Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.2.
   1/*
   2 * Copyright (C) 1995  Linus Torvalds
   3 * Copyright 2010 Tilera Corporation. All Rights Reserved.
   4 *
   5 *   This program is free software; you can redistribute it and/or
   6 *   modify it under the terms of the GNU General Public License
   7 *   as published by the Free Software Foundation, version 2.
   8 *
   9 *   This program is distributed in the hope that it will be useful, but
  10 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  11 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  12 *   NON INFRINGEMENT.  See the GNU General Public License for
  13 *   more details.
  14 */
  15
  16#include <linux/module.h>
  17#include <linux/signal.h>
  18#include <linux/sched.h>
  19#include <linux/kernel.h>
  20#include <linux/errno.h>
  21#include <linux/string.h>
  22#include <linux/types.h>
  23#include <linux/ptrace.h>
  24#include <linux/mman.h>
  25#include <linux/mm.h>
  26#include <linux/hugetlb.h>
  27#include <linux/swap.h>
  28#include <linux/smp.h>
  29#include <linux/init.h>
  30#include <linux/highmem.h>
  31#include <linux/pagemap.h>
  32#include <linux/poison.h>
  33#include <linux/bootmem.h>
  34#include <linux/slab.h>
  35#include <linux/proc_fs.h>
  36#include <linux/efi.h>
  37#include <linux/memory_hotplug.h>
  38#include <linux/uaccess.h>
  39#include <asm/mmu_context.h>
  40#include <asm/processor.h>
  41#include <asm/system.h>
  42#include <asm/pgtable.h>
  43#include <asm/pgalloc.h>
  44#include <asm/dma.h>
  45#include <asm/fixmap.h>
  46#include <asm/tlb.h>
  47#include <asm/tlbflush.h>
  48#include <asm/sections.h>
  49#include <asm/setup.h>
  50#include <asm/homecache.h>
  51#include <hv/hypervisor.h>
  52#include <arch/chip.h>
  53
  54#include "migrate.h"
  55
  56#define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0))
  57
  58#ifndef __tilegx__
  59unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE;
  60EXPORT_SYMBOL(VMALLOC_RESERVE);
  61#endif
  62
  63/* Create an L2 page table */
  64static pte_t * __init alloc_pte(void)
  65{
  66	return __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
  67}
  68
  69/*
  70 * L2 page tables per controller.  We allocate these all at once from
  71 * the bootmem allocator and store them here.  This saves on kernel L2
  72 * page table memory, compared to allocating a full 64K page per L2
  73 * page table, and also means that in cases where we use huge pages,
  74 * we are guaranteed to later be able to shatter those huge pages and
  75 * switch to using these page tables instead, without requiring
  76 * further allocation.  Each l2_ptes[] entry points to the first page
  77 * table for the first hugepage-size piece of memory on the
  78 * controller; other page tables are just indexed directly, i.e. the
  79 * L2 page tables are contiguous in memory for each controller.
  80 */
  81static pte_t *l2_ptes[MAX_NUMNODES];
  82static int num_l2_ptes[MAX_NUMNODES];
  83
  84static void init_prealloc_ptes(int node, int pages)
  85{
  86	BUG_ON(pages & (HV_L2_ENTRIES-1));
  87	if (pages) {
  88		num_l2_ptes[node] = pages;
  89		l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t),
  90						HV_PAGE_TABLE_ALIGN, 0);
  91	}
  92}
  93
  94pte_t *get_prealloc_pte(unsigned long pfn)
  95{
  96	int node = pfn_to_nid(pfn);
  97	pfn &= ~(-1UL << (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT));
  98	BUG_ON(node >= MAX_NUMNODES);
  99	BUG_ON(pfn >= num_l2_ptes[node]);
 100	return &l2_ptes[node][pfn];
 101}
 102
 103/*
 104 * What caching do we expect pages from the heap to have when
 105 * they are allocated during bootup?  (Once we've installed the
 106 * "real" swapper_pg_dir.)
 107 */
 108static int initial_heap_home(void)
 109{
 110#if CHIP_HAS_CBOX_HOME_MAP()
 111	if (hash_default)
 112		return PAGE_HOME_HASH;
 113#endif
 114	return smp_processor_id();
 115}
 116
 117/*
 118 * Place a pointer to an L2 page table in a middle page
 119 * directory entry.
 120 */
 121static void __init assign_pte(pmd_t *pmd, pte_t *page_table)
 122{
 123	phys_addr_t pa = __pa(page_table);
 124	unsigned long l2_ptfn = pa >> HV_LOG2_PAGE_TABLE_ALIGN;
 125	pte_t pteval = hv_pte_set_ptfn(__pgprot(_PAGE_TABLE), l2_ptfn);
 126	BUG_ON((pa & (HV_PAGE_TABLE_ALIGN-1)) != 0);
 127	pteval = pte_set_home(pteval, initial_heap_home());
 128	*(pte_t *)pmd = pteval;
 129	if (page_table != (pte_t *)pmd_page_vaddr(*pmd))
 130		BUG();
 131}
 132
 133#ifdef __tilegx__
 134
 135#if HV_L1_SIZE != HV_L2_SIZE
 136# error Rework assumption that L1 and L2 page tables are same size.
 137#endif
 138
 139/* Since pmd_t arrays and pte_t arrays are the same size, just use casts. */
 140static inline pmd_t *alloc_pmd(void)
 141{
 142	return (pmd_t *)alloc_pte();
 143}
 144
 145static inline void assign_pmd(pud_t *pud, pmd_t *pmd)
 146{
 147	assign_pte((pmd_t *)pud, (pte_t *)pmd);
 148}
 149
 150#endif /* __tilegx__ */
 151
 152/* Replace the given pmd with a full PTE table. */
 153void __init shatter_pmd(pmd_t *pmd)
 154{
 155	pte_t *pte = get_prealloc_pte(pte_pfn(*(pte_t *)pmd));
 156	assign_pte(pmd, pte);
 157}
 158
 159#ifdef CONFIG_HIGHMEM
 160/*
 161 * This function initializes a certain range of kernel virtual memory
 162 * with new bootmem page tables, everywhere page tables are missing in
 163 * the given range.
 164 */
 165
 166/*
 167 * NOTE: The pagetables are allocated contiguous on the physical space
 168 * so we can cache the place of the first one and move around without
 169 * checking the pgd every time.
 170 */
 171static void __init page_table_range_init(unsigned long start,
 172					 unsigned long end, pgd_t *pgd_base)
 173{
 174	pgd_t *pgd;
 175	int pgd_idx;
 176	unsigned long vaddr;
 177
 178	vaddr = start;
 179	pgd_idx = pgd_index(vaddr);
 180	pgd = pgd_base + pgd_idx;
 181
 182	for ( ; (pgd_idx < PTRS_PER_PGD) && (vaddr != end); pgd++, pgd_idx++) {
 183		pmd_t *pmd = pmd_offset(pud_offset(pgd, vaddr), vaddr);
 184		if (pmd_none(*pmd))
 185			assign_pte(pmd, alloc_pte());
 186		vaddr += PMD_SIZE;
 187	}
 188}
 189#endif /* CONFIG_HIGHMEM */
 190
 191
 192#if CHIP_HAS_CBOX_HOME_MAP()
 193
 194static int __initdata ktext_hash = 1;  /* .text pages */
 195static int __initdata kdata_hash = 1;  /* .data and .bss pages */
 196int __write_once hash_default = 1;     /* kernel allocator pages */
 197EXPORT_SYMBOL(hash_default);
 198int __write_once kstack_hash = 1;      /* if no homecaching, use h4h */
 199#endif /* CHIP_HAS_CBOX_HOME_MAP */
 200
 201/*
 202 * CPUs to use to for striping the pages of kernel data.  If hash-for-home
 203 * is available, this is only relevant if kcache_hash sets up the
 204 * .data and .bss to be page-homed, and we don't want the default mode
 205 * of using the full set of kernel cpus for the striping.
 206 */
 207static __initdata struct cpumask kdata_mask;
 208static __initdata int kdata_arg_seen;
 209
 210int __write_once kdata_huge;       /* if no homecaching, small pages */
 211
 212
 213/* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */
 214static pgprot_t __init construct_pgprot(pgprot_t prot, int home)
 215{
 216	prot = pte_set_home(prot, home);
 217#if CHIP_HAS_CBOX_HOME_MAP()
 218	if (home == PAGE_HOME_IMMUTABLE) {
 219		if (ktext_hash)
 220			prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3);
 221		else
 222			prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3);
 223	}
 224#endif
 225	return prot;
 226}
 227
 228/*
 229 * For a given kernel data VA, how should it be cached?
 230 * We return the complete pgprot_t with caching bits set.
 231 */
 232static pgprot_t __init init_pgprot(ulong address)
 233{
 234	int cpu;
 235	unsigned long page;
 236	enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
 237
 238#if CHIP_HAS_CBOX_HOME_MAP()
 239	/* For kdata=huge, everything is just hash-for-home. */
 240	if (kdata_huge)
 241		return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
 242#endif
 243
 244	/* We map the aliased pages of permanent text inaccessible. */
 245	if (address < (ulong) _sinittext - CODE_DELTA)
 246		return PAGE_NONE;
 247
 248	/*
 249	 * We map read-only data non-coherent for performance.  We could
 250	 * use neighborhood caching on TILE64, but it's not clear it's a win.
 251	 */
 252	if ((address >= (ulong) __start_rodata &&
 253	     address < (ulong) __end_rodata) ||
 254	    address == (ulong) empty_zero_page) {
 255		return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE);
 256	}
 257
 258	/* As a performance optimization, keep the boot init stack here. */
 259	if (address >= (ulong)&init_thread_union &&
 260	    address < (ulong)&init_thread_union + THREAD_SIZE)
 261		return construct_pgprot(PAGE_KERNEL, smp_processor_id());
 262
 263#ifndef __tilegx__
 264#if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
 265	/* Force the atomic_locks[] array page to be hash-for-home. */
 266	if (address == (ulong) atomic_locks)
 267		return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
 268#endif
 269#endif
 270
 271	/*
 272	 * Everything else that isn't data or bss is heap, so mark it
 273	 * with the initial heap home (hash-for-home, or this cpu).  This
 274	 * includes any addresses after the loaded image and any address before
 275	 * _einitdata, since we already captured the case of text before
 276	 * _sinittext, and __pa(einittext) is approximately __pa(sinitdata).
 277	 *
 278	 * All the LOWMEM pages that we mark this way will get their
 279	 * struct page homecache properly marked later, in set_page_homes().
 280	 * The HIGHMEM pages we leave with a default zero for their
 281	 * homes, but with a zero free_time we don't have to actually
 282	 * do a flush action the first time we use them, either.
 283	 */
 284	if (address >= (ulong) _end || address < (ulong) _einitdata)
 285		return construct_pgprot(PAGE_KERNEL, initial_heap_home());
 286
 287#if CHIP_HAS_CBOX_HOME_MAP()
 288	/* Use hash-for-home if requested for data/bss. */
 289	if (kdata_hash)
 290		return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
 291#endif
 292
 293	/*
 294	 * Make the w1data homed like heap to start with, to avoid
 295	 * making it part of the page-striped data area when we're just
 296	 * going to convert it to read-only soon anyway.
 297	 */
 298	if (address >= (ulong)__w1data_begin && address < (ulong)__w1data_end)
 299		return construct_pgprot(PAGE_KERNEL, initial_heap_home());
 300
 301	/*
 302	 * Otherwise we just hand out consecutive cpus.  To avoid
 303	 * requiring this function to hold state, we just walk forward from
 304	 * _sdata by PAGE_SIZE, skipping the readonly and init data, to reach
 305	 * the requested address, while walking cpu home around kdata_mask.
 306	 * This is typically no more than a dozen or so iterations.
 307	 */
 308	page = (((ulong)__w1data_end) + PAGE_SIZE - 1) & PAGE_MASK;
 309	BUG_ON(address < page || address >= (ulong)_end);
 310	cpu = cpumask_first(&kdata_mask);
 311	for (; page < address; page += PAGE_SIZE) {
 312		if (page >= (ulong)&init_thread_union &&
 313		    page < (ulong)&init_thread_union + THREAD_SIZE)
 314			continue;
 315		if (page == (ulong)empty_zero_page)
 316			continue;
 317#ifndef __tilegx__
 318#if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
 319		if (page == (ulong)atomic_locks)
 320			continue;
 321#endif
 322#endif
 323		cpu = cpumask_next(cpu, &kdata_mask);
 324		if (cpu == NR_CPUS)
 325			cpu = cpumask_first(&kdata_mask);
 326	}
 327	return construct_pgprot(PAGE_KERNEL, cpu);
 328}
 329
 330/*
 331 * This function sets up how we cache the kernel text.  If we have
 332 * hash-for-home support, normally that is used instead (see the
 333 * kcache_hash boot flag for more information).  But if we end up
 334 * using a page-based caching technique, this option sets up the
 335 * details of that.  In addition, the "ktext=nocache" option may
 336 * always be used to disable local caching of text pages, if desired.
 337 */
 338
 339static int __initdata ktext_arg_seen;
 340static int __initdata ktext_small;
 341static int __initdata ktext_local;
 342static int __initdata ktext_all;
 343static int __initdata ktext_nondataplane;
 344static int __initdata ktext_nocache;
 345static struct cpumask __initdata ktext_mask;
 346
 347static int __init setup_ktext(char *str)
 348{
 349	if (str == NULL)
 350		return -EINVAL;
 351
 352	/* If you have a leading "nocache", turn off ktext caching */
 353	if (strncmp(str, "nocache", 7) == 0) {
 354		ktext_nocache = 1;
 355		pr_info("ktext: disabling local caching of kernel text\n");
 356		str += 7;
 357		if (*str == ',')
 358			++str;
 359		if (*str == '\0')
 360			return 0;
 361	}
 362
 363	ktext_arg_seen = 1;
 364
 365	/* Default setting on Tile64: use a huge page */
 366	if (strcmp(str, "huge") == 0)
 367		pr_info("ktext: using one huge locally cached page\n");
 368
 369	/* Pay TLB cost but get no cache benefit: cache small pages locally */
 370	else if (strcmp(str, "local") == 0) {
 371		ktext_small = 1;
 372		ktext_local = 1;
 373		pr_info("ktext: using small pages with local caching\n");
 374	}
 375
 376	/* Neighborhood cache ktext pages on all cpus. */
 377	else if (strcmp(str, "all") == 0) {
 378		ktext_small = 1;
 379		ktext_all = 1;
 380		pr_info("ktext: using maximal caching neighborhood\n");
 381	}
 382
 383
 384	/* Neighborhood ktext pages on specified mask */
 385	else if (cpulist_parse(str, &ktext_mask) == 0) {
 386		char buf[NR_CPUS * 5];
 387		cpulist_scnprintf(buf, sizeof(buf), &ktext_mask);
 388		if (cpumask_weight(&ktext_mask) > 1) {
 389			ktext_small = 1;
 390			pr_info("ktext: using caching neighborhood %s "
 391			       "with small pages\n", buf);
 392		} else {
 393			pr_info("ktext: caching on cpu %s with one huge page\n",
 394			       buf);
 395		}
 396	}
 397
 398	else if (*str)
 399		return -EINVAL;
 400
 401	return 0;
 402}
 403
 404early_param("ktext", setup_ktext);
 405
 406
 407static inline pgprot_t ktext_set_nocache(pgprot_t prot)
 408{
 409	if (!ktext_nocache)
 410		prot = hv_pte_set_nc(prot);
 411#if CHIP_HAS_NC_AND_NOALLOC_BITS()
 412	else
 413		prot = hv_pte_set_no_alloc_l2(prot);
 414#endif
 415	return prot;
 416}
 417
 418#ifndef __tilegx__
 419static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
 420{
 421	return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va);
 422}
 423#else
 424static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
 425{
 426	pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va);
 427	if (pud_none(*pud))
 428		assign_pmd(pud, alloc_pmd());
 429	return pmd_offset(pud, va);
 430}
 431#endif
 432
 433/* Temporary page table we use for staging. */
 434static pgd_t pgtables[PTRS_PER_PGD]
 435 __attribute__((aligned(HV_PAGE_TABLE_ALIGN)));
 436
 437/*
 438 * This maps the physical memory to kernel virtual address space, a total
 439 * of max_low_pfn pages, by creating page tables starting from address
 440 * PAGE_OFFSET.
 441 *
 442 * This routine transitions us from using a set of compiled-in large
 443 * pages to using some more precise caching, including removing access
 444 * to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START)
 445 * marking read-only data as locally cacheable, striping the remaining
 446 * .data and .bss across all the available tiles, and removing access
 447 * to pages above the top of RAM (thus ensuring a page fault from a bad
 448 * virtual address rather than a hypervisor shoot down for accessing
 449 * memory outside the assigned limits).
 450 */
 451static void __init kernel_physical_mapping_init(pgd_t *pgd_base)
 452{
 453	unsigned long address, pfn;
 454	pmd_t *pmd;
 455	pte_t *pte;
 456	int pte_ofs;
 457	const struct cpumask *my_cpu_mask = cpumask_of(smp_processor_id());
 458	struct cpumask kstripe_mask;
 459	int rc, i;
 460
 461#if CHIP_HAS_CBOX_HOME_MAP()
 462	if (ktext_arg_seen && ktext_hash) {
 463		pr_warning("warning: \"ktext\" boot argument ignored"
 464			   " if \"kcache_hash\" sets up text hash-for-home\n");
 465		ktext_small = 0;
 466	}
 467
 468	if (kdata_arg_seen && kdata_hash) {
 469		pr_warning("warning: \"kdata\" boot argument ignored"
 470			   " if \"kcache_hash\" sets up data hash-for-home\n");
 471	}
 472
 473	if (kdata_huge && !hash_default) {
 474		pr_warning("warning: disabling \"kdata=huge\"; requires"
 475			  " kcache_hash=all or =allbutstack\n");
 476		kdata_huge = 0;
 477	}
 478#endif
 479
 480	/*
 481	 * Set up a mask for cpus to use for kernel striping.
 482	 * This is normally all cpus, but minus dataplane cpus if any.
 483	 * If the dataplane covers the whole chip, we stripe over
 484	 * the whole chip too.
 485	 */
 486	cpumask_copy(&kstripe_mask, cpu_possible_mask);
 487	if (!kdata_arg_seen)
 488		kdata_mask = kstripe_mask;
 489
 490	/* Allocate and fill in L2 page tables */
 491	for (i = 0; i < MAX_NUMNODES; ++i) {
 492#ifdef CONFIG_HIGHMEM
 493		unsigned long end_pfn = node_lowmem_end_pfn[i];
 494#else
 495		unsigned long end_pfn = node_end_pfn[i];
 496#endif
 497		unsigned long end_huge_pfn = 0;
 498
 499		/* Pre-shatter the last huge page to allow per-cpu pages. */
 500		if (kdata_huge)
 501			end_huge_pfn = end_pfn - (HPAGE_SIZE >> PAGE_SHIFT);
 502
 503		pfn = node_start_pfn[i];
 504
 505		/* Allocate enough memory to hold L2 page tables for node. */
 506		init_prealloc_ptes(i, end_pfn - pfn);
 507
 508		address = (unsigned long) pfn_to_kaddr(pfn);
 509		while (pfn < end_pfn) {
 510			BUG_ON(address & (HPAGE_SIZE-1));
 511			pmd = get_pmd(pgtables, address);
 512			pte = get_prealloc_pte(pfn);
 513			if (pfn < end_huge_pfn) {
 514				pgprot_t prot = init_pgprot(address);
 515				*(pte_t *)pmd = pte_mkhuge(pfn_pte(pfn, prot));
 516				for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
 517				     pfn++, pte_ofs++, address += PAGE_SIZE)
 518					pte[pte_ofs] = pfn_pte(pfn, prot);
 519			} else {
 520				if (kdata_huge)
 521					printk(KERN_DEBUG "pre-shattered huge"
 522					       " page at %#lx\n", address);
 523				for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
 524				     pfn++, pte_ofs++, address += PAGE_SIZE) {
 525					pgprot_t prot = init_pgprot(address);
 526					pte[pte_ofs] = pfn_pte(pfn, prot);
 527				}
 528				assign_pte(pmd, pte);
 529			}
 530		}
 531	}
 532
 533	/*
 534	 * Set or check ktext_map now that we have cpu_possible_mask
 535	 * and kstripe_mask to work with.
 536	 */
 537	if (ktext_all)
 538		cpumask_copy(&ktext_mask, cpu_possible_mask);
 539	else if (ktext_nondataplane)
 540		ktext_mask = kstripe_mask;
 541	else if (!cpumask_empty(&ktext_mask)) {
 542		/* Sanity-check any mask that was requested */
 543		struct cpumask bad;
 544		cpumask_andnot(&bad, &ktext_mask, cpu_possible_mask);
 545		cpumask_and(&ktext_mask, &ktext_mask, cpu_possible_mask);
 546		if (!cpumask_empty(&bad)) {
 547			char buf[NR_CPUS * 5];
 548			cpulist_scnprintf(buf, sizeof(buf), &bad);
 549			pr_info("ktext: not using unavailable cpus %s\n", buf);
 550		}
 551		if (cpumask_empty(&ktext_mask)) {
 552			pr_warning("ktext: no valid cpus; caching on %d.\n",
 553				   smp_processor_id());
 554			cpumask_copy(&ktext_mask,
 555				     cpumask_of(smp_processor_id()));
 556		}
 557	}
 558
 559	address = MEM_SV_INTRPT;
 560	pmd = get_pmd(pgtables, address);
 561	if (ktext_small) {
 562		/* Allocate an L2 PTE for the kernel text */
 563		int cpu = 0;
 564		pgprot_t prot = construct_pgprot(PAGE_KERNEL_EXEC,
 565						 PAGE_HOME_IMMUTABLE);
 566
 567		if (ktext_local) {
 568			if (ktext_nocache)
 569				prot = hv_pte_set_mode(prot,
 570						       HV_PTE_MODE_UNCACHED);
 571			else
 572				prot = hv_pte_set_mode(prot,
 573						       HV_PTE_MODE_CACHE_NO_L3);
 574		} else {
 575			prot = hv_pte_set_mode(prot,
 576					       HV_PTE_MODE_CACHE_TILE_L3);
 577			cpu = cpumask_first(&ktext_mask);
 578
 579			prot = ktext_set_nocache(prot);
 580		}
 581
 582		BUG_ON(address != (unsigned long)_stext);
 583		pfn = 0;  /* code starts at PA 0 */
 584		pte = alloc_pte();
 585		for (pte_ofs = 0; address < (unsigned long)_einittext;
 586		     pfn++, pte_ofs++, address += PAGE_SIZE) {
 587			if (!ktext_local) {
 588				prot = set_remote_cache_cpu(prot, cpu);
 589				cpu = cpumask_next(cpu, &ktext_mask);
 590				if (cpu == NR_CPUS)
 591					cpu = cpumask_first(&ktext_mask);
 592			}
 593			pte[pte_ofs] = pfn_pte(pfn, prot);
 594		}
 595		assign_pte(pmd, pte);
 596	} else {
 597		pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC);
 598		pteval = pte_mkhuge(pteval);
 599#if CHIP_HAS_CBOX_HOME_MAP()
 600		if (ktext_hash) {
 601			pteval = hv_pte_set_mode(pteval,
 602						 HV_PTE_MODE_CACHE_HASH_L3);
 603			pteval = ktext_set_nocache(pteval);
 604		} else
 605#endif /* CHIP_HAS_CBOX_HOME_MAP() */
 606		if (cpumask_weight(&ktext_mask) == 1) {
 607			pteval = set_remote_cache_cpu(pteval,
 608					      cpumask_first(&ktext_mask));
 609			pteval = hv_pte_set_mode(pteval,
 610						 HV_PTE_MODE_CACHE_TILE_L3);
 611			pteval = ktext_set_nocache(pteval);
 612		} else if (ktext_nocache)
 613			pteval = hv_pte_set_mode(pteval,
 614						 HV_PTE_MODE_UNCACHED);
 615		else
 616			pteval = hv_pte_set_mode(pteval,
 617						 HV_PTE_MODE_CACHE_NO_L3);
 618		*(pte_t *)pmd = pteval;
 619	}
 620
 621	/* Set swapper_pgprot here so it is flushed to memory right away. */
 622	swapper_pgprot = init_pgprot((unsigned long)swapper_pg_dir);
 623
 624	/*
 625	 * Since we may be changing the caching of the stack and page
 626	 * table itself, we invoke an assembly helper to do the
 627	 * following steps:
 628	 *
 629	 *  - flush the cache so we start with an empty slate
 630	 *  - install pgtables[] as the real page table
 631	 *  - flush the TLB so the new page table takes effect
 632	 */
 633	rc = flush_and_install_context(__pa(pgtables),
 634				       init_pgprot((unsigned long)pgtables),
 635				       __get_cpu_var(current_asid),
 636				       cpumask_bits(my_cpu_mask));
 637	BUG_ON(rc != 0);
 638
 639	/* Copy the page table back to the normal swapper_pg_dir. */
 640	memcpy(pgd_base, pgtables, sizeof(pgtables));
 641	__install_page_table(pgd_base, __get_cpu_var(current_asid),
 642			     swapper_pgprot);
 643
 644	/*
 645	 * We just read swapper_pgprot and thus brought it into the cache,
 646	 * with its new home & caching mode.  When we start the other CPUs,
 647	 * they're going to reference swapper_pgprot via their initial fake
 648	 * VA-is-PA mappings, which cache everything locally.  At that
 649	 * time, if it's in our cache with a conflicting home, the
 650	 * simulator's coherence checker will complain.  So, flush it out
 651	 * of our cache; we're not going to ever use it again anyway.
 652	 */
 653	__insn_finv(&swapper_pgprot);
 654}
 655
 656/*
 657 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
 658 * is valid. The argument is a physical page number.
 659 *
 660 * On Tile, the only valid things for which we can just hand out unchecked
 661 * PTEs are the kernel code and data.  Anything else might change its
 662 * homing with time, and we wouldn't know to adjust the /dev/mem PTEs.
 663 * Note that init_thread_union is released to heap soon after boot,
 664 * so we include it in the init data.
 665 *
 666 * For TILE-Gx, we might want to consider allowing access to PA
 667 * regions corresponding to PCI space, etc.
 668 */
 669int devmem_is_allowed(unsigned long pagenr)
 670{
 671	return pagenr < kaddr_to_pfn(_end) &&
 672		!(pagenr >= kaddr_to_pfn(&init_thread_union) ||
 673		  pagenr < kaddr_to_pfn(_einitdata)) &&
 674		!(pagenr >= kaddr_to_pfn(_sinittext) ||
 675		  pagenr <= kaddr_to_pfn(_einittext-1));
 676}
 677
 678#ifdef CONFIG_HIGHMEM
 679static void __init permanent_kmaps_init(pgd_t *pgd_base)
 680{
 681	pgd_t *pgd;
 682	pud_t *pud;
 683	pmd_t *pmd;
 684	pte_t *pte;
 685	unsigned long vaddr;
 686
 687	vaddr = PKMAP_BASE;
 688	page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
 689
 690	pgd = swapper_pg_dir + pgd_index(vaddr);
 691	pud = pud_offset(pgd, vaddr);
 692	pmd = pmd_offset(pud, vaddr);
 693	pte = pte_offset_kernel(pmd, vaddr);
 694	pkmap_page_table = pte;
 695}
 696#endif /* CONFIG_HIGHMEM */
 697
 698
 699static void __init init_free_pfn_range(unsigned long start, unsigned long end)
 700{
 701	unsigned long pfn;
 702	struct page *page = pfn_to_page(start);
 703
 704	for (pfn = start; pfn < end; ) {
 705		/* Optimize by freeing pages in large batches */
 706		int order = __ffs(pfn);
 707		int count, i;
 708		struct page *p;
 709
 710		if (order >= MAX_ORDER)
 711			order = MAX_ORDER-1;
 712		count = 1 << order;
 713		while (pfn + count > end) {
 714			count >>= 1;
 715			--order;
 716		}
 717		for (p = page, i = 0; i < count; ++i, ++p) {
 718			__ClearPageReserved(p);
 719			/*
 720			 * Hacky direct set to avoid unnecessary
 721			 * lock take/release for EVERY page here.
 722			 */
 723			p->_count.counter = 0;
 724			p->_mapcount.counter = -1;
 725		}
 726		init_page_count(page);
 727		__free_pages(page, order);
 728		totalram_pages += count;
 729
 730		page += count;
 731		pfn += count;
 732	}
 733}
 734
 735static void __init set_non_bootmem_pages_init(void)
 736{
 737	struct zone *z;
 738	for_each_zone(z) {
 739		unsigned long start, end;
 740		int nid = z->zone_pgdat->node_id;
 741		int idx = zone_idx(z);
 742
 743		start = z->zone_start_pfn;
 744		if (start == 0)
 745			continue;  /* bootmem */
 746		end = start + z->spanned_pages;
 747		if (idx == ZONE_NORMAL) {
 748			BUG_ON(start != node_start_pfn[nid]);
 749			start = node_free_pfn[nid];
 750		}
 751#ifdef CONFIG_HIGHMEM
 752		if (idx == ZONE_HIGHMEM)
 753			totalhigh_pages += z->spanned_pages;
 754#endif
 755		if (kdata_huge) {
 756			unsigned long percpu_pfn = node_percpu_pfn[nid];
 757			if (start < percpu_pfn && end > percpu_pfn)
 758				end = percpu_pfn;
 759		}
 760#ifdef CONFIG_PCI
 761		if (start <= pci_reserve_start_pfn &&
 762		    end > pci_reserve_start_pfn) {
 763			if (end > pci_reserve_end_pfn)
 764				init_free_pfn_range(pci_reserve_end_pfn, end);
 765			end = pci_reserve_start_pfn;
 766		}
 767#endif
 768		init_free_pfn_range(start, end);
 769	}
 770}
 771
 772/*
 773 * paging_init() sets up the page tables - note that all of lowmem is
 774 * already mapped by head.S.
 775 */
 776void __init paging_init(void)
 777{
 778#ifdef CONFIG_HIGHMEM
 779	unsigned long vaddr, end;
 780#endif
 781#ifdef __tilegx__
 782	pud_t *pud;
 783#endif
 784	pgd_t *pgd_base = swapper_pg_dir;
 785
 786	kernel_physical_mapping_init(pgd_base);
 787
 788#ifdef CONFIG_HIGHMEM
 789	/*
 790	 * Fixed mappings, only the page table structure has to be
 791	 * created - mappings will be set by set_fixmap():
 792	 */
 793	vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK;
 794	end = (FIXADDR_TOP + PMD_SIZE - 1) & PMD_MASK;
 795	page_table_range_init(vaddr, end, pgd_base);
 796	permanent_kmaps_init(pgd_base);
 797#endif
 798
 799#ifdef __tilegx__
 800	/*
 801	 * Since GX allocates just one pmd_t array worth of vmalloc space,
 802	 * we go ahead and allocate it statically here, then share it
 803	 * globally.  As a result we don't have to worry about any task
 804	 * changing init_mm once we get up and running, and there's no
 805	 * need for e.g. vmalloc_sync_all().
 806	 */
 807	BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END));
 808	pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START);
 809	assign_pmd(pud, alloc_pmd());
 810#endif
 811}
 812
 813
 814/*
 815 * Walk the kernel page tables and derive the page_home() from
 816 * the PTEs, so that set_pte() can properly validate the caching
 817 * of all PTEs it sees.
 818 */
 819void __init set_page_homes(void)
 820{
 821}
 822
 823static void __init set_max_mapnr_init(void)
 824{
 825#ifdef CONFIG_FLATMEM
 826	max_mapnr = max_low_pfn;
 827#endif
 828}
 829
 830void __init mem_init(void)
 831{
 832	int codesize, datasize, initsize;
 833	int i;
 834#ifndef __tilegx__
 835	void *last;
 836#endif
 837
 838#ifdef CONFIG_FLATMEM
 839	BUG_ON(!mem_map);
 840#endif
 841
 842#ifdef CONFIG_HIGHMEM
 843	/* check that fixmap and pkmap do not overlap */
 844	if (PKMAP_ADDR(LAST_PKMAP-1) >= FIXADDR_START) {
 845		pr_err("fixmap and kmap areas overlap"
 846		       " - this will crash\n");
 847		pr_err("pkstart: %lxh pkend: %lxh fixstart %lxh\n",
 848		       PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP-1),
 849		       FIXADDR_START);
 850		BUG();
 851	}
 852#endif
 853
 854	set_max_mapnr_init();
 855
 856	/* this will put all bootmem onto the freelists */
 857	totalram_pages += free_all_bootmem();
 858
 859	/* count all remaining LOWMEM and give all HIGHMEM to page allocator */
 860	set_non_bootmem_pages_init();
 861
 862	codesize =  (unsigned long)&_etext - (unsigned long)&_text;
 863	datasize =  (unsigned long)&_end - (unsigned long)&_sdata;
 864	initsize =  (unsigned long)&_einittext - (unsigned long)&_sinittext;
 865	initsize += (unsigned long)&_einitdata - (unsigned long)&_sinitdata;
 866
 867	pr_info("Memory: %luk/%luk available (%dk kernel code, %dk data, %dk init, %ldk highmem)\n",
 868		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
 869		num_physpages << (PAGE_SHIFT-10),
 870		codesize >> 10,
 871		datasize >> 10,
 872		initsize >> 10,
 873		(unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))
 874	       );
 875
 876	/*
 877	 * In debug mode, dump some interesting memory mappings.
 878	 */
 879#ifdef CONFIG_HIGHMEM
 880	printk(KERN_DEBUG "  KMAP    %#lx - %#lx\n",
 881	       FIXADDR_START, FIXADDR_TOP + PAGE_SIZE - 1);
 882	printk(KERN_DEBUG "  PKMAP   %#lx - %#lx\n",
 883	       PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP) - 1);
 884#endif
 885#ifdef CONFIG_HUGEVMAP
 886	printk(KERN_DEBUG "  HUGEMAP %#lx - %#lx\n",
 887	       HUGE_VMAP_BASE, HUGE_VMAP_END - 1);
 888#endif
 889	printk(KERN_DEBUG "  VMALLOC %#lx - %#lx\n",
 890	       _VMALLOC_START, _VMALLOC_END - 1);
 891#ifdef __tilegx__
 892	for (i = MAX_NUMNODES-1; i >= 0; --i) {
 893		struct pglist_data *node = &node_data[i];
 894		if (node->node_present_pages) {
 895			unsigned long start = (unsigned long)
 896				pfn_to_kaddr(node->node_start_pfn);
 897			unsigned long end = start +
 898				(node->node_present_pages << PAGE_SHIFT);
 899			printk(KERN_DEBUG "  MEM%d    %#lx - %#lx\n",
 900			       i, start, end - 1);
 901		}
 902	}
 903#else
 904	last = high_memory;
 905	for (i = MAX_NUMNODES-1; i >= 0; --i) {
 906		if ((unsigned long)vbase_map[i] != -1UL) {
 907			printk(KERN_DEBUG "  LOWMEM%d %#lx - %#lx\n",
 908			       i, (unsigned long) (vbase_map[i]),
 909			       (unsigned long) (last-1));
 910			last = vbase_map[i];
 911		}
 912	}
 913#endif
 914
 915#ifndef __tilegx__
 916	/*
 917	 * Convert from using one lock for all atomic operations to
 918	 * one per cpu.
 919	 */
 920	__init_atomic_per_cpu();
 921#endif
 922}
 923
 924/*
 925 * this is for the non-NUMA, single node SMP system case.
 926 * Specifically, in the case of x86, we will always add
 927 * memory to the highmem for now.
 928 */
 929#ifndef CONFIG_NEED_MULTIPLE_NODES
 930int arch_add_memory(u64 start, u64 size)
 931{
 932	struct pglist_data *pgdata = &contig_page_data;
 933	struct zone *zone = pgdata->node_zones + MAX_NR_ZONES-1;
 934	unsigned long start_pfn = start >> PAGE_SHIFT;
 935	unsigned long nr_pages = size >> PAGE_SHIFT;
 936
 937	return __add_pages(zone, start_pfn, nr_pages);
 938}
 939
 940int remove_memory(u64 start, u64 size)
 941{
 942	return -EINVAL;
 943}
 944#endif
 945
 946struct kmem_cache *pgd_cache;
 947
 948void __init pgtable_cache_init(void)
 949{
 950	pgd_cache = kmem_cache_create("pgd", SIZEOF_PGD, SIZEOF_PGD, 0, NULL);
 951	if (!pgd_cache)
 952		panic("pgtable_cache_init(): Cannot create pgd cache");
 953}
 954
 955#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
 956/*
 957 * The __w1data area holds data that is only written during initialization,
 958 * and is read-only and thus freely cacheable thereafter.  Fix the page
 959 * table entries that cover that region accordingly.
 960 */
 961static void mark_w1data_ro(void)
 962{
 963	/* Loop over page table entries */
 964	unsigned long addr = (unsigned long)__w1data_begin;
 965	BUG_ON((addr & (PAGE_SIZE-1)) != 0);
 966	for (; addr <= (unsigned long)__w1data_end - 1; addr += PAGE_SIZE) {
 967		unsigned long pfn = kaddr_to_pfn((void *)addr);
 968		pte_t *ptep = virt_to_pte(NULL, addr);
 969		BUG_ON(pte_huge(*ptep));   /* not relevant for kdata_huge */
 970		set_pte_at(&init_mm, addr, ptep, pfn_pte(pfn, PAGE_KERNEL_RO));
 971	}
 972}
 973#endif
 974
 975#ifdef CONFIG_DEBUG_PAGEALLOC
 976static long __write_once initfree;
 977#else
 978static long __write_once initfree = 1;
 979#endif
 980
 981/* Select whether to free (1) or mark unusable (0) the __init pages. */
 982static int __init set_initfree(char *str)
 983{
 984	long val;
 985	if (strict_strtol(str, 0, &val) == 0) {
 986		initfree = val;
 987		pr_info("initfree: %s free init pages\n",
 988			initfree ? "will" : "won't");
 989	}
 990	return 1;
 991}
 992__setup("initfree=", set_initfree);
 993
 994static void free_init_pages(char *what, unsigned long begin, unsigned long end)
 995{
 996	unsigned long addr = (unsigned long) begin;
 997
 998	if (kdata_huge && !initfree) {
 999		pr_warning("Warning: ignoring initfree=0:"
1000			   " incompatible with kdata=huge\n");
1001		initfree = 1;
1002	}
1003	end = (end + PAGE_SIZE - 1) & PAGE_MASK;
1004	local_flush_tlb_pages(NULL, begin, PAGE_SIZE, end - begin);
1005	for (addr = begin; addr < end; addr += PAGE_SIZE) {
1006		/*
1007		 * Note we just reset the home here directly in the
1008		 * page table.  We know this is safe because our caller
1009		 * just flushed the caches on all the other cpus,
1010		 * and they won't be touching any of these pages.
1011		 */
1012		int pfn = kaddr_to_pfn((void *)addr);
1013		struct page *page = pfn_to_page(pfn);
1014		pte_t *ptep = virt_to_pte(NULL, addr);
1015		if (!initfree) {
1016			/*
1017			 * If debugging page accesses then do not free
1018			 * this memory but mark them not present - any
1019			 * buggy init-section access will create a
1020			 * kernel page fault:
1021			 */
1022			pte_clear(&init_mm, addr, ptep);
1023			continue;
1024		}
1025		__ClearPageReserved(page);
1026		init_page_count(page);
1027		if (pte_huge(*ptep))
1028			BUG_ON(!kdata_huge);
1029		else
1030			set_pte_at(&init_mm, addr, ptep,
1031				   pfn_pte(pfn, PAGE_KERNEL));
1032		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1033		free_page(addr);
1034		totalram_pages++;
1035	}
1036	pr_info("Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
1037}
1038
1039void free_initmem(void)
1040{
1041	const unsigned long text_delta = MEM_SV_INTRPT - PAGE_OFFSET;
1042
1043	/*
1044	 * Evict the dirty initdata on the boot cpu, evict the w1data
1045	 * wherever it's homed, and evict all the init code everywhere.
1046	 * We are guaranteed that no one will touch the init pages any
1047	 * more, and although other cpus may be touching the w1data,
1048	 * we only actually change the caching on tile64, which won't
1049	 * be keeping local copies in the other tiles' caches anyway.
1050	 */
1051	homecache_evict(&cpu_cacheable_map);
1052
1053	/* Free the data pages that we won't use again after init. */
1054	free_init_pages("unused kernel data",
1055			(unsigned long)_sinitdata,
1056			(unsigned long)_einitdata);
1057
1058	/*
1059	 * Free the pages mapped from 0xc0000000 that correspond to code
1060	 * pages from MEM_SV_INTRPT that we won't use again after init.
1061	 */
1062	free_init_pages("unused kernel text",
1063			(unsigned long)_sinittext - text_delta,
1064			(unsigned long)_einittext - text_delta);
1065
1066#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
1067	/*
1068	 * Upgrade the .w1data section to globally cached.
1069	 * We don't do this on tilepro, since the cache architecture
1070	 * pretty much makes it irrelevant, and in any case we end
1071	 * up having racing issues with other tiles that may touch
1072	 * the data after we flush the cache but before we update
1073	 * the PTEs and flush the TLBs, causing sharer shootdowns
1074	 * later.  Even though this is to clean data, it seems like
1075	 * an unnecessary complication.
1076	 */
1077	mark_w1data_ro();
1078#endif
1079
1080	/* Do a global TLB flush so everyone sees the changes. */
1081	flush_tlb_all();
1082}