <linux/smp.h>
 30#include <asm/inst.h>
 31#include <asm/fpu.h>
 32#include <asm/cacheflush.h>
 33#include <asm/processor.h>
 34#include <asm/sigcontext.h>
 35#include <linux/uaccess.h>
 36#include <asm/irq_regs.h>
 37
 38static struct hard_trap_info {
 39	unsigned char tt;	/* Trap type code for MIPS R3xxx and R4xxx */
 40	unsigned char signo;	/* Signal that we map this trap into */
 41} hard_trap_info[] = {
 42	{ 6, SIGBUS },		/* instruction bus error */
 43	{ 7, SIGBUS },		/* data bus error */
 44	{ 9, SIGTRAP },		/* break */
 45/*	{ 11, SIGILL }, */	/* CPU unusable */
 46	{ 12, SIGFPE },		/* overflow */
 47	{ 13, SIGTRAP },	/* trap */
 48	{ 14, SIGSEGV },	/* virtual instruction cache coherency */
 49	{ 15, SIGFPE },		/* floating point exception */
 50	{ 23, SIGSEGV },	/* watch */
 51	{ 31, SIGSEGV },	/* virtual data cache coherency */
 52	{ 0, 0}			/* Must be last */
 53};
 54
 55struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] =
 56{
 57	{ "zero", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[0]) },
 58	{ "at", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[1]) },
 59	{ "v0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[2]) },
 60	{ "v1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[3]) },
 61	{ "a0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[4]) },
 62	{ "a1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[5]) },
 63	{ "a2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[6]) },
 64	{ "a3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[7]) },
 65	{ "t0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[8]) },
 66	{ "t1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[9]) },
 67	{ "t2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[10]) },
 68	{ "t3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[11]) },
 69	{ "t4", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[12]) },
 70	{ "t5", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[13]) },
 71	{ "t6", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[14]) },
 72	{ "t7", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[15]) },
 73	{ "s0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[16]) },
 74	{ "s1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[17]) },
 75	{ "s2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[18]) },
 76	{ "s3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[19]) },
 77	{ "s4", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[20]) },
 78	{ "s5", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[21]) },
 79	{ "s6", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[22]) },
 80	{ "s7", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[23]) },
 81	{ "t8", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[24]) },
 82	{ "t9", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[25]) },
 83	{ "k0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[26]) },
 84	{ "k1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[27]) },
 85	{ "gp", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[28]) },
 86	{ "sp", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[29]) },
 87	{ "s8", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[30]) },
 88	{ "ra", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[31]) },
 89	{ "sr", GDB_SIZEOF_REG, offsetof(struct pt_regs, cp0_status) },
 90	{ "lo", GDB_SIZEOF_REG, offsetof(struct pt_regs, lo) },
 91	{ "hi", GDB_SIZEOF_REG, offsetof(struct pt_regs, hi) },
 92	{ "bad", GDB_SIZEOF_REG, offsetof(struct pt_regs, cp0_badvaddr) },
 93	{ "cause", GDB_SIZEOF_REG, offsetof(struct pt_regs, cp0_cause) },
 94	{ "pc", GDB_SIZEOF_REG, offsetof(struct pt_regs, cp0_epc) },
 95	{ "f0", GDB_SIZEOF_REG, 0 },
 96	{ "f1", GDB_SIZEOF_REG, 1 },
 97	{ "f2", GDB_SIZEOF_REG, 2 },
 98	{ "f3", GDB_SIZEOF_REG, 3 },
 99	{ "f4", GDB_SIZEOF_REG, 4 },
100	{ "f5", GDB_SIZEOF_REG, 5 },
101	{ "f6", GDB_SIZEOF_REG, 6 },
102	{ "f7", GDB_SIZEOF_REG, 7 },
103	{ "f8", GDB_SIZEOF_REG, 8 },
104	{ "f9", GDB_SIZEOF_REG, 9 },
105	{ "f10", GDB_SIZEOF_REG, 10 },
106	{ "f11", GDB_SIZEOF_REG, 11 },
107	{ "f12", GDB_SIZEOF_REG, 12 },
108	{ "f13", GDB_SIZEOF_REG, 13 },
109	{ "f14", GDB_SIZEOF_REG, 14 },
110	{ "f15", GDB_SIZEOF_REG, 15 },
111	{ "f16", GDB_SIZEOF_REG, 16 },
112	{ "f17", GDB_SIZEOF_REG, 17 },
113	{ "f18", GDB_SIZEOF_REG, 18 },
114	{ "f19", GDB_SIZEOF_REG, 19 },
115	{ "f20", GDB_SIZEOF_REG, 20 },
116	{ "f21", GDB_SIZEOF_REG, 21 },
117	{ "f22", GDB_SIZEOF_REG, 22 },
118	{ "f23", GDB_SIZEOF_REG, 23 },
119	{ "f24", GDB_SIZEOF_REG, 24 },
120	{ "f25", GDB_SIZEOF_REG, 25 },
121	{ "f26", GDB_SIZEOF_REG, 26 },
122	{ "f27", GDB_SIZEOF_REG, 27 },
123	{ "f28", GDB_SIZEOF_REG, 28 },
124	{ "f29", GDB_SIZEOF_REG, 29 },
125	{ "f30", GDB_SIZEOF_REG, 30 },
126	{ "f31", GDB_SIZEOF_REG, 31 },
127	{ "fsr", GDB_SIZEOF_REG, 0 },
128	{ "fir", GDB_SIZEOF_REG, 0 },
129};
130
131int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
132{
133	int fp_reg;
134
135	if (regno < 0 || regno >= DBG_MAX_REG_NUM)
136		return -EINVAL;
137
138	if (dbg_reg_def[regno].offset != -1 && regno < 38) {
139		memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
140		       dbg_reg_def[regno].size);
141	} else if (current && dbg_reg_def[regno].offset != -1 && regno < 72) {
142		/* FP registers 38 -> 69 */
143		if (!(regs->cp0_status & ST0_CU1))
144			return 0;
145		if (regno == 70) {
146			/* Process the fcr31/fsr (register 70) */
147			memcpy((void *)&current->thread.fpu.fcr31, mem,
148			       dbg_reg_def[regno].size);
149			goto out_save;
150		} else if (regno == 71) {
151			/* Ignore the fir (register 71) */
152			goto out_save;
153		}
154		fp_reg = dbg_reg_def[regno].offset;
155		memcpy((void *)&current->thread.fpu.fpr[fp_reg], mem,
156		       dbg_reg_def[regno].size);
157out_save:
158		restore_fp(current);
159	}
160
161	return 0;
162}
163
164char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
165{
166	int fp_reg;
167
168	if (regno >= DBG_MAX_REG_NUM || regno < 0)
169		return NULL;
170
171	if (dbg_reg_def[regno].offset != -1 && regno < 38) {
172		/* First 38 registers */
173		memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
174		       dbg_reg_def[regno].size);
175	} else if (current && dbg_reg_def[regno].offset != -1 && regno < 72) {
176		/* FP registers 38 -> 69 */
177		if (!(regs->cp0_status & ST0_CU1))
178			goto out;
179		save_fp(current);
180		if (regno == 70) {
181			/* Process the fcr31/fsr (register 70) */
182			memcpy(mem, (void *)&current->thread.fpu.fcr31,
183			       dbg_reg_def[regno].size);
184			goto out;
185		} else if (regno == 71) {
186			/* Ignore the fir (register 71) */
187			memset(mem, 0, dbg_reg_def[regno].size);
188			goto out;
189		}
190		fp_reg = dbg_reg_def[regno].offset;
191		memcpy(mem, (void *)&current->thread.fpu.fpr[fp_reg],
192		       dbg_reg_def[regno].size);
193	}
194
195out:
196	return dbg_reg_def[regno].name;
197
198}
199
200void arch_kgdb_breakpoint(void)
201{
202	__asm__ __volatile__(
203		".globl breakinst\n\t"
204		".set\tnoreorder\n\t"
205		"nop\n"
206		"breakinst:\tbreak\n\t"
207		"nop\n\t"
208		".set\treorder");
209}
210
211void kgdb_call_nmi_hook(void *ignored)
212{
213	mm_segment_t old_fs;
214
215	old_fs = get_fs();
216	set_fs(KERNEL_DS);
217
218	kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
219
220	set_fs(old_fs);
221}
222
223static int compute_signal(int tt)
224{
225	struct hard_trap_info *ht;
226
227	for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
228		if (ht->tt == tt)
229			return ht->signo;
230
231	return SIGHUP;		/* default for things we don't know about */
232}
233
234/*
235 * Similar to regs_to_gdb_regs() except that process is sleeping and so
236 * we may not be able to get all the info.
237 */
238void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
239{
240	int reg;
241#if (KGDB_GDB_REG_SIZE == 32)
242	u32 *ptr = (u32 *)gdb_regs;
243#else
244	u64 *ptr = (u64 *)gdb_regs;
245#endif
246
247	for (reg = 0; reg < 16; reg++)
248		*(ptr++) = 0;
249
250	/* S0 - S7 */
251	*(ptr++) = p->thread.reg16;
252	*(ptr++) = p->thread.reg17;
253	*(ptr++) = p->thread.reg18;
254	*(ptr++) = p->thread.reg19;
255	*(ptr++) = p->thread.reg20;
256	*(ptr++) = p->thread.reg21;
257	*(ptr++) = p->thread.reg22;
258	*(ptr++) = p->thread.reg23;
259
260	for (reg = 24; reg < 28; reg++)
261		*(ptr++) = 0;
262
263	/* GP, SP, FP, RA */
264	*(ptr++) = (long)p;
265	*(ptr++) = p->thread.reg29;
266	*(ptr++) = p->thread.reg30;
267	*(ptr++) = p->thread.reg31;
268
269	*(ptr++) = p->thread.cp0_status;
270
271	/* lo, hi */
272	*(ptr++) = 0;
273	*(ptr++) = 0;
274
275	/*
276	 * BadVAddr, Cause
277	 * Ideally these would come from the last exception frame up the stack
278	 * but that requires unwinding, otherwise we can't know much for sure.
279	 */
280	*(ptr++) = 0;
281	*(ptr++) = 0;
282
283	/*
284	 * PC
285	 * use return address (RA), i.e. the moment after return from resume()
286	 */
287	*(ptr++) = p->thread.reg31;
288}
289
290void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long pc)
291{
292	regs->cp0_epc = pc;
293}
294
295/*
296 * Calls linux_debug_hook before the kernel dies. If KGDB is enabled,
297 * then try to fall into the debugger
298 */
299static int kgdb_mips_notify(struct notifier_block *self, unsigned long cmd,
300			    void *ptr)
301{
302	struct die_args *args = (struct die_args *)ptr;
303	struct pt_regs *regs = args->regs;
304	int trap = (regs->cp0_cause & 0x7c) >> 2;
305	mm_segment_t old_fs;
306
307#ifdef CONFIG_KPROBES
308	/*
309	 * Return immediately if the kprobes fault notifier has set
310	 * DIE_PAGE_FAULT.
311	 */
312	if (cmd == DIE_PAGE_FAULT)
313		return NOTIFY_DONE;
314#endif /* CONFIG_KPROBES */
315
316	/* Userspace events, ignore. */
317	if (user_mode(regs))
318		return NOTIFY_DONE;
319
320	/* Kernel mode. Set correct address limit */
321	old_fs = get_fs();
322	set_fs(KERNEL_DS);
323
324	if (atomic_read(&kgdb_active) != -1)
325		kgdb_nmicallback(smp_processor_id(), regs);
326
327	if (kgdb_handle_exception(trap, compute_signal(trap), cmd, regs)) {
328		set_fs(old_fs);
329		return NOTIFY_DONE;
330	}
331
332	if (atomic_read(&kgdb_setting_breakpoint))
333		if ((trap == 9) && (regs->cp0_epc == (unsigned long)breakinst))
334			regs->cp0_epc += 4;
335
336	/* In SMP mode, __flush_cache_all does IPI */
337	local_irq_enable();
338	__flush_cache_all();
339
340	set_fs(old_fs);
341	return NOTIFY_STOP;
342}
343
344#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
345int kgdb_ll_trap(int cmd, const char *str,
346		 struct pt_regs *regs, long err, int trap, int sig)
347{
348	struct die_args args = {
349		.regs	= regs,
350		.str	= str,
351		.err	= err,
352		.trapnr = trap,
353		.signr	= sig,
354
355	};
356
357	if (!kgdb_io_module_registered)
358		return NOTIFY_DONE;
359
360	return kgdb_mips_notify(NULL, cmd, &args);
361}
362#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
363
364static struct notifier_block kgdb_notifier = {
365	.notifier_call = kgdb_mips_notify,
366};
367
368/*
369 * Handle the 'c' command
370 */
371int kgdb_arch_handle_exception(int vector, int signo, int err_code,
372			       char *remcom_in_buffer, char *remcom_out_buffer,
373			       struct pt_regs *regs)
374{
375	char *ptr;
376	unsigned long address;
377
378	switch (remcom_in_buffer[0]) {
379	case 'c':
380		/* handle the optional parameter */
381		ptr = &remcom_in_buffer[1];
382		if (kgdb_hex2long(&ptr, &address))
383			regs->cp0_epc = address;
384
385		return 0;
386	}
387
388	return -1;
389}
390
391const struct kgdb_arch arch_kgdb_ops = {
392#ifdef CONFIG_CPU_BIG_ENDIAN
393	.gdb_bpt_instr = { spec_op << 2, 0x00, 0x00, break_op },
394#else
395	.gdb_bpt_instr = { break_op, 0x00, 0x00, spec_op << 2 },
396#endif
397};
398
399int kgdb_arch_init(void)
400{
401	register_die_notifier(&kgdb_notifier);
402
403	return 0;
404}
405
406/*
407 *	kgdb_arch_exit - Perform any architecture specific uninitalization.
408 *
409 *	This function will handle the uninitalization of any architecture
410 *	specific callbacks, for dynamic registration and unregistration.
411 */
412void kgdb_arch_exit(void)
413{
414	unregister_die_notifier(&kgdb_notifier);
415}